
Introduction to Algebraic Number Theory

George Voutsadakis1

1Mathematics and Computer Science

Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 1 / 52



Outline

1 Unique Factorization in the Natural Numbers
The Natural Numbers
Euclid’s Algorithm
The Fundamental Theorem of Arithmetic
The Gaussian Integers
Another Application of the Gaussian Integers

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 2 / 52



Unique Factorization in the Natural Numbers The Natural Numbers

Subsection 1

The Natural Numbers
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Unique Factorization in the Natural Numbers The Natural Numbers

Divisibility, Factors and Multiples

We take the natural numbers to be N= {1,2,3, . . .}.

Definition

Let a and b be integers. Then b divides a, or b is a factor or divisor of a,
if

a= bc , for some integer c .

Write b | a to mean that b divides a and b ∤ a to mean that b does not
divide a. When b divides a, we also say that a is a multiple of b.

If b | a, then −b | a.
So the non-zero divisors of an integer occur naturally in pairs.

Clearly, if b 6= 0, then b | a means that the remainder when a is divided
by b is 0.
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Unique Factorization in the Natural Numbers The Natural Numbers

Example

We have 323= 17×19.

So 17 | 323.
On the other hand, 17 ∤ 324.

For all a ∈Z, we have:

1 | a (since a= 1 ·a);
a | a (since a= a ·1);
a | 0 (since 0= a ·0).

Notice that 0 ∤ a, if a 6= 0.
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Unique Factorization in the Natural Numbers The Natural Numbers

Prime Numbers

Definition

A prime number is a natural number p > 1 which is not divisible by any
natural number other than 1 and p itself.
A composite number is a natural number n 6= 1 which is divisible by
natural numbers other than 1 and itself.
1 is neither prime nor composite.

Example: 37 is prime

39= 3×13 is composite.
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Unique Factorization in the Natural Numbers The Natural Numbers

Euclid’s Theorem

Theorem (Euclid)

There are infinitely many prime numbers.

Suppose that there are only finitely many primes, p1,p2, . . . ,pn.

Define
N = p1p2 · · ·pn+1.

Suppose that p is a prime factor of N.

N is 1 more than a multiple of each pi .

So none of the primes p1, . . . ,pn is a factor of N.

Hence, p is not one of the primes p1, . . . ,pn.

So we have found another prime.

This contradicts our assumption that p1, . . . ,pn are all the primes.

So there must be infinitely many primes.
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

Subsection 2

Euclid’s Algorithm
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

Introducing Highest Common Factors

Suppose integers a and b are both multiples of another integer c ,

c | a and c | b.

Then c is a common factor of a and b.

Example: 8 and 36 have common factors ±1, ±2 and ±4.

The highest common factor is the largest of the common factors.

Example: The highest common factor of 8 and 36 is 4.

Unless both a and b are zero, there will be a highest common factor of
a and b.

This is denoted by (a,b).

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 9 / 52



Unique Factorization in the Natural Numbers Euclid’s Algorithm

Highest Common Factor

Definition

The integer h= (a,b) is a highest common factor (or greatest common

divisor) of given integers a,b if:

1. h | a and h | b (so h is a common factor of a and b);

2. if c | a and c | b, then c ≤ h (if c is a common factor of a and b, then c

is at most h).

Clearly (a,b)= (b,a).

Moreover, when b is non-zero,

(0,b)= (b,b)= |b|.
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

Relative Prime Integers

Definition

Let a and b be integers. Say that a and b are coprime (or relatively

prime) if
(a,b)= 1,

i.e., a and b have no common factor except (±)1.

Example: The numbers 10 and 21 are coprime.
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

The Division Algorithm

An integer a can always be divided by a positive integer b to give a
unique quotient q and a unique remainder r in the range 0≤ r < b:

a= qb+ r , 0≤ r < b.

The quotient and remainder are always assumed to be integers.

Example: We have:

78= 8(9)+6;
−78=−9(9)+3.

The simple process of finding a quotient and remainder is known as
the division algorithm.
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

Division Algorithm and Greatest Common Divisors

Lemma

Suppose that a= qb+ r . Then (a,b)= (b,r).

Suppose that d divides a and b.

Since r = a−qb, we also have d | r .
Thus, every common divisor of a and b also divides r .

In particular, (a,b) divides r .

