Introduction to Algebraic Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Algebraic Number Theory

- Embeddings
- Norms and Traces
- The Discriminant
- Integral Bases
- Further Theory of the Discriminant
- Rings of Integers in Some Cubic and Quadratic Fields

Subsection 1

Embeddings

Introducing Conjugates of Algebraic Numbers

- Suppose that K is a number field and that $[K : \mathbb{Q}] = n$.
- By a previous corollary, there exists $\gamma \in K$, such that $K = \mathbb{Q}(\gamma)$.
- Let f denote the minimal polynomial of γ over \mathbb{Q} .
- By a previous corollary, f has degree n.
- Now \mathbb{C} is algebraically closed.
- So we can factor f(X) completely over \mathbb{C} .
- That is, if $\gamma_1, \ldots, \gamma_n \in \mathbb{C}$ are the (complex) roots of f,

$$f(X) = \prod_{i=1}^n (X - \gamma_i).$$

One of these is γ itself, so we will assume $\gamma_1 = \gamma$.

Conjugates of Algebraic Numbers

Definition

If $\gamma \in K$ has $f(X) \in \mathbb{Q}[X]$ as its minimal polynomial as above, then the roots $\gamma_1, \ldots, \gamma_n$ are the **conjugates** of γ .

- Conjugate elements have the same minimal polynomial.
- Indeed, $\gamma_1, \ldots, \gamma_n$ are all roots of the monic irreducible polynomial f.
- So f is the minimal polynomial for each of them.
- By a previous lemma, the conjugates of an algebraic number are all distinct.

Algebraic Conjugates and Complex Conjugates

Example: Suppose that $\alpha = i$.

Then its minimal polynomial is $X^2 + 1$.

The two complex roots of this are $\pm i$.

Thus, the two conjugates of i are i and -i.

Claim: Suppose that $\alpha = a + bi \in \mathbb{Q}(i)$.

Then its conjugates (in the sense above) are just α and $\overline{\alpha}$.

• Thus, the conjugates of a complex number (in this sense) are the same as the conjugates (in the familiar sense).

A Mild Generalization

- The concept of conjugacy generalizes somewhat.
- Let $L \subseteq K$ be an extension of fields.
- Suppose $\alpha \in K$ has minimal polynomial $f(X) \in L[X]$ over L.
- Then the conjugates of α over L are the roots of f.

Homomorphisms Induced by Conjugates

- Suppose $K = \mathbb{Q}(\gamma)$.
- Then, given any element of K, we can write it as a polynomial expression in γ with coefficients in Q.
- For each k = 1, ..., n, consider the map

 $\sigma_k : \gamma \mapsto \gamma_k.$

• This map induces a field homomorphism

$$\sigma_k : \mathbb{Q}(\gamma) \to \mathbb{Q}(\gamma_k) \subseteq \mathbb{C};$$
$$\sum_{i=0}^{n-1} x_i \gamma^i \mapsto \sum_{i=0}^{n-1} x_i \gamma_k^i.$$

Homomorphisms Are Well-Defined

• The map σ_k is well-defined.

That is, if the same element of $\mathbb{Q}(\gamma)$ can be written in two different ways as a polynomial expression of γ , then applying σ_k to either expression gives the same answer.

Suppose
$$g_1(\gamma) = g_2(\gamma)$$
.

Then
$$\gamma$$
 is a root of $g_1 - g_2$.

So the minimal polynomial of γ divides $g_1 - g_2$.

But this minimal polynomial is just f.

```
Now \gamma_k is also a root of f.
```

```
Thus, f(\gamma_k) = 0.
```

So $g_1(\gamma_k) = g_2(\gamma_k)$.

Injectivity of Conjugate Homomorphisms

Claim: All maps σ_i are injective.

Suppose $g_1(\gamma)$ and $g_2(\gamma)$ are two elements of $K = \mathbb{Q}(\gamma)$, such that

$$\sigma_k(g_1(\gamma)) = \sigma_k(g_2(\gamma)).$$

By definition of σ_k , $g_1(\gamma_k) = g_2(\gamma_k)$.

So γ_k must be a root of $g_1 - g_2$.

Therefore, the minimal polynomial of γ_k divides $g_1 - g_2$.

But this minimal polynomial is exactly f.

So
$$f \mid g_1 - g_2$$
. Hence, $g_1(\gamma) = g_2(\gamma)$.

Definition

An embedding means an injective field homomorphism.

• Thus, $\sigma_1, \ldots, \sigma_n$ are all embeddings.

George Voutsadakis (LSSU)

Embeddings of a Number Field into $\ensuremath{\mathbb{C}}$

Proposition

If K is a number field of degree n, then the maps $\sigma_1, \ldots, \sigma_n$ are all of the n distinct field embeddings $K \to \mathbb{C}$.

• The arguments just given show that they are all well-defined injective field homomorphisms.

Conversely, suppose $\sigma : K \to \mathbb{C}$ is a field homomorphism and $K = \mathbb{Q}(\gamma)$. Then σ must be determined by its effect on γ , as

$$\sigma\left(\sum_{i=0}^{n-1} x_i \gamma^i\right) = \sum_{i=0}^{n-1} x_i \sigma(\gamma)^i.$$

Embeddings

Embeddings of a Number Field into \mathbb{C} (Cont'd)

• Now apply σ to the equality $f(\gamma) = 0$ to get

$$f(\sigma(\gamma)) = \sigma(f(\gamma)) = \sigma(0) = 0.$$

So
$$\sigma(\gamma)$$
 is a root of f .
This shows that $\sigma(\gamma) = \gamma_k$, for some k .
It is then clear that $\sigma = \sigma_k$.

Example

- Consider the field $K = \mathbb{Q}(i)$.
- We have already seen that the conjugates of i are i and -i.
- So we get two embeddings from K into \mathbb{C} , given by

$$\sigma_1(a+bi) = a+bi;$$

$$\sigma_2(a+bi) = a-bi.$$

• This gives us two ways to think of $\mathbb{Q}(i)$ as a subfield of \mathbb{C} .

Remark

- It is sometimes important when writing $\mathbb{Q}(\sqrt{2})$, say, to keep in mind that:
 - The element " $\sqrt{2}$ " should be regarded as just an abstract square root of 2;
 - This element is not necessarily to be identified with the positive real number 1.4142....
- We are writing $\mathbb{Q}(\sqrt{2})$ as a shorthand for

" $\mathbb{Q}(\alpha)$ where α is some number with $\alpha^2 = 2$ ".

• Choosing an embedding from $\mathbb{Q}(\sqrt{2})$ into \mathbb{C} is tantamount to identifying the abstract element $\sqrt{2}$ with the particular number 1.4142... or -1.4142...

Extending Embeddings into ${\mathbb C}$ to Field Extensions

Proposition

Suppose that $K \subseteq L$ is a finite extension of fields, and that we have a fixed embedding $\iota: K \to \mathbb{C}$. Then there are [L:K] ways to extend the embedding ι to an embedding $L \to \mathbb{C}$ (that is, to define embeddings $L \to \mathbb{C}$ which agree with ι on the elements of L that belong to K).

By the Theorem of the Primitive Element, we can write L = K(γ), where γ has minimal polynomial over K of degree n = [L : K]. Let γ₁,..., γ_n denote the roots of the minimal polynomial. Define extensions σ_k : L → C by insisting that

$$\sigma_k\left(\sum_{i=0}^{n-1} x_i \gamma^i\right) = \sum_{i=0}^{n-1} \iota(x_i) \gamma_k^i.$$

The verification that these are all the embeddings is then identical to the previous arguments.

George Voutsadakis (LSSU)

Example

- Suppose that K is a number field, and that $\alpha \in K$.
- We look at the images of α under each of the embeddings.
 Example: Suppose that K = Q(√2, √3), and that α = √6.
 The embeddings from K into C are given by:

$$\sigma_{1}(a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}) = a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6};$$

$$\sigma_{2}(a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}) = a+b\sqrt{2}-c\sqrt{3}-d\sqrt{6};$$

$$\sigma_{3}(a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}) = a-b\sqrt{2}+c\sqrt{3}-d\sqrt{6};$$

$$\sigma_{4}(a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}) = a-b\sqrt{2}-c\sqrt{3}+d\sqrt{6}.$$

Then

$$\sigma_1(\sqrt{6}) = \sigma_4(\sqrt{6}) = \sqrt{6}, \sigma_2(\sqrt{6}) = \sigma_3(\sqrt{6}) = -\sqrt{6}$$

These images are just the conjugates of $\sqrt{6}$, but each occurs twice.

Degree of a Tower of Extensions

Theorem

Suppose that $K \subseteq L \subseteq M$ is a "tower" of fields. Assume M is a finite extension of L, and L is a finite extension of K. Then we have

[M:K] = [M:L][L:K].

- Suppose that [M : L] = m and [L : K] = n. Then the following hold.
 - There are elements ω₁,...,ω_n, such that every element of L is a linear combination of ω₁,...,ω_n, with coefficients in K;
 - There are elements $\theta_1, \dots, \theta_m$, such that every element of M is a linear combination of $\theta_1, \dots, \theta_m$, with coefficients in L.

