Introduction to Algebraic Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Algebraic Number Theory

1 Ideal

- Uniqueness of Factorization Revisited
- Non-unique Factorization in Quadratic Number Fields
- Kummer's Ideal Numbers
- Ideals
- Generating Sets for Ideals
- Ideals in Quadratic Fields
- Unique Factorization Domains and Principal Ideal Domains
- The Noetherian Property

Ideals

An Example

• Consider a world where the only positive integers are

```
1, 4, 7, 10, \ldots, 3n + 1, \ldots
```

- Suppose that, in this world, a *prime number* is an integer which cannot be factored further.
- The numbers 4,7,10, and 13 are all prime (since we only have integers of the form 3n + 1).
- On the other hand, $16 = 4 \cdot 4$ is not prime.
- The integer 100 may be written as a product of primes in two different ways,

$$100 = 10 \cdot 10 = 4 \cdot 25.$$

- All of the factors, 4, 10 and 25, are prime in this world.
- Moreover, the two factorizations are genuinely different.

Algebraic Number Theory

Ideals

Observations

- The problem in this world is that we do not have enough integers.
- We have to enlarge our set of integers.
- Suppose we also include the integers of the form 3n+2.
- Then in this larger world the factors are no longer prime.
- We can factorize them further

$$4 = 2 \cdot 2$$
, $10 = 2 \cdot 5$, $25 = 5 \cdot 5$.

Using these factorizations, our apparent lack of unique factorization is resolved

$$100 = (2 \cdot 5) \cdot (2 \cdot 5) = (2 \cdot 2) \cdot (5 \cdot 5).$$

Subsection 1

Uniqueness of Factorization Revisited

Remarks on Uniqueness of a Factorization

- \bullet We saw that ${\mathbb Z}$ has unique factorization.
- In defining uniqueness, expressions such as 6 = 2 ⋅ 3 = (-3) ⋅ (-2) should really be counted as equivalent factorizations.
- Here the factors are simply permuted and multiplied both by -1.
- In general, suppose we have a factorization

$$r = a \cdot b$$

in some ring R.

- Mostly, R will be the ring of integers in some number field.
- Suppose u and v in R satisfy uv = 1.
- Then $r = a \cdot b = (ua) \cdot (vb)$ should be considered equivalent.

Units and Associates

Definition

Let *R* be a ring, and let $u \in R$. The element *u* is a **unit** in *R* if there exists an element $v \in R$ with

$$uv = 1.$$

Definition

Two elements $r_1, r_2 \in R$ are **associate** if there is a unit $u \in R$, such that

 $r_2 = ur_1$.

This relation is symmetric, i.e., if $r_2 = ur_1$, then $r_1 = vr_2$, where uv = 1.

Equivalent Factorizations

- Given one factorization, we want to consider another as "equivalent" if it can be got from the first by:
 - (a) Multiplying by units;
 - (b) Rearranging the factors.

Definition

We say that two factorizations

$$r = a_1 a_2 \dots a_n = b_1 b_2 \dots b_n$$

are equivalent if, for some permutation π of $\{1, \ldots, n\}$,

$$b_i$$
 is an associate of $a_{\pi(i)}$, for all *i*.

Irreducible Elements and Prime Elements

• There are two possible generalizations of prime numbers to more general rings.

Definition

- 1. Let $p \in R$. Then p is **irreducible** if:
 - (a) p is not a unit;
 - (b) If p = ab, then either a or b is a unit.
- Let p∈R. Then p is a prime element if, whenever p | ab (in the sense that ab = pr, for some r∈R), then p | a or p | b.
- When $R = \mathbb{Z}$, these two are equivalent.
- However, we will see that they are different in general.
 This phenomenon is a consequence of failure of unique factorization.

Subsection 2

Non-unique Factorization in Quadratic Number Fields

Examples of Non-Unique Factorizations

- Suppose that *d* is squarefree.
- Assume, for simplicity, $d \equiv 2 \pmod{4}$ or $d \equiv 3 \pmod{4}$.
- In this case, the ring of integers in $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}[\sqrt{d}]$. Example: When d = 10, one has the equalities

$$6 = 2 \cdot 3 = (4 + \sqrt{10})(4 - \sqrt{10}).$$

For an example with d negative, consider, for d = -5,

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

We can check (with some effort) that:

- These factors are all irreducible, in the sense that they cannot be factored further;
- The factorizations are different.

"Conjugation" and Norms

- We follow the prototype of the Gaussian integers.
- For $\alpha = a + b\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$, we define

$$\overline{a} = a - b\sqrt{d}.$$

- This will play the role of complex conjugation.
- Next, we define the norm

$$N(a+b\sqrt{d}) = N(\alpha) = \alpha \overline{\alpha} = (a+b\sqrt{d})(a-b\sqrt{d}) = a^2 - db^2.$$

- If $\alpha \in \mathbb{Z}[\sqrt{d}]$, then $N(\alpha) \in \mathbb{Z}$, by a preceding result.
- If we are given two elements $\alpha_1 = a_1 + b_1 \sqrt{d}$ and $\alpha_2 = a_2 + b_2 \sqrt{d}$, we see that

$$N(\alpha_1\alpha_2) = \alpha_1\alpha_2\overline{\alpha_1\alpha_2} \stackrel{\alpha_1\alpha_2}{=} \stackrel{\alpha_1\alpha_2}{=} \alpha_1\overline{\alpha_1} \alpha_2\overline{\alpha_2} = N(\alpha_1)N(\alpha_2).$$

Units in $\mathbb{Z}[\sqrt{d}]$

Lemma

Suppose that $u \in \mathbb{Z}[\sqrt{d}]$. Then u is a unit if and only if $N(u) = \pm 1$.

• Suppose *u* is a unit.

```
Then, there exists v, such that uv = 1.
So N(u)N(v) = N(uv) = N(1) = 1.
But N(u) and N(v) are integers whose product is 1.
So N(u) and N(v) must both be \pm 1.
Conversely, suppose N(u) = \pm 1.
Then u\overline{u} = \pm 1.
Define v = \pm \overline{u}.
Then uv = 1. So u is a unit.
```

Non-Equivalence of Factorizations

Lemma

- 1. In $\mathbb{Z}[\sqrt{10}]$, the two factorizations $6 = 2 \cdot 3 = (4 + \sqrt{10})(4 \sqrt{10})$ are not equivalent.
- 2. In $\mathbb{Z}[\sqrt{-5}]$, the two factorizations $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$ are not equivalent.
 - Suppose α₁ and α₂ are associate. Then, there is a unit u, such that α₂ = uα₁. It follows that

$$N(\alpha_2) = N(u\alpha_1) = N(u)N(\alpha_1) = \pm N(\alpha_1).$$

So, if two factorizations are equivalent, the norms of the factors on both sides are the same (up to sign).

