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Prime Ideals and Unique Factorization Some Ring Theory

Ring Homomorphisms

Definition

Let R and S be rings. Then φ :R → S is a ring homomorphism if it
preserves the additive and multiplicative structures and the multiplicative
identity:

1. For all a,b ∈R , we have φ(a+b)=φ(a)+φ(b);

2. For all a,b ∈R , we have φ(ab)=φ(a)φ(b);

3. φ(1R)= 1S .

If also φ is bijective, then φ is an isomorphism.
The kernel of φ is defined as the set

kerφ= {r ∈R :φ(r)= 0S }.

The image of φ is the set

imφ= {s ∈ S : s =φ(r), for some r ∈R}.
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Properties of Ring Homomorphisms

It is easy to check that if φ :R → S is a ring homomorphism, then:

1. φ(0R)= 0S ;
2. if a ∈R , then φ(−a)=−φ(a).

1. We have
φ(0R)=φ(0R +0R)=φ(0R )+φ(0R ).

Therefore, φ(0R )= 0S .

2. We have
φ(a)+φ(−a)=φ(a+ (−a))=φ(0R )= 0S .

So φ(−a)=−φ(a).
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Inverse Images of Ideals

Lemma

Let φ :R → S be a ring homomorphism. Let I be an ideal of S, and let

φ−1(I )= {a ∈R :φ(a) ∈ I }.

Then φ−1(I ) is an ideal of R .

We have to check that:

1. 0R ∈φ−1(I );
2. if a,b ∈φ−1(I ), then so is a−b;
3. if i ∈φ−1(I ) and a ∈R , then ai ∈φ−1(I ).

We know that φ(0R )= 0S ∈ I . So 0R ∈φ−1(I ).

We also have φ(a−b)=φ(a)−φ(b).

So, if φ(a),φ(b) ∈ I , so is φ(a−b).

Equivalently, if a,b ∈φ−1(I ), then a−b ∈φ−1(I ).
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Inverse Images of Ideals (Cont’d)

Finally, let i ∈φ−1(I ) and a ∈R .

We have φ(ai)=φ(a)φ(i).

Since φ(i) ∈ I , we get φ(ai)∈ I .
So ai ∈φ−1(I ).

Note that kerφ=φ−1(0S ).

So, if φ :R → S is a ring homomorphism, then

kerφ= {a ∈R :φ(a)= 0S }

is an ideal in R .

We can also check that imφ is a subring of S .
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Injectivity and Kernels of Ring Homomorphisms

Lemma

A ring homomorphism φ :R → S is injective if and only if its kernel just
consists of the zero element.

Suppose that kerφ= {0R }. Then

φ(r1)=φ(r2) ⇒ φ(r1− r2)= 0S

⇒ r1− r2 ∈ kerφ

⇒ r1− r2 = 0R

⇒ r1 = r2.

So φ is injective.

Conversely, if φ is injective, then its kernel is trivial.

If φ(r)= 0S , we have φ(r)=φ(0R ).

So r = 0R , as φ is injective.
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Cosets of Ideals in Rings

Ideals in rings are analogous to normal subgroups of groups.

Suppose that I is an ideal in a ring R , and that r ∈R .

Let
r + I = {r + i : i ∈ I }

be the coset of I .

Then
r ∈ I if and only if r + I = I .

The following is a consequence of this:

r + I = r ′+ I if and only if r − r ′ ∈ I .
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Quotient Ring by an Ideal

Proposition

Let I be an ideal in the ring R . If a ∈R , let

a+ I = {a+ i : i ∈ I }

be the coset of I . Then the collection of cosets,

R/I = {a+ I : a ∈R},

may be given the structure of a ring, called the quotient ring.

We define

(a+ I )+ (b+ I ) = (a+b)+ I , (a+ I )(b+ I )= (ab)+ I .

We show these are well-defined.
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Quotient Ring by an Ideal (Cont’d)

We must prove that choosing a different coset representative gives the
same coset as the answer.

Suppose a+ I = a′+ I .

Then a−a′ ∈ I .
Let i = a−a′.

Since i ∈ I , we have i + I = I .

Then

(a+I )+(b+I ) = (a+b)+I = (a′+i+b)+I = (a′+b)+I = (a′+I )+(b+I ).

Moreover,

(a+I )(b+I )= ab+I = (a′+i)b+I = a′b+ib+I ib ∈ I= a′b+I = (a′+I )(b+I ).
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Quotient Ring by an Ideal (Cont’d)

Now we check the ring axioms.

They are straightforward, as they are inherited from R .

For example, the additive identity is I = 0R + I , because

(a+ I )+ I = (a+ I )+ (0R + I )= (a+0R)+ I = a+ I .

In the same way, the multiplicative identity is 1R + I .

For commutativity of addition:

(a+ I )+ (b+ I )= (a+b)+ I = (b+a)+ I = (b+ I )+ (a+ I ).

The middle equality holds because of commutativity of addition in R

and the others from our definition of addition of cosets.

Checking the other axioms is similar.
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The Integers Modulo n

Fix the positive integer n≥ 2.

For each integer a, let a be the set of all integers congruent to a

(mod n),
a= {. . . ,a−2n,a−n,a,a+n,a+2n, . . .}.

Note that if a≡ b (mod n), then a= b.

Then the integers modulo n are given by {0,1, . . .n−1}, with addition
and multiplication defined using arithmetic modulo n (which is well
defined):

a+b = a+b, a ·b = ab.

To check any given ring axiom, write down the corresponding axiom
for Z, and reduce it modulo n.

Thus, all the axioms are inherited from those for Z.
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The Integers Modulo n (Cont’d)

Note that
a= a+nZ.

So the integers mod n are given by

{a+nZ : a ∈Z}.

Thus, they can be viewed as the quotient of the ring Z by the ideal
nZ of all integers divisible by n, i.e., as Z/nZ.

We use the notation Z/nZ to denote the integers modulo n.

We omit the bars on top of the numbers, so that we view Z/nZ as
the set {0, . . . ,n−1}, with addition and multiplication taken modulo n.
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Quotient Maps

Let I be an ideal in the ring R .

Then there is a naturally defined quotient map

R →R/I ; r 7→ r + I .

This map is always a homomorphism.

In the case R =Z, I = nZ, then this is exactly the map Z→Z/nZ
which takes m to m (mod n).
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Two Special Cases

1. If I =R , then R/I is the trivial ring, with just one element.

For this, take any element a+R ∈R/R .

Since a ∈R , we have a+R =R .

Thus, the only element of R/R is 0R +R =R .

2. If I = (0R ), then R/I is isomorphic to R .

Every element of R/I is of the form a+ (0R), for some a ∈R .

Since these are all distinct, a+ (0R)= b+ (0R ) implies that a= b.

So we get an isomorphism.
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Example: Z[X ]/〈X 2〉

Let R =Z[X ].

Let I = 〈X 2〉 consist of all multiples of X 2.

A typical element of R/I may be written

f (X )+〈X 2〉,

where f (X ) is a polynomial with integer coefficients.

Let f (X ) be the polynomial

a0+a1X +·· ·+ad−1X
d−1+adX

d
.

f may be written a0+a1X +g(X )X 2, for some polynomial g(X ).

