Introduction to Algebraic Geometry

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Algebraic Geometry

Introduction to the Theory of Curves

- Divisors on Curves
- The Degree of a Principal Divisor
- Bézout's Theorem
- Linear Systems on Curves
- Projective Embeddings of Curves

Subsection 1

Divisors on Curves

Smooth Projective Curves

- Let k be an algebraically closed field.
- Let C be a smooth projective curve over k.
- That is, C is a smooth irreducible projective variety of dimension 1.

Divisors and Divisor Groups of Curves

Definition (Divisor of a Curve)

A **divisor** D on C is a finite formal sum of points on C. For a divisor D given by

$$D = n_1 P_1 + \dots + n_k P_k, \quad n_i \in \mathbb{Z}, \ P_i \in C,$$

the degree of D is defined by

 $\deg D := n_1 + \dots + n_k.$

The **divisor group** of *C* is given by

 $Div C := \{D : D \text{ is a divisor on } C\}.$

That is, DivC is the set of all divisors, or equivalently, the free abelian group generated by the points of C.

George Voutsadakis (LSSU)

Algebraic Geometry

The Maximal Ideal m_P of the Local Ring $\mathcal{O}_{C,P}$

• Recall the unique maximal ideal of the local ring $\mathcal{O}_{C,P}$, given by

$$m_P = \{g \in \mathcal{O}_{C,P} : g(P) = 0\}.$$

• Since *C* is smooth,

$$\dim_k m_P/m_P^2 = \dim C = 1.$$

- Suppose $t \in m_P$, such that the residue class \overline{t} spans the k-vector space m_P/m_P^2 .
- Then, by Nakayama's Lemma, t generates m_P.

A Strictly Descending Chain of Ideals

Consider the chain

$$m_P \stackrel{\frown}{\Rightarrow} m_P^2 \stackrel{\frown}{\Rightarrow} \cdots \stackrel{\frown}{\Rightarrow} m_P^k \stackrel{\frown}{\Rightarrow} m_P^{k+1} \stackrel{\frown}{\Rightarrow} \cdots$$

It is a strictly descending chain of ideals. Suppose, to the contrary, $m_P^k = m_P^{k+1}$, for some k. Then, for some $g \in \mathcal{O}_{C,P}$,

$$t^k(1-gt)=0.$$

So $t^k = 0$. However, \mathcal{O}_{CE}

However, $\mathcal{O}_{C,P}$ is contained in the function field k(C). So $t^k \neq 0$.

Intersection of m_P^k , k = 1, 2, ...

Lemma

$$\bigcap_{k=1}^{\infty} m_P^k = \{0\}.$$

 Let U be an affine neighborhood of P in C. The coordinate ring k[U] is Noetherian. The local ring of k[U] is obtained by localization at a maximal ideal. So the local ring O_{C,P} is also Noetherian. By the Hilbert Basis Theorem, the ring O_{C,P}[T] is also Noetherian. ntersection of m_P^k , k = 1, 2, ... (Cont'd)

Suppose we have α ∈ ∩[∞]_{k=1} m^k_P.
 Then, for all k, we have α ∈ m^k_P.
 So

$$\alpha = f_k(t),$$

for some polynomial $f_k \in \mathcal{O}_{C,P}[T]$ of the form

$$f_k = g_k T^k, \quad g_k \in \mathcal{O}_{C,P}.$$

Let *I* be the ideal in $\mathcal{O}_{C,P}[T]$ generated by the polynomials f_k . Since $\mathcal{O}_{C,P}[T]$ is Noetherian, there are elements f_1, \ldots, f_ℓ which generate *I*.

Intersection of m_P^k , $k = 1, 2, \dots$ (Cont'd)

Now we obtain

$$f_{\ell+1}(T) = \sum_{i=1}^{\ell} h_i(T) f_i(T), \quad h_i(T) \in \mathcal{O}_{C,P}[T],$$

where $h_i(T) = p_i T^{\ell+1-i}$, for some $p_i \in \mathcal{O}_{C,P}$. By substituting t for T, we obtain $h_i(t) \in m_P^{\ell+1-i} \subseteq m_P$. Putting $\mu_i := h_i(t)$, the equation above becomes

$$\alpha = \sum_{i=1}^{\ell} \mu_i \alpha = \mu \alpha, \quad \mu = \sum_{i=1}^{\ell} \mu_i \in m.$$

Thus, $\alpha(1-\mu) = 0$. But $(1-\mu)(P) = 1 \neq 0$. So $1-\mu$ is a unit in $\mathcal{O}_{C,P}$. It now follows that $\alpha = 0$.

Multiplicity of a Function in $\mathcal{O}_{C,P}$

Definition

For every function $g \in \mathcal{O}_{C,P}$, regular at P, the **multiplicity** of g at P is given by

$$v_P(g) := \max\{k : g \in m_P^k\}.$$

- A function g vanishes at P if and only if $v_P(g) \ge 1$.
- If g has multiplicity k at P, then

$$g = ht^k$$
,

for some $h \in \mathcal{O}_{C,P}$, with $h(P) \neq 0$.

Multiplicity of a Rational Function at a Point

Definition

For every rational function $0 \neq f \in k(C)$, the **multiplicity** of f at P is defined by

$$v_P(f) := v_P(g) - v_P(h),$$

where $f = \frac{g}{h}$, for some $g, h \in \mathcal{O}_{C,P}$. • If $v_P(f) > 0$, then f has a zero of order $v_P(f)$ in P. • If $v_P(f) < 0$, then f has a pole of order $-v_P(f)$ in P.

• This definition is independent of the representation $f = \frac{g}{h}$. Suppose $f = \frac{g}{h} = \frac{g'}{h'}$. Then gh' = g'h and we have

$$v_P(g) + v_P(h') = v_P(gh') = v_P(g'h) = v_P(g') + v_P(h).$$

Multiplicity as a Discrete Valuation

• For every point $P \in C$, the multiplicity at P defines a map

$$\begin{array}{rcl} v_P \colon & k(C)^* & \to & \mathbb{Z}; \\ & f & \mapsto & v_P(f) \end{array}$$

• This map has the following properties:

(1)
$$v_P(fg) = v_P(f) + v_P(g);$$

(2) $v_P(f+g) \ge \min \{v_P(f), v_P(g)\}$

- A map with these properties is called a **discrete valuation** on the field k(C).
- We also have

• We call $\mathcal{O}_{C,P}$ a valuation ring of k(C).

Discrete Valuations and Valuation Rings

Definition (Discrete Valuation Ring)

An integral domain R is called a **discrete valuation ring** if the field of fractions K of R has a valuation v, that is, a map

$$v: K^* \to \mathbb{Z},$$

such that, for all $x, y \in K$: (1) v(xy) = v(x) + v(y); (2) $v(x+y) \ge \min\{v(x), v(y)\}$,

and such that R is the valuation ring of v, that is,

 $R = \{x \in K^* : v(x) \ge 0\} \cup \{0\}.$

Integral Closure

- We borrow from Commutative Algebra a characterization of discrete valuation rings.
- First we recall the definition of a integral closure.
- Let *B* be a ring and *A* a subring of *B*.
- An element *x* ∈ *B* is **integral over** *A* if *x* is a root of a monic polynomial with coefficients in *A*.
- This means that x satisfies an equation of the form

$$x^n + a_1 x^{n-1} + \dots + a_n = 0,$$

where the a_i are elements of A.

- The set *C* of elements of *B* which are integral over *A* is a subring of *B* containing *A*, called the **integral closure of** *A* **in** *B*.
- If C = A, then A is said to be integrally closed in B.
- If C = B, then B is said to be **integral over** A.

Characterization of Discrete Valuation Rings

• We give, without proof, a characterization of discrete valuation rings.

Proposition

Let A be a Noetherian local integral domain of dimension 1. Let m be its maximal ideal and k = A/m its residue field. Then the following statements are equivalent:

- (1) A is a discrete valuation ring;
- (2) A is integrally closed;
- (3) A is a regular local ring (i.e., $\dim_k(m/m^2) = \dim A = 1$);
- (4) m is a principal ideal;
- (5) Every non-zero ideal is a power of m;
- (6) There exists x ∈ A, such that every non-zero ideal is of the form (x^k), for some k≥0.

Values of Functions at Points on Smooth Projective Curves

Lemma

If $0 \neq f \in k(C)$, then there are only finitely many $P \in C$, such that

 $v_P(f) \neq 0.$

We can write

$$f = \frac{g}{h},$$

for some homogeneous polynomials g and h of the same degree (this depends on the chosen embedding $C \subseteq \mathbb{P}_k^n$).

The sets $\{g = 0\}$ and $\{h = 0\}$ are proper closed subsets of *C*.

Since C is a curve, both have only finitely many points.

Principal Divisors of C

Definition (Divisor Defined by f)

Let $0 \neq f \in k(C)$ be a rational function. The **divisor defined by** f is given by

$$(f) := \sum_{P \in C} v_P(f) P \in \text{Div} C.$$

Definition (Principal Divisor)

A divisor $D \in \text{Div}C$ is called a **principal divisor** if there is a rational function $0 \neq f \in k(C)$, such that

$$D=(f).$$

Structure of the Sets of Principal Divisors

We have

$$(fg) = (f) + (g)$$
 and $\left(\frac{1}{f}\right) = -(f)$.

• So there is a group homomorphism

$$\begin{array}{rcl} k(C)^* & \to & \operatorname{Div} C; \\ f & \mapsto & (f), \end{array}$$

from the multiplicative group k(C)* to the additive group DivC.
It follows that the principal divisors form a subgroup of DivC.

Linear Equivalence

Definition (Linear Equivalence)

Two divisors D and D' are said to be **linearly equivalent** if their difference is a principal divisor, i.e., if

$$D-D'=(f)$$
, for some $f \in k(C)^*$.

