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Subsection 1
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The Framework

The ground field k = k has characteristic not equal to 2 or 3.

Consider a homogeneous polynomial of degree 3

f = f (x0,x1,x2,x3) ∈ k
3[x0,x1,x2,x3].

Consider, also, the corresponding cubic surface:

S = {(x0 : x1 : x2 : x3) ∈P
3
k : f (x0,x1,x2,x3)= 0}.

We assume that S is smooth, which is the case for general cubics f .

This means that there is a Zariski open subset of cubic polynomials f ,
such that S is smooth.
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The Main Theorem

The main result of this section is the following.

Theorem

Every smooth cubic surface S ⊆P3
k

contains a line.

First we show that, the exists a point P ∈ S , such that, for the
intersection

CP := S ∩TPS ,

one of the following holds:

CP contains a line;
CP is a plane cubic with a cusp.

As a consequence:

In the first case, we obtain the line required.
In the second case, we show that there is a line in S passing through a
point on CP .
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Two Surfaces in P3
k

Lemma

Two surfaces in P3
k

have nonempty intersection.

The proof is analogous to the proof of the corresponding lemma for
plane cubics.
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The Intersection CP = S ∩TPS

Lemma

Let S be a smooth cubic surface. Then, for every point P ∈ S , the
intersection

CP := S ∩TPS

is a singular plane cubic curve. There is a point P in S , such that CP is
either reducible or a plane cubic with a cusp (a semicubical parabola).

A reducible cubic surface is singular.

Since S is smooth, S is irreducible.

So S does not contain TPS .

Therefore, CP is indeed a curve.

S is defined by a cubic.

Its restriction to a linear subspace is also given by a cubic.

So CP is a plane cubic curve.
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The Intersection CP = S ∩TPS (Cont’d)

We show, next, that P is a singularity of CP .

Choose coordinates so that:
P = (0 : 0 : 0 : 1) ∈ S ;
TPS = {x2 = 0}.

In affine coordinates x ,y ,z , the equation f of S is then given by

f = z +q(x ,y ,z)+h(x ,y ,z),

where:
q is a homogeneous quadratic polynomial;
h is a homogeneous cubic polynomial.

In homogeneous coordinates we have

f = x2x
2
3 +q(x0,x1,x2)x3+h(x0,x1,x2).

Hence, f |{x2=0} vanishes quadratically at P .

So CP is singular at P .
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The Intersection CP = S ∩TPS (Cont’d)

Now suppose that CP is irreducible for all points P ∈ S .

We must show that, for some P , the curve CP is a cuspidal cubic.

As in a preceding proof, the tangents of CP at the point P are given
by the factors of the quadratic form q̃(x0,x1)= q(x0,x1,0).

CP has a cusp if and only if the two tangents lines are equal.

Equivalently, iff q is the square of a linear form.

Write

q(x0,x1,x2)=
2∑

i ,j=0

aijxixj , with aij = aji .

Then q is a square iff the matrix Ã= (aij )i ,j=0,1 has rank 1.

But q̃ is not identically zero.

So this is equivalent to det

(
a00 a01

a10 a11

)
= 0.
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The Intersection CP = S ∩TPS (Cont’d)

Consider, next, the Hessian of f ,

Hf := det

(
∂2f

∂xi∂xj

)

i ,j

.

Similar to the Hessian of a cubic curve, a transformation of
coordinates, given by a matrix M ∈Gl(4,k), results in

Hf ∗ = (detM)2(Hf )
∗

,

where:
f ∗ = f ◦M ;
(Hf )

∗ =Hf ◦M .

Recall that now f has the form

f = x2x
2
3 +q(x0,x1,x2)x3+h(x0,x1,x2),

with
q(x0,x1,x2)=

2∑

i ,j=0

aijxixj , aij = aji .
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The Intersection CP = S ∩TPS (Conclusion)

So we get

Hf (P)= det




2a00 2a01 2a02 0
2a10 2a11 2a12 0
2a20 2a21 2a22 2
0 0 2 0


 .

From the form of this matrix we have

Hf (P)= 0 iff det

(
a00 a01

a10 a11

)
= 0.

Thus, CP is a cubic with a cusp iff P ∈ S ∩H, where H = {Hf = 0}.

It remains to show that S ∩H is nonempty.

But f is a cubic.