But g(X )X 2 is in the ideal 〈X 2〉.
It follows that

f +〈X 2〉 = a0+a1X +〈X 2〉.

So elements of Z[X ]/〈X 2〉 are parameterized only by their constant
and linear terms.
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Example: Z[X ]/〈X 2〉 (Cont’d)

The coset corresponding to a+bX is the collection of all polynomials
whose constant term is a and whose linear term is b.

We can add two elements,

(a+bX +〈X 2〉)+ (c +dX +〈X 2〉)= (a+c)+ (b+d)X +〈X 2〉.

We can also multiply them,

(a+bX +〈X 2〉)(c +dX +〈X 2〉)= ac + (ad +bc)X +〈X 2〉.

This is done in the usual way, but ignoring all terms X 2 and above.
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Example: Z[X ]/〈X 2−2〉

Let R =Z[X ].

Let I = 〈X 2−2〉 be the ideal of all multiples of X 2−2.

Then each f ∈Z[X ] can be written as

q(X )(X 2−2)+ r(X ),

where:

q(X ) is the quotient after dividing f by X 2−2;
r(X ) is the remainder after dividing f by X 2−2.

The degree of r(X ) is at most 1.

So r(X )= b0+b1X , for some b0,b1 ∈Z.

Thus, f + I = r + I .

So every coset is parameterized by a linear polynomial as before.
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Example: Z[X ]/〈X 2−2〉 (Cont’d)

The addition rule is the same as before,

(a+bX +〈X 2−2〉)+ (c +dX +〈X 2−2〉)
= (a+c)+ (b+d)X +〈X 2−2〉.

The multiplication rule, however, looks rather different.

(a+bX +〈X 2−2〉)(c +dX +〈X 2−2〉)
= ac + (ad +bc)X +bdX 2+〈X 2−2〉
= ac + (ad +bc)X +bd(2+ (X 2−2))+〈X 2−2〉
= ac + (ad +bc)X +2bd +bd(X 2−2)+〈X 2−2〉
= (ac +2bd)+ (ad +bc)X +〈X 2−2〉.
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Example: Z[
p

2]

Suppose α= a+b
p

2 ∈Z[
p

2] and β= c +d
p

2 ∈Z[
p

2].

Then
α+β = (a+c)+ (b+d)

p
2;

αβ = (ac +2bd)+ (ad +bc)
p

2.

These closely resemble the addition and multiplication law for the
quotient ring Z[X ]/〈X 2−2〉.
Claim: The map

Z[X ]/〈X 2−2〉 → Z[
p

2];

a+bX +〈X 2−2〉 7→ a+b
p

2.

is an isomorphism of rings.

That it is a homomorphism is verified explicitly using the above
calculations.

One can also check that it is a bijection.
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First Isomorphism Theorem

Theorem (First Isomorphism Theorem)

Let φ :R → S be a ring homomorphism. Then there is an isomorphism

R/kerφ∼= imφ.

Define a map φ̃ :R/kerφ→ imφ by

φ̃(r +kerφ)=φ(r).

We need to check that φ̃ is well-defined.

Suppose that the coset r +kerφ may also be written as r ′+kerφ.

With one definition of φ̃ we get φ(r), and with the other we get φ(r ′).

We must check that these are the same.
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First Isomorphism Theorem (Well-Defined)

We have
r +kerφ= r ′+kerφ.

It follows that the element r − r ′ ∈ kerφ.

In other words, there exists k ∈ kerφ, such that r = r ′+k .

But now

φ(r)=φ(r ′+k)=φ(r ′)+φ(k)=φ(r ′)+0S =φ(r ′).

Now we know that the map φ̃ exists and makes sense.

Applying φ̃ to any coset gives an element which is in the image of φ.

So φ̃ is valued in imφ.
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First Isomorphism Theorem (Homomorphism)

Now we check that φ̃ is a homomorphism.

This follows easily from our definition of addition and multiplication of
cosets.

E.g., for addition, we have

φ̃((a+kerφ)+ (b+kerφ)) = φ̃((a+b)+kerφ)

= φ(a+b)

= φ(a)+φ(b)

= φ̃(a+kerφ)+ φ̃(b+kerφ).
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First Isomorphism Theorem (Injectivity)

Next, we check that φ̃ is injective.

Suppose we have an element r +kerφ in the kernel.

Then
φ(r)= φ̃(r +kerφ)= 0S .

So certainly r ∈ kerφ.

So r +kerφ= kerφ, the zero element of the quotient ring R/kerφ.

Thus, the kernel just consists of the zero element of the quotient ring.

So φ̃ is injective.

It is clear that the image of φ̃ is exactly the same as the image of φ.

So φ̃ is surjective onto imφ.

This shows that φ̃ is an isomorphism.
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First Isomorphism Theorem for Modules

Let M ,N be modules over a ring R .

A map φ :M →N is a module homomorphism if, for all m,m′ ∈M
and all r ∈R ,

φ(m+m′)=φ(m)+φ(m′);
φ(rm)= rφ(m).

First Isomorphism Theorem for Modules

If φ :M →N is a homomorphism of modules over a ring R , then the
collection M/kerφ of cosets m+kerφ is isomorphic to imφ.

The idea of the proof is similar to that of the preceding theorem.
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Quotients of Polynomial Rings and Finite Field Extensions

Lemma

Let K be a field. Suppose that γ is algebraic over K , i.e., it satisfies a
polynomial equation with coefficients in K . Suppose that f ∈K [X ] is the
minimal polynomial of γ. Then there is an isomorphism

K [X ]/〈f 〉 ∼=K (γ)

got by mapping X to γ.

Consider the mapping

φγ : K [X ] → K (γ);
g(X ) 7→ g(γ).

It is a homomorphism. For all g ,h ∈K [X ] and k ∈K :
φγ(g +h)= (g +h)(γ)= g(γ)+h(γ)=φγ(g)+φγ(h);
kφγ(g)= kg(γ)= (kg)(γ)=φγ(kg).
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Proof of the Lemma (Cont’d)

The kernel of φγ consists of all polynomials which have γ as a root.

This is precisely the set of all multiples of f , namely 〈f 〉.
Moreover, φγ is surjective.

Every element of K (γ) is just a polynomial

adγ
d +·· ·+a0, ai ∈K .

This is the image under φγ of the polynomial

adX
d +·· ·+a0 ∈K [X ].

By the First Isomorphism Theorem, φγ gives an isomorphism

φ̃γ :K [X ]/〈f 〉 ∼=K (γ).
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Example

Take K =Q and γ=
p

2.

Then γ has minimal polynomial X 2−2.

By the lemma, there is an isomorphism

Q[X ]/〈X 2−2〉 ∼=Q(
p

2),

given by sending X to
p

2.

That is, it is defined by

a+bX +〈X 2−2〉 7→ a+b
p

2,

just as we saw before for Z.
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Subsection 2

Maximal Ideals
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Maximal Ideals

The first definition of a prime number is that it is a natural number p
with no divisor other than 1 and itself.
It is easy to reformulate this in terms of ideals in Z.

If a natural number a exists with a | p, then 〈p〉 ⊂ 〈a〉.
If a 6= p, then the inclusion 〈p〉 ⊂ 〈a〉 must be strict.
If a 6= 1, then 〈a〉 ⊂Z is also a strict inclusion.