Since it also divides b, (a,b) is a common factor of b and r .

So (a,b)≤ (b,r), as (b,r) is the highest common factor of b and r .

Conversely, any common divisor of b and r also divides a= qb+ r .

In particular, (b,r) divides a.

As in the first paragraph, we conclude that (b,r)≤ (a,b).

Combining these inequalities, we see that (a,b)= (b,r).
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

Euclid’s Algorithm

Repeatedly applying the division algorithm gives Euclid’s algorithm,
which computes highest common factors very efficiently.
Example: We find the highest common factor of 630 and 132.

By the division algorithm, 630= 4×132+102.
By the lemma, (630,132)= (132,102).
By the division algorithm, 132= 1×102+30.
By the lemma, (132,102)= (102,30).
By the division algorithm, 102= 3×30+12.
By the lemma, (102,30)= (30,12).
By the division algorithm, 30= 2×12+6.
By the lemma, (30,12)= (12,6).
Finally, the division algorithm gives 12= 2×6+0.
By the lemma (12,6)= (6,0).

The highest common factor of 0 and b is just |b|. So (6,0)= 6.

We conclude that

(630,132)= (132,102)= (102,30)= (30,12)= (12,6)= (6,0)= 6.
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

Euclid’s Algorithm (Cont’d)

Usually, we write the equations in tabular form:

630 = 4×132+102

132 = 1×102+30

102 = 3×30+12

30 = 2×12+6

12 = 2×6+0.

The highest common factor is the last non-zero remainder.
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

Euclid’s Algorithm (Cont’d)

By running the algorithm backwards, we can write the highest
common factor as the sum of a multiple of 630 and a multiple of 132:

6 = 30−2×12

= 30−2× (102−3×30)

= 7×30−2×102

= 7× (132−1×102)−2×102

= 7×132−9×102

= 7×132−9× (630−4×132)

= 43×132−9×630.

Thus the highest common factor of 630 and 132 has been written in
the form 630s +132t, for certain integers s and t.
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

Euclid’s Algorithm and Greatest Common Divisor

Theorem

Let a,b ∈Z, with b 6= 0. Then there exist s ,t ∈Z, such that

(a,b)= sa+ tb.

By virtually the same argument as in the preceding example.
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

Characterization of Coprimality

Recall that integers a and b are said to be coprime or relatively prime

if their highest common factor (a,b) is 1.

Corollary

Let a,b ∈Z. Then a and b are coprime if and only if there exist integers s
and t, such that

sa+ tb = 1.

Suppose a and b are coprime.

We have (a,b)= 1.

So there exist integers s and t, such that sa+ tb = 1.

Conversely, suppose there exist s and t, such that sa+ tb = 1.

A common factor of a and b will divide sa+ tb.

So it will divide 1.

This implies that a and b are coprime.
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

Dividing out the Greatest Common Divisor

We can use this result to prove several elementary properties of the
highest common factor.

Corollary

Let a,b ∈Z, not both zero. If h= (a,b), then a
h

and b
h

are coprime.

By Euclid’s algorithm, there exist integers s and t, such that

sa+ tb = (a,b)= h.

So we get

s
a

h
+ t

b

h
= 1.

Thus, a
h

and b
h

are coprime.
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

Coprimes and Products I

Lemma

Suppose that (a,bc)= 1. Then (a,b)= 1 and (a,c)= 1.

Suppose a and bc are coprime.

Then, there are integers s and t, such that

sa+ tbc = 1.

But then
sa+ (tc)b = 1.

Put m= tc , so that there are integers s and m, with

sa+mb = 1.

It follows that a and b must be coprime.

Similarly, a and c are coprime, using the bracketing sa+ (tb)c = 1.
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

Coprimes and Products II

Lemma

Suppose that (a,b)= 1 and (a,c)= 1. Then (a,bc)= 1.

If (a,b)= 1, then there are integers s and t so that sa+ tb = 1.

If (a,c)= 1, then there are integers p and q so that pa+qc = 1.

Rearrange these:
tb = 1− sa, qc = 1−pa.

Then multiply:

(tq)bc = 1− sa−pa+ spa2 = 1− (s +p− spa)a.

Set m= s +p− spa and n= tq.

This gives ma+nbc = 1.

