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Fields, Discriminants, Integral Bases Embeddings

Introducing Conjugates of Algebraic Numbers

Suppose that K is a number field and that [K :Q]= n.

By a previous corollary, there exists γ ∈K , such that K =Q(γ).

Let f denote the minimal polynomial of γ over Q.

By a previous corollary, f has degree n.

Now C is algebraically closed.

So we can factor f (X ) completely over C.

That is, if γ1, . . . ,γn ∈C are the (complex) roots of f ,

f (X )=
n
∏

i=1

(X −γi).

One of these is γ itself, so we will assume γ1 = γ.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 4 / 95



Fields, Discriminants, Integral Bases Embeddings

Conjugates of Algebraic Numbers

Definition

If γ ∈K has f (X ) ∈Q[X ] as its minimal polynomial as above, then the
roots γ1, . . . ,γn are the conjugates of γ.

Conjugate elements have the same minimal polynomial.

Indeed, γ1, . . . ,γn are all roots of the monic irreducible polynomial f .

So f is the minimal polynomial for each of them.

By a previous lemma, the conjugates of an algebraic number are all
distinct.
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Fields, Discriminants, Integral Bases Embeddings

Algebraic Conjugates and Complex Conjugates

Example: Suppose that α= i .

Then its minimal polynomial is X 2+1.

The two complex roots of this are ±i .
Thus, the two conjugates of i are i and −i .
Claim: Suppose that α= a+bi ∈Q(i).

Then its conjugates (in the sense above) are just α and α.

Thus, the conjugates of a complex number (in this sense) are the
same as the conjugates (in the familiar sense).
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Fields, Discriminants, Integral Bases Embeddings

A Mild Generalization

The concept of conjugacy generalizes somewhat.

Let L⊆K be an extension of fields.

Suppose α ∈K has minimal polynomial f (X ) ∈ L[X ] over L.

Then the conjugates of α over L are the roots of f .
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Fields, Discriminants, Integral Bases Embeddings

Homomorphisms Induced by Conjugates

Suppose K =Q(γ).

Then, given any element of K , we can write it as a polynomial
expression in γ with coefficients in Q.

For each k = 1, . . . ,n, consider the map

σk : γ 7→ γk .

This map induces a field homomorphism

σk :Q(γ)→Q(γk)⊆C;

n−1
∑

i=0

xiγ
i 7→

n−1
∑

i=0

xiγ
i
k

.
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Fields, Discriminants, Integral Bases Embeddings

Homomorphisms Are Well-Defined

The map σk is well-defined.

That is, if the same element of Q(γ) can be written in two different
ways as a polynomial expression of γ, then applying σk to either
expression gives the same answer.

Suppose g1(γ)= g2(γ).

Then γ is a root of g1−g2.

So the minimal polynomial of γ divides g1−g2.

But this minimal polynomial is just f .

Now γk is also a root of f .

Thus, f (γk)= 0.

So g1(γk)= g2(γk).
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Fields, Discriminants, Integral Bases Embeddings

Injectivity of Conjugate Homomorphisms

Claim: All maps σi are injective.

Suppose g1(γ) and g2(γ) are two elements of K =Q(γ), such that

σk(g1(γ))=σk(g2(γ)).

By definition of σk , g1(γk)= g2(γk).

So γk must be a root of g1−g2.

Therefore, the minimal polynomial of γk divides g1−g2.

But this minimal polynomial is exactly f .

So f | g1−g2. Hence, g1(γ)= g2(γ).

Definition

An embedding means an injective field homomorphism.

Thus, σ1, . . . ,σn are all embeddings.
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Fields, Discriminants, Integral Bases Embeddings

Embeddings of a Number Field into C

Proposition

If K is a number field of degree n, then the maps σ1, . . . ,σn are all of the n

distinct field embeddings K →C.

The arguments just given show that they are all well-defined injective
field homomorphisms.

Conversely, suppose σ :K →C is a field homomorphism and K =Q(γ).

Then σ must be determined by its effect on γ, as

σ

(

n−1
∑

i=0

xiγ
i

)

=
n−1
∑

i=0

xiσ(γ)
i
.
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Fields, Discriminants, Integral Bases Embeddings

Embeddings of a Number Field into C (Cont’d)

Now apply σ to the equality f (γ)= 0 to get

f (σ(γ))=σ(f (γ))=σ(0)= 0.

So σ(γ) is a root of f .

This shows that σ(γ)= γk , for some k .

It is then clear that σ=σk .
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Fields, Discriminants, Integral Bases Embeddings

Example

Consider the field K =Q(i).

We have already seen that the conjugates of i are i and −i .
So we get two embeddings from K into C, given by

σ1(a+bi) = a+bi ;

σ2(a+bi) = a−bi .

This gives us two ways to think of Q(i) as a subfield of C.
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Fields, Discriminants, Integral Bases Embeddings

Remark

It is sometimes important when writing Q(
p

2), say, to keep in mind
that:

The element “
p

2” should be regarded as just an abstract square root
of 2;
This element is not necessarily to be identified with the positive real
number 1.4142 . . ..

We are writing Q(
p

2) as a shorthand for

“Q(α) where α is some number with α2 = 2”.

Choosing an embedding from Q(
p

2) into C is tantamount to
identifying the abstract element

p
2 with the particular number

1.4142 . . . or −1.4142 . . ..

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 14 / 95



Fields, Discriminants, Integral Bases Embeddings

Extending Embeddings into C to Field Extensions

Proposition

Suppose that K ⊆ L is a finite extension of fields, and that we have a fixed
embedding ι :K →C. Then there are [L :K ] ways to extend the embedding
ι to an embedding L→C (that is, to define embeddings L→C which agree
with ι on the elements of L that belong to K ).

By the Theorem of the Primitive Element, we can write L=K (γ),
where γ has minimal polynomial over K of degree n= [L :K ].

Let γ1, . . . ,γn denote the roots of the minimal polynomial.

Define extensions σk : L→C by insisting that

σk

(

n−1
∑

i=0

xiγ
i

)

=
n−1
∑

i=0

ι(xi )γ
i
k .

The verification that these are all the embeddings is then identical to
the previous arguments.
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Fields, Discriminants, Integral Bases Embeddings

Example

Suppose that K is a number field, and that α ∈K .

We look at the images of α under each of the embeddings.

Example: Suppose that K =Q(
p

2,
p

3), and that α=
p

6.

The embeddings from K into C are given by:

σ1(a+b
p

2+c
p

3+d
p

6) = a+b
p

2+c
p

3+d
p

6;

σ2(a+b
p

2+c
p

3+d
p

6) = a+b
p

2−c
p

3−d
p

6;

σ3(a+b
p

2+c
p

3+d
p

6) = a−b
p

2+c
p

3−d
p

6;

σ4(a+b
p

2+c
p

3+d
p

6) = a−b
p

2−c
p

3+d
p

6.

