Introduction to Algebraic Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Fields, Discriminants, Integral Bases

- Embeddings
- Norms and Traces
- The Discriminant
- Integral Bases
- Further Theory of the Discriminant
- Rings of Integers in Some Cubic and Quadratic Fields

Subsection 1

Embeddings

Introducing Conjugates of Algebraic Numbers

- Suppose that K is a number field and that $[K: \mathbb{Q}]=n$.
- By a previous corollary, there exists $\gamma \in K$, such that $K=\mathbb{Q}(\gamma)$.
- Let f denote the minimal polynomial of γ over \mathbb{Q}.
- By a previous corollary, f has degree n.
- Now \mathbb{C} is algebraically closed.
- So we can factor $f(X)$ completely over \mathbb{C}.
- That is, if $\gamma_{1}, \ldots, \gamma_{n} \in \mathbb{C}$ are the (complex) roots of f,

$$
f(X)=\prod_{i=1}^{n}\left(X-\gamma_{i}\right)
$$

One of these is γ itself, so we will assume $\gamma_{1}=\gamma$.

Conjugates of Algebraic Numbers

Definition

If $\gamma \in K$ has $f(X) \in \mathbb{Q}[X]$ as its minimal polynomial as above, then the roots $\gamma_{1}, \ldots, \gamma_{n}$ are the conjugates of γ.

- Conjugate elements have the same minimal polynomial.
- Indeed, $\gamma_{1}, \ldots, \gamma_{n}$ are all roots of the monic irreducible polynomial f.
- So f is the minimal polynomial for each of them.
- By a previous lemma, the conjugates of an algebraic number are all distinct.

Algebraic Conjugates and Complex Conjugates

Example: Suppose that $\alpha=i$.
Then its minimal polynomial is $X^{2}+1$.
The two complex roots of this are $\pm i$.
Thus, the two conjugates of i are i and $-i$.
Claim: Suppose that $\alpha=a+b i \in \mathbb{Q}(i)$.
Then its conjugates (in the sense above) are just α and $\bar{\alpha}$.

- Thus, the conjugates of a complex number (in this sense) are the same as the conjugates (in the familiar sense).

A Mild Generalization

- The concept of conjugacy generalizes somewhat.
- Let $L \subseteq K$ be an extension of fields.
- Suppose $\alpha \in K$ has minimal polynomial $f(X) \in L[X]$ over L.
- Then the conjugates of α over L are the roots of f.

Homomorphisms Induced by Conjugates

- Suppose $K=\mathbb{Q}(\gamma)$.
- Then, given any element of K, we can write it as a polynomial expression in γ with coefficients in \mathbb{Q}.
- For each $k=1, \ldots, n$, consider the map

$$
\sigma_{k}: \gamma \mapsto \gamma_{k}
$$

- This map induces a field homomorphism

$$
\begin{aligned}
\sigma_{k}: \mathbb{Q}(\gamma) & \rightarrow \mathbb{Q}\left(\gamma_{k}\right) \subseteq \mathbb{C} ; \\
\sum_{i=0}^{n-1} x_{i} \gamma^{i} & \mapsto \sum_{i=0}^{n-1} x_{i} \gamma_{k}^{i} .
\end{aligned}
$$

Homomorphisms Are Well-Defined

- The map σ_{k} is well-defined.

That is, if the same element of $\mathbb{Q}(\gamma)$ can be written in two different ways as a polynomial expression of γ, then applying σ_{k} to either expression gives the same answer.
Suppose $g_{1}(\gamma)=g_{2}(\gamma)$.
Then γ is a root of $g_{1}-g_{2}$.
So the minimal polynomial of γ divides $g_{1}-g_{2}$.
But this minimal polynomial is just f.
Now γ_{k} is also a root of f.
Thus, $f\left(\gamma_{k}\right)=0$.
So $g_{1}\left(\gamma_{k}\right)=g_{2}\left(\gamma_{k}\right)$.

Injectivity of Conjugate Homomorphisms

Claim: All maps σ_{i} are injective.
Suppose $g_{1}(\gamma)$ and $g_{2}(\gamma)$ are two elements of $K=\mathbb{Q}(\gamma)$, such that

$$
\sigma_{k}\left(g_{1}(\gamma)\right)=\sigma_{k}\left(g_{2}(\gamma)\right)
$$

By definition of $\sigma_{k}, g_{1}\left(\gamma_{k}\right)=g_{2}\left(\gamma_{k}\right)$.
So γ_{k} must be a root of $g_{1}-g_{2}$.
Therefore, the minimal polynomial of γ_{k} divides $g_{1}-g_{2}$.
But this minimal polynomial is exactly f.
So $f \mid g_{1}-g_{2}$. Hence, $g_{1}(\gamma)=g_{2}(\gamma)$.

Definition

An embedding means an injective field homomorphism.

- Thus, $\sigma_{1}, \ldots, \sigma_{n}$ are all embeddings.

Embeddings of a Number Field into \mathbb{C}

Proposition

If K is a number field of degree n, then the maps $\sigma_{1}, \ldots, \sigma_{n}$ are all of the n distinct field embeddings $K \rightarrow \mathbb{C}$.

- The arguments just given show that they are all well-defined injective field homomorphisms.
Conversely, suppose $\sigma: K \rightarrow \mathbb{C}$ is a field homomorphism and $K=\mathbb{Q}(\gamma)$. Then σ must be determined by its effect on γ, as

$$
\sigma\left(\sum_{i=0}^{n-1} x_{i} \gamma^{i}\right)=\sum_{i=0}^{n-1} x_{i} \sigma(\gamma)^{i}
$$

Embeddings of a Number Field into \mathbb{C} (Cont'd)

- Now apply σ to the equality $f(\gamma)=0$ to get

$$
f(\sigma(\gamma))=\sigma(f(\gamma))=\sigma(0)=0
$$

So $\sigma(\gamma)$ is a root of f.
This shows that $\sigma(\gamma)=\gamma_{k}$, for some k.
It is then clear that $\sigma=\sigma_{k}$.

Example

- Consider the field $K=\mathbb{Q}(i)$.
- We have already seen that the conjugates of i are i and $-i$.
- So we get two embeddings from K into \mathbb{C}, given by

$$
\begin{aligned}
\sigma_{1}(a+b i) & =a+b i \\
\sigma_{2}(a+b i) & =a-b i
\end{aligned}
$$

- This gives us two ways to think of $\mathbb{Q}(i)$ as a subfield of \mathbb{C}.

Remark

- It is sometimes important when writing $\mathbb{Q}(\sqrt{2})$, say, to keep in mind that:
- The element " $\sqrt{2}$ " should be regarded as just an abstract square root of 2;
- This element is not necessarily to be identified with the positive real number 1.4142....
- We are writing $\mathrm{Q}(\sqrt{2})$ as a shorthand for
" $\mathrm{Q}(\alpha)$ where α is some number with $\alpha^{2}=2$ ".
- Choosing an embedding from $\mathbb{Q}(\sqrt{2})$ into \mathbb{C} is tantamount to identifying the abstract element $\sqrt{2}$ with the particular number $1.4142 \ldots$ or $-1.4142 \ldots$.

Extending Embeddings into \mathbb{C} to Field Extensions

Proposition

Suppose that $K \subseteq L$ is a finite extension of fields, and that we have a fixed embedding $\iota: K \rightarrow \mathbb{C}$. Then there are $[L: K]$ ways to extend the embedding ι to an embedding $L \rightarrow \mathbb{C}$ (that is, to define embeddings $L \rightarrow \mathbb{C}$ which agree with ι on the elements of L that belong to K).

- By the Theorem of the Primitive Element, we can write $L=K(\gamma)$, where γ has minimal polynomial over K of degree $n=[L: K]$. Let $\gamma_{1}, \ldots, \gamma_{n}$ denote the roots of the minimal polynomial.
Define extensions $\sigma_{k}: L \rightarrow \mathbb{C}$ by insisting that

$$
\sigma_{k}\left(\sum_{i=0}^{n-1} x_{i} \gamma^{i}\right)=\sum_{i=0}^{n-1} \iota\left(x_{i}\right) \gamma_{k}^{i} .
$$

The verification that these are all the embeddings is then identical to the previous arguments.

Example

- Suppose that K is a number field, and that $\alpha \in K$.
- We look at the images of α under each of the embeddings.

Example: Suppose that $K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$, and that $\alpha=\sqrt{6}$.
The embeddings from K into \mathbb{C} are given by:

$$
\begin{aligned}
& \sigma_{1}(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})=a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} ; \\
& \sigma_{2}(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})=a+b \sqrt{2}-c \sqrt{3}-d \sqrt{6} ; \\
& \sigma_{3}(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})=a-b \sqrt{2}+c \sqrt{3}-d \sqrt{6} ; \\
& \sigma_{4}(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})=a-b \sqrt{2}-c \sqrt{3}+d \sqrt{6} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sigma_{1}(\sqrt{6})=\sigma_{4}(\sqrt{6})=\sqrt{6}, \\
& \sigma_{2}(\sqrt{6})=\sigma_{3}(\sqrt{6})=-\sqrt{6} .
\end{aligned}
$$

These images are just the conjugates of $\sqrt{6}$, but each occurs twice.

Degree of a Tower of Extensions

Theorem

Suppose that $K \subseteq L \subseteq M$ is a "tower" of fields. Assume M is a finite extension of L, and L is a finite extension of K. Then we have

$$
[M: K]=[M: L][L: K] .
$$

- Suppose that $[M: L]=m$ and $[L: K]=n$.

Then the following hold.

- There are elements $\omega_{1}, \ldots, \omega_{n}$, such that every element of L is a linear combination of $\omega_{1}, \ldots, \omega_{n}$, with coefficients in K;
- There are elements $\theta_{1}, \ldots, \theta_{m}$, such that every element of M is a linear combination of $\theta_{1}, \ldots, \theta_{m}$, with coefficients in L.