Non-Equivalence of Factorizations (Cont'd)

• Consider, first, $\mathbb{Z}[\sqrt{10}]$.

$$\begin{split} N(2) &= 2^2 - 10 \cdot 0^2 = 4, \\ N(4 + \sqrt{10}) &= 4^2 - 10 \cdot 1^2 = 6, \\ N(4 - \sqrt{10}) &= 4^2 - 10 \cdot (-1)^2 = 6. \end{split}$$

So the norms on the two sides are different.

• Similarly, in $\mathbb{Z}[\sqrt{-5}]$ we have the following:

$$\begin{split} N(2) &= 2^2 + 5 \cdot 0^2 = 4, & N(3) = 3^2 + 5 \cdot 0^2 = 9, \\ N(1 + \sqrt{-5}) &= 1^2 + 5 \cdot 1^2 = 6, & N(1 - \sqrt{-5}) = 1^2 + 5 \cdot (-1)^2 = 6. \end{split}$$

Again the norms on the two sides are different.

Irreducibility of the Factors

Lemma

- 1. In $\mathbb{Z}[\sqrt{10}]$, all of the factors in the equality $2 \cdot 3 = (4 + \sqrt{10})(4 \sqrt{10})$ are irreducible.
- 2. In $\mathbb{Z}[\sqrt{-5}]$, all of the factors in the equality $2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$ are irreducible.
- We first see that there are no elements α ∈ Z[√10] with N(α) = ±2. Suppose, to the contrary, that α = a + b√10 is such an element. Then N(α) = a² 10b² = ±2. This means that either a² 10b² = 2 or a² 10b² = -2. Consider these equalities modulo 5. We see that we would need a² ≡ 2 (mod 5) or a² ≡ 3 (mod 5). But both of these are impossible. Similarly, there are no elements β ∈ Z[√10] with N(β) = ±3.

Irreducibility of the Factors $(\mathbb{Z}[\sqrt{10}])$

So the only possibility of factorizing 2 into non-units occurs if $N(\alpha) = N(\beta) = \pm 2$.

We have seen that there are no such elements.

In the same way, if 3 were to factorize as $\alpha\beta$ into non-units, then $N(\alpha) = N(\beta) = \pm 3$. We have seen that this is not possible. Finally, the only way to factorize $4 \pm \sqrt{10}$ into non-units would be as the product of an element of norm ± 2 and an element of norm ± 3 . This is impossible.

Irreducibility of the Factors $(\mathbb{Z}[\sqrt{-5}])$

- Exactly the same argument works for Z[√-5]. Suppose there is an element α = a + b√-5 of norm ±2. This would require a² + 5b² = ±2. So a² + 5b² = 2 (as a² + 5b² is necessarily positive). Arguing modulo 5, there are clearly no integral solutions. Nor are there any solutions to a² + 5b² = 3. So there are no elements of norm 3.
 - The same argument as in the case of $\mathbb{Z}[\sqrt{10}]$ now applies to $\mathbb{Z}[\sqrt{-5}]$.

Comments on $\mathbb{Z}[\sqrt{10}]$ and $\mathbb{Z}[\sqrt{-5}]$

- We have two non-equivalent factorizations into irreducible elements.
- Therefore, factorization in these rings is not unique.
- The factors are irreducible, but they are not prime.
 - First, note that 2|6. So $2|(4+\sqrt{10})(4-\sqrt{10})$.
 - However, $2 \nmid 4 \pm \sqrt{10}$.

Indeed,

$$\frac{4 \pm \sqrt{10}}{2} = 2 \pm \frac{1}{2}\sqrt{10} \notin \mathbb{Z}[\sqrt{10}].$$

Subsection 3

Kummer's Ideal Numbers

Kummer's Idea of Ideal Numbers

- Kummer tried to repair the non-uniqueness of factorization in quadratic fields by enlarging the integers to include "ideal numbers".
- Consider, e.g., $6 = 2 \cdot 3 = (4 + \sqrt{10})(4 \sqrt{10})$ in $\mathbb{Z}[\sqrt{10}]$.

Kummer's idea was to invent symbols a_1, a_2, a_3, a_4 , such that

$$2 = \mathfrak{a}_1 \times \mathfrak{a}_2, \qquad 3 = \mathfrak{a}_3 \times \mathfrak{a}_4, \\ 4 + \sqrt{10} = \mathfrak{a}_1 \times \mathfrak{a}_3, \quad 4 - \sqrt{10} = \mathfrak{a}_2 \times \mathfrak{a}_4$$

Then the non-unique factorization is repaired, since

$$2 \cdot 3 = (\mathfrak{a}_1 \cdot \mathfrak{a}_2) \cdot (\mathfrak{a}_3 \cdot \mathfrak{a}_4) = (\mathfrak{a}_1 \cdot \mathfrak{a}_3) \cdot (\mathfrak{a}_2 \cdot \mathfrak{a}_4) = (4 + \sqrt{10})(4 - \sqrt{10}).$$

- These are fictitious symbols, without any real meaning.
- Kummer hoped that the symbols could be manipulated so that meaningful results are obtained.
- Dedekind reformulated Kummer's idea in more concrete terms.