So H must be one of the following:
P

3
k
, in which case S ∩H = S 6= ;;

A cubic surface, in which case we use the preceding lemma.
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Polar of a Homogeneous Cubic Polynomial

We want to know when a line is contained in a cubic surface.

Any line can be given as the line PQ through two points P and Q.

So we introduce the following concept, which will help us determine
when the line PQ is contained in the surface {f = 0}.

Definition (Polar)

For a homogeneous cubic polynomial f in x0, . . . ,x3, the polar of f is
defined by

f1(x0, . . . ,x3;y0, . . . ,y3) :=
3∑

i=0

∂f

∂xi
yi .
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Geometric Meaning of the Polar

For P ∈ S , by definition of the tangent space, we have

PQ ⊆TPS iff f1(P ;Q)= 0.

For arbitrary points P 6=Q, an elementary computation shows that

f (λP +µQ)=λ3f (P)+λ2µf1(P ;Q)+λµ2f1(Q;P)+µ3f (Q).

So we have

PQ ⊆ S iff f (P)= f1(P ;Q)= f1(Q;P)= f (Q)= 0.

Now we determine when two or more polynomials have a common
zero.
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The Resultant

Definition (The Resultant)

Let r and s be homogeneous polynomials in variables u and v , given by

r(u,v) = a0u
2+a1uv +a2v

2,

s(u,v) = b0u
3+b1u

2v +b2uv
2+b3v

3.

The resultant of r and s is given by

R(r ,s) := det




a0 a1 a2

a0 a1 a2

a0 a1 a2

b0 b1 b2 b3

b0 b1 b2 b3




.
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The Sylvester Matrix

The matrix 


a0 a1 a2

a0 a1 a2

a0 a1 a2

b0 b1 b2 b3

b0 b1 b2 b3




is known as the Sylvester matrix.

The resultant R(r ,s) is also known as the Sylvester resultant.
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Importance of the Resultant

Lemma

Two homogeneous polynomials r and s of degree 2 and 3, respectively,
have a common zero in P1

k
if and only if R(r ,s)= 0.

Consider the 5-dimensional vector space V of all homogeneous
polynomials of degree 4 in u and v .

The rows of the Sylvester matrix are the coefficients of

u2r , uvr , v2r , us , vs ,

in terms of the standard basis of monomials for this space.

The determinant, i.e., the Sylvester resultant, is zero if and only if
there is a linear relation between these polynomials.
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Importance of the Resultant (Cont’d)

A linear relationship between u2r ,uvr ,v2r ,us ,vs can be written as

qr = ℓs ,

where:

q = q(u,v) is homogeneous of degree 2;
ℓ= ℓ(u,v) is linear.

This equality implies that qr and ℓs have the same zeros.

This is only possible if r and s have a common zero.

On the other hand, suppose r and s have a common zero.

Then so do the five polynomials.

This means that they certainly cannot span V .

So they must be linearly dependent.
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Proof of the Main Theorem

Main Theorem

Every smooth cubic surface S ⊆P3
k

contains a line.

Suppose, first, CP = S ∩TPS is reducible for some point P ∈ S .

Then CP , and thus S , contains a line.

Suppose, next, that CP is irreducible.

By a preceding lemma, we can assume that there is a point P , such
that CP has a cusp.

By a transformation of coordinates, we can assume that:

P = (0 : 0 : 1 : 0);
TPS = {x3 = 0}.
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Proof of the Main Theorem (Cont’d)

By the proposition classifying irreducible singular cubics, we can
further assume that

CP = {x2
0 x2−x3

1 = x3 = 0}.

Thus, the equation f of S has the form

f = x2
0 x2−x3

1 +x3g ,

for some homogeneous polynomial g = g(x0, . . . ,x3) of degree 2.

But S is smooth at P .

So we have g(0,0,1,0) 6= 0.

By scaling, we can assume that g(0,0,1,0)= 1.
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Proof of the Main Theorem (Cont’d)

We show that S contains a line through a point on CP .

Points on CP are parametrized by Pα := (1 :α :α3 : 0), for α ∈ k .

We can represent any line through Pα by a line PαQ through Pα and
Q = (0 : x1 : x2 : x3), for some point Q in the plane {x0 = 0}.

We have the equivalence

PQ ⊆ S iff f (P)= f1(P ;Q)= f1(Q;P)= f (Q)= 0.

Since f (Pα)= 0, we obtain

PαQ ⊆ S iff f1(Pα;Q)= f1(Q;Pα)= f (Q)= 0.

