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Analytic Methods The Riemann Zeta Function

Subsection 1

The Riemann Zeta Function
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Analytic Methods The Riemann Zeta Function

The Riemann Zeta Function

The zeta function was introduced by Euler as a function on real
numbers s > 1, defined by

ζ(s)=
∞∑

n=1

1

ns
.

Euler computed the values of ζ(2k) (for k ≥ 1), and was aware of the
behavior of the function as s gets closer to 1.

Riemann developed the theory of the zeta function and seems to have
been the first to consider s as a complex variable.

Riemann realized that questions about the distribution of primes are
inextricably linked with the complex behavior of the zeta function.

In particular, with the values it takes to the left of the line Re(s)= 1,
where the definition above no longer converges.
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Analytic Methods The Riemann Zeta Function

The Functional Equation

The zeta function has a meromorphic continuation to the entire
complex plane, with a simple pole at s = 1 (with residue 1).

This continuation has a symmetry, relating the values of ζ at s and at
1− s, known as the functional equation.

Consider the Gamma function

Γ(z)=
∫∞

0
e−ttz−1dt .

Write
ξ(s)=π−s/2

Γ(s/2)ζ(s).

Then
ξ(s)= ξ(1− s).

Using classical formulae for the Gamma function, we get

ζ(s)= 2sπs−1 sin(πs/2)Γ(1− s)ζ(1− s).
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Analytic Methods The Riemann Zeta Function

Behavior of ζ(s) for Real s

Proposition
∑∞

n=1
1
ns converges absolutely for any real s > 1, and is not convergent for

s ≤ 1.

We prove the two statements using the comparison test.

First, consider the case s ≤ 1.

Then 1
ns

≥ 1
n
.

We use grouping of the terms,

∑∞
n=1

1
n = 1+ 1

2
+ (1

3
+ 1

4
)+ (1

5
+·· ·+ 1

8
)+ (1

9
+·· ·+ 1

16
)+·· ·

> 1+ 1
2
+ (1

4
+ 1

4
)+ (1

8
+·· ·+ 1

8
)+ ( 1

16
+·· ·+ 1

16
)+·· ·

= 1+ 1
2
+ 1

2
+ 1

2
+ 1

2
+·· · .

The last sum diverges.

So the sum
∑∞

n=1
1
n

diverges also.
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Analytic Methods The Riemann Zeta Function

Behavior of ζ(s) for Real s (Cont’d)

Next, we treat the case s > 1.

∑∞
n=1

1
ns = 1+ ( 1

2s
+ 1

3s
)+ ( 1

4s
+·· ·+ 1

7s
)+ ( 1

8s
+·· ·+ 1

15s
)+·· ·

< 1+ ( 1
2s

+ 1
2s
)+ ( 1

4s
+·· ·+ 1

4s
)+ ( 1

8s
+·· ·+ 1

8s
)+·· ·

= 1+2 · 1
2s

+4 · 1
4s

+8 · 1
8s

+·· ·
= 1+ 1

2s−1 + 1
4s−1 + 1

8s−1 +·· ·
= 1+ 1

2s−1 + 1
(2s−1)2

+ 1
(2s−1)3

+·· ·

= 1

1− 1
2s−1

.

= 2s−1

2s−1−1
.
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Analytic Methods The Riemann Zeta Function

Estimating ζ(s)

One method to estimate the value of ζ(s)=
∑∞

n=1
1
ns is to compare it

with the integral ∫∞

1

dx

xs
.

We have ∫n+1

n

dx

xs
=

x1−s

1− s

∣∣∣∣
n+1

n

=
n1−s − (n+1)1−s

s −1
.

Moreover, x−s is a decreasing function.

So the area under the graph on this interval of length 1 lies in between
the values of the function at n and at n+1,

1

(n+1)s
<
n1−s − (n+1)1−s

s −1
<

1

ns
.
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Analytic Methods The Riemann Zeta Function

Estimating ζ(s) (Cont’d)

Summing this over n= 1,2,3, . . . gives

∞∑

n=1

1

(n+1)s
<

∞∑

n=1

n1−s − (n+1)1−s

s −1
<

∞∑

n=1

1

ns
.

Equivalently,

ζ(s)−1<
1

s −1
< ζ(s).

Writing this as two inequalities, and rearranging them gives

1

s −1
< ζ(s)<

1

s −1
+1.

This gives the rate at which ζ(s)→∞ as s → 1.
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Analytic Methods The Riemann Zeta Function

Euler Product for ζ(s)

Proposition (Euler Product for ζ(s))

If Re(s)> 1, then

ζ(s)=
∞∑

n=1

1

ns
=

∏

p

(
1−

1

ps

)−1

.

