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Number Fields Algebraic Numbers

Subsection 1

Algebraic Numbers
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Number Fields Algebraic Numbers

Algebraic and Transcendental Numbers

Definition

A complex number α is said to be algebraic if it is the root of a
polynomial equation with integer coefficients.
If α is not algebraic, it is transcendental.

Example: Every rational number m
n

is algebraic.

It is a root of nX −m= 0.

Also ±
p

2 are roots of X 2−2= 0. So ±
p

2 are both algebraic.

Every polynomial with integer coefficients of degree n will have n

algebraic numbers as roots.

Liouville (1844) was the first to construct an explicit example of a
transcendental number.

Hermite (1873) proved that e is transcendental

Lindemann (1882) proved that π is transcendental.
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Number Fields Algebraic Numbers

Countability of Algebraic Numbers

Write A ⊆C for the collection of all algebraic numbers.

Theorem (Cantor)

The set A is countable, i.e., there are only countably many algebraic
numbers.

Let
p(X )= c0X

d +c1X
d−1+·· ·+cd = 0

be a polynomial equation, with all ci ∈Z and c0 6= 0.

Define the quantity

H(p)= d +|c0|+ · · ·+ |cd | ∈Z.

This process associates an integer to every polynomial with integer
coefficients. Note that deg(p)= d <H(p).
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Number Fields Algebraic Numbers

Countability of Algebraic Numbers (Cont’d)

Let H be any natural number.

Then it is easy to see that there are only finitely many polynomials
p(X ) which satisfy H(p)≤H.

Say that an algebraic number α ∈A is of level H if α is a root of
some polynomial p with H(p)≤H.

We observe again that:

There are only finitely many polynomials with H(p)≤H ;
All of them have at most H roots (since the degree of such a
polynomial is bounded by H).

Thus, there are only finitely many algebraic numbers of level H, for
any given H.
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Number Fields Algebraic Numbers

Countability of Algebraic Numbers (Cont’d)

Conversely, every algebraic number is a root of such a polynomial.

Thus, every algebraic number is of level H for some H.

The collection of algebraic numbers can therefore be written as a union

A =
∞
⋃

H=1

{α ∈A :α is of level H}.

We have observed that each set on the right-hand side is finite.

Furthermore, the union is a countable union, as the indexing set
consists of the natural numbers.

Therefore, A is a countable union of finite sets.

It is therefore countable.

Now C is uncountable, and its subset A is countable.

Hence, transcendental numbers exist and, moreover, the set of
transcendental numbers is actually uncountable.
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Number Fields Algebraic Numbers

Liouville’s Theorem

Theorem (Liouville)

Let α be a real algebraic number which is a root of an irreducible
polynomial f (X ) over Z of degree n> 1. Then there is a constant c , such
that for all rational numbers p

q
,

∣

∣

∣

∣

α−
p

q

∣

∣

∣

∣

>
c

qn
.

If
∣

∣

∣α− p
q

∣

∣

∣> 1, choosing c = 1 covers these values.

We consider the case
∣

∣

∣α− p
q

∣

∣

∣≤ 1.
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Number Fields Algebraic Numbers

Liouville’s Theorem (Cont’d)

Apply the Mean Value Theorem to f (X ) at the points α and p
q
.

We deduce that there exists γ, strictly between α and p
q
, such that

f ′(γ)=
f (α)− f (p

q
)

α− p
q

.

As α is a root of f , we have f (α)= 0.

As f (X ) is irreducible of degree n > 1, it has no rational roots.

So f (p
q
) 6= 0.

But f (X ) has integer coefficients.

So the denominator of f (p
q
) must divide qn.

Hence, qnf (p
q
) is a non-zero integer. So

∣

∣

∣f
(

p
q

)∣

∣

∣≥ 1
qn .
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Number Fields Algebraic Numbers

Liouville’s Theorem (Cont’d)

Now |γ−α| < 1 as α is strictly between α and p
q
, and |α− p

q
| ≤ 1.

By continuity of f ′ at α, we see that |f ′(γ)| < 1
c0

, for some constant c0
for all γ within 1 of α, where the constant c0 depends only on α.

Then
∣

∣

∣

∣

α−
p

q

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

f (p
q
)

f ′(γ)

∣

∣

∣

∣

∣

>
c0

qn
.

Finally, choose c =min(c0,1) to cover both cases.
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Number Fields Algebraic Numbers

Liouville’s Transcendental Number

In order to find a transcendental number, we need to find an α, where
the inequality of Liouville’s Theorem fails for all n.

Liouville suggested choosing

α=
∞
∑

k=1

1

10k!
= 0.11000100000000000000000100 . . . .

Define
pr

qr
=

r
∑

k=1

1

10k!
.

The first three numbers are

p1

q1
= 0.1,

p2

q2
= 0.11,

p3

q3
= 0.110001.
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Number Fields Algebraic Numbers

Liouville’s Transcendental Number (Cont’d)

Then qr = 10r !.

Moreover,

∣

∣

∣

∣

α−
pr

qr

∣

∣

∣

∣

=
∞
∑

k=r+1

1

10k!
<

2

10(r+1)!
=

2

(10r !)r+1
=

2

qr+1
r

.

Assume, towards a contradiction, that α is algebraic of some degree n.

Then, there is a constant c , such that, for all rationals p
q
,

∣

∣

∣

∣

α−
p

q

∣

∣

∣

∣

>
c

qn
.

However, choosing p
q
= pr

qr
, for large enough r > n, contradicts the

previous inequality.
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Number Fields Minimal Polynomials

Subsection 2

Minimal Polynomials
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Number Fields Minimal Polynomials

Minimal Polynomial

A monic polynomial is one whose leading coefficient is 1.