Degree of a Tower of Extensions (Cont'd)

Claim: $\left\{\theta_{i} \omega_{j}\right\}$ is a basis for M as a K-vector space.
Let $\mu \in M$.
Express it first as a linear combination of

$$
\theta_{1}, \ldots, \theta_{m}
$$

with coefficients in L.
Then express each of these coefficients as linear combinations of

$$
\omega_{1}, \ldots, \omega_{n}
$$

with coefficients in K.
This shows that μ can be written as a linear combination of $\left\{\theta_{i} \omega_{j}\right\}$, with coefficients in K.

Degree of a Tower of Extensions (Cont'd)

Claim: These $\left\{\theta_{i} \omega_{j}\right\}$ form a linearly independent set.
To see this, we take a linear combination which is 0 ,

$$
\alpha_{11} \theta_{1} \omega_{1}+\alpha_{12} \theta_{1} \omega_{2}+\cdots+\alpha_{1 n} \theta_{1} \omega_{n}+\alpha_{21} \theta_{2} \omega_{1}+\cdots+\alpha_{m n} \theta_{m} \omega_{n}=0 .
$$

Rearrange this as

$$
\left(\alpha_{11} \omega_{1}+\cdots+\alpha_{1 n} \omega_{n}\right) \theta_{1}+\cdots+\left(\alpha_{m 1} \omega_{1}+\cdots+\alpha_{m n} \omega_{n}\right) \theta_{m}=0
$$

Now this is a linear combination of $\theta_{1}, \ldots, \theta_{m}$ with coefficients in L. Since they form a basis, each of the coefficients must vanish,

$$
\alpha_{i 1} \omega_{1}+\cdots+\alpha_{i n} \omega_{n}=0, \text { for all } i
$$

Now $\omega_{1}, \ldots, \omega_{n}$ forms a basis for L as a vector space over K.
So we again conclude that each $\alpha_{i j}=0$.
Thus, $\left\{\theta_{i} \omega_{j}\right\}$ form a basis for M over K.
It follows that $[M: K]=m n$.

The Degree d_{α} and r_{α}

- Consider a number field K of degree n over \mathbb{Q}.
- Suppose $\alpha \in K$ with minimal polynomial $g(X) \in \mathbb{Q}[X]$.
- Then α generates a field $\mathbb{Q}(\alpha)$ contained in K.
- If g has degree d_{α}, then $[\mathbb{Q}(\alpha): \mathbb{Q}]=d_{\alpha}$.
- Suppose that the conjugates of α are written

$$
\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{d_{\alpha}}
$$

- Form the tower of fields $\mathbb{Q} \subseteq \mathbb{Q}(\alpha) \subseteq K$.
- We know that

$$
[K: \mathbb{Q}]=[K: \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha): \mathbb{Q}]
$$

- So we see that $d_{\alpha} \mid n$.
- Write $r=r_{\alpha}$ for $\frac{n}{d_{\alpha}}$.

Images of α under the σ_{i} 's

Proposition

The images $\sigma_{i}(\alpha)$ are the conjugates $\left\{\alpha_{1}, \ldots, \alpha_{d_{\alpha}}\right\}$, each occurring with multiplicity r_{α}.

- We have extension fields $\mathbb{Q} \subseteq \mathbb{Q}(\alpha) \subseteq K$.

By a previous proposition, we know that there are d_{α} embeddings

$$
\iota_{k}: \mathbb{Q}(\alpha) \rightarrow \mathbb{C}
$$

The embedding t_{k} is determined by the property that $t_{k}(\alpha)=\alpha_{k}$.
Choose any of these embeddings $\iota_{k}: \mathbb{Q}(\alpha) \rightarrow \mathbb{C}$.
The extension $\mathbb{Q}(\alpha) \subseteq K$ has degree r_{α}.
By a previous proposition, the embedding t_{k} extends to an embedding $K \rightarrow \mathbb{C}$ in r_{α} ways.

Images of α under the σ_{i} 's (Cont'd)

- By definition of an extension, each extension of ι_{k} maps α to α_{k}. We can perform this extension for each of the d_{α} embeddings l_{k}. In this way each embedding is extended in r_{α} ways.
We thus obtain $d_{\alpha} r_{\alpha}=n$ embeddings from K to \mathbb{C}.
But there are exactly n embeddings from K into \mathbb{C}.
Thus, all of the embeddings $\sigma_{i}: K \rightarrow \mathbb{C}$ have been obtained.
Moreover, as we have seen, α is taken to each of its conjugates $\left\{\alpha_{1}, \ldots, \alpha_{d_{\alpha}}\right\}$ with multiplicity r_{α}.

The Product with Factors $X-\sigma_{k}(\alpha)$

Corollary

Suppose α in K has minimal polynomial g of degree d_{α}, and that $r_{\alpha}=\frac{n}{d_{\alpha}}$. Then

$$
\prod_{i=1}^{n}\left(X-\sigma_{k}(\alpha)\right)=g(X)^{r_{\alpha}}
$$

- Both sides are monic polynomials with the same roots.

Subsection 2

Norms and Traces

Multiplication by α

- Let K be a number field, with $[K: \mathbb{Q}]=n$.
- Suppose that $\alpha \in K$.
- Multiplication by α gives a map

$$
m_{\alpha}: K \rightarrow K ; \quad x \mapsto \alpha x .
$$

Claim: This map is Q-linear.
It is easy to see that, for $x, x^{\prime} \in K$ and $t \in \mathbb{Q}$,

$$
\begin{aligned}
m_{\alpha}\left(x+x^{\prime}\right) & =\alpha\left(x+x^{\prime}\right)=\alpha x+\alpha x^{\prime}=m_{\alpha}(x)+m_{\alpha}\left(x^{\prime}\right) \\
m_{\alpha}(t x) & =\alpha(t x)=t(\alpha x)=t m_{\alpha}(x) .
\end{aligned}
$$

- The map is even K-linear, since $m_{\alpha}(t x)=t m_{\alpha}(x)$, for $t \in K$.

Trace and Norm of an Element in a Number Field

- Choose a basis for K over \mathbb{Q}.
- Then the map m_{α} is represented by an $n \times n$-matrix.
- We define:
- The trace of α, written $T_{K / Q}(\alpha)$, to be the trace of this matrix;
- The norm of α, written $N_{K / Q}(\alpha)$, to be the determinant of the matrix.
- Choosing a different basis would give a conjugate $n \times n$-matrix representing the map.
- By a result in Linear Algebra, the trace and determinant of an endomorphism do not depend on the choice of basis.
- When the field K is clearly understood, we may simply write $N(\alpha)$ and $T(\alpha)$ for the norm and trace.
- If L / K is an extension of number fields, there is an analogous notion of $T_{L / K}$ and $N_{L / K}$.

Example

- Suppose that $K=Q(\sqrt{2}, \sqrt{3})$ and take $\alpha=\sqrt{2}+\sqrt{3}$.

Choose a basis $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ for K.
Multiplying by α has the following effect,

$$
\alpha(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})=(2 b+3 c)+(a+3 d) \sqrt{2}+(a+2 d) \sqrt{3}+(b+c) \sqrt{6} .
$$

Interpreted as a map on coefficients $\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right) \mapsto\left(\begin{array}{c}2 b+3 c \\ a+3 d \\ a+2 d \\ b+c\end{array}\right)$.
This is the map given by multiplication by $\left(\begin{array}{cccc}0 & 2 & 3 & 0 \\ 1 & 0 & 0 & 3 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0\end{array}\right)$.
The trace is the sum of the diagonal entries, which is 0 .
The norm of α is the determinant of the matrix, which is 1 .

Min Polynomial of α and Characteristic Polynomial of m_{α}

Proposition

Suppose that α is an algebraic number with minimal polynomial $g(X) \in \mathbb{Q}[X]$. Form the map m_{α} as above. Then the characteristic polynomial of the matrix of m_{α} is $g(X)$.

- Suppose the min polynomial for α is given by $x^{n}+c_{1} x^{n-1}+\cdots+c_{n}=0$. We can compute the characteristic polynomial after choosing a basis. A basis for $\mathbb{Q}(\alpha)$ over \mathbb{Q} is $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$, where α has degree n. Note that:

$$
\begin{aligned}
\alpha \cdot \alpha^{k} & =\alpha^{k+1}, \quad k=0, \ldots, n-2 \\
\alpha \cdot \alpha^{n-1} & =\alpha^{n} \\
& =-c_{1} \alpha^{n-1}-\cdots-c_{n}
\end{aligned}
$$

Min Polynomial of α and Characteristic of m_{α} (Cont'd)

- So the map m_{α} is given by

$$
\begin{aligned}
& m_{\alpha}\left(a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}\right) \\
& \quad=\alpha\left(a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}\right) \\
& \quad=a_{0} \alpha+\cdots+a_{n-2} \alpha^{n-1}+a_{n-1} \alpha^{n} \\
& \quad=a_{0} \alpha+\cdots+a_{n-2} \alpha^{n-1}+a_{n-1}\left(-c_{1} \alpha^{n-1}-\cdots-c_{n}\right) \\
& \quad=-a_{n-1} c_{n}+\left(a_{0}-a_{n-1} c_{n-1}\right) \alpha+\cdots+\left(a_{n-2}-a_{n-1} c_{1}\right) \alpha^{n-1}
\end{aligned}
$$

Min Polynomial of α and Characteristic of m_{α} (Cont'd)

- So the map of m_{α} using this basis is given by

$$
\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right) \mapsto\left(\begin{array}{c}
-a_{n-1} c_{n} \\
a_{0}-a_{n-1} c_{n-2} \\
\vdots \\
a_{n-2}-a_{n-1} c_{1}
\end{array}\right)
$$

This is the same as multiplication by the matrix

$$
\left(\begin{array}{ccccc}
& & & & -c_{n} \\
1 & & & & -c_{n-1} \\
& 1 & & & -c_{n-2} \\
& & \ddots & & \vdots \\
& & & 1 & -c_{1}
\end{array}\right)
$$

It is easy to check that this matrix has characteristic polynomial given by $x^{n}+c_{1} x^{n-1}+\cdots+c_{n}=0$.

