Introduction to Algebraic Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Number Fields

- Algebraic Numbers
- Minimal Polynomials
- The Field of Algebraic Numbers
- Number Fields
- Integrality
- The Ring of All Algebraic Integers
- Rings of Integers of Number Fields

Subsection 1

Algebraic Numbers

Algebraic and Transcendental Numbers

Definition

A complex number α is said to be algebraic if it is the root of a polynomial equation with integer coefficients. If α is not algebraic, it is transcendental.

Example: Every rational number $\frac{m}{n}$ is algebraic.
It is a root of $n X-m=0$.
Also $\pm \sqrt{2}$ are roots of $X^{2}-2=0$. So $\pm \sqrt{2}$ are both algebraic.

- Every polynomial with integer coefficients of degree n will have n algebraic numbers as roots.
- Liouville (1844) was the first to construct an explicit example of a transcendental number.
- Hermite (1873) proved that e is transcendental
- Lindemann (1882) proved that π is transcendental.

Countability of Algebraic Numbers

- Write $\mathscr{A} \subseteq \mathbb{C}$ for the collection of all algebraic numbers.

Theorem (Cantor)

The set \mathscr{A} is countable, i.e., there are only countably many algebraic numbers.

- Let

$$
p(X)=c_{0} X^{d}+c_{1} X^{d-1}+\cdots+c_{d}=0
$$

be a polynomial equation, with all $c_{i} \in \mathbb{Z}$ and $c_{0} \neq 0$.
Define the quantity

$$
H(p)=d+\left|c_{0}\right|+\cdots+\left|c_{d}\right| \in \mathbb{Z} .
$$

This process associates an integer to every polynomial with integer coefficients. Note that $\operatorname{deg}(p)=d<H(p)$.

Countability of Algebraic Numbers (Cont'd)

- Let H be any natural number.

Then it is easy to see that there are only finitely many polynomials $p(X)$ which satisfy $H(p) \leq H$.
Say that an algebraic number $\alpha \in \mathscr{A}$ is of level H if α is a root of some polynomial p with $H(p) \leq H$.
We observe again that:

- There are only finitely many polynomials with $H(p) \leq H$;
- All of them have at most H roots (since the degree of such a polynomial is bounded by H).
Thus, there are only finitely many algebraic numbers of level H, for any given H.

Countability of Algebraic Numbers (Cont'd)

- Conversely, every algebraic number is a root of such a polynomial. Thus, every algebraic number is of level H for some H.
The collection of algebraic numbers can therefore be written as a union

$$
\mathscr{A}=\bigcup_{H=1}^{\infty}\{\alpha \in \mathscr{A}: \alpha \text { is of level } H\} .
$$

We have observed that each set on the right-hand side is finite. Furthermore, the union is a countable union, as the indexing set consists of the natural numbers.
Therefore, \mathscr{A} is a countable union of finite sets.
It is therefore countable.
Now \mathbb{C} is uncountable, and its subset \mathscr{A} is countable.
Hence, transcendental numbers exist and, moreover, the set of transcendental numbers is actually uncountable.

Liouville's Theorem

Theorem (Liouville)

Let α be a real algebraic number which is a root of an irreducible polynomial $f(X)$ over \mathbb{Z} of degree $n>1$. Then there is a constant c, such that for all rational numbers $\frac{p}{q}$,

$$
\left|\alpha-\frac{p}{q}\right|>\frac{c}{q^{n}} .
$$

- If $\left|\alpha-\frac{p}{q}\right|>1$, choosing $c=1$ covers these values.

We consider the case $\left|\alpha-\frac{p}{q}\right| \leq 1$.

Liouville's Theorem (Cont'd)

- Apply the Mean Value Theorem to $f(X)$ at the points α and $\frac{p}{q}$. We deduce that there exists γ, strictly between α and $\frac{p}{q}$, such that

$$
f^{\prime}(\gamma)=\frac{f(\alpha)-f\left(\frac{p}{q}\right)}{\alpha-\frac{p}{q}}
$$

As α is a root of f, we have $f(\alpha)=0$.
As $f(X)$ is irreducible of degree $n>1$, it has no rational roots.
So $f\left(\frac{p}{q}\right) \neq 0$.
But $f(X)$ has integer coefficients.
So the denominator of $f\left(\frac{p}{q}\right)$ must divide q^{n}. Hence, $q^{n} f\left(\frac{p}{q}\right)$ is a non-zero integer. So $\left|f\left(\frac{p}{q}\right)\right| \geq \frac{1}{q^{n}}$.

Liouville's Theorem (Cont'd)

- Now $|\gamma-\alpha|<1$ as α is strictly between α and $\frac{p}{q}$, and $\left|\alpha-\frac{p}{q}\right| \leq 1$.

By continuity of f^{\prime} at α, we see that $\left|f^{\prime}(\gamma)\right|<\frac{1}{c_{0}}$, for some constant c_{0} for all γ within 1 of α, where the constant c_{0} depends only on α.
Then

$$
\left|\alpha-\frac{p}{q}\right|=\left|\frac{f\left(\frac{p}{q}\right)}{f^{\prime}(\gamma)}\right|>\frac{c_{0}}{q^{n}} .
$$

Finally, choose $c=\min \left(c_{0}, 1\right)$ to cover both cases.

Liouville's Transcendental Number

- In order to find a transcendental number, we need to find an α, where the inequality of Liouville's Theorem fails for all n.
Liouville suggested choosing

$$
\alpha=\sum_{k=1}^{\infty} \frac{1}{10^{k!}}=0.11000100000000000000000100 \ldots
$$

Define

$$
\frac{p_{r}}{q_{r}}=\sum_{k=1}^{r} \frac{1}{10^{k!}} .
$$

The first three numbers are

$$
\frac{p_{1}}{q_{1}}=0.1, \quad \frac{p_{2}}{q_{2}}=0.11, \quad \frac{p_{3}}{q_{3}}=0.110001 .
$$

Liouville's Transcendental Number (Cont'd)

- Then $q_{r}=10^{r!}$.

Moreover,

$$
\left|\alpha-\frac{p_{r}}{q_{r}}\right|=\sum_{k=r+1}^{\infty} \frac{1}{10^{k!}}<\frac{2}{10^{(r+1)!}}=\frac{2}{\left(10^{r!}\right)^{r+1}}=\frac{2}{q_{r}^{r+1}} .
$$

Assume, towards a contradiction, that α is algebraic of some degree n.
Then, there is a constant c, such that, for all rationals $\frac{p}{q}$,

$$
\left|\alpha-\frac{p}{q}\right|>\frac{c}{q^{n}} .
$$

However, choosing $\frac{p}{q}=\frac{p_{r}}{q_{r}}$, for large enough $r>n$, contradicts the previous inequality.

Subsection 2

Minimal Polynomials

Minimal Polynomial

- A monic polynomial is one whose leading coefficient is 1 .

Lemma

If α is algebraic, then there is a unique monic polynomial $f(X) \in \mathbb{Q}[X]$ of smallest degree with α as a root.

- Suppose α is a root of a polynomial

$$
f(X)=c_{0} X^{n}+c_{1} X^{n-1}+\cdots+c_{n}, \quad c_{0} \neq 0 .
$$

Then it is also a root of

$$
X^{n}+\frac{c_{1}}{c_{0}} X^{n-1}+\cdots+\frac{c_{n}}{c_{0}},
$$

got by dividing through by the leading coefficient.
Among all the monic polynomials with α as a root, let $f(X)$ be one with smallest degree.