George Voutsadakis (LSSU)

Algebraic Number Theory

The Ring of Integers $R = \mathbb{Z}[\sqrt{10}]$ of $\mathbb{Q}(\sqrt{10})$

• Consider again the factorizations into "ideal numbers"

$$2 = \mathfrak{a}_1 \times \mathfrak{a}_2, \quad 4 + \sqrt{10} = \mathfrak{a}_1 \times \mathfrak{a}_3.$$

- Then 2 would be a multiple of \mathfrak{a}_1 .
- So any multiple of 2 would also be a multiple of a₁.
- Similarly, $4 + \sqrt{10}$ is also a multiple of a_1 .
- So any multiple of $4 + \sqrt{10}$ is a multiple of \mathfrak{a}_1 .
- Combining these, any $\mathbb{Z}[\sqrt{10}]$ -linear combination of 2 and $4 + \sqrt{10}$ should be a multiple of \mathfrak{a}_1 .
- Let R denote the ring of integers $\mathbb{Z}[\sqrt{10}]$ of $\mathbb{Q}(\sqrt{10})$.
- The set of multiples of 2, namely 2R, must be contained in the set of multiples of a₁. Thus, 2R ⊆ a₁R.
- Similarly, $(4 + \sqrt{10})R \subseteq \mathfrak{a}_1 R$.
- Thus,

$$2R + (4 + \sqrt{10})R \subseteq \mathfrak{a}_1 R.$$

The Ring of Integers $R = \mathbb{Z}[\sqrt{10}]$ (Cont'd)

- We show the inclusion $2R + (4 + \sqrt{10})R \subseteq \mathfrak{a}_1R$ ought to be an equality.
- First, note that $a_1R = R$ implies a_1 would be invertible.
- So a₁ would be a unit.
- But we do not want our factors to be units.
- A calculation gives

$$2R + (4 + \sqrt{10})R = \{m + n\sqrt{10} : m, n \in \mathbb{Z}, 2 \mid m\}.$$

- This set has index 2 in *R* (informally, half of the elements of *R* are in this set).
- There is no room for anything between R and $2R + (4 + \sqrt{10})R$.
- But $a_1 R$ is strictly contained in R and contains $2R + (4 + \sqrt{10})R$.
- So we must have $a_1R = 2R + (4 + \sqrt{10})R$.

Dedekind's Ideals

- Instead of thinking of a₁ as an "ideal number", Dedekind's idea was to work with the set a₁R.
- Now a_1 is not actually an element.
- We shall simply write a_1 for the set, i.e.,

$$\mathfrak{a}_1 = 2R + (4 + \sqrt{10})R.$$

• In this viewpoint, even the symbol 2, which we would normally think of as a number, should be viewed as the set 2*R* of all multiples of 2.

Dedekind's Ideals (Cont'd)

- In \mathbb{Z} , suppose *a* divides *b*.
- Then *b* is a multiple of *a*.
- Any multiple of b is also a multiple of a.
- Symbolically, $b\mathbb{Z} \subseteq a\mathbb{Z}$.
- Thus, $a \mid b$ if and only if $b\mathbb{Z} \subseteq a\mathbb{Z}$.
- In the example above, since a₁ contains all multiples of 2, one could say that a₁ is a divisor of 2.
- Similarly, a_1 is also a divisor of $4 + \sqrt{10}$, as one would hope.
- There are no *elements* of *R* which divide 2 and $4 + \sqrt{10}$ except units.
- However, there are certain *subsets* of *R* which contain 2*R* and $(4 + \sqrt{10})R$ and are strictly contained in 1*R*.

Subsection 4

Ideals

Ideals of a Ring

• The prototype for Dedekind's sets are all the multiples of a given element of *R*, or, more generally (when unique factorization fails), all the linear combinations of some set of elements.

Definition

An ideal I of a commutative ring R is a subset of R, such that:

- 1. $0_R \in I$;
- 2. If *i* and $i' \in I$, then $i i' \in I$;
- 3. If $i \in I$ and $a \in R$, then $ai \in I$.
- The second requirement here is equivalent to *I* being closed under both addition and additive inverses.
- These conditions are the same as those needed for I to be a module.
- The only difference is that ideals are subsets of the ring.

Examples

- 1. Any ring *R* is an ideal in itself.
- 2. For any ring R, $\{0_R\}$ is an ideal in R.
- 3. Let R be any ring, and let $r \in R$.

Let I = rR, all the multiples of r.

Then I is an ideal in R.

- The element 0 is a multiple of r;
- The difference of any two multiples of r is again a multiple of r;
- Any multiple of a multiple of r is certainly a multiple of r.
- The last example gives a large class of ideals.
- In some rings, all ideals are of this form.

Ideals in \mathbb{Z}

Lemma

In \mathbb{Z} , every ideal is of the form $n\mathbb{Z}$, for some integer n.

• Let I be an ideal of \mathbb{Z} .

```
First suppose I \neq \{0\}.
```

I contains a non-zero integer.

Then it will contain a positive integer.

Indeed, suppose $k \in I$, and k < 0.

By the definition of ideal, $(-1)k = -k \in I$ also.

Let n be the smallest positive integer contained in I.

Clearly I then contains all multiples of n.

So $I \supseteq n\mathbb{Z}$.

Ideals in \mathbb{Z} (Cont'd)

• If $a \in I$, we can write, by the division algorithm,

```
a = qn + r, 0 \le r < n.
```

As a and $n \in I$, we conclude that $r \in I$.

As *n* was the smallest positive integer in *I*, we conclude that r = 0. So *a* is a multiple of *n*.

Thus, $I = n\mathbb{Z}$.

On the other hand, suppose $I = \{0\}$.

We can regard it as $0\mathbb{Z}$.

So I is again of the required form.

- For a general ring R, not every ideal in R is of the form rR.
- The reason that it holds in \mathbb{Z} is because of Euclid's algorithm.

Operations on Ideals

Lemma

Let R be a ring.

- 1. If I and J are ideals of R, then so is $I \cap J$.
- More generally, if {*I*_α}_{α∈A} is any family of ideals of *R*, then so is their intersection ∩_{α∈Λ} *I*_α.
- 3. If I and J are both ideals of R, then so is

 $IJ = \{$ finite sums of elements of the form $ij : i \in I$ and $j \in J \}$.

and $IJ \subseteq I \cap J$.

4. If I and J are both ideals of R, then so is

 $I + J = \{i + j : i \in I \text{ and } j \in J\}.$

Operations on Ideals (Cont'd)

1. We check the axioms.

```
By hypothesis, I and J are ideals.
So 0_R \in I and 0_R \in J.
Therefore, 0_R \in I \cap J.
Suppose i and j \in I \cap J.
Then i and j each lie in both I and J.
As these are ideals, i - j \in I and i - j \in J.
Thus, i - j \in I \cap J.
Finally, suppose i \in I \cap J (so i \in I and i \in J) and r \in R.
Then ri \in I as I is an ideal, and similarly ri \in J.
So ri \in I \cap J.
This shows that I \cap J is an ideal.
```

Similar to the first assertion.