Observe that |p−s | = p−Re(s) < 1. Thus,
(
1−

1

ps

)−1

= 1+
1

ps
+

1

p2s
+

1

p3s
+·· · .

Now multiply all these together:

∏

p

(
1−

1

ps

)−1

=
∏

p

(
1+

1

ps
+

1

p2s
+·· ·

)
= ζ(s),

as every 1
ns

appears exactly once in the product (by uniqueness of
prime factorization).
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Analytic Methods The Riemann Zeta Function

Existence of an Infinity of Primes

We deduce in two ways from the Euler Product that there are
infinitely many prime numbers.

1. We know that ζ(s)=
∏

p

(
1− 1

ps

)−1
→∞ as s → 1.

Each term tends to the finite limit p
p−1 .

So there cannot be only finitely many terms in the product.

2. You may know that ζ(2)=
∑∞
n=1

1
n2 = π2

6 .

Now π2 is irrational.
We have

∏
p
(1−p−2)−1 =

∏
p

p2

p2−1
= ζ(2)=

π2

6
.

So we see that
∏

p(1−p−2)−1 is irrational.
So there cannot be only finitely many terms in the product.
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Analytic Methods The Riemann Zeta Function

Using Logarithms

By the Euler product

ζ(s)=
∏

p

(
1−

1

ps

)−1

.

Recall that, if |z | < 1,

log(1−z)=−
(
z +

z2

2
+
z3

3
+·· ·

)
.

Putting these together

logζ(s) = log
∏

p

(
1− 1

ps

)−1

=
∑

p− log(1−p−s)

=
∑

p

[
p−s + p−2s

2
+ p−3s

3
+·· ·

]

=
∑

p p
−s +

∑
p

[
p−2s

2
+ p−3s

3
+ p−4s

4
+·· ·

]
.
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Analytic Methods The Riemann Zeta Function

Using Logarithms (Cont’d)

Now we have

p−2s

2
+ p−3s

3
+ p−4s

4
+·· · < p−2s

2
+ p−3s

2
+ p−4s

2
+·· ·

= p−2s

2
( 1
1−p−s )

< p−2s .

Moreover, for s > 1, p−s < 2−1 = 1
2
.

So, for s > 1,
logζ(s)≈

∑

p

p−s
.

The error is at most

∑

p
p−2s <

∑

n
n−2s = ζ(2s)< ζ(2).
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Analytic Methods The Riemann Zeta Function

Using Logarithms (Cont’d)

We deduce that, for s > 1 but near 1,

∑

p

p−s ≈ log
1

s −1
.

Note that this proves that
∑

p
1
p diverges.

We, thus, get another proof that there are infinitely many primes.
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Analytic Methods The Functional Equation of the Riemann Zeta Function

Subsection 2

The Functional Equation of the Riemann Zeta Function
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Analytic Methods The Functional Equation of the Riemann Zeta Function

The Function θ

Set
θ(t)=

∑

n∈Z
e−πn

2t2
, t ∈R.

For t 6= 0, the individual terms in the sum converge so fast to 0 that
θ(t) converges for all t 6= 0.

Lemma

For t 6= 0, we have

θ

(
1

t

)
= tθ(t).

Recall that ∫∞

−∞
e−πx

2
dx = 1.

Fix t > 0, and write
f (x)= e−πt

2x2

.
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Analytic Methods The Functional Equation of the Riemann Zeta Function

The Function θ (Cont’d)

Define
F (x)=

∑

n∈Z
f (x +n)=

∑

n∈Z
e−πt

2(x+n)2
.

It converges because the terms tend to 0 very quickly.

By definition,
F (0)= θ(t).

Also, note that F is periodic, with F (x)= F (x +1).

So it will have a Fourier series

F (x)=
∑

m∈Z
ame

2πimx
,

where the coefficients am are computed as follows.
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Analytic Methods The Functional Equation of the Riemann Zeta Function

The Function θ (Cont’d)

am =
∫1
0 F (x)e−2πimxdx

=
∑

n∈Z
∫1
0 f (x +n)e−2πimxdx

=
∑

n∈Z
∫1
0 f (x +n)e−2πim(x+n)dx

=
∫∞
−∞ f (x)e−2πimxdx

=
∫∞
−∞ e−πt

2x2−2πimxdx

=
∫∞
−∞ e−π(tx+i

m
t
)2e−πm

2/t2dx

= e−πm
2/t2

∫∞
−∞ e−π(tx+i

m
t
)2dx

= t−1e−πm
2/t2 ,

by a change of variable y = tx + i m
t
, and using Cauchy’s Theorem to

see that the integral along the real axis is the same as the integral
along the line Im(z)= m

t
.
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Analytic Methods The Functional Equation of the Riemann Zeta Function

The Function θ (Cont’d)

Finally, we get
θ(t) = F (0)

=
∑

m∈Zam

=
∑

m∈Z t−1e−πm
2/t2

= t−1θ
(
1
t

)
.