Then
σ1(

p
6)=σ4(

p
6)=

p
6,

σ2(
p

6)=σ3(
p

6)=−
p

6.

These images are just the conjugates of
p

6, but each occurs twice.
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Fields, Discriminants, Integral Bases Embeddings

Degree of a Tower of Extensions

Theorem

Suppose that K ⊆ L⊆M is a “tower” of fields. Assume M is a finite
extension of L, and L is a finite extension of K . Then we have

[M :K ]= [M : L][L :K ].

Suppose that [M : L]=m and [L :K ]= n.

Then the following hold.

There are elements ω1, . . . ,ωn, such that every element of L is a linear
combination of ω1, . . . ,ωn, with coefficients in K ;
There are elements θ1, . . . ,θm, such that every element of M is a linear
combination of θ1, . . . ,θm, with coefficients in L.
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Fields, Discriminants, Integral Bases Embeddings

Degree of a Tower of Extensions (Cont’d)

Claim: {θiωj } is a basis for M as a K -vector space.

Let µ ∈M.

Express it first as a linear combination of

θ1, . . . ,θm,

with coefficients in L.

Then express each of these coefficients as linear combinations of

ω1, . . . ,ωn,

with coefficients in K .

This shows that µ can be written as a linear combination of {θiωj },
with coefficients in K .
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Fields, Discriminants, Integral Bases Embeddings

Degree of a Tower of Extensions (Cont’d)

Claim: These {θiωj } form a linearly independent set.

To see this, we take a linear combination which is 0,

α11θ1ω1+α12θ1ω2+·· ·+α1nθ1ωn+α21θ2ω1+·· ·+αmnθmωn = 0.

Rearrange this as

(α11ω1+·· ·+α1nωn)θ1+·· ·+ (αm1ω1+·· ·+αmnωn)θm = 0.

Now this is a linear combination of θ1, . . . ,θm with coefficients in L.

Since they form a basis, each of the coefficients must vanish,

αi1ω1+·· ·+αinωn = 0, for all i .

Now ω1, . . . ,ωn forms a basis for L as a vector space over K .

So we again conclude that each αij = 0.

Thus, {θiωj } form a basis for M over K .

It follows that [M :K ]=mn.
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Fields, Discriminants, Integral Bases Embeddings

The Degree dα and rα

Consider a number field K of degree n over Q.

Suppose α ∈K with minimal polynomial g(X ) ∈Q[X ].

Then α generates a field Q(α) contained in K .

If g has degree dα, then [Q(α) :Q]= dα.

Suppose that the conjugates of α are written

α1 =α,α2, . . . ,αdα
.

Form the tower of fields Q⊆Q(α)⊆K .

We know that
[K :Q]= [K :Q(α)][Q(α) :Q].

So we see that dα | n.

Write r = rα for n
dα

.
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Fields, Discriminants, Integral Bases Embeddings

Images of α under the σi ’s

Proposition

The images σi (α) are the conjugates {α1, . . . ,αdα
}, each occurring with

multiplicity rα.

We have extension fields Q⊆Q(α)⊆K .

By a previous proposition, we know that there are dα embeddings

ιk :Q(α)→C.

The embedding ιk is determined by the property that ιk(α)=αk .

Choose any of these embeddings ιk :Q(α)→C.

The extension Q(α)⊆K has degree rα.

By a previous proposition, the embedding ιk extends to an embedding
K →C in rα ways.
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Fields, Discriminants, Integral Bases Embeddings

Images of α under the σi ’s (Cont’d)

By definition of an extension, each extension of ιk maps α to αk .

We can perform this extension for each of the dα embeddings ιk .

In this way each embedding is extended in rα ways.

We thus obtain dαrα = n embeddings from K to C.

But there are exactly n embeddings from K into C.

Thus, all of the embeddings σi :K →C have been obtained.

Moreover, as we have seen, α is taken to each of its conjugates
{α1, . . . ,αdα

} with multiplicity rα.
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Fields, Discriminants, Integral Bases Embeddings

The Product with Factors X −σk(α)

Corollary

Suppose α in K has minimal polynomial g of degree dα, and that rα = n
dα

.
Then

n
∏

i=1

(X −σk(α))= g(X )rα .

Both sides are monic polynomials with the same roots.
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Fields, Discriminants, Integral Bases Norms and Traces

Subsection 2

Norms and Traces
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Fields, Discriminants, Integral Bases Norms and Traces

Multiplication by α

Let K be a number field, with [K :Q]= n.

Suppose that α ∈K .

Multiplication by α gives a map

mα :K →K ; x 7→αx .

Claim: This map is Q-linear.

It is easy to see that, for x ,x ′ ∈K and t ∈Q,

mα(x +x ′) = α(x +x ′)=αx +αx ′ =mα(x)+mα(x
′);

mα(tx) = α(tx)= t(αx)= tmα(x).

The map is even K -linear, since mα(tx)= tmα(x), for t ∈K .
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Fields, Discriminants, Integral Bases Norms and Traces

Trace and Norm of an Element in a Number Field

Choose a basis for K over Q.

Then the map mα is represented by an n×n-matrix.

We define:

The trace of α, written TK/Q(α), to be the trace of this matrix;
The norm of α, written NK/Q(α), to be the determinant of the matrix.

Choosing a different basis would give a conjugate n×n-matrix
representing the map.

By a result in Linear Algebra, the trace and determinant of an
endomorphism do not depend on the choice of basis.

When the field K is clearly understood, we may simply write N(α) and
T (α) for the norm and trace.

If L/K is an extension of number fields, there is an analogous notion
of TL/K and NL/K .
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Fields, Discriminants, Integral Bases Norms and Traces

Example

Suppose that K =Q(
p

2,
p

3) and take α=
p

2+
p

3.

Choose a basis {1,
p

2,
p

3,
p

6} for K .

Multiplying by α has the following effect,

α(a+b
p

2+c
p

3+d
p

6)= (2b+3c)+(a+3d)
p

2+(a+2d)
p

3+(b+c)
p

6.

Interpreted as a map on coefficients











a

b

c

d











7→











2b+3c
a+3d
a+2d
b+c











.

This is the map given by multiplication by











0 2 3 0
1 0 0 3
1 0 0 2
0 1 1 0











.

The trace is the sum of the diagonal entries, which is 0.

The norm of α is the determinant of the matrix, which is 1.
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Fields, Discriminants, Integral Bases Norms and Traces

Min Polynomial of α and Characteristic Polynomial of mα

Proposition

Suppose that α is an algebraic number with minimal polynomial
g(X ) ∈Q[X ]. Form the map mα as above. Then the characteristic
polynomial of the matrix of mα is g(X ).

Suppose the min polynomial for α is given by xn+c1x
n−1+·· ·+cn = 0.

We can compute the characteristic polynomial after choosing a basis.

A basis for Q(α) over Q is {1,α,α2, . . . ,αn−1}, where α has degree n.