This relation is denoted by $D \sim D'$.

We have

 $D \sim 0$ if and only if D is a principal divisor.

• Linear equivalence is an equivalence relation.

The Divisor Class Group

Definition (The Divisor Class Group)

The divisor class group of C is defined by

 $C|C := Div C/\sim$.

• The principal divisors form a subgroup of the abelian group DivC.

• So the divisor class group CIC is an abelian group.

Example

• Let $C = \mathbb{P}_k^1$. Then, in Div*C*, we have

$$D \sim 0$$
 iff $\deg D = 0$.

Consider a rational function f on \mathbb{P}^1_k . It can be written as

$$f=\frac{g}{h}$$

for homogeneous polynomials $g, h \in k[x_0, x_1]$, with deg g = deg h. So deg(f) = 0.

Example (Cont'd)

• Conversely, suppose deg*D* = 0. Then we have

$$D=D'-D'',$$

where:

•
$$D' = \sum n_P P$$
, for some $n_P > 0$;

•
$$D'' = \sum m_P P$$
, for some $m_P > 0$;

•
$$\sum n_P = \sum m_P$$
.

Then, there are homogeneous polynomials g and h, of degree $N = \sum n_P = \sum m_P$, which vanish precisely on D' and D'', respectively. Set

$$f=\frac{g}{h}.$$

Then we have (f) = D' - D'' = D.

It follows that the degree function induces an isomorphism

$$\deg: \mathsf{Cl}(\mathbb{P}^1_k) \cong \mathbb{Z}.$$

Subsection 2

The Degree of a Principal Divisor

The Degree of Map

- We introduce the concept of the degree of a map between projective curves.
- Let $f: C \to C'$ be a surjective map.
- By pull-back of functions, f induces an inclusion $k(C') \subseteq k(C)$.
- Now k(C) and k(C') both have transcendence degree 1.
- So the field extension k(C)/k(C') is finite.

Definition (Degree of a Map)

If $f: C \to C'$ is a surjective map between projective curves, then the degree of f is defined by

$$\deg f := \deg[k(C):k(C')].$$

Surjectivity of Nonconstant Maps to \mathbb{P}^1_k

- We will show that every nonconstant map $f: C \rightarrow C'$ between two projective curves is surjective.
- For now, we only need this for $C' = \mathbb{P}^1_k$.
- In this case, we can give an elementary proof.

Lemma

Every nonconstant map $f: C \to \mathbb{P}^1_k$ is surjective.

• Suppose *f* is not surjective.

Then we can assume that $\infty := \mathbb{P}_k^1 \setminus \mathbb{A}_k^1$ is not in the image. Hence, we may regard f as a map $f : C \to \mathbb{A}_k^1$. By hypothesis, f is nonconstant. Thus, $f^*(x) := x \circ f$ is a nonconstant regular function on C. This is not possible.

Relating the Local Rings

- Let $f: C \to C'$ be a surjective map.
- Suppose the point $Q \in C'$ has preimage

$$f^{-1}(Q) = \{P_1,\ldots,P_m\}.$$

Associated to Q we have the ring

$$\widetilde{\mathcal{O}} = \bigcap_{i=1}^{m} \mathcal{O}_{C,P_i} \subseteq k(C)$$

of rational functions on C regular at P_1, \ldots, P_m .

• By means of the inclusion

$$\mathscr{O}_{C',Q} \subseteq k(C') \subseteq k(C)$$

 $\mathcal{O}_{C',Q}$ is contained in $\widetilde{\mathcal{O}}$.

• In particular, we may view $\widetilde{\mathcal{O}}$ as an $\mathcal{O}_{C',Q}$ -module.

Existence of Local Parameters

Lemma

The ring $\widetilde{\mathcal{O}}$ has the following properties.

 There are elements t₁,..., t_m ∈ Ø̃ with v_{Pi}(t_j) = δ_{ij}. In particular, t_i is a local parameter at P_i.
 If u ∈ Ø̃, then

$$u=t_1^{\ell_1}\cdots t_m^{\ell_m}v,$$

where:

Existence of Local Parameters (Cont'd)

(1) Consider a projective embedding $C \subseteq \mathbb{P}_k^n$. Choose a hyperplane H, not containing any of the points P_i , so that

$$\{P_1,\ldots,P_m\}\subseteq U=C\setminus H,$$

where:

- $U \subseteq \mathbb{A}_k^n$;
- \mathbb{A}_k^n is such that we have a disjoint union $\mathbb{P}_k^n = \mathbb{A}_k^n \cup H$.

Now we can choose affine hyperplanes H_i which:

- Intersect C transversally at P_i (i.e., $T_{P_i}C \nsubseteq H_i$);
- Do not pass through any of the points P_j , for $j \neq i$.

In this argument we use the fact that the field $k = \overline{k}$ has infinitely many elements.

Define t_i to be given by the restriction of the equation of the hyperplane H_i to the curve C.

Then the t_i behave as required.

Existence of Local Parameters (Cont'd)

2) Let
$$u \in \widetilde{\mathcal{O}}$$
.
Set $\ell_i := v_{P_i}(u) \ge 0$.
Define

$$u':=t_1^{-\ell_1}\cdots t_m^{-\ell_m}u.$$

Then
$$v_{P_i}(u') = 0$$
, for $i = 1, ..., m$.
Thus, $u' \in \widetilde{\mathcal{O}}^*$ is a unit.

The result then follows from the equality

$$u=t_1^{\ell_1}\cdots t_m^{\ell_m}u'.$$

Rational Maps Between Smooth Curves

Lemma

Let C and C' be smooth curves. If C' is projective, then every rational map $f: C \dashrightarrow C'$ is a morphism.

 It is enough to consider rational maps f: C → Pⁿ_k. The statement concerns the local behavior of f at each point P. Let P ∈ C and let t be a local parameter at P (generator of m_P). Then, there are rational functions f_i, such that

$$f = (f_0 : \ldots : f_n), \quad f_i \in k(C),$$

and each f_i can be written in the form

$$f_i = t^{\ell_i} \widetilde{f_i}$$

for some $\ell_i \in \mathbb{Z}$, $\tilde{f}_i \in \mathcal{O}_{C,P}$, with $\tilde{f}_i(P) \neq 0$.

Rational Maps Between Smooth Curves (Cont'd)

• We may assume that $\ell_0 \leq \cdots \leq \ell_n$.

Then

$$f = (t^{\ell_0} \widetilde{f_0} : t^{\ell_1} \widetilde{f_1} : \dots : t^{\ell_n} \widetilde{f_n})$$

= $(\widetilde{f_0} : t^{\ell_1 - \ell_0} \widetilde{f_1} : \dots : t^{\ell_n - \ell_0} \widetilde{f_n}).$

So we have a representation of f with:

- All components being regular functions;
- Nonzero first component, since $\tilde{f}_0(P) \neq 0$.

Hence, f is regular at P.

Isomorphisms of Smooth Projective Curves

Corollary

Two smooth projective curves C and C' are isomorphic if and only if they are birationally equivalent.

• Consider mutually inverse rational maps

$$\varphi: \quad C \quad \dashrightarrow \quad C'; \\ \varphi^{-1}: \quad C' \quad \dashrightarrow \quad C.$$

By the lemma, the maps φ and φ^{-1} are morphisms. Moreover, we have

$$\varphi^{-1} \circ \varphi = \mathrm{id}_C$$
 and $\varphi \circ \varphi^{-1} = \mathrm{id}_{C'}$.

Freeness of $\widetilde{\mathcal{O}}$ as an $\mathcal{O}_{C',Q}$ -Module

• Recall that $\mathscr{O}_{C',Q} \subseteq k(C')$ is contained in $\widetilde{\mathscr{O}} = \bigcap_{i=1}^{m} \mathscr{O}_{C,P_i} \subseteq k(C)$.

• Moreover, this allows viewing $\widetilde{\mathcal{O}}$ as an $\mathcal{O}_{C',Q}$ -module.

Lemma

The module $\widetilde{\mathcal{O}}$ is a free $\mathcal{O}_{C',Q}$ -module of rank $d = \deg f$, i.e.,

$$\widetilde{\mathcal{O}} \cong \mathcal{O}_{C',Q}^d$$

• We started with:

- A surjective map $f: C \rightarrow C'$ between two smooth curves;
- A point $Q \in C'$.

We want to show that

$$\widetilde{\mathcal{O}} = \bigcap_{i=1}^m \mathcal{O}_{C,P_i} \cong \mathcal{O}_{C',Q}^d,$$

where $f^{-1}(Q) = \{P_1, ..., P_m\}$ and $d = \deg f$.

Freeness of $\widetilde{\mathscr{O}}$ (Cont'd)

Let V ⊆ C' be an affine neighborhood of Q.
 Denote the coordinate ring of V by B = k[V].
 We can view B as a subring of k(C).
 Let

A := the algebraic closure of B in k(C).

A result from Commutative Algebra ensures that A is a finitely generated k-algebra.

Moreover, A has field of fractions k(C).

Thus, there is an affine curve U, with k[U] = A.

The proof proceeds in four steps.

Freeness of $\widetilde{\mathcal{O}}$: Step (1)

(1) We show that U is smooth.

By a previous corollary, this is equivalent to the statement that every local ring $\mathcal{O}_{U,P}$ is a regular local ring.

Consider a point $P \in U$.

There is a maximal ideal m in A, such that

$$\mathcal{O}_{U,P} \cong A_m$$

Now A is integrally closed in k(C).

An elementary argument (involving taking common denominators and clearing denominators) shows that this also holds for A_m .

By the characterization of discrete valuation rings, $\mathcal{O}_{U,P}$ is a regular local ring.

We conclude that U is smooth.