Let Aα, Bα and Cα denote, respectively,

f1(Pα;Q), f1(Q;Pα), f (Q) ∈ k[α][x1,x2,x3].

These are homogeneous polynomials in x1,x2,x3 of degree 1, 2 and 3,
respectively, with coefficients given by polynomials in α.
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Proof of the Main Theorem (Cont’d)

We now use resultants to determine whether two polynomials have a
common root.

We define a polynomial R27(α) to be the resultant

R27(α) :=R(Bα(x1,Ãα(x1,x3),x3),Cα(x1,Ãα(x1,x3),x3)),

where x2 = Ãα(x1,x3) is determined by the linear polynomial Aα.

The preceding lemma implies that R27(α) satisfies

R27(α)= 0 iff Aα,Bα,Cα have a common zero (ηα : ξα : τα).

Suppose α0 is a root of R27(α).

Then the line Pα0Q with Q = (0 : ηα0 : ξα0 : τα0) lies on S .

Consequently, it suffices to prove that R27 has a root.

It suffices, in turn, to show that R27 is nonconstant.

We will do this by explicitly computing R27.
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Proof of the Main Theorem (Cont’d)

Consider the equation

f = f (x0, . . . ,x3)= x2
0x2−x3

1 +x3g .

Its polar f1(x0, . . . ; . . . ,y3) is given by

f1 = 2x0x2y0−3x2
1 y1+x2

0 y2+g(x0, . . . ,x3)y3+x3g1(x0, . . . ; . . . ,y3),

where g1 is the polar of the quadratic equation g .

The polynomials Aα,Bα,Cα are then given by

Aα = −3α2x1+x2+g(1,α,α3 ,0)x3,

Bα = −3αx2
1 +x3g1(1,α,α3,0;0,x1,x2,x3),

Cα = −x3
1 +x3g(0,x1,x2,x3).

Now g is quadratic and g(0,0,1,0)= 1.

So we define a(6) := g(1,α,α3 ,0)=α6+ terms of lower order.
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Proof of the Main Theorem (Cont’d)

From Aα = 0, we have

x2 = 3α3x1−a(6)x3.

Substituting in Bα gives the expression

Bα =−3αx2
1 +x3g1(1,α,α3

,0;0,x1,3α2x1−a(6)x3,x3).

Now g1(1,α,α3,0;0,x1,x2,x3) is linear in x1,x2 and x3.

So we have
Bα = b0x

2
1 +b1x1x3+b2x

2
3 ,

with
b0 = −3α,

b1 = g1(1,α,α3,0;0,1,3α2,0)= 6α5+·· · ,

b2 = g1(1,α,α3,0;0,0,−a(6),1)=−2α9+·· · ,

where the dots denote terms of lower order.
George Voutsadakis (LSSU) Algebraic Geometry July 2024 23 / 59



Cubic Surfaces The Existence of Lines on a Cubic

Proof of the Main Theorem (Cont’d)

Similarly, substituting

x2 = 3α3x1−a(6)x3

in Cα gives

Cα =−x3
1 +x3g(0,x1,3α2x1−a(6)x3,x3).

We obtain
Cα = c0x

3
1 +c1x

2
1 x3+c2x1x

2
3 +c3x

3
3 ,

where

c0 = −1,

c1 = g(0,1,3α2,0)= 9α4+·· · ,

c2 = g1(0,1,3α2,0;0,0,−a(6),1)=−6α8 +·· · ,

c3 = g(0,0,−a(6),1)=α12+·· · .
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Proof of the Main Theorem (Cont’d)

By definition we have R27(α)= det




b0 b1 b2
b0 b1 b2

b0 b1 b2
c0 c1 c2 c3

c0 c1 c2 c3



.

The leading term of R27 is given by the leading term of the
determinant of the matrix of leading terms.

This is the matrix obtained by replacing bi and cj by their leading
terms, assuming this determinant is nonzero.
Thus the leading term of R27 is given by

det




−3α 6α5 −2α9

−3α 6α5 −2α9

−3α 6α5 −2α9

−1 9α4 −6α8 α12

−1 9α4 −6α8 α12



=α27




−3 6 −2

−3 6 −2

−3 6 −2

−1 9 −6 1

−1 9 −6 1



=α27

.

It follows that R27(α) is a polynomial of degree 27.

In particular it is nonconstant.
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The 27 Lines

Let S be a cubic surface.