So the result follows.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 19 / 67



Analytic Methods The Functional Equation of the Riemann Zeta Function

Relation Between θ and ζ

Proposition

For Re(s)> 1, we have

∫∞

0
(θ(t)−1)ts−1dt =π−s/2

Γ

( s
2

)
ζ(s),

where ζ(z) is the usual Gamma function, defined by Γ(z)=
∫∞
0 e−ttz−1dt.

For Re(s)> 1, and from the definition of θ(t), the integral is

2
∫∞
0

∑
n≥1 e

−πn2t2ts−1dt = 2
∑

n≥1

∫∞
0 e−πn

2t2ts−1dt

u=nt= 2
∑

n≥1n
−s ∫∞

0 e−πu
2
us−1du

v=πu2

= 2ζ(s)
∫∞
0 e−v (v

π
)s/2−1 1

2π
dv

= π−s/2
Γ( s

2
)ζ(s).
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Analytic Methods The Functional Equation of the Riemann Zeta Function

The Functional Equation for ξ

Theorem

Suppose that Re(s)> 1. Write

ξ(s)=π−s/2
Γ

( s
2

)
ζ(s).

Then
ξ(s)= ξ(1− s).

We break up the integral defining ξ(s) for Re(s)> 1,

ξ(s)=
∫∞

1
(θ(t)−1)ts−1dt +

∫1

0
(θ(t)−1)ts−1dt.

Then, we make the change of variable u = 1
t in the second integral.
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Analytic Methods The Functional Equation of the Riemann Zeta Function

The Functional Equation for ξ (Cont’d)

Recalling that θ(t)= 1
t
θ

(
1
t

)
, we get

ξ(s) =
∫∞
1 (θ(t)−1)ts−1dt+

∫1
0 (θ(t)−1)ts−1dt

=
∫∞
1 (θ(t)−1)ts−1dt+

∫∞
1 (uθ(u)−1)u−s−1du

=
∫∞
1 (θ(t)−1)ts−1dt+

∫∞
1 θ(u)u−sdu−

∫∞
1 u−s−1du

=
∫∞
1 (θ(t)−1)ts−1dt+

∫∞
1 θ(u)u−sdu− 1

s

=
∫∞
1 (θ(t)−1)ts−1dt+

∫∞
1 (θ(u)−1)u−sdu− 1

s −
1

1−s
=

∫∞
1 (θ(t)−1)[ts−1 + t−s ]dt− 1

s
− 1

1−s .

This integral converges, for all s ∈C, to a holomorphic function.

The final expression being unchanged when s ← 1− s,

ξ(s)= ξ(1− s).

Also ξ has simple poles at s = 0 and s = 1 with residues −1 and +1.
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Analytic Methods The Functional Equation of the Riemann Zeta Function

Properties of the Gamma Function

The Gamma function satisfies the identity

Γ(1−z)Γ(z)=
π

sinπz
, z 6∈Z.

Setting z = s
2
, we get

Γ

(
1−

s

2

)
Γ

( s
2

)
=

π

sin πs
2

.

The Gamma function also satisfies the identity

Γ(z)Γ

(
z +

1

2

)
= 21−2zpπΓ(2z).

Setting z = 1−s
2

, we get

Γ

(
1− s

2

)
Γ

(
1−

s

2

)
= 2s

p
πΓ(1− s).
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Analytic Methods The Functional Equation of the Riemann Zeta Function

The Functional Equation for ζ

Dividing the two equations in s, we get

Γ(1−s
2
)

Γ( s
2
)

=
2s
p
πΓ(1− s)sin πs

2

π
.

By the preceding work, ξ(s) is defined for all s 6= 0,1.

We also have
ξ(s)= ξ(1− s).

Moreover,

ξ(s)=π−s/2
Γ

( s
2

)
ζ(s).

So we can define ζ(s), for all s 6= 0,1.