Operations on Ideals (Cont'd)

3. We have $0_R \in I$ (or J). So $0_R \in IJ$.

Suppose given two finite sums of terms of the form *ij*.

Their difference is clearly again a finite sum of terms of the same form.

So *LL* is closed under addition.

Finally, suppose given a sum $\sum_{k} i_k j_k \in IJ$ and an element $r \in R$. We see that

$$r\left(\sum_{k}i_{k}j_{k}\right)=\sum_{k}(ri_{k})j_{k}.$$

As *I* is an ideal, all the bracketed terms $r_i k \in I$. So this is again a finite sum of products of elements of I with elements of *J*.

Operations on Ideals (Cont'd)

• For the inclusion, an element of IJ is a finite sum of elements of the form ij, with $i \in I$ and $j \in J$. As $J \subseteq R$, we have $j \in R$. So, by definition of ideals, $ij \in IR = I$. Similarly, $I \subseteq R$. So $i \in R$. Hence, $ij \in RJ = J$. It follows that all terms $ij \in I \cap J$. So $I \subseteq I \cap J$

Operations on Ideals (Conclusion)

4. We have $0_R \in I$ and $0_R \in J$. So $0_R = 0_R + 0_R \in I + J$. Next, we take $i_1 + j_1$ and $i_2 + j_2 \in I + J$. Their difference is

$$(i_1+j_1)-(i_2+j_2)=(i_1-i_2)+(j_1-j_2)\in I+J,$$

as $i_1 - i_2 \in I$ and $j_1 - j_2 \in J$. Finally, suppose $i + j \in I + J$, and $r \in R$. Since I and J are ideals, $r(i + j) = ri + rj \in I + J$. We conclude that I + J is an ideal.

The Union of Ideals May Not Be An Ideal

- If I and J are ideals, it is not generally true that $I \cup J$ is an ideal.
- Consider the ring $R = \mathbb{Z}$.

Take the ideals $I = 2\mathbb{Z}$ and $J = 3\mathbb{Z}$.

We have:

- $2 \in I \subset I \cup J;$
- $3 \in J \subset I \cup J;$
- However, their sum, 5, is not in $I \cup J$.

Thus $I \cup J$ is not an ideal.
Ideals and Units

Lemma

Suppose that R is a ring, and that I is an ideal of R. If I contains a unit of R, then I = R.

```
Suppose u ∈ I is a unit in R.

Then, there exists v ∈ R, such that uv = 1<sub>R</sub>.

Thus 1<sub>R</sub> ∈ I.

Now, for all a ∈ R, a · 1<sub>R</sub> = a must lie in the ideal.

Thus, a ∈ I.

So R ⊆ I.
```

Principal Ideals and Associates

Lemma

Suppose that R is an integral domain (i.e., has no zero divisors). Suppose that $a, b \in R$. Then aR = bR if and only if a and b are associate.

Suppose that aR = bR.
 We have

$$a = a \cdot 1_R \in aR = bR.$$

So a = bu, for some element $u \in R$. Similarly, b = av, for some element $v \in R$. Then

$$a = bu = (av)u = a(vu).$$

As R is an integral domain, this only happens if vu = 1. So u and v are units.

George Voutsadakis (LSSU)

Algebraic Number Theory

• Conversely, if a and b are associate, then:

- a = bu, for some unit u;
- b = av, for the unit v, with uv = 1.

Thus, any multiple $br \in bR$ of b can also be written avr.

So it lies in aR.

Then $bR \subset aR$

The reverse inclusion is similar.

- We are going to prove that ideals in rings of integers of number fields factorize uniquely into "prime ideals".
- The lemma then shows that the units no longer play any role.

Characterization of Fields in terms of Ideals

Lemma

R is a field if and only if the only ideals in R are $\{0_R\}$ and R itself.

- If R is a field, then every non-zero element is a unit.
 Suppose I is an ideal of R.
 Suppose I contains a non-zero element.
 - Suppose 7 contains a non-zero element.
 - Then I contains a unit. So I = R, by a previous lemma.

Conversely, suppose R is not a field.

Then there exists some non-zero element r which is not a unit. Then the collection

$$rR = \{ra : a \in R\}$$

is an ideal in R.

It is non-zero as it contains $r = r \cdot 1_R \neq 0$.

Nor is there $a \in R$, such that $ra = 1_R$, as r is not a unit.

So rR is not all of R either.

George Voutsadakis (LSSU)

Subsection 5

Generating Sets for Ideals

Ideals Generated by Sets

Definition

Let X be a (possibly infinite) subset of R. Then the intersection of all ideals containing X is an ideal of R. It is clearly contained in all ideals containing X. This ideal is denoted by $\langle X \rangle$ and called the **ideal generated by** X.

Proposition

Let X be a subset of R. Then

 $\langle X \rangle = \{ \text{all finite sums of elements of the form } rx, \text{ with } r \in R, x \in X \}.$

Define

 $I = \{\text{all finite sums of elements of the form } r_X, \text{ with } r \in R, x \in X\}.$

We want to show that $I = \langle X \rangle$.

George Voutsadakis (LSSU)

Algebraic Number Theory

Ideals Generated by Sets (Cont'd)

• One inclusion is clear from the definition.

```
I is an example of an ideal containing X.
```

So the intersection $\langle X \rangle$ of all such ideals must be a subset of *I*. We need to check $I \subseteq \langle X \rangle$.

Let J be any ideal containing all $x \in X$.

For any $r \in R$, as $x \in J$ and J is an ideal, $rx \in J$.

So all elements r_1x_1, \ldots, r_nx_n , with $r_i \in R$ and $x_i \in X$ lie in J.

```
But J is also closed under addition.
```

```
So r_1x_1 + \cdots + r_nx_n is also in J.
```

But any element of I is of this form.

So each element of I lies in J.

This shows that, if J is any ideal containing all $x \in X$, then $J \supseteq I$.

However, $\langle X \rangle$ is an ideal containing every element of X.

So $\langle X \rangle \supseteq I$.