Degree of a Tower of Extensions (Cont'd)

Claim: $\{\theta_i \omega_i\}$ is a basis for *M* as a *K*-vector space. Let $\mu \in M$. Express it first as a linear combination of

 $\theta_1,\ldots,\theta_m,$

with coefficients in I.

Then express each of these coefficients as linear combinations of

 $\omega_1,\ldots,\omega_n,$

with coefficients in K.

This shows that μ can be written as a linear combination of $\{\theta_i \omega_i\}$, with coefficients in K.

Degree of a Tower of Extensions (Cont'd)

Claim: These $\{\theta_i \omega_j\}$ form a linearly independent set. To see this, we take a linear combination which is 0,

 $\alpha_{11}\theta_1\omega_1 + \alpha_{12}\theta_1\omega_2 + \dots + \alpha_{1n}\theta_1\omega_n + \alpha_{21}\theta_2\omega_1 + \dots + \alpha_{mn}\theta_m\omega_n = 0.$ Rearrange this as

$$(\alpha_{11}\omega_1+\cdots+\alpha_{1n}\omega_n)\theta_1+\cdots+(\alpha_{m1}\omega_1+\cdots+\alpha_{mn}\omega_n)\theta_m=0.$$

Now this is a linear combination of $\theta_1, \ldots, \theta_m$ with coefficients in *L*. Since they form a basis, each of the coefficients must vanish,

$$\alpha_{i1}\omega_1 + \dots + \alpha_{in}\omega_n = 0$$
, for all *i*.

Now $\omega_1, \dots, \omega_n$ forms a basis for *L* as a vector space over *K*. So we again conclude that each $\alpha_{ij} = 0$. Thus, $\{\theta_i \omega_j\}$ form a basis for *M* over *K*. It follows that [M:K] = mn.

The Degree d_{α} and r_{α}

- Consider a number field K of degree n over \mathbb{Q} .
- Suppose $\alpha \in K$ with minimal polynomial $g(X) \in \mathbb{Q}[X]$.
- Then α generates a field $\mathbb{Q}(\alpha)$ contained in K.
- If g has degree d_{α} , then $[\mathbb{Q}(\alpha) : \mathbb{Q}] = d_{\alpha}$.
- Suppose that the conjugates of α are written

$$\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_{d_\alpha}.$$

- Form the tower of fields $\mathbb{Q} \subseteq \mathbb{Q}(\alpha) \subseteq K$.
- We know that

$$[K:\mathbb{Q}] = [K:\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}].$$

- So we see that $d_{\alpha} \mid n$.
- Write $r = r_{\alpha}$ for $\frac{n}{d_{\alpha}}$.

Images of lpha under the σ_i 's

Proposition

The images $\sigma_i(\alpha)$ are the conjugates $\{\alpha_1, \ldots, \alpha_{d_\alpha}\}$, each occurring with multiplicity r_α .

We have extension fields Q ⊆ Q(α) ⊆ K.
 By a previous proposition, we know that there are d_α embeddings

$$\iota_k: \mathbb{Q}(\alpha) \to \mathbb{C}.$$

The embedding ι_k is determined by the property that $\iota_k(\alpha) = \alpha_k$. Choose any of these embeddings $\iota_k : \mathbb{Q}(\alpha) \to \mathbb{C}$. The extension $\mathbb{Q}(\alpha) \subseteq K$ has degree r_{α} .

By a previous proposition, the embedding ι_k extends to an embedding $K \to \mathbb{C}$ in r_{α} ways.

Images of α under the σ_i 's (Cont'd)

By definition of an extension, each extension of ι_k maps α to α_k. We can perform this extension for each of the d_α embeddings ι_k. In this way each embedding is extended in r_α ways. We thus obtain d_αr_α = n embeddings from K to C. But there are exactly n embeddings from K into C. Thus, all of the embeddings σ_i: K → C have been obtained. Moreover, as we have seen, α is taken to each of its conjugates {α₁,...,α_{d_α}} with multiplicity r_α.

The Product with Factors $X - \sigma_k(\alpha)$

Corollary

Suppose α in K has minimal polynomial g of degree d_{α} , and that $r_{\alpha} = \frac{n}{d_{\alpha}}$. Then

$$\prod_{i=1}^{n} (X - \sigma_k(\alpha)) = g(X)^{r_\alpha}.$$

• Both sides are monic polynomials with the same roots.

Subsection 2

Norms and Traces

Multiplication by α

- Let K be a number field, with $[K : \mathbb{Q}] = n$.
- Suppose that $\alpha \in K$.
- Multiplication by α gives a map

$$m_{\alpha}: K \to K; \qquad x \mapsto \alpha x.$$

Claim: This map is Q-linear.

It is easy to see that, for $x, x' \in K$ and $t \in \mathbb{Q}$,

$$m_{\alpha}(x+x') = \alpha(x+x') = \alpha x + \alpha x' = m_{\alpha}(x) + m_{\alpha}(x');$$

$$m_{\alpha}(tx) = \alpha(tx) = t(\alpha x) = tm_{\alpha}(x).$$

• The map is even K-linear, since $m_{\alpha}(tx) = tm_{\alpha}(x)$, for $t \in K$.

Trace and Norm of an Element in a Number Field

- Choose a basis for K over \mathbb{Q} .
- Then the map m_{α} is represented by an $n \times n$ -matrix.
- We define:
 - The **trace** of α , written $T_{K/\mathbb{Q}}(\alpha)$, to be the trace of this matrix;
 - The **norm** of α , written $N_{K/\mathbb{Q}}(\alpha)$, to be the determinant of the matrix.
- Choosing a different basis would give a conjugate *n* × *n*-matrix representing the map.
- By a result in Linear Algebra, the trace and determinant of an endomorphism do not depend on the choice of basis.
- When the field K is clearly understood, we may simply write $N(\alpha)$ and $T(\alpha)$ for the norm and trace.
- If L/K is an extension of number fields, there is an analogous notion of $T_{L/K}$ and $N_{L/K}$.

Example

• Suppose that
$$K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$$
 and take $\alpha = \sqrt{2} + \sqrt{3}$.
Choose a basis $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ for K .
Multiplying by α has the following effect,
 $\alpha(a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}) = (2b+3c)+(a+3d)\sqrt{2}+(a+2d)\sqrt{3}+(b+c)\sqrt{6}$.
Interpreted as a map on coefficients $\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \mapsto \begin{pmatrix} 2b+3c \\ a+3d \\ a+2d \\ b+c \end{pmatrix}$.
This is the map given by multiplication by $\begin{pmatrix} 0 & 2 & 3 & 0 \\ 1 & 0 & 0 & 3 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$.
The trace is the sum of the diagonal entries, which is 0.
The norm of α is the determinant of the matrix, which is 1.

George Voutsadakis (LSSU)

Min Polynomial of α and Characteristic Polynomial of m_{α}

Proposition

Suppose that α is an algebraic number with minimal polynomial $g(X) \in \mathbb{Q}[X]$. Form the map m_{α} as above. Then the characteristic polynomial of the matrix of m_{α} is g(X).

Suppose the min polynomial for α is given by xⁿ + c₁xⁿ⁻¹ + ··· + c_n = 0. We can compute the characteristic polynomial after choosing a basis. A basis for Q(α) over Q is {1, α, α²,..., αⁿ⁻¹}, where α has degree n. Note that:

$$\begin{array}{rcl} \alpha \cdot \alpha^k &=& \alpha^{k+1}, \quad k = 0, \dots, n-2, \\ \alpha \cdot \alpha^{n-1} &=& \alpha^n \\ &=& -c_1 \alpha^{n-1} - \dots - c_n. \end{array}$$

Min Polynomial of α and Characteristic of m_{α} (Cont'd)

• So the map m_{α} is given by

$$m_{\alpha}(a_{0} + a_{1}\alpha + \dots + a_{n-1}\alpha^{n-1})$$

= $\alpha(a_{0} + a_{1}\alpha + \dots + a_{n-1}\alpha^{n-1})$
= $a_{0}\alpha + \dots + a_{n-2}\alpha^{n-1} + a_{n-1}\alpha^{n}$
= $a_{0}\alpha + \dots + a_{n-2}\alpha^{n-1} + a_{n-1}(-c_{1}\alpha^{n-1} - \dots - c_{n})$
= $-a_{n-1}c_{n} + (a_{0} - a_{n-1}c_{n-1})\alpha + \dots + (a_{n-2} - a_{n-1}c_{1})\alpha^{n-1}.$

George Voutsadakis (LSSU)

Min Polynomial of lpha and Characteristic of m_lpha (Cont'd)

• So the map of m_{α} using this basis is given by

$$\begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{n-1} \end{pmatrix} \mapsto \begin{pmatrix} -a_{n-1}c_{n} \\ a_{0} - a_{n-1}c_{n-2} \\ \vdots \\ a_{n-2} - a_{n-1}c_{1} \end{pmatrix}$$

This is the same as multiplication by the matrix

$$\begin{pmatrix} & & -c_n \\ 1 & & -c_{n-1} \\ 1 & & -c_{n-2} \\ & \ddots & \vdots \\ & & 1 & -c_1 \end{pmatrix}.$$

It is easy to check that this matrix has characteristic polynomial given by $x^n + c_1 x^{n-1} + \dots + c_n = 0$.

