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Imaginary Quadratic Fields

The Objects of Study

Throughout this set, we will be considering a field

K =Q(
p
d),

where d is a negative, squarefree integer.

That is, d is not divisible by the square of any prime.

Every imaginary quadratic field can be written in this way for a unique
choice of d .

By a previous proposition, the ring of integers is:

Z[1+
p
d

2 ], if d ≡ 1 (mod 4);

Z[
p
d ], otherwise.

As d is squarefree, d is not divisible by the square of any prime.

So the case d ≡ 0 (mod 4) is not permitted.

That is, the second case arises when d ≡ 2 (mod 4) or d ≡ 3 (mod 4).
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Imaginary Quadratic Fields

The Goals

Our goal in this set is to:

Determine the fields with unique factorization;
Understand the failure of unique factorization in the other cases.

We will see that there are very few imaginary quadratic fields with
unique factorization.
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Imaginary Quadratic Fields Units

Subsection 1

Units
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Imaginary Quadratic Fields Units

Imaginary versus Real Quadratic Fields

One difference between the case of imaginary quadratic fields and that
of real quadratic fields concerns the group of units.

We will see that real quadratic fields have infinitely many units.
Imaginary quadratic fields will have only finitely many units.
They are all roots of unity, and they are easy to determine.

We shall see later that imaginary quadratic fields are the only fields
other than Q for which the ring of integers has a finite group of units.

By a previous lemma, α ∈ZK is a unit precisely when N(α)= 1.

Since there are two possibilities for ZK , depending on d (mod 4), we
will divide the calculation into two cases.
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Imaginary Quadratic Fields Units

d ≡ 2,3 (mod 4)

In this case, we have
ZK =Z[

p
d ].

Then a typical element is

α= a+b
p
d ,

where a and b are in Z.

The norm of α is

NK/Q(α)= (a+b
p
d)(a−b

p
d)= a2−db2

.

We need to solve the equation

NK/Q(α)= 1.
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Imaginary Quadratic Fields Units

d ≡ 2,3 (mod 4) (Cont’d)

Notice that:

a2 is a non-negative integer;
−db2 is also a non-negative integer (as d < 0).

Since they add to 1, one of them is 0, and the other is 1.

Suppose a2 = 1 and −db2 = 0.
Then a=±1 and b = 0 (as d 6= 0).
So ±1 is always a unit (obviously invertible in ZK ).
The other case is where a2 = 0 and −db2 = 1.
If d <−1, then there is clearly no solution to −db2 = 1.
However, if d =−1, then b=±1 is also possible.
So in the field Q(

p
−1), we also have units 0±

p
−1.

In other words, ±i are units.
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Imaginary Quadratic Fields Units

d ≡ 1 (mod 4)

The ring of integers is now

Z

[

1+
p
d

2

]

.

A typical element is therefore

α= a+b

(

1+
p
d

2

)

=
2a+b+b

p
d

2
.

Again, we must compute the norm of α.

N(α)=αα=
(2a+b+b

p
d)(2a+b−b

p
d)

4
=
(2a+b)2−db2

4
.

Thus the equality N(α)= 1 is equivalent to finding integral solutions to

(2a+b)2−db2 = 4.
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Imaginary Quadratic Fields Units

d ≡ 1 (mod 4) (d <−3)

We seek the integral solutions to (2a+b)2 −db2 = 4.

Consider the case where d <−3.

Then d ≤−7 (since d ≡ 1 (mod 4)).

If b 6= 0, then −db2 ≥ 7.

As (2a+b)2 ≥ 0, there are no solutions.

So b = 0.

In this case, our equation becomes (2a+0)2 = 4.

So a=±1.

So ±1 are the only units in this case.
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Imaginary Quadratic Fields Units

d ≡ 1 (mod 4) (d =−3)

Consider the case d =−3.

Suppose |b| ≥ 2. Then −db2 ≥ 12.

So (2a+b)2−db2 = 4 has no solutions.

The only possible solutions occur when b =−1,0 or 1.

Suppose b =−1. Then we must solve (2a−1)2+3= 4.
This gives 2a−1=±1. So a= 0 or 1.
Suppose b = 0. Then we must solve (2a)2 = 4.
This gives a=±1.
Suppose b = 1. Then we must solve (2a+1)2+3= 4.
This gives 2a+1=±1. So a=−1 or 0.

So (a,b)= (0,−1), (1,−1), (−1,0), (1,0), (−1,1), (0,1).
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Imaginary Quadratic Fields Units

d ≡ 1 (mod 4) (d =−3 Cont’d)

We got (a,b)= (0,−1), (1,−1), (−1,0), (1,0), (−1,1), (0,1).

The corresponding units α= a+b 1+
p
−3

2
are given by

−1−
p
−3

2
.
1−

p
−3

2
,−1,1,

−1+
p
−3

2
,
1+

p
−3

2
.

The numbers ±1±
p
−3

2
and ±1 are the sixth roots of unity.

Denote

ω=
−1+

p
−3

2
= e2πi/3

.

The ring of integers of Q(
p
−3) is given by Z[

p
−3].

We have ω2 = e4πi/3 = −1−
p
−3

2
.

So the units are given by {±1,±ω,±ω2}.
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Imaginary Quadratic Fields Units

Summary

We have shown that the only units in the imaginary quadratic field
Q(

p
d) are the elements of {±1}, except in two cases.

The first is when d =−1.
The units in the Gaussian integers Z[i ] are {±1,±i }.
The other exceptional case is when d =−3.
The units in the ring of integers Z[ω] of Q(

p
−3) are {±1,±ω,±ω2}.

Notice that these units are all roots of unity, fourth roots, in the case
of Q(i), and sixth roots in the case of Q(

p
−3).

So the units in every imaginary quadratic field are the roots of unity.

Conversely, it is easy to see that every root of unity is a unit.

Suppose λ is a root of unity in ZK .

Then λn = 1 for some n. Then λ ·λn−1 = 1.

So λ is invertible, with inverse λn−1 (which lies in ZK , as λ ∈ZK and
ZK is a ring).
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Imaginary Quadratic Fields Units

Summarizing Theorem

Write µk for the set of kth roots of unity in C.

We have proven the following result.

Theorem

Let K =Q(
p
d), with d ∈Z<0 squarefree. Then λ is a unit in ZK if and

only if λ is a root of unity. Moreover, the units in ZK are:

U(ZK )=Z×
K =







µ4 = {±1,±i }, if d =−1,

µ6 = {±1,±ω,±ω2}, if d =−3,

µ2 = {±1}, otherwise.
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

Subsection 2

Euclidean Imaginary Quadratic Fields

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 15 / 125



Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

Unique Factorization and Euclidean Norms

We have seen that the Gaussian integers Z[i ] possess unique
factorization.

The proof involved showing that the norm function is Euclidean.

Therefore, Z[i ] is a Euclidean domain using this norm function.

We now work out which imaginary quadratic fields can be shown to
have unique factorization in the same way.

That is, when the ring of integers is a Euclidean domain.

We shall see later that there are imaginary quadratic fields with unique
factorization which are not Euclidean in this sense.

This provides examples of UFDs which are not Euclidean.
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

The Euclidean Condition

Choose any α and β in ZK .

For the norm function to be Euclidean, we must be able to find a
quotient κ ∈ZK and a remainder ρ ∈ZK , such that

α= κβ+ρ, N(ρ)<N(β).

The method involves the following steps:

Consider the quotient α
β ;

Define κ to be the integer “closest” to it;
Define ρ =α−κβ.
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

The Euclidean Condition (Cont’d)

Then we have

ρ =α−κβ=β

(

α

β
−κ

)

.

So we get

N(ρ)=N(β)N

(

α

β
−κ

)

.

So N(ρ)<N(β) as long as N(αβ −κ)< 1.

In particular, ZK is Euclidean if, for any α
β
∈Q(

p
d), there is κ ∈ZK ,

such that

N

(

α

β
−κ

)

< 1.

The two different forms of ZK impose studying two separate cases.
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

d ≡ 2,3 (mod 4)

We have
ZK =Z[

p
d ].

Suppose that
α

β
= a+b

p
d , a,b ∈Q.

We choose κ to be the “nearest” integer m+n
p
d ∈ZK .

This means choosing

|m−a| ≤
1

2
and |n−b| ≤

1

2
.

Then
N(αβ −κ) = N((a+b

p
d)− (m+n

p
d))

= N((a−m)+
p
d(b−n))

= (a−m)2−d(b−n)2

≤ (1
2
)2−d(1

2
)2.
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

d ≡ 2,3 (mod 4) (Cont’d)

We study two subcases regarding

N

(

α

β
−κ

)

≤
(

1

2

)2

−d

(

1

2

)2

.

Suppose d =−1 or −2.
Then N(αβ −κ)< 1.

Suppose d ≤−5.
Then there are quotients α

β , with no integer κ satisfying

N

(

α

β
−κ

)

< 1.

E.g., just take α= 1+
p
d , β= 2.