Remarks

• The typical element of $\langle X \rangle$ is

$$r_1x_1+r_2x_2+\cdots+r_kx_k,$$

for some $k \in \mathbb{N}$.

- In particular, suppose $X = \{x_1, ..., x_n\}$ is a finite set.
- The ideal $\langle X \rangle$, in this case, is also denoted by

$$\langle x_1,\ldots,x_n\rangle.$$

• It consists of all sums of the form

$$\sum_{i=1}^n r_i x_i, \quad \text{with } r_i \in R.$$

• In other words, we have

$$\langle x_1,\ldots,x_n\rangle = x_1R + \cdots + x_nR.$$

Minimal Generating Sets

- Consider the ideal $\langle 2,3 \rangle$ in \mathbb{Z} .
- This consists of every integer *n* which can be written as

$$2a+3b$$
, for integers a, b .

- But every integer may be written in this way $(n = 2 \cdot (-n) + 3 \cdot n)$.
- So $\mathbb{Z} = \langle 2, 3 \rangle = \langle 1 \rangle$.
- Note that $\langle 2 \rangle$ and $\langle 3 \rangle$ are both proper subsets of \mathbb{Z} .
- So this shows that {2,3} is a minimal set of generators.
- This means that no proper subset generates the whole ideal.
- Now, both {1} and {2,3} are minimal generating sets.
- So ideals may have minimal generating sets of different sizes (in contrast to vector spaces).

Principal Ideals

Definition

Ideals of the form $\langle r \rangle$, with one generator, are called **principal**.

Example: Rings exist where not every ideal is principal.

Consider, e.g., the ring $\mathbb{Z}[X]$.

Let *I* be the set of polynomials whose constant term is divisible by 2. *I* is an ideal of $\mathbb{Z}[X]$.

It is not of the form $r\mathbb{Z}[X]$, for any r.

Both 2 and X would have to be multiples of r.

This means that r would have to be ± 1 .

But ± 1 does not belong to *I*.

So this is also not possible.

Principal Ideals (Cont'd)

In fact, we have I = (2, X).
 Suppose

$$f(X) = \sum_{n=0}^d a_n X^n \in I.$$

We can write it as

$$f(X) = a_0 + X \sum_{n=1}^d a_n X^{n-1},$$

where $a_0 \in 2\mathbb{Z} \subseteq 2\mathbb{Z}[X]$. Clearly

$$X\sum_{n=1}^d a_n X^{n-1} \in X \cdot \mathbb{Z}[X].$$

It follows that every polynomial in I can be written as the sum of something in $2\mathbb{Z}[X]$ and something in $X\mathbb{Z}[X]$. So $I \subseteq \langle 2, X \rangle$. The opposite inclusion is clear.

George Voutsadakis (LSSU)

Algebraic Number Theory

Example

Suppose that R = ℤ[√10].
 Consider the set

$$\mathfrak{a}_1 = 2R + (4 + \sqrt{10})R = \langle 2, 4 + \sqrt{10} \rangle.$$

It is an ideal in R.

It is not possible to write a_1 as $\langle \alpha \rangle$, for any $\alpha \in R$.

Suppose every element of a_1 is a multiple of α .

In particular, we would have

$$2 = \alpha \beta$$
 and $4 + \sqrt{10} = \alpha \gamma$.

Taking norms,

$$4 = N(2) = N(\alpha)N(\beta), \quad 6 = N(4 + \sqrt{10}) = N(\alpha)N(\gamma).$$

Thus, this means that $N(\alpha) = 1$ or $N(\alpha) = 2$.

Example (Cont'd)

• We know that there are no elements in $\mathbb{Z}[\sqrt{10}]$ with norm 2. If $N(\alpha) = 1$, α would be a unit.

So $\langle \alpha \rangle$ would equal *R*.

However, every element in \mathfrak{a}_1 has an even number as a coefficient of 1. So $1 \not\in \mathfrak{a}_1.$

- It is traditional to use Gothic letters α, b, etc., for ideals in rings of integers of number fields.
- However, we will use *I*, *J*, etc., for ideals in more general rings.

Noetherian Rings

- An ideal of R is called finitely generated if it has a finite generating set.
- A ring *R* is called **Noetherian** if every ideal in *R* is finitely generated.
- We shall see that rings of integers of number fields have this property.

IJ versus $I \cap J$

- In a previous lemma, we saw that $IJ \subseteq I \cap J$.
- Sometimes we can have equality.
- Consider, e.g., $R = \mathbb{Z}$, $I = 2\mathbb{Z}$, $J = 3\mathbb{Z}$

Then $IJ = \langle 2 \rangle \langle 3 \rangle = \langle 6 \rangle$.

Also $I \cap J$ consists of all integers in $I \cap J$, which are those integers simultaneously divisible by 2 (so lie in I) and by 3 (so lie in J). So it consists of all integers that are multiples of 6.

So $I \cap J = \langle 6 \rangle = IJ$.

- On the other hand, there are examples where $IJ \neq I \cap J$.
- Let $R = \mathbb{Z}$, $I = J = 2\mathbb{Z}$.

Then $IJ = \langle 2 \rangle \langle 2 \rangle = \langle 4 \rangle$. But $I \cap J = \langle 2 \rangle$.

• The impression we get is that the equality of IJ and $I \cap J$ should be related to whether they are "coprime" in a certain sense.

George Voutsadakis (LSSU)

Algebraic Number Theory

Divisibility for Ideals

Definition

As already remarked, the notation $\alpha \mid \beta$ means that β is a multiple of α . In particular, any multiple of β is a multiple of α . So $\langle \beta \rangle \subseteq \langle \alpha \rangle$. We extend the notation to ideals by writing $\alpha \mid b$ to mean $b \subseteq \alpha$. We may use either notation interchangeably.

- Let \mathfrak{a} , \mathfrak{b} be ideals in the ring of integers \mathbb{Z}_K of a number field K.
- We will see that $\mathfrak{b} \subseteq \mathfrak{a}$ iff there is some ideal \mathfrak{c} of \mathbb{Z}_K , such that $\mathfrak{b} = \mathfrak{a}\mathfrak{c}$.
- This is another definition of division one might have come up with.