Note that:
α ·αk = αk+1, k = 0, . . . ,n−2,

α ·αn−1 = αn

= −c1α
n−1−·· ·−cn.
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Fields, Discriminants, Integral Bases Norms and Traces

Min Polynomial of α and Characteristic of mα (Cont’d)

So the map mα is given by

mα(a0+a1α+·· ·+an−1α
n−1)

=α(a0+a1α+·· ·+an−1α
n−1)

= a0α+·· ·+an−2α
n−1+an−1α

n

= a0α+·· ·+an−2α
n−1+an−1(−c1αn−1−·· ·−cn)

= −an−1cn+ (a0−an−1cn−1)α+·· ·+ (an−2−an−1c1)α
n−1.
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Fields, Discriminants, Integral Bases Norms and Traces

Min Polynomial of α and Characteristic of mα (Cont’d)

So the map of mα using this basis is given by












a0

a1

...
an−1













7→













−an−1cn
a0−an−1cn−2

...
an−2−an−1c1













.

This is the same as multiplication by the matrix
















−cn
1 −cn−1

1 −cn−2

. . .
...

1 −c1

















.

It is easy to check that this matrix has characteristic polynomial given
by xn+c1x

n−1+·· ·+cn = 0.
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Fields, Discriminants, Integral Bases Norms and Traces

The Norm and the Trace are Rational

Lemma

Suppose α ∈K . Then NK/Q(α) and TK/Q(α) are both in Q.

This simply follows because they are the trace and determinant of a
matrix with entries in Q.
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Fields, Discriminants, Integral Bases Norms and Traces

Norm, Trace and Embeddings

Proposition

Write σ1, . . . ,σn for the embeddings of K into C. If α ∈K , then

NK/Q(α)=
n
∏

k=1

σk(α) and TK/Q(α)=
n
∑

k=1

σk(α).

Let g denote the minimal polynomial of α over Q.

Q(α) may be smaller than K (e.g., we might even have α ∈Q).

So the degree of g may be strictly smaller than n.

As g is irreducible, [Q(α) :Q]= degg , written dα.

We have field extensions Q⊆Q(α)⊆K .

Let {β1, . . . ,βrα} be a basis for K over Q(α), [K :Q(α)]= rα = n
dα

.

Clearly {1,α, . . . ,αdα−1} is a basis for Q(α) over Q.
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Fields, Discriminants, Integral Bases Norms and Traces

Properties of Norm and Trace (Cont’d)

Now the set {βiα
j : 1≤ i ≤ rα,0≤ j < dα} forms a basis for K over Q.

Choose this basis, and fix one of the βi .

Consider the map mα on the block spanned by {βi ,βiα, . . . ,βiα
dα−1}.

The matrix of this map on this block is the same for all choices of βi .

It is the same as the matrix of the map mα on Q(α), where we use
the basis {1,α, . . . ,αdα−1}.

We have seen that this matrix has characteristic polynomial g .

So the characteristic polynomial of mα on K is given by g(X )rα .

But the roots of g , by definition, are exactly the conjugates of α.

So the roots of g(X )rα are the conjugates of α, with multiplicities rα.

By the proposition, these are exactly the images of α under all the
embeddings σi :K →C.

The result now follows.
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Fields, Discriminants, Integral Bases Norms and Traces

Norms and Traces of Algebraic Integers

Corollary

Suppose α ∈ZK . Then NK/Q(α) and TK/Q(α) are both in Z.

By hypothesis, α ∈ZK .

So its minimal polynomial g(X ) ∈Z[X ].

Therefore, g(X )rα ∈Z[X ].

This implies that the product

n
∏

i=1

(X −σi(α)) ∈Z[X ].

The constant coefficient of this polynomial is (−1)nNK/Q(α).

In addition, the coefficient of X n−1 is −TK/Q(α).
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Fields, Discriminants, Integral Bases The Discriminant

Subsection 3

The Discriminant

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 35 / 95



Fields, Discriminants, Integral Bases The Discriminant

The Discriminant

Suppose that K is a number field of degree n over Q.

We saw this means that:

1. K is generated over Q by n elements (the definition of the degree);
2. There are n embeddings σ1, . . . ,σn from K into C.

Suppose that {ω1, . . . ,ωn} lie in K .

For the moment, we will not assume that these form a basis.

Consider the matrix:

M =













σ1(ω1) σ1(ω2) · · · σ1(ωn)
σ2(ω1) σ2(ω2) · · · σ2(ωn)

...
...

. . .
...

σn(ω1) σn(ω2) · · · σn(ωn)













.
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Fields, Discriminants, Integral Bases The Discriminant

The Discriminant (Cont’d)

We will use the determinant of M as a measure of how “widely
spaced” the set {ω1, . . . ,ωn} is.

The determinant of M is defined only up to sign.

So we use its square.

Definition

Define the discriminant of {ω1, . . . ,ωn} to be

∆{ω1, . . . ,ωn} = (detM)2.
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Fields, Discriminants, Integral Bases The Discriminant

A Discriminant Formula

Lemma

With the notation as above, form the matrix T , where

Tij =TK/Q(ωiωj).

Then ∆{ω1, . . . ,ωn} = detT .

Simply notice that detM = detMt . So

∆{ω1, . . . ,ωn} = (detM)2 = det(MtM).

But

(MtM)ij =
n
∑

k=1

Mt
ik
Mkj =

n
∑

k=1

MkiMkj

=
n
∑

k=1

σk(ωi )σk(ωj)=
n
∑

k=1

σk(ωiωj).

By a previous proposition, this is equal to TK/Q(ωiωj).

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 38 / 95



Fields, Discriminants, Integral Bases The Discriminant

Discriminant of Algebraic Integers

Corollary

Suppose that {ω, . . . ,ωn} consists of elements of ZK . Then

∆{ω1, . . . ,ωn} ∈Z.

Suppose each ωi ∈ZK .

ZK is closed under multiplication.

So ωiωj ∈ZK .

By a previous corollary, TK/Q(ωiωj) ∈Z.

So, by the lemma, ∆{ω1, . . . ,ωn} is the determinant of a matrix with
entries in Z.

Thus, ∆{ω1, . . . ,ωn} is itself in Z.
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Fields, Discriminants, Integral Bases The Discriminant

Example

Let K =Q(γ), for some γ.

One natural basis for K over Q is {1,γ,γ2, . . . ,γn−1}.

As usual, write γ1, . . . ,γn for the conjugates of γ.

Then the discriminant ∆{1,γ,γ2, . . . ,γn−1} is given by
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 γ1 · · · γn−1
1

1 γ2 · · · γn−1
2

...
...

. . .
...

1 γn · · · γn−1
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

.

This is a Vandermonde determinant, which is equal to
∏

i<j
(γi −γj)

2
.

We saw that the conjugates of γ are distinct.

So the discriminant ∆{1,γ,γ2, . . . ,γn−1} is nonzero.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 40 / 95



Fields, Discriminants, Integral Bases The Discriminant

Discriminant of the Minimal Polynomial

Let K =Q(γ), for some γ.

