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Ideals

An Example

Consider a world where the only positive integers are

1,4,7,10, . . . ,3n+1, . . . .

Suppose that, in this world, a prime number is an integer which
cannot be factored further.

The numbers 4,7,10, and 13 are all prime (since we only have integers
of the form 3n+1).

On the other hand, 16= 4 ·4 is not prime.

The integer 100 may be written as a product of primes in two different
ways,

100= 10 ·10= 4 ·25.

All of the factors, 4, 10 and 25, are prime in this world.

Moreover, the two factorizations are genuinely different.
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Ideals

Observations

The problem in this world is that we do not have enough integers.

We have to enlarge our set of integers.

Suppose we also include the integers of the form 3n+2.

Then in this larger world the factors are no longer prime.

We can factorize them further

4= 2 ·2, 10= 2 ·5, 25= 5 ·5.

Using these factorizations, our apparent lack of unique factorization is
resolved

100= (2 ·5) · (2 ·5) = (2 ·2) · (5 ·5).
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Ideals Uniqueness of Factorization Revisited

Subsection 1

Uniqueness of Factorization Revisited
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Ideals Uniqueness of Factorization Revisited

Remarks on Uniqueness of a Factorization

We saw that Z has unique factorization.

In defining uniqueness, expressions such as 6= 2 ·3= (−3) · (−2) should
really be counted as equivalent factorizations.

Here the factors are simply permuted and multiplied both by −1.

In general, suppose we have a factorization

r = a ·b

in some ring R .

Mostly, R will be the ring of integers in some number field.

Suppose u and v in R satisfy uv = 1.

Then r = a ·b = (ua) · (vb) should be considered equivalent.
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Ideals Uniqueness of Factorization Revisited

Units and Associates

Definition

Let R be a ring, and let u ∈R . The element u is a unit in R if there exists
an element v ∈R with

uv = 1.

Definition

Two elements r1,r2 ∈R are associate if there is a unit u ∈R , such that

r2 = ur1.

This relation is symmetric, i.e., if r2 = ur1, then r1 = vr2, where uv = 1.
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Ideals Uniqueness of Factorization Revisited

Equivalent Factorizations

Given one factorization, we want to consider another as “equivalent” if
it can be got from the first by:

(a) Multiplying by units;
(b) Rearranging the factors.

Definition

We say that two factorizations

r = a1a2 . . .an = b1b2 . . .bn

are equivalent if, for some permutation π of {1, . . . ,n},

bi is an associate of aπ(i), for all i .

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 8 / 82



Ideals Uniqueness of Factorization Revisited

Irreducible Elements and Prime Elements

There are two possible generalizations of prime numbers to more
general rings.

Definition

1. Let p ∈R . Then p is irreducible if:

(a) p is not a unit;
(b) If p = ab, then either a or b is a unit.

2. Let p ∈R . Then p is a prime element if, whenever p | ab (in the sense that
ab= pr , for some r ∈R), then p | a or p | b.

When R =Z, these two are equivalent.

However, we will see that they are different in general.

This phenomenon is a consequence of failure of unique factorization.
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Ideals Non-unique Factorization in Quadratic Number Fields

Subsection 2

Non-unique Factorization in Quadratic Number Fields
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Ideals Non-unique Factorization in Quadratic Number Fields

Examples of Non-Unique Factorizations

Suppose that d is squarefree.

Assume, for simplicity, d ≡ 2 (mod 4) or d ≡ 3 (mod 4).

In this case, the ring of integers in Q(
p
d) is Z[

p
d ].

Example: When d = 10, one has the equalities

6= 2 ·3= (4+
p

10)(4−
p

10).

For an example with d negative, consider, for d =−5,

6= 2 ·3= (1+
p
−5)(1−

p
−5).

We can check (with some effort) that:

These factors are all irreducible, in the sense that they cannot be
factored further;
The factorizations are different.
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Ideals Non-unique Factorization in Quadratic Number Fields

“Conjugation” and Norms

We follow the prototype of the Gaussian integers.

For α= a+b
p
d ∈Z[

p
d ], we define

a= a−b
p
d .

This will play the role of complex conjugation.

Next, we define the norm

N(a+b
p
d)=N(α)=αα= (a+b

p
d)(a−b

p
d)= a2−db2

.

If α ∈Z[
p
d ], then N(α) ∈Z, by a preceding result.

If we are given two elements α1 = a1+b1

p
d and α2 = a2+b2

p
d , we

see that

N(α1α2)=α1α2α1α2
α1α2 =α1 α2= α1α1α2α2 =N(α1)N(α2).
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Ideals Non-unique Factorization in Quadratic Number Fields

Units in Z[
p
d ]

Lemma

Suppose that u ∈Z[
p
d ]. Then u is a unit if and only if N(u)=±1.

Suppose u is a unit.

Then, there exists v , such that uv = 1.

So N(u)N(v)=N(uv)=N(1)= 1.

But N(u) and N(v) are integers whose product is 1.

So N(u) and N(v) must both be ±1.

Conversely, suppose N(u)=±1.

Then uu =±1.

Define v =±u.

Then uv = 1. So u is a unit.
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Ideals Non-unique Factorization in Quadratic Number Fields

Non-Equivalence of Factorizations

Lemma

1. In Z[
p

10], the two factorizations 6= 2 ·3= (4+
p

10)(4−
p

10) are not
equivalent.

2. In Z[
p
−5], the two factorizations 6= 2 ·3= (1+

p
−5)(1−

p
−5) are

not equivalent.