Minimal Polynomial (Cont'd)

- Claim: $f(X)$ is unique.

Suppose that $g(X)$ is another monic polynomial of the same degree as $f(X)$, with α as a root.
Then α is also a root of $(f-g)(X)$.
Moreover, the leading terms of $f(X)$ and $g(X)$ cancel.
So the degree of $f-g$ is smaller than that of f or g.
If $f-g \neq 0$, then we can divide through by its leading coefficient to find a monic polynomial of smaller degree than f with α as a root.
But this contradicts the choice of $f(X)$.

Irreducibility of the Minimal Polynomial

Definition

Let α be an algebraic number. The minimal polynomial of α over \mathbb{Q} is the monic polynomial over \mathbb{Q} of smallest degree with α as a root.

Lemma

If $m(X)$ is the minimal polynomial of the algebraic number α, then it is irreducible.

- Suppose $m(X)$ factorizes as the product $f(X) g(X)$ of two polynomials over \mathbb{Q} of smaller degree.
Since $m(\alpha)=0$, we have $f(\alpha) g(\alpha)=0$.
Thus, α is a root of either f or g.
This contradicts the choice of m as the polynomial of smallest degree with α as a root.

Divisibility Property of the Minimal Polynomial

Lemma

Suppose that α is a root of some polynomial $f(X) \in \mathbb{Q}[X]$. If $m(X)$ is the minimal polynomial of α, then $m(X) \mid f(X)$.

- The ring of rational polynomials $\mathbb{Q}[X]$ has a division algorithm. So, we can find polynomials $q(X), r(X) \in \mathbb{Q}[X]$, such that

$$
f(X)=q(X) m(X)+r(X),
$$

where $r(X)$ is the zero polynomial, or has smaller degree than $m(X)$.
Substitute $X=\alpha$ to get

$$
f(\alpha)=q(\alpha) m(\alpha)+r(\alpha)
$$

As $f(\alpha)=m(\alpha)=0$, we must have $r(\alpha)=0$.

Divisibility Property of the Minimal Polynomial (Cont'd)

- However, $r(X)$ has smaller degree than $m(X)$. Moreover, $m(X)$ was the monic polynomial of smallest degree with α as a root.

So, if $r(X)$ were non-zero, we could scale it to get a monic polynomial of smaller degree than $m(X)$ with α as a root.
This would contradict the definition of $m(X)$.
Therefore, $r(X)$ must be the zero polynomial.
In particular,

$$
f(X)=q(X) m(X)
$$

So $f(X)$ is a multiple of $m(X)$.

Minimal Polynomials over a Field K

- Suppose K is any field.
- Assume α satisfies some equation over K.
- Then we also have a notion of minimal polynomial over K.
- This is the monic polynomial with coefficients in K of smallest degree with α as a root.
- Any other polynomial with coefficients in K with α as a root is a multiple of the minimal polynomial.

Subsection 3

The Field of Algebraic Numbers

Fields and Subfields of \mathbb{C}

- Recall that a field is a set which satisfies:
- Exactly the same algebraic properties as \mathbb{Q} so that we be able to add, subtract, multiply and divide (by non-zero elements) as in Q;
- The usual algebraic rules (e.g., addition and multiplication are commutative and associative).
- Since we are dealing with subsets of the complex numbers \mathbb{C}, all these rules are inherited from \mathbb{C}.
- Thus, to check that the set \mathscr{A} of algebraic numbers is a field, we just have to check that the collection of algebraic numbers is closed under the usual arithmetic operations.
- That is, we want to see that if α and β are algebraic numbers, then so are $\alpha+\beta, \alpha-\beta$ and $\alpha \beta$, and if $\beta \neq 0$, so is $\frac{\alpha}{\beta}$.

The Field $\mathbb{Q}(\alpha)$ and the Ring $\mathbb{Q}[\alpha]$

- Recall that for any complex number $\alpha, \mathbb{Q}(\alpha)$ denotes the smallest field one can obtain by applying all the usual arithmetic operations (addition, subtraction, multiplication, division) to the rational numbers and α;
- It actually consists of all quotients $\frac{p(\alpha)}{q(\alpha)}$, where $p(X)$ and $q(X)$ are polynomials with rational coefficients, and where $q(\alpha) \neq 0$.
- On the other hand, $Q[\alpha]$ denotes the ring of all polynomial expressions in α.
- It is the smallest ring one can obtain by applying the arithmetic operations of addition, subtraction and multiplication (but not division) to the rational numbers and α.
Example: $\frac{3 \alpha^{3}+\alpha-1}{\alpha^{2}+2}$ is in $\mathbb{Q}(\alpha)$, but not necessarily in $\mathbb{Q}[\alpha]$.
- Clearly, we have $Q[\alpha] \subseteq \mathbb{Q}(\alpha)$.

$\mathrm{Q}[\alpha]=\mathrm{Q}(\alpha)$ for Algebraic α

Proposition

If α is algebraic, $\mathbb{Q}[\alpha]=\mathbb{Q}(\alpha)$, and so every element of $\mathbb{Q}(\alpha)$ can be written as a polynomial in α.

- We have to explain that every quotient of polynomials $\frac{p(\alpha)}{q(\alpha)}$ with $q(\alpha) \neq 0$ can be written alternatively as a polynomial in α.
Let $m(X)$ denote the minimal polynomial of α over \mathbb{Q}.
The greatest common factor of $m(X)$ and $q(X)$ must divide $m(X)$.
As $m(X)$ is irreducible, its only factors are 1 and $m(X)$ itself.
But $m(X)$ is not a factor of $q(X)$, as $m(\alpha)=0$, but $q(\alpha) \neq 0$.

$\mathrm{Q}[\alpha]=\mathrm{Q}(\alpha)$ for Algebraic α (Cont'd)

- Thus, there are polynomials $s(X)$ and $t(X)$ over \mathbb{Q}, such that

$$
s(X) q(X)+t(X) m(X)=1
$$

In particular,

$$
s(\alpha) q(\alpha)+t(\alpha) m(\alpha)=1
$$

Therefore, $s(\alpha) q(\alpha)=1$, because $m(\alpha)=0$.
We conclude that $\frac{1}{q(\alpha)}=s(\alpha)$.
So

$$
\frac{p(\alpha)}{q(\alpha)}=p(\alpha) s(\alpha)
$$

a polynomial expression in α.

Characterization of Algebraic Numbers

- We saw that, if α is algebraic, then $\mathbb{Q}[\alpha]=\mathbb{Q}(\alpha)$.
- Suppose, now, that α is transcendental.
- Then there is no way to write $\frac{1}{\alpha}$ as a polynomial in α.
- Otherwise, we could multiply through by α and find a rational polynomial with α as a root.
- Therefore, $\frac{1}{\alpha}$ is in $\mathbb{Q}(\alpha)$, but not in $\mathbb{Q}[\alpha]$.
- Thus, if α is not algebraic, then $\mathbb{Q}(\alpha)$ is strictly bigger than $\mathbb{Q}[\alpha]$.
- It follows that the property

$$
\mathbb{Q}[\alpha]=\mathbb{Q}(\alpha)
$$

characterizes algebraic numbers.

