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Plane Curves
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Plane Cubic Curves

o The ground field k is assumed to be algebraically closed with
characteristic not equal to 2 or 3.

o A nonzero homogeneous polynomial f € k9[xg,x1,x2] of degree d
defines a one-dimensional projective variety

V() ={(x0:x1: x2) : f(x0,x1,%2) =0} < IP%,

which we call a plane curve.
o For c € k*, the polynomials f and cf define the same curve.

o We distinguish between curves defined by f and by powers of f.
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Plane Cubic Curves

©

Suppose that f has a decomposition into irreducible factors
d d,
f=f.f

(unique up to permutation and constant factors).

©

We write C as a formal sum
C=d1C1+"'+drCr,

where C;:= V(f).

The curves C; are called the irreducible components of C.

©

©

If £ has no repeated components, then this corresponds to the
decomposition of V/(f) into irreducible components.
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Plane Cubic Curves

o Suppose
C= d1C1+---+drCr.

We use the notation

©

C={f=0}

to denote the set of curves C; counted with multiplicity.
o We call C a plane curve of degree d.

o We have a bijection

{plane curves of degree d} AL P (k9 [x0, x1,%2])-

©

Thus, the set of plane curves of degree d forms a projective space of
dimension (“3°) - 1.

o The space of lines, i.e., the space of projective curves of degree 1, is
the dual projective plane (]P%()*
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Plane Cubic Curves

o If f has no repeated factors, then a point P is a singular point of C
if and only if

of
f(P)=0 d —(P)=0, i=0,1,2.
(P)=0 and =(P)=0,

o The following relation is known as Euler's Formula,

of
d-f= ZX,'O—XI..
o It implies that, if chark =0 or chark > d, then P is a singular point if
and only if
of
—(P)=0, i=0,1,2.
ax,-( ) i

o We will also use this as a definition of smooth and singular points
when f has repeated factors.
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Plane Cubic Curves

o In contrast to the previous chapters, C may have no smooth points.

: Consider
f=x3.

Then we have
C={f=0

So C has no smooth points.
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Plane Cubic Curves

o For Pe C, we define the tangent space to C at P by

2 of

re=f

—(P)x; =0} cP2.
I=06X,( )I } k

o This is the projective closure of the affine tangent space.

o A point P on C is a smooth point of C if and only if TpC is a line.
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Plane Cubic Curves

©

A map A€ GI(3, k) takes lines through the origin to lines through the
origin.
o Thus, it induces a projective transformation
O=Pp: IP%{ — IPi.
o Let C and C’ be two curves, with defining equations f and f,

respectively.

o We say C and C’ are projectively equivalent if there is a
transformation of coordinates A€ GI(3, k), such that the corresponding
transformation of P(k[xg,x1,x2]) maps f to f'.

o Our goal is to classify plane curves of degree 3 (cubics) up to
projective equivalence.
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Plane Cubic Curves

Let C be a plane cubic curve which decomposes into three lines.

Then C is projectively equivalent to one of the following curves:
C = {xoxix =0}

C = {XOXl(XO +X]_) = 0},
C={x3x =0}
C={x3 =0}
o By assumption,
C= fl @] fg @] f3,
where the lines ¢; are considered as points of the dual space (IP%)*.

We distinguish various cases.
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Plane Cubic Curves

The lines ¢; are all different and do not all intersect in a common
point.

Equivalently, the points ¢1,¢5,¢3 € (IPi)* do not lie on a line.
Now we use the transitivity of the action of GI(3,k) on (P%)*.

Explicitly, the coordinates of these points define the rows of a matrix
in GI(3, k) which maps xg,x1,x2 to ¢1,£2,¢3.
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Plane Cubic Curves

The three lines are different, and there is a point that lies on all three
lines.
Thus, there is a line through the distinct points ¢; € (P%)*.
Now note the following:
o GI(3, k) acts transitively on (IP%)*;
o GI(2, k) acts 3-transitively on (IP,l()*.
That is, any two triples of distinct points are equivalent under the
action of GI(2, k).

So all such sets of points are equivalent under the action of (P2)*.
01 =105 +# ¢3: A similar argument gives Case (3).
{1 =105 =1¢3: This gives Case (4).