The theorem then gives a relation, known as the functional

equation, between ζ(s) and ζ(1− s).
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Analytic Methods The Functional Equation of the Riemann Zeta Function

The Functional Equation for ζ (Cont’d)

Using the formulas involving the Gamma function, we now have

ξ(s)= ξ(1− s)

π−s/2
Γ

(
s
2

)
ζ(s)=π−(1−s)/2

Γ
(
1−s
2

)
ζ(1− s)

ζ(s)=
π−(1−s)/2

π−s/2

Γ
(
1−s
2

)

Γ
(
s
2

) ζ(1− s)

ζ(s)=πs− 1
2
2s
p
πΓ(1− s)sin πs

2

π
ζ(1− s)

ζ(s)= 2sπs−1 sin
(
πs
2

)
Γ(1− s)ζ(1− s).
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Analytic Methods Zeta Functions of Number Fields

Subsection 3

Zeta Functions of Number Fields
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Analytic Methods Zeta Functions of Number Fields

The Dedekind Zeta Function

Definition

The Dedekind zeta function of K is given by

ζK (s)=
∑

a

1

NK/Q(a)s
,

where a runs through all distinct non-zero integral ideals of the field K

(i.e., the ideals of ZK ).

Note that when K =Q, we get exactly the Riemann zeta function.

We will see later that the Dedekind zeta function is also convergent
for Re(s)> 1.
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Analytic Methods Zeta Functions of Number Fields

An Euler Product Formula

ζK (s) has an Euler product (valid for Re(s)> 1),

ζK (s)=
∏

p

1

1−NK/Q(p)−s
,

where the product is taken over all of the prime ideals p of ZK .

The proof is identical to that for the Riemann zeta function.

It is equivalent to unique factorization of ideals.
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Analytic Methods Zeta Functions of Number Fields

Properties of ζK (s)

One asks for generalizations of Riemann’s results for ζ(s) to ζK (s).

Dirichlet’s analytic class number formula shows that ζK (s) has a
singularity at s = 1 and computes the limit of (s −1)ζK (s) as s → 1.

In complex variable language, ζK (s) has a simple pole at s = 1, and
Dirichlet’s formula gives the residue.

The formula for the residue involves many of the arithmetic quantities
related to K , such as the class number, the discriminant, the numbers
of real and complex embeddings, and so on.

It is also true that ζK (s) has a meromorphic continuation to the whole
complex plane.

Further, it satisfies a functional equation.
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Analytic Methods The Analytic Class Number Formula

Subsection 4

The Analytic Class Number Formula
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Analytic Methods The Analytic Class Number Formula

Review I

Let K be a number field with:
r1 real embeddings {ρ1, . . . ,ρr1 };
r2 pairs of complex embeddings {σ1,σ1, . . . ,σr2 ,σr2 }.

Then there are r = r1+ r2−1 fundamental units ǫ1, . . . ,ǫr , such that,
every unit ǫ can be written

ǫ= ζǫ
v1

1 · · ·ǫvrr ,

with ζ ∈ µ(K ), the roots of unity in K , and vi ∈Z.

The proof used lattice-theoretic methods (and Minkowski’s Theorem).

Recall, also, that we had a commutative diagram

K× i
✲ K×

R

ℓ
✲ Rr1+r2

Q×
NK/Q

❄

✲ R×
N

❄ ℓ
✲ R

tr
❄

where KR =Rr1 ×Cr2 .
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Analytic Methods The Analytic Class Number Formula

Review II

The proof of Dirichlet’s Unit Theorem worked by showing that the
units Z×

K
⊆K× mapped to a complete lattice in the r -dimensional

subspace H ⊆Rr1+r2 defined by H = {x ∈Rr1+r2 : tr(x)= 0}.

In particular, the image of Z×
K

is an r -dimensional lattice in Rr1+r2 .

If we write λ= ℓ◦ i , the vectors λ(ǫ1), . . . ,λ(ǫr ) are a basis for the
lattice, and so span H.

The analytic class number formula will also involve a term describing
how “widely spaced” the units are in H (in a similar way to how the
discriminant describes how widely spaced the integers ZK are).

Recall that if x ∈ZK ,

λ(x)= (log |ρ1(x)|, . . . , log |ρr1(x)|, log |σ1(x)|2, . . . , log |σr2(x)|
2).

We can measure how widely spaced the units are in H by applying λ

to the fundamental units and taking a determinant.
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Analytic Methods The Analytic Class Number Formula

Regulators

Definition

Let ǫ1, . . . ,ǫr denote a set of fundamental units, where r = r1+ r2−1.
Consider the map λ :K →Rr1+r2 and write

λ(x)= (λ1(x), . . . ,λr1+r2(x)),

so that

λi (x)=
{

log |ρi(x)|, if 1≤ i ≤ r1;
log |σi−r1(x)|2, if i > r1.