The Norm and the Trace are Rational

Lemma

Suppose $\alpha \in K$. Then $N_{K / Q}(\alpha)$ and $T_{K / Q}(\alpha)$ are both in \mathbb{Q}.

- This simply follows because they are the trace and determinant of a matrix with entries in \mathbb{Q}.

Norm, Trace and Embeddings

Proposition

Write $\sigma_{1}, \ldots, \sigma_{n}$ for the embeddings of K into \mathbb{C}. If $\alpha \in K$, then

$$
N_{K / Q}(\alpha)=\prod_{k=1}^{n} \sigma_{k}(\alpha) \quad \text { and } \quad T_{K / Q}(\alpha)=\sum_{k=1}^{n} \sigma_{k}(\alpha)
$$

- Let g denote the minimal polynomial of α over \mathbb{Q}. $\mathbb{Q}(\alpha)$ may be smaller than K (e.g., we might even have $\alpha \in \mathbb{Q}$).
So the degree of g may be strictly smaller than n.
As g is irreducible, $[\mathbb{Q}(\alpha): \mathbb{Q}]=\operatorname{deg} g$, written d_{α}.
We have field extensions $\mathbb{Q} \subseteq \mathbb{Q}(\alpha) \subseteq K$.
Let $\left\{\beta_{1}, \ldots, \beta_{r_{\alpha}}\right\}$ be a basis for K over $\mathbb{Q}(\alpha),[K: \mathbb{Q}(\alpha)]=r_{\alpha}=\frac{n}{d_{\alpha}}$.
Clearly $\left\{1, \alpha, \ldots, \alpha^{d_{\alpha}-1}\right\}$ is a basis for $\mathbb{Q}(\alpha)$ over \mathbb{Q}.

Properties of Norm and Trace (Cont'd)

- Now the set $\left\{\beta_{i} \alpha^{j}: 1 \leq i \leq r_{\alpha}, 0 \leq j<d_{\alpha}\right\}$ forms a basis for K over \mathbb{Q}.

Choose this basis, and fix one of the β_{i}.
Consider the map m_{α} on the block spanned by $\left\{\beta_{i}, \beta_{i} \alpha, \ldots, \beta_{i} \alpha^{d_{\alpha}-1}\right\}$.
The matrix of this map on this block is the same for all choices of β_{i}.
It is the same as the matrix of the map m_{α} on $\mathbb{Q}(\alpha)$, where we use the basis $\left\{1, \alpha, \ldots, \alpha^{d_{\alpha}-1}\right\}$.
We have seen that this matrix has characteristic polynomial g. So the characteristic polynomial of m_{α} on K is given by $g(X)^{r_{\alpha}}$. But the roots of g, by definition, are exactly the conjugates of α. So the roots of $g(X)^{r_{\alpha}}$ are the conjugates of α, with multiplicities r_{α}. By the proposition, these are exactly the images of α under all the embeddings $\sigma_{i}: K \rightarrow \mathbb{C}$.
The result now follows.

Norms and Traces of Algebraic Integers

Corollary

Suppose $\alpha \in \mathbb{Z}_{K}$. Then $N_{K / Q}(\alpha)$ and $T_{K / Q}(\alpha)$ are both in \mathbb{Z}.

- By hypothesis, $\alpha \in \mathbb{Z}_{K}$.

So its minimal polynomial $g(X) \in \mathbb{Z}[X]$.
Therefore, $g(X)^{r_{\alpha}} \in \mathbb{Z}[X]$.
This implies that the product

$$
\prod_{i=1}^{n}\left(X-\sigma_{i}(\alpha)\right) \in \mathbb{Z}[X]
$$

The constant coefficient of this polynomial is $(-1)^{n} N_{K / Q}(\alpha)$. In addition, the coefficient of X^{n-1} is $-T_{K / Q}(\alpha)$.

Subsection 3

The Discriminant

The Discriminant

- Suppose that K is a number field of degree n over \mathbb{Q}.
- We saw this means that:

1. K is generated over \mathbb{Q} by n elements (the definition of the degree);
2. There are n embeddings $\sigma_{1}, \ldots, \sigma_{n}$ from K into \mathbb{C}.

- Suppose that $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ lie in K.
- For the moment, we will not assume that these form a basis.
- Consider the matrix:

$$
M=\left(\begin{array}{cccc}
\sigma_{1}\left(\omega_{1}\right) & \sigma_{1}\left(\omega_{2}\right) & \cdots & \sigma_{1}\left(\omega_{n}\right) \\
\sigma_{2}\left(\omega_{1}\right) & \sigma_{2}\left(\omega_{2}\right) & \cdots & \sigma_{2}\left(\omega_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{n}\left(\omega_{1}\right) & \sigma_{n}\left(\omega_{2}\right) & \cdots & \sigma_{n}\left(\omega_{n}\right)
\end{array}\right) .
$$

The Discriminant (Cont'd)

- We will use the determinant of M as a measure of how "widely spaced" the set $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is.
- The determinant of M is defined only up to sign.
- So we use its square.

Definition

Define the discriminant of $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ to be

$$
\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}=(\operatorname{det} M)^{2} .
$$

A Discriminant Formula

Lemma

With the notation as above, form the matrix T, where

$$
T_{i j}=T_{K / Q}\left(\omega_{i} \omega_{j}\right)
$$

Then $\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}=\operatorname{det} T$.

- Simply notice that $\operatorname{det} M=\operatorname{det} M^{t}$. So

$$
\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}=(\operatorname{det} M)^{2}=\operatorname{det}\left(M^{t} M\right)
$$

But

$$
\begin{aligned}
\left(M^{t} M\right)_{i j} & =\sum_{k=1}^{n} M_{i k}^{t} M_{k j}=\sum_{k=1}^{n} M_{k i} M_{k j} \\
& =\sum_{k=1}^{n} \sigma_{k}\left(\omega_{i}\right) \sigma_{k}\left(\omega_{j}\right)=\sum_{k=1}^{n} \sigma_{k}\left(\omega_{i} \omega_{j}\right)
\end{aligned}
$$

By a previous proposition, this is equal to $T_{K / Q}\left(\omega_{i} \omega_{j}\right)$.

Discriminant of Algebraic Integers

Corollary

Suppose that $\left\{\omega, \ldots, \omega_{n}\right\}$ consists of elements of \mathbb{Z}_{K}. Then

$$
\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\} \in \mathbb{Z}
$$

- Suppose each $\omega_{i} \in \mathbb{Z}_{K}$.
\mathbb{Z}_{K} is closed under multiplication.
So $\omega_{i} \omega_{j} \in \mathbb{Z}_{k}$.
By a previous corollary, $T_{K / Q}\left(\omega_{i} \omega_{j}\right) \in \mathbb{Z}$.
So, by the lemma, $\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is the determinant of a matrix with entries in \mathbb{Z}.

Thus, $\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is itself in \mathbb{Z}.

Example

- Let $K=\mathbb{Q}(\gamma)$, for some γ.

One natural basis for K over \mathbb{Q} is $\left\{1, \gamma, \gamma^{2}, \ldots, \gamma^{n-1}\right\}$.
As usual, write $\gamma_{1}, \ldots, \gamma_{n}$ for the conjugates of γ.
Then the discriminant $\Delta\left\{1, \gamma, \gamma^{2}, \ldots, \gamma^{n-1}\right\}$ is given by

$$
\left|\begin{array}{cccc}
1 & \gamma_{1} & \cdots & \gamma_{1}^{n-1} \\
1 & \gamma_{2} & \cdots & \gamma_{2}^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \gamma_{n} & \cdots & \gamma_{n}^{n-1}
\end{array}\right|^{2}
$$

This is a Vandermonde determinant, which is equal to

$$
\prod_{i<j}\left(\gamma_{i}-\gamma_{j}\right)^{2} .
$$

We saw that the conjugates of γ are distinct. So the discriminant $\Delta\left\{1, \gamma, \gamma^{2}, \ldots, \gamma^{n-1}\right\}$ is nonzero.

Discriminant of the Minimal Polynomial

- Let $K=\mathbb{Q}(\gamma)$, for some γ.
- Suppose $f(X)$ is the minimal polynomial of γ.
- Then its roots are the conjugates $\gamma_{1}, \ldots, \gamma_{n}$ of γ.
- Define the discriminant of $f(X)$ to be exactly

$$
\prod_{i<j}\left(\gamma_{i}-\gamma_{j}\right)^{2}
$$

- By the example, the discriminant of $f(X)$ coincides with the discriminant $\Delta\left\{1, \gamma, \ldots, \gamma^{n-1}\right\}$.

Relations Between Discriminants

Proposition

Suppose that the elements of two sets $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ and $\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}$ are related by

$$
\omega_{i}^{\prime}=c_{1 i} \omega_{1}+\cdots+c_{n i} \omega_{n}
$$

for rational numbers $c_{i j} \in \mathbb{Q}$. Write C for the matrix $\left(c_{i j}\right)$. Then

$$
\Delta\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}=(\operatorname{det} C)^{2} \Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\} .
$$

Relations Between Discriminants (Cont'd)

- Set

$$
M^{\prime}=\left(\begin{array}{cccc}
\sigma_{1}\left(\omega_{1}^{\prime}\right) & \sigma_{1}\left(\omega_{2}^{\prime}\right) & \cdots & \sigma_{1}\left(\omega_{n}^{\prime}\right) \\
\sigma_{2}\left(\omega_{1}^{\prime}\right) & \sigma_{2}\left(\omega_{2}^{\prime}\right) & \cdots & \sigma_{2}\left(\omega_{n}^{\prime}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{n}\left(\omega_{1}^{\prime}\right) & \sigma_{n}\left(\omega_{2}^{\prime}\right) & \cdots & \sigma_{n}\left(\omega_{n}^{\prime}\right)
\end{array}\right) .
$$

Then

$$
\Delta\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}=\left(\operatorname{det} M^{\prime}\right)^{2}
$$

σ_{k} is a homomorphism, which is the identity on rational numbers. It follows that

$$
\sigma_{k}\left(\omega_{i}^{\prime}\right)=c_{1 i} \sigma_{k}\left(\omega_{1}\right)+\cdots+c_{n i} \sigma_{k}\left(\omega_{n}\right)
$$

It is easy to see that this implies that $M^{\prime}=C M$, where $C=\left(c_{i j}\right)$.
The result now follows from the multiplicativity of the determinant.