Freeness of $\widetilde{\mathcal{O}}$: Step (2)

- (2) We show that U is isomorphic to an open subset of C. The field of fractions of A = k[U] is equal to the field k(C). So there is a birational map φ : U --→ C. By a preceding lemma, the map φ is a morphism. We show that φ maps the affine curve U isomorphically to φ(U) ⊆ C.
 - But, first, we show that $\varphi(U)$ is open.
 - Note that a nonempty subset of C is open if and only if it equals C minus finitely many points.
 - Now $\varphi: U \to C$ is birational.
 - So there are nonempty open sets $U' \subseteq U$ and $U'' \subseteq C$, such that

$$\varphi|_{U'}\colon U'\to U''$$

is an isomorphism.

But U'' is open and nonempty and $U'' \subseteq \varphi(U)$. So $\varphi(U)$ is also open.

George Voutsadakis (LSSU)

Freeness of $\widetilde{\mathcal{O}}$: Step (2) (Cont'd)

• We will now show that the map $\varphi: U \to \varphi(U)$ is an isomorphism. To prove this, it is enough to show that the rational inverse map $\varphi^{-1}: \varphi(U) \longrightarrow U$ is a morphism. Since U is affine, we cannot use the Rational Map Lemma. Assume that $U \subseteq \mathbb{A}_{k}^{n}$ and that $\varphi^{-1} = (g_{1}, \dots, g_{n}), g_{i} \in k(C)$. Let $S = \varphi(R)$ be a point that is not regular for φ^{-1} . Possibly after renumbering, we have $g_1 = \frac{h_1}{h_2}$, $h_1(S) \neq 0$, $h_2(S) = 0$. If z_1, \ldots, z_n are the coordinates of \mathbb{A}_{k}^n , then $g_1 = (\varphi^{-1})^*(z_1)$. That is, $\varphi^*(g_1) = z_1$. Thus, $\varphi^*(h_1) = z_1 \varphi^*(h_2)$. Now we get

$$\varphi^*(h_2)(R) = h_2(\varphi(R)) = h_2(S) = 0.$$

But from this it also follows that $\varphi^*(h_1)(R) = 0$. So $h_1(S) = 0$, contradicting the hypothesis. In the following we identify U with the image $\varphi(U)$ by means of φ , i.e., we view U as an open subset of C.

George Voutsadakis (LSSU)

Freeness of $\widetilde{\mathcal{O}}$: Step (3)

(3) We show that $U = f^{-1}(V)$. We have an inclusion

$$B = k[V] \stackrel{f^*}{\hookrightarrow} A = k[U].$$

It induces a commutative diagram.

In particular, $U \subseteq f^{-1}(V)$.

Suppose that this is a strict inclusion.

Then there is a point $\widetilde{R} \in C$, such that $\widetilde{R} \notin U$ and $\widetilde{S} := f(\widetilde{R}) \in V$. Let $f^{-1}(\widetilde{S}) \cap U = \{\widetilde{R}_1, \dots, \widetilde{R}_\ell\}.$

By the preceding lemma, there is a rational function $g \in k(C)$, which is regular at $\widetilde{R}_1, \ldots, \widetilde{R}_\ell$ but not at \widetilde{R} ,

$$g \notin \mathcal{O}_{C,\widetilde{R}}$$
 and $g \in \mathcal{O}_{C,\widetilde{R}_i}$, $i = 1, \dots, \ell$.

Let $X \subseteq C$ be the set of points where g is not regular (its poles). Then $\widetilde{S} \notin f(X \cap U)$.

Freeness of $\widetilde{\mathcal{O}}$: Step (3) (Cont'd)

• Similarly, there is a function $h \in k[V] = B$ with

$$hg \in k[U] = A$$
 and $hg \notin \mathcal{O}_{C,\widetilde{R}}$.

Here *h* is chosen to:

- Have zeros of sufficiently high order in $f(X \cap U)$;
- Be nonzero at \widetilde{S} .

By definition of A, $g' := hg \in A$ is algebraic over B. That is, g' satisfies an equation

$$g'^{n} + b_{n-1}g'^{n-1} + \dots + b_0 = 0, \quad b_i \in B = k[V].$$

Thus, in the field k(C), we have

$$g' = -b_{n-1} - b_{n-2}g'^{-1} - \dots - b_0g'^{-n+1}$$

This is a contradiction, since $g' \notin \mathcal{O}_{C,\widetilde{R}}$ but $b_i g'^{-1} \in \mathcal{O}_{C,\widetilde{R}}$. We conclude that $U = \varphi^{-1}(V)$.

Freeness of $\widetilde{\mathcal{O}}$: Step (4)

4) We show that

$$\widetilde{\mathcal{O}} = A \mathcal{O}_{C',Q}.$$

This, as we will see, leads to the statement of the lemma. The inclusion $A\mathcal{O}_{C',Q} \subseteq \widetilde{\mathcal{O}}$ is obvious. Now let $g \in \widetilde{\mathcal{O}}$ and let X be the set of poles of g. Then we have $Q \notin f(X)$. By Part (3), we can find a function $h \in k[V]$, with

$$h(Q) \neq 0$$
 and $hg \in A$.

Since $h(Q) \neq 0$, we have $h^{-1} \in \mathcal{O}_{C',Q}$. Thus, $g \in A\mathcal{O}_{C',Q}$.

Freeness of $\widetilde{\mathcal{O}}$: Conclusion

• By a previously quoted result of Commutative Algebra, A is finitely generated as a *B*-module.

We showed that
$$\widetilde{\mathcal{O}} = A\mathcal{O}_{C',Q}$$
.

- It follows that $\widetilde{\mathcal{O}}$ is a finitely generated $\mathcal{O}_{C',Q}$ -module.
- The local ring $\mathcal{O}_{C',Q}$ is a principal ideal ring.
- That is, every ideal has the form (t^k) .
- From the Structure Theorem of Finitely Generated Modules over principal ideal rings, for some integer *m*,

$$\widetilde{\mathcal{O}} = \mathcal{O}_{C',Q}^m \oplus T$$
, $T = \text{torsion part.}$

But $\mathcal{O}_{C',Q} \subseteq \widetilde{\mathcal{O}} \subseteq k(C)$, i.e., $\widetilde{\mathcal{O}}$ is contained in the field k(C). This shows that there can be no torsion.

So we get T = 0.

Freeness of $\widetilde{\mathscr{O}}$: Conclusion (Cont'd)

• It now remains to determine the number *m*.

This is the number of independent elements of $\tilde{\mathcal{O}}$ over $\mathcal{O}_{C',Q}$. By multiplying through by the denominators, one sees that this is the same as the number of independent elements of $\tilde{\mathcal{O}}$ over k(C'). Now $d = \deg[k(C) : k(C')]$ is the degree of the field extension. Therefore, we have $m \le d$.

- Now let f_1, \ldots, f_d be a basis of k(C) over k(C').
- It is possible that some of f_1, \ldots, f_d could have a pole in the set $f^{-1}(Q)$.

However, we can multiply with a suitable power t^{ℓ} , where t is a local parameter in Q.

So the functions $f_1 t^{\ell}, \ldots, f_d t^{\ell} \in \widetilde{\mathcal{O}}$ are independent over k(C'). This shows that $m \ge d$.

Surjective Map and Map Between Groups of Divisors

- Let C and C' be smooth projective curves.
- Suppose that $f: C \rightarrow C'$ is a surjective map.
- Consider $Q \in C'$.
- Choose a local parameter t in Q.
- That is, t is a generator of the maximal ideal m_Q .
- The inverse image $f^{-1}(Q)$ is a proper closed subset of C.
- So $f^{-1}(Q)$ contains only finitely many points.
- We set

$$f^*(Q) := \sum_{P_i \in f^{-1}(Q)} v_{P_i}(f^*(t))P_i,$$

where $f^*(t) = t \circ f$.

Map Between Groups of Divisors

The divisor

$$f^*(Q) := \sum_{P_i \in f^{-1}(Q)} v_{P_i}(f^*(t)) P_i$$

is independent of the choice of t. Suppose t' is another local parameter. Then t' = ut, for some unit $u \in \mathcal{O}_{C,Q}$. In particular $u(Q) \neq 0$. Hence, also $f^*(u)(P_i) \neq 0$. So

$$v_{P_i}(f^*(t')) = v_{P_i}(f^*(ut)) = v_{P_i}(f^*(u)) + v_{P_i}(f^*(t)) = v_{P_i}(f^*(t)).$$

By extending linearly we obtain a group homomorphism

$$f^*$$
: Div $C' \rightarrow$ Div C .

Degree of a Map and Degree of a Divisor

Proposition

If $f: C \to C'$ is a surjective map between smooth projective curves, then for all points $Q \in C'$,

 $\deg f^*(Q) = \deg f.$

• This result gives a geometrical meaning to the degree

$$\deg f := \deg[k(C):k(C')]$$

of a map $f: C \rightarrow C'$.

• The degree of f is the number of preimages (correctly counted) of any point $Q \in C'$.