George Voutsadakis (LSSU) Algebraic Geometry



Plane Cubic Curves [SintersectionsMultiplicity

Subsection 2

Intersection Multiplicity
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Plane Cubic Curves

o Consider two plane curves.
o C defined by a polynomial f.
o C' defined by a polynomial g.

o Assume, first, that C and C’ have no common component.

Definition (Intersection Multiplicity)

The intersection multiplicity /p(C,C’) of C and C' at a point PEIP%( is
defined by

IP(C, Cl) = dimk@’]Pin/(f,g).

George Voutsadakis (LSSU) Algebraic Geometry



Plane Cubic Curves

Lemma

Let C and C’ be two plane curves. Then

Ip(C,C"Y=1 iff PeCnC.

o Assume, first, that P¢ CnC'. Then P¢ C or P¢ C'.
In the first case, f is a unit in Op2 p-
In the second, g is a unit in Op2,p.
Thus, (f,g) =Op2 p. le., dimk@]PfyP/(f,g) =0.
Conversely, suppose Pe Cn C'.
Then f,ge mp. So (f,g) < mp.
Thus,

/P(C, Cl) = dimk@Pi,P/(f’g) = dimk@]Pi,P/mP =1.
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Plane Cubic Curves

: For a line LQIP%( through a point P on C, we have
Ip(C, L) = multp(fL).
To see this, first make a linear transformation so that:
o P=(0:0:1);
o L is given by x; =0.
Consider the affine coordinates
X0 X1
X=—, y=—
X2 X2
for the affine subspace Af{ of IP%(, where x> # 0.
In terms of x, y, the line LnAf( is given by y=0.

We have
Ip(C,L)

dlmk@lpiyp/(frxl)
dimi@y20/(f(xy,1),y)
multp(f1.).
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Plane Cubic Curves

o Let C be a plane curve defined by f.
o Let L‘;]Pi be a line through a point P on C.
o We showed

Ip(C,L) =multp(f1L).

o It follows that
Ip(C,L)=2 iff L= TpC.

Definition (Transverse Intersection)

The curves C and C’ intersect transversely at a point Pe CnC’ if C and
C' are both smooth at P and the tangent lines at P are distinct, i.e.,

TpCn TPCI= {P}.
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Plane Cubic Curves

Lemma

Let V be a quasi-projective variety and let P € V. If the elements
fi,...,fr € mp generate the k-vector space mp/mf;, then they also generate
the ideal mp.

o Note that this is a local statement.
Further, any quasi-projective variety is covered by affine sets.
So we may assume that V' is an affine variety in A}.
Set
B :Z@V’p/(ﬂ,...,fr) and A:= mp/(ﬂ,...,fr).

Suppose P =(ay,...,an).
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Plane Cubic Curves

o Then the residue classes of
X1 —ai,...,Xpn—4an

generate the module A over B.
Thus, A is a finite B-algebra.
So, by Nakayama's Lemma, either A=0 or mpA # A.

However,

mpA=((f,....;)+md)/(f,....F:) = mp/(fi,..., ;) = A.

So we must have A=0.

I.e., mp = (fl,...,f,).
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Plane Cubic Curves

Lemma

Two curves C, C' intersect transversally at P if and only if Ip(C,C")=1.

o We assume that P =(0:0:1) and work with affine coordinates x, y.
Since Pe Cn C’, we have (f,g) < mp.
So Ip(C,C") =1 is equivalent to the statement (f,g) = mp.
Suppose, first, Ip(C,C') =1.
Then the linear parts of f and g must span the two-dimensional vector
space mp/mlz,.
In particular they are linearly independent.
So the tangent lines of C and C’ at P are distinct.
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Plane Cubic Curves

o Assume, conversely, that C and C’ intersect transversally at P.

Perform a suitable transformation of coordinates so that the linear
parts of f and g are given, respectively, by

fF(’[) =x and gg) =y.

Then, either by the lemma or using an elementary argument, we may
show that f and g generate the ideal mp.
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Plane Cubic Curves

o If we omit the condition that C and C’ have no common component,
we can still define the local intersection multiplicity /p(C, C').

o If P lies on a common component of C and C’, we set

Ip(C,C") :=c0.