Suppose S contains a point P , such that S ∩TPS is a cuspidal cubic.

The preceding proof shows that there is a polynomial Rα of degree 27,
such that every root of Rα gives rise to at least one line on S .

It follows that if the roots of Rα are distinct, we should expect S to
contain at least 27 lines.
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Subsection 2

The Configuration of the 27 Lines
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Singular Locus of a Quadratic

We show that:
There are 27 lines on a smooth cubic, and determine their
configuration;
Every smooth cubic surface is rational.

Consider the quadric

Q =

{
n∑

i ,j=0

aijxixj = 0

}
⊆P

n
k , aij = aji .

Lemma

The quadric Q has singular locus given by the linear subspace

SingQ =P(ker(A))= {x ∈P
n
k :Ax = 0},

where the symmetric matrix A= (aij ) is the matrix of the quadratic form
corresponding to Q. In particular, Q is smooth if and only if A has
maximal rank n+1.
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Proof of the Lemma

By the Principal Axes Theorem, there is an invertible matrix M, such
that

MA
t
M =




1

. . .

1

0

. ..

0




=Er+1.

The matrix M induces a transformation of coordinates.
This transformation maps Q to the quadric

Qr+1 = {x2
0 +·· ·+x2

r = 0},

where r = rk(A)−1.
It is then easy to see that

SingQr+1 = {x0 = ·· · = xr = 0} =P(kerEr+1).
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The Rank of a Quadric

Definition (Rank)

Consider the quadric

Q =

{
n∑

i ,j=0

aijxixj = 0

}
⊆P

n
k , aij = aji .

The rank of Q is defined to be the rank of the corresponding matrix

A= (aij).

The rank is well defined, even though A is only determined up to
multiplication by a nonzero scalar.
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Smooth Cubic Sufaces and Planes

Proposition

Let S be a smooth cubic surface.

(1) If E is a plane, then E ∩S is either an irreducible cubic curve, or a
conic and a line, or three distinct lines.

(2) The surface S contains at most 3 lines through any given point P ∈ S .

If S contains two or three lines passing through a point P ∈ S , then
these lie in a plane E .

Moreover, E ∩S has one of the possible configurations shown below.
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Proof of the Proposition

(1) As in a preceding proof the intersection E ∩S is a plane cubic curve.

So we must show that E ∩S does not contain a multiple line.

By a multiple line, we mean a line L, such that

E ∩S = 2L+M ,

for some line M, possibly with M = L.

Suppose, to the contrary, that E ∩S has this form.

Choose coordinates so that E = {x3 = 0} and so that the multiple line is
given by

ℓ= {x2 = x3 = 0} ⊆E ∩S .
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Proof of the Proposition (Cont’d)

These assumptions imply that the defining equation of S has the form

f = x2
2g(x0,x1,x2)+x3h(x0,x1,x2,x3),

where degg = 1 and degh= 2.

Consider the set

∆ := ℓ∩ {h = 0} = {(x0 : x1 : 0 : 0) : h(x0,x1,0,0)= 0}.

Since k is algebraically closed, ∆ 6= ;.

However, the points in ∆ are singular points of S .

This contradicts the fact that S is smooth.

(2) Note that if ℓ⊆ S is a line, ℓ=TPℓ⊆TPS .

So any line ℓ⊆ S , passing through P , lies in the tangent space TPS .

Thus, it suffices to take E =TPS .

Since S is smooth, TPS is a plane.

So the result follows from Part (1).
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Line on a Smooth Cubic and Points of Intersection

Proposition

Let S be a smooth cubic and ℓ⊆ S a line. Then there are exactly 10 lines
in S which intersect ℓ. These lines are given by five pairs of lines (ℓi ,ℓ

′
i
),

1≤ i ≤ 5, which have the following properties:

(1) ℓ∪ℓi ∪ℓ′
i
lie in a plane. In particular, the lines ℓi and ℓ′

i
intersect the

line ℓ for i = 1, . . . ,5.

(2) (ℓi ∪ℓ′
i
)∩ (ℓj ∪ℓ′

j
)=;, for i 6= j .

Such a configuration is shown below:

Note that it is also possible that ℓ,ℓi ,ℓ
′
i
meet at a point.
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Line on a Smooth Cubic (Cont’d)

Let E be a plane containing the line ℓ.

Then E ∩S = ℓ∪q, where q ⊆E is a conic.