So we have two strict inclusions 〈p〉 ⊂ 〈a〉 ⊂Z.

But if p is prime, there is no natural number a such that we have
strict inclusions 〈p〉 ⊂ 〈a〉 ⊂Z.

I.e., there is no proper ideal which is strictly bigger than 〈p〉.

Definition

Let R be an integral domain. An ideal I of R is said to be maximal if:

1. I 6=R ;

2. There is no ideal J 6=R which strictly contains I .
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Maximal Ideals and Irreducible Generators

We verify that maximal principal ideals are generated by irreducible
elements.

Lemma

Let R be an integral domain, and let p ∈R . If 〈p〉 is maximal, then p is
irreducible.

Suppose p is not irreducible.

Then either p is a unit or p = ab for two non-unit elements a and b.

Suppose p is a unit.
Then we would have 〈p〉 =R .
So 〈p〉 is not maximal.
Suppose p = ab for two non-unit elements a and b.
Then p is a multiple of a. So 〈p〉 ⊆ 〈a〉.
But a is not a multiple of p, since b is not a unit. So a 6∈ 〈p〉.
Hence, 〈a〉 strictly contains 〈p〉.
Thus, 〈p〉 is not maximal.
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The Converse in PIDs

If R is a principal ideal domain, the converse of the lemma is also true.

In particular, maximal ideals exactly correspond to irreducible elements
in PIDs (two associate irreducible elements will give the same maximal
ideal).

This suggests that the notion of a maximal ideal might be a suitable
generalization to ideals of the notion of an irreducible element.
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Maximal Ideals and Fields

Lemma

I is a maximal ideal of R if and only if R/I is a field.

First suppose that I is a maximal ideal of R .

Let a ∈R , but a 6∈ I .
Then the set 〈a, I 〉 = aR + I is an ideal of R .

Moreover, it is strictly larger than I as it contains a.

Thus, we must have aR + I =R .

In particular, 1R ∈ aR + I .

So, there exists b ∈R , such that 1R ∈ ab+ I .

It follows that 1R + I = ab+ I = (a+ I )(b+ I ).

So b+ I is a multiplicative inverse for a+ I in R/I .

Thus, every non-zero coset is invertible.

Hence, R/I is a field.
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Maximal Ideals and Fields (Cont’d)

Conversely, suppose R/I is a field.

Then every non-zero coset is invertible.

Suppose that J is an ideal of R strictly containing I .

Let a ∈ J − I .

Then, there exists b ∈R , such that

(a+ I )(b+ I )= ab+ I = 1R + I .

As J ⊃ I and ab ∈ J, we must have 1R ∈ J.

But any ideal containing a unit must be the whole ring.

Therefore, J =R .
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Example: Maximal Ideals in Z

Claim: The maximal ideals of Z are precisely 〈p〉 = pZ, where p is
prime.

The ideals of Z are 〈0〉 and 〈n〉 = nZ, where n is a positive integer.

〈0〉 is not maximal because it is contained in any proper ideal, 〈2〉, for
example. (Alternatively, Z/〈0〉 ∼=Z, which is not a field.)
If n is not prime, it has a divisor d greater than 1.
Then nZ is not maximal as it is contained in dZ.
(Alternatively, d is not invertible in Z/nZ.)
However, if n= p is prime, then we know that Z/pZ is a field.
Indeed, any non-zero element a ∈Z/pZ has an inverse.
Find b and s, by the Euclidean algorithm, such that ab+ps = 1.
Then ab ≡ 1 (mod p).

Thus, maximal ideals in Z match up nicely with the prime numbers.
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Subsection 3

Prime Ideals
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Prime Ideals

The other possible way to generalize the idea of a prime number to
ideals is to recall the property that p is prime if

p | ab implies p | a or p | b.

The property says that, if ab is a multiple of p, then either a is a
multiple of p or b is a multiple of p, i.e.,

ab ∈ 〈p〉 implies a ∈ 〈p〉 or b ∈ 〈p〉.

Definition

Let R be an integral domain. An ideal I of R is said to be prime if:

1. I 6=R ;

2. If xy ∈ I , then x ∈ I or y ∈ I .
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An Equivalent Formulation of Primeness

Reformulating further: 〈a〉〈b〉⊆ 〈p〉 implies 〈a〉 ⊆ 〈p〉 or 〈b〉 ⊆ 〈p〉.

Lemma

I is a prime ideal of R if and only if whenever J1 and J2 are ideals of R ,

J1J2 ⊆ I implies J1 ⊆ I or J2 ⊆ I .

Suppose J1 * I , J2 * I , but J1J2 ⊆ I .

Then, there exist a1 ∈ J1− I and a2 ∈ J2− I .

But J1J2 ⊆ I . So a1a2 ∈ I .
As I is prime, either a1 or a2 must lie in I .

This contradicts our choices of those elements.
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An Equivalent Formulation of Primeness (Cont’d)

Conversely, suppose I is not prime.

There exist elements a1 and a2 not in I , but with a1a2 ∈ I .
Let J1 = 〈a1〉, J2 = 〈a2〉.
Then neither J1 nor J2 is contained in I .

On the other hand, J1J2 = 〈a1a2〉 ⊆ I .

We will use this formulation when we think about factorization of
ideals in rings of integers of number fields into prime ideals.
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Prime Ideals and Prime Elements

Lemma

Let R be an integral domain, and let p ∈R . Then 〈p〉 is a prime ideal in R

if and only if p is a prime element.

Suppose that 〈p〉 is a prime ideal.

We show that p is a prime element.

Suppose that p | ab in R .

Then ab ∈ 〈p〉.
So either a ∈ 〈p〉 or b ∈ 〈p〉.
But this means that p | a or p | b, respectively.

So p is a prime element.
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Prime Ideals and Prime Elements (Cont’d)

Conversely, suppose that p is a prime element.

We show that 〈p〉 is a prime ideal.

Take a and b with ab ∈ 〈p〉.
Then ab = cp, for some c ∈R .

So p | ab.

By definition, p | a or p | b.

This means that a ∈ 〈p〉 or b ∈ 〈p〉.
Hence, 〈p〉 is a prime ideal.

In particular, let R be a ring of integers of some number field, where
every ideal is principal.

Then the prime ideals would correspond exactly to prime elements.

Of course, two associate prime elements give the same prime ideal.
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Prime Ideals and Integral Domains

Lemma

Let R be a ring and I an ideal of R . Then I is a prime ideal if and only if
R/I is an integral domain.

Suppose that I is a prime ideal of R .

We have to check that R/I has no zero divisors.

Suppose that (a+ I )(b+ I )= 0R + I = I .

But (a+ I )(b+ I )= ab+ I , and ab+ I = I implies that ab ∈ I .
As I is prime, either a ∈ I or b ∈ I .
If a ∈ I , a+ I = I .

If b ∈ I , b+ I = I .

So one of a+ I and b+ I is the zero element 0R + I .

It follows that there are no zero divisors in R/I .
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Prime Ideals and Integral Domains (Cont’d)

Conversely, suppose R/I has no zero divisors.