Thus, the only imaginary quadratic fields Q(
p
d), with d ≡ 2,3

(mod 4), which are Euclidean with respect to the norm function are
Q(

p
−1) and Q(

p
−2).
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

d ≡ 1 (mod 4)

Now we have

ZK =Z

[

1+
p
d

2

]

.

Suppose that
α

β
= a+b

p
d , a,b ∈Q.

Choose κ to be the “nearest” integer m+n
p
d ∈ZK .

However, ZK now looks a little different.

It is the collection of points nearest to the origin lie
in the shaded hexagon.

As in the first case, it will do to show that every point in Q(
p
d) lies

at a distance strictly less than 1 from some point in ZK .
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

The Vertices of the Hexagon

That is, it would suffice that the hexagon above lie inside the unit
circle.

Since the edges are given by the bisectors of the lines joining the origin

and the points ±1 and ±1±
p
d

2
, computing the vertices of the hexagon

is elementary.

View the hexagon above as plotted in the (x ,y)-plane, and bounded
by the bisectors of the lines joining (0,0) to (±1,0) and to

(±1
2

,±
p

|d |
2

), with |d | > 1.

Then the vertices of the hexagon above are at

(

0,±
|d |+1

4
√

|d |

)

and

(

±
1

2
,±

|d |−1

4
√

|d |

)

.
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

d ≡ 1 (mod 4) (Cont’d)

It is now easy to check that if d =−3, d =−7 or d =−11, the hexagon
lies entirely within the unit circle.

The corresponding field then has a Euclidean algorithm.

However, if d ≤−19, then
√

|d | > 4.

The hexagon then contains points of Q(
p
d) at a distance of more

than 1 from any point of ZK (e.g., 1
4

p
d).

So there can be no Euclidean algorithm using the norm function.

We conclude that there are only five imaginary quadratic fields,
Q(

p
−1), Q(

p
−2), Q(

p
−3), Q(

p
−7) and Q(

p
−11) which are

Euclidean with respect to their norm function.

It follows from a previous proposition and theorem that these five
fields all have unique factorization.
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

Norms and Euclidean Functions

We have now seen that there are exactly five imaginary quadratic
fields whose rings of integers are Euclidean domains with respect to
their norm function.

Could there be other functions, different from the norm function,
which make other rings of integers into Euclidean domains?

It turns out that this is false.

We give the complete argument below for the case d ≡ 1 (mod 4).

The other case can be treated similarly.
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

Universal Side Divisor

Theorem

Suppose that R is a Euclidean domain with respect to a Euclidean function
φ, but that R is not a field. Then there is a non-zero element u of R ,
which is not a unit, such that for all x ∈R ,

either u | x , or u | x −v , for some unit v ∈R .

Let S denote the set of non-zero elements of R which are not units.

As R is not a field, S is not empty.

Consider
φ(S)= {φ(s) : s ∈ S }.

φ(r) is a positive integer, for all r ∈R .

Choose u ∈ S , with φ(u) minimal amongst all the values in φ(S).
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

Universal Side Divisor (Cont’d)

Let x ∈R . By the Euclidean property

x = qu+ r ,

where either r = 0, or φ(r)<φ(u).

Suppose r = 0. Then x = qu. So u | x .

Suppose φ(r)<φ(u).

φ(u) was the smallest value in φ(S).

So we cannot have r ∈ S .

Since r 6∈ S and r 6= 0, we must have that r is a unit in R .

Write v for this unit.

Then qu = x −v shows that u | x −v .

The element u is often called a universal side divisor.
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

Criterion for Non-Euclidean Integral Domains

Corollary

Suppose that R is an integral domain that is not a field. If there are no
elements u as in the theorem, then R is not Euclidean.

Directly by the theorem.
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

Non-Euclidean Imaginary Quadratic Fields

Theorem

Suppose that K =Q(
p
d) with d squarefree and negative. Suppose that

d ≡ 1 (mod 4), and that d <−11. Then ZK is not Euclidean.

By the corollary, we must show ZK has no universal side divisor.

Suppose to the contrary, such an element u exists.

We know that ZK =Z[1+
p
d

2
].

By a previous theorem, the units in ZK are simply {±1}.

By the property, for all α ∈ZK , we have u |α, or u |α±1.

We apply this with α= 2. So we need u | 2, or u | 2±1.

That is, u divides 1, 2 or 3.

But u cannot divide 1, since u is not a unit.

So u is a divisor of either 2 or 3.
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

Non-Euclidean Imaginary Quadratic Fields (Cont’d)

We show that 2 and 3 are irreducible.

If not, there would be some element β of norm 2 or 3.

Suppose β= a+b(1+
p
d

2
). Then

NK/Q(β)= a2+ab+b2

(

1−d

4

)

.

Now d <−11. So k = 1−d
4

≥ 4.

We can see that

a2+ab+kb2 = 2 and a2+ab+kb2 = 3

have no solution for k ≥ 4.

Once b 6= 0, the left-hand side is too large.

Then there is clearly no solution for a.

So both 2 and 3 are irreducible.
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Imaginary Quadratic Fields Euclidean Imaginary Quadratic Fields

Non-Euclidean Imaginary Quadratic Fields (Conclusion)

Now u divides either 2 or 3.

So we must have u = 2,−2,3 or −3.

Now take α= 1+
p
d

2
instead.

Again, we should have u |α or u |α±1.

However, none of these elements have ±2 or ±3 as divisors.

So there can be no element u, and so ZK is not Euclidean.

A very similar argument applies in the remaining cases.

Theorem

Suppose that K =Q(
p
d), with d < 0 squarefree.

Then ZK is Euclidean if and only if d =−1,−2,−3,−7 or −11.
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Imaginary Quadratic Fields Quadratic Forms

Subsection 3

Quadratic Forms
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Imaginary Quadratic Fields Quadratic Forms

Significance of the Class Group

As already remarked, the class group may be viewed as the obstruction
to unique factorization.

If the class group is trivial, then the number field has unique
factorization.
Otherwise unique factorization fails.

We would like a way to calculate the class group to be able to
ascertain whether or not the field has unique factorization.
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Imaginary Quadratic Fields Quadratic Forms

Quadratic Forms

We will show that the class number can be computed by counting a
certain set of “binary quadratic forms”.

Definition

A quadratic form in n variables is a homogeneous polynomial of degree
2, and is, therefore, of the form

n
∑

i=1

n
∑

j=1

aijxixj .

If we write v = (x1 · · ·xn)t , and A for the matrix (aij ), then we can
write the form as

v
tAv .

We will only consider the situation where aij ∈Z.
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Imaginary Quadratic Fields Quadratic Forms

Binary Quadratic Forms and Discriminant

We will focus on the case where n= 2.

Definition

A binary quadratic form is a quadratic form in 2 variables, and is,
therefore, of the form

f (x ,y)= ax2+bxy +cy2
,

for some a,b,c ∈Z. The discriminant of this form is b2−4ac .
We may abbreviate the form ax2+bxy +cy2 by (a,b,c).

Example: Consider the form x2+y2.

Its discriminant is −4.

The discriminant of x2+ (−d)y2 is 4d .
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Imaginary Quadratic Fields Quadratic Forms

Positive Definite Quadratic Forms

Definition

Say that a quadratic form f (x ,y) is positive definite if:

1. f (x ,y)≥ 0, for all x ,y ∈R;

2. f (x ,y)= 0 means that we must have (x ,y)= (0,0).

A quadratic form is positive semi-definite if f (x ,y)≥ 0, for all x ,y ∈R.
Forms which take both positive and negative values are known as
indefinite.

There is a similar definition of negative definite and negative

semi-definite, got by changing the sign in the inequality.
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Imaginary Quadratic Fields Quadratic Forms

Positive Definite Forms and Discriminant

Corollary

The quadratic form ax2+bxy +cy2 is positive definite if and only if a> 0
and the discriminant b2−4ac < 0.

Suppose that (a,b,c)= ax2+bxy +cy2 is positive definite.

If a≯ 0, substituting (x ,y)= (1,0) gives a negative value.

If c ≯ 0, (x ,y)= (0,1) would give something negative.

Completing the square, we get:

ax2+bxy +cy2 = a

(

x +
b

2a
y

)2

+
(

c −
b2

4a

)

y2
.

Now c > 0 may be refined into c − b2

4a
> 0.

Otherwise, (x ,y)= (−b,2a) would give a negative value to the form.

As a> 0, this is equivalent to b2−4ac < 0.
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Imaginary Quadratic Fields Quadratic Forms

Imaginary Quadratic Fields and Quadratic Forms

Recall that the norm of a complex number x + iy is

N(x + iy)= (x + iy)(x − iy)= x2+y2
.

Notice that x2+y2 is a positive definite quadratic form.

More generally, consider the complex number x +y
p
d (where d is a

negative, squarefree integer).

Its norm is
x2+ (−d)y2

.

We have started with a general element in an imaginary quadratic field
and in both cases have recovered a positive definite binary quadratic
form.
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Imaginary Quadratic Fields Quadratic Forms

Introducing Equivalence of Quadratic Forms

Two apparently different forms may really share many properties.

I.e., they may, in some sense, be the same.

Example: Consider the form

x2+2xy +2y2
.

It can be rewritten
(x +y)2+y2

.