George Voutsadakis (LSSU) Algebraic Geometry



Plane Cubic Curves

o Consider the semicubical parabola C,
given in projective coordinates by C

2 3
z5z0—2z; =0.

In local coordinates, in a neighborhood
of P=(0:0:1), it is given by

x*-y3=0.

Let L; and L, be the lines given by zp =0 and z; =0, respectively.
Then

Ip(C, L) = dimk@Pi,P/(Xz -y3x) = dimk@]PiP/(x,y3) =3;
Ip(C, L) = dimk@]PlZ(’P/(Xz -y3y)= dimk@’]Pin/(xz,y) 2.
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Plane Cubic Curves

Theorem (Bézout)

Let C and C’ be two plane curves of degree d and d’, respectively, which
have no common components. Then C and C’ intersect in dd’ points, i.e.,

C.C":=Y Ip(C,C")=dd".
P

o We will give a proof of Bézout's Theorem later, in the case that one of
the curves is smooth.
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Plane Cubic Curves

o We only need the following special case of Bézout's Theorem.

o It is essentially a reinterpretation of the Fundamental Theorem of
Algebra.

Let CE]P,Z( be a curve of degree d. Let L be a line not contained in C.
Then C and L intersect in d points (counted with multiplicity), i.e.,

Y Ip(C, L) =d.
P
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Plane Cubic Curves

o Suppose
C={f=0}
where f =f(xp,x1,x2) is a homogeneous polynomial of degree d.
Let L= {xo =0}.
Then

fl="f(x0,x1,0) = aoxg +alxg_1x1 +---+adxf

is a homogeneous polynomial of degree d in two variables.

We may assume that the coordinates have been chosen so that
(1:0)€ L is not a zero of f ;.

Then the number of points where C and L intersect is obtained by
counting, with multiplicity, the zeros of the polynomial

d d-1

f(X)=30X +aix +---+ay.

By the Fundamental Theorem of Algebra, there are exactly d zeros.
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Plane Cubic Curves

o Every homogeneous quadratic equation can be written in the form

q(x0,x1,X2) = ga(x0, x1,X%2) = xA'x,

with x = (x0: x1 : x2) and A="A€e Mat(3x3, k).

o Since we are assuming throughout that k is algebraically closed, the
only invariant under a change of coordinates is the rank of the matrix.
o Up to equivalence we have the following cases:
q(x0,x1,x2) = xg +x12 +x22 (smooth conic);
q(x0,x1,x2) =X§ +X12 (pair of lines);
q(x0,x1,x2) = x3 (double line).

o Note that the conic xg +x12 +x22

X0X2 —X12 =0.

is projectively equivalent to
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Plane Cubic Curves

Proposition
Let C be a plane cubic which decomposes into an irreducible conic (a curve
of degree 2) and a line. Then C is projectively equivalent to one of the
following two curves:

C1 = {(xox2 — x¥)x1 = O};

G = {(xox2 — x¥)x0 = 0}.

o By assumption
C= Co +1L,

where:
o (Cp is an irreducible conic;
o Lis a line.
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Plane Cubic Curves

o The conic Cy is given by an irreducible quadric

{q(XO)Xl»X2) = 0}

By the Principal Axes Theorem, given by the above classification of
conics, C is projectively equivalent to the conic

{Xo0x2 —x12 =0}.

By the proposition, the line L intersects the conic in two points.
Since Cy is smooth, we have the following possibilities:

L intersects Cy transversally in two points;
L is tangent to Cp at a point Pg.
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Plane Cubic Curves

o (p is the image of

@: IPi — C0291Pi; ,
(to:t1) — (t5:totr:ty).

A transformation ty — atg+ bt, t; — ctg + dt1, induces a map

td — a’td+2abtoty + b2t7,
tot; — actg+(ad+bc)toty + bdt?,
2 — 22 +2cdtoty + d?tl.
Thus, the matrix
Be 2ab b?
ac (ad+bc) bd
& 2cd d?

defines a transformation of ]P%( which maps the conic ( to itself.
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Plane Cubic Curves

o We use a suitable matrix
a b
c d)
o In Case (1), we can map the points of intersection to the points

(1:0:0) and (0:0:1).
o In Case (2), we can map Py to the point (0:0:1).