Degree of a Map and Degree of a Divisor (Cont'd)

Let t ∈ O_{C',Q} ⊆ Õ be a local parameter.
 By a preceding lemma, we can write

$$t=t_1^{\ell_1}\cdots t_m^{\ell_m}v,\quad \ell_i=v_{P_i}(t),\ v\in\widetilde{\mathcal{O}}^*.$$

Hence,

$$f^*(Q) = \sum_{i=1}^m \ell_i P_i.$$

Moreover,

$$\deg f^*(Q) = \sum_{i=1}^m \ell_i.$$

Since we have $v_{P_i}(t_j) = \delta_{ij}$, the t_i are pairwise coprime. By the Chinese Remainder Theorem, we get

$$\widetilde{\mathcal{O}}/(t) = \bigoplus_{i=1}^{m} \widetilde{\mathcal{O}}/(t_i^{\ell_i}).$$

Degree of a Map and Degree of a Divisor (Cont'd)

Claim: We have

$$\dim_k \widetilde{\mathcal{O}}/(t_i^{\ell_i}) = \ell_i.$$

The functions $1, t_i, \dots, t_i^{\ell_i - 1}$ are linearly independent over k. So we have

 $\dim_k \widetilde{\mathcal{O}}/(t_i^{\ell_i}) \geq \ell_i.$

Thus, it is enough to show that every element $w \in \widetilde{\mathcal{O}}$ can be written as

$$w \equiv \alpha_0 + \alpha_1 t_i + \dots + \alpha_{\ell_i - 1} t_i^{\ell_i - 1} \mod t_i^{\ell_i}, \quad \alpha_i \in k.$$

We prove this by induction on $s = \ell_i$. If s = 0, there is nothing to prove. Assume, next, that the statement is true for $s \ge 0$. That is, we have

$$w \equiv \alpha_0 + \alpha_1 t_i + \dots + \alpha_{s-1} t_i^{s-1} \mod t_i^s.$$

Degree of a Map and Degree of a Divisor (Cont'd)

By a preceding lemma,

$$\widetilde{w} := t_i^{-s} (w - \alpha_0 - \alpha_1 t_1 - \dots - \alpha_{s-1} t_i^{s-1}) \in \widetilde{\mathcal{O}} \subseteq \mathcal{O}_{C, P_i}.$$

Set $\alpha_s := \widetilde{w}(P_i)$. So $\widetilde{w} - \alpha_s$ has a zero in P_i . I.e., $\widetilde{w} - \alpha_s \in (t_i)$.

In other words,

$$\alpha_s \equiv t_i^{-s} (w - \alpha_0 - \dots - \alpha_{s-1} t_i^{s-1}) \mod t_i.$$

Multiplication by t_i^s gives

$$w \equiv \alpha_0 + \dots + \alpha_{s-1} t_i^{s-1} + \alpha_s t_i^s \mod t_i^{s+1}.$$

Degree of a Map and Degree of a Divisor (Conclusion)

• By the Claim, we know that $\dim_k \widetilde{\mathcal{O}}/(t_i^{\ell_i}) = \ell_i$. We now get

$$\dim \widetilde{\mathcal{O}}/(t) = \sum_{i=1}^{m} \dim \widetilde{\mathcal{O}}/(t_i^{\ell_i}) = \sum_{i=1}^{m} \ell_i = \deg f^*(Q).$$

On the other hand, by a preceding lemma we also have

$$\widetilde{\mathcal{O}} \cong \mathcal{O}_{C',Q}^d \quad d = \deg f.$$

Thus, we get

$$\widetilde{\mathcal{O}}/(t) \cong (\mathcal{O}_{C',Q}/(t))^d \cong k^d.$$

These equations imply that $d = \deg f^*(Q)$.

Principal Divisors of Smooth Projective Curves

Theorem (Degree of Principal Divisors)

If C is a smooth projective curve, then every principal divisor on C has degree 0.

 Let f ∈ k(C) be a nonconstant function on C. Then f defines a rational map f : C → P¹_k. By a previous lemma, f is a morphism. But, then, another lemma asserts that f is surjective. By definition of (f) and f*, we have

$$(f) = f^*(0) - f^*(\infty).$$

A previous proposition implies that

$$\deg f^*(0) = \deg f^*(\infty) = \deg f.$$

So

$$\deg(f) = \deg f^*(0) - \deg f^*(\infty) = 0.$$

Remark: The Case $k = \mathbb{C}$

- In the case $k = \mathbb{C}$ one can also give an analytic proof of the theorem.
- For this one considers the integral

$$\int_{\gamma} \frac{df}{f}$$

over a suitable closed path γ .

- By Cauchy's integral theorem this integral counts the difference between the number of zeros and poles of *f* in the "interior" of *γ*.
- By following the path in the opposite direction, the integral also counts the difference between the number of zeros and poles in the region "outside" γ.
- This gives the value 0 for the degree of the principal divisor.

The Jacobian Variety of *C*

• Since every principal divisor has degree 0, the degree function induces a homomorphism

$$\mathsf{deg}:\mathsf{CI}\mathcal{C}\to\mathbb{Z}.$$

Definition (The Jacobian Variety)

We define the Jacobian variety of C (of degree 0) by

$$\mathsf{Jac}^0 C := \mathsf{Cl}^0 C := \{ D \in \mathsf{Cl} C : \mathsf{deg} D = 0 \}.$$

• There is an exact sequence

$$0 \longrightarrow \mathsf{Cl}^0 C \longrightarrow \mathsf{Cl} C \xrightarrow{\operatorname{deg}} \mathbb{Z} \longrightarrow 0.$$

• Torelli's theorem says that the polarized abelian variety Cl^0C determines the curve.

George Voutsadakis (LSSU)

Algebraic Geometry

The Jacobian of Rational Curves

Proposition

The Jacobian $\operatorname{Cl}^0 C$ is trivial if and only if C is rational (i.e., isomorphic to \mathbb{P}^1_k).

We have already seen that Cl⁰(P¹_k) = {0}. Conversely, suppose Cl⁰(C) = {0}. Then any two divisors D and D' of the same degree are linearly equivalent. Let P ≠ Q be two distinct points on C. Since P ~ Q, there is a nonzero rational function f ∈ k(C), with

$$(f)=P-Q.$$

By a preceding lemma, the rational map $f: C \to \mathbb{P}^1_k$ is a regular map. We have $f^*(0) = P$, $f^*(\infty) = Q$. In particular f has degree 1. So it induces an isomorphism of the function fields. Thus, by a preceding corollary, is an isomorphism of C with \mathbb{P}^1_k .

George Voutsadakis (LSSU)

The Structure of the Jacobian

- We saw Cl^0C is the kernel of the morphism deg : $ClC \rightarrow \mathbb{Z}$.
- So the Jacobian Cl^0C has a group structure.
- The group structure on Cl^0C is given simply by adding divisors.
- This is clearly compatible with linear equivalence.
- Thus, if C is not a rational curve, then Cl^0C is a g-dimensional projective abelian variety.
- That is, a projective variety with the structure of an abelian group, with addition,

$$(a,b) \mapsto a+b,$$

and inversion

$$a\mapsto a^{-1},$$

being morphisms.

• Over C, an abelian variety is a *g*-dimensional torus, which is also a projective variety.

The Genus of a Curve

- The dimension g of Cl^0C is the **genus** of the curve C.
- Over the ground field \mathbb{C} , it is a nontrivial result that this is the same as the topological genus, which is given by the number of holes of *C* as a Riemann surface.
- We will give a definition of the genus of *C* in terms of the number of independent regular differentials on *C*.
- We will then relate it to the degree of the canonical divisor of C.
- The genus will also appear in the statement of the Riemann-Roch Theorem.

The Case of a Smooth Plane Cubic

- Consider the case of a smooth plane cubic $C \subseteq \mathbb{P}^2_{\mathbb{C}}$.
- We gave a topological description for the case of cubics in Legendre normal form.
- We also saw that such a curve is homeomorphic to a torus.
- Hence C has genus 1.
- Consider a fixed point $O \in C$ (which for simplicity we will take to be a point of inflection).
- It can then be seen that the map

 $\begin{array}{rcl} C & \rightarrow & \mathrm{Cl}^0 C \\ P & \mapsto & P - O \end{array}$

defines an isomorphism of C with $Cl^0 C$.

Subsection 3

Bézout's Theorem

Bézout's Theorem for One Smooth Curve

Theorem

Let C and C' be two plane curves of degrees d and d', respectively. Assume that C is smooth, and that C is not a component of C'. Then C and C' intersect in precisely dd' points, that is,

$$C.C' = \sum_{P} I_P(C,C') = dd'.$$

Suppose that

$$C = \{f(x_0, x_1, x_2) = 0\} \subseteq \mathbb{P}_k^2,$$

where f is a homogeneous polynomial of degree d. Suppose

$$C' = \{g(x_0, x_1, x_2) = 0\} \subseteq \mathbb{P}_k^2,$$

where g is a homogeneous polynomial of degree d'. By assumption, C' does not contain C.

George Voutsadakis (LSSU)

Bézout's Theorem for One Smooth Curve (Cont'd)

• For every point $P \in C$, we can view the equation g of C' as a regular function in an affine neighborhood of P.

That is, we can view g as an element of $\mathcal{O}_{C,P}$ (well defined up to multiplication by nonzero scalars).

In this way, C' defines a divisor

$$D = \sum_{P \in C} v_P(g) P \in \operatorname{Div} C.$$

From the definition of local intersection multiplicity, it follows that

$$I_P(C,C')=v_P(g).$$

Thus,

$$C.C' = \sum_{P} I_P(C,C') = \deg D.$$

Bézout's Theorem for One Smooth Curve (Cont'd)

• Now consider the rational function

$$h=\frac{g}{x_0^{d'}}.$$

Here we may assume that $C \neq \{x_0 = 0\}$.

The rational function h defines a principal divisor on C,

$$(h)=D-d'D_0,$$

where D is as above, and D_0 is the divisor on C defined by x_0 . If L is the line $\{x_0 = 0\}$, then

$$deg D_0 = L.C$$

= d. (previous proposition)

Since (h) is a principal divisor, by the theorem,

$$0 = \deg(h) = \deg D - d' \deg D_0.$$

So $\deg D = d' \deg D_0 = dd'$.

Remarks on the General Case

- The same method can also be used to prove the general version of Bézout's theorem.
- In general one must decompose C into irreducible components

 $C_1,\ldots,C_n.$

• If they are not smooth, one must consider the normalization

$$v_i: \widetilde{C}_i \to C_i.$$

• As before, the proof in the general case is based on the fact that principal divisors on curves have degree zero.