A simple change of variable X = x +y , Y = y allows us to write this as

X 2+Y 2
.

For many applications, we may wish to regard the form x2+2xy +2y2

as equivalent to the form x2+y2.
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Imaginary Quadratic Fields Quadratic Forms

Equivalent Quadratic Forms

Definition

Two quadratic forms f (x ,y) and g(x ,y) are equivalent if one can be
transformed into the other by a substitution of the form

(x ,y) 7→ (px +qy ,rx + sy),

where p,q,r ,s are integers with ps −qr =±1. That is, f (x ,y) and g(x ,y)
are equivalent if g(x ,y)= f (px +qy ,rx + sy), for some invertible matrix
(

p q

r s

)

∈GL2(Z), the general linear group of 2×2 matrices with

integer entries whose inverse also has integer entries.
If ps −qr =+1, we say that f (x ,y) and g(x ,y) are properly equivalent

(and in this case the matrix above lies in SL2(Z), the special linear group

of 2×2 matrices with determinant 1).
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Imaginary Quadratic Fields Quadratic Forms

Matrix Formulation of Equivalence

Suppose
f (x ,y)= v

tAv .

Let

M =
(

p q

r s

)

.

Then

Mv =
(

p q

r s

)(

x

y

)

=
(

px +qy

rx + sy

)

.

So we obtain

f (px +qy ,rx + sy)= (Mv)tA(Mv)= v
t(MtAM)v .

Thus, in terms of matrices, if f and g correspond to matrices A and
B , respectively, then f and g are:

Equivalent if there exists M ∈GL2(Z), with B =M tAM ;
Properly equivalent if there exists M ∈SL2(Z), with B =M tAM .
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Imaginary Quadratic Fields Reduction Theory

Subsection 4

Reduction Theory
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Imaginary Quadratic Fields Reduction Theory

Reduced Form of a Quadratic Form

Reduction theory is an elegant theory which allows us to determine
when two quadratic forms are properly equivalent.

If we are given a general (positive definite binary) quadratic form, then
we can “reduce” it to a particular “reduced” form;
Two forms are properly equivalent precisely when they both reduce to
the same form.

Definition

We say that a form
(a,b,c)= ax2+bxy +cy2

is reduced if either −a< b ≤ a< c or 0≤ b ≤ a= c .

The precise conditions in the definition are chosen so that:

Every form is properly equivalent to some reduced form;
No two different reduced forms are properly equivalent.
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Imaginary Quadratic Fields Reduction Theory

Basic Proper Equivalences

We defined proper equivalence using matrices of determinant 1.

We now isolate some special cases (seen later to generate SL2(Z)).

Consider the matrix
(

1 1
0 1

)

.

I.e., consider the transformation
(

x

y

)

7→
(

1 1
0 1

)(

x

y

)

=
(

x +y

y

)

.

The form ax2+bxy +cy2 is then properly equivalent to

a(x +y)2+b(x +y)y +cy2
.

This expands to

ax2+ (2a+b)xy + (a+b+c)y2
.

Thus, (a,b,c) is properly equivalent to (a,b+2a,c +b+a).
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Imaginary Quadratic Fields Reduction Theory

Basic Proper Equivalences (Cont’d)

The inverse transformation corresponds to the matrix

(

1 −1
0 1

)

.

Now we get
(

x

y

)

7→
(

1 −1
0 1

)(

x

y

)

=
(

x −y

y

)

.

The form ax2+bxy +cy2 is then properly equivalent to

a(x −y)2+b(x −y)y +cy2 = ax2+ (−2a+b)xy + (a−b+c)y2
.

So (a,b,c) is properly equivalent to (a,b−2a,c −b+a).
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Imaginary Quadratic Fields Reduction Theory

Basic Proper Equivalences (Cont’d)

We also use the transformation corresponding to

(

0 1
−1 0

)

.

We get
(

x

y

)

7→
(

0 1
−1 0

)(

x

y

)

=
(

y

−x

)

.

The form ax2+bxy +cy2 is then properly equivalent to

ay2−bxy +c(−x)2 = cx2−bxy +ay2
.

So (a,b,c) is properly equivalent to (c ,−b,a).
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Imaginary Quadratic Fields Reduction Theory

Existence of a Reduced Form

Using these three transformations only, any binary positive definite
quadratic form can be seen to be equivalent to a reduced form.

Take a positive definite binary quadratic form

(a,b,c)= ax2+bxy +cy2
, a,c > 0.

Apply the following rules repeatedly.

Suppose a> c or a= c and b < 0.

Apply the third rule and perform the transformation

(a,b,c) 7→ (c ,−b,a).

In the first case, c < a.

In the second case, c = a and 0<−b.
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Imaginary Quadratic Fields Reduction Theory

Existence of a Reduced Form (Cont’d)

Otherwise, we are in one of two situations:

We could have a< c .

If (a,b,c) is not reduced, it must be because b ≤−a or b > a.

If b ≤−a, apply the first rule, (a,b,c) 7→ (a,b+2a,c +b+a).

If b > a, apply the second rule (a,b,c) 7→ (a,b−2a,c −b+a).

The result should be a form for which the absolute value |b| of the
middle coefficient gets smaller (except in case b =−a, when |b| may
remain constant for a step).

Alternatively, a= c and b ≥ 0.

If (a,b,c) is not reduced, it must be because b > a.

Then apply the second rule (a,b,c) 7→ (a,b−2a,c −b+a).

The result should again be a form for which the absolute value |b| of
the middle coefficient gets smaller.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 47 / 125



Imaginary Quadratic Fields Reduction Theory

Example

Consider the form 7x2−24xy +21y2, or (7,−24,21) in shorthand.

This is not reduced, as we do not have −a< b ≤ a.

But we do have a< c .

We apply the first rule, to get (7,−24,21) 7→ (7,−10,4).
The new form is not reduced because c < a.
We apply the third rule (7,−10,4) 7→ (4,10,7).
The form (4,10,7) is not reduced as b > a.
We apply the third rule to get (4,10,7) 7→ (4,2,1).
We still do not have a reduced form, as a> c .
We apply the third rule to get (4,2,1) 7→ (1,−2,4).
The form (1,−2,4) is not reduced as −a≥ b.
The first rule finally gives (1,−2,4) 7→ (1,0,3).
This form is reduced.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 48 / 125



Imaginary Quadratic Fields Reduction Theory

Using Matrices: Transformation 1

One way to follow the transformations is to keep track of the changes
of variable required.

Alternatively, we can think about the matrix transformations involved.

The first time that we applied the rule (a,b,c) 7→ (a,b+2a,c +b+a),

we essentially made the change of variable

(

x

y

)

7→
(

1 1
0 1

)(

x

y

)

.

This means that we make the transformation (x ,y) 7→ (x +y ,y).

We can check 7(x +y)2−24(x +y)y +21y2 = 7x2−10xy +4y2.

Let f0 = (7,−24,21), f1 = (7,−10,4) and M1 =
(

1 1
0 1

)

.

Then we have

f0

(

M1

(

x

y

))

= f1

((

x

y

))

.
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Imaginary Quadratic Fields Reduction Theory

Using Matrices: Inverse of Transformation 1

Write
(

x1

y1

)

=M1

(

x

y

)

=
(

1 1
0 1

)(

x

y

)

=
(

x +y

y

)

.

Apply the inverse matrix to write (x ,y) in terms of (x1,y1):

(

x

y

)

=M−1
1

(

x1

y1

)

=
(

1 −1
0 1

)(

x1

y1

)

=
(

x1−y1

y1

)

.

We therefore see

f0

((

x

y

))

= f1

(

M−1
1

(

x

y

))

.

I.e., 7x2
1 −24x1y1+21y2

1 = 7(x1−y1)
2−10(x1−y1)y1+4y2

1 .

So, if v =
(

x

y

)

, f0(M1v)= f1(v) and f0(v)= f1(M
−1
1 v).
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Imaginary Quadratic Fields Reduction Theory

Using Matrices: Transformation 2

Next we applied the third rule (a,b,c) 7→ (c ,−b,a) to f1.

We already noted that this corresponds to the matrix

(

0 1
−1 0

)

.

We can write f2 for the form (4,10,7).

We should have f1(M2v)= f2(v) and f1(v)= f2(M
−1
2 v).

We already know that f0(M1v)= f1(v) and f0(v)= f1(M
−1
1 v).

Combining, we get f2(v)= f1(M2v)= f0(M1(M2v)).

Recall that v =
(

x

y

)

, M1 =
(

1 1
0 1

)

and M2 =
(

0 1
−1 0

)

.

So we get

f2(x ,y)= f0

((

1 1
0 1

)(

0 1
−1 0

)(

x

y

))

= f0(−x +y ,−x).

This can easily be verified by a simple calculation.
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Imaginary Quadratic Fields Reduction Theory

Using Matrices: Transformation 3-5

Continuing, we get M3 =
(

1 −1
0 1

)

, M4 =
(

0 1
−1 0

)

, M5 =
(

1 1
0 1

)

are the matrices for the remaining three steps.

We also have, in the final step, f5 = (1,0,3)= x2+3y2.