The Norm and the Trace are Rational

Lemma

Suppose $\alpha \in K$. Then $N_{K/\mathbb{Q}}(\alpha)$ and $T_{K/\mathbb{Q}}(\alpha)$ are both in \mathbb{Q} .

 $\bullet\,$ This simply follows because they are the trace and determinant of a matrix with entries in $\mathbb{Q}.$

Norm, Trace and Embeddings

Proposition

Write $\sigma_1, \ldots, \sigma_n$ for the embeddings of K into C. If $\alpha \in K$, then

$$N_{K/\mathbb{Q}}(\alpha) = \prod_{k=1}^{n} \sigma_k(\alpha)$$
 and $T_{K/\mathbb{Q}}(\alpha) = \sum_{k=1}^{n} \sigma_k(\alpha)$.

Let g denote the minimal polynomial of α over Q.
Q(α) may be smaller than K (e.g., we might even have α ∈ Q). So the degree of g may be strictly smaller than n.
As g is irreducible, [Q(α):Q] = degg, written d_α.
We have field extensions Q ⊆ Q(α) ⊆ K.
Let {β₁,...,β_{r_a}} be a basis for K over Q(α), [K:Q(α)] = r_α = n/d_α.
Clearly {1, α, ..., α^{d_α-1}} is a basis for Q(α) over Q.

Properties of Norm and Trace (Cont'd)

• Now the set $\{\beta_i \alpha^j : 1 \le i \le r_\alpha, 0 \le j < d_\alpha\}$ forms a basis for K over Q. Choose this basis, and fix one of the β_i .

Consider the map m_{α} on the block spanned by $\{\beta_i, \beta_i \alpha, \dots, \beta_i \alpha^{d_{\alpha}-1}\}$. The matrix of this map on this block is the same for all choices of β_i . It is the same as the matrix of the map m_{α} on $\mathbb{Q}(\alpha)$, where we use the basis $\{1, \alpha, \dots, \alpha^{d_{\alpha}-1}\}$.

We have seen that this matrix has characteristic polynomial g. So the characteristic polynomial of m_{α} on K is given by $g(X)^{r_{\alpha}}$. But the roots of g, by definition, are exactly the conjugates of α . So the roots of $g(X)^{r_{\alpha}}$ are the conjugates of α , with multiplicities r_{α} . By the proposition, these are exactly the images of α under all the embeddings $\sigma_i : K \to \mathbb{C}$.

The result now follows.

Norms and Traces of Algebraic Integers

Corollary

Suppose $\alpha \in \mathbb{Z}_{K}$. Then $N_{K/\mathbb{Q}}(\alpha)$ and $T_{K/\mathbb{Q}}(\alpha)$ are both in \mathbb{Z} .

By hypothesis, α ∈ Z_K.
 So its minimal polynomial g(X) ∈ Z[X].
 Therefore, g(X)^{r_α} ∈ Z[X].
 This implies that the product

$$\prod_{i=1}^n (X - \sigma_i(\alpha)) \in \mathbb{Z}[X].$$

The constant coefficient of this polynomial is $(-1)^n N_{K/\mathbb{Q}}(\alpha)$. In addition, the coefficient of X^{n-1} is $-T_{K/\mathbb{Q}}(\alpha)$.

Subsection 3

The Discriminant

George Voutsadakis (LSSU)

Algebraic Number Theory

The Discriminant

- Suppose that K is a number field of degree n over \mathbb{Q} .
- We saw this means that:
 - 1. *K* is generated over \mathbb{Q} by *n* elements (the definition of the degree);
 - 2. There are *n* embeddings $\sigma_1, \ldots, \sigma_n$ from *K* into \mathbb{C} .
- Suppose that $\{\omega_1, \ldots, \omega_n\}$ lie in K.
- For the moment, we will not assume that these form a basis.
- Consider the matrix:

$$M = \begin{pmatrix} \sigma_1(\omega_1) & \sigma_1(\omega_2) & \cdots & \sigma_1(\omega_n) \\ \sigma_2(\omega_1) & \sigma_2(\omega_2) & \cdots & \sigma_2(\omega_n) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_n(\omega_1) & \sigma_n(\omega_2) & \cdots & \sigma_n(\omega_n) \end{pmatrix}.$$
The Discriminant (Cont'd)

- We will use the determinant of *M* as a measure of how "widely spaced" the set {ω₁,...,ω_n} is.
- The determinant of M is defined only up to sign.
- So we use its square.

Definition

Define the **discriminant** of $\{\omega_1, \ldots, \omega_n\}$ to be

 $\Delta\{\omega_1,\ldots,\omega_n\}=(\det M)^2.$

A Discriminant Formula

Lemma

With the notation as above, form the matrix T, where

 $T_{ij}=T_{K/\mathbb{Q}}(\omega_i\omega_j).$

Then $\Delta\{\omega_1,\ldots,\omega_n\} = \det T$.

• Simply notice that $\det M = \det M^t$. So

$$\Delta\{\omega_1,\ldots,\omega_n\} = (\det M)^2 = \det(M^t M).$$

But

$$(M^{t}M)_{ij} = \sum_{k=1}^{n} M_{ik}^{t} M_{kj} = \sum_{k=1}^{n} M_{ki} M_{kj}$$
$$= \sum_{k=1}^{n} \sigma_{k}(\omega_{i}) \sigma_{k}(\omega_{j}) = \sum_{k=1}^{n} \sigma_{k}(\omega_{i}\omega_{j}).$$

By a previous proposition, this is equal to $T_{\mathcal{K}/\mathbb{Q}}(\omega_i\omega_j)$.

Discriminant of Algebraic Integers

Corollary

Suppose that $\{\omega, \ldots, \omega_n\}$ consists of elements of \mathbb{Z}_K . Then

 $\Delta\{\omega_1,\ldots,\omega_n\}\in\mathbb{Z}.$

Suppose each ω_i ∈ Z_K.
 Z_K is closed under multiplication.
 So ω_iω_j ∈ Z_K.

By a previous corollary, $T_{K/\mathbb{Q}}(\omega_i\omega_j)\in\mathbb{Z}$.

So, by the lemma, $\Delta\{\omega_1, \ldots, \omega_n\}$ is the determinant of a matrix with entries in \mathbb{Z} .

Thus, $\Delta\{\omega_1,\ldots,\omega_n\}$ is itself in \mathbb{Z} .

Example

Let K = Q(γ), for some γ.
 One natural basis for K over Q is {1, γ, γ²,..., γⁿ⁻¹}.
 As usual, write γ₁,..., γ_n for the conjugates of γ.
 Then the discriminant Δ{1, γ, γ²,..., γⁿ⁻¹} is given by

$$\begin{vmatrix} & \gamma_1 & \cdots & \gamma_1^{n-1} \\ 1 & \gamma_2 & \cdots & \gamma_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \gamma_n & \cdots & \gamma_n^{n-1} \end{vmatrix}^2$$

This is a Vandermonde determinant, which is equal to

$$\prod_{i< j} (\gamma_i - \gamma_j)^2.$$

We saw that the conjugates of γ are distinct. So the discriminant $\Delta\{1, \gamma, \gamma^2, \dots, \gamma^{n-1}\}$ is nonzero.

George Voutsadakis (LSSU)

Discriminant of the Minimal Polynomial

- Let $K = \mathbb{Q}(\gamma)$, for some γ .
- Suppose f(X) is the minimal polynomial of γ .
- Then its roots are the conjugates $\gamma_1, \ldots, \gamma_n$ of γ .
- Define the discriminant of f(X) to be exactly

$$\prod_{i< j} (\gamma_i - \gamma_j)^2.$$

By the example, the discriminant of f(X) coincides with the discriminant Δ{1, γ,..., γⁿ⁻¹}.

Relations Between Discriminants

Proposition

Suppose that the elements of two sets $\{\omega_1,...,\omega_n\}$ and $\{\omega'_1,...,\omega'_n\}$ are related by

$$\omega_i' = c_{1i}\omega_1 + \cdots + c_{ni}\omega_n$$

for rational numbers $c_{ij} \in \mathbb{Q}$. Write C for the matrix (c_{ij}) . Then

$$\Delta\{\omega'_1,\ldots,\omega'_n\} = (\det C)^2 \Delta\{\omega_1,\ldots,\omega_n\}.$$

George Voutsadakis (LSSU)

Relations Between Discriminants (Cont'd)

Set

$$M' = \begin{pmatrix} \sigma_1(\omega'_1) & \sigma_1(\omega'_2) & \cdots & \sigma_1(\omega'_n) \\ \sigma_2(\omega'_1) & \sigma_2(\omega'_2) & \cdots & \sigma_2(\omega'_n) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_n(\omega'_1) & \sigma_n(\omega'_2) & \cdots & \sigma_n(\omega'_n) \end{pmatrix}.$$

Then

$$\Delta\{\omega'_1,\ldots,\omega'_n\}=(\det M')^2.$$

 σ_k is a homomorphism, which is the identity on rational numbers. It follows that

$$\sigma_k(\omega_i') = c_{1i}\sigma_k(\omega_1) + \cdots + c_{ni}\sigma_k(\omega_n).$$

It is easy to see that this implies that M' = CM, where $C = (c_{ij})$. The result now follows from the multiplicativity of the determinant.