Subsection 4

Linear Systems on Curves

Ordering on Divisors

Definition (Divisor Ordering)

There is a partial ordering on divisors on curves, defined as follows. Consider divisors

$$D_1 = \sum n_P P$$
 and $D_2 = \sum m_P P$.

We write

$$D_1 \ge D_2$$
 iff $n_P \ge m_P$, for all $P \in C$.

Vector Space Associated With a Divisor

Definition

Let D be a divisor. We define

$$L(D) := \{0 \neq f \in k(C) : (f) \ge -D\} \cup \{0\}.$$

 $\ell(D) := \dim_k L(D).$

Support of a Divisor and Effective Divisors

Definition

The **support** of a divisor $D = \sum n_P P$ is defined by

 $\operatorname{supp} D := \{P : n_P \neq 0\}.$

Definition

A divisor D is called effective if

 $D \ge 0.$

Degree of D and Dimension of L(D)

Lemma

(1) If degD < 0, then $L(D) = \{0\}$.

For every effective divisor D, we have ℓ(D) ≤ degD+1.
 In particular, L(D) is a finite dimensional vector space.
 Equality holds only if C is rational or D = 0.

```
    Suppose degD < 0.</li>
    Consider 0 ≠ f ∈ L(D).
    Then f has more zeros than poles.
    This contradicts deg(f) = 0.
```

Degree of D and Dimension of L(D) (Cont'd)

(2) Suppose degD = 0. By hypothesis, D is effective. So we have D = 0. In this case L(D) is the space of constants. So ℓ(D) = 1. Next, suppose that d := degD ≥ 1. Let P₁,..., P_{d+1} be distinct points that do not lie in the support of D. Consider the map

$$\begin{array}{rcl} L(D) & \to & k^{d+1}; \\ f & \mapsto & (f(P_1), \dots, f(P_{d+1})). \end{array}$$

Its kernel is $L(D - P_1 - \dots - P_{d+1})$. So $L(D - P_1 - \dots - P_{d+1})$ has codimension at most d + 1 in L(D). By Part (1), $L(D - P_1 - \dots - P_{d+1}) = \{0\}$. So dim $L(D) \le d + 1$.

Degree of D and Dimension of L(D) (Cont'd)

• Now suppose that $\ell(D) = d + 1$.

This is equivalent to the above map being surjective.

Then the composition with the projection onto the first d-1 components is also surjective.

Moreover, its kernel is $L(D - P_1 - \cdots - P_{d-1})$. Thus,

$$\dim L(D-P_1-\cdots-P_{d-1})=2.$$

So, there exist linearly independent functions

$$f,g \in L(D-P_1-\cdots-P_{d-1}).$$

Degree of D and Dimension of L(D) (Cont'd)

• Now
$$\deg(D - P_1 - \dots - P_{d-1}) = 1$$
.

So, for some points $P \neq Q$ on C with $P \sim Q$,

The proof of the preceding proposition then shows that there is an isomorphism $C \cong \mathbb{P}^1_k$.

Suppose, conversely, that C is rational.

Then we can always find a rational function with:

- Poles (counted with multiplicity) given by the divisor *D*;
- Zeros at exactly d of the points P_1, \ldots, P_{d+1} .

This implies that the map $L(D) \rightarrow k^{d+1}$ is surjective.

Spaces Associated With Equivalent Divisors

Proposition

- If $D_1 \sim D_2$, then $L(D_1) \cong L(D_2)$.
 - Let $D_1 D_2 = (f)$. If $g \in L(D_1)$, then

$$(gf) = (g) + (f) \ge -D_2.$$

In this way, we obtain an isomorphism

$$\begin{array}{rccc} L(D_1) & \to & L(D_2); \\ g & \mapsto & gf. \end{array}$$

Complete Linear Systems Associated With Divisors

Definition

A divisor D defines a complete linear system

 $|D| := \{D' \ge 0 : D' \sim D\}.$

• We know that:

- Equivalent divisors have the same degree (since principal divisors have degree 0);
- Effective divisors have nonnegative degree.
- So, if degD < 0, we have $|D| = \emptyset$.

Bijection Between |D| and $\mathbb{P}(L(D))$

Proposition

There is a natural bijection between the complete linear system |D| and the projective space $\mathbb{P}(L(D))$.

• Let $f \in L(D)$ be nonzero. Define

$$D_f := (f) + D.$$

Then we have:

•
$$D_f \ge 0;$$

• $D_f \sim D;$
• For $\lambda \in k^*$, $(f) = (\lambda f)$

Thus, we obtain a map

$$\mathbb{P}(L(D)) \rightarrow |D|; \\ f \mapsto D_f.$$

Ϊ).

Bijection Between |D| and $\mathbb{P}(L(D))$ (Cont'd)

• We first show surjectivity.

```
Suppose that D' \ge 0 and D' \sim D.
```

```
Let f be a rational function, with (f) = -D + D'.
```

```
Since D' \ge 0, it follows that f \in L(D).
```

Next, we show injectivity.

Suppose that f and g are rational functions with (f) = (g). Then $\frac{f}{g}$ is an everywhere regular function. Hence, $\frac{f}{g}$ is constant. I.e., $f = \lambda g$, for some $\lambda \in k^*$.

- In the following we will identify |D| and $\mathbb{P}(L(D))$.
- So |D| is considered to have the structure of a projective space.

Linear System and Base Points

Definition (Linear System)

A **linear system** ϑ on *C* is a projective subspace of a complete linear system |D|.

Definition (Base Point)

A point $P \in C$ is called a **base point** of the linear system ϑ if

 $\vartheta=\vartheta\cap |D-P|.$

A linear system ϑ is called **base point free** if it has no base points.

We may consider only base point free linear systems.
 Suppose P is a base point of |D|. Then L(D) = L(D - P).
 By subtracting all the base points of D, we obtain a base point free linear system |D'| with L(D) = L(D').

Linear System Defined By Hyperplane Sections

- Suppose that $C \subseteq \mathbb{P}_k^r$ is a smooth curve not contained in a hyperplane.
- Then the set of hyperplanes H in \mathbb{P}_k^r defines a set of divisors of the form $C \cap H$ on C, called hyperplane sections.
- More precisely, C ∩ H is defined by restricting an equation {s = 0} for H to the curve C.
- On every open set $C \setminus \{x_i = 0\}$, we can view s as a regular function.
- Taking the zeros of s, counted with multiplicity, defines an effective divisor $D := C \cap H$.

Linear System Defined By Hyperplane Sections (Cont'd)

- Consider two hyperplanes:
 - $H_1 = \{s_1 = 0\};$
 - $H_2 = \{s_2 = 0\}.$
- Then $\frac{s_1}{s_2}$ is a rational function.
- So the divisors D_1 and D_2 are linearly equivalent.
- The set of hyperplane sections $C \cap H$ on C is a base point free linear system ϑ , which is not necessarily complete.
- The divisors of the linear system ϑ all have the same degree d.
- We call *d* the **degree** of the embedded curve $C \subseteq \mathbb{P}_{k}^{r}$.
- In the case of a plane curve this agrees with the definition of degree previously given.

The Map Defined by a Complete Linear System

Definition (The Map Defined by a Complete Linear System)

Let *D* be a divisor on a curve *C*. Let |D| be a base point free complete linear system. Then the map φ_D , called **the map defined by the complete linear** system |D|, is defined as follows.

Let $\ell = \ell(D) > 0$. Choose a basis $f_0, \dots, f_{\ell-1}$ of L(D). We define φ_D by

$$\begin{array}{rccc} \varphi_D \colon & C & \to & \mathbb{P}_k^{\ell-1}; \\ & P & \mapsto & (f_0(P) \colon \ldots \colon f_{\ell-1}(P)). \end{array}$$

• By a previous lemma, the map φ_D is a morphism.

Remarks

- Clearly φ_D depends on the choice of basis.
- However, two different bases give rise to maps differing only by a projective automorphism of $\mathbb{P}_{\mu}^{\ell-1}$.
- If $\ell \ge 2$, then the map

$$\varphi_D: C \to \varphi_D(C)$$

has finite fibers.

• Similarly, for any base point free linear system $\vartheta \subseteq |D|$ of projective dimension r, by making a choice of basis of ϑ , we obtain a morphism

$$\varphi_{\vartheta}: C \to \mathbb{P}_k^r.$$

• If $\vartheta = |D|$, then $\varphi_{\vartheta} = \varphi_{|D|} = \varphi_D$.

Example

- Let $C = \mathbb{P}^1_k$, with homogeneous coordinates x_0, x_1 .
- Consider the divisor $D = 3\infty$ on C, where $\infty = (1:0)$.
- Then $\ell(D) = 4$.
- Moreover, a basis for L(D) given by

$$\frac{x_0^3}{x_1^3}, \quad \frac{x_0^2 x_1}{x_1^3} = \frac{x_0^2}{x_1^2}, \quad \frac{x_0 x_1^2}{x_1^3} = \frac{x_0}{x_1}, \quad \frac{x_1^3}{x_1^3} = 1 \quad \in L(D).$$

• The map φ_D is given by

$$\begin{array}{rcl} \varphi_D: & \mathbb{P}^1_k & \to & \mathbb{P}^3_k; \\ & (x_0:x_1) & \mapsto & \left(\frac{x_0^3}{x_1^3}:\frac{x_0^2}{x_1^2}:\frac{x_0}{x_1}:1\right) = \left(x_0^3:x_0^2x_1:x_0x_1^2:x_1^3\right). \end{array}$$

• Thus |D| defines the embedding of \mathbb{P}^1_k as the cubic normal curve in \mathbb{P}^3_k .