Lemma

If α is algebraic, then there is a unique monic polynomial f (X ) ∈Q[X ] of
smallest degree with α as a root.

Suppose α is a root of a polynomial

f (X )= c0X
n+c1X

n−1+·· ·+cn, c0 6= 0.

Then it is also a root of

X n+
c1

c0
X n−1+·· ·+

cn

c0
,

got by dividing through by the leading coefficient.

Among all the monic polynomials with α as a root, let f (X ) be one
with smallest degree.
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Number Fields Minimal Polynomials

Minimal Polynomial (Cont’d)

Claim: f (X ) is unique.

Suppose that g(X ) is another monic polynomial of the same degree as
f (X ), with α as a root.

Then α is also a root of (f −g)(X ).

Moreover, the leading terms of f (X ) and g(X ) cancel.

So the degree of f −g is smaller than that of f or g .

If f −g 6= 0, then we can divide through by its leading coefficient to
find a monic polynomial of smaller degree than f with α as a root.

But this contradicts the choice of f (X ).
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Number Fields Minimal Polynomials

Irreducibility of the Minimal Polynomial

Definition

Let α be an algebraic number. The minimal polynomial of α over Q is
the monic polynomial over Q of smallest degree with α as a root.

Lemma

If m(X ) is the minimal polynomial of the algebraic number α, then it is
irreducible.

Suppose m(X ) factorizes as the product f (X )g(X ) of two polynomials
over Q of smaller degree.

Since m(α)= 0, we have f (α)g(α)= 0.

Thus, α is a root of either f or g .

This contradicts the choice of m as the polynomial of smallest degree
with α as a root.
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Number Fields Minimal Polynomials

Divisibility Property of the Minimal Polynomial

Lemma

Suppose that α is a root of some polynomial f (X ) ∈Q[X ].
If m(X ) is the minimal polynomial of α, then m(X ) | f (X ).

The ring of rational polynomials Q[X ] has a division algorithm.

So, we can find polynomials q(X ),r(X ) ∈Q[X ], such that

f (X )= q(X )m(X )+ r(X ),

where r(X ) is the zero polynomial, or has smaller degree than m(X ).

Substitute X =α to get

f (α)= q(α)m(α)+ r(α).

As f (α)=m(α)= 0, we must have r(α)= 0.
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Number Fields Minimal Polynomials

Divisibility Property of the Minimal Polynomial (Cont’d)

However, r(X ) has smaller degree than m(X ).

Moreover, m(X ) was the monic polynomial of smallest degree with α

as a root.

So, if r(X ) were non-zero, we could scale it to get a monic polynomial
of smaller degree than m(X ) with α as a root.

This would contradict the definition of m(X ).

Therefore, r(X ) must be the zero polynomial.

In particular,
f (X )= q(X )m(X ).

So f (X ) is a multiple of m(X ).
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Number Fields Minimal Polynomials

Minimal Polynomials over a Field K

Suppose K is any field.

Assume α satisfies some equation over K .

Then we also have a notion of minimal polynomial over K .

This is the monic polynomial with coefficients in K of smallest degree
with α as a root.

Any other polynomial with coefficients in K with α as a root is a
multiple of the minimal polynomial.
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Number Fields The Field of Algebraic Numbers

Subsection 3

The Field of Algebraic Numbers
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Number Fields The Field of Algebraic Numbers

Fields and Subfields of C

Recall that a field is a set which satisfies:

Exactly the same algebraic properties as Q so that we be able to add,
subtract, multiply and divide (by non-zero elements) as in Q;
The usual algebraic rules (e.g., addition and multiplication are
commutative and associative).

Since we are dealing with subsets of the complex numbers C, all these
rules are inherited from C.

Thus, to check that the set A of algebraic numbers is a field, we just
have to check that the collection of algebraic numbers is closed under
the usual arithmetic operations.

That is, we want to see that if α and β are algebraic numbers, then so
are α+β, α−β and αβ, and if β 6= 0, so is α

β
.
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Number Fields The Field of Algebraic Numbers

The Field Q(α) and the Ring Q[α]

Recall that for any complex number α, Q(α) denotes the smallest field
one can obtain by applying all the usual arithmetic operations
(addition, subtraction, multiplication, division) to the rational numbers
and α;

It actually consists of all quotients
p(α)
q(α) , where p(X ) and q(X ) are

polynomials with rational coefficients, and where q(α) 6= 0.

On the other hand, Q[α] denotes the ring of all polynomial expressions
in α.

It is the smallest ring one can obtain by applying the arithmetic
operations of addition, subtraction and multiplication (but not
division) to the rational numbers and α.

Example: 3α3+α−1
α2+2

is in Q(α), but not necessarily in Q[α].

Clearly, we have Q[α]⊆Q(α).
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Number Fields The Field of Algebraic Numbers

Q[α]=Q(α) for Algebraic α

Proposition

If α is algebraic, Q[α]=Q(α), and so every element of Q(α) can be
written as a polynomial in α.

We have to explain that every quotient of polynomials
p(α)
q(α)

with

q(α) 6= 0 can be written alternatively as a polynomial in α.

Let m(X ) denote the minimal polynomial of α over Q.

The greatest common factor of m(X ) and q(X ) must divide m(X ).

As m(X ) is irreducible, its only factors are 1 and m(X ) itself.

But m(X ) is not a factor of q(X ), as m(α)= 0, but q(α) 6= 0.
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Number Fields The Field of Algebraic Numbers

Q[α]=Q(α) for Algebraic α (Cont’d)

Thus, there are polynomials s(X ) and t(X ) over Q, such that

s(X )q(X )+ t(X )m(X )= 1.