Bases have Nonzero Discriminants

Proposition

Suppose that $\{\omega_1, \ldots, \omega_n\}$ is a basis for K over \mathbb{Q} . Then

 $\Delta\{\omega_1,\ldots,\omega_n\}\neq 0.$

 As usual, write K = Q(γ), for some element γ ∈ K. Then {1, γ,..., γⁿ⁻¹} is a basis for K over Q. We can write the basis {ω₁,...,ω_n} in terms of {1, γ,..., γⁿ⁻¹} as

$$\omega_i = c_{1i}1 + c_{2i}\gamma + \cdots + c_{ni}\gamma^{n-1}.$$

Bases have Nonzero Discriminants (Cont'd)

Claim: Since $\{\omega_1, ..., \omega_n\}$ is also a basis, we have $\det(c_{ij}) \neq 0$. Suppose $\{\omega_1, ..., \omega_n\}$ is a basis.

We can write

$$\gamma^{i-1} = c'_{1i}\omega_1 + c'_{2i}\omega_2 + \cdots + c'_{ni}\omega_n.$$

for some c'_{ij} . Write $C = (c_{ij})$ and $C' = (c'_{ij})$. We can see that this implies that C'C = I. Hence C and C' are invertible. The previous proposition shows that

$$\Delta\{\omega_1,\ldots,\omega_n\} = (\det(c_{ij}))^2 \Delta\{1,\gamma,\ldots,\gamma^{n-1}\}.$$

The result follows.

George Voutsadakis (LSSU)

Characterization of Bases

Proposition

The set $\{\omega_1, \ldots, \omega_n\}$ is a basis for K over \mathbb{Q} if and only if $\Delta\{\omega_1, \ldots, \omega_n\} \neq 0$.

 We have already seen that the discriminant of a basis is nonzero. Conversely, suppose {ω₁,...,ω_n} are linearly dependent over Q. Then x₁ω₁ + ··· + x_nω_n = 0, for some x₁,...,x_n ∈ Q, not all zero. Apply the embedding σ_k to this equality. Since σ is a field homomorphism fixing each element of Q,

$$x_1\sigma_k(\omega_1)+\cdots+x_n\sigma_k(\omega_n)=0.$$

We get a linear dependency between the columns of the matrix M, with $M_{ij} = \sigma_i(\omega_j)$. So detM = 0.

Thus, $\Delta\{\omega_1,\ldots,\omega_n\} = 0$, as required.

Real and Complex Embeddings

- Some of the *n* embeddings may map *K* into the real numbers $\mathbb{R} \subset \mathbb{C}$.
- We call these real embeddings.
- The other embeddings occur in complex conjugate pairs.
- I.e., if $\sigma: K \to \mathbb{C}$ is an embedding, then so is $\overline{\sigma}$, where

$$\overline{\sigma}(\omega) = \overline{\sigma(\omega)}.$$

- So complex embeddings occur as complex conjugate pairs.
- Denote by:
 - r_1 the number of real embeddings of K into \mathbb{C} ;
 - r_2 the number of complex conjugate pairs of embeddings.

Measuring the Spacing of $\{\omega_1, \ldots, \omega_n\}$

• Since there are *n* embeddings in total, we have

$$r_1 + 2r_2 = n.$$

- Every pair $(\sigma, \overline{\sigma})$ of complex embeddings together map K into \mathbb{C}^2 .
- The image is actually contained in a real 2-dimensional subspace. Indeed, suppose

$$\sigma(\omega) = a + bi.$$

Then

$$\overline{\sigma}(\omega) = a - bi.$$

So the real and imaginary parts of $\overline{\sigma}(\omega)$ are already determined by the real and imaginary parts of $\sigma(\omega)$.

• So we get that:

- Each real embedding maps K into $\mathbb{R} \subset \mathbb{C}$;
- Each pair of complex embeddings map K into a 2-dimensional real subspace of \mathbb{C}^2 .

Measuring the Spacing of $\{\omega_1, \ldots, \omega_n\}$ (Cont'd)

• We conclude that the collection of all embeddings

 $\iota = (\sigma_1, \dots, \sigma_n)$

maps K into a real subspace V of \mathbb{C}^n of real dimension n.

• Given our set $\{\omega_1, \ldots, \omega_n\}$, the image of

$$\mathbb{Z}\iota(\omega_1) + \cdots + \mathbb{Z}\iota(\omega_n)$$

is contained in this subspace V.

• When the set is not a basis, the image will lie in a subspace of V of strictly smaller dimension.

In this case the discriminant will vanish.

• If the set is a basis, the discriminant will measure the volume of a fundamental region for the image.

Thus, it will measure how sparsely these points are spaced.

Subsection 4

Integral Bases

George Voutsadakis (LSSU)

Algebraic Number Theory

Integral Bases of \mathbb{Z}_{K}

We say that the set {ω₁,...,ω_n} is an integral basis for the ring of integers Z_K if every element of Z_K is uniquely expressible as a Z-linear combination of elements of the set.

Example: We have looked at integral bases for quadratic fields. Suppose $K = \mathbb{Q}(\sqrt{d})$, with d a squarefree integer. Assume, first, that $d \equiv 1 \pmod{4}$.

Then

$$\mathbb{Z}_K = \mathbb{Z} + \mathbb{Z} \frac{1 + \sqrt{d}}{2}.$$

So an integral basis is $\{1, \frac{1+\sqrt{d}}{2}\}$. Assume, next, that $d \equiv 2 \pmod{4}$ or $d \equiv 3 \pmod{4}$. Then

$$\mathbb{Z}_K = \mathbb{Z} + \mathbb{Z}\sqrt{d}.$$

So an integral basis is $\{1, \sqrt{d}\}$.

Free Abelian Groups of Rank *n* and Bases

- It is not obvious that integral bases exist.
- We will show that they do for all number fields K.
- Equivalently, we will prove that the ring of integers of K is a free abelian group of rank n = [K : Q].
- Recall that a free abelian group A of rank n is one which is the direct sum of n subgroups, each infinite cyclic (so isomorphic to Z).

Then

$$A \cong \mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n.$$

• So every element of A can be expressed uniquely as

$$x_1\omega_1 + \cdots + x_n\omega_n, \quad x_i \in \mathbb{Z}.$$

• This is exactly the property required of an integral basis.

Existence of Integral Bases

- Suppose that $[K : \mathbb{Q}] = n$.
- Then we can choose a basis $\{\omega_1, \ldots, \omega_n\}$ for K over \mathbb{Q} .
- Thus, every element of K can be written $x_1\omega_1 + \cdots + x_n\omega_n$, for $x_i \in \mathbb{Q}$.

Theorem

Let K be a number field. Then the ring of integers \mathbb{Z}_K has an integral basis.

Given any basis, we can replace each element in our basis with a nonzero multiple so that every basis element is in Z_K.
 We also know that the discriminant of every basis consisting of elements of Z_K is an integer.

Existence of Integral Bases (Cont'd)

Choose a basis

 $\{\omega_1,\ldots,\omega_n\},\$

consisting of elements of \mathbb{Z}_K , with $|\Delta\{\omega_1, \ldots, \omega_n\}|$ as small as possible. This can be done since $\Delta\{\omega_1, \ldots, \omega_n\}$ is a positive integer. Claim: This set is indeed an integral basis for K. Suppose, to the contrary, that this does not hold. Then there would be $\omega \in \mathbb{Z}_K$ whose expression in terms of this basis

 $\omega = x_1 \omega_1 + \dots + x_n \omega_n$

has coefficients which are in \mathbb{Q} , but not all in \mathbb{Z} . Reorder the basis elements, if necessary, so that $x_1 \notin \mathbb{Z}$. Then we can choose $a_1 \in \mathbb{Z}$, with

$$|x_1 - a_1| \le \frac{1}{2}.$$

Existence of Integral Bases (Cont'd)

Define

$$\omega_1' = \omega - a_1\omega_1 = (x_1 - a_1)\omega_1 + x_2\omega_2 + \cdots + x_n\omega_n.$$

As $\omega \in \mathbb{Z}_K$, $\omega_1 \in \mathbb{Z}_K$, and $a_1 \in \mathbb{Z}$, we have $\omega'_1 \in \mathbb{Z}_K$. Define also

$$\omega_2' = \omega_2, \ldots, \omega_n' = \omega_n.$$

Then $\{\omega'_1, \ldots, \omega'_n\}$ is another basis.

It is easy to see that each of the elements of both sets can be expressed as a linear combination of the other (recall that $x_1 - a_1 \neq 0$). Apply a previous proposition to change bases.

Existence of Integral Bases (Cont'd)

• The change of basis matrix from $\{\omega_1, \ldots, \omega_n\}$ to $\{\omega'_1, \ldots, \omega'_n\}$, is given by

$$C = \begin{pmatrix} x_1 - a_1 & x_2 & x_3 & \cdots & x_n \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

A previous proposition gives

$$\Delta\{\omega'_1,\ldots,\omega'_n\}=(x_1-a_1)^2\Delta\{\omega_1,\ldots,\omega_n\}.$$

But $|x_1 - a_1| \le \frac{1}{2}$. So this means that

$$\Delta\{\omega'_1,\ldots,\omega'_n\}<\Delta\{\omega_1,\ldots,\omega_n\}.$$

This contradicts the minimality of the discriminant of $\{\omega_1, \ldots, \omega_n\}$.