Hyperplane Sections and Base Point Free Linear Systems

- Let δ be an arbitrary base point free linear system on C.
- We show the hyperplane sections of $\varphi_{\delta}(C)$ give rise to elements of δ .
- Let δ be an arbitrary base point free linear system of projective dimension r, on a curve C.
- Choose a basis f_0, \ldots, f_r for δ .
- We get a map

$$\begin{array}{rccc} \varphi_{\delta} \colon & C & \to & \mathbb{P}_{k}^{r}; \\ & P & \mapsto & (f_{0}(P) : \ldots : f_{r}(P)). \end{array}$$

- Let x_0, \ldots, x_r be the projective coordinates of \mathbb{P}_k^r .
- Consider in \mathbb{P}_k^r a hyperplane

$$H=\left\{\sum\lambda_i x_i=0\right\}.$$

• The hyperplane section $\varphi_{\delta}(C) \cap H$ may be pulled back to a divisor $\varphi_{\delta}^{*}(H)$ on *C*, given by the points in $\varphi^{-1}(H)$, counted with multiplicity.

Hyperplane Sections and Linear Systems (Cont'd)

- The multiplicities are defined as follows.
- Consider the function

$$(\sum \lambda_i x_i) \circ \varphi_{\delta}.$$

- It can be viewed as a local function at every point $P \in C$.
- The multiplicity of the point P in $\varphi_{\delta}^{*}(H)$ is the vanishing order of this function at P.
- The divisor obtained in this way is nothing but the divisor $D_{f_{H}} \in \delta$ of the function

$$f_H = \sum \lambda_i f_i.$$

- Thus every hyperplane section $H \cap \varphi_{\delta}(C)$ gives rise to $D_{f_H} \in \delta$.
- If φ_{δ} is an embedding, then all elements of δ correspond to hyperplane sections of the embedded curve in this way.

Differential Forms on a Smooth Curve

- Let $U \subseteq C$ be an open set.
- Consider the vector space

$$\phi(U) := \left\{ \varphi : U \to \bigcup m_x / m_x^2 : \varphi(x) \in m_x / m_x^2 \right\}.$$

- Let $f \in \mathcal{O}_{\mathcal{C}}(U)$ be a regular function.
- Define an element $df \in \phi(U)$ by

$$df(x) := f - f(x) \mod m_x^2.$$

Properties of Differential Forms

• As in elementary calculus, the following identities hold.

(1)
$$d(f+g) = df + dg;$$

(2) $d(fg) = fdg + gdf;$
(3) $d(\frac{f}{g}) = \frac{gdf - fdg}{g^2}$, whenever $g \neq 0$.

Property (1) is obvious.

Properties (2) and (3) follow by calculating and comparing both sides of the equality modulo m_x^2 .

• If $F \in k[x_1, ..., x_n]$, then for regular functions $f_1, ..., f_n$ on U, (4) $dF(f_1, ..., f_n) = \sum_{i=1}^n \frac{\partial F}{\partial x_i}(f_1, ..., f_n) df_i$.

In view of Property (1), it is enough to prove this for monomials. Using Property (2), this can be shown by induction on the degree of the monomials.

• Property (3) generalizes to rational functions in their domain of definition.

Regular Differential Forms

Definition (Regular Differential Form)

An element $\varphi \in \phi(U)$ is called a **regular differential form** on U if, for every point $P \in U$, there are a neighborhood V and regular functions $f_1, \ldots, f_\ell, g_1, \ldots, g_\ell \in \mathcal{O}_C(V)$, such that

$$\varphi|_V = \sum_{i=1}^{\ell} f_i dg_i.$$

The set of all regular differentials on U is an $\mathcal{O}(U)$ -module, which we denote by $\Omega^1[U]$.

Cotangent Bundles and Regular Differential Forms

- Recall that m_x/m_x^2 can be identified with the dual of the tangent space of C at x.
- The disjoint union of these spaces is called the **cotangent bundle over** *U*.
- The elements of $\phi(U)$ are sections of the cotangent bundle.
- The definition of regular differential forms tells us which sections should be called regular.

Example

- Let t be the coordinate of \mathbb{A}^1_k .
- Then dt is a basis of m_x/m_x^2 , for every $x \in \mathbb{A}^1_k$.
- Hence, every element $\varphi \in \phi(\mathbb{A}^1_k)$ can be written as

 $\varphi = fdt$, for some function f on \mathbb{A}^1_k .

• If $\varphi \in \Omega^1[\mathbb{A}^1_k]$, then the formula for $dF(f_1, \dots, f_n)$ implies that

 $\varphi|_V = gdt$, for some function g regular on V.

Comparing this with φ|_V = f|_V dt shows that f is regular.
Hence, we find that

$$\Omega^1[\mathbb{A}^1_k] = k[\mathbb{A}^1_k] dt.$$

Characterization of $\Omega^1[U]$

Proposition

Let C be a smooth curve and let $P \in C$. Then there exists an affine neighborhood U of P, such that, as $\mathcal{O}(U)$ -modules,

 $\Omega^1[U] \cong \mathcal{O}(U).$

We can assume that C ⊆ Aⁿ_k has coordinates x₁,...,x_n, such that t₁ := x₁ |_C is a local parameter near the point P.
Choose a basis F₁,...,F_ℓ of the ideal I(C) of C in Aⁿ_k.
Since the F_i are in the ideal I(C), we have dF(f₁,...,f_n) = 0.
Hence, for 1 ≤ i ≤ ℓ, we have

$$\sum_{j=1}^n \frac{\partial F_j}{\partial x_j} \Big|_C dt_j = 0, \quad t_j = x_j \mid_C.$$

Characterization of $\Omega^1[U]$ (Cont'd)

• Since C has dimension 1, the matrix

$$\left(\left(\frac{\partial F_i}{\partial x_j}\right)(P)\right)_{i,j}$$

has rank n-1 at P.

We use the preceding equation to obtain local representations

$$dt_i = g_i dt_1, \quad i = 2, \dots, n,$$

where the g_i are regular in a neighborhood of P.

Characterization of $\Omega^1[U]$ (Cont'd)

Let

$$U' = \bigcap_{i=2}^n \operatorname{dom} g_i.$$

Choose some affine set $U \subseteq U'$.

Now dx_1, \ldots, dx_n span the cotangent space in \mathbb{A}_k^n at every point. So dt_1 is nonzero in m_x/m_x^2 , for all $x \in U$.

Therefore, every element $\varphi \in \Omega^1[U]$ has a representation

 $\varphi = \psi dt_1,$

for some k-valued function ψ on U. On the other hand, $dt_i = g_i dt_1$. So there is a local representation $\varphi = gdt_1$, where g is regular. This shows that $\psi = g$ is regular on U. I.e., $\varphi \in \mathcal{O}(U)$. Hence, $\Omega^1[U] \cong \mathcal{O}(U)$ as an $\mathcal{O}(U)$ -module.

$\Omega^1[U]$ and Local Parameters

Corollary

Let t be a local parameter at a point $P \in C$. Then there exists an affine neighborhood V of P, such that

 $\Omega^1[V] = \mathcal{O}dt.$

Let U be a neighborhood of P.
Let t' ∈ O(U) be as in the preceding proof.
Then dt = gdt', for some g ∈ O(U).
Now both t and t' are local parameters at the point P.
So we have g(P) ≠ 0.
We can then take as V any affine neighborhood of P where g does not vanish.

Zeroes of Regular Differential Forms

- Let $\omega \in \Omega^1[U]$ be a regular differential form on U.
- We look at the zeros of ω , i.e., the points where $\omega(x) = 0 \in m_x/m_x^2$.
- Let $\omega = gdt$ be a local representative, as in the proposition.
- Then the zeros of ω are just the zeros of g.
- If $\omega \neq 0$, then this defines an effective divisor on U.
- Note that if two regular differential forms $\omega, \omega' \in \Omega^1[U]$ coincide on a nonempty open set in U, then $\omega = \omega'$.

Equivalence of Regular Differential Forms

• Consider pairs (U, ω) , where:

- $U \subseteq C$ is open and nonempty;
- ω is a regular differential form on U.
- We define an equivalence relation by

$$(U, \omega) \sim (U', \omega')$$
 iff for some nonempty open $V \subseteq U$,
 $\omega |_V = \omega' |_V$.

• Previous results assert this is an equivalence relation.

Rational Differential Forms

Definition (Rational Differential Form)

A rational differential form on C is an equivalence class of pairs

 $(U,\omega),$

where:

• U is a nonempty open set in C;

• ω is a regular differential form on U.

We denote the set of rational differential forms on C by $\Omega^1(C)$.

- Let $f \in k(C)$ is a rational function.
- Then *df* defines a rational differential form on *C*.
- Moreover, $\Omega^1(C)$ is a k(C)-vector space.

Domain of Regularity of a Rational Differential Forms

- Let $\omega \in \Omega^1(\mathcal{C})$ be a rational differential form.
- Define

Uω

to be the union of all open sets U, such that ω has a representative (U, ω') .

- Then $\omega \in \Omega^1[U_{\omega}]$.
- U_{ω} is called the **domain of regularity** of ω .

The Vector Space $\Omega^1(\mathcal{C})$

Proposition

- $\Omega^1(C)$ is a 1-dimensional vector space over k(C).
 - Let $U \subseteq C$ be open, as in the preceding proposition, so that, for some local parameter t,

$$\Omega^1[U] = \mathcal{O}(U)dt.$$

Let $\omega \in \Omega^1(C)$.

Then, there exists some open $V \subseteq U$, such that $\omega|_V$ is regular. We still have $\Omega^1[V] = \mathcal{O}(V)dt$

Hence, $\omega |_V = gdt$, for some $g \in k[V] \subseteq k(C)$.