Hence a and bc are coprime.
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Unique Factorization in the Natural Numbers Euclid’s Algorithm

Coprimes and Divisibility

The last consequence of the characterization of coprimes is very
important.

Lemma

Suppose that a | bc and (a,b)= 1. Then a | c .

Suppose (a,b)= 1.

Then there exist integers s and t, such that

sa+ tb = 1.

Multiply this equation by c to get

sac + tbc = c .

Notice that a clearly divides sac .

The hypothesis that a | bc implies that a divides the left-hand side.

Since it is equal to c , we get that a | c .
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Unique Factorization in the Natural Numbers The Fundamental Theorem of Arithmetic

Subsection 3

The Fundamental Theorem of Arithmetic
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Unique Factorization in the Natural Numbers The Fundamental Theorem of Arithmetic

Products Divisible by a Prime

Lemma

Suppose that p | ab, where a,b ∈Z, and p is prime. Then either p | a or
p | b.

If p | a, we are done. If p ∤ a, we need to show that p | b.

Suppose p ∤ a.

Any common divisor of a and p must divide p.

But the only divisors of p are 1 and p.

Since p ∤ a, the only possible common divisor is 1.

We conclude that (a,p)= 1.

Now we can write sa+ tp = 1, for some integers s and t.

Multiply by b to get sab+ tpb = b.

As p | ab, it divides the left-hand side. So p | b.
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Unique Factorization in the Natural Numbers The Fundamental Theorem of Arithmetic

Generalized Products Divisible by a Prime

Corollary

Suppose that p | a1a2 · · ·an. Then p | ai , for some i = 1, . . . ,n.

By repeated application of the preceding lemma.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 25 / 52



Unique Factorization in the Natural Numbers The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic

Theorem (Fundamental Theorem of Arithmetic)

Every integer n greater than 1 can be expressed uniquely (apart from the
order of factors) as a product of primes.

Suppose there is an integer n with two different factorizations.

Divide out any primes occurring in both factorizations.

We, thus, get an equality of the form

p1p2 · · ·pr = q1q2 · · ·qs ,

where the factors pi and qj are all primes, not necessarily all distinct,
but where no prime on the left also occurs on the right.
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Unique Factorization in the Natural Numbers The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic (Cont’d)

But p1 divides the left-hand side and therefore the right-hand side.

So
p1 | q1 · · ·qs .

By the preceding corollary, p1 must divide one of the qj .

Now the only divisors of the prime qj are 1 and qj itself.

Therefore, p1 must be identical with one of the qj .

This contradicts the hypothesis that no prime occurs on both sides of
the equality.
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Unique Factorization in the Natural Numbers The Fundamental Theorem of Arithmetic

Prime Factorization: Examples

Each integer n> 1 can be written uniquely in the form

n = p
n1

1
p
n2

2
. . .p

nk
k

,

where:

p1,p2, . . . ,pk are primes, with p1 < p2 < ·· · < pk ;
n1,n2, . . . ,nk are natural numbers.

Example: We have

360 = 23 ·32 ·5;
4725 = 33 ·52 ·7;

714420 = 22 ·36 ·5 ·72.
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Unique Factorization in the Natural Numbers The Gaussian Integers

Subsection 4

The Gaussian Integers
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Unique Factorization in the Natural Numbers The Gaussian Integers

The Gaussian Integers

Fermat asked which natural numbers could be written as the sum of
two squares.

Given a natural number n, we ask whether there are integers a and b

so that n= a2+b2.

Factorize the right side as a product of the two complex numbers
a+ ib and a− ib.

We are working in
Z [i ]= {x + iy : x ,y ∈Z}.

We ask how the number n factorizes in the larger set Z[i ].

Elements of the set Z[i ] are known as Gaussian integers.

We define the norm of x + iy

N(x + iy)= |x + iy |2 = (x + iy)(x + iy)= (x + iy)(x − iy)= x2+y2
.
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Unique Factorization in the Natural Numbers The Gaussian Integers

Closure Under Product for Sum of Squares

Lemma

Suppose that n1 and n2 can be written as the sum of two squares. Then
their product n1n2 is also the sum of two squares.

Suppose that n1 = a2+b2 and that n2 = c2+d2.

Equivalently,

n1 = N(a+ ib)= (a+ ib)(a+ ib);

n2 = N(c + id)= (c + id)(c + id).

Multiplication of complex numbers is commutative.