The Degree of Field Extensions

- The degree of the field extension $\mathbb{Q}(\alpha) / \mathbb{Q}$ is the dimension of the set $\mathbb{Q}(\alpha)$ when regarded as a vector space over \mathbb{Q}.
- That is, it equals the number of elements in a basis $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ so that every element of $\mathbb{Q}(\alpha)$ can be expressed uniquely as a sum

$$
a_{1} \omega_{1}+\cdots+a_{n} \omega_{n}, \quad a_{i} \in \mathbb{Q}
$$

- The degree of $\mathbb{Q}(\alpha) / \mathbb{Q}$ is denoted $[\mathbb{Q}(\alpha): \mathbb{Q}]$.

Example: $\mathbb{Q}(\sqrt{2})$ has degree 2 over \mathbb{Q}.
Each element in $\mathbb{Q}(\sqrt{2})$ can be written as $a+b \sqrt{2}$.

Algebraicity and Degree of Extension

Proposition

Let α be a complex number. Then the following are equivalent:

1. α is algebraic;
2. The field extension $\mathbb{Q}(\alpha) / \mathbb{Q}$ is of finite degree.
$(1) \Rightarrow(2)$: Suppose that α is algebraic.
Consider the minimal polynomial for α,

$$
m(X)=X^{n}+c_{1} X^{n-1}+\cdots+c_{n}
$$

Then $\alpha^{n}+c_{1} \alpha^{n-1}+\cdots+c_{n}=0$.
Rearranging, $\alpha^{n}=-\left(c_{1} \alpha^{n-1}+\cdots+c_{n}\right)$.
By hypothesis, α is algebraic.
So every element of $\mathbb{Q}(\alpha)$ can be written as a polynomial in α.

Algebraicity and Degree of Extension (Cont'd)

- If the polynomial expression for an element has degree n or above, we can reduce the degree by replacing all occurrences of α^{r}, for $r \geq n$, using the preceding equation.
So every element of $\mathbb{Q}(\alpha)$ can be written as an expression

$$
a_{n-1} \alpha^{n-1}+a_{n-2} \alpha^{n-2}+\cdots+a_{0}, \quad a_{i} \in \mathbb{Q}
$$

Claim: This expression of an element of $\mathbb{Q}(\alpha)$ is unique. Suppose an element can be written in two different ways

$$
\begin{aligned}
& a_{n-1} \alpha^{n-1}+a_{n-2} \alpha^{n-2}+\cdots+a_{0} \\
& \quad=b_{n-1} \alpha^{n-1}+b_{n-2} \alpha^{n-2}+\cdots+b_{0}
\end{aligned}
$$

Subtracting one side from the other gives a polynomial of degree strictly smaller than n with α as a root.
However, the minimal polynomial is $m(X)$, of degree n.
So there can be no polynomial of degree less than n with α as a root.

Algebraicity and Degree of Extension (Cont'd)

- We showed that every element of $\mathbb{Q}(\alpha)$ is a unique rational linear combination of the n elements $1, \alpha, \ldots, \alpha^{n-1}$.
Thus, $\mathbb{Q}(\alpha)$ is n-dimensional as a vector space over \mathbb{Q}.
Therefore, $[\mathrm{Q}(\alpha): \mathbb{Q}]$ is finite.
$(2) \Rightarrow(1)$: Suppose $[Q(\alpha): Q]$ is some finite number n.
Then any $n+1$ elements of the \mathbb{Q}-vector space $\mathbb{Q}(\alpha)$ are dependent.
In particular, the elements $1, \alpha, \ldots, \alpha^{n}$ are linearly dependent.
So there exists a linear relationship

$$
a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}=0
$$

Consequently, α satisfies a polynomial equation over \mathbb{Q}. Therefore, α is algebraic.

Degree of Extension and of Minimal Polynomial

Corollary

Suppose that α is algebraic. Then the degree of the extension $[\mathbb{Q}(\alpha): \mathbb{Q}]$ is the same as the degree of the minimal polynomial of α over \mathbb{Q}. Every element of $\mathbb{Q}(\alpha)$ can be written as a polynomial in α of degree less than $[\mathbb{Q}(\alpha): \mathbb{Q}]$.

- This just follows from the proof of the proposition.
- More generally, the same argument shows that if K is any field, then an element α is algebraic over K (i.e., satisfies a polynomial equation with coefficients in K) if and only if $[K(\alpha): K]$ is finite.
- Moreover, in that case, the degree $[K(\alpha): K]$ is also the degree of the minimal polynomial of α over K.

Adjoining More Than One Number to a Field

- We can adjoin more than one number to a field.
- Consider, e.g., α and β algebraic.
- Define

$$
\mathbb{Q}(\alpha, \beta):=\mathbb{Q}(\alpha)(\beta) .
$$

- This is the set of all polynomial expressions in β with coefficients in Q (α).
- We can show that this just gives all the polynomials in the two variables α and β.

Closure Under Algebraic Operations

Corollary

Suppose that α and β are algebraic. Then $\alpha+\beta, \alpha-\beta$ and $\alpha \beta$ are algebraic. If also $\beta \neq 0$, then $\frac{\alpha}{\beta}$ is algebraic.

- Suppose that α and β are algebraic.

By the proposition, $[\mathrm{Q}(\alpha): \mathbb{Q}]$ and $[\mathrm{Q}(\beta): \mathbb{Q}]$ are finite.
Write

$$
\begin{aligned}
m & =[\mathbb{Q}(\alpha): \mathbb{Q}] \\
n & =[\mathbb{Q}(\beta): \mathbb{Q}] .
\end{aligned}
$$

Claim: $[\mathbb{Q}(\alpha, \beta): \mathbb{Q}]$ is finite.

Closure Under Algebraic Operations (Cont'd)

- A typical element of $\mathbb{Q}(\alpha, \beta)$ is a polynomial expression

$$
\sum_{i=0}^{k} \sum_{j=0}^{\ell} a_{i j} \alpha^{i} \beta^{j}
$$

We know the following:

- Every α^{i}, with $i \geq m$, can be written as a polynomial in α of degree at most $m-1$;
- Every β^{j}, with $j \geq n$, can be written as a polynomial in β of degree at most $n-1$.
Substituting, we see that any element of $\mathbb{Q}(\alpha, \beta)$ can be written

$$
\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} a_{i j}^{\prime} \alpha^{i} \beta^{j}, \quad a_{i j}^{\prime}
$$

So $\mathbb{Q}(\alpha, \beta)$ is spanned by the set $\left\{\alpha^{i} \beta^{j}: 0 \leq i \leq m-1,0 \leq j \leq n-1\right\}$.
Thus, $\mathbb{Q}(\alpha, \beta)$ has a finite spanning set as a \mathbb{Q}-vector space.
Therefore $[\mathrm{Q}(\alpha, \beta): \mathbb{Q}]$ is finite.

Closure Under Algebraic Operations (Conclusion)

- Suppose α and β are algebraic.

We show that $\alpha+\beta$ is algebraic.
Note that $\alpha+\beta \in \mathbb{Q}(\alpha, \beta)$.
So $\mathbb{Q}(\alpha+\beta) \subseteq \mathbb{Q}(\alpha, \beta)$.
It follows that $[\mathbb{Q}(\alpha+\beta): \mathbb{Q}] \leq[\mathbb{Q}(\alpha, \beta): \mathbb{Q}]$.
Hence, $[\mathbb{Q}(\alpha+\beta): \mathbb{Q}]$ is finite.
So $\alpha+\beta$ must be algebraic.
The arguments for $\alpha-\beta, \alpha \beta$ and $\frac{\alpha}{\beta}$ are all similar, as each lies in $\mathbb{Q}(\alpha, \beta)$.