Let a and b be elements of R , such that a 6∈ I , and ab ∈ I .
Then a+ I is a non-zero coset such that (a+ I )(b+ I )= 0R + I .

But, there are no zero-divisors.

So we must have b+ I = 0R + I .

So b ∈ I .
Thus, I is prime.
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Maximal Ideals and Prime Ideals

Corollary

Maximal ideals are prime.

If I is a maximal ideal, then R/I is a field.

Every field is an integral domain.

So R/I is an integral domain.

Therefore, I is prime.
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Prime Ideals and Maximal Ideals

The converse is not quite true.

The prime ideals of Z are precisely 〈p〉 = pZ, where p is prime, and
also 〈0〉.

〈0〉 is prime, because Z/〈0〉 ∼=Z, which is an integral domain.
The other ideals are all of the form nZ for some positive integer n.

If n is not prime, then Z/nZ has zero divisors.

So 〈n〉 is not prime.

If n= p is prime, then Z/pZ is a field.

So it is certainly an integral domain.

Therefore 〈0〉 is a prime ideal of Z which is not maximal.

All other prime ideals are also maximal.
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Inclusion Between Prime Ideals

The prime ideal 〈0〉 of Z is contained in all other prime ideals of Z.

It might seem odd to have one prime ideal contained inside another.

Of course, 〈0〉 is in some sense a rather exceptional prime ideal.

Perhaps surprisingly, one can find many examples of rings R in which
one prime ideal can contain another, non-trivial, prime ideal.

Example: Consider the ring R =K [X ,Y ].

In R , both P1 = 〈X ,Y 〉 and P2 = 〈X 〉 are prime, and P1 ⊇P2.

We will see that this sort of example does not occur for rings of
integers of number fields.

In such rings, every non-zero prime ideal is also maximal.
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Finite Integral Domains and Fields

Every maximal ideal is prime.

The converse is not true (e.g., Z).

However, finite integral domains are always fields.

Lemma

If R is a finite integral domain, then R is a field.

We just need to check that every non-zero r ∈R is invertible.

Consider the φ :R →R (not a homomorphism), given by φ(s)= rs.

It is injective. Suppose φ(s1)=φ(s2). Then rs1 = rs2.

So r(s1− s2)= 0. Since R is an integral domain, s1− s2 = 0.

But an injective map from a finite set to itself is also surjective.

So, there is some s, such that φ(s)= 1. So rs = 1.
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Number Fields and Prime Ideals in Rings of Integers

Lemma

Let K be a number field. If p is a non-zero prime ideal in ZK , then ZK/p
is finite.

Let p be a non-zero prime ideal in ZK .

Then there is a non-zero element α ∈ p.
Its norm N =NK/Q(α) lies in Z.

It is the product of α ∈ p with all its conjugates.

So N ∈ p.
Now ZK has an integral basis, by a previous result.

So we can write
ZK =Zω1+·· ·+Zωn.
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Number Fields and Prime Ideals in Rings of Integers

As N ∈ p, by the defining rule of ideals, Nωi ∈ p, for each i .

It follows that every element a1ω1+·· ·+anωn is congruent modulo p

to some element of the form

b1ω1+·· ·+bnωn, with 0≤ bi <N.

There are finitely many such elements.

So ZK/p is finite.

It is easy to see that this proof is valid for any non-zero ideal, not just
prime ideals.
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Nonzero Prime Ideals in Rings of Integers

Proposition

Let K be a number field. Then every non-zero prime ideal p in ZK is
maximal.

By the lemma, ZK/p is finite.

Thus, ZK/p is a finite integral domain.

Hence, by the previous lemma, it is also a field.

Then, by a previous result, p must be maximal.
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Subsection 4

Unique Factorization into Prime Ideals
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Fractional Ideals of ZK

Definition

A fractional ideal of ZK is a subset of K which is of the form 1
γc, where c

is an ideal of ZK and γ is a non-zero element of ZK .
We say that the fractional ideal is principal if c is principal.

Notice that fractional ideals are subsets of K , not just of ZK .

So (despite the name) they are not generally ideals of ZK .

Recall that the product of two ideals is again an ideal.

So the product of two fractional ideals is again a fractional ideal.
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Product of Prime Ideals Included in an Ideal

Lemma

Let a be a non-zero ideal of ZK . Then there exist prime ideals p1, . . . ,pr ,
such that p1 · · ·pr ⊆ a.

Suppose the statement fails.

Then we can choose a as large as possible subject to the condition
that the statement is false.

That is, we choose a so that any larger ideal does have prime ideals
p1, . . . ,pr as in the statement.

This is one point where we use the fact that ZK is Noetherian.

Equivalently, ZK satisfies the Ascending Chain Condition.

We consider the set of all ideals such that the statement fails.

We choose one, a1 say.

If a1 is as large as possible, we are done.

Else, there is a bigger ideal a2 contradicting the statement.
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Product of Prime Ideals Included in an Ideal (Cont’d)

We repeat this process.

The ACC guarantees that this process must eventually produce an
ideal which is as large as possible with this property.

Clearly a is not prime (otherwise take p1 = a).

So, there exist ideals a1 and a2 of ZK , with

a1a2 ⊆ a, a1 * a, a2 * a.

Write
b1 = a+a1, b2 = a+a2.

Then b1b2 ⊆ a.

On the other hand, b1 and b2 both strictly contain a.

By maximality of a, there exist prime ideals pi , such that

p1 · · ·ps ⊆ b1, ps+1 · · ·pt ⊆ b2.

Then p1 · · ·pt ⊆ b1b2 ⊆ a. This contradicts the choice of a.
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The Fractional Ideal a−1

Lemma

If a is an ideal of ZK , define

a−1 = {α ∈K :αa⊆ZK }.

Then a−1 is a fractional ideal.

Take any γ ∈ a, and put c= γa−1.

Claim: c is an ideal of ZK .

Clearly 0 ∈ c.
Suppose i , i ′ ∈ c.
So i = γβ and i ′ = γβ′, with β,β′ ∈ a−1.

We must show i + i ′ ∈ c. But i + i ′ =γ(β+β′). So we need β+β′ ∈ a−1.

This follows easily since

(β+β′)a=βa+β′a⊆ (ZK +ZK )=ZK .
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The Fractional Ideal a−1 (Cont’d)

Finally, suppose i = γβ ∈ c, where β ∈ a−1, and r ∈ZK .

We must show ri ∈ c.
It suffices to show that rβ ∈ a−1.

We have

(rβ)a= r(βa)⊆ rZK

r ∈ZK⊆ ZK .

We have shown that c=γa−1 is an ideal.

So a−1 = 1
γ
c is a fractional ideal.
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Property of a−1

Lemma

If a is a proper ideal of ZK , then a−1 strictly contains ZK .

Suppose a is a proper ideal of ZK .

Clearly a−1 contains ZK .

We need to check that the inclusion is strict.

It is easy to see that if a⊆ b, then b−1 ⊆ a−1.

Now a is contained in a maximal ideal p.

So it suffices to show that p−1 strictly contains ZK .

We have p−1 ⊇ZK .

So we must find a non-integer in p−1.
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Property of a−1 (Cont’d)

Choose any non-zero α ∈ p, so 〈α〉 ⊆ p.