It follows that

f5(x ,y)= f0(M1M2M3M4M5(x ,y)t).

We calculate that M =M1M2M3M4M5 =
(

−2 −3
−1 −2

)

.

Moreover, we verify

f0

(

M

(

x

y

))

= 7(−2x −3y)2−24(−2x −3y)(−x −2y)+21(−x −2y)2

= x2+3y2.
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Imaginary Quadratic Fields Reduction Theory

Reduced Forms and Values for Coprime x ,y

Lemma

Suppose that
f (x ,y)= ax2+bxy +cy2

is in reduced form.

If a< c , then the smallest non-zero values taken by f (x ,y), for x and
y coprime, are a and c . Furthermore, the only values of (x ,y) with
f (x ,y)= a are (±1,0).

If a= c , then the smallest non-zero value of f (x ,y) is a. There are
either 4 (if 0≤ b < a= c) or 6 (if a= b = c) pairs (x ,y) with f (x ,y)= a.

Suppose, first, y = 0.

As (x ,y)= 1, x =±1.

Hence, f (±1,0)= a.
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Imaginary Quadratic Fields Reduction Theory

Reduced Forms and Values for Coprime x ,y (Cont’d)

Suppose, next, |y | = 1 and |x | ≥ 2.

Then
|2ax +by | ≥ |2ax |− |by | ≥ 4a−|b|

|b| ≤ a

≥ 3a.

So
4af (x ,y) = (2ax +by)2−dy2

≥ 9a2−d

= 4ac + (9a2−b2)

= 4ac +8a2+ (a2−b2)
|b| ≤ a

≥ 4ac .

So f (x ,±1)> c , if |x | ≥ 2.
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Imaginary Quadratic Fields Reduction Theory

Reduced Forms and Values for Coprime x ,y (Cont’d)

If |y | ≥ 2, then

4af (x ,y) = (2ax +by)2−dy2

≥ −dy2

≥ −4d

= 16ac −4b2

≥ 12ac +4(ac −b2)
|b| ≤ a≤ c

≥ 12ac

≥ 4ac .

Again, f (x ,y)> c , if |y | ≥ 2.

In summary, f (x ,y)> c , if |x | ≥ 2 or |y | ≥ 2.

Finally, f (±1,0)= a, f (0,±1)= c , f (±1,±1)= a+b+c > c and
f (±1,∓1)= a−b+c ≥ c . The result follows easily in each case.
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Imaginary Quadratic Fields Reduction Theory

Existence and Uniqueness of Reduced Forms (Existence)

Theorem

Every positive definite binary quadratic form is properly equivalent to a
unique reduced form.

Firstly, we verify that the algorithmic process for reducing quadratic
forms terminates after a finite number of steps with a reduced form.

At each step, none of the operations increase the coefficient of x2.

As this is a natural number, eventually it must become constant.

At this point, the remaining operations do not increase |b|.
Again eventually |b| must become constant.
Suppose that a rule maps (a,b,c) to a form with the same values of a
and |b|. This is only possible if one of the following cases.

a= b (and then c is also fixed, as the discriminant b2−4ac is fixed);
if a=−b, and the first rule (a,b,c) 7→ (a,b+2a,c +b+a) is applied.
Then a= b ≤ c , and the form is now reduced.

Thus, every form is equivalent to some reduced form.
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Imaginary Quadratic Fields Reduction Theory

Existence and Uniqueness of Reduced Forms (Uniqueness)

If a form were equivalent to two different reduced forms, then these
reduced forms would be equivalent to each other.

So in the final step we show that two distinct reduced forms cannot be
equivalent to each other.

Suppose that
f (x ,y) = ax2+bxy +cy2;
g(x ,y) = Ax2+Bxy +Cy2.

are two reduced forms which are properly equivalent.

Claim: f = g , using the preceding lemma repeatedly.

The smallest positive number represented by f (x ,y) is a.

The smallest positive number represented by g(x ,y) is A.

On the other hand, equivalent forms represent the same numbers.

So a=A.
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Imaginary Quadratic Fields Reduction Theory

Existence and Uniqueness of Reduced Forms (Cont’d))

Suppose, first, c > a.

Then there are precisely two pairs (±1,0) with f (x ,y)= a.

As f and g are equivalent, the same will be true of g , so C >A.

c is the second smallest positive number represented by f (x ,y).

C is the second smallest positive number represented by g(x ,y).

It follows that c =C .

As f and g have the same discriminant, b =±B .

We want to see that b =B .

We have

g(x ,y)= f (px +qy ,rx + sy), for

(

p q

r s

)

of determinant 1.

f and g both have the same coefficient of x2.

So p =±1 and r = 0.

We can assume p = 1 by multiplying all of p,q,r and s by −1 if needed.

As ps −qr = 1, we see that s = p = 1.
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Imaginary Quadratic Fields Reduction Theory

Existence and Uniqueness of Reduced Forms (Cont’d))

Then g(x ,y)= f (x +qy ,y).

If f (x ,y) is (a,b,c), then f (x +qy ,y) is (a,b+2qa,c +qb+q2a).

Since both are reduced, −a< b ≤ a and −a< b+2qa≤ a.

This is only possible with q = 0.

So B = b also.

If c = a, then there are either 4 or 6 pairs (x ,y) with f (x ,y)= a.

So the same is true of g .

Thus C =A also.

By the definition of reduced form, 0≤ b ≤ a and 0≤B ≤A.

But the discriminants of f and g coincide.

So b =±B .

As both b and B are non-negative, b =B .
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Imaginary Quadratic Fields Reduction Theory

Automorphs

Definition

Let f (x ,y) be a binary quadratic form. We say that a matrix

M =
(

p q

r s

)

∈ SL2(Z)

is an automorph of f if

f (x ,y)= f (px +qy ,rx + sy).
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Imaginary Quadratic Fields Reduction Theory

Automorphs of Quadratic Forms

Corollary

Suppose that f (x ,y) is a reduced binary quadratic form.

If f (x)= x2+y2, there are 4 automorphs of f , given by

{

±I ,±
(

0 1
−1 0.

)}

;

If f (x)= x2+xy +y2, there are 6 automorphs of f , given by

{

±I ,±
(

1 1
−1 0

)

,±
(

0 −1
1 1

)}

.

In all other cases, there are just 2 automorphs, given by {±I }.
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Imaginary Quadratic Fields Reduction Theory

Proof of the Corollary (Case a< c)

Suppose first that a< c .

By the lemma, the only pairs (x ,y) with f (x ,y)= a are given by
(±1,0).

A matrix M which is an automorph must map

(

1
0

)

into

(

±1
0

)

.

So the first column of M must be

(

±1
0

)

.

As M has determinant 1, M =±
(

1 m

0 1

)

, for some m ∈Z.

However, f (x +my ,y) can only be the same as f (x ,y) if m= 0 (by
looking at the coefficient of xy say).

Thus, M =±I .
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Imaginary Quadratic Fields Reduction Theory

Proof of the Corollary (Case a= c)

Next, consider the cases where a= c .

Suppose, first, 0≤ b < a= c .

The lemma gives 4 pairs (x ,y) with f (x ,y)= a: (±1,0) and (0,±1).

So two different cases emerge.

In the first, M =±
(

1 m

0 1

)

.

Then m= 0 for the same reasons as when a< c .

In the second, M =±
(

0 −1
1 m

)

. Then Mv =
(

−y
x +my

)

.

If f (x ,y)= ax2+bxy +cy2, then

f (−y ,x +my)= cx2+ (2mc −b)xy + (a−mb+m2c)y2
.
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Imaginary Quadratic Fields Reduction Theory

Proof of the Corollary (Case a= c Cont’d)

Comparing coefficients of xy gives b = 2mc −b.

So b =mc .

However, 0≤ b < c . So b = 0. This gives m= 0.

Then there are 4 automorphs, as claimed.

Suppose, next, that b = a= c .

By the proof of the lemma, we get 6 pairs (x ,y) with f (x ,y)= a.

They are (±1,0), (0,±1) and (±1,∓1).

These are the first columns of possible matrices M giving automorphs.

A similar argument gives the 6 different matrices of the statement.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 64 / 125



Imaginary Quadratic Fields Reduction Theory

The Special Linear Group SL2(Z)

Corollary

SL2(Z) is generated by the two matrices

(

1 1
0 1

)

and

(

0 1
−1 0

)

.

Let M ∈ SL2(Z).

Consider any form with 2 automorphs, say f (x ,y)= x2+2y2.

Consider
f ′(x ,y)= f (M(x ,y)t).

This is another quadratic form which is properly equivalent to f .

Reduce this form by the above method.

We must end up with the reduced form in the same class as f ′.

This must be f itself, since it is a reduced form, properly equivalent to
f ′, and there is a unique such form.
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Imaginary Quadratic Fields Reduction Theory

The Special Linear Group SL2(Z) (Cont’d)

The reduction steps correspond to application of the matrices

(

1 1
0 1

)

,

(

1 −1
0 1

)

,

(

0 1
−1 0

)

.

But we have
(

1 −1
0 1

)

=
(

1 1
0 1

)−1

.