Consider the (r +1)× r -matrix whose entries are λi (ǫj).
Define the regulator RK to be the absolute value of the determinant of
any r × r -minor of this matrix.
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Analytic Methods The Analytic Class Number Formula

The Analytic Class Number Formula

Theorem (Analytic Class Number Formula)

Consider again

ζK (s)=
∑

a

1

NK/Q(a)s
,

where a runs through all distinct non-zero integral ideals of the field K .
ζK (s) converges for all Re(s)> 1. It has a simple pole at s = 1, and

lim
s→1

(s −1)ζK (s)=
2r1+r2πr2RK

m|DK |1/2
hK ,

where:

RK is the regulator of K ;

hK is the class number of K ;

m= |µ(K )|, the number of roots of unity in K .
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Analytic Methods The Analytic Class Number Formula

Cones

Our goal is to translate the preceding result into a calculation of
volumes of certain regions in KR

∼=Rn.

Definition

We say that a cone in Rn is a subset X ⊆Rn, such that

x ∈X and λ ∈R>0, imply λx ∈X .

The same definition applies to any real vector space, such as KR.
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Analytic Methods The Analytic Class Number Formula

Functions on Cones

Proposition

Let X be a cone in Rn. Let F :X →R>0 be a function satisfying

F (ξx)= ξnF (x), x ∈X ,ξ ∈R>0.

Suppose that T = {x ∈X : F (x)≤ 1} is bounded, with non-zero volume
v = vol(T ). Let Γ be a lattice in Rn, with ∆= vol(Γ). Consider the function

Z (s)=
∑

Γ∩X

1

F (x)s
.

It converges for Re(s)> 1 and

lim
s→1

(s −1)Z (s)=
v

∆
.
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Analytic Methods The Analytic Class Number Formula

Functions on Cones (Cont’d)

Note that, for all r ∈R>0,

vol

(
1

r
Γ

)
=

∆

rn
.

Suppose N(r) denotes the number of points in 1
r
Γ∩T .

Then

v = vol(T )= lim
r→∞

N(r)
∆

rn
=∆ lim

r→∞

N(r)

rn
.

But N(r) is also the number of points in

{x ∈Γ∩X :F (x)≤ rn},

at least for the nice F we consider.
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Analytic Methods The Analytic Class Number Formula

Functions on Cones (Cont’d)

Order the points of Γ∩X so that

0< F (x1)≤ F (x2)≤ ·· · .

Let
rk = F (xk)

1/n
.

Then, for all ǫ> 0,
N(rk −ǫ)< k ≤N(rk ).

It follows that

N(rk −ǫ)

(rk −ǫ)n

(
rk −ǫ

rk

)n
<

k

rn
k

≤
N(rk)

rn
k

.

Thus, since the two outer terms have the same limit,

lim
rk→∞

k

rn
k

= lim
k→∞

k

F (xk)
=
v

∆
.
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Analytic Methods The Analytic Class Number Formula

Functions on Cones (Cont’d)

We use

lim
rk→∞

k

rn
k

= lim
k→∞

k

F (xk)
=
v

∆

to approximate the terms in the sum Z (s).

Given ǫ> 0, there exists k0, such that for all k ≥ k0, one has

( v
∆
−ǫ

) 1

k
<

1

F (xk)
<

( v
∆
+ǫ

) 1

k
.

Summing,

( v
∆
−ǫ

)s ∞∑

k=k0

1

ks
<

∞∑

k=k0

1

F (xk)s
<

( v
∆
+ǫ

)s ∞∑

k=k0

1

ks
.

We know that the Riemann zeta function converges for Re(s)> 1.

So the same holds for Z (s).
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Functions on Cones (Conclusion)

We also know the residue of ζ(s) at s = 1.

We multiply through by (s −1), and let s tend to 1 from above.

We have
lim
s→1

(s −1)ζ(s)= 1.

We observe that
lim
s→1

(s −1)[a finite sum]= 0.

We conclude that

v

∆
−ǫ≤ lim

s→1
(s −1)Z (s)≤

v

∆
+ǫ.

But this holds for all ǫ> 0.

It follows that
lim
s→1

(s −1)Z (s)=
v

∆
.
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Expression for ζK (s)

Let CK be the set of ideal classes in the class group.

Set

fC (s)=
∑

a∈C

1

NK/Q(a)s
.

Write
ζK (s)=

∑

C∈CK

fC (s),

the sum running over ideal classes in the class group.

We will compute, for each ideal class C ,

lim
s→1

(s −1)fC (s).

We will observe that the result is independent of C .

This accounts for the factor hK in the formula.
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Expression for fC (s)

Choose any integral b in the class C−1, the inverse class.

Then, for all a ∈C , ab is principal, 〈α〉, say.

The association a 7→ 〈α〉 gives a bijection between integral ideals a ∈C ,
and principal ideals 〈α〉 divisible by b (i.e., elements α ∈ b).
It follows that

fC (s)=NK/Q(b)
s

∑

b|〈α〉

1

|NK/Q(α)|s
.