So we get
|zw |2 = zwzw = zzww = |z |2|w |2.
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Unique Factorization in the Natural Numbers The Gaussian Integers

Closure Under Product for Sum of Squares (Cont’d)

We showed that
N(zw)=N(z)N(w).

In particular, we have

N((a+ ib)(c + id))=N(a+ ib)N(c + id)= n1n2.

Moreover,

N((a+ ib)(c+ id))=N((ac−bd)+ i(ad+bc))= (ac−bd)2+(ad+bc)2.

Combining these gives

n1n2 = (a2+b2)(c2+d2)= (ac −bd)2+ (ad +bc)2.
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Unique Factorization in the Natural Numbers The Gaussian Integers

Necessary Condition for Being Sum of Two Squares

The lemma suggests that we should start by working out the prime
numbers p which can be written as the sum of two squares.

Clearly, p = 3 cannot be written as the sum of two squares.

Square numbers give a remainder which is 0 or 1 modulo 4.

So the only possible sums of two squares are

0+0, 0+1, 1+1 mod 4.

No number which is 3 (mod 4) can be written as a sum of two
squares.

We next show in order:

A Euclidean Algorithm for Gaussian Integers;
A divisibility property of products of Gaussian Integers;
Every prime p ≡ 1 (mod 4) can be written as a sum of two squares.
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Unique Factorization in the Natural Numbers The Gaussian Integers

Euclidean Algorithm for Gaussian Integers

Lemma

Let α,β ∈Z[i ], with β 6= 0. Then there exist Gaussian integers κ and ρ,
such that

α= κβ+ρ, N(ρ)<N(β).

We start by finding κ ∈Z[i ], with |αβ −κ| < 1.

Take the quotient α
β
= x + iy ∈C.

Choose integers m and n, such that

|x −m| ≤
1

2
, |y −n| ≤

1

2
.

Write κ=m+ in ∈Z[i ] and ρ =α−κβ.

This makes κ the closest point of Z[i ] to α
β .
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Unique Factorization in the Natural Numbers The Gaussian Integers

Euclidean Algorithm for Gaussian Integers (Cont’d)

Now we have
∣

∣

∣

α
β
−κ

∣

∣

∣ = |(x + iy)− (m+ in)|

= |(x −m)+ i(y −n)|

≤
√

(1
2
)2+ (1

2
)2

= 1p
2

.

So,
N(ρ) = |ρ|2

= |α−κβ|2

=
∣

∣

∣

α
β −κ

∣

∣

∣

2
|β|2

≤ 1
2
|β|2

< |β|2

= N(β).
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Unique Factorization in the Natural Numbers The Gaussian Integers

Divisibility Property of Products in Gaussian Integers

Proposition

If π |αβ in Z[i ], for a prime π, then π |α or π |β.

If π |α, we are done. If π ∤α, we need to show that π |β.

Suppose π ∤α.

A common divisor of α and π must divide π.

However, the only divisors of π are 1 and π.

Since π ∤α, the only possible common divisor is 1.

It follows that (α,π)= 1.

Write σα+τπ= 1, for some Gaussian integers σ and τ.

Multiply by β to get σαβ+τπβ=β.

As π |αβ, it divides the left side which equals the right side.

So π |β.
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Unique Factorization in the Natural Numbers The Gaussian Integers

Primes p ≡ 1 (mod 4) as Sums of Two Squares

Theorem

Every prime p ≡ 1 (mod 4) can be written as the sum of two squares.

Since p ≡ 1 (mod 4), we can solve the equation

x2+1≡ 0 (mod p).

Write p = 4k +1. Set x = (2k)!. Then,

(2k)!(2k)! = 1 ·2 · · ·(2k −1)(2k)(2k)(2k −1) · · ·2 ·1
= (−1)2k1 ·2 · · ·(2k −1)(2k)(2k)(2k −1) · · ·2 ·1
= (−1)(−2) · · · (−2k +1)(−2k)(2k)(2k −1) · · ·2 ·1
≡ (p−1)(p−2) · · · (2k +2)(2k +1)(2k)(2k −1) · · ·2 ·1

(mod p)
≡ (p−1)! (mod p)
≡ −1 (mod p). (Wilson’s Theorem)

Thus, x2 ≡−1 (mod p) as required.
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Unique Factorization in the Natural Numbers The Gaussian Integers

Primes p ≡ 1 (mod 4) as Sums of Two Squares (Cont’d)

With this value of x , p | x2+1= (x + i)(x − i) in Z[i ].