Either q is irreducible, or else, by the proposition, S has one of the
configurations shown previously.

So we must show that there are exactly five planes E ⊇ ℓ, such that
the conic q decomposes.

Each of these planes would give a pair of lines.

By the proposition, they would have the given configuration.
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Line on a Smooth Cubic (Cont’d)

We can assume that ℓ= {x2 = x3 = 0}.

So the set of planes containing the line ℓ is given by the pencil of
planes

Eλ,µ : {λx3−µx2 = 0}.

We want to determine for which values of (λ :µ) ∈P1
k

the intersection
Eλ,µ∩S consists of three lines.

Now S contains ℓ.

So the defining equation of S has the form

f =Ax2
0 +Bx0x1+Cx2

1 +Dx0+Ex1+F ,

where A, . . . ,F ∈ k[x2,x3] are homogeneous polynomials, with:
A,B ,C linear;
D,E quadratic;
F cubic.

Points on Eλ,µ have the form (x0 : x1 :λt :µt), for some t ∈ k .

So we can take homogeneous coordinates (x0 : x1 : t) on Eλ,µ.
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Line on a Smooth Cubic (Cont’d)

In terms of these coordinates:
ℓ |Eλ,µ

= {t = 0};

f |Eλ,µ
= tq(x0,x1,t), where

q(x0,x1,t) = A(λ,µ)x2
0
+B(λ,µ)x0x1+C (λ,µ)x2

1
+D(λ,µ)x0t+E (λ,µ)x1t +F (λ,µ)t2.

By a preceding lemma, this conic is singular if and only if ∆(λ,µ)= 0,
where ∆(λ,µ) is the homogeneous polynomial of degree 5 given by

∆(λ,µ) = 4det




A(λ,µ) 1
2B(λ,µ) 1

2D(λ,µ)
1
2B(λ,µ) C (λ,µ) 1

2E (λ,µ)
1
2D(λ,µ) 1

2E (λ,µ) F (λ,µ)




= 4A(λ,µ)C (λ,µ)F (λ,µ)+B(λ,µ)E (λ,µ)D(λ,µ)

−C (λ,µ)D2(λ,µ)−A(λ,µ)E2(λ,µ)−F (λ,µ)B2(λ,µ).

To prove the theorem we need to show that:
∆(λ,µ) 6≡ 0;
∆ has no multiple roots.
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Line on a Smooth Cubic (Cont’d)

By a coordinate transformation, take λ= 0 to be a zero of ∆(λ,µ).

We must show that λ2 does not divide ∆(λ,µ).

The preceding proposition gives the possible configurations for the
corresponding cubic E0,1∩S .

We can choose coordinates so that E0,1∩S is given by either

ℓ= {x3 = 0}, ℓ1 = {x0 = 0}, ℓ′1 = {x1 = 0} or
ℓ= {x3 = 0}, ℓ1 = {x0 = 0}, ℓ′1 = {x0−x3 = 0}.

We only treat the second case.

We have
f = x0x3(x0−x3)+x2g ,

where g is quadratic.
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Line on a Smooth Cubic (Conclusion)

We have
f = x0x3(x0−x3)+x2g .

Compare with

f =Ax2
0 +Bx0x1+Cx2

1 +Dx0+Ex1+F .

We see that:
D(x2,x3)=−x2

3
+x2β(x2,x3), for some β ∈ k1[x2,x3];

B ,C ,E and F ∈ k [x2,x3] must all be divisible by x2.

Thus,
∆≡−C (λ,µ)D2(λ,µ) mod λ2

.

Since C is linear,
C (x2,x3)= cx2,

for some c ∈ k .

Since S is smooth at P = (0 : 1 : 0 : 0), c 6= 0.

Thus, ∆(λ,µ) is not divisible by λ2.
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Meeting Mode of Lines on a Cubic Surface

To say two lines meet transversally means that they intersect in
exactly one point.

Lemma

Suppose the lines ℓ1, . . . ,ℓ4 ∈P
3
k

are disjoint.
Then one of the following holds:

(1) ℓ1, . . . ,ℓ4 lie on a smooth quadric Q. In this case there are infinitely many
lines which intersect ℓ1, . . . ,ℓ4 transversally.

(2) ℓ1, . . . ,ℓ4 do not lie on any quadric. Then there are one or two common
transversal lines.

First we show that ℓ1, ℓ2 and ℓ3 are contained in a quadric surface Q.