Note that 〈α〉 = 〈α′〉 if and only if α and α′ are associate.

We may therefore assume that α runs over a complete set B of
non-associate members of b.
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Rewriting fC (s)

Let
Γ= i(b)= {x ∈KR : x = i(α), for some α ∈ b}.

Write
Θ= {x ∈KR : x = i(α), for some α ∈B}.

Thus,

fC (s)=NK/Q(b)
s

∑

x∈Θ

1

|N(x)|s
.

We will find a cone X ⊆KR, such that every α ∈B has i(α) associate
to precisely one member of X .

It will follow that
Θ= Γ∩X .

Then, we may apply the preceding proposition with F (x)= |N(x)|.
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Setting Up the Cone

We define the cone X .

Let ǫ1, . . . ,ǫr be fundamental units (where r = r1+ r2−1).

Write
λ= (1, . . . ,1,2, . . . ,2)

be the vector in Rr1+r2 whose components are:

λi = 1, if i ≤ r1 (corresponding to the real components in KR);
λi = 2, if i > r1 (corresponding to the complex embeddings).

The vectors λ(ǫ1), . . . ,λ(ǫr ) span H, as we saw previously.

Thus, the set {λ,λ(ǫ1), . . . ,λ(ǫr )} are a basis for Rr1+r2 .
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Setting Up the Cone (Cont’d)

The set {λ,λ(ǫ1), . . . ,λ(ǫr )} are a basis for Rr1+r2 .

So for all ℓ(x) ∈Rr1+r2 , we can write

ℓ(x)= ξλ+ξ1λ(ǫ1)+·· ·+ξrλ(ǫr ),

for some coefficients ξ,ξi ∈R.

Observe that trλ(ǫi)= 0 (as λ(ǫi ) ∈H).

So
trℓ(x)= ξ · trλ= ξn.

But trℓ(x)= log |N(x)|.
So

ξ=
1

n
log |N(x)|.
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The Cone X

Definition

The cone X ⊆KR will be defined to consist of all x such that:

1. N(x) 6= 0;

2. The coefficients ξi , i = 1, . . . ,r , of ℓ(x) satisfy 0≤ ξi < 1;

3. 0≤ arg(x1)< 2π
m , where x1 is the first component of x .

We show that X is a cone in KR.

I.e., that, if x ∈X and ξ> 0, then ξx ∈X .

N(ξx)= ξnN(x) 6= 0.
ℓ(ξx)= (logξ)λ+ℓ(x).
So the coefficients of λ(ǫi ) are unchanged.
arg(ξx1)= arg(x1).

Thus, if x ∈X , and ξ ∈R>0, then ξx ∈X .
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Property of the Cone X

Lemma

Let y ∈Rn, with N(y) 6= 0. Then y is uniquely of the form

x · i(ǫ), x ∈X , ǫ ∈Z×
K .

One has
ℓ(y)= γλ+γ1λ(ǫ1)+·· ·+γrλ(ǫr ).

Write γi = ki +ξi , with ki ∈Z, ξi ∈ [0,1).

Let
η= ǫ

k1

1 · · ·ǫkrr .

Set
z = y · i(η−1).
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Property of the Cone X (Cont’d)

Suppose arg(z1)=φ.

Write

0≤φ−
2πk

m
<

2π

m
, for some k ∈Z.

Choose ζ ∈µ(K ), such that

τ1(ζ)= e
2πi
m ,

where τ1 gives the first component of the map K 7→KR.

Then
x = y · i(η−1) · i(ζ−k) ∈X .

Clearly then y = x · i(ǫ), for a unit ǫ.

This decomposition is clearly unique from the construction.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 48 / 67



Analytic Methods The Analytic Class Number Formula

Conclusions

It follows that in every class of associate members of ZK , there is a
unique one whose image in Rn lies in X .

Moreover, we have

fC (s)=NK/Q(b)
s

∑

x∈Γ∩X

1

|N(x)|s
.

We can then evaluate the sum as in the previous proposition.
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Volumes

Recall that:

T = {x ∈X : |N(x)| ≤ 1};
v = vol(T );
∆= vol(Γ).

We needed to calculate v and ∆.

For the latter, we already know

∆=NK/Q(b)|DK |1/2.

It merely remains to calculate v .
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Computing vol(T )

Proposition

vol(T ) is given by

v =
2r1+r2πr2RK

m
.

If ǫ ∈Z×
K

, then multiplication by ǫ is volume preserving.

This is simply because the volume form is multiplied by value of the
determinant of the transformation x 7→ x · i(ǫ), which is |NK/Q(ǫ)| = 1.

Put

T̃ =
m−1⋃

k=0

T · i(ζk).