Bases have Nonzero Discriminants

Proposition

Suppose that $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a basis for K over \mathbb{Q}. Then

$$
\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\} \neq 0
$$

- As usual, write $K=\mathbb{Q}(\gamma)$, for some element $\gamma \in K$.

Then $\left\{1, \gamma, \ldots, \gamma^{n-1}\right\}$ is a basis for K over \mathbb{Q}.
We can write the basis $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ in terms of $\left\{1, \gamma, \ldots, \gamma^{n-1}\right\}$ as

$$
\omega_{i}=c_{1 i} 1+c_{2 i} \gamma+\cdots+c_{n i} \gamma^{n-1}
$$

Bases have Nonzero Discriminants (Cont'd)

Claim: Since $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is also a basis, we have $\operatorname{det}\left(c_{i j}\right) \neq 0$.
Suppose $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a basis.
We can write

$$
\gamma^{i-1}=c_{1 i}^{\prime} \omega_{1}+c_{2 i}^{\prime} \omega_{2}+\cdots+c_{n i}^{\prime} \omega_{n}
$$

for some $c_{i j}^{\prime}$.
Write $C=\left(c_{i j}\right)$ and $C^{\prime}=\left(c_{i j}^{\prime}\right)$.
We can see that this implies that $C^{\prime} C=I$.
Hence C and C^{\prime} are invertible.
The previous proposition shows that

$$
\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}=\left(\operatorname{det}\left(c_{i j}\right)\right)^{2} \Delta\left\{1, \gamma, \ldots, \gamma^{n-1}\right\}
$$

The result follows.

Characterization of Bases

Proposition

The set $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a basis for K over \mathbb{Q} if and only if $\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\} \neq 0$.

- We have already seen that the discriminant of a basis is nonzero.

Conversely, suppose $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ are linearly dependent over \mathbb{Q}.
Then $x_{1} \omega_{1}+\cdots+x_{n} \omega_{n}=0$, for some $x_{1}, \ldots, x_{n} \in \mathbb{Q}$, not all zero.
Apply the embedding σ_{k} to this equality.
Since σ is a field homomorphism fixing each element of \mathbb{Q},

$$
x_{1} \sigma_{k}\left(\omega_{1}\right)+\cdots+x_{n} \sigma_{k}\left(\omega_{n}\right)=0
$$

We get a linear dependency between the columns of the matrix M, with $M_{i j}=\sigma_{i}\left(\omega_{j}\right)$. So $\operatorname{det} M=0$.
Thus, $\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}=0$, as required.

Real and Complex Embeddings

- Some of the n embeddings may map K into the real numbers $\mathbb{R} \subset \mathbb{C}$.
- We call these real embeddings.
- The other embeddings occur in complex conjugate pairs.
- I.e., if $\sigma: K \rightarrow \mathbb{C}$ is an embedding, then so is $\bar{\sigma}$, where

$$
\bar{\sigma}(\omega)=\overline{\sigma(\omega)} .
$$

- So complex embeddings occur as complex conjugate pairs.
- Denote by:
- r_{1} the number of real embeddings of K into \mathbb{C};
- r_{2} the number of complex conjugate pairs of embeddings.

Measuring the Spacing of $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$

- Since there are n embeddings in total, we have

$$
r_{1}+2 r_{2}=n .
$$

- Every pair $(\sigma, \bar{\sigma})$ of complex embeddings together map K into \mathbb{C}^{2}.
- The image is actually contained in a real 2-dimensional subspace. Indeed, suppose

$$
\sigma(\omega)=a+b i
$$

Then

$$
\bar{\sigma}(\omega)=a-b i
$$

So the real and imaginary parts of $\bar{\sigma}(\omega)$ are already determined by the real and imaginary parts of $\sigma(\omega)$.

- So we get that:
- Each real embedding maps K into $\mathbb{R} \subset \mathbb{C}$;
- Each pair of complex embeddings map K into a 2-dimensional real subspace of \mathbb{C}^{2}.

Measuring the Spacing of $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ (Cont'd)

- We conclude that the collection of all embeddings

$$
\iota=\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

maps K into a real subspace V of \mathbb{C}^{n} of real dimension n.

- Given our set $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$, the image of

$$
\mathbb{Z} l\left(\omega_{1}\right)+\cdots+\mathbb{Z} l\left(\omega_{n}\right)
$$

is contained in this subspace V.

- When the set is not a basis, the image will lie in a subspace of V of strictly smaller dimension.
In this case the discriminant will vanish.
- If the set is a basis, the discriminant will measure the volume of a fundamental region for the image.
Thus, it will measure how sparsely these points are spaced.

Subsection 4

Integral Bases

Integral Bases of \mathbb{Z}_{K}

- We say that the set $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is an integral basis for the ring of integers \mathbb{Z}_{K} if every element of \mathbb{Z}_{K} is uniquely expressible as a \mathbb{Z}-linear combination of elements of the set.
Example: We have looked at integral bases for quadratic fields.
Suppose $K=\mathbb{Q}(\sqrt{d})$, with d a squarefree integer.
Assume, first, that $d \equiv 1(\bmod 4)$.
Then

$$
\mathbb{Z}_{K}=\mathbb{Z}+\mathbb{Z} \frac{1+\sqrt{d}}{2}
$$

So an integral basis is $\left\{1, \frac{1+\sqrt{d}}{2}\right\}$.
Assume, next, that $d \equiv 2(\bmod 4)$ or $d \equiv 3(\bmod 4)$.
Then

$$
\mathbb{Z}_{K}=\mathbb{Z}+\mathbb{Z} \sqrt{d}
$$

So an integral basis is $\{1, \sqrt{d}\}$.

Free Abelian Groups of Rank n and Bases

- It is not obvious that integral bases exist.
- We will show that they do for all number fields K.
- Equivalently, we will prove that the ring of integers of K is a free abelian group of rank $n=[K: \mathbb{Q}]$.
- Recall that a free abelian group A of rank n is one which is the direct sum of n subgroups, each infinite cyclic (so isomorphic to \mathbb{Z}).
- Then

$$
A \cong \mathbb{Z} \omega_{1}+\cdots+\mathbb{Z} \omega_{n}
$$

- So every element of A can be expressed uniquely as

$$
x_{1} \omega_{1}+\cdots+x_{n} \omega_{n}, \quad x_{i} \in \mathbb{Z}
$$

- This is exactly the property required of an integral basis.

Existence of Integral Bases

- Suppose that $[K: \mathbb{Q}]=n$.
- Then we can choose a basis $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ for K over \mathbb{Q}.
- Thus, every element of K can be written $x_{1} \omega_{1}+\cdots+x_{n} \omega_{n}$, for $x_{i} \in \mathbb{Q}$.

Theorem

Let K be a number field. Then the ring of integers \mathbb{Z}_{K} has an integral basis.

- Given any basis, we can replace each element in our basis with a nonzero multiple so that every basis element is in \mathbb{Z}_{K}.
We also know that the discriminant of every basis consisting of elements of \mathbb{Z}_{K} is an integer.

Existence of Integral Bases (Cont'd)

- Choose a basis

$$
\left\{\omega_{1}, \ldots, \omega_{n}\right\}
$$

consisting of elements of \mathbb{Z}_{K}, with $\left|\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}\right|$ as small as possible. This can be done since $\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a positive integer.
Claim: This set is indeed an integral basis for K.
Suppose, to the contrary, that this does not hold.
Then there would be $\omega \in \mathbb{Z}_{K}$ whose expression in terms of this basis

$$
\omega=x_{1} \omega_{1}+\cdots+x_{n} \omega_{n}
$$

has coefficients which are in \mathbb{Q}, but not all in \mathbb{Z}.
Reorder the basis elements, if necessary, so that $x_{1} \notin \mathbb{Z}$.
Then we can choose $a_{1} \in \mathbb{Z}$, with

$$
\left|x_{1}-a_{1}\right| \leq \frac{1}{2}
$$

Existence of Integral Bases (Cont'd)

- Define

$$
\omega_{1}^{\prime}=\omega-a_{1} \omega_{1}=\left(x_{1}-a_{1}\right) \omega_{1}+x_{2} \omega_{2}+\cdots+x_{n} \omega_{n}
$$

As $\omega \in \mathbb{Z}_{K}, \omega_{1} \in \mathbb{Z}_{K}$, and $a_{1} \in \mathbb{Z}$, we have $\omega_{1}^{\prime} \in \mathbb{Z}_{K}$.
Define also

$$
\omega_{2}^{\prime}=\omega_{2}, \ldots, \omega_{n}^{\prime}=\omega_{n}
$$

Then $\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}$ is another basis.
It is easy to see that each of the elements of both sets can be expressed as a linear combination of the other (recall that $x_{1}-a_{1} \neq 0$). Apply a previous proposition to change bases.

Existence of Integral Bases (Cont'd)

- The change of basis matrix from $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ to $\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}$, is given by

$$
C=\left(\begin{array}{ccccc}
x_{1}-a_{1} & x_{2} & x_{3} & \cdots & x_{n} \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right) .
$$

A previous proposition gives

$$
\Delta\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}=\left(x_{1}-a_{1}\right)^{2} \Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\} .
$$

But $\left|x_{1}-a_{1}\right| \leq \frac{1}{2}$.
So this means that

$$
\Delta\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}<\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}
$$

This contradicts the minimality of the discriminant of $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$.

Discriminants of Two Integral Bases

- We saw that integral bases exist.
- In addition, the ring of integers of a number field of degree n is a free abelian group of rank n.