Suppose α1 and α2 are associate.

Then, there is a unit u, such that α2 = uα1.

It follows that

N(α2)=N(uα1)=N(u)N(α1)= ±N(α1).

So, if two factorizations are equivalent, the norms of the factors on
both sides are the same (up to sign).
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Ideals Non-unique Factorization in Quadratic Number Fields

Non-Equivalence of Factorizations (Cont’d)

Consider, first, Z[
p

10].

N(2)= 22−10 ·02 = 4, N(3)= 32−10 ·02 = 9,

N(4+
p

10)= 42−10 ·12 = 6, N(4−
p

10)= 42−10 · (−1)2 = 6.

So the norms on the two sides are different.

Similarly, in Z[
p
−5] we have the following:

N(2)= 22+5 ·02 = 4, N(3)= 32+5 ·02 = 9,

N(1+
p
−5)= 12+5 ·12 = 6, N(1−

p
−5)= 12+5 · (−1)2 = 6.

Again the norms on the two sides are different.
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Ideals Non-unique Factorization in Quadratic Number Fields

Irreducibility of the Factors

Lemma

1. In Z[
p

10], all of the factors in the equality 2 ·3= (4+
p

10)(4−
p

10)
are irreducible.

2. In Z[
p
−5], all of the factors in the equality 2 ·3= (1+

p
−5)(1−

p
−5)

are irreducible.

We first see that there are no elements α ∈Z[
p

10] with N(α)=±2.

Suppose, to the contrary, that α= a+b
p

10 is such an element.

Then N(α)= a2−10b2 =±2.

This means that either a2−10b2 = 2 or a2−10b2 =−2.

Consider these equalities modulo 5.

We see that we would need a2 ≡ 2 (mod 5) or a2 ≡ 3 (mod 5).

But both of these are impossible.

Similarly, there are no elements β ∈Z[
p

10] with N(β)=±3.
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Ideals Non-unique Factorization in Quadratic Number Fields

Irreducibility of the Factors (Z[
p

10])

Suppose that 2 factorizes as αβ in Z[
p

10].

Then 4=N(2)=N(α)N(β).

If N(α)=±1, N(β)=±4, then α is a unit.

If N(α)=±4, N(β)=±1, then β is a unit.

So the only possibility of factorizing 2 into non-units occurs if
N(α)=N(β)=±2.

We have seen that there are no such elements.

In the same way, if 3 were to factorize as αβ into non-units, then
N(α)=N(β)=±3. We have seen that this is not possible.

Finally, the only way to factorize 4±
p

10 into non-units would be as
the product of an element of norm ±2 and an element of norm ±3.

This is impossible.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 17 / 82



Ideals Non-unique Factorization in Quadratic Number Fields

Irreducibility of the Factors (Z[
p
−5])

Exactly the same argument works for Z[
p
−5].

Suppose there is an element α= a+b
p
−5 of norm ±2.

This would require a2+5b2 =±2.

So a2+5b2 = 2 (as a2+5b2 is necessarily positive).

Arguing modulo 5, there are clearly no integral solutions.

Nor are there any solutions to a2+5b2 = 3.

So there are no elements of norm 3.

The same argument as in the case of Z[
p

10] now applies to Z[
p
−5].
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Ideals Non-unique Factorization in Quadratic Number Fields

Comments on Z[
p

10] and Z[
p
−5]

We have two non-equivalent factorizations into irreducible elements.

Therefore, factorization in these rings is not unique.

The factors are irreducible, but they are not prime.

First, note that 2 | 6. So 2 | (4+
p

10)(4−
p

10).
However, 2 ∤ 4±

p
10.

Indeed,
4±

p
10

2
= 2±

1

2

p
10 6∈Z[

p
10].
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Ideals Kummer’s Ideal Numbers

Subsection 3

Kummer’s Ideal Numbers
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Ideals Kummer’s Ideal Numbers

Kummer’s Idea of Ideal Numbers

Kummer tried to repair the non-uniqueness of factorization in
quadratic fields by enlarging the integers to include “ideal numbers”.

Consider, e.g., 6= 2 ·3= (4+
p

10)(4−
p

10) in Z[
p

10].

Kummer’s idea was to invent symbols a1,a2,a3,a4, such that

2= a1×a2, 3= a3×a4,

4+
p

10= a1×a3, 4−
p

10= a2×a4.

Then the non-unique factorization is repaired, since

2 ·3= (a1 ·a2) · (a3 ·a4)= (a1 ·a3) · (a2 ·a4)= (4+
p

10)(4−
p

10).

These are fictitious symbols, without any real meaning.

Kummer hoped that the symbols could be manipulated so that
meaningful results are obtained.

Dedekind reformulated Kummer’s idea in more concrete terms.
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Ideals Kummer’s Ideal Numbers

The Ring of Integers R =Z[
p

10] of Q(
p

10)

Consider again the factorizations into “ideal numbers”

2= a1 ×a2, 4+
p

10= a1×a3.

Then 2 would be a multiple of a1.
So any multiple of 2 would also be a multiple of a1.
Similarly, 4+

p
10 is also a multiple of a1.

So any multiple of 4+
p

10 is a multiple of a1.
Combining these, any Z[

p
10]-linear combination of 2 and 4+

p
10

should be a multiple of a1.
Let R denote the ring of integers Z[

p
10] of Q(

p
10).