Suppose f (X ) is the minimal polynomial of γ.

Then its roots are the conjugates γ1, . . . ,γn of γ.

Define the discriminant of f (X ) to be exactly

∏

i<j
(γi −γj)

2
.

By the example, the discriminant of f (X ) coincides with the
discriminant ∆{1,γ, . . . ,γn−1}.
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Fields, Discriminants, Integral Bases The Discriminant

Relations Between Discriminants

Proposition

Suppose that the elements of two sets {ω1, . . . ,ωn} and {ω′
1, . . . ,ω′

n} are
related by

ω′
i = c1iω1+·· ·+cniωn

for rational numbers cij ∈Q. Write C for the matrix (cij ). Then

∆{ω′
1, . . . ,ω′

n} = (detC )2∆{ω1, . . . ,ωn}.
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Relations Between Discriminants (Cont’d)

Set

M ′ =













σ1(ω
′
1) σ1(ω

′
2) · · · σ1(ω

′
n)

σ2(ω
′
1) σ2(ω

′
2) · · · σ2(ω

′
n)

...
...

. . .
...

σn(ω
′
1) σn(ω

′
2) · · · σn(ω

′
n)













.

Then
∆{ω′

1, . . . ,ω′
n} = (detM ′)2.

σk is a homomorphism, which is the identity on rational numbers.

It follows that

σk(ω
′
i )= c1iσk(ω1)+·· ·+cniσk(ωn).

It is easy to see that this implies that M ′ =CM, where C = (cij ).

The result now follows from the multiplicativity of the determinant.
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Bases have Nonzero Discriminants

Proposition

Suppose that {ω1, . . . ,ωn} is a basis for K over Q. Then

∆{ω1, . . . ,ωn} 6= 0.

As usual, write K =Q(γ), for some element γ ∈K .

Then {1,γ, . . . ,γn−1} is a basis for K over Q.

We can write the basis {ω1, . . . ,ωn} in terms of {1,γ, . . . ,γn−1} as

ωi = c1i1+c2iγ+·· ·+cniγ
n−1

.
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Bases have Nonzero Discriminants (Cont’d)

Claim: Since {ω1, . . . ,ωn} is also a basis, we have det(cij ) 6= 0.

Suppose {ω1, . . . ,ωn} is a basis.

We can write
γi−1 = c ′1iω1+c ′2iω2+·· ·+c ′niωn.

for some c ′
ij
.

Write C = (cij ) and C ′ = (c ′
ij
).

We can see that this implies that C ′C = I .

Hence C and C ′ are invertible.

The previous proposition shows that

∆{ω1, . . . ,ωn} = (det(cij ))
2
∆{1,γ, . . . ,γn−1

}.

The result follows.
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Characterization of Bases

Proposition

The set {ω1, . . . ,ωn} is a basis for K over Q if and only if ∆{ω1, . . . ,ωn} 6= 0.

We have already seen that the discriminant of a basis is nonzero.

Conversely, suppose {ω1, . . . ,ωn} are linearly dependent over Q.

Then x1ω1+·· ·+xnωn = 0, for some x1, . . . ,xn ∈Q, not all zero.

Apply the embedding σk to this equality.

Since σ is a field homomorphism fixing each element of Q,

x1σk(ω1)+·· ·+xnσk(ωn)= 0.

We get a linear dependency between the columns of the matrix M,
with Mij =σi(ωj ). So detM = 0.

Thus, ∆{ω1, . . . ,ωn} = 0, as required.
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Real and Complex Embeddings

Some of the n embeddings may map K into the real numbers R⊂C.

We call these real embeddings.

The other embeddings occur in complex conjugate pairs.

I.e., if σ :K →C is an embedding, then so is σ, where

σ(ω)=σ(ω).

So complex embeddings occur as complex conjugate pairs.

Denote by:

r1 the number of real embeddings of K into C;
r2 the number of complex conjugate pairs of embeddings.
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Measuring the Spacing of {ω1, . . . ,ωn}

Since there are n embeddings in total, we have

r1+2r2 = n.

Every pair (σ,σ) of complex embeddings together map K into C2.

The image is actually contained in a real 2-dimensional subspace.

Indeed, suppose
σ(ω)= a+bi .

Then
σ(ω)= a−bi .

So the real and imaginary parts of σ(ω) are already determined by the
real and imaginary parts of σ(ω).
So we get that:

Each real embedding maps K into R⊂C;
Each pair of complex embeddings map K into a 2-dimensional real
subspace of C2.
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Measuring the Spacing of {ω1, . . . ,ωn} (Cont’d)

We conclude that the collection of all embeddings

ι= (σ1, . . . ,σn)

maps K into a real subspace V of Cn of real dimension n.

Given our set {ω1, . . . ,ωn}, the image of

Zι(ω1)+·· ·+Zι(ωn)

is contained in this subspace V .

When the set is not a basis, the image will lie in a subspace of V of
strictly smaller dimension.
In this case the discriminant will vanish.
If the set is a basis, the discriminant will measure the volume of a
fundamental region for the image.
Thus, it will measure how sparsely these points are spaced.
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Subsection 4

Integral Bases
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Integral Bases of ZK

We say that the set {ω1, . . . ,ωn} is an integral basis for the ring of
integers ZK if every element of ZK is uniquely expressible as a
Z-linear combination of elements of the set.

Example: We have looked at integral bases for quadratic fields.

Suppose K =Q(
p
d), with d a squarefree integer.

Assume, first, that d ≡ 1 (mod 4).

Then

ZK =Z+Z
1+

p
d

2
.

So an integral basis is {1,
1+

p
d

2
}.

Assume, next, that d ≡ 2 (mod 4) or d ≡ 3 (mod 4).

Then
ZK =Z+Z

p
d .

So an integral basis is {1,
p
d}.
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Free Abelian Groups of Rank n and Bases

It is not obvious that integral bases exist.

We will show that they do for all number fields K .

Equivalently, we will prove that the ring of integers of K is a free
abelian group of rank n= [K :Q].

Recall that a free abelian group A of rank n is one which is the
direct sum of n subgroups, each infinite cyclic (so isomorphic to Z).

Then
A∼=Zω1+·· ·+Zωn.

So every element of A can be expressed uniquely as

x1ω1+·· ·+xnωn, xi ∈Z.

This is exactly the property required of an integral basis.
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Existence of Integral Bases

Suppose that [K :Q]= n.

Then we can choose a basis {ω1, . . . ,ωn} for K over Q.

Thus, every element of K can be written x1ω1+·· ·+xnωn, for xi ∈Q.

Theorem

Let K be a number field. Then the ring of integers ZK has an integral
basis.

Given any basis, we can replace each element in our basis with a
nonzero multiple so that every basis element is in ZK .