Then T̃ corresponds to the cone X defined only by Conditions 1 and 2
of the preceding definition. It follows that

vol(T̃ )=m ·vol(T ).
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Computing vol(T ) (Cont’d)

Let T denote the set

T = {x ∈ T̃ : xi > 0, for all i = 1, . . . ,r1}.

It follows that

vol(T )=
2r1

m
vol(T ).

Thus it suffices to calculate vol(T ).

We make several changes of variables, before computing the volume.

Firstly, we consider the isomorphism

KR → Rn;
(x1, . . . ,xr1 ,z1, . . . ,zr2) 7→ (x1, . . . ,xr1 ,R1,φ1, . . . ,Rr2 ,φr2),

where
zk =Rke

iφk .
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Computing vol(T ) (Cont’d)

Then

ℓ(x1, . . . ,xr1 ,z1, . . . ,zr2)= (logx1, . . . , logxr1 , logR2
1 , . . . , logR2

r2
).

The Jacobian of this change of variables is R1 · · ·Rr2 .

Then T is given by:

1. x1 > 0, . . . ,xr1 > 0, R1 > 0, . . . ,Rr2 > 0 and x1 · · ·xr1(R1 · · ·Rr2)
2 ≤ 1.

Note that the last quantity is N(x).
2. In the formula giving the j-th component of ℓ(x),

ℓ(x)= ξλ+ξ1λ(ǫ1)+·· ·+ξrλ(ǫr ),

one has 0≤ ξk < 1.
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Computing vol(T ) (Cont’d)

The φ1, . . . ,φr2 independently take values in [0,2π).

We replace the variables x1, . . . ,xr1 ,R1, . . . ,Rr2 by ξ,ξ1, . . . ,ξr , got from
the formula ℓ(x)= ξλ+ξ1λ(ǫ1)+·· ·+ξrλ(ǫr ), so that ξ=N(x).

Now the image of T is given simply by 0< ξ≤ 1,0≤ ξk < 1, for all k .

We need to compute the Jacobian of this change of variable.

Considering the j-th components, we get

logxj = 1
n
logξ+

∑r
k=1

ξkλj(ǫk);

logR2
j

= 2
n logξ+

∑r
k=1

ξkλr1+j(ǫk).

We can read off

∂xj

∂ξ
=

xj

nξ
;

∂xj

∂ξk
= xjλj(ǫk);

∂Rj

∂ξ
=
Rj

nξ
;

∂Rj

∂ξk
=
Rj

2
λr1+j(ǫk).
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Computing vol(T ) (The Jacobean)

The Jacobian of this change of variables is given by

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1
nξ

x1λ1(ǫ1) · · · x1λ1(ǫr )

.

.

.

.

.

.
. . .

.

.

.
xr1
nξ

xr1λr1(ǫ1) · · · x1λr1(ǫr )
R1
nξ

R1
2 λr1+1(ǫ1) · · · R1

2 λr1+1(ǫr )

.

.

.

.

.

.
. . .

.

.

.

Rr2
nξ

Rr2
2 λr1+r2(ǫ1) · · ·

Rr2
2 λr1+r2(ǫr )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
x1···xr1R1···Rr2

2r2nξ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ1(ǫ1) · · · λ1(ǫr )
.
.
.

.

.

.
. . .

.

.

.

1 λr1(ǫ1) · · · λr1(ǫr )
2 λr1+1(ǫ1) · · · λr1+1(ǫr )
.
.
.

.

.

.
. . .

.

.

.

2 λr1+r2(ǫ1) · · · λr1+r2(ǫr )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Computing vol(T ) (The Jacobean Cont’d)

One adds all rows to the top one to get

J =
x1 · · ·xr1R1 · · ·Rr2

2r2nξ

∣∣∣∣∣∣∣∣∣∣

n 0 · · · 0

· λ2(ǫ1) · · · λ2(ǫr )
.
.
.

.

.

.
. . .

.

.

.

· λr1+r2(ǫ1) · · · λr1+r2(ǫr )

∣∣∣∣∣∣∣∣∣∣

.

Expanding along the top row, we see that this determinant is exactly
nRK , where RK denotes the regulator.

Recall that ξ= x1 · · ·xr1(R1 · · ·Rr2)
2.

It follows that

|J | =
RK

2r2R1 · · ·Rr2

.
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Computing vol(T ) (Conclusion)

We can now deduce the result:

vol(T ) = 2r2volR(T )

= 2r2
∫
T
dx1 · · ·dxr1dyr1+1dzr1+1 · · ·dyr1+r2dzr1+r2

= 2r2
∫
T
R1 · · ·Rr2dx1 · · ·dxr1dR1 · · ·dRr2dφ1 · · ·dφr2

= 2r2(2π)r2
∫
R1 · · ·Rr2dx1 · · ·dxr1dR1 · · ·dRr2

= 2r2(2π)r2
∫
|J |R1 · · ·Rr2dξdξ1 · · ·dξr

= 2r2πr2RK .