The line through (1:0:0) and (0:0:1) is
{x1 =0}.

The tangent to the conic Cp at (0:0:1) is
{xg = 0}.

This completes the proof.
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Plane Cubic Curves [SintersectionsMultiplicity

[[lustration

o The curve G = {(xox2 —x12)x1 =0}

(1:0:0) (0:0:1)

o The curve G = {(xox2 —x12)x0 =0}
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Plane Cubic Curves

Let C be an irreducible singular cubic. Then C has exactly one singularity
and is projectively equivalent to one of the following curves:
{x1 Xp — xg’ —x0x2 0};
= {x2x12 —x0 0.

o Suppose C has at least two singularities.
Consider the line through the two singularities.

It would intersect the curve C in at least 4 points, with multiplicity.
This is a contradiction.
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Plane Cubic Curves

o We may assume that the singularity of C is at P=(0:0:1).
f does not factor into three linear forms.

This means that the equation f for C has the form
_ 3 2 2 3
f =x2q(x0,x1) + bxg + cx x1 + dxoXj + ex,

where
q(XO’ Xl) # 0.

The quadratic g factors into linear forms
q(x0,x1) = £o(x0,x1)¢1(x0,X1)-

Accordingly, there are two cases to consider.
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Plane Cubic Curves

The case [o(Xo,Xl) # C[l(Xo,Xl).

By applying a transformation of coordinates we may assume that
go(Xo,Xl) = X0 and fl(XQ,Xl) =X1.

Then f has the form

_ .3 ’r2 1 3
f—x2x0x1+bx0+cx0x1+dx0x1+ex1

Since f is irreducible, b'e’ #0. Let f2=b" and y3=¢'.

Then set
x2 = Pr(g-6x)+50¢+x)+L(4-x),
X0 %(x0+x1)
X1 = %(x0 x1),

Then we obtain
f:X2(X62_X1 ) - 8

This is projectively equivalent to x1 Xo —xgx2 —xg.
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Plane Cubic Curves

The case [o(Xo,Xl) = C[l(Xo,Xl).
We may assume that ¢o(xop,x1) = €1(x0,x1) = x1.
Then,

f= X2X1 b'x0 +c X0 xy+d’ Xox1
We have b’ #0, since otherwise x; divides f.

. !
Change variables xo = x) — 37 X1, to get

_ 2 l " "3
f—x2x1+bx +d x0x1+e X7,

The change variables x; = —b'x}, — d"x] — e""xy, to get

f=—b(xhxZ = x%).

This is projectively equivalent to x2x12 —xg.
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Subsection 3

Classification of Smooth Cubics
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Plane Cubic Curves

Definition (Flex Point)

Let C be a plane curve of arbitrary degree. A smooth point P e C is called
a point of inflection, or a flex point, of C if Ip(C, TpC)=3.

The tangent TpC to C at a flex point P is called an inflectional tangent
line, or an inflectional tangent, of C.

o We will show that the inflection points of C are determined by the
intersection of C with its Hessian.
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Plane Cubic Curves

Definition (Hessian)

For a plane curve C = {f =0}, the Hessian of C is given by

o°f )
0x;0X; Osi,jsz.

Hr := det(

©

Suppose Hr does not vanish identically.

©

Then Hf is a homogeneous polynomial of degree 3(d —2).
Let

©

H={Hf =0} cP2.

©

If d =2 then H may be empty.

o Otherwise, either H=1P2 or H is a plane curve of degree 3(d -2),
called the Hessian curve of C.
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Plane Cubic Curves

Proposition

Let C be a smooth plane curve of degree d =3 with Hessian curve H.
Assume that (char(k),d —1)=1. Then Hn C is equal to the set of
inflection points of C.

o We show the statement is invariant under change of coordinates.

X0 X0
Consider the transformation A:( x| )HA( x1 ) AeGI(3,k).

X X
Given a polynomial f € k[xp,x1,x2], denote by f* the transform foA .
Using the chain rule, one can show that Hy« = (detA)?(Hr)*.
Thus, the statement is invariant under change of coordinates.
So we may assume that P=(0:0:1) and that T,C = {x; =0}.