The dimension of the space of homogeneous polynomials of degree 2
in 4 variables is dimk2[x0,x1,x2,x3]= 10.

So the space of quadrics in P3
k

may be considered as a 9-dimensional
projective space.
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Three Lines are Contained in a Quadric Surface

The space of quadrics in P3
k

may be considered as a 9-dimensional
projective space.

The requirement that a quadric Q = {f = 0} passes through a given
point is a linear condition on the coefficients of f .

For a line ℓ to lie on a quadric Q, it is sufficient to show that three
distinct points on ℓ lie on Q.

Otherwise ℓ∩Q consists of at most 2 points.

Hence, the requirement that three lines lie on a quadric can be
expressed by giving 9 linear conditions.

But the space of quadrics is projectively 9-dimensional.

Therefore, there is at least one quadric Q containing all three lines.
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Smoothness of the Quadric Q

We now show that Q is smooth.

The lines ℓ1,ℓ2,ℓ3 are disjoint.

Any two lines in a plane intersect.

It follows that Q is not the union of two planes.

Similarly, Q cannot be a quadric of rank 3.

On any such quadric, every line passes
through the unique singularity of Q, i.e.,
through the vertex of the cone.

This can be seen by considering a projection
from the vertex.

Lines either pass through the vertex, and are mapped to points, or are
mapped to lines. But the image is a smooth quadric curve.

So it does not contain any lines.

Thus, Q is a smooth quadric containing ℓ1,ℓ2,ℓ3.

Being disjoint, these lines lie in the same ruling on Q.
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Relative Position of Q and ℓ4

We now have the following possibilities:

(1) ℓ4 ⊆Q: Then ℓ4 must lie in the same ruling as ℓ1,ℓ2,ℓ3.
There are infinitely many transversal lines.
They are given by the lines in the other ruling on Q.

(2) ℓ4 *Q: Then ℓ4∩Q consists of one
or two points.

Suppose ℓ4 meets Q in distinct points
P and R . Then the lines ℓP and ℓR in
Q passing through P and R , which are
not in the same ruling as ℓ1,ℓ2 and
ℓ3, meet all four lines transversally.

Suppose ℓ4 only meets Q in one point.
Then we obtain one line in Q transversal to all four lines ℓ1, . . . ,ℓ4.
Note that any line meeting ℓ1,ℓ2 and ℓ3 meets Q in at least 3 points.
Thus, it is contained in Q.
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Configuration of Lines on a Smooth Cubic Surface

Lemma

If S is a smooth cubic, then S cannot contain four
skew lines m1,m2,m3,m4 which are all intersected by
three lines n1,n2,n3. That is, S cannot contain 7 lines
configured as in the figure.

Suppose we have such a configuration on S .

By hypothesis, m1, . . . ,m4 are intersected by three lines.

The lemma implies that they lie on a smooth quadric Q.

The mi are in one ruling on Q, and the ni on the other ruling.
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Configuration of Lines on a Smooth Cubic Surface (Cont’d)

Every point P ∈Q is contained in a line L in the same ruling as the ni .

The line L intersects m1, m2, m3 and m4.

This gives 4 points in L⊆ S .

But a cubic and line intersect in at most 3 points, unless L⊆ S .

Thus, P ∈ S , for all P ∈Q.

So Q ⊆S .

Hence, there is a decomposition S =Q ∪H, for some hyperplane H.

But Q ∪H is singular along the intersection Q ∩H.

This contradicts the hypothesis that S is smooth.
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Configuration of Lines intersecting a Line in a Cubic

Recall that given a smooth cubic S and a line ℓ⊆S , there are exactly
10 lines in S , intersecting ℓ, and we know their configuration.

Lemma

If ℓ,ℓi and ℓ′
i
are lines on a smooth cubic surface S , as before, then any

other line m on S must intersect exactly one of ℓ,ℓi and ℓ′
i
.

Let Ei be the plane with Ei ∩S = ℓ∪ℓi ∪ℓ′
i
.

A line and a plane in P3
k

always intersect.

So m meets the plane Ei .

Thus,

m∩ (ℓ∪ℓi ∪ℓ′i)=m∩ (Ei ∩S)= (m∩S)∩Ei =m∩Ei 6= ;.

So m meets at least one of these three lines.
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Lines intersecting a Line in a Cubic (Cont’d)

Suppose m meets more than one of the lines ℓ, ℓi and ℓ′
i
.