In particular,
s(α)q(α)+ t(α)m(α) = 1.

Therefore, s(α)q(α)= 1, because m(α)= 0.

We conclude that 1
q(α)

= s(α).

So
p(α)

q(α)
= p(α)s(α),

a polynomial expression in α.
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Number Fields The Field of Algebraic Numbers

Characterization of Algebraic Numbers

We saw that, if α is algebraic, then Q[α]=Q(α).

Suppose, now, that α is transcendental.

Then there is no way to write 1
α as a polynomial in α.

Otherwise, we could multiply through by α and find a rational
polynomial with α as a root.

Therefore, 1
α is in Q(α), but not in Q[α].

Thus, if α is not algebraic, then Q(α) is strictly bigger than Q[α].

It follows that the property

Q[α]=Q(α)

characterizes algebraic numbers.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 25 / 85



Number Fields The Field of Algebraic Numbers

The Degree of Field Extensions

The degree of the field extension Q(α)/Q is the dimension of the set
Q(α) when regarded as a vector space over Q.

That is, it equals the number of elements in a basis {ω1, . . . ,ωn} so
that every element of Q(α) can be expressed uniquely as a sum

a1ω1+·· ·+anωn, ai ∈Q.

The degree of Q(α)/Q is denoted [Q(α) :Q].

Example: Q(
p

2) has degree 2 over Q.

Each element in Q(
p

2) can be written as a+b
p

2.
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Number Fields The Field of Algebraic Numbers

Algebraicity and Degree of Extension

Proposition

Let α be a complex number. Then the following are equivalent:

1. α is algebraic;

2. The field extension Q(α)/Q is of finite degree.

(1)⇒(2): Suppose that α is algebraic.

Consider the minimal polynomial for α,

m(X )=X n+c1X
n−1+·· ·+cn.

Then αn+c1α
n−1+·· ·+cn = 0.

Rearranging, αn =−(c1αn−1+·· ·+cn).

By hypothesis, α is algebraic.

So every element of Q(α) can be written as a polynomial in α.
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Number Fields The Field of Algebraic Numbers

Algebraicity and Degree of Extension (Cont’d)

If the polynomial expression for an element has degree n or above, we
can reduce the degree by replacing all occurrences of αr , for r ≥ n,
using the preceding equation.

So every element of Q(α) can be written as an expression

an−1α
n−1+an−2α

n−2+·· ·+a0, ai ∈Q.

Claim: This expression of an element of Q(α) is unique.

Suppose an element can be written in two different ways

an−1α
n−1+an−2α

n−2+·· ·+a0

= bn−1α
n−1+bn−2α

n−2+·· ·+b0.

Subtracting one side from the other gives a polynomial of degree
strictly smaller than n with α as a root.

However, the minimal polynomial is m(X ), of degree n.

So there can be no polynomial of degree less than n with α as a root.
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Number Fields The Field of Algebraic Numbers

Algebraicity and Degree of Extension (Cont’d)

We showed that every element of Q(α) is a unique rational linear
combination of the n elements 1,α, . . . ,αn−1.

Thus, Q(α) is n-dimensional as a vector space over Q.

Therefore, [Q(α) :Q] is finite.

(2)⇒(1): Suppose [Q(α) :Q] is some finite number n.

Then any n+1 elements of the Q-vector space Q(α) are dependent.

In particular, the elements 1,α, . . . ,αn are linearly dependent.

So there exists a linear relationship

a0+a1α+·· ·+anα
n = 0.

Consequently, α satisfies a polynomial equation over Q.

Therefore, α is algebraic.
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Number Fields The Field of Algebraic Numbers

Degree of Extension and of Minimal Polynomial

Corollary

Suppose that α is algebraic. Then the degree of the extension [Q(α) :Q] is
the same as the degree of the minimal polynomial of α over Q.
Every element of Q(α) can be written as a polynomial in α of degree less
than [Q(α) :Q].

This just follows from the proof of the proposition.

More generally, the same argument shows that if K is any field, then
an element α is algebraic over K (i.e., satisfies a polynomial equation
with coefficients in K ) if and only if [K (α) :K ] is finite.

Moreover, in that case, the degree [K (α) :K ] is also the degree of the
minimal polynomial of α over K .
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Number Fields The Field of Algebraic Numbers

Adjoining More Than One Number to a Field

We can adjoin more than one number to a field.

Consider, e.g., α and β algebraic.

Define
Q(α,β) :=Q(α)(β).

This is the set of all polynomial expressions in β with coefficients in
Q(α).

We can show that this just gives all the polynomials in the two
variables α and β.
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Number Fields The Field of Algebraic Numbers

Closure Under Algebraic Operations

Corollary

Suppose that α and β are algebraic. Then α+β, α−β and αβ are
algebraic. If also β 6= 0, then α

β is algebraic.

Suppose that α and β are algebraic.

By the proposition, [Q(α) :Q] and [Q(β) :Q] are finite.

Write
m = [Q(α) :Q],

n = [Q(β) :Q].

Claim: [Q(α,β) :Q] is finite.
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Number Fields The Field of Algebraic Numbers

Closure Under Algebraic Operations (Cont’d)

A typical element of Q(α,β) is a polynomial expression

k
∑

i=0

ℓ
∑

j=0

aijα
iβj

.

We know the following:
Every αi , with i ≥m, can be written as a polynomial in α of degree at
most m−1;
Every βj , with j ≥ n, can be written as a polynomial in β of degree at
most n−1.

Substituting, we see that any element of Q(α,β) can be written

m−1
∑

i=0

n−1
∑

j=0

a′ijα
iβj

, a′ij .