Corollary

The algebraic numbers \mathscr{A} form a field.

Subsection 4

Number Fields

Number Fields

- The field \mathscr{A} is countable.
- But it is much larger than the rational numbers \mathbb{Q} (e.g., it has infinite degree over \mathbb{Q}).
- So it is too large to be really useful.
- The fields in which we are going to generalize ideas of primes, factorizations, and so on, are the finite extensions of \mathbb{Q}.

Definition

A field K is a number field if it is a finite extension of \mathbb{Q}. The degree of K is the degree of the field extension $[K: \mathbb{Q}]$, i.e., the dimension of K as a vector space over \mathbb{Q}.

- In particular, every element in K lies inside a finite extension of \mathbb{Q}.
- By a previous proposition, every element of K is necessarily algebraic.

Examples

1. \mathbb{Q} itself is a number field.
2. $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ is a number field.

Every element is a Q-linear combination of 1 and $\sqrt{2}$.
So $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$, which is finite.
3. Similarly, $\mathbb{Q}(i)$ is a number field, as is $\mathbb{Q}(\sqrt{d})$ for any integer d.

We may assume that d is not divisible by a square ("squarefree").
If $d=m^{2} d^{\prime}$, then $\mathbb{Q}(\sqrt{d})=\mathbb{Q}\left(\sqrt{d^{\prime}}\right)$.
It is easy to see (from the quadratic formula) that every quadratic field $\mathbb{Q}(\alpha)$ is of this form.
So every quadratic number field is $Q(\sqrt{d})$, for some squarefree d.

Examples (Cont'd)

4. $\mathbb{Q}(\sqrt[3]{2})$ is a number field, as $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$, which is finite. Every element can be written in the form

$$
a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2}, \quad a, b, c \in \mathbb{Q}
$$

So $1, \sqrt[3]{2},(\sqrt[3]{2})^{2}$ form a basis for $\mathbb{Q}(\sqrt[3]{2})$ as a vector space over \mathbb{Q}.
5. $\mathrm{Q}(\sqrt{2}, \sqrt{3})$ is also a number field.

Every element can be written in the form

$$
a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}, \quad a, b, c \in \mathbb{Q}
$$

So $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ forms a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q}. It follows that $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=4$.
6. $\mathbb{Q}(\pi)$ is not a number field.
π is transcendental.
So it does not satisfy any polynomial equation over \mathbb{Q}.
Therefore, $[\mathbb{Q}(\pi): \mathbb{Q}]$ is infinite.

The Characteristic of a Field and Simple Extensions

- Every number field contains the rationals.
- So every number field is infinite and of characteristic 0 .
- The characteristic of a field is 0 if $1+1+\cdots+1$ is never equal to 0 , and is p if p is the smallest number such that $1+1+\cdots+1=0$, where p is the number of 1 's in the left-hand sum.
- Fields of characteristic 0 always contain \mathbb{Q}.
- Fields of characteristic p exist for any prime number p.
- They always contain the integers modulo $p,\{0,1, \ldots, p-1\}$, which is the smallest field of characteristic p, and is denoted by \mathbb{F}_{p}.
- An extension is simple if it is generated by a single element.

Extensions of \mathbb{Q} in \mathbb{C}

- Every element of a number field is algebraic.
- So it is a root of a polynomial with rational coefficients.
- All roots of polynomials with rational coefficients are complex numbers.
- So we can view every number field as a subfield of the complex numbers \mathbb{C}.
- However, there is not usually a natural way to do this.

Example: Suppose a number field contains a square root $\sqrt{-1}$ of -1 . We have a choice whether to view this as i or as $-i$ inside the complex numbers.

Irreducibility in $\mathbb{Q}[X]$ and Roots in \mathbb{C}

Lemma

Suppose that $f(X) \in \mathbb{Q}[X]$ is an irreducible polynomial. Then it has distinct roots in \mathbb{C}.

- Over \mathbb{C}, factorize $f(X)$ as

$$
c \prod_{i=1}^{r}\left(X-\gamma_{i}\right)^{d_{i}} .
$$

Suppose, to the contrary, that the lemma fails.
Then $d_{i}>1$, for some i.
So $f(X)$ would have a factor $\left(X-\gamma_{i}\right)^{2}$.
Write

$$
f(X)=\left(X-\gamma_{i}\right)^{2} g(X)
$$

We see that $\left(X-\gamma_{i}\right)$ is also a factor of the derivative $f^{\prime}(X)$. So $\left(X-\gamma_{i}\right)$ is a common factor of f and f^{\prime}.

Irreducibility in $\mathbb{Q}[X]$ and Roots in $\mathbb{C}\left(\right.$ Cont'd $\left.^{\prime}\right)$

- Thus, the greatest common factor h of f and f^{\prime} has degree ≥ 1. But the highest common factor of f and f^{\prime} is obtained by Euclid's algorithm in $\mathbb{Q}[X]$, and is a polynomial with rational coefficients that divides into both f and f^{\prime}.
However, f is irreducible.
So its only factors are 1 and f.
Since h has degree at least 1 , we conclude that $h=f$.
But then we obtain $f \mid f^{\prime}$.
This contradicts the fact that the degree of f is bigger than the degree of f^{\prime}, which is a nonzero polynomial (as f has degree $d \geq 1$).

Irreducibility and Characteristic of the Field

- More generally, the proof of the lemma shows that any irreducible polynomial over a field of characteristic 0 has distinct roots.
- In characteristic p, things change.
- Here it is possible for an irreducible polynomial to have derivative 0 .
- The polynomial may only involve terms in X^{P}.
- Their derivatives then are divisible by p, and vanish.

Example: In a field of characteristic p, consider the polynomial

$$
f(X)=X^{p} .
$$

$f(X)$ is not irreducible.
It is, however, an example where f divides f^{\prime}, as $f^{\prime}=0$.

The Primitive Element Theorem

Theorem (Primitive Element)

Suppose $K \subseteq L$ is a finite extension of fields of characteristic 0 (e.g., number fields). Then $L=K(\gamma)$, for some element $\gamma \in L$.

- Suppose L is generated over K by m elements.

We first treat the case $m=2$. Suppose $L=K(\alpha, \beta)$.
Let f and g denote the minimal polynomials of α and β over K.
Suppose $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{s}$ are the roots of f in \mathbb{C}.
Suppose $\beta_{1}=\beta, \beta_{2}, \ldots, \beta_{t}$ are the roots of g in \mathbb{C}.
Irreducible polynomials always have distinct roots.
Thus, if $j \neq 1, \alpha_{i}+X \beta_{j}=\alpha_{1}+X \beta_{1}$ has a unique solution

$$
X=\frac{\alpha_{i}-\alpha_{1}}{\beta_{1}-\beta_{j}} .
$$

Choose a $c \in K$ different from each of these X 's.
Then each $\alpha_{i}+c \beta_{j}$ is different from $\alpha+c \beta$.