The set of multiples of 2, namely 2R , must be contained in the set of
multiples of a1. Thus, 2R ⊆ a1R .
Similarly, (4+

p
10)R ⊆ a1R .

Thus,
2R + (4+

p
10)R ⊆ a1R .
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Ideals Kummer’s Ideal Numbers

The Ring of Integers R =Z[
p

10] (Cont’d)

We show the inclusion 2R + (4+
p

10)R ⊆ a1R ought to be an equality.

First, note that a1R =R implies a1 would be invertible.

So a1 would be a unit.

But we do not want our factors to be units.

A calculation gives

2R + (4+
p

10)R = {m+n
p

10 :m,n ∈Z, 2 |m}.

This set has index 2 in R (informally, half of the elements of R are in
this set).

There is no room for anything between R and 2R + (4+
p

10)R .

But a1R is strictly contained in R and contains 2R + (4+
p

10)R .

So we must have a1R = 2R + (4+
p

10)R .
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Ideals Kummer’s Ideal Numbers

Dedekind’s Ideals

Instead of thinking of a1 as an “ideal number”, Dedekind’s idea was to
work with the set a1R .

Now a1 is not actually an element.

We shall simply write a1 for the set, i.e.,

a1 = 2R + (4+
p

10)R .

In this viewpoint, even the symbol 2, which we would normally think
of as a number, should be viewed as the set 2R of all multiples of 2.
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Ideals Kummer’s Ideal Numbers

Dedekind’s Ideals (Cont’d)

In Z, suppose a divides b.

Then b is a multiple of a.

Any multiple of b is also a multiple of a.

Symbolically, bZ⊆ aZ.

Thus, a | b if and only if bZ⊆ aZ.

In the example above, since a1 contains all multiples of 2, one could
say that a1 is a divisor of 2.

Similarly, a1 is also a divisor of 4+
p

10, as one would hope.

There are no elements of R which divide 2 and 4+
p

10 except units.

However, there are certain subsets of R which contain 2R and
(4+

p
10)R and are strictly contained in 1R .
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Ideals Ideals

Subsection 4

Ideals
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Ideals Ideals

Ideals of a Ring

The prototype for Dedekind’s sets are all the multiples of a given
element of R , or, more generally (when unique factorization fails), all
the linear combinations of some set of elements.

Definition

An ideal I of a commutative ring R is a subset of R , such that:

1. 0R ∈ I ;

2. If i and i ′ ∈ I , then i − i ′ ∈ I ;

3. If i ∈ I and a ∈R , then ai ∈ I .

The second requirement here is equivalent to I being closed under
both addition and additive inverses.

These conditions are the same as those needed for I to be a module.

The only difference is that ideals are subsets of the ring.
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Ideals Ideals

Examples

1. Any ring R is an ideal in itself.

2. For any ring R , {0R } is an ideal in R .

3. Let R be any ring, and let r ∈R .

Let I = rR , all the multiples of r .

Then I is an ideal in R .

The element 0 is a multiple of r ;
The difference of any two multiples of r is again a multiple of r ;
Any multiple of a multiple of r is certainly a multiple of r .

The last example gives a large class of ideals.

In some rings, all ideals are of this form.
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Ideals Ideals

Ideals in Z

Lemma

In Z, every ideal is of the form nZ, for some integer n.

Let I be an ideal of Z.

First suppose I 6= {0}.

I contains a non-zero integer.

Then it will contain a positive integer.

Indeed, suppose k ∈ I , and k < 0.

By the definition of ideal, (−1)k =−k ∈ I also.

Let n be the smallest positive integer contained in I .

Clearly I then contains all multiples of n.

So I ⊇ nZ.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 29 / 82



Ideals Ideals

Ideals in Z (Cont’d)

If a ∈ I , we can write, by the division algorithm,

a= qn+ r , 0≤ r < n.

As a and n ∈ I , we conclude that r ∈ I .
As n was the smallest positive integer in I , we conclude that r = 0.

So a is a multiple of n.

Thus, I = nZ.

On the other hand, suppose I = {0}.

We can regard it as 0Z.

So I is again of the required form.

For a general ring R , not every ideal in R is of the form rR .

The reason that it holds in Z is because of Euclid’s algorithm.
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Ideals Ideals

Operations on Ideals

Lemma

Let R be a ring.

1. If I and J are ideals of R , then so is I ∩J.

2. More generally, if {Iα}α∈A is any family of ideals of R , then so is their
intersection

⋂

α∈Λ Iα.

3. If I and J are both ideals of R , then so is

IJ = {finite sums of elements of the form ij : i ∈ I and j ∈ J}.

and IJ ⊆ I ∩J.

4. If I and J are both ideals of R , then so is

I +J = {i + j : i ∈ I and j ∈ J}.
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Ideals Ideals

Operations on Ideals (Cont’d)

1. We check the axioms.

By hypothesis, I and J are ideals.

So 0R ∈ I and 0R ∈ J.

Therefore, 0R ∈ I ∩J.

Suppose i and j ∈ I ∩J.

Then i and j each lie in both I and J.

As these are ideals, i − j ∈ I and i − j ∈ J.

Thus, i − j ∈ I ∩J.

Finally, suppose i ∈ I ∩J (so i ∈ I and i ∈ J) and r ∈R .

Then ri ∈ I as I is an ideal, and similarly ri ∈ J.

So ri ∈ I ∩J.

This shows that I ∩J is an ideal.

2. Similar to the first assertion.
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Ideals Ideals

Operations on Ideals (Cont’d)

3. We have 0R ∈ I (or J).

So 0R ∈ IJ.