So Q(α,β) is spanned by the set {αiβj : 0≤ i ≤m−1,0≤ j ≤ n−1}.

Thus, Q(α,β) has a finite spanning set as a Q-vector space.

Therefore [Q(α,β) :Q] is finite.
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Number Fields The Field of Algebraic Numbers

Closure Under Algebraic Operations (Conclusion)

Suppose α and β are algebraic.

We show that α+β is algebraic.

Note that α+β ∈Q(α,β).

So Q(α+β)⊆Q(α,β).

It follows that [Q(α+β) :Q]≤ [Q(α,β) :Q].

Hence, [Q(α+β) :Q] is finite.

So α+β must be algebraic.

The arguments for α−β, αβ and α
β are all similar, as each lies in

Q(α,β).

Corollary

The algebraic numbers A form a field.
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Number Fields Number Fields

Subsection 4

Number Fields
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Number Fields Number Fields

Number Fields

The field A is countable.

But it is much larger than the rational numbers Q (e.g., it has infinite
degree over Q).

So it is too large to be really useful.

The fields in which we are going to generalize ideas of primes,
factorizations, and so on, are the finite extensions of Q.

Definition

A field K is a number field if it is a finite extension of Q. The degree of
K is the degree of the field extension [K :Q], i.e., the dimension of K as a
vector space over Q.

In particular, every element in K lies inside a finite extension of Q.

By a previous proposition, every element of K is necessarily algebraic.
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Number Fields Number Fields

Examples

1. Q itself is a number field.

2. Q(
p

2)= {a+b
p

2 : a,b ∈Q} is a number field.

Every element is a Q-linear combination of 1 and
p

2.

So [Q(
p

2) :Q]= 2, which is finite.

3. Similarly, Q(i) is a number field, as is Q(
p
d) for any integer d .

We may assume that d is not divisible by a square (“squarefree”).

If d =m2d ′, then Q(
p
d)=Q(

p
d ′).

It is easy to see (from the quadratic formula) that every quadratic
field Q(α) is of this form.

So every quadratic number field is Q(
p
d), for some squarefree d .
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Number Fields Number Fields

Examples (Cont’d)

4. Q( 3
p

2) is a number field, as [Q( 3
p

2) :Q]= 3, which is finite.

Every element can be written in the form

a+b
3
p

2+c(
3
p

2)2, a,b,c ∈Q.

So 1, 3
p

2, ( 3
p

2)2 form a basis for Q( 3
p

2) as a vector space over Q.

5. Q(
p

2,
p

3) is also a number field.

Every element can be written in the form

a+b
p

2+c
p

3+d
p

6, a,b,c ∈Q.

So {1,
p

2,
p

3,
p

6} forms a basis for Q(
p

2,
p

3) over Q.

It follows that [Q(
p

2,
p

3) :Q]= 4.

6. Q(π) is not a number field.

π is transcendental.

So it does not satisfy any polynomial equation over Q.

Therefore, [Q(π) :Q] is infinite.
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Number Fields Number Fields

The Characteristic of a Field and Simple Extensions

Every number field contains the rationals.

So every number field is infinite and of characteristic 0.

The characteristic of a field is 0 if 1+1+·· ·+1 is never equal to 0,
and is p if p is the smallest number such that 1+1+·· ·+1= 0, where
p is the number of 1’s in the left-hand sum.

Fields of characteristic 0 always contain Q.

Fields of characteristic p exist for any prime number p.

They always contain the integers modulo p, {0,1, . . . ,p−1}, which is
the smallest field of characteristic p, and is denoted by Fp.

An extension is simple if it is generated by a single element.
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Number Fields Number Fields

Extensions of Q in C

Every element of a number field is algebraic.

So it is a root of a polynomial with rational coefficients.

All roots of polynomials with rational coefficients are complex
numbers.

So we can view every number field as a subfield of the complex
numbers C.

However, there is not usually a natural way to do this.

Example: Suppose a number field contains a square root
p
−1 of −1.

We have a choice whether to view this as i or as −i inside the complex
numbers.
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Number Fields Number Fields

Irreducibility in Q[X ] and Roots in C

Lemma

Suppose that f (X ) ∈Q[X ] is an irreducible polynomial. Then it has distinct
roots in C.

Over C, factorize f (X ) as

c
r

∏

i=1

(X −γi )
di .

Suppose, to the contrary, that the lemma fails.

Then di > 1, for some i .

So f (X ) would have a factor (X −γi)
2.

Write
f (X )= (X −γi)

2g(X ).

We see that (X −γi) is also a factor of the derivative f ′(X ).

So (X −γi ) is a common factor of f and f ′.
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Number Fields Number Fields

Irreducibility in Q[X ] and Roots in C (Cont’d)

Thus, the greatest common factor h of f and f ′ has degree ≥ 1.

But the highest common factor of f and f ′ is obtained by Euclid’s
algorithm in Q[X ], and is a polynomial with rational coefficients that
divides into both f and f ′.

However, f is irreducible.

So its only factors are 1 and f .

Since h has degree at least 1, we conclude that h= f .

But then we obtain f | f ′.
This contradicts the fact that the degree of f is bigger than the
degree of f ′, which is a nonzero polynomial (as f has degree d ≥ 1).
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Number Fields Number Fields

Irreducibility and Characteristic of the Field

More generally, the proof of the lemma shows that any irreducible
polynomial over a field of characteristic 0 has distinct roots.

In characteristic p, things change.

Here it is possible for an irreducible polynomial to have derivative 0.

The polynomial may only involve terms in X p.

Their derivatives then are divisible by p, and vanish.

Example: In a field of characteristic p, consider the polynomial

f (X )=X p
.

f (X ) is not irreducible.