The Primitive Element Theorem (Cont'd)

Claim: $\gamma=\alpha+c \beta$ generates L over K.
Certainly $\gamma \in K(\alpha, \beta)=L$.
It suffices to verify that $\alpha, \beta \in K(\gamma)$.
Consider the polynomials $g(X)$ and $f(\gamma-c X)$.
They both have coefficients in $K(\gamma)$.
Moreover, they both have β as a root.
The other roots of $g(X)$ are $\beta_{2}, \ldots, \beta_{t}$.
Moreover, $\gamma-c \beta_{j}$ is not any α_{i}, unless $i=j=1$.
So β is the only common root of $g(X)$ and $f(\gamma-c X)$.
Thus, $(X-\beta)$ is the highest common factor of $g(X)$ and $f(\gamma-c X)$.
But the highest common factor is a polynomial defined over any field containing the coefficients of the original two polynomials. In particular, it follows that $X-\beta$ has coefficients in $K(\gamma)$.
So $\beta \in K(\gamma)$. Then $\alpha=\gamma-c \beta \in K(\gamma)$.

The Primitive Element Theorem (The Case $m>2$)

- Consider the case where $m>2$.

We can prove this using the result for $m=2$.
Suppose $L=K\left(\alpha_{1}, \ldots, \alpha_{m}\right)$.
View Las

$$
K\left(\alpha_{1}, \ldots, \alpha_{m-2}\right)\left(\alpha_{m-1}, \alpha_{m}\right) .
$$

The case $m=2$ allows us to write this as

$$
K\left(\alpha_{1}, \ldots, \alpha_{m-2}\right)\left(\gamma_{m-1}\right)
$$

Rewrite this as

$$
K\left(\alpha_{1}, \ldots, \alpha_{m-3}\right)\left(\alpha_{m-2}, \gamma_{m-1}\right) .
$$

Use, again, the case $m=2$ to reduce the number further.
Continuing in this way, we eventually get down to just one element.

Consequence for Number Fields

- The preceding proof uses properties of fields of characteristic 0 in two places.
- When using the fact that irreducible polynomials always have distinct roots, which is true for any field of characteristic 0 .
- When choosing a value of c different from all values in some finite set, which we can do because fields of characteristic 0 are infinite.

Corollary

Let K be a number field. Then $K=\mathbb{Q}(\gamma)$, for some element γ.

Example

- By the corollary, it should be possible to express the number field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ as $\mathbb{Q}(\gamma)$, for some element γ.
By the proof of the theorem, it seems that we should be able to take $\gamma=\sqrt{2}+c \sqrt{3}$ for almost any choice of c (only finitely many values might be excluded).
We try $c=1$, so that $\gamma=\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
Then we have

```
- \(1=1\);
- \(\gamma=\sqrt{2}+\sqrt{3}\);
- \(\gamma^{2}=(\sqrt{2}+\sqrt{3})^{2}=5+2 \sqrt{6}\);
- \(\gamma^{3}=(\sqrt{2}+\sqrt{3})(5+2 \sqrt{6})=11 \sqrt{2}+9 \sqrt{3}\).
```

We see that

$$
\sqrt{2}=\frac{\gamma^{3}-9 \gamma}{2} \quad \text { and } \quad \sqrt{3}=\frac{11 \gamma-\gamma^{3}}{2} .
$$

Example (Cont'd)

- We got

$$
\sqrt{2}=\frac{\gamma^{3}-9 \gamma}{2} \quad \text { and } \quad \sqrt{3}=\frac{11 \gamma-\gamma^{3}}{2}
$$

It follows that both $\sqrt{2}$ and $\sqrt{3}$ can be written as polynomials in γ.
So $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\gamma)$.
Therefore,

$$
\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\gamma)
$$

On the other hand, $\gamma \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
This gives the other inclusion

$$
\mathbb{Q}(\gamma) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})
$$

Subsection 5

Integrality

Integers in a Number Field

- When we "do number theory", we almost always refer to properties of the integers \mathbb{Z}, rather than \mathbb{Q}.
- So to work in a number field K, we need to define a subset \mathbb{Z}_{K} of "integers in K".
- We impose the following requirements.
- \mathbb{Z}_{K} should be a ring, so that we can add, subtract and multiply in \mathbb{Z}_{K};
- The integers in \mathbb{Q} turn out to be \mathbb{Z};
- Given two number fields $K \subseteq L$ and an element $\alpha \in K, \alpha$ is an integer in K if and only if it is an integer in L.
That is, if $K \subseteq L$ is an extension of number fields,

$$
\mathbb{Z}_{L} \cap K=\mathbb{Z}_{K} .
$$

A Failed First Attempt

- We looked at the Gaussian integers,

$$
\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\} .
$$

- They seemed to have the appropriate properties in $\mathbb{Q}(i)$.
- It seems reasonable to hope that our definition of integers should give $\mathbb{Z}[i]$ as the integers for $\mathbb{Q}(i)$.
- We also know that every number field can be written in the form $\mathbb{Q}(\gamma)$.
- So, at first glance, it might seem reasonable to suggest that we define its integers to be $\mathbb{Z}[\gamma]$.

A Failed First Attempt (Cont'd)

- $\mathbb{Z}[\gamma]$ is a ring whose elements are polynomials in γ with integer coefficients.
- Any two of these can be added, subtracted or multiplied.
- In addition, $\mathbb{Z}[\gamma]$ gives the right answer for $\mathbb{Q}(i)$.
- Unfortunately, this is not a good definition.
- A number field may be written in more than one way as $\mathbb{Q}(\gamma)$.
- These expressions may give different answers for the integers.

Example: Note that $\sqrt{8}=2 \sqrt{2}$.
Therefore, $\mathbb{Q}(\sqrt{8})=\mathbb{Q}(\sqrt{2})$.
But $\mathbb{Z}[\sqrt{8}] \neq \mathbb{Z}[\sqrt{2}]$, since $\sqrt{2} \notin \mathbb{Z}[\sqrt{8}]$.

Algebraic Integers

- Associated to α is its minimal polynomial over \mathbb{Q}.
- Recall that this is the monic polynomial with rational coefficients of smallest degree which has α as a root.

Definition

Let α be an algebraic number. We say that α is an algebraic integer if the minimal polynomial of α over \mathbb{Q} has coefficients in \mathbb{Z}.

Examples:

1. Every integer n is an algebraic integer. Its minimal polynomial over \mathbb{Q} is $X-n$.
The coefficients of this polynomial are indeed integral.
2. i is an algebraic integer.

Its minimal polynomial is $X^{2}+1$, which is in $\mathbb{Z}[X]$.
3. $\sqrt{2}$ is an algebraic integer.

Its minimal polynomial is $X^{2}-2$, again in $\mathbb{Z}[X]$.

More Examples

Examples (Cont'd):
4. $\omega=\frac{-1+\sqrt{-3}}{2}$ is an algebraic integer

It is a root of the polynomial $X^{2}+X+1$.
This polynomial is irreducible.
So it must be the minimal polynomial of ω.
5. $\frac{-1+\sqrt{3}}{2}$ is not an algebraic integer.

Its minimal polynomial is $X^{2}+X-\frac{1}{2}$.
This involves fractional coefficients.
6. π is not an algebraic integer.

It is not even an algebraic number.

- It may be surprising that $\frac{-1+\sqrt{-3}}{2}$ is an integer, but $\frac{-1+\sqrt{3}}{2}$ is not.
- Otherwise, the definition looks reasonable.

Sufficient Condition for Integrality

Lemma

Suppose that α satisfies any monic polynomial with coefficients in \mathbb{Z}. Then α is an algebraic integer.