Proposition

If $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ and $\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}$ are two integral bases for a number field K, then

$$
\Delta\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}=\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\} .
$$

- Suppose $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ and $\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}$ are two integral bases. Then each element of the second can be written as an integral linear combination of those in the first,

$$
\omega_{i}^{\prime}=c_{1 i} \omega_{1}+\cdots+c_{n i} \omega_{n}, \quad \text { with } c_{i j} \in \mathbb{Z}
$$

Discriminants of Two Integral Bases (Cont'd)

- Now we have

$$
\Delta\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}=(\operatorname{det} C)^{2} \Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}
$$

So the integer $\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ divides the integer $\Delta\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}$.
But the same argument applies also in the other direction.
So the integer $\Delta\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}$ divides the integer $\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}$.
From this we see that

$$
\Delta\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}= \pm \Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}
$$

Also each $c_{i j} \in \mathbb{Z}$. So $\operatorname{det} C \in \mathbb{Z}$.
Therefore, $(\operatorname{det} C)^{2}>0$.
Thus,

$$
\Delta\left\{\omega_{1}^{\prime}, \ldots, \omega_{n}^{\prime}\right\}=\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}
$$

The Discriminant of a Number Field

- Let K be a number field.
- We have seen that K has an integral basis.
- Moreover, by the proposition, any two integral bases have equal discriminants.

Definition

Suppose that K is a number field. The discriminant D_{K} of K is defined to be the discriminant of any integral basis for K.

Example

- Consider the case $K=\mathbb{Q}(\sqrt{d})$, with d squarefree and $d \equiv 1(\bmod 4)$.

An integral basis is $\left\{1, \frac{1+\sqrt{d}}{2}\right\}$.
There are two embeddings into \mathbb{C}, given by

$$
\begin{aligned}
& \sigma_{1}(a+b \sqrt{d})=a+b \sqrt{d} \\
& \sigma_{1}(a+b \sqrt{d})=a-b \sqrt{d}
\end{aligned}
$$

The discriminant is

$$
\left|\begin{array}{ll}
\sigma_{1}(1) & \sigma_{1}\left(\frac{1+\sqrt{d}}{2}\right) \\
\sigma_{2}(1) & \sigma_{2}\left(\frac{1+\sqrt{d}}{2}\right)
\end{array}\right|^{2}=\left|\begin{array}{cc}
1 & \frac{1+\sqrt{d}}{2} \\
1 & \frac{1-\sqrt{d}}{2}
\end{array}\right|^{2}=(-\sqrt{d})^{2}=d .
$$

Thus, if $K=\mathbb{Q}(\sqrt{d})$ as above, $D_{K}=d$.

Example (Cont'd)

- An integral basis for $K=\mathbb{Q}(\sqrt{d})$ with d squarefree and $d \equiv 2(\bmod 4)$ or $d \equiv 3(\bmod 4)$ is $\{1, \sqrt{d}\}$.
In this case,

$$
D_{K}=\left|\begin{array}{ll}
\sigma_{1}(1) & \sigma_{1}(\sqrt{d}) \\
\sigma_{2}(1) & \sigma_{2}(\sqrt{d})
\end{array}\right|^{2}=\left|\begin{array}{cc}
1 & \sqrt{d} \\
1 & -\sqrt{d}
\end{array}\right|^{2}=(-2 \sqrt{d})^{2}=4 d
$$

Subsection 5

Further Theory of the Discriminant

Minimal Polynomial of γ and Norm of $f^{\prime}(\gamma)$

Proposition

Suppose that $K=\mathbb{Q}(\gamma)$, and that the minimal polynomial of γ over \mathbb{Q} is $f(X) \in \mathbb{Q}[X]$ of degree n. Then

$$
\Delta\left\{1, \gamma, \ldots, \gamma^{n-1}\right\}=(-1)^{n(n-1) / 2} N_{K / Q}\left(f^{\prime}(\gamma)\right)
$$

- We saw that the discriminant

$$
\Delta\left\{1, \gamma, \ldots, \gamma^{n-1}\right\}=\prod_{i<j}\left(\gamma_{i}-\gamma_{j}\right)^{2}
$$

where the conjugates of γ are $\gamma_{1}, \ldots, \gamma_{n}$.
Recall that:

- The conjugates are the roots in \mathbb{C} of the minimal polynomial $f(X)$;
- Minimal polynomials are monic.

So $f(X)=\prod_{i=1}^{n}\left(X-\gamma_{i}\right)$.

Minimal Polynomial of γ and Norm of $f^{\prime}(\gamma)$ (Cont'd)

- Using the product rule,

$$
f^{\prime}(X)=\sum_{k=1}^{n} \prod_{i \neq k}\left(X-\gamma_{i}\right)
$$

Only the term with $k=j$ does not have a factor $\left(X-\gamma_{j}\right)$. So

$$
f^{\prime}\left(\gamma_{j}\right)=\prod_{i \neq j}\left(\gamma_{j}-\gamma_{i}\right)
$$

Then

$$
N_{K / \mathbb{Q}}\left(f^{\prime}(\gamma)\right)=\prod_{j=1}^{n} f^{\prime}\left(\gamma_{j}\right)=\prod_{j=1}^{n} \prod_{i \neq j}\left(\gamma_{j}-\gamma_{i}\right)
$$

If $i<j$, this product has a bracket $\left(\gamma_{i}-\gamma_{j}\right)$ and a bracket $\left(\gamma_{j}-\gamma_{i}\right)$. It follows that

$$
N_{K / Q}\left(f^{\prime}(\gamma)\right)=\prod_{i<j}\left[-\left(\gamma_{i}-\gamma_{j}\right)^{2}\right]=(-1)^{n(n-1) / 2} \Delta\left\{1, \gamma, \ldots, \gamma^{n-1}\right\} .
$$

Discriminant of an Integral Basis of K

Lemma

Suppose that $\omega_{1}, \ldots, \omega_{n}$ is a basis for K over \mathbb{Q} consisting of elements of \mathbb{Z}_{K}. Then

$$
\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\} \mathbb{Z}_{K} \subseteq \mathbb{Z} \omega_{1}+\cdots+\mathbb{Z} \omega_{n}
$$

- Let $\alpha \in \mathbb{Z}_{K}$. By hypothesis, $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is a basis.

So we can write

$$
\alpha=x_{1} \omega_{1}+\cdots+x_{n} \omega_{n}, \quad x_{1}, \ldots, x_{n} \in \mathbb{Q}
$$

Multiply through by ω_{j} to get $\alpha \omega_{j}=\sum_{i=1}^{n} x_{i} \omega_{i} \omega_{j}$.
Take the trace:

$$
T_{K / \mathbb{Q}}\left(\alpha \omega_{j}\right)=\sum_{i=1}^{n} x_{i} T_{K / \mathbb{Q}}\left(\omega_{i} \omega_{j}\right)
$$

Now α and ω_{j} are in \mathbb{Z}_{K}. So $T_{K / \mathbb{Q}}\left(\alpha \omega_{j}\right) \in \mathbb{Z}$, by a previous corollary.

Discriminant of an Integral Basis of K (Cont'd)

- Similarly, the traces $T_{K / Q}\left(\omega_{i} \omega_{j}\right)$ are also in \mathbb{Z}, for all i, j. So the preceding equations can be regarded as a set of linear equations whose solution is given by x_{1}, \ldots, x_{n}.
Cramer's rule implies that the solutions are quotients of integers (given by suitable determinants of integers) by

$$
\operatorname{det}\left(T_{K / \mathrm{Q}}\left(\omega_{i} \omega_{j}\right)\right)=\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}
$$

So $\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\} x_{i} \in \mathbb{Z}$, for all i.
Multiplying α by $\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}$, we see that

$$
\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\} \alpha \in \mathbb{Z} \omega_{1}+\cdots+\mathbb{Z} \omega_{n}
$$

Finding Integral Bases of Number Fields

- Strategy for finding integral bases for a number field K :

Step 1 Find any basis for K over \mathbb{Q}.
Scale the basis elements so that they are in \mathbb{Z}_{K}.
Let $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be the result.
Step 2 Compute $\Delta=\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}$.
By the lemma, $\mathbb{Z}_{K} \subseteq \frac{1}{\Delta}\left(\mathbb{Z} \omega_{1}+\cdots+\mathbb{Z} \omega_{n}\right)$. So every integer must be of the form

$$
x_{1} \omega_{1}+\cdots+x_{n} \omega_{n}
$$

for $x_{i} \in \mathbb{Q}$ but where the denominators divide Δ.
Step 3 For a prime $p^{2} \mid \Delta$, check whether any element

$$
\omega=x_{1} \omega_{1}+\cdots+x_{n} \omega_{n}
$$

is integral, where x_{i} is a rational number with denominator dividing p.

Finding Integral Bases of Number Fields (Cont'd)

If such an integral ω exists, where some x_{j} is not in \mathbb{Z}, so has denominator p, replace ω_{i} with ω to get a set with discriminant $\frac{\Delta}{p^{2}}$ (by a previous proposition).
Since the discriminant of an integral basis must be in \mathbb{Z}, we need only do this for primes p, with $p^{2} \mid \Delta$.
Now return to Step 2.
If no such element is integral, for any prime p with $p^{2} \mid \Delta$, then we have an integral basis.

Corollary

Suppose that K is a number field and $\omega_{1}, \ldots, \omega_{n}$ are elements of \mathbb{Z}_{K}, such that $\Delta\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is squarefree. Then $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is an integral basis.

Integral Basis of a Double Extension

Proposition

Suppose that $K_{1}=\mathbb{Q}\left(\gamma_{1}\right)$ and $K_{2}=\mathbb{Q}\left(\gamma_{2}\right)$ are two number fields of degree n_{1} and n_{2} respectively, such that $K=\mathbb{Q}\left(\gamma_{1}, \gamma_{2}\right)$ has degree $n_{1} n_{2}$ over \mathbb{Q}. Suppose that $\left\{\omega_{1}, \ldots, \omega_{n_{1}}\right\}$ and $\left\{\omega_{1}^{\prime}, \ldots, \omega_{n_{2}}^{\prime}\right\}$ are integral bases for K_{1} and K_{2}, respectively, with discriminants D_{1} and D_{2}. If D_{1} and D_{2} are coprime, then $\left\{\omega_{i} \omega_{j}^{\prime}\right\}$ forms an integral basis for K, of discriminant $D_{1}^{n_{2}} D_{2}^{n_{1}}$.