George Voutsadakis (LSSU) Algebraic Geometry



Plane Cubic Curves

24,

o Consider the affine coordinates x =32 and y = 2L
2 X2

We have, for some a,b,c,ec k, a#0,
f(x,y)=y(a+bx+cy+g(xy))+ ex? + h(x),

where :

o All terms of g(x,y) have order =2;
o All terms of h have order = 3.

In homogeneous coordinates we have
_ d-1 d-2 d-2,2 d-2,2
f(xo,x1,x2) = ax§ "Xy +bx§ “xoxy+cx5 Xi +ex§ X

+terms of order =3 in xg, x.

To evaluate Hf(0:0:1) note that the derivatives of all “terms of order
=3 in xp,x1" evaluated at (0:0:1) vanish.
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Plane Cubic Curves

o Thus, we have

2¢e b 0
He(0:0:1)=det| b 2c (d-1)a |=-2ea’(d-1)°.
0 (d-1)a ©

By hypothesis, (char(k),d—1)=1 and a#0.
So we get
Hf(0:0:1)=0 iff e=0.

Now we have
Opz2,p/(f,x1) = 052 0/ (ex* + h(x), ).

Hence,
Ip(C, TpC)=3 iff e=0
iff PeH.
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Plane Cubic Curves

©

Let d be a positive integer.
Define

©

Ad = {(io,il,ig) EINS . io+ i1 +i2 = d}

©

A combinatorial argument shows that

Al =
[Aql 5

d+2)

o For I:=(ip,i1,i2) € Ay, define
X1 =Xio,in i) - = X(,)OX{IX?'
o The Veronese map vy : P2 — PV, with N =(?}%) -1, is given by

va(xo 1 x1 :x2):(xg :xg_lxl :...:xg):(... XP ) leny-
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Plane Cubic Curves

Lemma

The complement IP%(\C of a plane curve C is affine.

o Consider the Veronese map

d+2
vg P2 — PV, N:( ) )—1.

We denote the coordinates of ]PQ’ by
z;, leAy.

As for the Segre map, it can be checked that vy is an embedding.
Its image is given by the equations

zizy=zkz;, O<I/,|JIK|,ILI=d,

such that |/| +|J]| = |K|+|L]|.



Plane Cubic Curves

o Let f be an equation for C of degree d.

We can write this in the form:

f= Z ajXj.

leAy
Consider, in ]PLV, the hyperplane
H= {Za,z/ =0}.

Then we have
Vd(C) = Vd(Pi) NnH.

This argument shows that ]Pi\C is affine.
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Plane Cubic Curves

o We show that there is at least one inflection point on a smooth curve
of degree d = 3.

o Equivalently, the intersection of a smooth curve of degree d =3 with
its Hessian is nonempty.

o This is trivial if the Hessian is all of IP%(.

o If not, we resort to a Weak Form of Bezout's Theorem.
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Plane Cubic Curves

Lemma

The intersection of two plane curves C and C' is nonempty.

o Let C be a curve of degree d.
By the lemma, IP%(\C is affine.
Assume, to the contrary, that CnC' = @.
Then we have C";IPi\C';A\QI.
But C’ does not consist of a point.
So there is a coordinate function w on Al’y.
By restriction, w gives a nonconstant function on C'.

This contradicts a result, proven previously, to the effect that, if V is
an irreducible projective variety, defined over an algebraically close
field k, then every regular function on V is constant.
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Plane Cubic Curves

Corollary

Every smooth curve C of degree d =3, with d—1 coprime to char(k), has
at least one point of inflection.

o

o

From the lemma and the proposition.

The statement of the corollary holds in general, for every smooth
curve of degree d =3 over an algebraically closed field k.

In the following we will only use this corollary for cubics.

Since we take char(k) # 2,3, the hypothesis of the corollary is then
always satisfied.