- Suppose α is a root of the monic polynomial $f(X) \in \mathbb{Z}[X]$. Let $m(X) \in \mathbb{Q}[X]$ denote the minimal polynomial of α over \mathbb{Q}.
We will show that $m(X) \in \mathbb{Z}[X]$.
We have already seen that $m(X) \mid f(X)$.
So $f(X)=q(X) m(X)$, for some polynomial $q(X) \in \mathbb{Q}[X]$.
Since $f(X)$ and $m(X)$ are both monic, clearly $q(X)$ is also.
So $f(X)=q(X) m(X)$ expresses $f(X) \in \mathbb{Z}[X]$ as a product of two monic polynomials $q(X)$ and $m(X)$ with rational coefficients.

Sufficient Condition for Integrality (Cont'd)

- Claim: $q(X)$ and $m(X)$ are both in $\mathbb{Z}[X]$.

Choose positive integers a and b such that:

- $a q(X)$ and $b m(X)$ are polynomials with integer coefficients;
- The highest common factors of the coefficients of $a q(X), b m(X)$ are 1. Indeed, a and b are just the least common multiples of the denominators of the coefficients of q and m, respectively.
Then we have $(a b) f(X)=a q(X) b m(X)$.
If $a b \neq 1$, choose a prime number $p \mid a b$.
There are coefficients of $a q(X)$ and $b m(X)$ not divisible by p.

Sufficient Condition for Integrality (Cont'd)

- So there are also terms in the product whose coefficients are not divisible by p. E.g., consider the term coming from:
- The first term of $a q(X)$ with coefficient not divisible by p;
- The first term of $b m(X)$ with coefficient not divisible by p.

On the other hand, the product is $(a b) f(X)$.
So all the coefficients must be divisible by the integer $a b$.
Therefore, they must be divisible by p.
This contradiction shows that $a b=1$.
Therefore, $a=b=1$, as a and b are positive integers.
So both $q(X)$ and $m(X)$ are already in $\mathbb{Z}[X]$.
In particular, $m(X) \in \mathbb{Z}[X]$.
So the minimal polynomial of α has integral coefficients.

Gauss's Lemma

- We have essentially proven Gauss's Lemma:

Suppose a polynomial $f(X) \in \mathbb{Z}[X]$ is reducible in $\mathbb{Q}[X]$.
Then it is reducible in $\mathbb{Z}[X]$.

- Equivalently, if $f(X)$ factorizes into polynomials with rational coefficients then it factorizes into polynomials with integer coefficients.

Algebraic Numbers and Algebraic Integers

Claim: Every algebraic number has an integer multiple which is an algebraic integer. Equivalently, every algebraic number can be expressed as the quotient of an algebraic integer by an element of \mathbb{Z}.
Suppose that α is an algebraic number.
Then α is the root of some monic polynomial with coefficients in \mathbb{Q},

$$
X^{n}+a_{n-1} X^{n-1}+a_{n-2} X^{n-2}+\cdots+a_{0}=0
$$

Let d be an integer which is a common multiple of all the denominators of a_{n-1}, \ldots, a_{0}. Then $d \alpha$ is a root of

$$
X^{n}+a_{n-1} d X^{n-1}+a_{n-2} d^{2} X^{n-2}+\cdots+a_{0} d^{n}=0
$$

This is a monic polynomial with integer coefficients.
Therefore, $d \alpha$ is an algebraic integer.

Subsection 6

The Ring of All Algebraic Integers

Finitely Generated Modules

- A module M over a ring R is like a vector space over a field.
- We can add two elements of M to get another element of M;
- We can multiply an element of M by an element of R.
- The same rules are satisfied as for vector spaces.
- The theory of modules over rings is a little more complicated than vector spaces over fields, but for now, we just need the concept which is analogous to "finite dimensional" for vector spaces.
- The module $\mathbb{Z}[\alpha]$ is finitely generated over \mathbb{Z} if there are finitely many elements $\omega_{1}, \ldots, \omega_{n} \in \mathbb{Z}[\alpha]$, such that every element of $\mathbb{Z}[\alpha]$ can be written as a sum

$$
a_{1} \omega_{1}+\cdots+a_{n} \omega_{n}
$$

for suitable integers $a_{1}, \ldots, a_{n} \in \mathbb{Z}$.

Algebraic Characterization of Algebraic Integers

Proposition

Let $\alpha \in \mathbb{C}$. The following are equivalent:

1. α is an algebraic integer;
2. $\mathbb{Z}[\alpha]$ is a finitely generated module over \mathbb{Z}.
$(1) \Rightarrow(2)$: Suppose that α is an algebraic integer.
Then α is a root of a monic polynomial $f(X) \in \mathbb{Z}[X]$ of some degree n.
Given any polynomial $g(X) \in \mathbb{Z}[X]$, write

$$
g(X)=q(X) f(X)+r(X), \quad q(X), r(X) \in \mathbb{Z}[X]
$$

where $r(X)=0$ or the degree of $r(X)$ is less than n.
Note that, if $f(X)$ were not monic, we could only deduce that $q(X)$ and $r(X)$ would have rational coefficients.

Algebraic Characterization of Algebraic Integers (Cont'd)

- We wrote

$$
g(X)=q(X) f(X)+r(X), \quad q(X), r(X) \in \mathbb{Z}[X] .
$$

Substitute in $X=\alpha$.
Then $g(\alpha)=r(\alpha)$, as α is a root of f.
So $g(\alpha)$ can be expressed as a polynomial of degree less than n.
So $g(\alpha)$ can be written as a linear combination of

$$
1, \alpha, \ldots, \alpha^{n-1}
$$

with integer coefficients.
Thus, $\mathbb{Z}[\alpha]$ is finitely generated as a \mathbb{Z}-module.

Algebraic Characterization of Algebraic Integers (Converse)

$(2) \Rightarrow(1):$ Suppose that $\mathbb{Z}[\alpha]=\mathbb{Z} \omega_{1}+\cdots+\mathbb{Z} \omega_{n}$.
For each i, the product $\alpha \omega_{i}$ is again in $\mathbb{Z}[\alpha]$.
So it can be written as a linear combination of the spanning set,

$$
\alpha \omega_{i}=\sum_{j=1}^{n} a_{i j} \omega_{j}, \quad a_{i j} \in \mathbb{Z}
$$

Consider the column vector $\boldsymbol{v}=\left(\omega_{1}, \ldots, \omega_{n}\right)^{t}$.
The previous equation implies that $\alpha \boldsymbol{v}=A \boldsymbol{v}$, where $A=\left(a_{i j}\right)$.
That is, \boldsymbol{v} is an eigenvector of A with eigenvalue α.
Therefore, α it is a root of the characteristic polynomial of A.
Characteristic polynomials are always monic.
Note, also, that the entries of A are integral.
So its characteristic polynomial has coefficients in \mathbb{Z}.
Thus, α is a root of a monic polynomial with integer coefficients.
So α is integral.

Algebraic Integers in Rings Containing \mathbb{Z}

- The next result is a corollary to the proof of the previous proposition, and a mild generalization.

Corollary

Let R be a ring containing \mathbb{Z}. If R is finitely generated as a \mathbb{Z}-module, then every element $\alpha \in R$ is the root of a monic polynomial with coefficients in \mathbb{Z}.

- The argument is exactly the same as before.