George Voutsadakis (LSSU)

Algebraic Number Theory

Discriminants of Two Integral Bases

- We saw that integral bases exist.
- In addition, the ring of integers of a number field of degree *n* is a free abelian group of rank *n*.

Proposition

If $\{\omega_1,...,\omega_n\}$ and $\{\omega_1',...,\omega_n'\}$ are two integral bases for a number field K, then

$$\Delta\{\omega'_1,\ldots,\omega'_n\}=\Delta\{\omega_1,\ldots,\omega_n\}.$$

Suppose {ω₁,...,ω_n} and {ω'₁,...,ω'_n} are two integral bases.
 Then each element of the second can be written as an integral linear combination of those in the first,

$$\omega'_i = c_{1i}\omega_1 + \dots + c_{ni}\omega_n$$
, with $c_{ij} \in \mathbb{Z}$.

Discriminants of Two Integral Bases (Cont'd)

Now we have

$$\Delta\{\omega'_1,\ldots,\omega'_n\} = (\det C)^2 \Delta\{\omega_1,\ldots,\omega_n\}$$

So the integer $\Delta\{\omega_1, \ldots, \omega_n\}$ divides the integer $\Delta\{\omega'_1, \ldots, \omega'_n\}$. But the same argument applies also in the other direction. So the integer $\Delta\{\omega'_1, \ldots, \omega'_n\}$ divides the integer $\Delta\{\omega_1, \ldots, \omega_n\}$. From this we see that

$$\Delta\{\omega'_1,\ldots,\omega'_n\}=\pm\Delta\{\omega_1,\ldots,\omega_n\}.$$

Also each $c_{ij} \in \mathbb{Z}$. So det $C \in \mathbb{Z}$. Therefore, $(\det C)^2 > 0$. Thus,

$$\Delta\{\omega'_1,\ldots,\omega'_n\}=\Delta\{\omega_1,\ldots,\omega_n\}.$$

The Discriminant of a Number Field

- Let K be a number field.
- We have seen that K has an integral basis.
- Moreover, by the proposition, any two integral bases have equal discriminants.

Definition

Suppose that K is a number field. The **discriminant** D_K of K is defined to be the discriminant of any integral basis for K.

Example

• Consider the case $K = \mathbb{Q}(\sqrt{d})$, with d squarefree and $d \equiv 1 \pmod{4}$. An integral basis is $\{1, \frac{1+\sqrt{d}}{2}\}$.

There are two embeddings into $\ensuremath{\mathbb{C}}$, given by

$$\sigma_1(a+b\sqrt{d}) = a+b\sqrt{d};$$

$$\sigma_1(a+b\sqrt{d}) = a-b\sqrt{d}.$$

The discriminant is

$$\begin{vmatrix} \sigma_1(1) & \sigma_1(\frac{1+\sqrt{d}}{2}) \\ \sigma_2(1) & \sigma_2(\frac{1+\sqrt{d}}{2}) \end{vmatrix}^2 = \begin{vmatrix} 1 & \frac{1+\sqrt{d}}{2} \\ 1 & \frac{1-\sqrt{d}}{2} \end{vmatrix}^2 = (-\sqrt{d})^2 = d.$$

Thus, if $K = \mathbb{Q}(\sqrt{d})$ as above, $D_K = d$.

Example (Cont'd)

An integral basis for K = Q(√d) with d squarefree and d ≡ 2 (mod 4) or d ≡ 3 (mod 4) is {1, √d}.
 In this case,

$$D_{K} = \begin{vmatrix} \sigma_{1}(1) & \sigma_{1}(\sqrt{d}) \\ \sigma_{2}(1) & \sigma_{2}(\sqrt{d}) \end{vmatrix}^{2} = \begin{vmatrix} 1 & \sqrt{d} \\ 1 & -\sqrt{d} \end{vmatrix}^{2} = (-2\sqrt{d})^{2} = 4d.$$

Subsection 5

Further Theory of the Discriminant

Minimal Polynomial of γ and Norm of $f'(\gamma)$

Proposition

Suppose that $K = \mathbb{Q}(\gamma)$, and that the minimal polynomial of γ over \mathbb{Q} is $f(X) \in \mathbb{Q}[X]$ of degree *n*. Then

$$\Delta\{1, \gamma, \dots, \gamma^{n-1}\} = (-1)^{n(n-1)/2} N_{K/\mathbb{Q}}(f'(\gamma)).$$

• We saw that the discriminant

$$\Delta\{1,\gamma,\ldots,\gamma^{n-1}\} = \prod_{i< j} (\gamma_i - \gamma_j)^2,$$

where the conjugates of γ are $\gamma_1, \dots, \gamma_n$. Recall that:

- The conjugates are the roots in \mathbb{C} of the minimal polynomial f(X);
- Minimal polynomials are monic.

So
$$f(X) = \prod_{i=1}^{n} (X - \gamma_i)$$
.

Minimal Polynomial of γ and Norm of $f'(\gamma)$ (Cont'd)

Using the product rule,

$$f'(X) = \sum_{k=1}^{n} \prod_{i \neq k} (X - \gamma_i).$$

Only the term with k = j does not have a factor $(X - \gamma_j)$. So

$$f'(\gamma_j) = \prod_{i\neq j} (\gamma_j - \gamma_i).$$

Then

$$N_{K/\mathbb{Q}}(f'(\gamma)) = \prod_{j=1}^n f'(\gamma_j) = \prod_{j=1}^n \prod_{i\neq j} (\gamma_j - \gamma_i).$$

If i < j, this product has a bracket $(\gamma_i - \gamma_j)$ and a bracket $(\gamma_j - \gamma_i)$. It follows that

$$N_{K/\mathbb{Q}}(f'(\gamma)) = \prod_{i < j} [-(\gamma_i - \gamma_j)^2] = (-1)^{n(n-1)/2} \Delta\{1, \gamma, \dots, \gamma^{n-1}\}.$$

Discriminant of an Integral Basis of K

Lemma

Suppose that $\omega_1, \ldots, \omega_n$ is a basis for K over \mathbb{Q} consisting of elements of \mathbb{Z}_K . Then

$$\Delta\{\omega_1,\ldots,\omega_n\}\mathbb{Z}_K\subseteq\mathbb{Z}\omega_1+\cdots+\mathbb{Z}\omega_n.$$

Let α ∈ ℤ_K. By hypothesis, {ω₁,...,ω_n} is a basis.
 So we can write

$$\alpha = x_1 \omega_1 + \dots + x_n \omega_n, \quad x_1, \dots, x_n \in \mathbb{Q}.$$

Multiply through by ω_j to get $\alpha \omega_j = \sum_{i=1}^n x_i \omega_i \omega_j$. Take the trace:

$$T_{K/\mathbb{Q}}(\alpha \omega_j) = \sum_{i=1}^n x_i T_{K/\mathbb{Q}}(\omega_i \omega_j).$$

Now α and ω_j are in \mathbb{Z}_K . So $T_{K/\mathbb{Q}}(\alpha \omega_j) \in \mathbb{Z}$, by a previous corollary.

Discriminant of an Integral Basis of K (Cont'd)

Similarly, the traces T_{K/Q}(ω_iω_j) are also in Z, for all *i*, *j*.
 So the preceding equations can be regarded as a set of linear equations whose solution is given by x₁,...,x_n.
 Cramer's rule implies that the solutions are quotients of integers (given by suitable determinants of integers) by

$$\det(T_{K/\mathbb{Q}}(\omega_i\omega_j)) = \Delta\{\omega_1,\ldots,\omega_n\}.$$

So $\Delta\{\omega_1, \ldots, \omega_n\} x_i \in \mathbb{Z}$, for all *i*.

Multiplying α by $\Delta\{\omega_1, \ldots, \omega_n\}$, we see that

$$\Delta\{\omega_1,\ldots,\omega_n\}\alpha\in\mathbb{Z}\omega_1+\cdots+\mathbb{Z}\omega_n.$$

Finding Integral Bases of Number Fields

• Strategy for finding integral bases for a number field K:

By the lemma, $\mathbb{Z}_K \subseteq \frac{1}{\Delta}(\mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n)$. So every integer must be of the form

$$x_1\omega_1+\cdots+x_n\omega_n$$
,

for $x_i \in \mathbb{Q}$ but where the denominators divide Δ . Step 3 For a prime $p^2 | \Delta$, check whether any element

 $\omega = x_1\omega_1 + \cdots + x_n\omega_n$

is integral, where x_i is a rational number with denominator dividing p.

Finding Integral Bases of Number Fields (Cont'd)

If such an integral ω exists, where some x_i is not in \mathbb{Z} , so has denominator p, replace ω_i with ω to get a set with discriminant $\frac{\Lambda}{p^2}$ (by a previous proposition).