So all reductions are expressible in terms of

T =
(

1 1
0 1

)

and S =
(

0 1
−1 0

)

and their inverses (note that S−1 =−S).
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Imaginary Quadratic Fields Reduction Theory

The Special Linear Group SL2(Z) (Cont’d)

The reduction of f ′ to f involves writing

f ′(M1M2 · · ·Mt(x ,y)t)= f ((x ,y)t ),

where M1, . . . ,Mt are T ,T−1 or S .

By definition of f ′, this means that

f (MM1M2 · · ·Mt(x ,y)t )= f ((x ,y)t).

This can only happen if

MM1M2 · · ·Mt =±I .

But this means that
M =M−1

t · · ·M−1
1 .

So we have written M as a product of matrices which are T ,T−1 or
S−1 =−S =S3.
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Imaginary Quadratic Fields Class Numbers and Quadratic Forms

Subsection 5

Class Numbers and Quadratic Forms
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Imaginary Quadratic Fields Class Numbers and Quadratic Forms

Ideal Classes and Reduced Quadratic Forms

Recall that d is a negative squarefree integer.

Theorem

The class number of K =Q(
p
d) is equal to the number of reduced

quadratic forms with discriminant D, where D =DK is given by

D =
{

4d , if d ≡ 2,3 (mod 4),

d , if d ≡ 1 (mod 4).

We will show that there exists a bijection between the ideal classes of
Q(

p
d) and reduced quadratic forms with discriminant D.
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Imaginary Quadratic Fields Class Numbers and Quadratic Forms

Ideal Classes and Reduced Quadratic Forms (Strategy)

We must give:

A mapping from ideals to quadratic forms;
An inverse mapping from quadratic forms to ideals.

I.e., we must show that:

Every ideal generates a quadratic form;
Every quadratic form comes from an ideal.
Any ideals in the same ideal class generate properly equivalent
quadratic forms;
Two properly equivalent quadratic forms come from ideals in the same
ideal class.
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Imaginary Quadratic Fields Class Numbers and Quadratic Forms

Motivating Example

Recall that Q(
p
−5) does not have unique factorization, since the

number 6 can be factorized as 2 ·3 and as (1+
p
−5)(1−

p
−5).

These were genuinely distinct factorizations.

We could resolve the non-uniqueness of factorization by introducing
ideals in the ring of integers Z [

p
−5],

a1 = 〈2,1+
p
−5〉; a2 = 〈2,1−

p
−5〉 = a1;

a3 = 〈3,1+
p
−5〉; a4 = 〈3,1−

p
−5〉.

Then

〈2〉 = a1a2; 〈3〉 = a3a4; 〈1+
p
−5〉 = a1a3; 〈1−

p
−5〉 = a2a4.

The two distinct factorizations are resolved when we use non-principal
ideals.
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Imaginary Quadratic Fields Class Numbers and Quadratic Forms

Motivating Example (a1)

Notice next that Z[
p
−5]⊆C.

We can plot elements of ideals in the complex plane.

Example: Consider a1 = 〈2,1+
p
−5〉.

Its elements are

{2(a+b
p
−5)+ (1+

p
−5)(c +d

p
−5) : a,b,c ,d ∈Z}

= {(2a+c −5d)+ (2b+c +d)
p
−5 : a,b,c ,d ∈Z}

= {A+B
p
−5 :A,B ∈Z,2 |A−B}

= {2x + (1+
p
−5)y : x ,y ∈Z}.

Not only are 2 and 1+
p
−5 generators for this ideal as a

Z[
p
−5]-module, but also as a Z-module.
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Imaginary Quadratic Fields Class Numbers and Quadratic Forms

Motivating Example (a1 Cont’d)

Thus, any element of the ideal can be written as

2x + (1+
p
−5)y , x ,y ∈Z.

So the general element of this ideal is

(2x +y)+y
p
−5, x ,y ∈Z.

The norm of this element is

(2x +y)2+5y2 = 4x2+4xy +6y2

= 2(2x2 +2xy +3y2).

We take out the common factor of 2.

We obtain the quadratic form (2,2,3).

It is positive definite of discriminant −20.
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Imaginary Quadratic Fields Class Numbers and Quadratic Forms

Motivating Example (a3)

We next try a3 = 〈1+
p
−5〉.

We try to give a set of 2 generators for a3 over Z.

Then we consider the norm of a general element of the ideal.

Elements of a3 are given by:

{3(a+b
p
−5)+ (1+

p
−5)(c +d

p
−5) : a,b,c ,d ∈Z}

= {(3a+c −5d)+ (3b+c +d)
p
−5 : a,b,c ,d ∈Z}

= {A+B
p
−5 :A,B ∈Z,3 |A−B}

= {3x + (1+
p
−5)y : x ,y ∈Z}.

Generators for this ideal as a Z-module are given by 3 and by 1+
p
−5.
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Imaginary Quadratic Fields Class Numbers and Quadratic Forms

Motivating Example (a3 Cont’d)

So a general element of the ideal is

3x + (1+
p
−5)y , x ,y ∈Z.

The norm is

(3x +y)2+5y2 = 9x2+6xy +6y2

= 3(3x2 +2xy +2y2).

It is 3 times the non-reduced form (3,2,2).

We can reduce (3,2,2) in the usual way:

(3,2,2) 7→ (2,−2,3) [(a,b,c) 7→ (c ,−b,a)]

7→ (2,2,3). [(a,b,c) 7→ (a,b+2a,c +b+a)]
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Imaginary Quadratic Fields Class Numbers and Quadratic Forms

Motivating Example (Summary)

Consider a nonprincipal ideal a in Z[
p
−5].

Start with any pairs of generators α and β for a.

Write a general element in the form

αx +βy .

Take the norm.

The result is always (a multiple of) a form properly equivalent to
(2,2,3).
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Imaginary Quadratic Fields Class Numbers and Quadratic Forms

Motivating Example (Principal Ideals)

Now consider a principal ideal.

Example: The easiest is the whole ring of integers 〈1〉.
The general element is

1 · (x +y
p
−5), x ,y ∈Z.

The norm of x +y
p
−5 is x2+5y2.

Example: Consider the principal ideal 〈1+
p
−5〉.

The general element of this ideal is

(1+
p
−5)(x +y

p
−5)= (x −5y)+ (x +y)

p
−5.

It has norm

(x −5y)2+5(x +y)2 = 6x2+30y2

= 6(x2+5y2).

Again, we see the quadratic form (1,0,5) appearing.
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Motivating Example (Principal Ideals Summary)

Let a be a principal ideal of norm N.

Write a general element in the form

αx +βy ,

for generators α and β.

Then take the norm of this general element.

We obtain something of the form

N · f (x ,y),

where f (x ,y) is a quadratic form which reduces to (1,0,5).
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Ordering the Generators

In the two examples, the order of the generators did not matter.

In general, switching the generators α and β, interchanges x and y .

Now (c ,b,a) is not, in general, properly equivalent to (a,b,c).

In the case of Q(
p
−5), and quadratic forms of discriminant −20:

(5,0,1) is properly equivalent to (1,0,5);
(3,2,2) is properly equivalent to (2,2,3).

We need to make a choice regarding the order of our generators.

We will always pick α and β so that the angle of clockwise rotation
from β to α is greater than from α to β.

Equivalently,
β
α

should lie in the upper-half complex plane, i.e., should
have positive imaginary part.
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Outline of the Desired Bijection

Definition

A pair (α,β) of complex numbers is ordered if im
(

β
α

)

> 0.

Let Q(
p
d) be an imaginary quadratic field.

Consider any ideal in the ring of integers of Q(
p
d).

We can find an ordered pair of generators, (α,β), for the ideal as a
Z-module, so that every element of the ideal is written as αx +βy , for
x ,y ∈Z;
The norm of this general element turns out to be the norm of the ideal
multiplied by a quadratic form in x and y , and this quadratic form has
discriminant D;
Different choices of ordered generators give properly equivalent
quadratic forms.

This gives a map from ideals to proper equivalence classes of
quadratic forms.
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Outline of the Desired Bijection (Cont’d)

Two ideals which are in the same ideal class will map to two properly
equivalent forms.

This will give a map from the class group to the set of proper
equivalence classes of positive definite binary quadratic forms of
discriminant D.

We will see that this is a bijection.

We work in K =Q(
p
d), with d squarefree and negative.

We write D for d or 4d .

We five a complete proof for d ≡ 2,3 (mod 4), where ZK =Z[
p
d ].

The arguments for d ≡ 1 mod 4 are very similar, but almost all the
details need minor amendment.
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The Case d ≡ 2,3 (mod 4) Strategy

Fix d ≡ 2,3 (mod 4).

Write D = 4d for the discriminant of Q(
p
d).

We will show that there is a bijection between classes of ideals in
Z[

p
d ] and proper equivalence classes of (positive definite) quadratic

forms of discriminant D = 4d .

This will involve several steps.

1. Given an ideal a in ZK , we start by choosing a particular ordered basis.
We observe that this basis gives a quadratic form of discriminant D.