By hypothesis, R is finitely generated.
So $R=\mathbb{Z} \omega_{1}+\cdots+\mathbb{Z} \omega_{n}$.
For each i, we have $\alpha \omega_{i}=\sum_{j=1}^{n} a_{i j} \omega_{j}$, for some integers $a_{i j} \in \mathbb{Z}$.
Then α is a root of the characteristic polynomial for the matrix $\left(a_{i j}\right)$.

Two Algebraic Integers

Proposition

Suppose that α and β are algebraic integers. Then $\mathbb{Z}[\alpha, \beta]$ is finitely generated as a \mathbb{Z}-module.

- By the proposition, $\mathbb{Z}[\alpha], \mathbb{Z}[\beta]$ are finitely generated as \mathbb{Z}-modules. That is:
- There are elements

$$
\omega_{1}, \ldots, \omega_{m} \in \mathbb{Z}[\alpha],
$$

such that every element of $\mathbb{Z}[\alpha]$ can be written as a \mathbb{Z}-linear combination of these elements;

- There are elements

$$
\theta_{1}, \ldots, \theta_{n} \in \mathbb{Z}[\beta],
$$

such that every element of $\mathbb{Z}[\beta]$ is a \mathbb{Z}-linear combination of these elements.

Two Algebraic Integers

- We show that every element γ of $\mathbb{Z}[\alpha, \beta]$ is a \mathbb{Z}-linear combination of the finite set

$$
\left\{\omega_{i} \theta_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\} .
$$

Now γ can be written as a polynomial

$$
\sum_{k, \ell} a_{k \ell} \alpha^{k} \beta^{\ell}, \quad a_{k \ell} \in \mathbb{Z}
$$

Each $\alpha^{k} \in \mathbb{Z}[\alpha]$.
So it can be written as a \mathbb{Z}-linear combination of $\left\{\omega_{i}: 1 \leq i \leq m\right\}$.
Each $\beta^{j} \in \mathbb{Z}[\beta]$.
So it can be written as a \mathbb{Z}-linear combination of $\left\{\theta_{j}: 1 \leq j \leq n\right\}$. Substituting these in, we see that γ can be written as a \mathbb{Z}-linear combination of the set $\left\{\omega_{i} \theta_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$, as required.

The Ring of Algebraic Integers

Corollary

The set of all algebraic integers forms a ring.

- Let α and β be algebraic integers.

We need to check that $\alpha+\beta, \alpha-\beta$ and $\alpha \beta$ are algebraic integers.
By the preceding proposition, $\mathbb{Z}[\alpha, \beta]$ is finitely generated as a Z-module.
Clearly, $\alpha+\beta \in \mathbb{Z}[\alpha, \beta]$.
By a previous proposition, $\alpha+\beta$ is an algebraic integer.
Now $\alpha-\beta$ and $\alpha \beta$ are also in $\mathbb{Z}[\alpha, \beta]$.
So, by the same argument, they are also integral.

Example

- We illustrate a way to construct polynomials satisfied by the sum (or difference, or product) of two algebraic numbers.
Example: We show that the sum

$$
\theta=\frac{1+\sqrt{5}}{2}+\frac{-1+\sqrt{-3}}{2}=\frac{\sqrt{5}+\sqrt{-3}}{2}
$$

is an algebraic integer, by computing its minimal polynomial.
Write

$$
\alpha=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \beta=\frac{-1+\sqrt{-3}}{2} .
$$

α has minimal polynomial $X^{2}-X-1$.
β has minimal polynomial $X^{2}+X+1$.
Form the vector $\boldsymbol{v}=(1 \alpha \beta \alpha \beta)^{t}$.
We are going to find matrices A and B, with entries in \mathbb{Z}, such that

$$
A \boldsymbol{v}=\alpha \boldsymbol{v} \quad \text { and } \quad B \boldsymbol{v}=\beta \boldsymbol{v} .
$$

Example (Cont'd)

- For $\boldsymbol{v}=(1 \alpha \beta \alpha \beta)^{t}$, we seek A and B, with entries in \mathbb{Z}, such that

$$
A \boldsymbol{v}=\alpha \boldsymbol{v} \quad \text { and } \quad B \boldsymbol{v}=\beta \boldsymbol{v} .
$$

That is, α is an eigenvalue of A, and β is an eigenvalue of B.
Then $(A+B) \boldsymbol{v}=(\alpha+\beta) \boldsymbol{v}$.
So $\alpha+\beta$ is an eigenvalue of $A+B$.
It is therefore a root of the characteristic polynomial of $A+B$, which is defined over \mathbb{Z}, since the entries of $A+B$ are integers.
This gives a polynomial with $\alpha+\beta$ as a root.

Example (Matrix A)

- We first try to construct the matrix A. We must have

$$
A\left(\begin{array}{c}
1 \\
\alpha \\
\beta \\
\alpha \beta
\end{array}\right)=\alpha\left(\begin{array}{c}
1 \\
\alpha \\
\beta \\
\alpha \beta
\end{array}\right)=\left(\begin{array}{c}
\alpha \\
\alpha^{2} \\
\alpha \beta \\
\alpha^{2} \beta
\end{array}\right) .
$$

But α is a root of $X^{2}=X+1$. So $\alpha^{2}=\alpha+1$. Thus, we need to solve

$$
A\left(\begin{array}{c}
1 \\
\alpha \\
\beta \\
\alpha \beta
\end{array}\right)=\left(\begin{array}{c}
\alpha \\
\alpha+1 \\
\alpha \beta \\
(\alpha+1) \beta
\end{array}\right)
$$

We find $A=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$.

Example (Matrix B)

- Similarly, we can find a matrix B with the property that

$$
B\left(\begin{array}{c}
1 \\
\alpha \\
\beta \\
\alpha \beta
\end{array}\right)=\beta\left(\begin{array}{c}
1 \\
\alpha \\
\beta \\
\alpha \beta
\end{array}\right)=\left(\begin{array}{c}
\beta \\
\alpha \beta \\
\beta^{2} \\
\alpha \beta^{2}
\end{array}\right)=\left(\begin{array}{c}
\beta \\
\alpha \beta \\
-(\beta+1) \\
-\alpha(\beta+1)
\end{array}\right)
$$

We take

$$
B=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1
\end{array}\right)
$$

Example (Matrix $A+B$)

- Then

$$
A+B=\left(\begin{array}{rrrr}
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
-1 & 0 & -1 & 1 \\
0 & -1 & 1 & 0
\end{array}\right)
$$

Our preceding argument shows that θ should be a root of the characteristic polynomial of $A+B$.
In the same way, note that

$$
A B \mathbf{v}=A(B \mathbf{v})=A(\beta \mathbf{v})=\beta(A \mathbf{v})=\alpha \beta \mathbf{v} .
$$

So $\alpha \beta$ is an eigenvalue of $A B$.
So $\alpha \beta$ is a root of the characteristic polynomial of $A B$.

Generalizing the Method

- Suppose α is a root of an equation of degree m.

Suppose β is a root of an equation of degree n.
Form the vector of length $m n$:

$$
\boldsymbol{v}=\left(1, \ldots, \alpha^{m-1}, \beta, \ldots, \alpha^{m-1} \beta, \ldots, \beta^{n-1}, \ldots, \alpha^{m-1} \beta^{n-1}\right)^{t}
$$

As in the example above, we can find $m n \times m n$-matrices A and B, such that

$$
A \boldsymbol{v}=\alpha \boldsymbol{v} \quad \text { and } \quad B \boldsymbol{v}=\beta \boldsymbol{v} .
$$

Then A and B will be $m n \times m n$-matrices.
$\alpha+\beta, \alpha-\beta$ and $\alpha \beta$ are eigenvalues of $A+B, A-B$ and $A B$, respectively (with \boldsymbol{v} as eigenvector).
The characteristic polynomials of $A+B, A-B$ and $A B$ have degree $m n$.