Since the discriminant of an integral basis must be in \mathbb{Z} , we need only do this for primes p, with $p^2 \mid \Delta$.

Now return to Step 2.

If no such element is integral, for any prime p with $p^2 \mid \Delta$, then we have an integral basis.

Corollary

Suppose that K is a number field and $\omega_1, \ldots, \omega_n$ are elements of \mathbb{Z}_K , such that $\Delta\{\omega_1, \ldots, \omega_n\}$ is squarefree. Then $\{\omega_1, \ldots, \omega_n\}$ is an integral basis.

Integral Basis of a Double Extension

Proposition

Suppose that $K_1 = \mathbb{Q}(\gamma_1)$ and $K_2 = \mathbb{Q}(\gamma_2)$ are two number fields of degree n_1 and n_2 respectively, such that $K = \mathbb{Q}(\gamma_1, \gamma_2)$ has degree $n_1 n_2$ over \mathbb{Q} . Suppose that $\{\omega_1, \dots, \omega_{n_1}\}$ and $\{\omega'_1, \dots, \omega'_{n_2}\}$ are integral bases for K_1 and K_2 , respectively, with discriminants D_1 and D_2 . If D_1 and D_2 are coprime, then $\{\omega_i \omega'_i\}$ forms an integral basis for K, of discriminant $D_1^{n_2} D_2^{n_1}$.

- We first claim that {ω_iω'_j} form a basis for K over Q.
 Every element of K is a polynomial expression in γ₁ and γ₂.
 Every power of γ₁ lies in K₁.
 - So it is a linear combination of $\{\omega_1, \ldots, \omega_{n_1}\}$.
 - Similarly, every power of γ_2 lies in K_2 .
 - So it is a linear combination of $\{\omega'_1, \ldots, \omega'_{n_2}\}$.

Integral Basis of a Double Extension (Cont'd)

Thus, every product γ₁^aγ₂^b is a linear combination of {ω_iω'_j}. Each element of K is a linear combination of these monomials. So it is also a linear combination of this set. We have n₁n₂ such elements and, by hypothesis, [K : Q] = n₁n₂. So they must be linearly independent, and, thus, form a basis. Claim: {ω_iω'_j} form an integral basis.

If $\alpha \in \mathbb{Z}_K$, we can write $\alpha = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} x_{ij} \omega_i \omega'_j$. We show $x_{ij} \in \mathbb{Z}$. Then

$$\alpha = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} x_{ij} \omega_i \omega'_j = \sum_{i=1}^{n_1} (\sum_{j=1}^{n_2} x_{ij} x_{ij} \omega'_j) \omega_i = \sum_{i=1}^{n_1} y_i \omega_i,$$

where
$$y_i = \sum_{j=1}^{n_2} x_{ij} \omega'_j \in K_2$$
.
We have $[K : \mathbb{Q}] = n_1 n_2$ and $[K_1 : \mathbb{Q}] = n_1$.
So, by the tower law, $[K : K_1] = n_2$.

Integral Basis of a Double Extension (Claim)

Since K = K₁(γ₂), we see that there are n₂ embeddings of K into C which are the identity on K₁ (regarded as a subfield of C). Let {σ'₁,...,σ'_{n₂}} denote these embeddings of K into C. Regard these as maps on the elements of K₂ ⊆ K. They are determined by sending γ₂ to one of its conjugates. In this sense, they restrict to the n₂ different embeddings of K₂ into C. Let

$$\mathbf{x} = \begin{pmatrix} \sigma_1'(\alpha) \\ \vdots \\ \sigma_{n_2}'(\alpha) \end{pmatrix} \text{ and } \mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_{n_2} \end{pmatrix}.$$

Then $\mathbf{x} = M\mathbf{y}$, where $M_{k\ell} = \sigma'_k(\omega'_\ell)$. By definition, $D_2 = (\det M)^2$. As in a previous lemma, $D_2y_i = \sum_{j=1}^{n_2} D_2x_{ij}\omega'_j$ has coefficients in \mathbb{Z} . So $D_2x_{ij} \in \mathbb{Z}$. In the same way (exchanging the roles of K_1 and K_2), $D_1x_{ij} \in \mathbb{Z}$. As D_1 and D_2 are coprime, we conclude that each $x_{ij} \in \mathbb{Z}$.

George Voutsadakis (LSSU)

Algebraic Number Theory

Integral Basis of a Double Extension (Cont'd)

- So $\{\omega_i \omega'_i\}$ forms an integral basis for \mathbb{Z}_K .
 - Let $\{\sigma_1, \ldots, \sigma_{n_1}\}$ be the embeddings of K into \mathbb{C} , which are the identity on K_2 .

Then all the embeddings of K into \mathbb{C} are given by $\{\sigma_i \sigma'_i\}$.

This can easily be seen by observing that an embedding is uniquely determined by its effect on γ_1 and γ_2 .

These, in turn, uniquely determine σ_i and σ'_i .

The discriminant of the basis $\{\omega_i \omega'_j\}$ is given by $(\det A)^2$, where A is an $n_1 n_2 \times n_1 n_2$ -matrix with

$$A_{ki,\ell j} = (\sigma_k \sigma'_\ell)(\omega_i \omega'_j) = \sigma_k(\omega_i) \sigma'_\ell(\omega'_j).$$
Integral Basis of a Double Extension (Cont'd)

- We can decompose A as A = BC, where:
 - *B* is the $n_2 \times n_2$ matrix of $n_1 \times n_1$ -blocks given by

$$B = \begin{pmatrix} Q & 0 & \cdots & 0 \\ 0 & Q & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & Q \end{pmatrix},$$

where Q is the $n_1 \times n_1$ -matrix with $Q_{ki} = \sigma_k(\omega_i)$; • C is the block matrix

$$C = \begin{pmatrix} \sigma'_{1}(\omega'_{1})I & \sigma'_{2}(\omega'_{1})I & \cdots & \sigma'_{n_{2}}(\omega'_{1})I \\ \sigma'_{1}(\omega'_{2})I & \sigma'_{2}(\omega'_{2})I & \cdots & \sigma'_{n_{2}}(\omega'_{2})I \\ \vdots & \vdots & \ddots & \vdots \\ \sigma'_{1}(\omega'_{n_{2}})I & \sigma'_{2}(\omega'_{n_{2}})I & \cdots & \sigma'_{n_{2}}(\omega'_{n_{2}})I \end{pmatrix},$$

where *I* is the $n_1 \times n_1$ -identity matrix.

George Voutsadakis (LSSU)

Integral Basis of a Double Extension (Conclusion)

Clearly

$$\det(B) = \det(Q)^{n_2}.$$

So

$$\det(B)^2 = ((\det Q)^2)^{n_2} = D_1^{n_2}.$$

Also,

$$\det(C) = \det(\sigma'_{\ell}(\omega'_j))^{n_1}.$$

So

$$\det(C)^2 = D_2^{n_1}.$$

Therefore,

$$\Delta = \det(A)^2 = \det(B)^2 \det(C)^2 = D_1^{n_2} D_2^{n_1}.$$

Subsection 6

Rings of Integers in Some Cubic and Quadratic Fields

Monogenicity and Power Bases

- We consider some examples on the construction of integral bases.
- In two of these examples, we show the ring of integers cannot be expressed in the form $\mathbb{Z}[\gamma]$ for any element γ .
- Fields *K* where $\mathbb{Z}_{K} = \mathbb{Z}[\gamma]$ are called **monogenic**.
- In such cases, the basis $\{1, \gamma, \dots, \gamma^{n-1}\}$ is called a **power basis**.

$K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$

- The ring of integers of $\mathbb{Q}(\sqrt{2})$ is $\mathbb{Z}[\sqrt{2}]$.
- The ring of integers of $\mathbb{Q}(\sqrt{3})$ is $\mathbb{Z}[\sqrt{3}]$.
- One might hope that the ring of integers of $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ should be $\mathbb{Z}[\sqrt{2}, \sqrt{3}]$.
- We have already seen that this is false.
- Moreover, this does not contradict the preceding proposition, since the discriminants of $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not coprime.

$K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ (Cont'd)

• Let $\alpha \in \mathbb{Z}_{K}$.

Then, for some $a, b, c, d \in \mathbb{Q}$, we can write

$$\alpha = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}.$$

Since $\alpha \in \mathbb{Z}_{K}$, all of its conjugates

$$\alpha_2 = a - b\sqrt{2} + c\sqrt{3} - d\sqrt{6},$$

$$\alpha_3 = a + b\sqrt{2} - c\sqrt{3} - d\sqrt{6},$$

$$\alpha_4 = a - b\sqrt{2} - c\sqrt{3} + d\sqrt{6}$$

are also algebraic integers.

The set of algebraic integers is closed under addition.

It follows that the following are also algebraic integers:

$$\alpha + \alpha_2 = 2a + 2c\sqrt{3}, \quad \alpha + \alpha_3 = 2a + 2b\sqrt{2}, \quad \alpha + \alpha_4 = 2a + 2d\sqrt{6}.$$

By a preceding proposition, these are integral if $2a, 2b, 2c, 2d \in \mathbb{Z}$.