Suppose given two finite sums of terms of the form ij .

Their difference is clearly again a finite sum of terms of the same form.

So IJ is closed under addition.

Finally, suppose given a sum
∑

k ik jk ∈ IJ and an element r ∈R .

We see that

r

(

∑

k

ik jk

)

=
∑

k

(rik)jk .

As I is an ideal, all the bracketed terms rik ∈ I .
So this is again a finite sum of products of elements of I with
elements of J.
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Ideals Ideals

Operations on Ideals (Cont’d)

For the inclusion, an element of IJ is a finite sum of elements of the
form ij , with i ∈ I and j ∈ J.

As J ⊆R , we have j ∈R .

So, by definition of ideals, ij ∈ IR = I .

Similarly, I ⊆R .

So i ∈R .

Hence, ij ∈RJ = J.

It follows that all terms ij ∈ I ∩J.

So IJ ⊆ I ∩J.
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Ideals Ideals

Operations on Ideals (Conclusion)

4. We have 0R ∈ I and 0R ∈ J.

So 0R = 0R +0R ∈ I +J.

Next, we take i1+ j1 and i2+ j2 ∈ I +J.

Their difference is

(i1+ j1)− (i2 + j2)= (i1− i2)+ (j1 − j2) ∈ I +J ,

as i1− i2 ∈ I and j1− j2 ∈ J.

Finally, suppose i + j ∈ I +J, and r ∈R .

Since I and J are ideals, r(i + j)= ri + rj ∈ I +J .

We conclude that I +J is an ideal.
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Ideals Ideals

The Union of Ideals May Not Be An Ideal

If I and J are ideals, it is not generally true that I ∪J is an ideal.

Consider the ring R =Z.

Take the ideals I = 2Z and J = 3Z.

We have:

2∈ I ⊂ I ∪J;
3∈ J ⊂ I ∪J;
However, their sum, 5, is not in I ∪J.

Thus I ∪J is not an ideal.
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Ideals Ideals

Ideals and Units

Lemma

Suppose that R is a ring, and that I is an ideal of R . If I contains a unit of
R , then I =R .

Suppose u ∈ I is a unit in R .

Then, there exists v ∈R , such that uv = 1R .

Thus 1R ∈ I .
Now, for all a ∈R , a ·1R = a must lie in the ideal.

Thus, a ∈ I .
So R ⊆ I .
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Ideals Ideals

Principal Ideals and Associates

Lemma

Suppose that R is an integral domain (i.e., has no zero divisors). Suppose
that a,b ∈R . Then aR = bR if and only if a and b are associate.

Suppose that aR = bR .

We have
a= a ·1R ∈ aR = bR .

So a= bu, for some element u ∈R .

Similarly, b = av , for some element v ∈R .

Then
a= bu = (av)u = a(vu).

As R is an integral domain, this only happens if vu = 1.

So u and v are units.
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Ideals Ideals

Principal Ideals and Associates (Cont’d)

Conversely, if a and b are associate, then:

a= bu, for some unit u;
b= av , for the unit v , with uv = 1.

Thus, any multiple br ∈ bR of b can also be written avr .

So it lies in aR .

Then bR ⊆ aR .

The reverse inclusion is similar.

We are going to prove that ideals in rings of integers of number fields
factorize uniquely into “prime ideals”.

The lemma then shows that the units no longer play any role.
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Ideals Ideals

Characterization of Fields in terms of Ideals

Lemma

R is a field if and only if the only ideals in R are {0R } and R itself.

If R is a field, then every non-zero element is a unit.

Suppose I is an ideal of R .

Suppose I contains a non-zero element.

Then I contains a unit. So I =R , by a previous lemma.

Conversely, suppose R is not a field.

Then there exists some non-zero element r which is not a unit.

Then the collection
rR = {ra : a ∈R}

is an ideal in R .

It is non-zero as it contains r = r ·1R 6= 0.

Nor is there a ∈R , such that ra= 1R , as r is not a unit.

So rR is not all of R either.
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Ideals Generating Sets for Ideals

Subsection 5

Generating Sets for Ideals

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 41 / 82



Ideals Generating Sets for Ideals

Ideals Generated by Sets

Definition

Let X be a (possibly infinite) subset of R .
Then the intersection of all ideals containing X is an ideal of R .
It is clearly contained in all ideals containing X .
This ideal is denoted by 〈X 〉 and called the ideal generated by X .

Proposition

Let X be a subset of R . Then

〈X 〉 = {all finite sums of elements of the form rx , with r ∈R , x ∈X }.

Define

I = {all finite sums of elements of the form rx , with r ∈R , x ∈X }.

We want to show that I = 〈X 〉.
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Ideals Generating Sets for Ideals

Ideals Generated by Sets (Cont’d)

One inclusion is clear from the definition.

I is an example of an ideal containing X .

So the intersection 〈X 〉 of all such ideals must be a subset of I .

We need to check I ⊆ 〈X 〉.
Let J be any ideal containing all x ∈X .

For any r ∈R , as x ∈ J and J is an ideal, rx ∈ J.

So all elements r1x1, . . . ,rnxn, with ri ∈R and xi ∈X lie in J.

But J is also closed under addition.

So r1x1+·· ·+ rnxn is also in J.

But any element of I is of this form.

So each element of I lies in J.

This shows that, if J is any ideal containing all x ∈X , then J ⊇ I .

However, 〈X 〉 is an ideal containing every element of X .