Choose the smallest r such that there exist prime ideals p1, . . . ,pr with

p1 · · ·pr ⊆ 〈α〉 ⊆ p.

Such an r exists by a previous lemma.

As p is prime, some pi ⊆ p.

After re-ordering, we may suppose it to be p1.

But non-zero prime ideals are maximal.

Moreover, maximal ideals cannot be properly contained in one another.

So we have p1 = p.

As r is minimal, p2 · · ·pr * 〈α〉.
So there is some β ∈ p2 · · ·pr not in 〈α〉.
Then βp⊆ 〈α〉. So βα−1p⊆ZK and βα−1 ∈ p−1.

As βα−1 6∈ZK (β 6∈αZK ), the result follows.
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A Property of Non-Zero Ideals of ZK

Lemma

If a is a non-zero ideal of ZK , and θ ∈K satisfies aθ ⊆ a, then θ ∈ZK .

As ZK is Noetherian, a is finitely generated, a= 〈ω1, . . . ,ωm〉.
Then

ω1θ = a11ω1+·· ·+a1mωm
...

ωm = am1ω1+·· ·+ammωm

with aij ∈Z. Thus, θ is an eigenvalue of A= (aij ).

So it is a root of the characteristic polynomial of a matrix of integers.

It follows that θ is an algebraic integer.

As θ ∈K , it follows that θ ∈ZK .
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Fractional Ideal Inverses of Maximal Ideals

Lemma

If p is a maximal ideal of ZK , then pp−1 =ZK .

p−1 is a fractional ideal.

p is an ideal (therefore, also a fractional ideal).

So the product pp−1 is a fractional ideal.

However, by definition of p−1, pp−1 ⊆ZK .

So the product is an ideal of ZK .

Certainly pp−1 ⊇ p as p−1 ⊇ZK .

As p is maximal, either pp−1 = p or pp−1 =ZK .

But p contains a non-integer element θ.

Moreover, by the preceding lemma, pθ* p.

So pp−1 = p is not possible. The claim follows.
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Inverse Property of a−1

Lemma

If a is any non-zero ideal of ZK , then aa−1 =ZK .

Suppose that the assertion fails.

Let a be an ideal such that aa−1 6=ZK which is as large as possible.

Let p be a maximal ideal containing a.

Consider ap−1. We have ZK ⊆ p−1 ⊆ a−1.

Thus,
a⊆ ap−1 ⊆ aa−1 ⊆ZK .

So ap−1 ⊆ZK .

So ap−1 is genuinely an ideal (not just a fractional ideal) of ZK .

By a previous lemma, p−1 contains some non-integral θ.

So we cannot have ap−1 = a. This contradicts another of our lemmas.
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Inverse Property of a−1 (Cont’d)

So a is strictly contained in ap−1.

By our choice of a as being as large as possible subject to the
condition that the statement is false, we have

ap−1(ap−1)−1 =ZK .

Thus,
p−1(ap−1)−1 ⊆ a−1

.

So
ZK = ap−1(ap−1)−1 ⊆ aa−1 ⊆ZK .

The result follows.
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Abelian Group of Fractional Ideals

Theorem

The set of fractional ideals form an abelian group.

We already know how to multiply ideals (and thus fractional ideals).
This is clearly associative and commutative.
The whole ring ZK forms the identity.
We show we can define an inverse for any given fractional ideal.
The preceding lemma gives us the inverse for any ideal.
A fractional ideal is one of the form

b=
1

γ
c,

for some ideal of ZK and some non-zero γ ∈K .
We claim its inverse b−1 is γc−1.
Indeed, we have

bb−1 =
1

γ
c ·γc−1 =ZK .
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Non-Zero Ideals as Products of Prime Ideals

Lemma

Every non-zero ideal a is a product of prime ideals.

Suppose this is not the case.

Let a be maximal subject to not being a product of prime ideals.

Then a is contained in some maximal ideal p.

Now a is strictly contained in ap−1.

So, by maximality of a, we can write

ap−1 = p1 · · ·pr ,

a product of prime ideals.

Therefore, a= pp1 · · ·pr .
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Uniqueness of the Factorization

Theorem

Factorization of ideals into prime ideals is unique.

The preceding lemma gives a factorization into ideals.

We need to show that this decomposition is unique.

Let r be minimal such that there is an ideal a with two different
factorizations a= p1 · · ·pr = q1 · · ·qs into prime ideals.

Then p1 ⊇ q1 . . .qs .

As p1 is a prime ideal, p1 ⊇ qi , for some i .

But both p1 and qi are maximal ideals. So p1 = qi .

Multiply by p−1 to get two different factorizations of an ideal ap−1
1 .

In this, at least one expression is of shorter length than r .

This contradicts our choice of r .
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Subsection 5

Coprimality
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Coprimality for Ideals

In Z, two integers are coprime if their highest common factor is 1.

Unique factorization shows that this is equivalent to the statement
that no prime number divides both.

Two ideals a and b of ZK , are coprime if a+b=ZK , that is, if the
ideal generated by both a and b is the whole ring.

If we factor the two ideals into primes, the ideals will be coprime when
no prime ideal occurs in both factorizations.

Claim: These are equivalent.

Suppose a and b both have a prime ideal p in their factorization.

Then a+b⊆ p. So a and b do not generate the whole ring.

Conversely, suppose a+b is strictly contained in ZK .

Then a+b has a prime ideal p in its factorization.

Clearly then a⊆ p and b⊆ p.

Then a and b both have p in their factorizations.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 68 / 112



Prime Ideals and Unique Factorization Coprimality

Highest Common Factor and Chinese Remainder Theorem

The highest common factor of two ideals a and b is the ideal h,
such that:

1. h | a and h | b;
2. if c | a and c | b, then c | h.

Theorem (Chinese Remainder Theorem)

Suppose that K is a number field. Suppose that a1, . . . ,an are ideals in ZK ,
which are coprime in the sense that ai +aj =ZK , for all i 6= j . Then

ZK/(a1 ∩·· ·∩an)∼=ZK/a1⊕·· ·⊕ZK/an.

The result is clear for n = 1.

So we assume that n≥ 2.
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Chinese Remainder Theorem (Cont’d)

There is a homomorphism

θ : ZK → ZK/a1 ⊕·· ·⊕ZK/an;
α 7→ (α (mod a1), . . . ,α (mod an)).

The kernel consists of α ∈ZK mapping to (0, . . . ,0).

I.e., it consists of those α such that α ∈ ai , for each i .

This is the intersection a1∩·· ·∩an.

We must show that θ is surjective.

We can write 1=αi +βi , where αi ∈ ai , and βi ∈ aj , for all j 6= i .

In the case i = 1, a1+ai =ZK , for all i 6= 1.

So we can write 1= xi +yi for xi ∈ a1, yi ∈ ai .
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Chinese Remainder Theorem (Cont’d)

Then
y2y3 · · ·yn = (1−x2)(1−x3) · · ·(1−xn).

Write, for each i = 2, . . . ,n,

β1 = y2y3 · · ·yn ∈ ai .

Expand the right-hand side.

We get an expression 1−α1, where all the terms defining α1 are
divisible by some xi ∈ a1. So α1 ∈ a1.