We also know that the discriminant of every basis consisting of
elements of ZK is an integer.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 53 / 95



Fields, Discriminants, Integral Bases Integral Bases

Existence of Integral Bases (Cont’d)

Choose a basis
{ω1, . . . ,ωn},

consisting of elements of ZK , with |∆{ω1, . . . ,ωn}| as small as possible.

This can be done since ∆{ω1, . . . ,ωn} is a positive integer.

Claim: This set is indeed an integral basis for K .

Suppose, to the contrary, that this does not hold.

Then there would be ω ∈ZK whose expression in terms of this basis

ω= x1ω1+·· ·+xnωn

has coefficients which are in Q, but not all in Z.

Reorder the basis elements, if necessary, so that x1 6∈Z.

Then we can choose a1 ∈Z, with

|x1−a1| ≤
1

2
.
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Existence of Integral Bases (Cont’d)

Define
ω′

1 =ω−a1ω1 = (x1−a1)ω1+x2ω2+·· ·+xnωn.

As ω ∈ZK , ω1 ∈ZK , and a1 ∈Z, we have ω′
1 ∈ZK .

Define also
ω′

2 =ω2, . . . ,ω′
n =ωn.

Then {ω′
1, . . . ,ω′

n} is another basis.

It is easy to see that each of the elements of both sets can be
expressed as a linear combination of the other (recall that x1−a1 6= 0).

Apply a previous proposition to change bases.
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Existence of Integral Bases (Cont’d)

The change of basis matrix from {ω1, . . . ,ωn} to {ω′
1, . . . ,ω′

n}, is given by

C =













x1−a1 x2 x3 · · · xn
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1













.

A previous proposition gives

∆{ω′
1, . . . ,ω′

n} = (x1−a1)
2
∆{ω1, . . . ,ωn}.

But |x1−a1| ≤ 1
2
.

So this means that

∆{ω′
1, . . . ,ω′

n} <∆{ω1, . . . ,ωn}.

This contradicts the minimality of the discriminant of {ω1, . . . ,ωn}.
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Discriminants of Two Integral Bases

We saw that integral bases exist.

In addition, the ring of integers of a number field of degree n is a free
abelian group of rank n.

Proposition

If {ω1, . . . ,ωn} and {ω′
1, . . . ,ω′

n} are two integral bases for a number field K ,
then

∆{ω′
1, . . . ,ω′

n} =∆{ω1, . . . ,ωn}.

Suppose {ω1, . . . ,ωn} and {ω′
1, . . . ,ω′

n} are two integral bases.

Then each element of the second can be written as an integral linear
combination of those in the first,

ω′
i = c1iω1+·· ·+cniωn, with cij ∈Z.
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Discriminants of Two Integral Bases (Cont’d)

Now we have

∆{ω′
1, . . . ,ω′

n} = (detC )2∆{ω1, . . . ,ωn}

So the integer ∆{ω1, . . . ,ωn} divides the integer ∆{ω′
1, . . . ,ω′

n}.

But the same argument applies also in the other direction.

So the integer ∆{ω′
1, . . . ,ω′

n} divides the integer ∆{ω1, . . . ,ωn}.

From this we see that

∆{ω′
1, . . . ,ω′

n} =±∆{ω1, . . . ,ωn}.

Also each cij ∈Z. So detC ∈Z.

Therefore, (detC )2 > 0.

Thus,
∆{ω′

1, . . . ,ω′
n} =∆{ω1, . . . ,ωn}.
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The Discriminant of a Number Field

Let K be a number field.

We have seen that K has an integral basis.

Moreover, by the proposition, any two integral bases have equal
discriminants.

Definition

Suppose that K is a number field. The discriminant DK of K is defined
to be the discriminant of any integral basis for K .
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Example

Consider the case K =Q(
p
d), with d squarefree and d ≡ 1 (mod 4).

An integral basis is {1,
1+

p
d

2
}.

There are two embeddings into C, given by

σ1(a+b
p
d) = a+b

p
d ;

σ1(a+b
p
d) = a−b

p
d .

The discriminant is

∣

∣

∣

∣

∣

σ1(1) σ1(
1+

p
d

2
)

σ2(1) σ2(
1+

p
d

2
)

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

1 1+
p
d

2

1 1−
p
d

2

∣

∣

∣

∣

∣

2

= (−
p
d)2 = d .

Thus, if K =Q(
p
d) as above, DK = d .
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Example (Cont’d)

An integral basis for K =Q(
p
d) with d squarefree and d ≡ 2 (mod 4)

or d ≡ 3 (mod 4) is {1,
p
d }.

In this case,

DK =

∣

∣

∣

∣

∣

σ1(1) σ1(
p
d)

σ2(1) σ2(
p
d)

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

1
p
d

1 −
p
d

∣

∣

∣

∣

∣

2

= (−2
p
d)2 = 4d .
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Subsection 5

Further Theory of the Discriminant
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Minimal Polynomial of γ and Norm of f ′(γ)

Proposition

Suppose that K =Q(γ), and that the minimal polynomial of γ over Q is
f (X ) ∈Q[X ] of degree n. Then

∆{1,γ, . . . ,γn−1
} = (−1)n(n−1)/2NK/Q(f

′(γ)).

We saw that the discriminant

∆{1,γ, . . . ,γn−1
} =

∏

i<j
(γi −γj )

2
,

where the conjugates of γ are γ1, . . . ,γn.
Recall that:

The conjugates are the roots in C of the minimal polynomial f (X );
Minimal polynomials are monic.

So f (X )=
∏n

i=1
(X −γi).
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Minimal Polynomial of γ and Norm of f ′(γ) (Cont’d)

Using the product rule,

f ′(X )=
n
∑

k=1

∏

i 6=k
(X −γi).

Only the term with k = j does not have a factor (X −γj ).

So
f ′(γj )=

∏

i 6=j
(γj −γi ).

Then

NK/Q(f
′(γ))=

n
∏

j=1

f ′(γj)=
n
∏

j=1

∏

i 6=j
(γj −γi ).

If i < j , this product has a bracket (γi −γj) and a bracket (γj −γi).

It follows that

NK/Q(f
′(γ))=

∏

i<j
[−(γi −γj)

2]= (−1)n(n−1)/2
∆{1,γ, . . . ,γn−1

}.
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Discriminant of an Integral Basis of K

Lemma

Suppose that ω1, . . . ,ωn is a basis for K over Q consisting of elements of
ZK . Then

∆{ω1, . . . ,ωn}ZK ⊆Zω1+·· ·+Zωn.

Let α ∈ZK . By hypothesis, {ω1, . . . ,ωn} is a basis.

So we can write

α= x1ω1+·· ·+xnωn, x1, . . . ,xn ∈Q.

Multiply through by ωj to get αωj =
∑n

i=1
xiωiωj .

Take the trace:

TK/Q(αωj )=
n
∑

i=1

xiTK/Q(ωiωj).

Now α and ωj are in ZK . So TK/Q(αωj ) ∈Z, by a previous corollary.
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Discriminant of an Integral Basis of K (Cont’d)

Similarly, the traces TK/Q(ωiωj) are also in Z, for all i , j .