Generalizing the Method (Cont'd)

- Suppose α and β are both algebraic integers.

Then the matrices A and B have entries in \mathbb{Z}.
So the entries of $A+B, A-B$ and $A B$ are all also in \mathbb{Z}.
Therefore, the characteristic polynomials of these matrices are all integral.
Moreover, they are monic, by definition.
This gives another proof that the eigenvalues $\alpha+\beta, \alpha-\beta$ and $\alpha \beta$ are all algebraic integers.

Difference, Products and Quotients of Algebraic Numbers

- The same method also shows that the sum, difference and product of any two algebraic numbers is again algebraic.
- The two matrices A and B will in general no longer be integral, but have rational entries.
- We can extend the method to the case of quotients. If $\beta \neq 0$, then B will be invertible. Then \boldsymbol{v} is an eigenvector of $A B^{-1}$ with eigenvalue $\frac{\alpha}{\beta}$.
This quotient is a root of the characteristic polynomial of the rational matrix $A B^{-1}$.

Subsection 7

Rings of Integers of Number Fields

Integers in a Number Field

Definition

Let K be a number field. Then the integers in K are

$$
\mathbb{Z}_{K}=\{\alpha \in K: \alpha \text { is an algebraic integer }\} .
$$

- We first check that this gives the right answer for \mathbb{Q}.

A rational $a \in \mathbb{Q}$ has minimal polynomial $X-a$.
The coefficients are in \mathbb{Z} if and only if $a \in \mathbb{Z}$.
So the integers in \mathbb{Q} according to the definition are indeed \mathbb{Z}.

- Assume, next, $K \subseteq L$ is an extension of number fields and $\alpha \in K$. Then α is an integer in K if and only if it is an integer in L.
This follows simply because the condition determining whether or not α is an algebraic integer makes no reference to any field K.

The Ring of Integers of K

Corollary

Let K be a number field. Then \mathbb{Z}_{K} is a ring.

- Suppose $\alpha, \beta \in \mathbb{Z}_{K}$.

We need to check that $\alpha+\beta, \alpha-\beta$ and $\alpha \beta$ all lie in \mathbb{Z}_{K}.
They certainly all lie in K.
By a previous corollary, they are all algebraic integers.
So they lie in \mathbb{Z}_{K}.
Remark: \mathbb{Z}_{K} is even an integral domain.
Indeed $\mathbb{Z}_{K} \subseteq K$. As K is a field, $\mathbb{Z}_{K} \subseteq K$ has no zero-divisors.

- \mathbb{Z}_{K} is called the ring of integers of K.

Characterization of \mathbb{Z}_{K}

- A generalization of a preceding proposition allows us to characterize the ring of integers \mathbb{Z}_{K} as the largest subring of K which is a finitely generated \mathbb{Z}-module.

Proposition

Suppose R is a subring of a number field K, and that R is finitely generated as a \mathbb{Z}-module. Then $R \subseteq \mathbb{Z}_{K}$.

- Let R is a subring of a number field K.

Suppose R is finitely generated as a \mathbb{Z}-module and $\alpha \in R$.
By a previous corollary, α is the root of a monic polynomial with coefficients in \mathbb{Z}.
Therefore, $\alpha \in \mathbb{Z}_{K}$.

Ring of Integers in $\mathbf{Q}(\sqrt{d})$

Proposition

Suppose that d is a squarefree integer (i.e., not divisible by the square of any prime). Then:

1. If $d \equiv 2$ or $3(\bmod 4)$, then the ring of integers in $\mathbb{Q}(\sqrt{d})$ is

$$
\mathbb{Z}[\sqrt{d}]=\{a+b \sqrt{d}: a, b \in \mathbb{Z}\} .
$$

2. If $d \equiv 1(\bmod 4)$, then the ring of integers in $\mathbb{Q}(\sqrt{d})$ is

$$
\mathbb{Z}\left[\rho_{d}\right]=\left\{a+b \rho_{d}: a, b \in \mathbb{Z}\right\},
$$

where $\rho_{d}=\frac{1+\sqrt{d}}{2}$.

Ring of Integers in $\mathbf{Q}(\sqrt{d})$

- Let $\alpha=a+b \sqrt{d}$, with $a, b \in \mathbb{Q}$.

Then α satisfies the equation $(X-a)^{2}=b^{2} d$.
Equivalently,

$$
X^{2}-2 a X+\left(a^{2}-b^{2} d\right)=0
$$

We seek conditions on a and b to make this have integer coefficients. This implies that $2 a \in \mathbb{Z}$ and $a^{2}-b^{2} d \in \mathbb{Z}$.
The first condition implies $a \in \mathbb{Z}$ or $a=\frac{A}{2}$, where A is an odd integer. If $a \in \mathbb{Z}$, the second condition becomes $b^{2} d \in \mathbb{Z}$.
As d is squarefree, this requires $b \in \mathbb{Z}$.
So the set

$$
\{a+b \sqrt{d}: a, b \in \mathbb{Z}\}
$$

is always contained in the ring of integers.

Ring of Integers in $\mathbb{Q}(\sqrt{d})$ (Cont'd)

- We examine when $a=\frac{A}{2}, A$ an odd integer, can arise.

We need $\frac{A^{2}}{4}-b^{2} d \in \mathbb{Z}$. Equivalently, $A^{2}-4 b^{2} d \equiv 0(\bmod 4)$.
This certainly requires $4 b^{2} d \in \mathbb{Z}$.
As d is squarefree, $2 b$ must be an integer, B say.
Further, b itself cannot be in \mathbb{Z}. Otherwise, $\frac{A^{2}}{4}-b^{2} d \notin \mathbb{Z}$.
Thus B is an odd integer.
Then $A^{2}-B^{2} d \equiv 0(\bmod 4)$, with A and B odd integers.
But the squares of odd numbers are all $1(\bmod 4)$.
Thus, $1-d \equiv 0(\bmod 4)$.

- If $d \equiv 1(\bmod 4)$, the second case can arise. The integers are
$\{a+b \sqrt{d}$: either $a, b \in \mathbb{Z}$, or both a and b are halves of odd integers $\}$.
This set is easily seen to be the same as that of the statement.
- If $d \not \equiv 1(\bmod 4)$, then the only integers are $\{a+b \sqrt{d}: a, b \in \mathbb{Z}\}$.

Remarks on the Ring of Integers of $Q(\sqrt{d})$

- If $d=-1$, so that $d \equiv 3(\bmod 4)$, this result shows that the ring of integers of $\mathbb{Q}(i)$ is $\mathbb{Z}[i]$.
- The ring of integers of $\mathbb{Q}(\sqrt{d})$ is not always just $\mathbb{Z}[\sqrt{d}]$.

Although every element in $\mathbb{Z}[\sqrt{d}]$ is an algebraic integer, there are sometimes additional integers.

Examples:

- If $d=-3$, then $\frac{-1+\sqrt{-3}}{2}$ is an integer.

It it is a root of $X^{2}+X+1$.

- If $d=5$, then $\frac{1+\sqrt{5}}{2}$ is an integer.

It is a root of $X^{2}-X-1$.