Now, let
(x1, . . . ,xn) ∈ZK/a1⊕·· ·⊕ZK/an.

Then
θ(x1β1+·· ·+xnβn)= (x1, . . . ,xn).

Hence, θ is surjective.

We have not used any properties of number fields here.

So this result is valid for any commutative ring.
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Subsection 6

Norms of Ideals
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Norm of an Ideal

Definition

The norm NK/Q(a) of a non-zero ideal a in ZK is the cardinality |ZK/a|.
It is finite by a previous lemma.

We have two notions of norm, one for elements and one for ideals.

For principal ideals, generated by a single element, these two notions
are related.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 73 / 112



Prime Ideals and Unique Factorization Norms of Ideals

Norm of a Principal Ideal

Lemma

Let α ∈ZK be non-zero. Then

NK/Q(〈α〉)= |NK/Q(α)|.

Let ZK =Zω1+·· ·+Zωn.

Then 〈α〉 =Zαω1 +·· ·+Zαωn.

Then NK/Q(〈α〉)= |ZK/〈α〉|.
Write αωi =

∑n
j=1

ajiωj .

Then the index of 〈α〉 in ZK is just |det(aij)|.
But we know that NK/Q(α)= det(aij ).

So we see that NK/Q(〈α〉)= |NK/Q(α)|.
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The Norm of Prime Ideals

Lemma

Suppose that a is a non-zero ideal of ZK and that p is a non-zero prime
ideal of ZK . Then

|ZK/p| = |a/ap|.

Suppose, for some b, a⊇ b⊇ ap.

Then, multiplying through by a−1 gives ZK ⊇ a−1b⊇ p.

As p is a non-zero prime ideal, it is maximal.

So either a−1b=ZK or a−1b= p.

This shows that b= a or ap.
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The Norm of Prime Ideals (Cont’d)

Fix α ∈ a, but not in ap.

Consider the ideal generated by α and ap.

It is clearly contained in a, but is strictly bigger than ap.

So it must equal a.

Define the map
φ : ZK → a/ap;

x 7→ αx +ap.

φ is a homomorphism of ZK -modules.

It is surjective by the above remark.

The kernel clearly contains p, since if x ∈ p, then αx ∈ ap.
But 1 6∈ kerφ, as φ(1)=α+ap and α 6∈ ap.
As p is maximal, we see that kerφ= p.

By the First Isomorphism Theorem for modules, ZK/p∼= a/ap.
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The Norm is Multiplicative

Theorem

Suppose that a and b are two ideals of ZK . Then

NK/Q(ab)=NK/Q(a)NK/Q(b).

By factorizing b into prime ideals, it suffices to deal with the case that
b= p, a prime ideal, and to show that NK/Q(ap)=NK/Q(a)NK/Q(p).

Consider the homomorphism

φ : ZK/ap → ZK/a;
α+ap 7→ α+a.

It is clearly surjective.

Its kernel is the set
a/ap= {α+ap :α ∈ a}.
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The Norm is Multiplicative (Cont’d)

By applying the First Isomorphism Theorem we see that

∣∣∣∣
ZK/ap

a/ap

∣∣∣∣= |ZK/a|.

Thus,
|ZK/ap| = |ZK/a| · |a/ap|.

The previous lemma now gives

|ZK/ap| = |ZK/a| · |ZK /p|.

The definition of the ideal norm gives

NK/Q(ap)=NK/Q(a)NK/Q(p).
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Subsection 7

The Class Group
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Summary of Known Results

We now know several important results:

Elements in rings of integers of number fields do not generally factorize
uniquely into irreducible elements.
Every domain in which all ideals are principal (a principal ideal domain)
is one where we do have unique factorization of elements (a unique
factorization domain).
Ideals in rings of integers of number fields always factorize uniquely
into prime ideals.
As a consequence, if unique factorization fails, some ideals are not
principal.
This serves as a test for uniqueness or non-uniqueness of factorization.

We also know that the fractional ideals form a group.

Using this, we can construct a group which measures the success or
failure of uniqueness of factorization.
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Test for Unique Factorization

Suppose that K is a number field, with ring of integers ZK .

Form the collection of all ideals,

IK = {ideals in ZK }.

Every element α ∈ZK generates a principal ideal, 〈α〉 =αZK .

So we can form the collection

PK = {principal ideals in ZK } ⊆IK .

Unique factorization would follow from the equality PK =IK .

If this does not happen, it can be useful to:

Quantify the extent to which it fails;
Estimate what proportion of ideals are principal.
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The Class Group

We write

FK = {fractional ideals of ZK };
PFK = {principal fractional ideals of ZK }.

Then FK forms a group, as already noted.

PFK is also a group, since its elements are simply αZK , for α ∈K .

Since FK is abelian, every subgroup is normal.

The quotient group
CK =FK/PFK

is called the class group of K .

If CK is the trivial group, then FK =PFK .

Intersecting with the collection of genuine ideals of ZK gives IK =PK .

This implies unique factorization.
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The Class Number

We will prove that the class group

CK =FK/PFK

is always finite.

The class number hK is the number of elements in CK .

It measures the proportion of ideals which are principal.

When the class number is 1, this means that CK is trivial.

So every ideal is principal.

In this case, we have unique factorization.

When the class number is hK , the proportion of ideals which are
principal is 1

hK
.
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The Canonical Homomorphism Associated With CK

There is clearly a surjective group homomorphism

FK →CK =
FK

PFK
,

sending a fractional ideal f to its class [f] ∈CK .

We will usually just use this in the case where f is a genuine ideal.

Since this is a homomorphism, for all (fractional) ideals a and b,

[a][b]= [ab].
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A Property of CK

By Lagrange’s Theorem, the order of every element in a group divides
the order of the group.

Suppose a is a (fractional) ideal in ZK .

a belongs to a class [a] ∈CK .

Moreover, [ahK ]= [a]hK is trivial.

Thus, ahK is in the class consisting of all principal fractional ideals.

So ahK is principal for any a.
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Prime Ideals and Unique Factorization Splitting of Primes

Subsection 8

Splitting of Primes
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Prime Ideals and Unique Factorization Splitting of Primes

Cardinality of Finite Fields

Clam: Finite fields must have cardinality pf , for some prime number p
and some exponent f .

Suppose k is a finite field.

Consider the sequence

1,1+1,1+1+1, . . . .

Now k has only finitely many elements.

So eventually the sequence must repeat.

Subtracting the shorter expression from the longer gives a sum

1+·· ·+1= 0.

That is, for some number n, we must have n= 0 in the field.
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Prime Ideals and Unique Factorization Splitting of Primes

Cardinality of Finite Fields (Cont’d)

Let n is the smallest positive integer with this property.

It is easy to see that n must be prime.

Suppose n= rs and n= 0 in the field.

Fields have no non-trivial zero-divisors.

Then either r or s must be 0.

By the minimality of n, we cannot have 1< r < n or 1< s < n.

Thus, k contains a copy of Fp, the finite field of integers modulo p

(sometimes denoted Zp or Z/pZ).

k can be regarded as a field extension of Fp.

That is, k is a vector space over Fp.

But Fp has p elements.

So any vector space over it has pf elements, where f := [k :Fp].
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Prime Ideals and Unique Factorization Splitting of Primes

Prime Ideals and Prime Numbers

Suppose that K is a number field.