The map $\omega \mapsto g$ gives the desired isomorphism.

Divisors Associated With Rational Differential Forms

- Let ω∈Ω¹(C) be a nonzero rational differential form on C.
 Let P∈C.
- Then there is a neighborhood U of P, such that

 $\omega \mid_U = gdt$,

for some local parameter t at P, and some rational function g.
If dt' is some other local parameter, then locally

$$dt = udt'$$
,

for some unit u in a neighborhood of P.

- Hence if we associate to P the order of g at P, this is well defined.
- In this way we define a divisor $(\omega) \in \text{Div} C$.

Canonical Divisor Class

- Let $\omega \in \Omega^1(C)$ be a nonzero rational differential form on C.
- Suppose ω' is any other nonzero rational differential form on C.
- We know that

$$\omega' = f\omega$$
,

for some $f \in k(C)^*$.

- This implies that $(\omega) \sim (\omega')$.
- In this way we obtain a well defined divisor class

$$K := (\omega) \in C|C.$$

Definition (Canonical Divisor Class)

The divisor K is called the **canonical divisor class**, or the **canonical divisor**, of C.

George Voutsadakis (LSSU)

Algebraic Geometry

July 2024

98 / 129

The Genus

Definition (Genus)

The genus of the curve C is defined to be the integer

 $g:=\ell(K).$

- Thus the genus of a smooth curve *C* is equal to the number of linearly independent regular differential forms on *C*.
- If the ground field is \mathbb{C} , then g is equal to the topological genus of the compact Riemann surface C.
- A smooth curve C has genus 0 if and only if it is isomorphic to \mathbb{P}^1_k .
- A smooth plane cubic has genus 1.

Riemann-Roch Theorem

Theorem (Riemann-Roch)

If C is a projective curve of genus g and D is a divisor of degree d on C, then

$$\ell(D) - \ell(K - D) = 1 + d - g.$$

• Over C, the Riemann-Roch Theorem establishes a link between the algebraic and topological properties of the curve.

Riemann's Theorem

Corollary (Riemann's Theorem)

If D is a divisor of degree d > 2g - 2, then

$$\ell(D)=d+1-g.$$

By hypothesis d > 2g - 2.
 So deg(K - D) < 0.
 Then, by a previous lemma, L(K - D) = {0}.
 Thus, by the Riemann-Roch Theorem,

$$\ell(D)=1+d-g.$$

Degree of Canonical Divisor

Corollary

The canonical divisor has even degree, given by

$$\deg K = 2g - 2.$$

• Set *D* = *K*. By a previous lemma,

$$\ell(K-D) = \ell(0) = 1.$$

By definition $\ell(K) = g$. So, by the Riemann-Roch Theorem,

$$\ell(K) - \ell(0) = 1 + d - g$$

 $g - 1 = 1 + \deg(K) - g$
 $\deg(K) = 2g - 2.$

Subsection 5

Projective Embeddings of Curves

Differential of a Morphism Between Varieties

- Let $f: X \to Y$ be a morphism between varieties with f(P) = Q.
- By pullback of functions we have a map

$$f^*: m_{Y,Q}/m_{Y,Q}^2 \to m_{X,P}/m_{X,P}^2.$$

• By duality, we get a vector space homomorphism

$$df(P): T_{X,P} \to T_{Y,Q},$$

where df(P) is the differential of the morphism f at the point P.
If X and Y are smooth complex varieties, this corresponds to the usual definition of the differential of a holomorphic map.

Projective Embeddings

Definition (Projective Embedding)

A morphism $f: X \to \mathbb{P}_k^n$ of a projective variety X in \mathbb{P}_k^n is called a **projective embedding** of X if:

- *f* is injective;
- The differential df(P) is injective at every point P of X.
- This terminology is justified by the following result, stated without proof.

Proposition

Let X is a projective variety and $f: X \to \mathbb{P}_k^n$ a projective embedding. Then f(X) is a subvariety of \mathbb{P}_k^n and f induces an isomorphism $f: X \to f(X)$.

Very Ample Divisors

- Let C be a curve.
- Let *D* be a divisor on *C*, such that |D| is a base point free complete linear system.
- Recall the construction of the map $\varphi_D : C \to \mathbb{P}_k^{\ell-1}$ defined by the complete linear system |D|, where $\ell = \ell(D) > 0$.
- Our goal is to determine which divisors give rise to embeddings.

Definition (Very Ample Divisor)

A divisor D on a curve C is called **very ample** if:

- |D| is base point free;
- The map $\varphi_D : C \to \mathbb{P}_k^{\ell-1}$, where $\ell = \ell(D)$, is an embedding.

Characterization of Very Ample Divisors

Proposition

For a divisor D on a curve C the following are equivalent:

- (1) D is very ample.
- (2) For any points $P, Q \in C$ (including P = Q),

 $\dim |D - P - Q| = \dim |D| - 2.$

 $(2)\Rightarrow(1)$: First note that, for any divisor D, and any points P and Q on C, we have

$$\dim |D - P - Q| \le \dim |D| - 2.$$

To prove this, one applies the same argument that was used in the proof of a previous lemma to show that, for an effective divisor D, $\ell(D) \leq \deg D + 1$.

George Voutsadakis (LSSU)

Characterization of Very Ample Divisors (Cont'd)

• By the same argument, it also follows that,

$$dim|D - P - Q| = dim|D| - 2, \text{ for all } P \text{ and } Q,$$

implies $dim|D - P| = dim|D| - 1, \text{ for all } P.$

Equivalently, |D| cannot have a base point.

It remains to show that, under the hypothesis, φ_D is an embedding. Let *P* and *Q* be any two distinct points on *C*. Since $|D - P - Q| \neq |D - P|$, there is a function $f \in L(D)$, such that:

- *P* lies in the support of the effective divisor $D_f = D + (f)$;
- Q does not lie in the support of $D_f = D + (f)$.

We can extend f to a basis $f = f_0, \ldots, f_{\ell-1}$ of L(D). With this choice of basis:

- The first coordinate of $\varphi_D(P)$ equals 0;
- The first coordinate of $\varphi_D(Q)$ is not 0.

In particular, $\varphi_D(P) \neq \varphi_D(Q)$.

Thus, φ_D is injective.

Characterization of Very Ample Divisors (Cont'd)

• By the preceding proposition, it suffices now to show that the differential df(P) is injective at a point P.

We must, in turn, show that there is a function $f \in L(D)$, such that:

•
$$(f) + D - P \ge 0;$$

• (f) + D - 2P is not effective.

That is, f vanishes at P, but not to second order.

Suppose, this has been shown.

Consider a basis $f = f_0, \ldots, f_{\ell-1}$ for L(D).

Then, locally, $\varphi_D^*(x_0) = f_0 \in m_P$, but $\varphi_D^*(x_0) \notin m_P^2$.

I.e., the map between the duals of the tangent spaces is surjective. Thus, the differential is injective.

For the existence of the required function, note that, by hypothesis (taking P = Q), $|D - P| \neq |D - 2P|$.

The existence of f is equivalent to this statement.

Characterization of Very Ample Divisors (Converse)

(1) \Rightarrow (2): Assume that the linear system |D| is base point free and the map $\varphi_D : D \to \mathbb{P}_k^{\ell-1}$ is an embedding. Let P, Q be two distinct points of C. By assumption, $\varphi_D(P) \neq \varphi_D(Q)$. After a transformation of coordinates, we can assume that

$$\varphi_D(P) = (1:0:...:0)$$
 and $\varphi_D(Q) = (0:1:...:0)$.

Then $\varphi_D^*(x_0)$ defines an effective divisor in |D|, but not in |D - P|. I.e.,

$$\dim |D - P| = \dim |D| - 1.$$

Further, $\varphi_D^*(x_1) \in |D - P| \setminus |D - P - Q|$. Hence, for $P \neq Q$,

$$\dim |D - P - Q| = \dim |D| - 2.$$

Characterization of Very Ample Divisors (Converse Cont'd)

- Now we deal with the case P = Q.
 We may assume that:
 - $\varphi_D(P) = (1:0:...:0);$
 - The tangent to φ_D(C) at P is spanned by the line through (1:0:...:0) and (0:1:...:0).
 - The hyperplane $\{x_1 = 0\}$:
 - Contains the point $\varphi_D(P) = (1:0:\ldots:0);$
 - Meets the tangent to $\varphi_D(C)$ at this point transversally.
 - So $\varphi_D^*(x_1) \in |D P| \setminus |D 2P|$.

Thus, $\dim |D - 2P| = \dim |D| - 2$.

- The classical language for φ_D :
 - Being injective is that the linear system |D| "separates points";
 - Having an injective differential is that the linear system |D| "separates tangents".

Very Ample Divisors and Genus

Proposition

Let C be a smooth projective curve of genus g. Let D be a divisor of degree d on C.

- (1) If $d \ge 2g$, then |D| is base point free.
- (2) If $d \ge 2g + 1$, then |D| is very ample.
- We know that degK = 2g 2 and, by hypothesis, d ≥ 2g.
 So the divisors K D and K (D P) have negative degree.
 By Riemann's Theorem, l(D) = 1 + d g and l(D P) = d g = l(D) 1.

So |D| is base point free.

(2) Since $d \ge 2g + 1$, for points $P, Q \in C$, $\deg(K - (D - P - Q)) < 0$. By Riemann's Theorem, $\ell(D - P - Q) = 1 + d - g - 2 = \ell(D) - 2$. So the result follows from the preceding proposition.

George Voutsadakis (LSSU)

Algebraic Geometry

Non-Constant Morphisms Between Projective Curves

Proposition

Let $f: C \to C'$ be a nonconstant morphism between two projective curves. If C' is nonsingular, then f is surjective.