- We first claim that $\left\{\omega_{i} \omega_{j}^{\prime}\right\}$ form a basis for K over \mathbb{Q}.

Every element of K is a polynomial expression in γ_{1} and γ_{2}.
Every power of γ_{1} lies in K_{1}.
So it is a linear combination of $\left\{\omega_{1}, \ldots, \omega_{n_{1}}\right\}$.
Similarly, every power of γ_{2} lies in K_{2}.
So it is a linear combination of $\left\{\omega_{1}^{\prime}, \ldots, \omega_{n_{2}}^{\prime}\right\}$.

Integral Basis of a Double Extension (Cont'd)

- Thus, every product $\gamma_{1}^{a} \gamma_{2}^{b}$ is a linear combination of $\left\{\omega_{i} \omega_{j}^{\prime}\right\}$.

Each element of K is a linear combination of these monomials.
So it is also a linear combination of this set.
We have $n_{1} n_{2}$ such elements and, by hypothesis, $[K: \mathbb{Q}]=n_{1} n_{2}$.
So they must be linearly independent, and, thus, form a basis.
Claim: $\left\{\omega_{i} \omega_{j}^{\prime}\right\}$ form an integral basis.
If $\alpha \in \mathbb{Z}_{K}$, we can write $\alpha=\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} x_{i j} \omega_{i} \omega_{j}^{\prime}$. We show $x_{i j} \in \mathbb{Z}$.
Then

$$
\alpha=\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} x_{i j} \omega_{i} \omega_{j}^{\prime}=\sum_{i=1}^{n_{1}}\left(\sum_{j=1}^{n_{2}} x_{i j} x_{i j} \omega_{j}^{\prime}\right) \omega_{i}=\sum_{i=1}^{n_{1}} y_{i} \omega_{i}
$$

where $y_{i}=\sum_{j=1}^{n_{2}} x_{i j} \omega_{j}^{\prime} \in K_{2}$.
We have $[K: \mathbb{Q}]=n_{1} n_{2}$ and $\left[K_{1}: \mathbb{Q}\right]=n_{1}$.
So, by the tower law, $\left[K: K_{1}\right]=n_{2}$.

Integral Basis of a Double Extension (Claim)

- Since $K=K_{1}\left(\gamma_{2}\right)$, we see that there are n_{2} embeddings of K into \mathbb{C} which are the identity on K_{1} (regarded as a subfield of \mathbb{C}). Let $\left\{\sigma_{1}^{\prime}, \ldots, \sigma_{n_{2}}^{\prime}\right\}$ denote these embeddings of K into \mathbb{C}. Regard these as maps on the elements of $K_{2} \subseteq K$.
They are determined by sending γ_{2} to one of its conjugates. In this sense, they restrict to the n_{2} different embeddings of K_{2} into \mathbb{C}. Let

$$
\boldsymbol{x}=\left(\begin{array}{c}
\sigma_{1}^{\prime}(\alpha) \\
\vdots \\
\sigma_{n_{2}}^{\prime}(\alpha)
\end{array}\right) \quad \text { and } \quad \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n_{2}}
\end{array}\right)
$$

Then $\boldsymbol{x}=M \boldsymbol{y}$, where $M_{k \ell}=\sigma_{k}^{\prime}\left(\omega_{\ell}^{\prime}\right)$. By definition, $D_{2}=(\operatorname{det} M)^{2}$. As in a previous lemma, $D_{2} y_{i}=\sum_{j=1}^{n_{2}} D_{2} x_{i j} \omega_{j}^{\prime}$ has coefficients in \mathbb{Z}. So $D_{2} x_{i j} \in \mathbb{Z}$.
In the same way (exchanging the roles of K_{1} and K_{2}), $D_{1} x_{i j} \in \mathbb{Z}$. As D_{1} and D_{2} are coprime, we conclude that each $x_{i j} \in \mathbb{Z}$.

Integral Basis of a Double Extension (Cont'd)

- So $\left\{\omega_{i} \omega_{j}^{\prime}\right\}$ forms an integral basis for \mathbb{Z}_{K}.

Let $\left\{\sigma_{1}, \ldots, \sigma_{n_{1}}\right\}$ be the embeddings of K into \mathbb{C}, which are the identity on K_{2}.
Then all the embeddings of K into \mathbb{C} are given by $\left\{\sigma_{i} \sigma_{j}^{\prime}\right\}$.
This can easily be seen by observing that an embedding is uniquely determined by its effect on γ_{1} and γ_{2}.
These, in turn, uniquely determine σ_{i} and σ_{j}^{\prime}.
The discriminant of the basis $\left\{\omega_{i} \omega_{j}^{\prime}\right\}$ is given by $(\operatorname{det} A)^{2}$, where A is an $n_{1} n_{2} \times n_{1} n_{2}$-matrix with

$$
A_{k i, \ell j}=\left(\sigma_{k} \sigma_{\ell}^{\prime}\right)\left(\omega_{i} \omega_{j}^{\prime}\right)=\sigma_{k}\left(\omega_{i}\right) \sigma_{\ell}^{\prime}\left(\omega_{j}^{\prime}\right)
$$

Integral Basis of a Double Extension (Cont'd)

- We can decompose A as $A=B C$, where:
- B is the $n_{2} \times n_{2}$ matrix of $n_{1} \times n_{1}$-blocks given by

$$
B=\left(\begin{array}{cccc}
Q & 0 & \cdots & 0 \\
0 & Q & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & Q
\end{array}\right)
$$

where Q is the $n_{1} \times n_{1}$-matrix with $Q_{k i}=\sigma_{k}\left(\omega_{i}\right)$;

- C is the block matrix

$$
C=\left(\begin{array}{cccc}
\sigma_{1}^{\prime}\left(\omega_{1}^{\prime}\right) I & \sigma_{2}^{\prime}\left(\omega_{1}^{\prime}\right) / & \cdots & \sigma_{n_{2}}^{\prime}\left(\omega_{1}^{\prime}\right) I \\
\sigma_{1}^{\prime}\left(\omega_{2}^{\prime}\right) I & \sigma_{2}^{\prime}\left(\omega_{2}^{\prime}\right) I & \cdots & \sigma_{n_{2}}^{\prime}\left(\omega_{2}^{\prime}\right) I \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1}^{\prime}\left(\omega_{n_{2}}^{\prime}\right) / & \sigma_{2}^{\prime}\left(\omega_{n_{2}}^{\prime}\right) I & \cdots & \sigma_{n_{2}}^{\prime}\left(\omega_{n_{2}}^{\prime}\right) I
\end{array}\right)
$$

where I is the $n_{1} \times n_{1}$-identity matrix.

Integral Basis of a Double Extension (Conclusion)

- Clearly

$$
\operatorname{det}(B)=\operatorname{det}(Q)^{n_{2}}
$$

So

$$
\operatorname{det}(B)^{2}=\left((\operatorname{det} Q)^{2}\right)^{n_{2}}=D_{1}^{n_{2}}
$$

Also,

$$
\operatorname{det}(C)=\operatorname{det}\left(\sigma_{\ell}^{\prime}\left(\omega_{j}^{\prime}\right)\right)^{n_{1}}
$$

So

$$
\operatorname{det}(C)^{2}=D_{2}^{n_{1}}
$$

Therefore,

$$
\Delta=\operatorname{det}(A)^{2}=\operatorname{det}(B)^{2} \operatorname{det}(C)^{2}=D_{1}^{n_{2}} D_{2}^{n_{1}} .
$$

Subsection 6

Rings of Integers in Some Cubic and Quadratic Fields

Monogenicity and Power Bases

- We consider some examples on the construction of integral bases.
- In two of these examples, we show the ring of integers cannot be expressed in the form $\mathbb{Z}[\gamma]$ for any element γ.
- Fields K where $\mathbb{Z}_{K}=\mathbb{Z}[\gamma]$ are called monogenic.
- In such cases, the basis $\left\{1, \gamma, \ldots, \gamma^{n-1}\right\}$ is called a power basis.

$K=Q(\sqrt{2}, \sqrt{3})$

- The ring of integers of $\mathbb{Q}(\sqrt{2})$ is $\mathbb{Z}[\sqrt{2}]$.
- The ring of integers of $\mathbb{Q}(\sqrt{3})$ is $\mathbb{Z}[\sqrt{3}]$.
- One might hope that the ring of integers of $K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ should be $\mathbb{Z}[\sqrt{2}, \sqrt{3}]$.
- We have already seen that this is false.
- Moreover, this does not contradict the preceding proposition, since the discriminants of $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not coprime.

$K=Q(\sqrt{2}, \sqrt{3})($ Cont'd $)$

- Let $\alpha \in \mathbb{Z}_{K}$.

Then, for some $a, b, c, d \in \mathbb{Q}$, we can write

$$
\alpha=a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} .
$$

Since $\alpha \in \mathbb{Z}_{K}$, all of its conjugates

$$
\begin{aligned}
& \alpha_{2}=a-b \sqrt{2}+c \sqrt{3}-d \sqrt{6} \\
& \alpha_{3}=a+b \sqrt{2}-c \sqrt{3}-d \sqrt{6} \\
& \alpha_{4}=a-b \sqrt{2}-c \sqrt{3}+d \sqrt{6}
\end{aligned}
$$

are also algebraic integers.
The set of algebraic integers is closed under addition.
It follows that the following are also algebraic integers:

$$
\alpha+\alpha_{2}=2 a+2 c \sqrt{3}, \quad \alpha+\alpha_{3}=2 a+2 b \sqrt{2}, \quad \alpha+\alpha_{4}=2 a+2 d \sqrt{6} .
$$

By a preceding proposition, these are integral if $2 a, 2 b, 2 c, 2 d \in \mathbb{Z}$.