Subsection 6

Ideals in Quadratic Fields

Non-Uniqueness of Factorization

- We saw that $\mathbb{Q}(\sqrt{d})$ does not always have unique factorization.
- E.g., let d = −5.
 Consider the ring of integers is Z[√−5].
 Then

$$6 = 2 \times 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

In terms of ideals, we can consider the ideal (6) ⊂ Z[√5].
 Then the above factorizations correspond to factorizations of ideals,

$$\langle 6 \rangle = \langle 2 \rangle \langle 3 \rangle = \langle 1 + \sqrt{-5} \rangle \langle 1 - \sqrt{-5} \rangle,$$

where $\langle a \rangle$ denotes the principal ideal generated by *a*, namely $a\mathbb{Z}[\sqrt{-5}]$. • We saw 2 and 3 are irreducible in $\mathbb{Z}[\sqrt{-5}]$.

This means that the ideal $\langle 3 \rangle$, say, cannot be written as the product of principal ideals (if $3 = \alpha \cdot \beta$, then $\langle 3 \rangle = \langle \alpha \rangle \langle \beta \rangle$).

• But $\langle 3 \rangle$ may be factored as a product of non-principal ideals.

Repairing Non-Uniqueness of Factorization

- The obstruction to unique factorization is coming from the fact that not every ideal in ℤ[√-5] is principal.
- Indeed, consider the two ideals

$$\begin{aligned} \mathfrak{a}_1 &= \langle 3, 1 + \sqrt{-5} \rangle; \\ \mathfrak{a}_2 &= \langle 3, 1 - \sqrt{-5} \rangle. \end{aligned}$$

• We work out the product $\mathfrak{a}_1\mathfrak{a}_2$,

$$a_1 a_2 = \langle 3 \cdot 3, 3(1 - \sqrt{-5}), 3(1 + \sqrt{-5}), (1 + \sqrt{-5})(1 - \sqrt{-5}) \rangle$$

= $\langle 9, 3 - 3\sqrt{-5}, 3 + 3\sqrt{-5}, 6 \rangle.$

• That is, every element of the product $\mathfrak{a}_1\mathfrak{a}_2$ is of the form

$$9\alpha + (3-3\sqrt{-5})\beta + (3+3\sqrt{-5})\gamma + 6\delta,$$

for some $\alpha, \beta, \gamma, \delta \in \mathbb{Z}[\sqrt{-5}]$.

Repairing Non-Uniqueness of Factorization (Cont'd)

 It is clear that the collection of such elements must be contained in the set

$$\{A + B\sqrt{-5} : 3 \mid A, 3 \mid B\}.$$

- Conversely, consider an element $3A + 3B\sqrt{-5}$.
- It lies in a₁a₂ on taking, e.g.,

$$\alpha = A + B\sqrt{-5}, \quad \beta = \gamma = 0, \quad \delta = -\alpha.$$

It follows that

$$\mathfrak{a}_1\mathfrak{a}_2 = \{A + B\sqrt{-5} : 3 \mid A, 3 \mid B\}.$$

- That is, a_1a_2 consists of all multiples of 3.
- Thus, $\mathfrak{a}_1\mathfrak{a}_2 = \langle 3 \rangle$.

Repairing Non-Uniqueness of Factorization (Conclusion)

• Similarly, let
$$\mathfrak{b} = \langle 2, 1 + \sqrt{-5} \rangle$$
.

• Then a typical element of b^2 is given by

$$4\alpha + (2 + 2\sqrt{-5})\beta + (1 + \sqrt{-5})^2\gamma.$$

- An easy check shows that $\mathfrak{b}^2 = \langle 2 \rangle$.
- We may also verify that:
 - The ideal $\langle 1 + \sqrt{-5} \rangle$ is given by $\mathfrak{a}_1 \mathfrak{b}$;
 - The ideal $\langle 1 \sqrt{-5} \rangle$ is given by $\mathfrak{a}_2 \mathfrak{b}$.
- Now the two distinct factorizations $6 = 2 \times 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$ actually become the same factorization in terms of the ideals,

$$\langle 6 \rangle = \mathfrak{b}^2 \mathfrak{a}_1 \mathfrak{a}_2 = (\mathfrak{a}_1 \mathfrak{b})(\mathfrak{a}_2 \mathfrak{b}).$$

• By introducing ideals, we have repaired the non-uniqueness of factorization in this case.

George Voutsadakis (LSSU)

Subsection 7

Unique Factorization Domains and Principal Ideal Domains

Unique Factorization Domains

Definition

A ring R is a **unique factorization domain** (UFD) if it is an integral domain in which every non-zero $a \in R$ may be written

 $a = up_1 \cdots p_n$,

where *u* is a unit and each p_i is irreducible (i.e., factorization into irreducibles exists). Further, if $a = vq_1 \cdots q_m$ is another such factorization, then n = m and p_i is an associate of $q_{\pi(i)}$, for some permutation of $\{1, \ldots, n\}$ (i.e., factorization into irreducibles is unique).

Example: We have seen that:

- \mathbb{Z} and $\mathbb{Z}[i]$ both have unique factorization, and are therefore UFDs;
- Neither $\mathbb{Z}[\sqrt{10}]$ nor $\mathbb{Z}[\sqrt{-5}]$ are UFDs.

Principal Ideal Domains

- Recall that a principal ideal is one of the form aR.
- For some rings, such as Z, these are the only ideals.

Definition

Let R be an integral domain. Then R is a **principal ideal domain** (abbreviated **PID**) if every ideal of R is principal.

- Example: Examples of integral domains which are not PIDs:
 - $\mathbb{Z}[X]$ has an ideal $\langle 2, X \rangle$ which we saw is not principal;
 - $\mathbb{Z}[\sqrt{10}]$ has an ideal $\langle 2, \sqrt{10} \rangle$ which is not principal.
- Every field K is a PID.
 - Its only ideals are:
 - $\langle 0_K \rangle$;
 - K itself, which may be written as $\langle 1_K \rangle$.

Euclidean Domains

- We have already seen that \mathbb{Z} is a PID.
- The proof that $\mathbb Z$ is a PID relies on Euclid's algorithm.

Definition

An integral domain R is a Euclidean domain if there is a function

$$\phi: R - \{0_R\} \to \mathbb{Z}_{>0},$$

such that:

- 1. $a \mid b \Rightarrow \phi(a) \le \phi(b);$
- 2. If $a \in R$, $b \in R \{0_R\}$, then there exist q and r in R, such that

$$a = bq + r$$

and either r = 0 or $\phi(r) < \phi(b)$.