So 〈X 〉 ⊇ I .
George Voutsadakis (LSSU) Algebraic Number Theory June 2024 43 / 82



Ideals Generating Sets for Ideals

Remarks

The typical element of 〈X 〉 is

r1x1+ r2x2+·· ·+ rkxk ,

for some k ∈N.

In particular, suppose X = {x1, . . . ,xn} is a finite set.

The ideal 〈X 〉, in this case, is also denoted by

〈x1, . . . ,xn〉.

It consists of all sums of the form
n
∑

i=1

rixi , with ri ∈R .

In other words, we have

〈x1, . . . ,xn〉 = x1R +·· ·+xnR .
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Ideals Generating Sets for Ideals

Minimal Generating Sets

Consider the ideal 〈2,3〉 in Z.

This consists of every integer n which can be written as

2a+3b, for integers a,b.

But every integer may be written in this way (n= 2 · (−n)+3 ·n).

So Z= 〈2,3〉 = 〈1〉.
Note that 〈2〉 and 〈3〉 are both proper subsets of Z.

So this shows that {2,3} is a minimal set of generators.

This means that no proper subset generates the whole ideal.

Now, both {1} and {2,3} are minimal generating sets.

So ideals may have minimal generating sets of different sizes (in
contrast to vector spaces).
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Ideals Generating Sets for Ideals

Principal Ideals

Definition

Ideals of the form 〈r 〉, with one generator, are called principal.

Example: Rings exist where not every ideal is principal.

Consider, e.g., the ring Z[X ].

Let I be the set of polynomials whose constant term is divisible by 2.

I is an ideal of Z[X ].

It is not of the form rZ[X ], for any r .

Both 2 and X would have to be multiples of r .

This means that r would have to be ±1.

But ±1 does not belong to I .

So this is also not possible.
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Ideals Generating Sets for Ideals

Principal Ideals (Cont’d)

In fact, we have I = 〈2,X 〉.
Suppose

f (X )=
d
∑

n=0

anX
n ∈ I .

We can write it as

f (X )= a0+X
d
∑

n=1

anX
n−1

,

where a0 ∈ 2Z⊆ 2Z[X ].

Clearly

X
d
∑

n=1

anX
n−1 ∈X ·Z[X ].

It follows that every polynomial in I can be written as the sum of
something in 2Z[X ] and something in XZ[X ].

So I ⊆ 〈2,X 〉. The opposite inclusion is clear.
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Ideals Generating Sets for Ideals

Example

Suppose that R =Z[
p

10].

Consider the set

a1 = 2R + (4+
p

10)R = 〈2,4+
p

10〉.

It is an ideal in R .

It is not possible to write a1 as 〈α〉, for any α ∈R .

Suppose every element of a1 is a multiple of α.

In particular, we would have

2=αβ and 4+
p

10=αγ.

Taking norms,

4=N(2)=N(α)N(β), 6=N(4+
p

10)=N(α)N(γ).

Thus, this means that N(α)= 1 or N(α)= 2.
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Ideals Generating Sets for Ideals

Example (Cont’d)

We know that there are no elements in Z[
p

10] with norm 2.

If N(α)= 1, α would be a unit.

So 〈α〉 would equal R .

However, every element in a1 has an even number as a coefficient of 1.

So 1 6∈ a1.

It is traditional to use Gothic letters a,b, etc., for ideals in rings of
integers of number fields.

However, we will use I ,J, etc., for ideals in more general rings.
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Ideals Generating Sets for Ideals

Noetherian Rings

An ideal of R is called finitely generated if it has a finite generating
set.

A ring R is called Noetherian if every ideal in R is finitely generated.

We shall see that rings of integers of number fields have this property.
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Ideals Generating Sets for Ideals

IJ versus I ∩J

In a previous lemma, we saw that IJ ⊆ I ∩J.

Sometimes we can have equality.

Consider, e.g., R =Z, I = 2Z, J = 3Z

Then IJ = 〈2〉〈3〉 = 〈6〉.
Also I ∩J consists of all integers in I ∩J, which are those integers
simultaneously divisible by 2 (so lie in I ) and by 3 (so lie in J).

So it consists of all integers that are multiples of 6.

So I ∩J = 〈6〉 = IJ.

On the other hand, there are examples where IJ 6= I ∩J.

Let R =Z, I = J = 2Z.

Then IJ = 〈2〉〈2〉 = 〈4〉. But I ∩J = 〈2〉.
The impression we get is that the equality of IJ and I ∩J should be
related to whether they are “coprime” in a certain sense.
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Ideals Generating Sets for Ideals

Divisibility for Ideals

Definition

As already remarked, the notation α |β means that β is a multiple of α.
In particular, any multiple of β is a multiple of α. So 〈β〉 ⊆ 〈α〉.
We extend the notation to ideals by writing a | b to mean b⊆ a.
We may use either notation interchangeably.

Let a, b be ideals in the ring of integers ZK of a number field K .

We will see that b⊆ a iff there is some ideal c of ZK , such that b= ac.

This is another definition of division one might have come up with.
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Ideals Ideals in Quadratic Fields

Subsection 6

Ideals in Quadratic Fields
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Ideals Ideals in Quadratic Fields

Non-Uniqueness of Factorization

We saw that Q(
p
d) does not always have unique factorization.

E.g., let d =−5.

Consider the ring of integers is Z[
p
−5].

Then
6= 2×3= (1+

p
−5)(1−

p
−5).