It is, however, an example where f divides f ′, as f ′ = 0.
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The Primitive Element Theorem

Theorem (Primitive Element)

Suppose K ⊆ L is a finite extension of fields of characteristic 0 (e.g.,
number fields). Then L=K (γ), for some element γ ∈ L.

Suppose L is generated over K by m elements.

We first treat the case m= 2. Suppose L=K (α,β).

Let f and g denote the minimal polynomials of α and β over K .

Suppose α1 =α, α2, . . . ,αs are the roots of f in C.

Suppose β1 =β,β2, . . . ,βt are the roots of g in C.

Irreducible polynomials always have distinct roots.

Thus, if j 6= 1, αi +Xβj =α1+Xβ1 has a unique solution

X =
αi −α1

β1−βj

.

Choose a c ∈K different from each of these X ’s.

Then each αi +cβj is different from α+cβ.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 44 / 85



Number Fields Number Fields

The Primitive Element Theorem (Cont’d)

Claim: γ=α+cβ generates L over K .

Certainly γ ∈K (α,β)= L.

It suffices to verify that α,β ∈K (γ).

Consider the polynomials g(X ) and f (γ−cX ).

They both have coefficients in K (γ).

Moreover, they both have β as a root.

The other roots of g(X ) are β2, . . . ,βt .

Moreover, γ−cβj is not any αi , unless i = j = 1.

So β is the only common root of g(X ) and f (γ−cX ).

Thus, (X −β) is the highest common factor of g(X ) and f (γ−cX ).

But the highest common factor is a polynomial defined over any field
containing the coefficients of the original two polynomials.

In particular, it follows that X −β has coefficients in K (γ).

So β ∈K (γ). Then α= γ−cβ ∈K (γ).
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The Primitive Element Theorem (The Case m> 2)

Consider the case where m> 2.

We can prove this using the result for m= 2.

Suppose L=K (α1, . . . ,αm).

View L as
K (α1, . . . ,αm−2)(αm−1,αm).

The case m= 2 allows us to write this as

K (α1, . . . ,αm−2)(γm−1).

Rewrite this as
K (α1, . . . ,αm−3)(αm−2,γm−1).

Use, again, the case m= 2 to reduce the number further.

Continuing in this way, we eventually get down to just one element.
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Consequence for Number Fields

The preceding proof uses properties of fields of characteristic 0 in two
places.

When using the fact that irreducible polynomials always have distinct
roots, which is true for any field of characteristic 0.
When choosing a value of c different from all values in some finite set,
which we can do because fields of characteristic 0 are infinite.

Corollary

Let K be a number field. Then K =Q(γ), for some element γ.
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Example

By the corollary, it should be possible to express the number field
Q(

p
2,
p

3) as Q(γ), for some element γ.

By the proof of the theorem, it seems that we should be able to take
γ=

p
2+c

p
3 for almost any choice of c (only finitely many values

might be excluded).

We try c = 1, so that γ=
p

2+
p

3 ∈Q(
p

2,
p

3).

Then we have

1= 1;
γ=

p
2+

p
3;

γ2 = (
p

2+
p

3)2 = 5+2
p

6;
γ3 = (

p
2+

p
3)(5+2

p
6)= 11

p
2+9

p
3.

We see that
p

2=
γ3−9γ

2
and

p
3=

11γ−γ3

2
.
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Example (Cont’d)

We got
p

2=
γ3−9γ

2
and

p
3=

11γ−γ3

2
.

It follows that both
p

2 and
p

3 can be written as polynomials in γ.

So
p

2,
p

3∈Q(γ).

Therefore,
Q(

p
2,
p

3)⊆Q(γ).

On the other hand, γ ∈Q(
p

2,
p

3).

This gives the other inclusion

Q(γ)⊆Q(
p

2,
p

3).
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Subsection 5

Integrality

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 50 / 85



Number Fields Integrality

Integers in a Number Field

When we “do number theory”, we almost always refer to properties of
the integers Z, rather than Q.

So to work in a number field K , we need to define a subset ZK of
“integers in K ”.

We impose the following requirements.

ZK should be a ring, so that we can add, subtract and multiply in ZK ;
The integers in Q turn out to be Z;
Given two number fields K ⊆ L and an element α ∈K , α is an integer in
K if and only if it is an integer in L.
That is, if K ⊆ L is an extension of number fields,

ZL∩K =ZK .
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A Failed First Attempt

We looked at the Gaussian integers,

Z[i ]= {a+bi : a,b ∈Z}.

They seemed to have the appropriate properties in Q(i).

It seems reasonable to hope that our definition of integers should give
Z[i ] as the integers for Q(i).

We also know that every number field can be written in the form Q(γ).

So, at first glance, it might seem reasonable to suggest that we define
its integers to be Z[γ].

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 52 / 85



Number Fields Integrality

A Failed First Attempt (Cont’d)

Z[γ] is a ring whose elements are polynomials in γ with integer
coefficients.

Any two of these can be added, subtracted or multiplied.

In addition, Z[γ] gives the right answer for Q(i).

Unfortunately, this is not a good definition.

A number field may be written in more than one way as Q(γ).

These expressions may give different answers for the integers.

Example: Note that
p

8= 2
p

2.

Therefore, Q(
p

8)=Q(
p

2).

But Z[
p

8] 6=Z[
p

2], since
p

2 6∈Z[
p

8].
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Algebraic Integers

Associated to α is its minimal polynomial over Q.

Recall that this is the monic polynomial with rational coefficients of
smallest degree which has α as a root.

Definition

Let α be an algebraic number. We say that α is an algebraic integer if
the minimal polynomial of α over Q has coefficients in Z.