$K=Q(\sqrt{2}, \sqrt{3})$ (Cont'd)

- Thus, there exist $A, B, C, D \in \mathbb{Z}$, with $A=2 a, B=2 b, C=2 c$ and $D=2 d$, such that

$$
\alpha=\frac{A+B \sqrt{2}+C \sqrt{3}+D \sqrt{6}}{2} .
$$

In addition, the following is also integral

$$
\begin{aligned}
\alpha \alpha_{2} & =(a+c \sqrt{3})^{2}-(b \sqrt{2}+d \sqrt{6})^{2} \\
& =a^{2}+2 a c \sqrt{3}+3 c^{2}-2 b^{2}-4 b d \sqrt{3}-6 d^{2} \\
& =\frac{A^{2}+3 C^{2}-2 B^{2}-6 D^{2}}{4}+\frac{A C-2 B D}{2} \sqrt{3} .
\end{aligned}
$$

Thus, $4 \mid A^{2}+3 C^{2}-2 B^{2}-6 D^{2}$ and $2 \mid A C-2 B D$.
The second implies that $2 \mid A C$. So at least one of A and C is even.
If only one were even, then $A^{2}+3 C^{2}-2 B^{2}-6 D^{2}$ would be odd, and the first requirement would fail. So both A and C are even.

$K=\mathbf{Q}(\sqrt{2}, \sqrt{3})($ Cont'd $)$

- We saw that both A and C are even.

Now $2 \mid A C-2 B D$ becomes automatic.
Moreover, $4 \mid A^{2}+3 C^{2}-2 B^{2}-6 D^{2}$ reduces to $4 \mid 2 B^{2}+6 D^{2}$.
Equivalently, 2| $B^{2}+D^{2}$.
So B and D are both even or both odd.
It follows that all integers are of the form

$$
\alpha=a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6},
$$

with $a, c \in \mathbb{Z}$ and b and d both integral or both halves of odd integers. It remains to check that elements of this form are all integers.
They are integer linear combinations of $1, \sqrt{2}, \sqrt{3}$ and $\frac{\sqrt{2}+\sqrt{6}}{2}=\frac{1+\sqrt{3}}{2}$.
The first three are obviously integers.
The last is integral because it is a root of the monic polynomial $f(X)=X^{4}-4 X^{2}+1$, with coefficients in \mathbb{Z}.

$K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ (Conclusion)

Claim: $\mathbb{Z}_{K}=\mathbb{Z}[\gamma]$, where $\gamma=\frac{\sqrt{2}+\sqrt{6}}{2}$.
We have

$$
\begin{aligned}
& \gamma^{2}=2+\sqrt{3} \\
& r^{3}=\frac{5 \sqrt{2}+3 \sqrt{6}}{2}
\end{aligned}
$$

So

$$
\begin{aligned}
\sqrt{2} & =\gamma^{3}-3 \gamma \\
\sqrt{3} & =\gamma^{2}-2
\end{aligned}
$$

So each element in $\{1, \sqrt{2}, \sqrt{3}, \gamma\}$ is in $\mathbb{Z}[\gamma]$.
Therefore, $\mathbb{Z}_{K} \subseteq \mathbb{Z}[\gamma]$.
Conversely, $\gamma \in \mathbb{Z}_{k}$.
So, since \mathbb{Z}_{K} is a ring, $\mathbb{Z}[\gamma] \subseteq \mathbb{Z}_{K}$.

$K=Q(\sqrt{-2}, \sqrt{-5})$

- The determination of the ring of integers in this case is very similar to that of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
However, we can check that if $\gamma=\frac{\sqrt{-2}+\sqrt{10}}{2}$, the argument above that $\mathbb{Z}_{K}=\mathbb{Z}[\gamma]$ does not work in this case.
Claim: There is no element γ such that $\mathbb{Z}_{K}=\mathbb{Z}[\gamma]$.
We consider the following elements

$$
\begin{aligned}
& \alpha_{1}=(1+\sqrt{-2})(1+\sqrt{-5}), \\
& \alpha_{2}=(1+\sqrt{-2})(1-\sqrt{-5}), \\
& \alpha_{3}=(1-\sqrt{-2})(1+\sqrt{-5}), \\
& \alpha_{4}=(1-\sqrt{-2})(1-\sqrt{-5}) .
\end{aligned}
$$

Clearly, they all lie in \mathbb{Z}_{K}.
Moreover, $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=4$.

$K=Q(\sqrt{-2}, \sqrt{-5})($ Cont'd $)$

- Notice that

$$
\begin{aligned}
\alpha_{1} \alpha_{2} & =(1+\sqrt{-2})^{2}(1+\sqrt{-5})(1-\sqrt{-5}) \\
& =6(1+\sqrt{-2})^{2} .
\end{aligned}
$$

Similarly, $3 \mid \alpha_{i} \alpha_{j}$, for any pair $i \neq j$.
This implies that

$$
\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)^{n} \equiv \alpha_{1}^{n}+\alpha_{2}^{n}+\alpha_{3}^{n}+\alpha_{4}^{n} \quad(\bmod 3),
$$

where the congruence actually takes place in \mathbb{Z}_{K}, meaning that the two sides differ by an element of $3 \mathbb{Z}_{K}$. Then

$$
\begin{aligned}
T_{K / \mathrm{Q}}\left(\alpha_{1}^{n}\right) & =\alpha_{1}^{n}+\alpha_{2}^{n}+\alpha_{3}^{n}+\alpha_{4}^{n} \\
& \equiv\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)^{n} \\
& \equiv 4^{n} \\
& \equiv 1(\bmod 3) .
\end{aligned}
$$

$K=Q(\sqrt{-2}, \sqrt{-5})($ Cont'd $)$

- Suppose $3 \mid \alpha_{1}^{n}$.

Then 3 would also divide any of its conjugates.
So $3 \mid \alpha_{i}^{n}$, for all i.
So 3| $T_{K / Q}\left(\alpha_{1}^{n}\right)$.
Thus, $3 \nmid \alpha_{1}^{n}$, for any n.
Similarly, $3 \nmid \alpha_{i}^{n}$ for any i and any n.
Finally, suppose that $\mathbb{Z}_{K}=\mathbb{Z}[\gamma]$, for some γ.
Let $f(X) \in \mathbb{Z}[X]$ be the minimal polynomial of γ.
As $\alpha_{i} \in \mathbb{Z}_{K}$, we can write $\alpha_{i}=f_{i}(\gamma)$, for some $f_{i} \in \mathbb{Z}[X]$.
Now $3 \mid \alpha_{i} \alpha_{j}$, for all $i \neq j$, but $3 \nmid \alpha_{i}^{n}$ for any i and n.
Let \bar{f} denote the polynomial f with its coefficients reduced modulo 3 .
So $\bar{f}(X) \in \mathbb{F}_{3}[X]$, where $\mathbb{F}_{3}=\{0,1,2\}$ are the integers modulo 3 .

$K=Q(\sqrt{-2}, \sqrt{-5})$ (Claim)

Claim: If $g(X) \in \mathbb{Z}[X]$, that $3 \mid g(\gamma)$ in $\mathbb{Z}[\gamma]$ if and only if \bar{g} is divisible by \bar{f} in $\mathbb{F}_{3}[X]$.
Suppose $3 \mid g(\gamma)$ in $\mathbb{Z}[\gamma]$.
Then, $g(\gamma)=3 k(\gamma)$, for some $k(\gamma)$ in $\mathbb{Z}[\gamma]$.
Hence, $(g-3 k)(\gamma)=0$.
By minimality of $f, f \mid g-3 k$.
This shows that $f \mid g$ in $\mathbb{F}_{3}[X]$.
Suppose, conversely, that $\bar{f} \mid \bar{g}$ in $\mathbb{F}_{3}[X]$.
Then there exists $k(x)$, such that $\bar{g}(X)=\bar{f}(X) \bar{k}(X)$ in $\mathbb{F}_{3}[X]$.
Since $f(\gamma)=0$, we get $\bar{g}(\gamma)=0$ in $\mathrm{F}_{3}[X]$.
So $3 \mid g(\gamma)$ in $\mathbb{Z}[\gamma]$.

$K=\mathbf{Q}(\sqrt{-2}, \sqrt{-5})($ Cont'd $)$

- We apply the Claim to $f_{i}(X) f_{j}(X)$.

We know that $3 \mid \alpha_{i} \alpha_{j}=f_{i}(\gamma) f_{j}(\gamma)$.
We conclude that $\bar{f} \mid \bar{f}_{i} \bar{f}_{j}$, for all $i \neq j$.
Since $3 \nmid \alpha_{i}^{n}, \bar{f} \nmid \bar{f}_{i}^{n}$ for any i and n.
So, for all $i \neq j, \bar{f}$ has a factor dividing \bar{f}_{i} but not \bar{f}_{j}. Hence, \bar{f} must have at least four different irreducible factors.
But f is a quartic, so the different factors of \bar{f} must all be linear.
However, there are only three different linear factors in $\mathbb{F}_{3}[X]$, namely, $X, X-1$ and $X-2$.
This gives a contradiction.

$K=Q(\sqrt[3]{2})$

- As an example of a cubic field, we consider $K=\mathbb{Q}(\sqrt[3]{2})$.

Write $\alpha=\sqrt[3]{2}$ and $\omega=e^{2 \pi i / 3}$.
Note that $1+\omega+\omega^{2}=0$.
Suppose that

$$
\theta_{1}=a+b \alpha+c \alpha^{2}, \quad a, b, c \in \mathbb{Q}
$$

lies in \mathbb{Z}_{K}.
The conjugates of α are also algebraic integers,

$$
\begin{aligned}
& \theta_{2}=a+b \alpha \omega+c \alpha^{2} \omega^{2} \\
& \theta_{3}=a+b \alpha \omega^{2}+c \alpha^{2} \omega .
\end{aligned}
$$

But they are not in K.