Suppose p is prime in Z[i ].

Then we would have p | x + i or p | x − i .

But x±i
p

6∈Z[i ], as neither the real nor imaginary parts are integers.

This gives a contradiction.

So p is not prime, and it therefore factorizes in Z[i ].

Suppose that p factorizes as αβ.

Then N(p)= p2 =N(α)N(β).

We have three possibilities:

1. N(α)= 1,N(β)= p2;
2. N(α)= p,N(β)= p;
3. N(α)= p2,N(β)= 1.
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Unique Factorization in the Natural Numbers The Gaussian Integers

Primes p ≡ 1 (mod 4) as Sums of Two Squares (Cont’d)

1. Suppose that N(α)= 1, with α= a+ ib.

The only solutions to a2+b2 = 1 are a=±1, b = 0 and a= 0, b =±1.

Thus, α=±1 or α=±i .
So β=±p or ±ip.

This does not involve factorizing p.

It only involves writing it in an equivalent way using units.

3. The case N(α)= p2 and N(β)= 1 is similar.

2. Thus, p must factorize as αβ with N(α)=N(β)= p.

If we write α= a+ ib, we get

p =N(α)= a2+b2
.

We have found a representation of p as the sum of two squares.
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Unique Factorization in the Natural Numbers The Gaussian Integers

Integers Expresisble as Sums of Two Squares

The fact that every prime number p ≡ 1 (mod 4) can be written as the
sum of two squares is the key ingredient in the following classification
of those integers which can be written as the sum of two squares.

Theorem

A natural number n can be written as the sum of two squares if and only if
n has prime power factorization

n=
∏

p

pnp ,

where np is even, for all primes p ≡ 3 (mod 4).
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Unique Factorization in the Natural Numbers The Gaussian Integers

Quadratic Residues and the Legendre Symbol

A number a is a quadratic residue modulo p if the equation

x2 ≡ a (mod p)

has two solutions.

A number a is a non-residue if there are no solutions.

The Legendre symbol
(

a
p

)

is defined by

(

a

p

)

=
{

+1, if a is a quadratic residue,
−1, if a is not a quadratic residue.

Legendre symbols have various properties which enable them to be
calculated easily.

We list some in the following slide.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 41 / 52



Unique Factorization in the Natural Numbers The Gaussian Integers

Properties of the Legendre Symbol

Explicit Formula for
(

−1
p

)

:

(−1

p

)

= (−1)
1
2 (p−1)

.

Explicit Formula for
(

2
p

)

:

(

2

p

)

= (−1)
1
8 (p

2−1)
.

Multiplicativity:
(

ab

p

)

=
(

a

p

)(

b

p

)

.

Quadratic Reciprocity: For p, q distinct odd primes,
(

p

q

)(

q

p

)

= (−1)
1
4 (p−1)(q−1)

.
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Unique Factorization in the Natural Numbers The Gaussian Integers

Alternative Solution to x2 ≡−1 (mod p)

We saw that x = (p−1
2
)! gives a solution to x2 ≡−1 (mod p).

A better way uses Legendre symbols.

Recall that, for all a not divisible by p,

a(p−1)/2 ≡±1 (mod p).

By a result of Euler, we have:

a(p−1)/2 ≡
{

+1, if a is a quadratic residue,
−1, if a is not a quadratic residue.

That is, a(p−1)/2 ≡
(

a
p

)

(mod p).
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Unique Factorization in the Natural Numbers The Gaussian Integers

Alternative Solution to x2 ≡−1 (mod p) (Cont’d)

Compute the Legendre symbols
(

a
p

)

for a= 2, a= 3, and so on, until

you find one with
(

a

p

)

=−1.

Using the multiplicativity of the Legendre symbol, we can see that the
smallest such a will be prime.

Then
a(p−1)/2 ≡−1 (mod p).

Recalling that p ≡ 1 (mod 4), we set

x = a(p−1)/4 (mod p).

Then x2 ≡−1 (mod p).
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Unique Factorization in the Natural Numbers The Gaussian Integers

Example

Consider p = 73.