$K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ (Cont'd)

Thus, there exist A, B, C, D ∈ Z, with A = 2a, B = 2b, C = 2c and D = 2d, such that

$$\alpha = \frac{A + B\sqrt{2} + C\sqrt{3} + D\sqrt{6}}{2}.$$

In addition, the following is also integral

$$\begin{aligned} \alpha \alpha_2 &= (a + c\sqrt{3})^2 - (b\sqrt{2} + d\sqrt{6})^2 \\ &= a^2 + 2ac\sqrt{3} + 3c^2 - 2b^2 - 4bd\sqrt{3} - 6d^2 \\ &= \frac{A^2 + 3C^2 - 2B^2 - 6D^2}{4} + \frac{AC - 2BD}{2}\sqrt{3}. \end{aligned}$$

Thus, $4 | A^2 + 3C^2 - 2B^2 - 6D^2$ and 2 | AC - 2BD.

The second implies that 2 | AC. So at least one of A and C is even. If only one were even, then $A^2 + 3C^2 - 2B^2 - 6D^2$ would be odd, and the first requirement would fail. So both A and C are even.

George Voutsadakis (LSSU)

$K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ (Cont'd)

We saw that both A and C are even.
Now 2 | AC - 2BD becomes automatic.
Moreover, 4 | A² + 3C² - 2B² - 6D² reduces to 4 | 2B² + 6D².
Equivalently, 2 | B² + D².
So B and D are both even or both odd.
It follows that all integers are of the form

$$\alpha = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6},$$

with $a, c \in \mathbb{Z}$ and b and d both integral or both halves of odd integers. It remains to check that elements of this form are all integers. They are integer linear combinations of $1, \sqrt{2}, \sqrt{3}$ and $\frac{\sqrt{2}+\sqrt{6}}{2} = \frac{1+\sqrt{3}}{2}$. The first three are obviously integers. The last is integral because it is a root of the monic polynomial

 $f(X) = X^4 - 4X^2 + 1$, with coefficients in \mathbb{Z} .

George Voutsadakis (LSSU)

Algebraic Number Theory

$K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ (Conclusion)

Claim:
$$\mathbb{Z}_{K} = \mathbb{Z}[\gamma]$$
, where $\gamma = \frac{\sqrt{2} + \sqrt{6}}{2}$.
We have
 $\gamma^{2} = 2 + \sqrt{3};$
 $\gamma^{3} = \frac{5\sqrt{2} + 3\sqrt{6}}{2}$
So
 $\sqrt{2} = \gamma^{3} - 3\gamma$
 $\sqrt{3} = \gamma^{2} - 2;$

So each element in $\{1, \sqrt{2}, \sqrt{3}, \gamma\}$ is in $\mathbb{Z}[\gamma]$. Therefore, $\mathbb{Z}_K \subseteq \mathbb{Z}[\gamma]$. Conversely, $\gamma \in \mathbb{Z}_K$. So, since \mathbb{Z}_K is a ring, $\mathbb{Z}[\gamma] \subseteq \mathbb{Z}_K$.

$K = \mathbb{Q}(\sqrt{-2}, \sqrt{-5})$

• The determination of the ring of integers in this case is very similar to that of $\mathbb{Q}(\sqrt{2},\sqrt{3})$.

However, we can check that if $\gamma = \frac{\sqrt{-2} + \sqrt{10}}{2}$, the argument above that $\mathbb{Z}_{K} = \mathbb{Z}[\gamma]$ does not work in this case.

Claim: There is no element γ such that $\mathbb{Z}_{\mathcal{K}} = \mathbb{Z}[\gamma]$.

We consider the following elements

$$\begin{aligned} \alpha_1 &= (1+\sqrt{-2})(1+\sqrt{-5}), \\ \alpha_2 &= (1+\sqrt{-2})(1-\sqrt{-5}), \\ \alpha_3 &= (1-\sqrt{-2})(1+\sqrt{-5}), \\ \alpha_4 &= (1-\sqrt{-2})(1-\sqrt{-5}). \end{aligned}$$

Clearly, they all lie in \mathbb{Z}_K . Moreover, $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 4$.

$K = \mathbb{Q}(\sqrt{-2}, \sqrt{-5})$ (Cont'd)

Notice that

$$\begin{aligned} \alpha_1 \alpha_2 &= (1 + \sqrt{-2})^2 (1 + \sqrt{-5}) (1 - \sqrt{-5}) \\ &= 6(1 + \sqrt{-2})^2. \end{aligned}$$

Similarly, $3 | \alpha_i \alpha_j$, for any pair $i \neq j$. This implies that

$$(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)^n \equiv \alpha_1^n + \alpha_2^n + \alpha_3^n + \alpha_4^n \pmod{3},$$

where the congruence actually takes place in \mathbb{Z}_K , meaning that the two sides differ by an element of $3\mathbb{Z}_K$. Then

$$T_{K/\mathbb{Q}}(\alpha_1^n) = \alpha_1^n + \alpha_2^n + \alpha_3^n + \alpha_4^n$$

$$\equiv (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)^n$$

$$\equiv 4^n$$

$$\equiv 1 \pmod{3}.$$

$K = \mathbb{Q}(\sqrt{-2}, \sqrt{-5})$ (Cont'd)

• Suppose $3|\alpha_1^n$. Then 3 would also divide any of its conjugates. So $3 \mid \alpha_i^n$, for all *i*. So 3 | $T_{K/\mathbb{Q}}(\alpha_1^n)$. Thus, $3 \nmid \alpha_1^n$, for any *n*. Similarly, $3 \nmid \alpha_i^n$ for any *i* and any *n*. Finally, suppose that $\mathbb{Z}_{K} = \mathbb{Z}[\gamma]$, for some γ . Let $f(X) \in \mathbb{Z}[X]$ be the minimal polynomial of γ . As $\alpha_i \in \mathbb{Z}_K$, we can write $\alpha_i = f_i(\gamma)$, for some $f_i \in \mathbb{Z}[X]$. Now $3 \mid \alpha_i \alpha_i$, for all $i \neq j$, but $3 \nmid \alpha_i^n$ for any *i* and *n*. Let \overline{f} denote the polynomial f with its coefficients reduced modulo 3. So $\overline{f}(X) \in \mathbb{F}_3[X]$, where $\mathbb{F}_3 = \{0, 1, 2\}$ are the integers modulo 3.

$K = \mathbb{Q}(\sqrt{-2}, \sqrt{-5})$ (Claim)

Claim: If $g(X) \in \mathbb{Z}[X]$, that $3 \mid g(\gamma)$ in $\mathbb{Z}[\gamma]$ if and only if \overline{g} is divisible by \overline{f} in $\mathbb{F}_3[X]$. Suppose $3 | g(\gamma)$ in $\mathbb{Z}[\gamma]$. Then, $g(\gamma) = 3k(\gamma)$, for some $k(\gamma)$ in $\mathbb{Z}[\gamma]$. Hence, $(g-3k)(\gamma) = 0$. By minimality of f, $f \mid g - 3k$. This shows that $f \mid g$ in $\mathbb{F}_3[X]$. Suppose, conversely, that $\overline{f} \mid \overline{g}$ in $\mathbb{F}_3[X]$. Then there exists k(x), such that $\overline{g}(X) = \overline{f}(X)\overline{k}(X)$ in $\mathbb{F}_3[X]$. Since $f(\gamma) = 0$, we get $\overline{g}(\gamma) = 0$ in $\mathbb{F}_3[X]$. So $3 \mid g(\gamma)$ in $\mathbb{Z}[\gamma]$.

$K = \mathbb{Q}(\sqrt{-2}, \sqrt{-5})$ (Cont'd)

• We apply the Claim to $f_i(X)f_i(X)$. We know that $3 \mid \alpha_i \alpha_i = f_i(\gamma) f_i(\gamma)$. We conclude that $\overline{f} | \overline{f_i} \overline{f_j}$, for all $i \neq j$. Since $3 \nmid \alpha_i^n$, $\overline{f} \nmid \overline{f}_i^n$ for any *i* and *n*. So, for all $i \neq j$, \overline{f} has a factor dividing \overline{f}_i but not \overline{f}_i . Hence, \overline{f} must have at least four different irreducible factors. But f is a quartic, so the different factors of \overline{f} must all be linear. However, there are only three different linear factors in $\mathbb{F}_3[X]$, namely, X, X-1 and X-2.

This gives a contradiction.

$K = \mathbb{Q}(\sqrt[3]{2})$

• As an example of a cubic field, we consider $K = \mathbb{Q}(\sqrt[3]{2})$. Write $\alpha = \sqrt[3]{2}$ and $\omega = e^{2\pi i/3}$. Note that $1 + \omega + \omega^2 = 0$. Suppose that

$$\theta_1 = a + b\alpha + c\alpha^2$$
, $a, b, c \in \mathbb{Q}$,

lies in \mathbb{Z}_{K} .

The conjugates of α are also algebraic integers,

$$\theta_2 = a + b\alpha\omega + c\alpha^2\omega^2;$$

$$\theta_3 = a + b\alpha\omega^2 + c\alpha^2\omega.$$

But they are not in K.