Then oe of the following holds:

m meets Ei in two points;
m meets two of the lines at a single point in S .

In the first case m is contained in Ei .

But this contradicts the configuration lemma.

In the second case, by the second part of the configuration lemma, m
is contained in Ei .

But again, this contradicts the first part of the configuration lemma.
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The 27 Lines on a Smooth Cubic

Theorem

A smooth cubic surface S contains exactly 27 lines.

We saw S contains a line ℓ.

We then obtained five pairs of lines (ℓi ,ℓ
′
i
), i = 1, . . . ,5, intersecting ℓ.

Now apply the same proposition to line ℓ1.

We obtain a skew line m⊆S to ℓ.

By the preceding lemma, m meets exactly one of ℓi and ℓ′
i
, i = 1, . . . ,5.

By relabeling, if necessary, we can assume that m intersects each of
the lines ℓ1, . . . ,ℓ5, and does not intersect any of the lines ℓ′1, . . . ,ℓ′5.

Now there are 5 pairs of lines meeting m.

They must be of the form (ℓi ,ℓ
′′
i
), for i = 1, . . . ,5.
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The 27 Lines on a Smooth Cubic (Cont’d)

By a previous proposition, no four distinct lines on S can be coplanar.

So the four lines ℓ′′
i

,ℓi ,ℓ and m cannot be coplanar.

Thus, ℓ′′
i

cannot intersect ℓ.

So the ℓ′′
i

are all different from the ℓ′
j
.

We have now found 17 lines ℓ,m,ℓi ,ℓ
′
i
,ℓ′′

i
; i = 1, . . . ,5.

By the preceding lemma, each ℓ′′ must meet one of the lines ℓ, ℓj , ℓ
′
j
.

But the proposition implies that ℓ′′
i
∩ℓj =; for i 6= j .

Moreover, as already noted, ℓ′′
i
∩ℓ=;.

So ℓ′′
i
∩ℓ′

j
6= ;, for i 6= j .
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The 27 Lines on a Smooth Cubic (Cont’d)

We must find 10 more lines.

Consider each of the 10 triples (i , j ,k) with 1≤ i < j < k ≤ 5.

We show that, for each such triple, there is exactly one line ℓijk that:

Is different from, and skew to, ℓ and m;
Meets ℓi , ℓj and ℓk .

To conclude, we will show that any line in S not equal to one of the
17 lines already found must be equal to one of these 10 lines.
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A Line Other than the 17 Intersects Exactly 3 of the ℓi

Suppose n is a line on S not equal to one of the 17 lines already given.

First note that all lines intersecting ℓ or m are given by the ℓi , ℓ
′
i
, ℓ′′

i
.

Thus, n cannot intersect ℓ or m.

We show that n intersects exactly 3 of the lines ℓi .

(1) n cannot intersect 4 of the ℓi .
Otherwise, the three skew lines ℓ, n and m would all be transverse to
these four skew ℓi .
Such a configuration contradicts a preceding lemma.

(2) n cannot intersect less than 2 of the ℓi .
Otherwise, by the lemma, n intersects at least 4 of the ℓ′

i
.

This leads to the same contradiction.
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A Line Other than the 17 and the ℓi (Cont’d)

(3) n cannot intersect exactly 2 of the ℓi .
Assume, to the contrary, that n:

Does not intersect ℓ1,ℓ2 or ℓ3;

Does intersect both ℓ4 and ℓ5.

As already noted, n does not intersect ℓ or m.
The lemma implies that n:

Intersects ℓ′
1
, ℓ′

2
and ℓ′

3
;

Does not intersect ℓ′′
4

or ℓ′′
5
.

As discussed above, the ℓ′
i
∩ℓ′′

j
6= ;, for i 6= j .

So we have four skew lines ℓ′
1
, ℓ′

2
, ℓ′

3
, ℓ′

4
which all intersect the three

skew lines n, ℓ′′
4

and ℓ′′
5
.

That is, we end up again with the same forbidden configuration.
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Uniqueness of ℓijk

We show that ℓijk is unique.

Suppose there are two lines ℓijk and ℓ′
ijk

, which:

Are different from, and skew to, ℓ and m;
Meet ℓi ,ℓj and ℓk .

By a previous proposition, the five lines ℓi ,ℓj ,ℓk ,ℓij ,ℓ
′
ijk

do not all lie

in a common plane.