2. Changing the ordered basis produces a properly equivalent form.
So our map can be viewed as a map from ideals to proper equivalence
classes of quadratic forms of discriminant D.

3. Two ideals in the same equivalence class map to the same proper
equivalence class of quadratic forms. So we get a map Φ from ideal
classes to proper equivalence classes of quadratic forms.

4. Finally, we define a map Ψ from proper equivalence classes of quadratic
forms of discriminant D to ideal classes, and check Ψ=Φ

−1.
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Stage 1: Ordered Bases of Ideals (Lemma 1)

Lemma

Let a be an ideal in the ring of integers ZK . Then there are positive
integers a,b,c ∈Z, with c | a and c | b, such that

a= aZ+ (b+c
p
d)Z.

Let a be the smallest positive integer in a.

Let b+c
p
d be any element in a with c > 0 as small as possible.
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Stage 1: Ordered Bases of Ideals (Lemma 1 Cont’d)

Claim: a= aZ+ (b+c
p
d)Z.

We must show that the only elements in a are of this form.

Suppose m+n
p
d ∈ a.

Choose s ∈Z so that the coefficient of
p
d in

(m+n
p
d)− s(b+c

p
d)

satisfies 0≤ n− sc < c .

By our choice of b+c
p
d , we have n− sc = 0. So n= sc .

It follows that (m+n
p
d)− s(b+c

p
d)=m− sb.

This is a non-negative integer in a.

We now subtract a multiple of a so that 0≤ (m− sb)− ta< a.

By minimality of a, we have (m− sb)− ta= 0.

Combining these gives

(m+n
p
d)− s(b+c

p
d)− ta= 0.

So m+n
p
d ∈ aZ+ (b+c

p
d)Z.
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Stage 1: Ordered Bases of Ideals (Lemma 1 Cont’d)

Claim: c | a.
Suppose, to the contrary, that c ∤ a.

We have a ∈ a.
By the multiplicative property of ideals, a

p
d ∈ a.

We also have b+c
p
d ∈ a.

If c ∤ a, then we can subtract some multiple of b+c
p
d from a

p
d to

get
a
p
d − t(b+c

p
d)=−b+ (a− tc)

p
d ∈ a.

We can choose t so that 0< a− tc < c .

This contradicts the minimality of c .

So c | a.
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Stage 1: Ordered Bases of Ideals (Lemma 1 Cont’d)

Claim: c | b.

Suppose, to the contrary that c ∤ b.

As b+c
p
d ∈ a, we also have

(b+c
p
d)

p
d = b

p
d +dc ∈ a.

Then, as c ∤ b, we can subtract some multiple of b+c
p
d to get

b
p
d +dc − t(b+c

p
d)= (dc − tb)+

p
d(b− tc) ∈ a.

If c ∤ b, we can choose t so that 0< b− tc < c .

This contradicts the minimality of c .

So c | b in this case.

This completes the proof of the lemma.

If
p
d is chosen as the square root of d lying in the upper-half complex

plane, the pair (a,b+c
p
d) of the lemma is ordered.
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Stage 1: Ordered Bases of Ideals (Lemma 2)

Lemma

Suppose that the ideal a of ZK is written

a= aZ+ (b+c
p
d)Z,

as in the preceding lemma. Then NK/Q(a)= ac .

NK/Q(a) is the index of a in Z[
p
d ].

Coset representatives for the quotient Z[
p
d ]/a are given by

{x +y
p
d : 0≤ x < a, 0≤ y < c}.

This set has cardinality ac .

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 87 / 125



Imaginary Quadratic Fields Class Numbers and Quadratic Forms

Stage 1: Ordered Bases of Ideals (Lemma 3)

Lemma

Let a,b and c be in Z. Then the Z-module a= aZ+(b+c
p
d)Z is an ideal

in ZK if and only if c | a,c | b and ac | c2d −b2.

The difference between a Z-module and a ZK -ideal is the following:

To be a Z-module, we need to be able to multiply members of the set
by elements of Z and remain in the set;
To be an ideal of ZK , we need to be able to multiply members of the
set by elements of ZK and remain in the set.

The condition reflects the requirement that if α ∈ a, then α
p
d ∈ a.

Suppose α= ax + (b+c
p
d)y = (ax +by)+c

p
dy .

Then α
p
d = cdy + (ax +by)

p
d .

For all choices of x ,y ∈Z, we need that this is in a.

I.e., for all x ,y ∈Z, α
p
d = as + (b+c

p
d)t, for some s ,t ∈Z.
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Stage 1: Ordered Bases of Ideals (Lemma 3 Cont’d)

For all x ,y ∈Z, we need α
p
d = as + (b+c

p
d)t, for some s ,t ∈Z.

Comparing coefficients of 1 and
p
d , we need that the equations

as+bt = cdy , ct = ax +by have solutions with s ,t ∈Z, for all x ,y ∈Z.

We can read off the value of t from the second equation.

We have t = ax+by
c

and t ∈Z, for all x ,y ∈Z if c | a and c | b.

Conversely, suppose t ∈Z, for all x ,y ∈Z.

Then c | a (choose x = 1, y = 0) and c | b (choose x = 0, y = 1).

So the condition that t ∈Z is equivalent to c | a and c | b.

Having solved for t, we can read off

s =
cdy −bt

a
=
cdy −b(ax+by

c
)

a
=

−abx + (c2d −b2)y

ac
.

This is an integer for all x ,y ∈Z if and only if:
ac | ab (which follows if c | b);
ac | c2d −b2.
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Stage 1: Ideals to Forms (Proposition)

Proposition

Let a=Za+Z(b+c
p
d) be an ideal of ZK . Then

NK/Q(ax + (b+c
p
d)y)

NK/Q(a)

is a quadratic form with integer coefficients of discriminant D.

Notice that

NK/Q(ax +by +c
p
dy) = (ax +by)2−dc2y2

= a2x2+2ab ·xy + (b2−c2d)y2.

This gives the form (a2,2ab,b2−c2d) of discriminant 4a2c2d .
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Stage 1: Ideals to Forms (Cont’d)

We got the form (a2,2ab,b2−c2d) of discriminant 4a2c2d .

By the lemma, each of a2, 2ab and b2−c2d is divisible by ac .

So the quadratic form can be written

ac

(

a

c
x2+2

b

c
xy +

(

b2−c2d

ac

)

y2

)

=NK/Q(a)Φ(a).

Now
a

c
x2+2

b

c
xy +

(

b2−c2d

ac

)

y2

has integer coefficients.

Moreover, its discriminant is indeed D = 4d .
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Stage 1: Ideals to Forms (Positivity)

Let a be an ideal of Z[
p
d ].

Let (α,β) be an ordered basis for a.

If (x ,y) 6= (0,0), we see

NK/Q(αx +βy)> 0

is the square of the modulus of a non-zero complex number.

Thus NK/Q(αx +βy) is positive definite.

Further, in this situation, the same method as above shows that

NK/Q(αx +βy) = (αx +βy)(αx +βy)

= (αα)x2+ (αβ+αβ)xy + (ββ)y2

= NK/Q(α)x
2 +TK/Q(αβ)xy +NK/Q(β)y

2.

This is clearly a quadratic form.

As α,β ∈Z[
p
d ], by a previous corollary, the coefficients are all in Z.
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Stage 2: Changing Ordered Generators

We see how the quadratic form changes when we change the ordered
generating set.

Suppose that (α,β) is one ordered generating set for a.

We could choose this to be of the form (a,b+c
p
d).

Suppose that γ,δ ∈Z[
p
d ] is another basis for a as a free abelian

group, and that (γ,δ) is ordered.

Then
(

α

β

)

=M

(

γ

δ

)

,

for some matrix M =
(

p r

q s

)

, with entries in Z of determinant ±1.
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Stage 2: Changing Ordered Generators (Lemma)

Lemma

Suppose z is in the upper-half complex plane, and M =
(

p r

q s

)

∈GL2(Z).

Then q+sz
p+rz is in the upper-half complex plane if and only if M ∈ SL2(Z).

An easy calculation gives the imaginary part of q+sz
p+rz ,

q+ sz

p+ rz
=
(q+ sz)(p+ rz)

(p+ rz)(p+ rz)
=
(pq+ rszz)+ (psz +qrz)

|p+ rz |2
.

So the imaginary part is

im(z)(ps −qr)

|p+ rz |2
.

This is positive if and only if ps −qr = detM > 0.
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Stage 2: Changing Ordered Generators (Cont’d)

Recall the ordered bases (α,β) and (γ,δ).

We have

β

α
=
qγ+ sδ

pγ+ rδ
=
q+ s δ

γ

p+ r δγ

.

Now (α,β) and (γ,δ) are both ordered.

Hence, both
β
α and δ

γ lie in the upper-half complex plane.

By the lemma, detM = 1. We conclude M ∈ SL2(Z).

From (α,β), we get a quadratic form

fα,β =
NK/Q(αx +βy)

NK/Q(a)
.