$K=Q(\sqrt[3]{2})($ Cont'd $)$

- Then the following are also algebraic integers,

$$
\begin{aligned}
\theta_{1}+\theta_{2}+\theta_{3} & =3 a, \\
\theta_{1} \theta_{2}+\theta_{2} \theta_{3}+\theta_{3} \theta_{1} & =3 a^{2}-6 b c, \\
\theta_{1} \theta_{2} \theta_{3} & =a^{3}+2 b^{3}+4 c^{3}-6 a b c .
\end{aligned}
$$

As they are also rational, they are all in \mathbb{Z}.
Write $A=3 a, B=3 b$ and $C=3 c$.
The first equation gives $A \in \mathbb{Z}$.
Multiplying the second by 3 gives $A^{2}-2 B C \equiv 0(\bmod 3)$.
Multiplying the third by 27 gives $A^{3}+2 B^{3}+4 C^{3}-6 A B C \equiv 0(\bmod 27)$.
The second and third give $B, C \in \mathbb{Z}$ as follows.
Suppose $A^{2}-2 B C \in \mathbb{Z}$. Then $2 B C \in \mathbb{Z}$. So $6 A B C \in \mathbb{Z}$. By the last equation, $2 B^{3}+4 C^{3} \in \mathbb{Z}$. But the only way that rationals can satisfy $2 B C \in \mathbb{Z}$ and $2 B^{3}+4 C^{3} \in \mathbb{Z}$ is if $B, C \in \mathbb{Z}$ (if a prime p occurs in the denominator of B, say, then as $2 B C \in \mathbb{Z}$, it cannot also occur in the denominator of C; so p is in the denominator of $2 B^{3}+4 C^{3}$).

$K=Q(\sqrt[3]{2})$ (Conclusion)

- Suppose, first, that $3 \mid A$.

Then, since $A^{2}-2 B C \in \mathbb{Z}, 2 B C \equiv 0(\bmod 3)$.
So either B or C is divisible by 3 .
Then $3 \mid A^{3}+2 B^{3}+4 C^{3}-6 A B C$ implies that both must be.

- Suppose, next, that $3 \nmid A$.

The only solutions to

$$
A^{2}-2 B C \equiv 0 \quad(\bmod 3) \text { and } A^{3}+2 B^{3}+4 C^{3}-6 A B C \equiv 0 \quad(\bmod 3)
$$

are $A \equiv 1, B \equiv 2, C \equiv 1(\bmod 3)$ or $A \equiv 2, B \equiv 1, C \equiv 2(\bmod 3)$.
Set $A=1+3 \ell, B=2+3 m, C=1+3 n$.
Then $A^{3}+2 B^{3}+4 C^{3}-6 A B C \equiv 9(\bmod 27)$, for any ℓ, m and n.
Similarly, set $A=2+3 \ell, B=1+3 m, C=2+3 n$.
Then $A^{3}+2 B^{3}+4 C^{3}-6 A B C \equiv 18(\bmod 27)$, for any ℓ, m and n.
This means that there are no solutions with $3 \nmid A$.
Thus, $3|A, 3| B$ and $3 \mid C$. This implies that $a, b, c \in \mathbb{Z}$.
So the ring of integers is $\mathbb{Z}[\sqrt[3]{2}]$.

$K=Q(\sqrt[3]{175})$

- Set $m=175=5^{2} \times 7$.

We will compute \mathbb{Z}_{K}.
Note that if $\alpha=\sqrt[3]{175}$, then

$$
\alpha^{2}=\sqrt[3]{5^{4} 7^{2}}=5 \sqrt[3]{5 \cdot 7^{2}}=5 \sqrt[3]{245}
$$

So $\alpha^{\prime}=\sqrt[3]{245}$ is another element in K.
Moreover,

$$
\alpha^{\prime 2}=\sqrt[3]{5^{2} 7^{4}}=7 \sqrt[3]{5^{2} \cdot 7}=5 \sqrt[3]{175}=5 \alpha
$$

Furthermore, both α and α^{\prime} are integral.

- The first is a root of the monic integral polynomial $X^{3}-175$;
- The second is a root of the monic integral polynomial $X^{3}-245$.

$K=Q(\sqrt[3]{175})($ Claim $)$

Claim: \mathbb{Z}_{K} has integral basis $\left\{1, \alpha, \alpha^{\prime}\right\}$.
First compute $\Delta\left\{1, \alpha, \alpha^{\prime}\right\}$.
The embeddings into \mathbb{C} are given by

$$
\begin{aligned}
& \sigma_{1}\left(a+b \alpha+c \alpha^{\prime}\right)=a+b \alpha+c \alpha^{\prime} \\
& \sigma_{2}\left(a+b \alpha+c \alpha^{\prime}\right)=a+b \alpha \omega+c \alpha^{\prime} \omega \\
& \sigma_{3}\left(a+b \alpha+c \alpha^{\prime}\right)=a+b \alpha \omega^{2}+c \alpha^{\prime} \omega .
\end{aligned}
$$

For the discriminant, we now have

$$
\Delta\left\{1, \alpha, \alpha^{\prime}\right\}=\left|\begin{array}{ccc}
1 & \alpha & \alpha^{\prime} \\
1 & \alpha \omega & \alpha^{\prime} \omega^{2} \\
1 & \alpha \omega^{2} & \alpha^{\prime} \omega
\end{array}\right|=-3 \sqrt{3} i \alpha \alpha^{\prime} .
$$

Note that $\alpha \alpha^{\prime}=5 \cdot 7=35$. So we have

$$
\Delta\left\{1, \alpha, \alpha^{\prime}\right\}=\left(-3 \sqrt{3} i \alpha \alpha^{\prime}\right)^{2}=-3^{3} 5^{2} 7^{2}
$$

$K=Q(\sqrt[3]{175})$ (Claim Cont'd)

- We conclude that all integers must be of the form

$$
\frac{a+b \alpha+c \alpha^{\prime}}{d}, \quad a, b, c, d \in \mathbb{Z}, d \mid 3 \times 5 \times 7
$$

Suppose $\theta_{1}=\frac{a+b \alpha+c \alpha^{\prime}}{5}$ is an integer.
Then so are its conjugates

$$
\theta_{2}=\frac{a+b \alpha \omega+c \alpha^{\prime} \omega^{2}}{5}, \quad \theta_{3}=\frac{a+b \alpha \omega^{2}+c \alpha^{\prime} \omega}{5}
$$

Then $\theta_{1}+\theta_{2}+\theta_{3}=\frac{3 a}{5}$ is an integer. So $5 \mid a$.
Now $\theta_{1}=A+\frac{b \alpha+c \alpha^{\prime}}{5}$, where $A \in \mathbb{Z}$. So $\frac{b \alpha+c \alpha^{\prime}}{5} \in \mathbb{Z}_{K}$. Its norm is the product of the conjugates:

$$
\frac{b^{3} \alpha^{3}+c^{3} \alpha^{\prime 3}}{5^{3}}=\frac{175 b^{3}+245 c^{3}}{125}=\frac{35 b^{3}+49 c^{3}}{25}
$$

We need this to be an integer.

$K=Q(\sqrt[3]{175})$ (Claim Cont'd)

- Suppose $35 b^{3}+49 c^{3} \equiv 0(\bmod 25)$.

Then $35 b^{3}+49 c^{3} \equiv 0(\bmod 5)$.
So $5 \mid c^{3}$. Hence, $5 \mid c$.
As $35 b^{3}+49 c^{3} \equiv 0(\bmod 25)$, we also have $5 \mid b$.
Thus 5 cannot occur in the denominator of an element of \mathbb{Z}_{K}.
Exactly the same argument works for 7 .
For $p=3$, we need to consider $\theta_{1}=\frac{a+b \alpha+c \alpha^{\prime}}{3}$ and determine when it is an integer.
We may use the method of the previous example.
We find that, if $\theta_{1}=\frac{a+b \alpha+c \alpha^{\prime}}{3}$ is in \mathbb{Z}_{K}, then $3|a, 3| b$ and $3 \mid c$. It follows that \mathbb{Z}_{K} has $\left\{1, \alpha, \alpha^{\prime}\right\}$ as an integral basis.

$K=Q(\sqrt[3]{175})$ (Non-Monogenicity)

- Suppose $\left\{1, \gamma, \gamma^{2}\right\}$ is an integral basis, for some γ. Let $\gamma=a+b \alpha+c \alpha^{\prime}$. Then $\gamma-a=b \alpha+c \alpha^{\prime}$.
If $\left\{1, \gamma, \gamma^{2}\right\}$ is an integral basis, then we can see that

$$
\left\{1, \gamma-a,(\gamma-a)^{2}\right\}
$$

is also an integral basis.
So we may assume that γ is simply of the form $b \alpha+c \alpha^{\prime}$.
Then, recalling that $\alpha^{2}=5 \alpha^{\prime}, \alpha^{\prime 2}=7 \alpha$ and $\alpha \alpha^{\prime}=35$, we get

$$
\gamma^{2}=\left(b \alpha+c \alpha^{\prime}\right)^{2}=b^{2} \alpha^{2}+2 b c \alpha \alpha^{\prime}+c^{2} \alpha^{\prime 2}=5 b^{2} \alpha^{\prime}+70 b c+7 c^{2} \alpha .
$$

So we have expressed the elements $\left\{1, \gamma, \gamma^{2}\right\}$ in terms of the basis $\left\{1, \alpha, \alpha^{\prime}\right\}$.

$K=Q(\sqrt[3]{175})$ (Non-Monogenicity Cont'd)

- The condition that $\left\{1, \gamma, \gamma^{2}\right\}$ is a basis is equivalent to requiring that the change of basis matrix should have determinant ± 1.
This is

$$
\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & b & c \\
70 b c & 7 c^{2} & 5 b^{2}
\end{array}\right|=5 b^{3}-7 c^{3}
$$

By working modulo $7,5 b^{3}-7 c^{3} \neq \pm 1$, for any integers b and c.
The cubes modulo 7 are 0 and ± 1.
So we cannot have $5 b^{3} \equiv \pm 1(\bmod 7)$.
This contradiction shows that \mathbb{Z}_{K} has no integral basis of the form $\left\{1, \gamma, \gamma^{2}\right\}$.