Therefore, ℓijk and ℓ′
ijk

cannot intersect.

So we have three skew lines ℓi , ℓj and ℓk which all intersect the four
skew lines ℓ, m, ℓijk and ℓ′

ijk
transversally.

By a previous lemma, this is also a contradiction.
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Existence of ℓijk

We show that the lines ℓijk exist.

By the proposition, ℓ1 intersects ten distinct lines.

Four of these lines are given by ℓ, ℓ′1, m and ℓ′′1.

By the above argument, the remaining six lines must be of the form
ℓ1jk , for some triple (1, j ,k), with 1< j < k ≤ 5.

But there are exactly
(4
2

)
= 6 such triples.

So all the lines ℓ1jk occur.

Similarly all the lines ℓijk exist.

We have now constructed 27 lines on S , given by

{ℓ,m,ℓi ,ℓ
′
i ,ℓ

′′
i ,ℓijk : 1≤ i < j < k ≤ 5}.
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Summary

A smooth cubic surface S contains 27 lines, ℓ,m,ℓi ,ℓ
′
i
,ℓ′′

i
,ℓijk , for

i < j < k ≤ 5.

Each line meets 10 others, as follows:

ℓ meets ℓ1, . . . ,ℓ5 and ℓ′
1

, . . . ,ℓ′
5
;

m meets ℓ′′
1

, . . . ,ℓ′′
5

and ℓ′
1

, . . . ,ℓ′
5
;

ℓ1 meets ℓ,m,ℓ′
1

,ℓ′′
1

and ℓ1jk , for 2≤ j < k ≤ 5;

ℓ′
1

meets ℓ,ℓ1,ℓ′′
j
, for 2≤ j ≤ 5, and ℓ234,ℓ235,ℓ245,ℓ345;

ℓ′′
1

meets m,ℓ1,ℓ′
j
, for 2≤ j ≤ 5, and ℓ234,ℓ235,ℓ245,ℓ345;

ℓ123 meets ℓ1,ℓ2,ℓ3,ℓ′
4

,ℓ′′
4

,ℓ′
5

,ℓ′′
5

and ℓ145,ℓ245,ℓ345.

The intersections of the remaining lines are given by appropriate
permutations of the indices.
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Subsection 3

Rationality of the Cubics
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Rationality of a Smooth Surface

Proposition

Let S be a smooth cubic.

(1) There exist two disjoint lines on S .

(2) S is a rational surface.

(1) This follows from the construction of the 27 lines on a cubic surface.

Alternatively, by our first theorem, S contains a line ℓ.

Then a previous proposition produces disjoint lines ℓ1 and ℓ2.

(2) Given two skew lines ℓ,m⊆P3
k
, we can construct a rational map.

Consider a point Q 6∈ ℓ∪m.

There is exactly one line n= n(Q), through Q, which intersects both ℓ

and m.
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Rationality of a Smooth Surface (Cont’d)

Thus, we can define a map

πℓ,m : P
3
k

\(ℓ∪m) → ℓ×m=P1
k
×P1

k
;

Q 7→ (n(Q)∩ℓ,n(Q)∩m).

By a transformation of coordinates, we can take:

ℓ= {x2 = x3 = 0};
m= {x0 = x1 = 0}.

Then πℓ,m is given by

πℓ,m : P
3
k

\(ℓ∪m) → ℓ×m;

(x0 : x1 : x2 : x3) 7→ ((x0 : x1),(x2 : x3)),

This shows that πℓ,m is a rational map on P3
k
, with domain of

definition P3
k

\(ℓ∪m).
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Rationality of a Smooth Surface (Cont’d)

We show that ϕ=πℓ,m |S : S 99K ℓ×m has a rational inverse.

For (P ,Q) ∈ ℓ×m, we consider the line PQ in P3
k
.

At most 10 of the lines PQ are contained in S .

If PQ * S , then, by the Fundamental Theorem, PQ ∩S = {P ,Q ,R},
where the points of intersection are counted with multiplicity.

We define a map
ψ : ℓ×m 99K S ;

(P ,Q) 7→ R .

The solutions of f |
PQ

depend algebraically on the points P and Q.

So ψ is a rational map.

Clearly, the maps ϕ and ψ are mutually inverse.

Note that ℓ×m∼=P
1
k
×P1

k
is a rational surface (i.e. birational to P2

k
).

This proves the result.
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