In terms of ideals, we can consider the ideal 〈6〉 ⊂Z[
p

5].

Then the above factorizations correspond to factorizations of ideals,

〈6〉 = 〈2〉〈3〉 = 〈1+
p
−5〉〈1−

p
−5〉,

where 〈a〉 denotes the principal ideal generated by a, namely aZ[
p
−5].

We saw 2 and 3 are irreducible in Z[
p
−5].

This means that the ideal 〈3〉, say, cannot be written as the product of
principal ideals (if 3=α ·β, then 〈3〉 = 〈α〉〈β〉).
But 〈3〉 may be factored as a product of non-principal ideals.
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Ideals Ideals in Quadratic Fields

Repairing Non-Uniqueness of Factorization

The obstruction to unique factorization is coming from the fact that
not every ideal in Z[

p
−5] is principal.

Indeed, consider the two ideals

a1 = 〈3,1+
p
−5〉;

a2 = 〈3,1−
p
−5〉.

We work out the product a1a2,

a1a2 = 〈3 ·3,3(1−
p
−5),3(1+

p
−5),(1+

p
−5)(1−

p
−5)〉

= 〈9,3−3
p
−5,3+3

p
−5,6〉.

That is, every element of the product a1a2 is of the form

9α+ (3−3
p
−5)β+ (3+3

p
−5)γ+6δ,

for some α,β,γ,δ ∈Z[
p
−5].
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Ideals Ideals in Quadratic Fields

Repairing Non-Uniqueness of Factorization (Cont’d)

It is clear that the collection of such elements must be contained in
the set

{A+B
p
−5 : 3 |A,3 |B}.

Conversely, consider an element 3A+3B
p
−5.

It lies in a1a2 on taking, e.g.,

α=A+B
p
−5, β= γ= 0, δ=−α.

It follows that
a1a2 = {A+B

p
−5 : 3 |A,3 |B}.

That is, a1a2 consists of all multiples of 3.

Thus, a1a2 = 〈3〉.
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Ideals Ideals in Quadratic Fields

Repairing Non-Uniqueness of Factorization (Conclusion)

Similarly, let b= 〈2,1+
p
−5〉.

Then a typical element of b2 is given by

4α+ (2+2
p
−5)β+ (1+

p
−5)2γ.

An easy check shows that b2 = 〈2〉.
We may also verify that:

The ideal 〈1+
p
−5〉 is given by a1b;

The ideal 〈1−
p
−5〉 is given by a2b.

Now the two distinct factorizations 6= 2×3= (1+
p
−5)(1−

p
−5)

actually become the same factorization in terms of the ideals,

〈6〉 = b
2
a1a2 = (a1b)(a2b).

By introducing ideals, we have repaired the non-uniqueness of
factorization in this case.
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Ideals UFDs and PIDs

Subsection 7

Unique Factorization Domains and Principal Ideal Domains
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Ideals UFDs and PIDs

Unique Factorization Domains

Definition

A ring R is a unique factorization domain (UFD) if it is an integral
domain in which every non-zero a ∈R may be written

a= up1 · · ·pn,

where u is a unit and each pi is irreducible (i.e., factorization into
irreducibles exists). Further, if a= vq1 · · ·qm is another such factorization,
then n=m and pi is an associate of qπ(i), for some permutation of
{1, . . . ,n} (i.e., factorization into irreducibles is unique).

Example: We have seen that:

Z and Z[i ] both have unique factorization, and are therefore UFDs;
Neither Z[

p
10] nor Z[

p
−5] are UFDs.
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Ideals UFDs and PIDs

Principal Ideal Domains

Recall that a principal ideal is one of the form aR .

For some rings, such as Z, these are the only ideals.

Definition

Let R be an integral domain. Then R is a principal ideal domain

(abbreviated PID) if every ideal of R is principal.

Example: Examples of integral domains which are not PIDs:

Z[X ] has an ideal 〈2,X 〉 which we saw is not principal;
Z[

p
10] has an ideal 〈2,

p
10〉 which is not principal.

Every field K is a PID.

Its only ideals are:

〈0K 〉;
K itself, which may be written as 〈1K 〉.
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Ideals UFDs and PIDs

Euclidean Domains

We have already seen that Z is a PID.

The proof that Z is a PID relies on Euclid’s algorithm.

Definition

An integral domain R is a Euclidean domain if there is a function

φ :R − {0R } →Z>0,

such that:

1. a | b⇒φ(a)≤φ(b);

2. If a ∈R , b ∈R − {0R }, then there exist q and r in R , such that

a= bq+ r

and either r = 0 or φ(r)<φ(b).

φ is called a Euclidean function on R .
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Ideals UFDs and PIDs

Examples

We know that Z is a Euclidean domain.

To see this, define φ(n)= |n|.
We also know that, for any field K , K [X ] is a Euclidean domain.

In this case, we define φ(f )= degf .

We also saw that there is also a Euclidean algorithm in Z[i ].

Here, we define φ(a+ ib)= a2+b2.
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Ideals UFDs and PIDs

Euclidean Domains are PIDs

Proposition

Every Euclidean domain is a principal ideal domain.

Let I be an ideal of the Euclidean domain R , and suppose I 6= {0}.

Consider the set of all values taken by the Euclidean function φ on the
nonzero elements of the ideal I ,

D = {φ(i) : i ∈ I , i 6= 0} ⊆Z>0.

Choose b ∈ I , such that φ(b) is the minimal value in D.

Now b ∈ I .
So I contains all multiples of b.