 ϕ is called a **Euclidean function** on *R*.

Examples

- We know that Z is a Euclidean domain.
 To see this, define φ(n) = |n|.
- We also know that, for any field K, K[X] is a Euclidean domain.
 In this case, we define φ(f) = degf.
- We also saw that there is also a Euclidean algorithm in $\mathbb{Z}[i]$. Here, we define $\phi(a+ib) = a^2 + b^2$.

Euclidean Domains are PIDs

Proposition

Every Euclidean domain is a principal ideal domain.

Let *I* be an ideal of the Euclidean domain *R*, and suppose *I* ≠ {0}.
 Consider the set of all values taken by the Euclidean function φ on the nonzero elements of the ideal *I*,

$$D = \{\phi(i) : i \in I, i \neq 0\} \subseteq \mathbb{Z}_{>0}.$$

Choose $b \in I$, such that $\phi(b)$ is the minimal value in D. Now $b \in I$. So I contains all multiples of b.

Hence, $I \supseteq \langle b \rangle$.

Euclidean Domains are PIDs (Cont'd)

• Conversely, take $a \in I$.

We can write

$$a = qb + r$$
,

where either r = 0 or $\phi(r) < \phi(b)$.

As $a, b \in I$, we conclude that $r = a - qb \in I$.

But *b* is an element of *I* with the least possible value of ϕ .

So it cannot be that
$$\phi(r) < \phi(b)$$
.

Hence, r = 0.

Thus, every element of I is a multiple of b.

This shows that $I \subseteq \langle b \rangle$.

• Not every PID is a Euclidean domain.

• It is known that, for $\rho = \frac{1+\sqrt{-19}}{2}$, $\mathbb{Z}[\rho]$ is a PID, but not Euclidean.

Highest Common Factors

Definition

Let *R* be a PID, and let *a* and *b* be in *R*. The ideal $\langle a, b \rangle = aR + bR$ is principal. So it can be written $\langle d \rangle = dR$, for some element $d \in R$. Then *d* is a **highest common factor** of *a* and *b*. Highest common factors are unique up to multiplication by a unit.

- This agrees with the usual notion in \mathbb{Z} .
- The difference between PIDs and Euclidean domains is not in the essential point that highest common factors exist, but rather that there is a good way to compute them in Euclidean domains.
- Euclidean domains have a Euclidean algorithm, which may be absent in more general PIDs.

PIDs are UFDs

Theorem

Every PID is a UFD.

• Suppose first that there exists an element *a* without any factorization. Call such elements "bad", and other elements "good".

Then *a* is not a unit, nor an irreducible.

So we must have $a = a_1b_1$, for some a_1, b_1 .

At least one of a_1 and b_1 must be bad (otherwise the product of the factorizations for a_1 and b_1 gives a factorization of a).

Suppose a_1 is bad.

Then, in the same way, $a_1 = a_2 b_2$, with a_2 bad.

Continuing in this way, we get a sequence of bad elements a_1, a_2, \ldots

Further, as a_i is a multiple of a_{i+1} , we see that $\langle a_{i+1} \rangle \supset \langle a_i \rangle$.

Moreover, these are different as no b_{i+1} is a unit.

George Voutsadakis (LSSU)

Algebraic Number Theory

PIDs are UFDs (Cont'd)

Define

$$I = \bigcup_{i=1}^{\infty} \langle a_i \rangle.$$

It is easy to check that this is an ideal. Therefore, $I = \langle c \rangle$, for some $c \in R$. Thus $c \in I$. So c lies in some $\langle a_n \rangle$. Then

$$I = \langle c \rangle \subseteq \langle a_n \rangle \subset \langle a_{n+1} \rangle \subseteq I.$$

This is a contradiction.

So no bad elements exist.

It follows that every element has some factorization.

Algebraic Number Theory

PIDs are UFDs (Claim)

Claim: Every irreducible element $p \in R$ satisfies $p \mid ab \Rightarrow p \mid a$ or $p \mid b$. Let p be an irreducible element. Suppose $p \mid ab$. If $p \nmid a$, we show that $p \mid b$. Consider the ideal $\langle p, a \rangle = pR + aR$. As R is a PID, $\langle p, a \rangle = \langle d \rangle$. Then $d \mid p$ and $d \mid a$. As p is irreducible, either d is a unit or d is an associate of p. The latter is impossible, as $p \nmid a$. Thus $\langle p, a \rangle$ is generated by a unit d. So $\langle p, a \rangle = R$. Thus, we can find $r, s \in R$, such that $pr + as = 1_R$. Multiply by b to get p(br) + (ab)s = b. We see that b is a multiple of p, as $p \mid ab$.

PIDs are UFDs (Uniqueness)

• We finally show uniqueness of factorization.

Suppose we had an element n with two factorizations:

$$n = up_1 \cdots p_r = vq_1 \cdots q_s,$$

where u and v are units, and the p_i, q_j are irreducible.

Then p_1 divides n and therefore the right-hand side.

By the Claim, p_1 divides some q_i , q_1 say (permute the q_i if not). But both p_1 and q_1 are irreducible.

So we must have $q_1 = u_1 p_1$ where u_1 is a unit.

Cancel p_1 and q_1 from the factorizations (R is an integral domain). We can continue in this way until all prime factors on the left-hand side are paired off with factors on the right-hand side, and only units are left.

- Note that the proof that every element has some factorization (i.e., there are no bad elements) would work given only the weaker statement that every ideal (in particular, the ideal *I*) has a finite generating set, so that *I* = (*d*₁,...,*d_k*).
- This is the defining property of a Noetherian ring.
- We will see in the next subsection that rings of integers of number fields are always Noetherian.

Remarks (Cont'd)

• We will show later that for rings of integers in number fields, the converse to this theorem is true.

Such a ring is a PID if and only if it is a UFD.

- This is false in a general ring.
- It is known that, if R is a UFD, then so is the polynomial ring R[X].
- This shows that $\mathbb{Z}[X]$ is a UFD.
- We have already seen that it is not a PID.

E.g., the ideal $\langle 2, X \rangle$ is not principal.