By using Bézout's Theorem in the proof of the corollary, we obtain the
more precise result that, provided H # P2,

1 < number of points of inflection < 3d(d —2).
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Plane Cubic Curves

o The WeierstraR form of a cubic is given in affine coordinates by
Y2 =4S - gox—gs.
o The corresponding projective curve is

5 2 3 2 3 _
Corgs:  XoX5 —4x] +gax1x5 +g3xy =0.
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Plane Cubic Curves

Definition (The Discriminant)

Consider a polynomial

n
f=apx"+ap1x" 1+---+ag=a, [[(x—aj), an#0.
i=1
The discriminant Disc(f) of f is defined by

Disc(f) := 22" [](a; - &j).
i#)

It can be expressed as a polynomial in the coefficients of f.
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Plane Cubic Curves

Definition (Discriminant of the Weierstra Cubic)

We define the discriminant of C,, ;. to be the discriminant of
4x% - gox—g3
divided by 16. A calculation shows that this is given by

A ::gg —27g§.

o A way to show this is to:
o Write 4x3 - gox— g3 =4(x—a1)(x —a2)(x —a3);
o Calculate

E[—44(a1 — a)?(a1 - a3)?(az - a3)?];
o Calculate g23 - 27g§.
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Plane Cubic Curves

Cg,,g5 is smooth if and only if A#0.

o Consider
f(x0,x1,%2) = Xox2 4X1 +g2X1X0 +g3x0

Compute the partial derivatives:

of _ 2 2.
g = Xt 2g2x1x0 + 383Xy
of _ 19,2 2.

g 12x1 +82X5;

of —

R = 2XOX2.

We may now verify Euler’s identity,

Zl 06x

X0 (x22 +2g>x1X0 + 3g3x§) + x1(—12x1 + 82X} 2) + x22x0X2

3X0X2 12X1 + 3g2X1X0 + 3g3x0
= 3f.
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Plane Cubic Curves

o It follows that a point P is a singularity of Cg, g, if and only if the
three equations all evaluate to 0 at P.

From the last equation, we get xg =0 or x =0.
Suppose xp =0.

Then the second equation implies that x; = 0.
Hence, P=(0:0:1).

But this is not a singular point, since %(P) =1#0.
We conclude x, = 0.

Then the first two equations give

2g2x1%0+3g3x3 =0, —12x% +gox3 =0.
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Plane Cubic Curves

o Suppose g» =g3=0.

Then P=(1:0:0) is a singular point.
o Suppose g3 =0,g> #0.

We have already shown that xg # 0.

From 2gox3xg + 3g3xg =0, we deduce that x; =0.

But, by —12x? + g»x2 =0, the point P=(1:0:0) is a smooth point.
o Suppose g» =0, g3 #0.

Then, since 2g>x1xp + 3g3x§ =0, xp=0.

We have already dealt with this case.

George Voutsadakis (LSSU) Algebraic Geometry
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o Finally suppose g>g3 #0.
We have seen that xg #0.
By 12x1 +g2x0 0, we also have x; #0.
From 2g2x1xo+3g3x0 =0, we have
Xo = =75 XI.
383

Substituting in —12x12 +g2xg =0, we obtain

3

4
~12x2 + —g—22x12 =0.
983

This equation has nontrivial solutions if and only if

Equivalently, if and only if A=0.
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Let C be a smooth cubic. Then C is projectively equivalent to some curve
ng,g3-
o By the corollary C has a point of inflection P.
We may assume that P =(0:0:1), and that the inflectional line to P
is given by {xo = 0}.
This means that the equation f for C restricted to {xg =0} has a zero
of order three at (0:0:1).

So after possible multiplication by a scalar,
= —Xf +X0(axg + bx12 + cx22 + dxox1 + €xpX2 + gX1X2).
Since (0:0:1) is a smooth point of C, c#0.

George Voutsadakis (LSSU) Algebraic Geometry
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o We have f = —xf +x0(axg + bx12 + cx§ + dxox1 + exox2 + gx1x2), ¢ #0.
_ 1
Set x} = (Vcxo + m(exo +gx1)).
This transforms f to

f = xox52 — (5 + b'x?xg + d'x1x3 +a'x3),

with b’ = ——b d=%£-d d=%£-a
Set x; =x1 + %b’xo.
We get
=xx52 = (x2 +d"x|xZ +a'x3),

with 8" =23’ — 2_17b/3 1b/d// d'=d - bl2_

1
Set x;' = 571
We get

f/// =xo X ( 4XII3 + d’"X{lX2 + a///XO)

with 3" = d/// \/_d"
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An irreducible cubic is rational if and only if it is singular.

o We classified irreducible singular cubics.