Hence, I ⊇ 〈b〉.
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Ideals UFDs and PIDs

Euclidean Domains are PIDs (Cont’d)

Conversely, take a ∈ I .
We can write

a= qb+ r ,

where either r = 0 or φ(r)<φ(b).

As a,b ∈ I , we conclude that r = a−qb ∈ I .
But b is an element of I with the least possible value of φ.

So it cannot be that φ(r)<φ(b).

Hence, r = 0.

Thus, every element of I is a multiple of b.

This shows that I ⊆ 〈b〉.
Not every PID is a Euclidean domain.

It is known that, for ρ = 1+
p
−19

2
, Z[ρ] is a PID, but not Euclidean.
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Ideals UFDs and PIDs

Highest Common Factors

Definition

Let R be a PID, and let a and b be in R .
The ideal 〈a,b〉 = aR +bR is principal.
So it can be written 〈d〉 = dR , for some element d ∈R .
Then d is a highest common factor of a and b.
Highest common factors are unique up to multiplication by a unit.

This agrees with the usual notion in Z.

The difference between PIDs and Euclidean domains is not in the
essential point that highest common factors exist, but rather that
there is a good way to compute them in Euclidean domains.

Euclidean domains have a Euclidean algorithm, which may be absent
in more general PIDs.
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Ideals UFDs and PIDs

PIDs are UFDs

Theorem

Every PID is a UFD.

Suppose first that there exists an element a without any factorization.

Call such elements “bad”, and other elements “good”.

Then a is not a unit, nor an irreducible.

So we must have a= a1b1, for some a1,b1.

At least one of a1 and b1 must be bad (otherwise the product of the
factorizations for a1 and b1 gives a factorization of a).

Suppose a1 is bad.

Then, in the same way, a1 = a2b2, with a2 bad.

Continuing in this way, we get a sequence of bad elements a1,a2, . . ..

Further, as ai is a multiple of ai+1, we see that 〈ai+1〉 ⊃ 〈ai〉.
Moreover, these are different as no bi+1 is a unit.
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Ideals UFDs and PIDs

PIDs are UFDs (Cont’d)

Define

I =
∞
⋃

i=1

〈ai 〉.

It is easy to check that this is an ideal.

Therefore, I = 〈c〉, for some c ∈R .

Thus c ∈ I .
So c lies in some 〈an〉.
Then

I = 〈c〉 ⊆ 〈an〉 ⊂ 〈an+1〉 ⊆ I .

This is a contradiction.

So no bad elements exist.

It follows that every element has some factorization.
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Ideals UFDs and PIDs

PIDs are UFDs (Claim)

Claim: Every irreducible element p ∈R satisfies p | ab⇒ p | a or p | b.

Let p be an irreducible element.

Suppose p | ab.

If p ∤ a, we show that p | b.

Consider the ideal 〈p,a〉 = pR +aR .

As R is a PID, 〈p,a〉 = 〈d〉.
Then d | p and d | a.
As p is irreducible, either d is a unit or d is an associate of p.

The latter is impossible, as p ∤ a.

Thus 〈p,a〉 is generated by a unit d .

So 〈p,a〉 =R .

Thus, we can find r ,s ∈R , such that pr +as = 1R .

Multiply by b to get p(br)+ (ab)s = b.

We see that b is a multiple of p, as p | ab.
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Ideals UFDs and PIDs

PIDs are UFDs (Uniqueness)

We finally show uniqueness of factorization.

Suppose we had an element n with two factorizations:

n= up1 · · ·pr = vq1 · · ·qs ,

where u and v are units, and the pi ,qj are irreducible.

Then p1 divides n and therefore the right-hand side.

By the Claim, p1 divides some qi , q1 say (permute the qi if not).

But both p1 and q1 are irreducible.

So we must have q1 = u1p1 where u1 is a unit.

Cancel p1 and q1 from the factorizations (R is an integral domain).

We can continue in this way until all prime factors on the left-hand
side are paired off with factors on the right-hand side, and only units
are left.
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Ideals UFDs and PIDs

Remarks

Note that the proof that every element has some factorization (i.e.,
there are no bad elements) would work given only the weaker
statement that every ideal (in particular, the ideal I ) has a finite
generating set, so that I = 〈d1, . . . ,dk〉.
This is the defining property of a Noetherian ring.

We will see in the next subsection that rings of integers of number
fields are always Noetherian.
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Ideals UFDs and PIDs

Remarks (Cont’d)

We will show later that for rings of integers in number fields, the
converse to this theorem is true.

Such a ring is a PID if and only if it is a UFD.

This is false in a general ring.

It is known that, if R is a UFD, then so is the polynomial ring R [X ].

This shows that Z[X ] is a UFD.

We have already seen that it is not a PID.

E.g., the ideal 〈2,X 〉 is not principal.
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Ideals The Noetherian Property

Subsection 8

The Noetherian Property
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Ideals The Noetherian Property

Noetherian Rings

The property of unique factorization in a number field is equivalent to
the ring of integers having the property that every ideal is principally
generated, i.e., has one generator.

Many number fields do not have unique factorization, and therefore do
not have this property.

However, there is a weaker property that they all satisfy:

Definition

A Noetherian ring is a ring R in which every ideal is finitely generated.

We saw that ZK has an integral basis, and that this is equivalent to
the property that ZK is a free abelian group of rank [K :Q].