Thus,

vol(T )=
2r1+r2πr2RK

m
.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 57 / 67



Analytic Methods The Analytic Class Number Formula

The Analytic Class Number Formula

Now we obtain

lim
s→1

(s −1)fC (s)=NK/Q(b)
v

∆
=NK/Q(b)

2r1+r2πr2RK

m

NK/Q(b)|DK |1/2
.

So

lim
s→1

(s −1)fC (s)=
2r1+r2πr2RK

m|DK |1/2
.

This is independent of C .

Summing over the ideal classes gives

lim
s→1

(s −1)ζK (s)=
2r1+r2πr2RK

m|DK |1/2
hK .

This is the analytic class number formula.
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Subsection 5

Explicit Class Number Formulae
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Principal Ideals in Quadratic Fields

We give explicit expressions for class numbers of quadratic fields.

Let K =Q(
p
d), with d squarefree.

The principal ideal 〈p〉 for a prime p of Z can factorize in ZK in three
different ways.

1. p can split, so that 〈p〉 = p1p2 with p1 6= p2, and

NK/Q(p1)=NK/Q(p2)= p;

2. p can be inert, so that 〈p〉 remains a prime ideal in ZK , with norm p2;
3. p can ramify, so that 〈p〉 = p2, for some prime ideal p of norm p.
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Character of a Prime in a Quadratic Field

We define

χ(p)=





1, if p splits,
−1, if p is inert,
0, if p ramifies.

χ is actually a Dirichlet character modulo DK .

This means that:

χ(p) depends only on the value of p (mod DK );
χ(p) can be extended to all integers n, in such a way that if m and n

are coprime, then
χ(mn)=χ(m)χ(n).
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Factors in the Euler Product

Consider the factors corresponding to the primes dividing 〈p〉 in the
Euler product

ζK (s)=
∏

p

(
1−

1

NK/Q(p)s

)−1

.

By the remark above, these are
(
1−

1

ps

)−2

,

(
1−

1

p2s

)−1

,

(
1−

1

ps

)−1

,

in the split, inert and ramified cases, respectively.

In each case, there is a factor
(
1− 1

ps

)−1
.

This is the Euler factor of the Riemann zeta function at p.

The other factor is given by
(
1−

χ(p)

ps

)−1

.
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The Dirichlet L-Function

We define the Dirichlet L-function

L(s ,χ)=
∏

p

(
1−

χ(p)

ps

)−1

.

Then
ζK (s)= ζ(s)L(s ,χ).

By the multiplicativity of χ and unique factorization in Z, we get the
alternative expression

L(s ,χ)=
∞∑

n=1

χ(n)

ns
.
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Computing L(1,χ)

We can multiply through by (s −1) and let s → 1 in this expression.

The Riemann zeta function has a simple pole at s = 1 with residue 1.

The residue of ζK (s) is given by the analytic class number formula,

lim
s→1

(s −1)ζK (s)=
2r1+r2πr2RK

m|DK |1/2
hK .

We get
2r1(2π)r2hKRK

m|DK |1/2
= L(1,χ).
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The Real and Imaginary Cases

In the case of a real quadratic field, we have

r1 = 2, r2 = 0, m= 2, RK = logǫ,

where ǫ> 1 is a fundamental unit.

We conclude that

hK =
√
|DK |

2 logǫ
L(1,χ).

If K is imaginary quadratic, then

r1 = 0, r2 = 1, RK = 1.

So we get

hK =
m

√
|DK |

2π
L(1,χ).

Recall that, in this case, m= 2 except for the fields Q(i) and Q(
p
−3),

both of which have class number one.
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Computing hK Using L(1,χ)

The quantities L(1,χ) are not so easy to compute exactly.

However, it is sometimes relatively easy to compute enough terms in
the sum

L(1,χ)=
∞∑

n=1

χ(n)

n
.

We may, thus, get an idea of the value of hK (especially in the
imaginary quadratic case), recalling that it must be integral.
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Example

Consider K =Q(
p

2).

The fundamental unit is ǫ= 1+
p

2.

The discriminant is DK = 8.

Then

hK =
p

8

2 log(1+
p

2)
L(1,χ)≈ 1.605L(1,χ).

But, by grouping terms suitably,

L(1,χ)= 1−
1

3
−

1

5
+

1

7
+·· · < 1.

So hK is a positive integer less than 1.605.

We conclude that hK = 1.
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