Examples:

1. Every integer n is an algebraic integer.
Its minimal polynomial over Q is X −n.
The coefficients of this polynomial are indeed integral.

2. i is an algebraic integer.
Its minimal polynomial is X 2+1, which is in Z[X ].

3.
p

2 is an algebraic integer.
Its minimal polynomial is X 2−2, again in Z[X ].
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More Examples

Examples (Cont’d):

4. ω=
−1+

p
−3

2
is an algebraic integer

It is a root of the polynomial X 2+X +1.
This polynomial is irreducible.
So it must be the minimal polynomial of ω.

5.
−1+

p
3

2
is not an algebraic integer.

Its minimal polynomial is X 2+X − 1
2 .

This involves fractional coefficients.
6. π is not an algebraic integer.

It is not even an algebraic number.

It may be surprising that −1+
p
−3

2
is an integer, but −1+

p
3

2
is not.

Otherwise, the definition looks reasonable.
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Sufficient Condition for Integrality

Lemma

Suppose that α satisfies any monic polynomial with coefficients in Z.
Then α is an algebraic integer.

Suppose α is a root of the monic polynomial f (X ) ∈Z[X ].

Let m(X )∈Q[X ] denote the minimal polynomial of α over Q.

We will show that m(X ) ∈Z[X ].

We have already seen that m(X ) | f (X ).

So f (X )= q(X )m(X ), for some polynomial q(X ) ∈Q[X ].

Since f (X ) and m(X ) are both monic, clearly q(X ) is also.

So f (X )= q(X )m(X ) expresses f (X ) ∈Z[X ] as a product of two
monic polynomials q(X ) and m(X ) with rational coefficients.
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Sufficient Condition for Integrality (Cont’d)

Claim: q(X ) and m(X ) are both in Z[X ].

Choose positive integers a and b such that:

aq(X ) and bm(X ) are polynomials with integer coefficients;
The highest common factors of the coefficients of aq(X ), bm(X ) are 1.

Indeed, a and b are just the least common multiples of the
denominators of the coefficients of q and m, respectively.

Then we have (ab)f (X )= aq(X )bm(X ).

If ab 6= 1, choose a prime number p | ab.

There are coefficients of aq(X ) and bm(X ) not divisible by p.
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Number Fields Integrality

Sufficient Condition for Integrality (Cont’d)

So there are also terms in the product whose coefficients are not
divisible by p. E.g., consider the term coming from:

The first term of aq(X ) with coefficient not divisible by p;
The first term of bm(X ) with coefficient not divisible by p.

On the other hand, the product is (ab)f (X ).

So all the coefficients must be divisible by the integer ab.

Therefore, they must be divisible by p.

This contradiction shows that ab = 1.

Therefore, a= b = 1, as a and b are positive integers.

So both q(X ) and m(X ) are already in Z[X ].

In particular, m(X ) ∈Z[X ].

So the minimal polynomial of α has integral coefficients.
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Gauss’s Lemma

We have essentially proven Gauss’s Lemma:

Suppose a polynomial f (X ) ∈Z[X ] is reducible in Q[X ].
Then it is reducible in Z[X ].

Equivalently, if f (X ) factorizes into polynomials with rational
coefficients then it factorizes into polynomials with integer coefficients.
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Algebraic Numbers and Algebraic Integers

Claim: Every algebraic number has an integer multiple which is an
algebraic integer. Equivalently, every algebraic number can be
expressed as the quotient of an algebraic integer by an element of Z.

Suppose that α is an algebraic number.

Then α is the root of some monic polynomial with coefficients in Q,

X n+an−1X
n−1+an−2X

n−2+·· ·+a0 = 0.

Let d be an integer which is a common multiple of all the
denominators of an−1, . . . ,a0. Then dα is a root of

X n+an−1dX
n−1+an−2d

2X n−2+·· ·+a0d
n = 0.

This is a monic polynomial with integer coefficients.

Therefore, dα is an algebraic integer.
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Number Fields The Ring of All Algebraic Integers

Subsection 6

The Ring of All Algebraic Integers
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Number Fields The Ring of All Algebraic Integers

Finitely Generated Modules

A module M over a ring R is like a vector space over a field.

We can add two elements of M to get another element of M ;
We can multiply an element of M by an element of R .

The same rules are satisfied as for vector spaces.

The theory of modules over rings is a little more complicated than
vector spaces over fields, but for now, we just need the concept which
is analogous to “finite dimensional” for vector spaces.

The module Z[α] is finitely generated over Z if there are finitely
many elements ω1, . . . ,ωn ∈Z[α], such that every element of Z[α] can
be written as a sum

a1ω1+·· ·+anωn

for suitable integers a1, . . . ,an ∈Z.
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Number Fields The Ring of All Algebraic Integers

Algebraic Characterization of Algebraic Integers

Proposition

Let α ∈C. The following are equivalent:

1. α is an algebraic integer;

2. Z[α] is a finitely generated module over Z.

(1)⇒(2): Suppose that α is an algebraic integer.

Then α is a root of a monic polynomial f (X ) ∈Z[X ] of some degree n.

Given any polynomial g(X ) ∈Z[X ], write

g(X )= q(X )f (X )+ r(X ), q(X ),r(X ) ∈Z[X ],

where r(X )= 0 or the degree of r(X ) is less than n.

Note that, if f (X ) were not monic, we could only deduce that q(X )
and r(X ) would have rational coefficients.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 63 / 85



Number Fields The Ring of All Algebraic Integers

Algebraic Characterization of Algebraic Integers (Cont’d)

We wrote

g(X )= q(X )f (X )+ r(X ), q(X ),r(X ) ∈Z[X ].

Substitute in X =α.