Let p be a non-zero prime ideal in ZK .

By a previous lemma, ZK/p is a finite field.

So ZK/p has cardinality pf , for some prime number p and some
exponent f .

The norm of p is pf .

We say that p lies above p, or that p lies below p.
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Prime Ideals and Unique Factorization Splitting of Primes

Prime Numbers and Prime Ideals

Conversely, we can find prime ideals in ZK by trying to factor primes
p ∈Z in ZK .

Example: Suppose K =Q(i).

We know that ZK =Z[i ].

We can factor the first few primes as follows:

2= (1+ i)(1− i), 3= 3, 5= (2+ i)(2− i), 7= 7, . . .

We notice that some primes can be factorized and some cannot.
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Prime Ideals and Unique Factorization Splitting of Primes

Working with Ideals in Z[i ]

Suppose p = (a+bi)(c +di).

The product has no imaginary part.

So we need c +di = a−bi .

Hence, p = a2+b2.

So the primes which are the sums of squares (which we know to be
p = 2 and p ≡ 1 (mod 4)) will factor.

The primes which are not sums of squares (the primes p ≡ 3 (mod 4))
will not factor.
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Prime Ideals and Unique Factorization Splitting of Primes

Working with Ideals in Z[i ] (Cont’d)

These representations are not unique.

We also have 5= (1+2i)(1−2i).

This is easily seen to be an equivalent to 5= (2+ i)(2− i).

The factors differ by units.

We know that we can avoid this by working with ideals instead.

Note that 〈1+ i〉 = 〈1− i〉 (as 1+ i = i(1− i)).
Set:

p2 = 〈1+ i〉, of norm 2;
p3 = 〈3〉, a prime ideal in Z[i ], of norm 9;
p5 = 〈2+ i〉 and p′

5
= 〈2− i〉, prime ideals, of norm 5.

The factorizations so far become

〈2〉 = p2
2, 〈3〉 = p3, 〈5〉 = p5p

′
5, 〈7〉 = p7.

These three primes demonstrate the three different sorts of
factorization possible in K =Q(i), or indeed in any quadratic field.
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Prime Ideals and Unique Factorization Splitting of Primes

Types of Factorization in Quadratic Fields

In a quadratic field, the following things can happen.

Definition

Let p a prime, and suppose that K is a quadratic field.

We say that p splits in K if pZK = pp′, for two ideals p 6= p′ of norm p.

We say that p is inert in K if pZK is a prime ideal in ZK , necessarily of
norm p2.

We say that p is ramified in K if pZK = p2, for a prime ideal p of norm p.
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Prime Ideals and Unique Factorization Splitting of Primes

Arbitrary Number Fields

There are similar definitions for any number field K .

However, for arbitrary number fields some combination of these may
occur.

It may be, e.g., that in some higher degree number field,

pZK = p2p′.

This shows aspects of:

Ramification (because of the exponent of p);
Splitting (as there is more than one distinct prime ideal appearing).

In case the norms of p or p′ were greater than p, there would also be
aspects of inert behavior.
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Ramification Indices and Inertia Degrees

If p is a prime number in Z, consider 〈p〉 = pZK .

This is an ideal in ZK .

It factorizes uniquely as a product pe1

1
· · ·perr of prime ideals in ZK .

In the expression
pZK = pe1

1
· · ·perr ,

the exponents ei are called the ramification indices.

As pi is prime in ZK , the quotient ZK/pi is a finite field, for each i .

ZK/pi is a field extension of Z/pZ=Fp.

So both fields have the same characteristic.

We define fi = [ZK/pi :Fp] to be the inertia degree.

Note that
NK/Q(pi )= |ZK/pi | = pfi .
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Prime Ideals and Unique Factorization Splitting of Primes

The Case of Quadratic Fields

We revisit the case of quadratic fields.

A prime p splits if 〈p〉 = pp′.

Both p and p′ have ramification index and inertia degree equal to 1.

A prime p is inert if 〈p〉 is a prime ideal.

It has ramification index 1 and inertia degree 2.

A prime p is ramified if 〈p〉 = p2.

p has ramification index 2 and inertia degree 1.
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Prime Ideals and Unique Factorization Splitting of Primes

The Degree of a Number Field

Theorem

Let K be a number field of degree n. Suppose that pZK = pe1

1
· · ·perr , and

that fi = [ZK/pi :Fp]. Then

n=
r∑

i=1

ei fi .

By the Chinese Remainder Theorem, we have

ZK/pZK
∼=

r⊕

i=1

ZK/p
ei
i

.

All these are vector spaces over Fp.
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Prime Ideals and Unique Factorization Splitting of Primes

The Degree of a Number Field (Cont’d)

Claim: We have

dimFp
ZK/pZK = n and dimFp

ZK/p
ei
i
= ei fi .

Indeed, since p ∈Z,

|ZK/pZK | = p[K :Q] = pn.

This gives the first claim.

Furthermore, using a previous theorem,

|ZK/p
ei
i
| =NK/Q(p

ei
i
)=NK/Q(pi )

ei = (pfi )ei .

This gives the second claim.
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Prime Ideals and Unique Factorization Splitting of Primes

Factorization of pZK

Proposition

Suppose that K is a number field, and that ZK =Z[γ]. Write g(X ) ∈Z[X ]
for its minimal polynomial.
Let p be a prime in Z, and let

g(X )= g1(X )e1 · · ·g r (X )er

be the factorization of the minimal polynomial g modulo p of γ into
irreducibles. Then

pZK = pe1

1
· · ·perr ,

for certain distinct ideals pi of ZK . The inertia degree of pi is simply given
by the degree of g i(X ).

Let gi(X ) denote any polynomial whose reduction modulo p is g i (X ).

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 99 / 112



Prime Ideals and Unique Factorization Splitting of Primes

Factorization of pZK (Cont’d)

Define the ideal
pi = 〈p,gi(γ)〉.

Then ZK/pi =Z[γ]/〈p,gi (γ)〉.
Consider the map Z[X ]→Z[γ] induced by X 7→ γ.

It has kernel 〈g(X )〉. It induces Z[X ]/〈g(X )〉 ∼=Z[γ].

Thus,
Z[γ]/〈p,gi (γ)〉 ∼=Z[X ]/〈g(X ),p,gi (X )〉.

Consider the homomorphism Z[X ]→Fp [X ] got by reducing mod p.

It gives an iso

Z[X ]/〈g(X ),p,gi (X )〉 ∼=Fp[X ]/〈g(X ),g i (X )〉.

But g i (X ) divides g(X ).

So the quotient Fp[X ]/〈g(X ),g i (X )〉 is just Fp[X ]/〈g i (X )〉.
Combining all these isos, we get ZK/pi ∼=Fp[X ]/〈g i (X )〉.
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Prime Ideals and Unique Factorization Splitting of Primes

Factorization of pZK (Cont’d)

We got ZK/pi ∼=Fp [X ]/〈g i (X )〉.
As g i(X ) is irreducible, the right-hand side is a field.

So pi is a prime ideal.

Similarly, there are isomorphisms

ZK/pZK
∼=Z[γ]/pZ[γ]∼=Z[X ]/〈p,g(X )〉 ∼=Fp[X ]/〈g(X )〉.