We showed they re projectively equivalent to one of the curves defined

by

2 3.2, _ 2 . 3_
Xpxo =Xy —x5x2=0 or xoxj—x5=0.

We have seen that both possible cases are rational curves.

Suppose C is a smooth irreducible cubic.

Then we can first bring C to Weierstral® normal form

y2 =4x3 —ox—g3=4(x—11)(x—A2)(x—13).

George Voutsadakis (LSSU) Algebraic Geometry
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o By its definition, the discriminant A :g23 —27g§ of the cubic equation
4x3 — gox—g3 =0 is zero if and only if the roots A1,A5, 13 are pairwise
distinct.

After a transformation of the line y =0, we can assume that A; =0
and 12 =1.

Thus C is projectively equivalent to the curve
y?=x(x-1)(x=1), A#0,1.

The result then follows from a preceding result to the effect that, for
A #0,1, there is no rational parametrization of

Cr: y*=x(x-1)(x—-17).

George Voutsadakis (LSSU) Algebraic Geometry
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o Let C and C’ be two smooth cubics.

o Let ¢ be a projective transformation mapping C to C’, such that ¢
maps a point of inflection P on C to a point of inflection P’ on C'.

o By the proposition, we may assume that C and C’ are curves in
WeierstraR form with P=P'=(0:0:1).

o Then ¢ must also map the inflectional line {xg =0} to itself.

o So in considering transformations between cubics in Weierstra normal

form we can restrict attention to affine transformations.

George Voutsadakis (LSSU) Algebraic Geometry
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Lemma

An affine transformation ¢ which maps a WeierstraRl curve

Y =4x>—gox—g3
to another WeierstraR curve has the form

x— u?x, y—udy, forsome uek*.

o A general transformation ¢ has the form

X— a1 x+ary+as, y»—>ﬁ1X+,32y+ﬁ3.

No cubic terms occur on the left side of the Weierstrall equation.

It follows that as =0.
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o The transformation is invertible.
It follows that a1 82 # 0.
The term xy does not occur in the Weierstrall equation.
We conclude that §; =0.
No further linear terms in y occur.
It follows that B3 =0.
Similarly, no quadratic terms appear in x.
Hence, a3 =0.
Thus, ¢ has the form

x—aix, y— Pay.

_p2
We must have ay = f55.
This means that a; = u?, B> = u>, for some ue k*.
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Definition (Admissible Transformation)

An admissible transformation is a projective transformation ¢ which:

© Maps a Weierstral cubic Cg, g, to another Weierstrall cubic Cg; o1
o Satisfies ¢(0:0:1)=(0:0:1).

Definition (J-Invariant)

The J-invariant of a smooth Weierstral cubic is defined by
&

8 -27g;

3
&
J(g2,83) := Kz
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Two smooth WeierstraR cubic curves Cg, g, and Cy; o1 are equivalent under
an admissible transformation if and only if

J(g2,83) = J(g583)-

o Let ¢: Cg, g5 — Cgy ¢y be an admissible transformation.

Then, since x — u?x, and y — u3y,
r_ 82 1 _ 83
&= 5 876
Thus,
3 5y 3
gé ulZ &> o
J(82.83) = = = =J(82,83)-
& ~2787 & o7& & -2g;
u u
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o Suppose J(gg,gg,) = J(g3,85). We consider three cases:

J(g2,83) =0: In this case g» =0 # g3.
Take u, such that g3 =&
Then the admissible transformation

x—uPx, y—udy
takes Cgy,g5 to Cg o1
J(g2,83) =1: This is equivalent to g3 =0# go.
In this case we choose u, such that g} = gz
J(g2,83) #0,1: Then g2,g3 #0.
13
& _ &

The condition J(g»,g3) =J(g2,g3) is equivalent to il 2

3
_ _ 2
If g2 =agy, g3 =Pg3, then ad=p2.
That is, a = v2,ﬁ= v3, for v = g
. 2
We now choose u, with u® =v. So g} = %, gy = %
Then, the transformation x — u2x,y»—> u3y is as required.

George Voutsadakis (LSSU) Algebraic Geometry
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