We have already seen that this is integral and positive definite in the
particular case (α,β)= (a,b+c

p
d) above.
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Stage 2: Changing Ordered Generators (Cont’d)

In the same way, from (γ,δ) we get a positive definite quadratic form

fγ,δ(x ,y)=
NK/Q(γx +δy)

NK/Q(a)

We have

NK/Q(a) · fα,β(x ,y) = (αx +βy)(αx +βy)

= (x y)

(

α

β

)

(α β)

(

x

y

)

= (x y)

(

p r

q s

)(

γ

δ

)

(γ δ)

(

p r

q s

)T (

x

y

)

= (px +qy rx + sy)

(

γ

δ

)

(γ δ)

(

px +qy

rx + sy

)

= NK/Q(a) · fγ,δ(px +qy ,rx + sy).
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Stage 2: Changing Ordered Generators (Cont’d)

Since detM = 1, the two quadratic forms are properly equivalent.

In the particular case (α,β)= (a,b+c
p
d), fα,β(x ,y) is integral and

positive definite of discriminant D.

So fγ,δ(x ,y) is integral and positive definite of discriminant D for any
ordered basis for a.

Suppose a is an ideal of ZK .

We know that:

We can write it in the form Za+Z(b+c
p
d);

Its norm is ac .
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Stage 2: Changing Ordered Generators (Cont’d)

We send a to a proper equivalence class of quadratic forms via

Φ(a)=
[

NK/Q(ax + (b+c
p
d)y)

NK/Q(a)

]

.

Note that the square brackets indicate that the image is the proper
equivalence class of forms.

We saw we could use any ordered basis for a, and still get the same
proper equivalence class.

So Φ really only depends on a and not on the basis.

So Φ maps an ideal a to the proper equivalence class of quadratic
forms [fα,β(x ,y)] of discriminant D, where a has ordered basis (α,β).
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Stage 3: Ideal Classes to Classes of Forms

Proposition

If a and b belong to the same ideal class, then Φ(a) and Φ(b) are properly
equivalent.

Suppose that a and b are two ideals in the same ideal class.

Then there exists θ ∈K , such that b= θa.

Write θ = γ
δ , for γ,δ∈ZK =Z[

p
d ].

Then this is equivalent to δb= γa.

Suppose that a can be written Zα+Zβ.

Then γa can be written Z(γα)+Z(γβ).

By the multiplicativity of the norm,

NK/Q(αγx +βγy)=NK/Q(γ)NK/Q(αx +βy).
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Stage 3: Ideal Classes to Classes of Forms

Further, the multiplicativity of the norm of ideals gives

NK/Q(〈γ〉a)=NK/Q(〈γ〉)NK/Q(a)=
∣

∣NK/Q(γ)
∣

∣NK/Q(a).

Since K is imaginary quadratic, NK/Q(γ)> 0.

Consequently we have an equality

fγα,γβ(x ,y)= fα,β(x ,y).

So Φ(γa)=Φ(a).

Similarly, Φ(δb)=Φ(b).

But γ and δ were chosen so that δb= γa.

Therefore, Φ(a)=Φ(b).

It follows that Φ can be viewed as a map from the set of equivalence
classes of ideals of ZK to the set of proper equivalence classes of
positive definite quadratic forms of discriminant DK .
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Stage 4: Classes of Forms to Ideal Classes

Conversely, we can associate an ideal to a quadratic form of
discriminant D = 4d by the map

Ψ((a,b,c))=Za+Z

(

b

2
+
p
d

)

.

Since D = b2−4ac is even, so is b.

We can check that this is an ideal using a previous lemma.

As c = 1, only the final condition requires checking.

But this is just a | b
2

4
−d .

As D = b2−4ac = 4d , this is immediate.
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Stage 4: Classes of Forms to Ideal Classes (Cont’d)

Proposition

If (a,b,c) and (a′,b′,c ′) are properly equivalent, then the ideals Ψ((a,b,c))
and Ψ((a′,b′,c ′)) lie in the same ideal class.

Proper equivalences are built up from the basic equivalences

(a,b,c) ∼ (a,b±2a,c ±b+a);
(a,b,c) ∼ (c ,−b,a).

We have:

Ψ((a,b±2a,c ±b+a)) = Za+Z(b±2a
2

+
p
d)

= Za+Z(b
2
+
p
d)

= Ψ((a,b,c)).
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Stage 4: Classes of Forms to Ideal Classes (Cont’d)

On the other hand,

Ψ((c ,−b,a))=Zc +Z(−
b

2
+
p
d).

We show this is an ideal in the same ideal class as Ψ((a,b,c)).

We have
(

b+2
p
d

2c

)

Ψ((c ,−b,a)) =
(

b+2
p
d

2c

)[

Zc +Z
(

−b
2
+
p
d
)]

=
[

Z
(

b+2
p
d

2

)

+Z

(

d− b2

4

c

)]

(scaling by b+2
p
d

2c
∈Z[

p
d ])

= Z(b
2
+
p
d)+Z(−a)

(b2−4ac = 4d and Za=Z(−a))
= Ψ((a,b,c)).
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Stage 4: Classes of Forms to Ideal Classes (Cont’d)

We showed
(

b+2
p
d

2c

)

Ψ((c ,−b,a))=Ψ((a,b,c)).

Thus the ideal Ψ((c ,−b,a)) is just a multiple of the ideal Ψ((a,b,c))
by some constant.

They therefore lie in the same ideal class.

Thus Ψ gives a map from proper equivalence classes of quadratic
forms of discriminant DK = 4d to ideal classes in ZK =Z[

p
d ].
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Stage 4: Classes of Forms to Ideal Classes (Theorem)

Theorem

The maps Φ and Ψ give inverse bijections between the set of proper
equivalence classes of quadratic forms of discriminant 4d and the set of
ideal classes in Z[

p
d ].

We need to prove that the maps are two-sided inverses.

In other words, it must be shown that:

If (a,b,c) is a quadratic form of discriminant 4d , then Φ(Ψ((a,b,c))) is
a quadratic form properly equivalent to (a,b,c);
If a is an ideal in Z[

p
d ], then Ψ(Φ(a)) is an ideal which is in the same

ideal class as a.
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Stage 4: Classes of Forms to Ideal Classes (Theorem Cont’d)

Suppose that (a,b,c) is a quadratic form of discriminant 4d .

Then

Ψ((a,b,c))=Za+Z

(

b

2
+
p
d

)

is an ideal of norm a.

Moreover,

NK/Q(ax+( b2+
p
d)y )

a
= 1

a
(a2x2+abxy + (b

2

4
−d)y2)

= ax2+bxy + (b
2−4d
4a

)y2

= ax2+bxy +cy2 (4d = b2−4ac).

So Φ(Ψ((a,b,c))) is equal to (a,b,c).
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Stage 4: Classes of Forms to Ideal Classes (Theorem Cont’d)

Finally, let a denote an ideal in Z[
p
d ].

Write it
Za+Z

(

b+c
p
d

)

,

with c | a and c | b.

Then NK/Q(a)= ac .

We have

Φ(a)=
NK/Q(ax + (b+c

p
d)y)

NK/Q(a)
=
a

c
x2+2

b

c
xy +

b2−c2d

ac
y2

.

Moreover,

Ψ(Φ(a))=Z
a

c
+Z

(

b

c
+
p
d

)

=
1

c
(Za+Z(b+c

p
d)).

Therefore, Ψ(Φ(a)) is in the same ideal class as a.
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d ≡ 1 (mod 4): Stage 1 (Sketch)

The arguments for the case where d ≡ 1 (mod 4) are identical to the
case where d ≡ 2,3 (mod 4).

The minor changes needed to almost all the details arise from the
differences in the rings of integers.

Fix d ≡ 1 (mod 4).

Write D = d for the discriminant of K =Q(
p
d).

At Stage 1, there are several adjustments to make to the structure
theory of ideals.
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d ≡ 1 (mod 4): Stage 1 (Sketch Cont’d)

The statement of the first lemma will be the same, except to replacep
d by

ρd =
1+

p
d

2
.

Lemma

Let a be an ideal in the ring of integers ZK . Then there are integers
a,b,c ∈Z with c | a and c | b, such that

a= aZ+ (b+cρd)Z.

The proof is very similar to that of the first lemma in the previous case.

The norm of the ideal a= aZ+(b+cρd ) is ac , as in the second lemma.
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d ≡ 1 (mod 4): Stage 1 (Sketch Cont’d)

Lemma

Suppose that d ≡ 1 (mod 4). Let a,b and c be in Z. Then the Z-module

a= aZ+ (b+cρd )Z

is an ideal in ZK if and only if c | a, c | b and ac | c2(d−1
4
)−b2−bc .

Consider an ideal
a=Za+Z(b+cρd ).

We show that

Φ(a)=
NK/Q(ax + (b+cρd )y)

NK/Q(a)

is a quadratic form with integer coefficients of discriminant D = d .
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d ≡ 1 (mod 4): Stage 1 (Sketch Cont’d)

Indeed,
NK/Q(ax +by +cρdy)

= (ax +by + c
2
y)2− c2

4
dy2

= a2x2+ (2ab+ac)xy +
(

b2+bc +c2(1−d
4
)
)

y2.

This gives the quadratic form
(

a2
,2ab+ac ,b2+bc +

(1−d)c2

4

)

of discriminant a2c2d .