Subsection 8

The Noetherian Property
Noetherian Rings

- The property of unique factorization in a number field is equivalent to the ring of integers having the property that every ideal is principally generated, i.e., has one generator.
- Many number fields do not have unique factorization, and therefore do not have this property.
- However, there is a weaker property that they all satisfy:

Definition

A Noetherian ring is a ring R in which every ideal is finitely generated.

- We saw that Z_K has an integral basis, and that this is equivalent to the property that Z_K is a free abelian group of rank [K : Q].
- We will show that this implies that \mathbb{Z}_K is Noetherian.

Subgroups of Free Abelian Groups of Finite Rank

Proposition

Suppose H is a subgroup of a free abelian group G of rank n. Then H is also a free abelian group of rank at most n.

By induction on n.

For n = 1, $G \cong \mathbb{Z}$.

By the Euclidean algorithm, $H = k\mathbb{Z}$, for some k.

If k = 0, then H has rank 0.

Otherwise, H has rank 1 and has finite index.

Suppose the result is true for free abelian groups of rank n-1.

Let G be a free abelian group of rank n.

We can write

$$G = \mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n.$$

Subgroups of Free Abelian Groups of Finite Rank (Cont'd)

• Let
$$\pi: G \to \mathbb{Z}$$
 map $a_1\omega_1 + \cdots + a_n\omega_n$ to a_1 .

Let

$$K = \ker \pi = \mathbb{Z}\omega_2 + \cdots + \mathbb{Z}\omega_n,$$

a free abelian group of rank n-1.

Then $\pi(H) \subseteq \mathbb{Z}$, and by the base, $\pi(H) = \{0\}$ or $\pi(H)$ is infinite cyclic.

Rings of Integers are Noetherian

Theorem

If K is a number field, then \mathbb{Z}_K is Noetherian.

An ideal is an (additive) subgroup of Z_K.
 So we can apply the proposition to conclude that every ideal is also a free abelian group of finite rank.

Equivalently, it is finitely generated as a \mathbb{Z} -module.

Thus, for some elements $\omega_1, \ldots, \omega_r \in I$,

$$I = \mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_r.$$

Since *I* is an ideal, $\mathbb{Z}\omega_i \subseteq I$. Clearly, $\mathbb{Z}_K \omega_i \supseteq \mathbb{Z}\omega_i$. So

$$\mathbb{Z}_{\mathcal{K}}\omega_1 + \cdots + \mathbb{Z}_{\mathcal{K}}\omega_r \supseteq \mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_r.$$

Rings of Integers are Noetherian (Cont'd)

On the other hand, {ω₁,...,ω_r} is a generating set for I as a Z-module.
 So

$$\mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_r = I.$$

But each $\mathbb{Z}_K \omega_i \subseteq I$. So

$$\mathbb{Z}_{K}\omega_{1} + \cdots + \mathbb{Z}_{K}\omega_{r} \subseteq I.$$

Hence,

$$I \supseteq \mathbb{Z}_{K}\omega_{1} + \cdots + \mathbb{Z}_{K}\omega_{r} \supseteq \mathbb{Z}\omega_{1} + \cdots + \mathbb{Z}\omega_{r} = I.$$

So all the inclusions are equalities. In particular, we see that $I = \mathbb{Z}_{K}\omega_{1} + \dots + \mathbb{Z}_{K}\omega_{r}$. So I is finitely generated as an ideal.

The Ascending Chain Condition

Definition

A ring R is said to satisfy the ascending chain condition (or ACC) if for every chain of ideals

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$$

of ideals of R, there exists some positive integer n, such that

$$I_n=I_{n+1}=I_{n+2}=\cdots.$$

Characterization of Noetherian Rings

Proposition

A ring R is Noetherian if and only if it satisfies the ACC.

- Assume that *R* is Noetherian.
 - Let $I_1 \subseteq I_2 \subseteq \cdots$ be an ascending chain of ideals.

Let
$$I = \bigcup_{i=1}^{\infty} I_i$$
.

It is easy to check that I is an ideal.

As R is Noetherian, I has a finite generating set, $\{r_1, \ldots, r_n\}$.

Each element r_j of the generating set must occur in some I_{n_j} .

Let $n = \max(n_i)$ be the largest of these numbers.

Then each element of the generating set is already contained in I_n .

Thus,
$$I_n = I_{n+1} = \cdots$$
.

So the chain becomes stationary.

Characterization of Noetherian Rings (Cont'd)

- Conversely, suppose the ACC is satisfied.
 We show that every ideal must be finitely generated.
 If not, there is an ideal *I* which has no finite generating set.
 Pick r₁ ∈ *I*.
 - Then $I \neq \langle r_1 \rangle$, as otherwise $\{r_1\}$ would generate I.
 - So we may pick $r_2 \in I \langle r_1 \rangle$.

```
Again, I \neq \langle r_1, r_2 \rangle.
```

```
So we may pick r_3 \in I - \langle r_1, r_2 \rangle.
```

In this way, we find:

- An infinite sequence of elements r₁, r₂,...;
- An infinite strictly ascending chain

$$\langle r_1 \rangle \subseteq \langle r_1, r_2 \rangle \subseteq \langle r_1, r_2, r_3 \rangle \subseteq \cdots$$

This contradicts the ACC.

George Voutsadakis (LSSU)

Artinian Rings

- There is also the notion of a descending chain condition.
- It stipulates that every descending chain must eventually become stationary.
- Rings satisfying the DCC are said to be Artinian.
 Example: Note that Z is Noetherian (as it is a PID).
 But Z is not Artinian, as the descending chain

 $\langle 2\rangle \supset \langle 4\rangle \supset \langle 8\rangle \supset \cdots$

never becomes stationary.

• Rings of integers in number fields are never Artinian.

Noetherian Rings and Maximal Ideals

• The Ascending Chain Condition can be used to prove various results.

Lemma

Suppose that I is a proper ideal in a Noetherian ring R. Then I is contained in a maximal ideal.

If I is maximal, there is nothing to prove.
 Otherwise, it is strictly contained in a larger proper ideal I₁.

If I_1 is maximal, the result follows.

Otherwise, it is strictly contained in a larger ideal I_2 .

Repeat this process.

By hypothesis, there cannot be arbitrarily long chains $I \subset I_1 \subset I_2 \subset \cdots$.

So, at some point, one of the ideals must be maximal.

The result follows.