We will show that this implies that ZK is Noetherian.
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Ideals The Noetherian Property

Subgroups of Free Abelian Groups of Finite Rank

Proposition

Suppose H is a subgroup of a free abelian group G of rank n.
Then H is also a free abelian group of rank at most n.

By induction on n.

For n= 1, G ∼=Z.

By the Euclidean algorithm, H = kZ, for some k .

If k = 0, then H has rank 0.

Otherwise, H has rank 1 and has finite index.

Suppose the result is true for free abelian groups of rank n−1.

Let G be a free abelian group of rank n.

We can write
G =Zω1+·· ·+Zωn.
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Ideals The Noetherian Property

Subgroups of Free Abelian Groups of Finite Rank (Cont’d)

Let π :G →Z map a1ω1+·· ·+anωn to a1.

Let
K = kerπ=Zω2+·· ·+Zωn,

a free abelian group of rank n−1.

Then π(H)⊆Z, and by the base, π(H)= {0} or π(H) is infinite cyclic.

Suppose π(H)= {0}.
Then H ⊂Zω2+·· ·+Zωn.
This is a subgroup of a free abelian group of rank n−1.
The result follows by the inductive hypothesis.
Suppose π(H) is infinite cyclic.
Choose h1 ∈H , such that π(h1) generates π(H).
It is easy to prove that H =Zh1⊕ (H ∩K ).
H∩K is contained in K , a free abelian group of rank n−1.
The inductive hypothesis shows that H∩K is a free abelian group, say
Zh2+·· ·+Zhr . From this, the claim follows.
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Ideals The Noetherian Property

Rings of Integers are Noetherian

Theorem

If K is a number field, then ZK is Noetherian.

An ideal is an (additive) subgroup of ZK .

So we can apply the proposition to conclude that every ideal is also a
free abelian group of finite rank.

Equivalently, it is finitely generated as a Z-module.

Thus, for some elements ω1, . . . ,ωr ∈ I ,

I =Zω1+·· ·+Zωr .

Since I is an ideal, Zωi ⊆ I .

Clearly, ZKωi ⊇Zωi .

So
ZKω1+·· ·+ZKωr ⊇Zω1+·· ·+Zωr .

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 76 / 82



Ideals The Noetherian Property

Rings of Integers are Noetherian (Cont’d)

On the other hand, {ω1, . . . ,ωr } is a generating set for I as a Z-module.

So
Zω1+·· ·+Zωr = I .

But each ZKωi ⊆ I .

So
ZKω1+·· ·+ZKωr ⊆ I .

Hence,
I ⊇ZKω1+·· ·+ZKωr ⊇Zω1+·· ·+Zωr = I .

So all the inclusions are equalities.

In particular, we see that I =ZKω1+·· ·+ZKωr .

So I is finitely generated as an ideal.
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Ideals The Noetherian Property

The Ascending Chain Condition

Definition

A ring R is said to satisfy the ascending chain condition (or ACC) if
for every chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ ·· ·

of ideals of R , there exists some positive integer n, such that

In = In+1 = In+2 = ·· · .
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Ideals The Noetherian Property

Characterization of Noetherian Rings

Proposition

A ring R is Noetherian if and only if it satisfies the ACC.

Assume that R is Noetherian.

Let I1 ⊆ I2 ⊆ ·· · be an ascending chain of ideals.

Let I =
⋃∞
i=1

Ii .

It is easy to check that I is an ideal.

As R is Noetherian, I has a finite generating set, {r1, . . . ,rn}.

Each element rj of the generating set must occur in some Inj .

Let n=max(nj) be the largest of these numbers.

Then each element of the generating set is already contained in In.

Thus, In = In+1 = ·· · .
So the chain becomes stationary.
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Ideals The Noetherian Property

Characterization of Noetherian Rings (Cont’d)

Conversely, suppose the ACC is satisfied.

We show that every ideal must be finitely generated.

If not, there is an ideal I which has no finite generating set.

Pick r1 ∈ I .
Then I 6= 〈r1〉, as otherwise {r1} would generate I .

So we may pick r2 ∈ I −〈r1〉.
Again, I 6= 〈r1,r2〉.
So we may pick r3 ∈ I −〈r1,r2〉.
In this way, we find:

An infinite sequence of elements r1,r2, . . .;
An infinite strictly ascending chain

〈r1〉 ⊆ 〈r1,r2〉 ⊆ 〈r1,r2,r3〉 ⊆ ·· · .

This contradicts the ACC.
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Ideals The Noetherian Property

Artinian Rings

There is also the notion of a descending chain condition.

It stipulates that every descending chain must eventually become
stationary.

Rings satisfying the DCC are said to be Artinian.

Example: Note that Z is Noetherian (as it is a PID).

But Z is not Artinian, as the descending chain

〈2〉 ⊃ 〈4〉 ⊃ 〈8〉 ⊃ · · ·

never becomes stationary.

Rings of integers in number fields are never Artinian.
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Ideals The Noetherian Property

Noetherian Rings and Maximal Ideals

The Ascending Chain Condition can be used to prove various results.

Lemma

Suppose that I is a proper ideal in a Noetherian ring R .
Then I is contained in a maximal ideal.

If I is maximal, there is nothing to prove.

Otherwise, it is strictly contained in a larger proper ideal I1.

If I1 is maximal, the result follows.

Otherwise, it is strictly contained in a larger ideal I2.

Repeat this process.

By hypothesis, there cannot be arbitrarily long chains I ⊂ I1 ⊂ I2 ⊂ ·· · .
So, at some point, one of the ideals must be maximal.

The result follows.
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