• Suppose f is nonconstant and $f(C) \neq C'$. Choose a point $P \in C'$ which is not in the image of C. If we can show that $C' \setminus \{P\}$ is affine, then, we have a contradiction to the fact that every regular function on C is constant. Let g be the genus of C'. Consider the divisor D = (2g + 1)P. It satisfies the hypothesis of the preceding proposition. Hence, D defines an embedding $\varphi_D : C' \to \mathbb{P}_{k}^{g+1}$. By construction of φ_D , there is a hyperplane *H*, with $C \cap H = \{P\}$ (*H* touches the curve $\varphi_D(C')$ at the point $\varphi_D(P)$ with order 2g+1). This shows that $C' \setminus \{P\}$ is affine.

The Canonical Linear System |K| on C

Lemma

Let C be a smooth projective curve of genus $g \ge 2$. Then |K| is base point free.

By definition we have ℓ(K) = g.
 We must show that, for every point P ∈ C, ℓ(K − P) = g − 1.
 By the Riemann-Roch Theorem, we have

$$\ell(K-P)-\ell(P)=g-2.$$

Since *P* is effective, we have $\ell(P) \ge 1$. On the other hand, since $g \ge 2$, the curve *C* is not rational. By a previous lemma, $\ell(P) = 1$. Thus, $\ell(K - P) = g - 1$.

Hyperelliptic Curves

Definition

A smooth projective curve C is called **hyperelliptic** if:

• $g(C) \ge 2;$

• There exists a surjective morphism

$$C \to \mathbb{P}^1_k$$

of degree 2.

Smooth Projective Curves of Genus ≥ 2

Proposition

If C is a smooth projective curve of genus $g \ge 2$, then either |K| is very ample or C is hyperelliptic.

• By the Riemann-Roch Theorem,

$$\ell(K-P-Q)-\ell(P+Q)=g-3.$$

Suppose, first, that, for all p and Q, ℓ(P+Q) = 1. Then it follows that ℓ(K - P - Q) = g - 2. By a previous proposition, |K| is very ample.
Suppose, next, ℓ(P+Q) = 2, for some points P and Q. Since C is not rational, a previous lemma implies that any divisor D on C of degree 1 has ℓ(D) ≤ 1. So the linear system |P+Q| is base point free. Hence, it defines a degree two map φ_{P+Q}: C → ℙ¹_k. So C is hyperelliptic.

The Canonical Embedding

Definition (Canonical Embedding)

If |K| is very ample, then

$$\varphi_K: C \to \mathbb{P}_k^{g-1}$$

is called the **canonical embedding** of *C*. Moreover, $\varphi_K(C)$ is called the **canonical model** of *C*.

• We show (using several results about secant varieties and tangent varieties, stated without proofs) that every projective smooth curve C can be embedded in \mathbb{P}^3_k .

Projection from a Point

- We considered the projection from a point $P \in \mathbb{P}_k^n$.
- Choose a hyperplane \mathbb{P}_{k}^{n-1} not containing *P*.
- The projection from P onto \mathbb{P}_k^{n-1} is given by the map

$$\pi_P: \mathbb{P}_k^n \backslash \{P\} \to \mathbb{P}_k^{n-1}$$

which takes a point $Q \neq P$ to the intersection of the line \overline{PQ} with the hyperplane \mathbb{P}_{k}^{n-1} .

 Two different choices of hyperplanes give maps differing only by a projective transformation.

Projection from a Point (Cont'd)

• Take coordinates for \mathbb{P}_k^n so that:

•
$$P = (1:0:...:0);$$

• $\mathbb{P}_k^{n-1} = \{x_0 = 0\}.$

• Then π_P is given by

$$\pi_P(x_0:x_1:\ldots:x_n)=(x_1:\ldots:x_n).$$

- For a curve $C \subseteq \mathbb{P}_k^n$, with $P \notin C$, by restricting π_P to C we obtain a projection $\pi_P : C \to \mathbb{P}_k^{n-1}$ from P.
- In terms of linear systems, this map is defined by the linear system

$$\vartheta = \{H \cap C : P \in H\} \cong \mathbb{P}_k^{n-1}.$$

Secant of a Curve

- We determine when the projection $\pi_P: C \to \mathbb{P}_{L}^{n-1}$ is an embedding.
- We find a sequence of embeddings.
- In the end we will end up with C embedding in \mathbb{P}^3_k .

Definition (Secant)

If Q and R are two distinct points of C, then the line

QR

is called a **secant** of *C*.

Secant Variety of a Curve

- If the point P lies on \overline{QR} then clearly $\pi_P(Q) = \pi_P(R)$.
- So the projection $\pi_P: C \to \mathbb{P}_k^{n-1}$ is not injective.
- For π_P to be an embedding we must choose P not lying on any secant of C.
- This leads to the concept of a secant variety.
- As a set, it is the union of the secants and tangents of C.
- To give a definition from which it is clear that the secant variety is a variety, we must introduce *Grassmannian varieties*.

Grassmannain Varieties

Definition (Grassmannian Variety)

The **Grassmannian variety** of lines in \mathbb{P}_k^n is given by

 $\operatorname{Gr}(1,n) := \{L : L \text{ is a line in } \mathbb{P}_{k}^{n}\}.$

- The Grassmannian $Gr(1, n) \subseteq \mathbb{P}$ can be identified with the subset of $(\bigwedge^2 k^{n+1})$ of tensors of the form $v \land w$.
- In fact, Gr(1, n) is a (smooth) projective variety defined by quadratic equations.

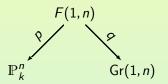
Flag Variety

The set

$$F(1,n) := \{ (P,L) \in \mathbb{P}_k^n \times \operatorname{Gr}(1,n) : P \in L \}$$

is called a flag variety.

- F(1, n) is also a smooth projective variety.
- By definition, $F(1, n) \subseteq \mathbb{P}_k^n \times \operatorname{Gr}(1, n)$.
- So we have projection maps p and q,



• The fibers of the projection q are isomorphic to \mathbb{P}^1_k .

The Mappings *t* and *s*

• We define a map from the curve C to the Grassmannian,

$$\begin{array}{rccc} t: & C & \to & \operatorname{Gr}(1,n); \\ & Q & \mapsto & T_QC. \end{array}$$

t associates to a point Q ∈ C the tangent to C at the point Q.
We define a map s from C × C to the Grassmannian,

$$s: C \times C \rightarrow Gr(1, n);$$

$$s(Q, R) \mapsto \begin{cases} \overline{QR}, & \text{if } Q \neq R, \\ T_QC, & \text{if } Q = R. \end{cases}$$

• Both *t* and *s* are morphisms of projective varieties.

The Tangent Surface and the Secant Variety

Definition (Tangent Surface)

The tangent surface of C is defined by

$$TanC := p(q^{-1}(t(C))).$$

Definition (Secant Variety)

The secant variety of a curve C is defined by

$$\operatorname{Sec} C := p(q^{-1}(s(C \times C))).$$

• As sets:

- TanC is the union of the tangents to the curve C;
- SecC is the union of the secants and tangents of C.

• We have $C \subseteq \operatorname{Tan} C \subseteq \operatorname{Sec} C$.

Dimensions of Tan C and Sec C

- Tan C is defined as the image of the projective variety $q^{-1}(t(C))$ under the morphism p.
- So it can be shown that Tan C is a projective variety in \mathbb{P}_{k}^{n} .
- *C* is a curve and *q* is a dominant morphism with one-dimensional fibers.
- We use the fact that for a dominant morphism of projective varieties, the dimension of the image plus the dimension of the general fiber equals the dimension of the domain.
- We conclude that $q^{-1}(t(C))$ has dimension ≤ 2 .
- Thus, dimTan $C \leq 2$.
- In fact, we always have dimTanC = 2, unless C is a line.
- Similarly, SecC is a projective variety with dimSec $C \le 3$.

Characterization of π_P Being an Embedding

Proposition

The projection $\pi_P: C \to \mathbb{P}_k^{n-1}$ of a curve *C* from a point $P \notin C$ is an embedding if and only if:

- (1) P lies on no secant of C;
- (2) P lies on no tangent of C.

• As discussed above, the map π_P is given by the linear system

 $\vartheta = \{H \cap C : P \in H\} \cong \mathbb{P}_k^{n-1}.$

Since $P \notin C$, this is a base point free linear system.

Characterization of π_P Being an Embedding (Cont'd)

• We point out the following properties about the base point free linear system ϑ .

It separates points (i.e., φ_{ϑ} is injective) if and only if, for any two points $Q \neq R$ of C, there is a hyperplane H through P, such that:

- H contains Q;
- *H* does not contain *R*.

This is equivalent to saying that P does not lie on the secant \overline{QR} .

The linear system separates tangents at a point $R \in C$ if and only if there is a hyperplane H through P and R which intersects the tangent T_RC transversally, i.e., $T_RC \nsubseteq H$.

This is the case if and only if P does not lie on the tangent T_RC .

Embeddability of Smooth Projective Curves in \mathbb{P}^3_k

Corollary

Every smooth projective curve C can be embedded in \mathbb{P}^3_k .

Let g = g(C) be the genus of the curve C.
 Let D be a divisor of degree d = 2g + 1.
 By a preceding proposition,

$$\varphi_D: C \to \mathbb{P}_k^{g+1}$$

is an embedding.

- If $g \leq 2$, then there is no more to prove.
- Suppose g ≥ 3. Since dimSecC ≤ 3, there is a point P ∉ SecC. By the proposition. the projection from P gives an embedding

$$C \to \mathbb{P}^g_k.$$

We can continue to project from points $P \notin \text{Sec}C$ in this way. In the end, we obtain an embedding in \mathbb{P}^3_k .

George Voutsadakis (LSSU)

Algebraic Geometry