So the preceding equations can be regarded as a set of linear
equations whose solution is given by x1, . . . ,xn.

Cramer’s rule implies that the solutions are quotients of integers
(given by suitable determinants of integers) by

det(TK/Q(ωiωj))=∆{ω1, . . . ,ωn}.

So ∆{ω1, . . . ,ωn}xi ∈Z, for all i .

Multiplying α by ∆{ω1, . . . ,ωn}, we see that

∆{ω1, . . . ,ωn}α ∈Zω1+·· ·+Zωn.
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Finding Integral Bases of Number Fields

Strategy for finding integral bases for a number field K :

Step 1 Find any basis for K over Q.
Scale the basis elements so that they are in ZK .
Let {ω1, . . . ,ωn} be the result.

Step 2 Compute ∆=∆{ω1, . . . ,ωn}.
By the lemma, ZK ⊆ 1

∆
(Zω1+·· ·+Zωn). So every integer must be of

the form
x1ω1+·· ·+xnωn,

for xi ∈Q but where the denominators divide ∆.
Step 3 For a prime p2 |∆, check whether any element

ω= x1ω1+·· ·+xnωn

is integral, where xi is a rational number with denominator dividing p.
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Finding Integral Bases of Number Fields (Cont’d)

If such an integral ω exists, where some xi is not in Z, so has
denominator p, replace ωi with ω to get a set with discriminant ∆

p2 (by

a previous proposition).
Since the discriminant of an integral basis must be in Z, we need only
do this for primes p, with p2 |∆.
Now return to Step 2.
If no such element is integral, for any prime p with p2 |∆, then we have
an integral basis.

Corollary

Suppose that K is a number field and ω1, . . . ,ωn are elements of ZK , such
that ∆{ω1, . . . ,ωn} is squarefree. Then {ω1, . . . ,ωn} is an integral basis.
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Integral Basis of a Double Extension

Proposition

Suppose that K1 =Q(γ1) and K2 =Q(γ2) are two number fields of degree
n1 and n2 respectively, such that K =Q(γ1,γ2) has degree n1n2 over Q.
Suppose that {ω1, . . . ,ωn1 } and {ω′

1, . . . ,ω′
n2

} are integral bases for K1 and
K2, respectively, with discriminants D1 and D2. If D1 and D2 are coprime,
then {ωiω

′
j
} forms an integral basis for K , of discriminant D

n2

1
D

n1

2
.

We first claim that {ωiω
′
j
} form a basis for K over Q.

Every element of K is a polynomial expression in γ1 and γ2.

Every power of γ1 lies in K1.

So it is a linear combination of {ω1, . . . ,ωn1}.

Similarly, every power of γ2 lies in K2.

So it is a linear combination of {ω′
1, . . . ,ω′

n2
}.
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Integral Basis of a Double Extension (Cont’d)

Thus, every product γa1γ
b
2 is a linear combination of {ωiω

′
j
}.

Each element of K is a linear combination of these monomials.

So it is also a linear combination of this set.

We have n1n2 such elements and, by hypothesis, [K :Q]= n1n2.

So they must be linearly independent, and, thus, form a basis.

Claim: {ωiω
′
j
} form an integral basis.

If α ∈ZK , we can write α=
∑n1

i=1

∑n2

j=1
xijωiω

′
j
. We show xij ∈Z.

Then

α=
n1
∑

i=1

n2
∑

j=1

xijωiω
′
j =

n1
∑

i=1

(
n2
∑

j=1

xijxijω
′
j)ωi =

n1
∑

i=1

yiωi ,

where yi =
∑n2

j=1
xijω

′
j
∈K2.

We have [K :Q]= n1n2 and [K1 :Q]= n1.

So, by the tower law, [K :K1]= n2.
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Integral Basis of a Double Extension (Claim)

Since K =K1(γ2), we see that there are n2 embeddings of K into C

which are the identity on K1 (regarded as a subfield of C).

Let {σ′
1, . . . ,σ′

n2
} denote these embeddings of K into C.

Regard these as maps on the elements of K2 ⊆K .

They are determined by sending γ2 to one of its conjugates.

In this sense, they restrict to the n2 different embeddings of K2 into C.

Let

x =







σ′
1(α)
...

σ′
n2
(α)





 and y =







y1

...
yn2





 .

Then x =My , where Mkℓ =σ′
k
(ω′

ℓ
). By definition, D2 = (detM)2.

As in a previous lemma, D2yi =
∑n2

j=1
D2xijω

′
j
has coefficients in Z.

So D2xij ∈Z.

In the same way (exchanging the roles of K1 and K2), D1xij ∈Z.

As D1 and D2 are coprime, we conclude that each xij ∈Z.
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Integral Basis of a Double Extension (Cont’d)

So {ωiω
′
j
} forms an integral basis for ZK .

Let {σ1, . . . ,σn1} be the embeddings of K into C, which are the
identity on K2.

Then all the embeddings of K into C are given by {σiσ
′
j
}.

This can easily be seen by observing that an embedding is uniquely
determined by its effect on γ1 and γ2.

These, in turn, uniquely determine σi and σ′
j
.

The discriminant of the basis {ωiω
′
j
} is given by (detA)2, where A is an

n1n2×n1n2-matrix with

Aki ,ℓj = (σkσ
′
ℓ)(ωiω

′
j)=σk(ωi )σ

′
ℓ(ω

′
j).
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Integral Basis of a Double Extension (Cont’d)

We can decompose A as A=BC , where:

B is the n2×n2 matrix of n1×n1-blocks given by

B =











Q 0 · · · 0
0 Q · · · 0
...

...
. . .

...
0 0 · · · Q











,

where Q is the n1×n1-matrix with Qki =σk(ωi );
C is the block matrix

C =













σ′
1
(ω′

1
)I σ′

2
(ω′

1
)I · · · σ′

n2
(ω′

1
)I

σ′
1
(ω′

2
)I σ′

2
(ω′

2
)I · · · σ′

n2
(ω′

2
)I

...
...

. . .
...

σ′
1
(ω′

n2
)I σ′

2
(ω′

n2
)I · · · σ′

n2
(ω′

n2
)I













,

where I is the n1×n1-identity matrix.
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Integral Basis of a Double Extension (Conclusion)

Clearly
det(B)= det(Q)n2 .

So
det(B)2 = ((detQ)2)n2 =D

n2

1
.

Also,
det(C )= det(σ′

ℓ(ω
′
j ))

n1 .

So
det(C )2 =D

n1

2
.

Therefore,

∆= det(A)2 = det(B)2det(C )2 =D
n2

1
D

n1

2
.
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Subsection 6

Rings of Integers in Some Cubic and Quadratic Fields
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Monogenicity and Power Bases

We consider some examples on the construction of integral bases.

In two of these examples, we show the ring of integers cannot be
expressed in the form Z[γ] for any element γ.

Fields K where ZK =Z[γ] are called monogenic.