$K = \mathbb{Q}(\sqrt[3]{2})$ (Cont'd)

• Then the following are also algebraic integers,

$$\begin{array}{rcl} \theta_1 + \theta_2 + \theta_3 &=& 3a,\\ \theta_1 \theta_2 + \theta_2 \theta_3 + \theta_3 \theta_1 &=& 3a^2 - 6bc,\\ \theta_1 \theta_2 \theta_3 &=& a^3 + 2b^3 + 4c^3 - 6abc. \end{array}$$

As they are also rational, they are all in \mathbb{Z} .

Write
$$A = 3a$$
, $B = 3b$ and $C = 3c$.

The first equation gives $A \in \mathbb{Z}$.

Multiplying the second by 3 gives $A^2 - 2BC \equiv 0 \pmod{3}$. Multiplying the third by 27 gives $A^3 + 2B^3 + 4C^3 - 6ABC \equiv 0 \pmod{27}$. The second and third give $B, C \in \mathbb{Z}$ as follows.

Suppose $A^2 - 2BC \in \mathbb{Z}$. Then $2BC \in \mathbb{Z}$. So $6ABC \in \mathbb{Z}$. By the last equation, $2B^3 + 4C^3 \in \mathbb{Z}$. But the only way that rationals can satisfy $2BC \in \mathbb{Z}$ and $2B^3 + 4C^3 \in \mathbb{Z}$ is if $B, C \in \mathbb{Z}$ (if a prime *p* occurs in the denominator of *B*, say, then as $2BC \in \mathbb{Z}$, it cannot also occur in the denominator of *C*; so *p* is in the denominator of $2B^3 + 4C^3$).

George Voutsadakis (LSSU)

$K = \mathbb{Q}(\sqrt[3]{2})$ (Conclusion)

- Suppose, first, that $3 \mid A$. Then, since $A^2 - 2BC \in \mathbb{Z}$, $2BC \equiv 0 \pmod{3}$. So either B or C is divisible by 3. Then $3 \mid A^3 + 2B^3 + 4C^3 - 6ABC$ implies that both must be.
- Suppose, next, that 3∤A. The only solutions to

$$A^2 - 2BC \equiv 0 \pmod{3}$$
 and $A^3 + 2B^3 + 4C^3 - 6ABC \equiv 0 \pmod{3}$

are $A \equiv 1$, $B \equiv 2$, $C \equiv 1 \pmod{3}$ or $A \equiv 2$, $B \equiv 1$, $C \equiv 2 \pmod{3}$. Set $A = 1 + 3\ell$, B = 2 + 3m, C = 1 + 3n. Then $A^3 + 2B^3 + 4C^3 - 6ABC \equiv 9 \pmod{27}$, for any ℓ , m and n. Similarly, set $A = 2 + 3\ell$, B = 1 + 3m, C = 2 + 3n. Then $A^3 + 2B^3 + 4C^3 - 6ABC \equiv 18 \pmod{27}$, for any ℓ , m and n. This means that there are no solutions with $3 \nmid A$.

Thus, 3 | A, 3 | B and 3 | C. This implies that $a, b, c \in \mathbb{Z}$. So the ring of integers is $\mathbb{Z}[\sqrt[3]{2}]$.

$K = \mathbb{Q}(\sqrt[3]{175})$

• Set $m = 175 = 5^2 \times 7$.

We will compute \mathbb{Z}_{K} . Note that if $\alpha = \sqrt[3]{175}$, then

$$\alpha^2 = \sqrt[3]{5^4 7^2} = 5\sqrt[3]{5 \cdot 7^2} = 5\sqrt[3]{245}.$$

So $\alpha' = \sqrt[3]{245}$ is another element in *K*. Moreover,

$$\alpha'^2 = \sqrt[3]{5^2 7^4} = 7\sqrt[3]{5^2 \cdot 7} = 5\sqrt[3]{175} = 5\alpha.$$

Furthermore, both α and α' are integral.

- The first is a root of the monic integral polynomial $X^3 175$;
- The second is a root of the monic integral polynomial $X^3 245$.

$K = \mathbb{Q}(\sqrt[3]{175}) \text{ (Claim)}$

Claim: \mathbb{Z}_K has integral basis $\{1, \alpha, \alpha'\}$. First compute $\Delta\{1, \alpha, \alpha'\}$. The embeddings into \mathbb{C} are given by

$$\sigma_1(a + b\alpha + c\alpha') = a + b\alpha + c\alpha';$$

$$\sigma_2(a + b\alpha + c\alpha') = a + b\alpha\omega + c\alpha'\omega;$$

$$\sigma_3(a + b\alpha + c\alpha') = a + b\alpha\omega^2 + c\alpha'\omega.$$

For the discriminant, we now have

$$\Delta\{1,\alpha,\alpha'\} = \begin{vmatrix} 1 & \alpha & \alpha' \\ 1 & \alpha\omega & \alpha'\omega^2 \\ 1 & \alpha\omega^2 & \alpha'\omega \end{vmatrix} = -3\sqrt{3}i\alpha\alpha'.$$

Note that $\alpha \alpha' = 5 \cdot 7 = 35$. So we have

$$\Delta\{1,\alpha,\alpha'\} = \big(-3\sqrt{3}i\alpha\alpha'\big)^2 = -3^3 5^2 7^2.$$

$K = \mathbb{Q}(\sqrt[3]{175})$ (Claim Cont'd)

• We conclude that all integers must be of the form

$$\frac{a+b\alpha+c\alpha'}{d}, \quad a, b, c, d \in \mathbb{Z}, \ d \mid 3 \times 5 \times 7.$$

Suppose $\theta_1 = \frac{a+b\alpha+c\alpha'}{5}$ is an integer. Then so are its conjugates

$$\theta_2 = \frac{a + b\alpha\omega + c\alpha'\omega^2}{5}, \quad \theta_3 = \frac{a + b\alpha\omega^2 + c\alpha'\omega}{5}$$

Then $\theta_1 + \theta_2 + \theta_3 = \frac{3a}{5}$ is an integer. So $5 \mid a$. Now $\theta_1 = A + \frac{ba + ca'}{5}$, where $A \in \mathbb{Z}$. So $\frac{ba + ca'}{5} \in \mathbb{Z}_K$. Its norm is the product of the conjugates:

$$\frac{b^3\alpha^3 + c^3\alpha'^3}{5^3} = \frac{175b^3 + 245c^3}{125} = \frac{35b^3 + 49c^3}{25}.$$

We need this to be an integer.

George Voutsadakis (LSSU)

$K = \mathbb{Q}(\sqrt[3]{175})$ (Claim Cont'd)

Suppose
$$35b^3 + 49c^3 \equiv 0 \pmod{25}$$
.
Then $35b^3 + 49c^3 \equiv 0 \pmod{5}$.
So $5 \mid c^3$. Hence, $5 \mid c$.
As $35b^3 + 49c^3 \equiv 0 \pmod{25}$, we also have $5 \mid b$.
Thus 5 cannot occur in the denominator of an element of \mathbb{Z}_K .
Exactly the same argument works for 7.
For $p = 3$, we need to consider $\theta_1 = \frac{a+b\alpha+c\alpha'}{3}$ and determine when it is
an integer.
We may use the method of the previous example.
We find that, if $\theta_1 = \frac{a+b\alpha+c\alpha'}{3}$ is in \mathbb{Z}_K , then $3 \mid a, 3 \mid b$ and $3 \mid c$.

It follows that $\mathbb{Z}_{\mathcal{K}}$ has $\{1, \alpha, \alpha'\}$ as an integral basis.

$K = \mathbb{Q}(\sqrt[3]{175})$ (Non-Monogenicity)

Suppose {1, γ, γ²} is an integral basis, for some γ.
 Let γ = a + bα + cα'. Then γ - a = bα + cα'.
 If {1, γ, γ²} is an integral basis, then we can see that

$$\{1, \gamma - a, (\gamma - a)^2\}$$

is also an integral basis.

So we may assume that γ is simply of the form $b\alpha + c\alpha'$. Then, recalling that $\alpha^2 = 5\alpha'$, $\alpha'^2 = 7\alpha$ and $\alpha\alpha' = 35$, we get

$$\gamma^{2} = (b\alpha + c\alpha')^{2} = b^{2}\alpha^{2} + 2bc\alpha\alpha' + c^{2}\alpha'^{2} = 5b^{2}\alpha' + 70bc + 7c^{2}\alpha.$$

So we have expressed the elements $\{1, \gamma, \gamma^2\}$ in terms of the basis $\{1, \alpha, \alpha'\}$.

$K = \mathbb{Q}(\sqrt[3]{175})$ (Non-Monogenicity Cont'd)

• The condition that $\{1, \gamma, \gamma^2\}$ is a basis is equivalent to requiring that the change of basis matrix should have determinant ± 1 .

This is

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & b & c \\ 70bc & 7c^2 & 5b^2 \end{vmatrix} = 5b^3 - 7c^3.$$

By working modulo 7, $5b^3 - 7c^3 \neq \pm 1$, for any integers *b* and *c*. The cubes modulo 7 are 0 and ± 1 .

So we cannot have $5b^3 \equiv \pm 1 \pmod{7}$.

This contradiction shows that $\mathbb{Z}_{\mathcal{K}}$ has no integral basis of the form $\{1,\gamma,\gamma^2\}.$