The Chinese Remainder Theorem implies that

Fp[X ]/〈g(X )〉 ∼=Fp[X ]/〈g1(X )e1〉× · · ·×Fp [X ]/〈g r (X )er 〉.

The map ZK →ZK/pZK has kernel pZK .

Using the above isomorphism, we can view this as

ZK →Fp [X ]/〈g1(X )e1〉× · · ·×Fp[X ]/〈g r (X )er 〉.
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Prime Ideals and Unique Factorization Splitting of Primes

Factorization of pZK (Cont’d)

The map

ZK →Fp[X ]/〈g1(X )e1〉× · · ·×Fp[X ]/〈g r (X )er 〉

has kernel pZK .

Unraveling the components above, the map is given by

γ 7→ (X , . . . ,X ).

So the kernel is
〈p,g1(γ)

e1〉∩ · · ·∩〈p,gr (γ)
er 〉.

Note that the generators of pei
i
= 〈p,gi(γ)〉ei are all divisible by p

except for gi (γ)
ei itself. Therefore, pei

i
⊆ 〈p,gi(γ)

ei 〉.
Combining, we get

pZK = 〈p,g1(γ)
e1〉∩ · · ·∩〈p,gr (γ)

er 〉 ⊇ pe1

1
· · ·perr .
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Prime Ideals and Unique Factorization Splitting of Primes

Factorization of pZK (Cont’d)

We got

pZK = 〈p,g1(γ)
e1〉∩ · · ·∩〈p,gr (γ)

er 〉 ⊇ p
e1

1
· · ·perr .

The norm of the left-hand side is pn.

The norm of the right-hand side is (pf1)e1 · · ·(pfr )er .
These two are the same, by the preceding theorem.

It follows that the inclusion is an equality.

So pZK = pe1

1
· · ·perr .

The proof shows that we can take

pi = 〈p,gi(γ)〉 = pZK +gi (γ)ZK .
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Prime Ideals and Unique Factorization Splitting of Primes

(Un)ramified Prime Ideals and Primes

Let pi be a prime ideal of ZK above a prime p.

Consider the decomposition

pZK = p
e1

1
· · ·perr .

pi is unramified if its exponent in the decomposition is ei = 1.

If ei > 1, we say that pi is ramified.

We say that the prime p is unramified if

e1 = ·· · = er = 1.

Otherwise, p is ramified.
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Prime Ideals and Unique Factorization Splitting of Primes

Ramified Primes

Proposition

If K is a number field, then there are only finitely many primes p which are
ramified in K . Indeed, p is ramified in K if and only if p divides DK .

By a previous proposition,

pZK = 〈p, f1(γ)〉e1 ×·· ·×〈p, fr (γ)〉er .

By definition, p ramifies in K if and only if some ei > 1.

Thus, the polynomial f (X ) does not have distinct roots modulo p.

But these primes are the ones that divide the discriminant of f (X ).

Under the assumption that ZK =Z[γ], the discriminant of f (X ) is
equal to DK , by a previous example.
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Prime Ideals and Unique Factorization Splitting of Primes

Remark

We have seen that it is not always possible to find elements γ such
that ZK =Z[γ], although they exist when K is a quadratic field.

We shall see further examples (“cyclotomic fields”) later where such
elements exist.

More generally, we can pick any element γ ∈ZK , such that K =Q(γ).

It may be shown that the factorization proposition holds more
generally in this setting for the primes p not dividing |ZK/Z[γ]|.
The last proposition remains valid:

p ramifies in the number field K if and only if p divides the
discriminant of K .
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Example

We have given a rather complicated proof that K =Q(
p
−2,

p
−5)

does not have an integral basis of the form {1,γ,γ2,γ3} (i.e., that K is
not monogenic).

The proof was a less clear version of the following proof.

Suppose that ZK =Z[γ].

By the Factorization Proposition, the factorization of 〈3〉 = 3ZK

corresponds to the factorization of the minimal polynomial f of γ
modulo 3.

Recall that, for K =Q(
p
−2,

p
−5), 〈3〉 factors as the product of 4

distinct prime ideals in ZK .

The proposition implies that f must factor into 4 distinct linear factors
modulo 3.

But there are only 3 irreducible linear polynomials modulo 3, which
gives a contradiction.
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Prime Ideals and Unique Factorization Primes in Quadratic Fields

Subsection 9

Primes in Quadratic Fields
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Prime Ideals and Unique Factorization Primes in Quadratic Fields

Quadratic Fields

Consider the case of a quadratic field K =Q(
p
d), where d is a

squarefree integer.

Quadratic fields are monogenic.

So they have the property that ZK =Z[γ], for some γ ∈ZK .

So all the results of the previous section are valid.

By the preceding proposition, the primes p which ramify in K are
those which divide the discriminant DK .

Recall that

DK =
{

d , if d ≡ 1 (mod 4),

4d , otherwise.

We can see how pZK factorizes into prime ideals using a previous
proposition, at least for p odd.

As already noted, p ramifies in K when p |DK .
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Primes in Quadratic Fields

For d ≡ 2,3 (mod 4), we know

ZK =Z[
p
d ].

Moreover, the minimal polynomial of d is just X 2−d .

This quadratic has discriminant 4d .

Then a prime p factorizes in ZK in the same way that X 2−d
factorizes modulo p.

p is split in Z[
p
d ] iff X 2−d factors into two linear factors mod p.

That is, iff X 2−d has two (distinct) roots modulo p.

I.e., if
(
d
p

)
= 1.

p is inert in Z[
p
d ] if and only if X 2−d has no root mod p.

I.e., if
(
d
p

)
=−1.
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Primes in Quadratic Fields (Cont’d)

For d ≡ 1 (mod 4),

ZK =Z

[
1+

p
d

2

]
.

The minimal polynomial of 1+
p
d

2
is X 2−X + (1−d

4
).

This polynomial has discriminant d .

The results are identical with the previous case.

A prime p not dividing DK is:

Split if and only if
(
d
p

)
= 1;

Inert if and only if
(
d
p

)
=−1.
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Quadratic Reciprocity and Reduction mod DK

Using Quadratic Reciprocity, it is not hard to see that these conditions
are characterized by congruence conditions modulo DK .

Example: In the case K =Q(i), with d =−1, we have DK =−4.

A prime p is split if and only if
(
−1
p

)
= 1.

It is well-known that this is equivalent to p ≡ 1 (mod 4).

A prime p is inert if and only if
(
−1
p

)
=−1.

This is equivalent to p ≡ 3 (mod 4).

Example: Let K =Q(
p
−3), with DK =−3.

A prime p is split if and only if
(
−3
p

)
= 1.

This is equivalent to p ≡ 1 (mod 3).

It is inert if and only if
(
−3
p

)
=−1.

This is equivalent to p ≡ 2 (mod 3).

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 112 / 112


	Outline
	Prime Ideals and Unique Factorization
	Some Ring Theory
	Maximal Ideals
	Prime Ideals
	Unique Factorization into Prime Ideals
	Coprimality
	Norms of Ideals
	The Class Group
	Splitting of Primes
	Primes in Quadratic Fields