In such cases, the basis {1,γ, . . . ,γn−1} is called a power basis.
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K =Q(
p

2,
p

3)

The ring of integers of Q(
p

2) is Z[
p

2].

The ring of integers of Q(
p

3) is Z[
p

3].

One might hope that the ring of integers of K =Q(
p

2,
p

3) should be
Z[

p
2,
p

3].

We have already seen that this is false.

Moreover, this does not contradict the preceding proposition, since the
discriminants of Q(

p
2) and Q(

p
3) are not coprime.
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K =Q(
p

2,
p

3) (Cont’d)

Let α ∈ZK .

Then, for some a,b,c ,d ∈Q, we can write

α= a+b
p

2+c
p

3+d
p

6.

Since α ∈ZK , all of its conjugates

α2 = a−b
p

2+c
p

3−d
p

6,

α3 = a+b
p

2−c
p

3−d
p

6,

α4 = a−b
p

2−c
p

3+d
p

6

are also algebraic integers.

The set of algebraic integers is closed under addition.

It follows that the following are also algebraic integers:

α+α2 = 2a+2c
p

3, α+α3 = 2a+2b
p

2, α+α4 = 2a+2d
p

6.

By a preceding proposition, these are integral if 2a,2b,2c ,2d ∈Z.
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K =Q(
p

2,
p

3) (Cont’d)

Thus, there exist A,B ,C ,D ∈Z, with A= 2a, B = 2b, C = 2c and
D = 2d , such that

α=
A+B

p
2+C

p
3+D

p
6

2
.

In addition, the following is also integral

αα2 = (a+c
p

3)2− (b
p

2+d
p

6)2

= a2+2ac
p

3+3c2−2b2−4bd
p

3−6d2

= A2+3C2−2B2−6D2

4
+ AC−2BD

2

p
3.

Thus, 4 |A2+3C 2−2B2−6D2 and 2 |AC −2BD.

The second implies that 2 |AC . So at least one of A and C is even.

If only one were even, then A2+3C 2−2B2−6D2 would be odd, and
the first requirement would fail. So both A and C are even.
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K =Q(
p

2,
p

3) (Cont’d)

We saw that both A and C are even.

Now 2 |AC −2BD becomes automatic.

Moreover, 4 |A2+3C 2−2B2−6D2 reduces to 4 | 2B2+6D2.

Equivalently, 2 |B2+D2.

So B and D are both even or both odd.

It follows that all integers are of the form

α= a+b
p

2+c
p

3+d
p

6,

with a,c ∈Z and b and d both integral or both halves of odd integers.

It remains to check that elements of this form are all integers.

They are integer linear combinations of 1,
p

2,
p

3 and
p

2+
p

6
2

= 1+
p

3
2

.

The first three are obviously integers.

The last is integral because it is a root of the monic polynomial
f (X )=X 4−4X 2+1, with coefficients in Z.
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K =Q(
p

2,
p

3) (Conclusion)

Claim: ZK =Z[γ], where γ=
p

2+
p

6
2

.

We have
γ2 = 2+

p
3;

γ3 = 5
p

2+3
p

6
2

.

So p
2 = γ3−3γ;

p
3 = γ2−2.

So each element in {1,
p

2,
p

3,γ} is in Z[γ].

Therefore, ZK ⊆Z[γ].

Conversely, γ ∈ZK .

So, since ZK is a ring, Z[γ]⊆ZK .
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K =Q(
p
−2,

p
−5)

The determination of the ring of integers in this case is very similar to
that of Q(

p
2,
p

3).

However, we can check that if γ=
p
−2+

p
10

2
, the argument above that

ZK =Z[γ] does not work in this case.

Claim: There is no element γ such that ZK =Z[γ].

We consider the following elements

α1 = (1+
p
−2)(1+

p
−5),

α2 = (1+
p
−2)(1−

p
−5),

α3 = (1−
p
−2)(1+

p
−5),

α4 = (1−
p
−2)(1−

p
−5).

Clearly, they all lie in ZK .

Moreover, α1+α2 +α3+α4 = 4.
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K =Q(
p
−2,

p
−5) (Cont’d)

Notice that

α1α2 = (1+
p
−2)2(1+

p
−5)(1−

p
−5)

= 6(1+
p
−2)2.

Similarly, 3 |αiαj , for any pair i 6= j .

This implies that

(α1+α2 +α3+α4)
n ≡αn

1 +αn
2 +αn

3 +αn
4 (mod 3),

where the congruence actually takes place in ZK , meaning that the
two sides differ by an element of 3ZK . Then

TK/Q(α
n
1) = αn

1 +αn
2 +αn

3 +αn
4

≡ (α1+α2+α3 +α4)
n

≡ 4n

≡ 1 (mod 3).

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 83 / 95



Fields, Discriminants, Integral Bases Integers in Cubic and Quadratic Fields

K =Q(
p
−2,

p
−5) (Cont’d)

Suppose 3|αn
1 .

Then 3 would also divide any of its conjugates.

So 3 |αn
i
, for all i .

So 3 |TK/Q(α
n
1).

Thus, 3 ∤αn
1 , for any n.

Similarly, 3 ∤αn
i

for any i and any n.

Finally, suppose that ZK =Z[γ], for some γ.

Let f (X ) ∈Z[X ] be the minimal polynomial of γ.

As αi ∈ZK , we can write αi = fi(γ), for some fi ∈Z[X ].

Now 3 |αiαj , for all i 6= j , but 3 ∤αn
i

for any i and n.

Let f denote the polynomial f with its coefficients reduced modulo 3.

So f (X ) ∈F3[X ], where F3 = {0,1,2} are the integers modulo 3.
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K =Q(
p
−2,

p
−5) (Claim)

Claim: If g(X ) ∈Z[X ], that 3 | g(γ) in Z[γ] if and only if g is divisible
by f in F3[X ].

Suppose 3 | g(γ) in Z[γ].

Then, g(γ)= 3k(γ), for some k(γ) in Z[γ].

Hence, (g −3k)(γ)= 0.

By minimality of f , f | g −3k .

This shows that f | g in F3[X ].

Suppose, conversely, that f | g in F3[X ].

Then there exists k(x), such that g(X )= f (X )k(X ) in F3[X ].

Since f (γ)= 0, we get g(γ)= 0 in F3[X ].

So 3 | g(γ) in Z[γ].
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K =Q(
p
−2,

p
−5) (Cont’d)

We apply the Claim to fi(X )fj(X ).

We know that 3 |αiαj = fi(γ)fj (γ).

We conclude that f | f i f j , for all i 6= j .

Since 3 ∤αn
i
, f ∤ f

n

i for any i and n.

So, for all i 6= j , f has a factor dividing f i but not f j .

Hence, f must have at least four different irreducible factors.

But f is a quartic, so the different factors of f must all be linear.

However, there are only three different linear factors in F3[X ], namely,
X ,X −1 and X −2.