Then g(α)= r(α), as α is a root of f .

So g(α) can be expressed as a polynomial of degree less than n.

So g(α) can be written as a linear combination of

1,α, . . . ,αn−1
,

with integer coefficients.

Thus, Z[α] is finitely generated as a Z-module.
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Algebraic Characterization of Algebraic Integers (Converse)

(2)⇒(1): Suppose that Z[α]=Zω1+·· ·+Zωn.

For each i , the product αωi is again in Z[α].

So it can be written as a linear combination of the spanning set,

αωi =
n
∑

j=1

aijωj , aij ∈Z.

Consider the column vector v = (ω1, . . . ,ωn)
t .

The previous equation implies that αv =Av , where A= (aij).

That is, v is an eigenvector of A with eigenvalue α.

Therefore, α it is a root of the characteristic polynomial of A.

Characteristic polynomials are always monic.

Note, also, that the entries of A are integral.

So its characteristic polynomial has coefficients in Z.

Thus, α is a root of a monic polynomial with integer coefficients.

So α is integral.
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Algebraic Integers in Rings Containing Z

The next result is a corollary to the proof of the previous proposition,
and a mild generalization.

Corollary

Let R be a ring containing Z. If R is finitely generated as a Z-module,
then every element α ∈R is the root of a monic polynomial with
coefficients in Z.

The argument is exactly the same as before.

By hypothesis, R is finitely generated.

So R =Zω1+·· ·+Zωn.

For each i , we have αωi =
∑n

j=1
aijωj , for some integers aij ∈Z.

Then α is a root of the characteristic polynomial for the matrix (aij ).
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Two Algebraic Integers

Proposition

Suppose that α and β are algebraic integers. Then Z[α,β] is finitely
generated as a Z-module.

By the proposition, Z[α], Z[β] are finitely generated as Z-modules.

That is:

There are elements
ω1, . . . ,ωm ∈Z[α],

such that every element of Z[α] can be written as a Z-linear
combination of these elements;
There are elements

θ1, . . . ,θn ∈Z[β],

such that every element of Z[β] is a Z-linear combination of these
elements.
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Two Algebraic Integers

We show that every element γ of Z[α,β] is a Z-linear combination of
the finite set

{ωiθj : 1≤ i ≤m,1≤ j ≤ n}.

Now γ can be written as a polynomial

∑

k ,ℓ

akℓα
kβℓ

, akℓ ∈Z.

Each αk ∈Z[α].
So it can be written as a Z-linear combination of {ωi : 1≤ i ≤m}.

Each βj ∈Z[β].
So it can be written as a Z-linear combination of {θj : 1≤ j ≤ n}.

Substituting these in, we see that γ can be written as a Z-linear
combination of the set {ωiθj : 1≤ i ≤m,1≤ j ≤ n}, as required.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 68 / 85



Number Fields The Ring of All Algebraic Integers

The Ring of Algebraic Integers

Corollary

The set of all algebraic integers forms a ring.

Let α and β be algebraic integers.

We need to check that α+β, α−β and αβ are algebraic integers.

By the preceding proposition, Z[α,β] is finitely generated as a
Z-module.

Clearly, α+β ∈Z[α,β].

By a previous proposition, α+β is an algebraic integer.

Now α−β and αβ are also in Z[α,β].

So, by the same argument, they are also integral.
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Example

We illustrate a way to construct polynomials satisfied by the sum (or
difference, or product) of two algebraic numbers.

Example: We show that the sum

θ =
1+

p
5

2
+
−1+

p
−3

2
=

p
5+

p
−3

2

is an algebraic integer, by computing its minimal polynomial.

Write

α=
1+

p
5

2
and β=

−1+
p
−3

2
.

α has minimal polynomial X 2−X −1.

β has minimal polynomial X 2+X +1.

Form the vector v = (1 α β αβ)t .

We are going to find matrices A and B , with entries in Z, such that

Av =αv and Bv =βv .
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Example (Cont’d)

For v = (1 α β αβ)t , we seek A and B , with entries in Z, such that

Av =αv and Bv =βv .

That is, α is an eigenvalue of A, and β is an eigenvalue of B .

Then (A+B)v = (α+β)v .

So α+β is an eigenvalue of A+B .

It is therefore a root of the characteristic polynomial of A+B , which is
defined over Z, since the entries of A+B are integers.

This gives a polynomial with α+β as a root.
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Example (Matrix A)

We first try to construct the matrix A. We must have

A











1
α

β

αβ











=α











1
α

β

αβ











=











α

α2

αβ

α2β











.

But α is a root of X 2 =X +1. So α2 =α+1. Thus, we need to solve

A











1
α

β

αβ











=











α

α+1
αβ

(α+1)β











.

We find A=











0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1











.
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Example (Matrix B)

Similarly, we can find a matrix B with the property that

B











1
α

β

αβ











=β











1
α

β

αβ











=











β

αβ

β2

αβ2











=











β

αβ

−(β+1)
−α(β+1)











.

We take

B =











0 0 1 0
0 0 0 1

−1 0 −1 0
0 −1 0 −1











.
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Example (Matrix A+B)

Then

A+B =











0 1 1 0
1 1 0 1

−1 0 −1 1
0 −1 1 0











.

Our preceding argument shows that θ should be a root of the
characteristic polynomial of A+B .

In the same way, note that

ABv =A(Bv)=A(βv)=β(Av)=αβv .

So αβ is an eigenvalue of AB .

So αβ is a root of the characteristic polynomial of AB .
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Generalizing the Method

Suppose α is a root of an equation of degree m.

Suppose β is a root of an equation of degree n.