We compute
(

2
73

)

= (−1)
1
8 (73

2−1) = (−1)666 = 1;
(

3
73

)

= (−1)
1
4 (3−1)(73−1)

(

73
3

)

=
(

1
3

)

= 1;
(

5
73

)

= (−1)
1
4 4·72

(

73
5

)

=
(

3
5

)

= (−1)
1
42·4

(

5
3

)

=
(

2
3

)

= (−1)
1
88 = −1.

Now we set x = 518 (mod 73).

We compute this by successively squaring modulo 73:

52 ≡ 25, 54 ≡ 252 ≡ 41, 58 ≡ 412 ≡ 2, 516 ≡ 22 ≡ 4.

Then
518 = 516 ·52 ≡ 4 ·25≡ 27 (mod 73).

So x = 27 gives a solution to x2 ≡−1 (mod 73).
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Subsection 5

Another Application of the Gaussian Integers
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A Diophantine Equation

Equations where only integer solutions are sought are known as
Diophantine equations.

We apply uniqueness of factorization in Z[i ] to find all integer
solutions to

x3 = y2+1.

Remark: This is a special case of Catalan’s conjecture, which
predicts that the only consecutive perfect powers are 8= 23 and
9= 32, proven by Preda Mihăilescu in 2002.
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Factorization in Z[i ]

Some care has to be taken in defining uniqueness of factorization.

In Z[i ], given a factorization

α=βγ,

and u and v in Z[i ] satisfying uv = 1, then we will consider

α= (uβ)(vγ)

as an equivalent factorization.

In Z[i ], the possible values of such units u are ±1 or ±i , exactly those
elements u with N(u)= 1.
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A Diophantine Equation: Some Observations

Suppose that x and y are integers satisfying x3 = y2+1.

Suppose x is even.

Then y2+1≡ 0 (mod 4), which is not possible.

So x is odd. Therefore, y is even.

We make use of the theory of the Gaussian integers and use the word
“prime” rather loosely, assuming that primes in Z[i ] satisfy the same
properties as prime numbers in Z do.

In Z[i ], we can write
x3 = (y + i)(y − i).

We show that any common factor of y + i and y − i must be a unit ±1
or ±i (i.e., y + i and y − i are coprime).
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A Diophantine Equation: y + i and y − i are Coprime

Recall x3 = y2+1= (y + i)(y − i), x odd and y even.

Lemma

Suppose that α | y + i and also α | y − i . Then α is a unit.

Suppose α | y + i , α | y − i , and that α is not a unit.

Then α | ((y + i)− (y − i)). So α is a factor of 2i = (1+ i)2.

Let 1+ i =βγ be a factorization of 1+ i .

It must satisfy N(β)N(γ)=N(1+ i)= 2.

So either N(β)= 1 or N(γ)= 1. Then β or γ is ±1 or ±i , a unit.

So 1+ i is a prime in Z[i ].

Now α | (1+ i)2. Suppose α is not a unit.

Then, by unique factorization in Z[i ], 1+ i |α.

Hence, 1+ i | x3. So 1+ i | x . But then (1+ i)2 | x2. So 2i | x2.

Thus, x2 is even. This contradicts the observation that x is odd.
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A Diophantine Equation: Determining the Solutions

We now know that y + i and y − i are coprime (in the sense that any
common divisor must be a unit).

Suppose π | x and π is a prime (so not a unit).

Then π3 | x3 = (y + i)(y − i).

Now y + i and y − i have no factor in common.

So either π3 | y + i and π ∤ y − i , or vice versa.

In particular,
y + i = uβ3

, y − i = vγ3
,

where u and v are units.

Now the units ±1 and ±i are all already cubes.

So we can absorb them into β and γ.

Therefore, we may assume that, for some integers a and b,

y + i = (a+bi)3.
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Determining the Solutions (Cont’d)

We found y + i = (a+bi)3.

Expanding, we get

y + i = (a3−3ab2)+ i(3a2b−b3).

Equating imaginary parts gives

(3a2−b2)b = 1.

The only way that a product of two integers can give 1 is if both are
1, or both are −1.

If b= 1, there is no possible solution for a (we would need 3a2 = 2).
If b=−1, we see that a= 0 gives the only solution.

It follows that y + i = (−i)3 = i .

So the only solution in integers to the original equation

x3 = y2+1

is when y = 0, which implies that x = 1.
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