This gives a contradiction.
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K =Q( 3
p

2)

As an example of a cubic field, we consider K =Q(
3
p

2).

Write α= 3
p

2 and ω= e2πi/3.

Note that 1+ω+ω2 = 0.

Suppose that
θ1 = a+bα+cα2

, a,b,c ∈Q,

lies in ZK .

The conjugates of α are also algebraic integers,

θ2 = a+bαω+cα2ω2;

θ3 = a+bαω2+cα2ω.

But they are not in K .
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K =Q( 3
p

2) (Cont’d)

Then the following are also algebraic integers,

θ1+θ2+θ3 = 3a,

θ1θ2+θ2θ3+θ3θ1 = 3a2−6bc ,

θ1θ2θ3 = a3+2b3+4c3−6abc .

As they are also rational, they are all in Z.

Write A= 3a, B = 3b and C = 3c .

The first equation gives A ∈Z.

Multiplying the second by 3 gives A2−2BC ≡ 0 (mod 3).

Multiplying the third by 27 gives A3+2B3+4C 3−6ABC ≡ 0 (mod 27).

The second and third give B ,C ∈Z as follows.

Suppose A2−2BC ∈Z. Then 2BC ∈Z. So 6ABC ∈Z. By the last
equation, 2B3+4C 3 ∈Z. But the only way that rationals can satisfy
2BC ∈Z and 2B3+4C 3 ∈Z is if B ,C ∈Z (if a prime p occurs in the
denominator of B , say, then as 2BC ∈Z, it cannot also occur in the
denominator of C ; so p is in the denominator of 2B3+4C 3).
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K =Q( 3
p

2) (Conclusion)

Suppose, first, that 3 |A.
Then, since A2−2BC ∈Z, 2BC ≡ 0 (mod 3).
So either B or C is divisible by 3.
Then 3 |A3+2B3+4C3−6ABC implies that both must be.
Suppose, next, that 3 ∤A.
The only solutions to

A2−2BC ≡ 0 (mod 3) and A3+2B3+4C3−6ABC ≡ 0 (mod 3)

are A≡ 1, B ≡ 2, C ≡ 1 (mod 3) or A≡ 2, B ≡ 1, C ≡ 2 (mod 3).
Set A= 1+3ℓ, B = 2+3m, C = 1+3n.
Then A3+2B3+4C3−6ABC ≡ 9 (mod 27), for any ℓ,m and n.
Similarly, set A= 2+3ℓ, B = 1+3m, C = 2+3n.
Then A3+2B3+4C3−6ABC ≡ 18 (mod 27), for any ℓ,m and n.
This means that there are no solutions with 3 ∤A.

Thus, 3 |A, 3 |B and 3 |C . This implies that a,b,c ∈Z.

So the ring of integers is Z[ 3
p

2].
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K =Q( 3
p

175)

Set m= 175= 52×7.

We will compute ZK .

Note that if α= 3
p

175, then

α2 = 3
√

5472 = 5
3
√

5 ·72 = 5
3
p

245.

So α′ = 3
p

245 is another element in K .

Moreover,
α′2 = 3

√

5274 = 7
3
√

52 ·7= 5
3
p

175= 5α.

Furthermore, both α and α′ are integral.

The first is a root of the monic integral polynomial X 3−175;
The second is a root of the monic integral polynomial X 3−245.
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K =Q( 3
p

175) (Claim)

Claim: ZK has integral basis {1,α,α′}.

First compute ∆{1,α,α′}.

The embeddings into C are given by

σ1(a+bα+cα′) = a+bα+cα′;

σ2(a+bα+cα′) = a+bαω+cα′ω;

σ3(a+bα+cα′) = a+bαω2+cα′ω.

For the discriminant, we now have

∆{1,α,α′
} =

∣

∣

∣

∣

∣

∣

1 α α′

1 αω α′ω2

1 αω2 α′ω

∣

∣

∣

∣

∣

∣

= −3
p

3iαα′
.

Note that αα′ = 5 ·7= 35. So we have

∆{1,α,α′
} = (−3

p
3iαα′)2 = −335272

.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 91 / 95



Fields, Discriminants, Integral Bases Integers in Cubic and Quadratic Fields

K =Q( 3
p

175) (Claim Cont’d)

We conclude that all integers must be of the form

a+bα+cα′

d
, a,b,c ,d ∈Z, d | 3×5×7.

Suppose θ1 = a+bα+cα′

5
is an integer.

Then so are its conjugates

θ2 =
a+bαω+cα′ω2

5
, θ3 =

a+bαω2+cα′ω

5
.

Then θ1+θ2 +θ3 = 3a
5

is an integer. So 5 | a.
Now θ1 =A+ bα+cα′

5
, where A ∈Z. So bα+cα′

5
∈ZK .

Its norm is the product of the conjugates:

b3α3+c3α′3

53
=

175b3+245c3

125
=

35b3+49c3

25
.

We need this to be an integer.
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K =Q( 3
p

175) (Claim Cont’d)

Suppose 35b3+49c3 ≡ 0 (mod 25).

Then 35b3+49c3 ≡ 0 (mod 5).

So 5 | c3. Hence, 5 | c .
As 35b3+49c3 ≡ 0 (mod 25), we also have 5 | b.

Thus 5 cannot occur in the denominator of an element of ZK .

Exactly the same argument works for 7.

For p = 3, we need to consider θ1 = a+bα+cα′

3
and determine when it is

an integer.

We may use the method of the previous example.

We find that, if θ1 = a+bα+cα′

3
is in ZK , then 3 | a, 3 | b and 3 | c .

It follows that ZK has {1,α,α′} as an integral basis.
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K =Q( 3
p

175) (Non-Monogenicity)

Suppose {1,γ,γ2} is an integral basis, for some γ.

Let γ= a+bα+cα′. Then γ−a= bα+cα′.

If {1,γ,γ2} is an integral basis, then we can see that

{1,γ−a,(γ−a)2}

is also an integral basis.

So we may assume that γ is simply of the form bα+cα′.

Then, recalling that α2 = 5α′, α′2 = 7α and αα′ = 35, we get

γ2 = (bα+cα′)2 = b2α2+2bcαα′+c2α′2 = 5b2α′+70bc +7c2α.

So we have expressed the elements {1,γ,γ2} in terms of the basis
{1,α,α′}.
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K =Q( 3
p

175) (Non-Monogenicity Cont’d)

The condition that {1,γ,γ2} is a basis is equivalent to requiring that
the change of basis matrix should have determinant ±1.

This is
∣

∣

∣

∣

∣

∣

1 0 0
0 b c

70bc 7c2 5b2

∣

∣

∣

∣

∣

∣

= 5b3−7c3
.

By working modulo 7, 5b3−7c3 6= ±1, for any integers b and c .

The cubes modulo 7 are 0 and ±1.

So we cannot have 5b3 ≡±1 (mod 7).

This contradiction shows that ZK has no integral basis of the form
{1,γ,γ2}.
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