Form the vector of length mn:

v = (1, . . . ,αm−1
,β, . . . ,αm−1β, . . . ,βn−1

, . . . ,αm−1βn−1)t .

As in the example above, we can find mn×mn-matrices A and B ,
such that

Av =αv and Bv =βv .

Then A and B will be mn×mn-matrices.

α+β, α−β and αβ are eigenvalues of A+B , A−B and AB ,
respectively (with v as eigenvector).

The characteristic polynomials of A+B , A−B and AB have degree
mn.
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Generalizing the Method (Cont’d)

Suppose α and β are both algebraic integers.

Then the matrices A and B have entries in Z.

So the entries of A+B , A−B and AB are all also in Z.

Therefore, the characteristic polynomials of these matrices are all
integral.

Moreover, they are monic, by definition.

This gives another proof that the eigenvalues α+β, α−β and αβ are
all algebraic integers.
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Difference, Products and Quotients of Algebraic Numbers

The same method also shows that the sum, difference and product of
any two algebraic numbers is again algebraic.

The two matrices A and B will in general no longer be integral, but
have rational entries.

We can extend the method to the case of quotients.

If β 6= 0, then B will be invertible.

Then v is an eigenvector of AB−1 with eigenvalue α
β
.

This quotient is a root of the characteristic polynomial of the rational
matrix AB−1.
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Subsection 7

Rings of Integers of Number Fields
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Number Fields Rings of Integers of Number Fields

Integers in a Number Field

Definition

Let K be a number field. Then the integers in K are

ZK = {α ∈K :α is an algebraic integer}.

We first check that this gives the right answer for Q.

A rational a ∈Q has minimal polynomial X −a.

The coefficients are in Z if and only if a ∈Z.

So the integers in Q according to the definition are indeed Z.

Assume, next, K ⊆ L is an extension of number fields and α ∈K .

Then α is an integer in K if and only if it is an integer in L.

This follows simply because the condition determining whether or not
α is an algebraic integer makes no reference to any field K .
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The Ring of Integers of K

Corollary

Let K be a number field. Then ZK is a ring.

Suppose α,β ∈ZK .

We need to check that α+β, α−β and αβ all lie in ZK .

They certainly all lie in K .

By a previous corollary, they are all algebraic integers.

So they lie in ZK .

Remark: ZK is even an integral domain.

Indeed ZK ⊆K . As K is a field, ZK ⊆K has no zero-divisors.

ZK is called the ring of integers of K .
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Number Fields Rings of Integers of Number Fields

Characterization of ZK

A generalization of a preceding proposition allows us to characterize
the ring of integers ZK as the largest subring of K which is a finitely
generated Z-module.

Proposition

Suppose R is a subring of a number field K , and that R is finitely
generated as a Z-module. Then R ⊆ZK .

Let R is a subring of a number field K .

Suppose R is finitely generated as a Z-module and α ∈R .

By a previous corollary, α is the root of a monic polynomial with
coefficients in Z.

Therefore, α ∈ZK .
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Ring of Integers in Q(
p
d)

Proposition

Suppose that d is a squarefree integer (i.e., not divisible by the square of
any prime). Then:

1. If d ≡ 2 or 3 (mod 4), then the ring of integers in Q(
p
d) is

Z[
p
d ]= {a+b

p
d : a,b ∈Z}.

2. If d ≡ 1 (mod 4), then the ring of integers in Q(
p
d) is

Z[ρd ]= {a+bρd : a,b ∈Z},

where ρd = 1+
p
d

2
.
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Number Fields Rings of Integers of Number Fields

Ring of Integers in Q(
p
d)

Let α= a+b
p
d , with a,b ∈Q.

Then α satisfies the equation (X −a)2 = b2d .

Equivalently,
X 2−2aX + (a2−b2d)= 0.

We seek conditions on a and b to make this have integer coefficients.

This implies that 2a ∈Z and a2−b2d ∈Z.

The first condition implies a ∈Z or a= A
2
, where A is an odd integer.

If a ∈Z, the second condition becomes b2d ∈Z.

As d is squarefree, this requires b ∈Z.

So the set
{a+b

p
d : a,b ∈Z}

is always contained in the ring of integers.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 83 / 85



Number Fields Rings of Integers of Number Fields

Ring of Integers in Q(
p
d) (Cont’d)

We examine when a= A
2
, A an odd integer, can arise.

We need A2

4
−b2d ∈Z. Equivalently, A2−4b2d ≡ 0 (mod 4).

This certainly requires 4b2d ∈Z.

As d is squarefree, 2b must be an integer, B say.

Further, b itself cannot be in Z. Otherwise, A2

4
−b2d 6∈Z.

Thus B is an odd integer.

Then A2−B2d ≡ 0 (mod 4), with A and B odd integers.

But the squares of odd numbers are all 1 (mod 4).

Thus, 1−d ≡ 0 (mod 4).

If d ≡ 1 (mod 4), the second case can arise. The integers are

{a+b
p
d : either a,b ∈Z, or both a and b are halves of odd integers}.

This set is easily seen to be the same as that of the statement.
If d 6≡ 1 (mod 4), then the only integers are {a+b

p
d : a,b ∈Z}.
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Remarks on the Ring of Integers of Q(
p
d)

If d =−1, so that d ≡ 3 (mod 4), this result shows that the ring of
integers of Q(i) is Z[i ].

The ring of integers of Q(
p
d) is not always just Z[

p
d ].

Although every element in Z[
p
d ] is an algebraic integer, there are

sometimes additional integers.

Examples:

If d =−3, then −1+
p
−3

2 is an integer.

It it is a root of X 2+X +1.

If d = 5, then 1+
p

5
2 is an integer.

It is a root of X 2−X −1.
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