We again extract the common factor ac from each coefficient.

We, thus, obtain

Φ(a)=
a

c
x2+

(

2b

c
+1

)

xy +
(

b2+bc +c2(1−d
4
)

ac

)

y2
.

Φ(a) has integer coefficients and discriminant D = d .
George Voutsadakis (LSSU) Algebraic Number Theory June 2024 111 / 125



Imaginary Quadratic Fields Class Numbers and Quadratic Forms

d ≡ 1 (mod 4) (Sketch Conclusion)

The rest of Stage 1 is unchanged, as this just depends on the
definition of the quadratic form as associated to an ordered pair of
generators for an ideal.

Stage 2 is unchanged, as this is essentially just a result in linear
algebra.

Stage 3 is also unchanged.

In Stage 4, the inverse map Ψ is defined by

Ψ((a,b,c))=Za+Z

(

b−1

2
+ρd

)

=Za+Z

(

b+
p
d

2

)

.

Recall that b is odd, as d = b2−4ac ≡ 1 (mod 4).

The proof of the last proposition is unchanged, except that, with the

amended definition of Ψ, (b+
p
d

2c
)Ψ((c ,−b,a))=Ψ((a,b,c)).
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Subsection 6

Counting Quadratic Forms
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Review

We now know:

There is a bijection from the class group in an imaginary quadratic
number field to the collection of positive definite binary quadratic
forms with the appropriate discriminant;
Every positive definite binary quadratic form is equivalent to a unique
reduced form with the same discriminant.

This means that the size of the class group of K =Q(
p
d) is the same

as the number of reduced quadratic forms of discriminant DK .

Thus, to calculate the class number of Q(
p
d), it suffices to count the

number of reduced quadratic forms of discriminant D =DK .
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Finiteness of the Class Group

Theorem

There are only finitely many reduced quadratic forms of discriminant D.

If (a,b,c) is reduced, we have 0≤ |b| ≤ a≤ c .

So certainly 0≤ b2 ≤ ac .

Then
−4ac ≤ b2−4ac ≤ ac −4ac = −3ac .

So −4ac ≤D ≤−3ac .

This gives a finite range for ac ,

−
D

4
≤ ac ≤−

D

3
.
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Finiteness of the Class Group (Cont’d)

There are finitely many possibilities for a, since a2 ≤ ac (as a≤ c).

In particular, a2 ≤ ac ≤−D
3
.

So a is bounded.

As |b| ≤ a, so is b.

For each choice of a and b, there is at most one value of c , with

b2−4ac =D .

We have a bijection between this set and the class group.

Theorem

The class group of an imaginary quadratic field is finite.
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Example

We compute the class number of Q(
p
−13).

First, we have −13≡ 3 (mod 4).

Therefore, D = 4d =−52.

It follows that the class group of Q(
p
−13) is in bijection with the

collection of reduced quadratic forms of discriminant −52.

We are looking for triples (a,b,c), such that:

b2−4ac =−52;
−a< b≤ a< c or 0≤ b ≤ a= c .

We noted that we must have 52
4
≤ ac ≤ 52

3
. So 13≤ ac ≤ 17.

We try each possibility.

Suppose ac = 13.
Since b2−4ac =−52, b = 0.
We have ac = 13, and 0≤ a≤ c .
So the only possibility is a= 1,c = 13.
We get the triple (1,0,13).
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Example (Cont’d)

Suppose ac = 14.
Since b2−4ac =−52, b2 = 4. So b =±2.
We have ac = 14, and 0< a≤ c .
So the possibilities for (a,c) are (a,c)= (1,14) and (2,7).
This gives 4 possible triples:

(a,b,c)= (1,2,14). Not reduced, as |b| > a. Applying
(a,b,c) 7→ (a,b−2a,c −b+a) gives (1,2,14) 7→ (1,0,13).
(a,b,c)= (1,−2,14). Not reduced, as |b| > a. Applying
(a,b,c) 7→ (a,b+2a,c +b+a) gives (1,−2,14) 7→ (1,0,13).
(a,b,c)= (2,2,7). This is reduced.
(a,b,c)= (2,−2,7). Not reduced, as b=−a. Applying
(a,b,c) 7→ (a,b+2a,c +b+a) gives (2,−2,7) 7→ (2,2,7).
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Example (Cont’d)

Suppose ac = 15.
Then b2 must be 8.
But this is not a square.
Suppose ac = 16.
Then b2 must be 12.
This is not a square.
Suppose ac = 17.
Then b2 must be 16.
So b=±4.
Now there are no solutions to ac = 17 satisfying 4= |b| ≤ a≤ c .

We conclude that there are two reduced forms of discriminant −52,
namely (1,0,13) and (2,2,7).

The class number of Q(
p
−13) is therefore 2.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 119 / 125



Imaginary Quadratic Fields Counting Quadratic Forms

A Non-Euclidean Field with Unique Factorization

We compute the class number of Q(
p
−19).

This time, −19≡ 1 (mod 4).

So D = d =−19.

We count the number of reduced forms with discriminant −19.

Now −D
4
≤ ac ≤−D

3
yields 19

4
≤ ac ≤ 19

3
.

So ac = 5 or ac = 6.

Suppose ac = 5.
Since b2−4ac =−19, we need b2 = 1.
We get (1,1,5) and (1,−1,5) as the only possibilities.
The first is reduced.
The second is not.
Applying (a,b,c) 7→ (a,b+2a,c+b+a), we get (1,1,5).
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A Non-Euclidean Field with Unique Factorization

Suppose ac = 6.
Since b2−4ac =−19, we need b2 = 5.
This is not a square.
So there are no reduced forms with ac = 6.

Thus, the only reduced form of discriminant −19 is (1,1,5).

Because of the bijection with the class group, we see that the class
number of Q(

p
−19) is 1.

We have found a quadratic field with class number 1.

So it has unique factorization!

Now we have found an example of a field with unique factorization
which is not Euclidean.
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The Class Number One Problem

Consider the imaginary quadratic fields

Q(
p
−1), Q(

p
−2), Q(

p
−3), Q(

p
−7), Q(

p
−11),

Q(
p
−19), Q(

p
−43), Q(

p
−67), Q(

p
−67).

The class groups of these fields are trivial.

So these fields have unique factorization.

Gauss predicted that these were the only such fields.

This central problem in algebraic number theory was known as the
“Class Number One Problem”.

It was not until the 1960s that a proof was given, by Alan Baker and
Harold Stark independently.
Subsequently, it was observed that an earlier, rather obscurely written,
attempt by Kurt Heegner (dating from the early 1950s) was also valid.

Baker won the Fields Medal for the techniques he introduced in his
solution of the problem.
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A Partial Result on the Class Number One Problem

We prove only the following partial result.

Theorem

Suppose that d ≡ 2,3 (mod 4) is a negative squarefree integer.
Then Q(

p
d) has unique factorization if and only if d =−1 or d =−2.

In view of the bijection between class numbers and quadratic forms,
we can restate our result in terms of quadratic forms.

Theorem

Suppose that d ≡ 2,3 (mod 4) is negative and squarefree, and D = 4d .
The only cases where there is only one reduced quadratic form of
discriminant D is when d =−1 or d =−2.

Actually, we shall prove a result which applies to more general values
of d (note that −4 is divisible by 4, and that −3 and −7 are both
congruent to 1 (mod 4)).
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Unique Reduced Form of Discriminant D = 4d

Theorem

Suppose that d is negative, and write D = 4d . The only cases where there
is only one reduced quadratic form of discriminant D is when d =−1,−2,
−3,−4,−7.

In each case, (1,0,−d) is a reduced quadratic form of discriminant D.

For all values of d , except those listed in the theorem, we will simply
write down another one, thus proving the theorem.

If −d is not a prime power, then we can write −d = ac with (a,c)= 1,
and 1< a< c (for example, if −d = 45, we can choose a= 5, c = 9).
Then (a,0,c) is reduced of discriminant D different from (1,0,−d).
If −d = 2r , then if r ≥ 4, we can use (4,4,2r−2+1).
This is easily checked to be reduced, as 4< 2r−2+1.
For r = 3, when d =−8, we also have (3,2,3).
This just leaves −d = 1,2,4, which are in the statement.
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Unique Reduced Form of Discriminant D = 4d (Cont’d)

If −d = pr , where p is an odd prime and r ≥ 1, then consider pr +1,
which will be even.

If pr +1= ac, with 2≤ a< c and (a,c)= 1, we can use (a,2,c).
This can be done whenever pr +1 is not a power of 2.
E.g., if −d = 27, then use 28= 4×7, and use (4,2,7).
If pr +1= 2s with s ≥ 6, use (8,6,2s−3 +1).
This is again reduced.
If pr +1= 32 (so that p = 31, r = 1), use (5,4,7) or (5,−4,7).
The equation pr +1= 16 has no solutions, since 15 is not a prime power.
The possibilities pr +1= 8 (so p = 7, r = 1 giving d =−7), pr +1= 4
(giving d =−3), pr +1= 2 (so d =−1) are given in the statement.
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