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Lattices and Geometrical Methods Lattices

Lattice in a Vector Space

Definition

Let V be an n-dimensional real vector space. A lattice in V is a subgroup
of the form Γ=Zv1+·· ·+Zvm, where {v1, . . . ,vm} is a linearly independent
set of vectors in V . The lattice is called complete if m= n. To Γ (or
rather, to its generating set {v1, . . . ,vm}) is associated its fundamental

mesh or fundamental region, ΦΓ, defined as

ΦΓ = {α1v1+·· ·+αmvm : 0≤αi < 1}.

Claim: Completeness is equivalent to V =⋃

γ∈Γ(ΦΓ+γ).

The right-hand side is easily seen to be equal to the real vector space
spanned by v1, . . . ,vm.

In order words, Γ is complete if every element of V is a translate of an
element in the fundamental region by a lattice point.
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Lattices and Geometrical Methods Lattices

Characterization of Lattices

Definition

A subset Γ of Rn is said to be discrete if, for any radius r ≥ 0, Γ contains
only finitely many points at a radius at most r from 0.

Proposition

A subgroup Γ⊂V is a lattice if and only if it is discrete.

Suppose, first, that Γ is a lattice.

Choose a basis v1, . . . ,vm.

Consider the vector space V0 spanned by these vectors.

By linear independence of the set, every vector v ∈V0 can be
expressed uniquely as a linear combination of the basis.

So we can define a continuous φ :Rm →Rm by

φ(a1v1+·· ·+amvm)= (a1, . . . ,am).
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Lattices and Geometrical Methods Lattices

Characterization of Lattices (Cont’d)

Pick some radius r ≥ 0.

Consider the closed ball B of radius r around 0.

Since B is closed and bounded, it is compact.

Thus, φ(B) is also compact.

Thus, is a subset of the closed ball of some radius M, say.

If v = a1v1+·· ·+amvm ∈B , then we must have ‖φ(v)‖ ≤M.

So ‖(a1, . . . ,am)‖ ≤M.

This implies that |ai | ≤M, for all i .

Thus, there are only finitely many points in Γ with this property.

So Γ is discrete.
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Lattices and Geometrical Methods Lattices

Characterization of Lattices (Converse)

Conversely, suppose Γ is discrete.

Let V0 be the R-span of Γ, of some dimension m.

Let {u1, . . . ,um} be a basis of V0 formed of elements in Γ.

Let
Γ0 =Zu1+·· ·+Zum ⊆Γ.

Suppose
Γ=

⋃

i∈I
(Γ0+γi),

a (disjoint) union of cosets of Γ0 in Γ.

Now Γ0 is complete in V0, and γi ∈V0.

So γi is the translate of some µi ∈ΦΓ0 by an element of Γ0.

Then Γ0+γi = Γ0+µi .

So
Γ=

⋃

i∈I
(Γ0+µi).
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Lattices and Geometrical Methods Lattices

Characterization of Lattices (Converse Cont’d)

However, µi ∈Γ as well as µi ∈ΦΓ0 .

As Γ is discrete, Γ∩ΦΓ0 is finite, since ΦΓ0 certainly lies inside some
closed ball.

It follows that I is finite.

Thus, if q denotes the index of Γ0 in Γ, we have qΓ⊂ Γ0.

Then

Γ⊂Z

(

1

q
u1

)

+·· ·+Z

(

1

q
um

)

.

But now we can apply a previous proposition.

Γ is a subset of a free abelian group of rank m.

So Γ admits a Z-basis. I.e., for some r ≤m,

Γ=Zv1+·· ·+Zvr .

The set {v1, . . . ,vr } is linearly independent as the vectors span V0 (so
that in fact r =m).
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Lattices and Geometrical Methods Lattices

Example of a Non-Lattice

Consider Z1+Z
p

2 inside R.

This is a perfectly good subgroup of R (under addition).

Each of the basis elements is a multiple of the other.

So Z1+Z
p

2 is not a lattice.

Nor is it discrete.

We can find a,b ∈Z, such that a+b
p

2 is arbitrarily close to 0.
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Lattices and Geometrical Methods Lattices

Criterion for Completeness

Proposition

A lattice Γ⊂V is complete if and only if there exists a bounded BV ⊂V ,
such that

V =
⋃

γ∈Γ
(BV +γ).

Suppose Γ is complete. Then we may take BV =ΦΓ.

Assume, conversely, that BV is bounded, such that V =
⋃

γ∈Γ(BV +γ).

There exists a constant d , such that every point of BV lies at a
distance of at most d from 0.

Then the collection of translates {BV +γ : γ ∈Γ} contains no point
which lies at a distance greater than d from some element of Γ.

However, if V0 denotes the span of Γ, and V0 is not all of V , then it is
of strictly smaller dimension.

Thus, there exist points in V which lie arbitrarily far from V0.
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Lattices and Geometrical Methods Lattices

Volumes of Fundamental Domains

We compute the volume of a fundamental domain for a lattice in Rn.

If Γ is a lattice, write vol(Γ) for vol(ΦΓ).

Proposition

Suppose that Γ=Zv1+·· ·+Zvn is a lattice in Rn. If vi = (ai1 · · · ain), then

vol(Γ)= |det(aij)|.

Write {e1, . . . ,en} for the standard basis of Rn, so that vi =
∑n

i=1
aijej .

Write x1, . . . ,xn for the co-ordinates of a general point of Rn with
respect to the standard basis.

Then we have

vol(Γ)=
∫

ΦΓ

1dx1dx2 . . .dxn.
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Lattices and Geometrical Methods Lattices

Volumes of Fundamental Domains (Cont’d)

ΦΓ is given very simply in co-ordinates with respect to {v1, . . . ,vn}.

ΦΓ is the set of points α1v1+·· ·+αnvn, with 0≤αi < 1.

So we want to change basis from the standard basis to {v1, . . . ,vn}.

We have

vi =
n
∑

i=1

aijej , 1≤ i ≤ n.

So the change of basis matrix from {v1, . . . ,vn} to {e1, . . . ,en} is given by
A= (aij).

Suppose x ∈Rn is equal to

x =
n
∑

i=1

xiei and x =
n
∑

i=1

yivi .

The coefficients are transformed by the matrix A.
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Lattices and Geometrical Methods Lattices

Volumes of Fundamental Domains (Cont’d)

The co-ordinates of ΦΓ in {v1, . . . ,vn} are 0≤ yi < 1, by definition.

The formula for changing the variable in multiple integrals involves the
Jacobian of the transformation, which is just |detA|.
More precisely, we have

vol(Γ) =
∫

ΦΓ

1dx1dx2 · · ·dxn

=
∫

ΦΓ

|detA|dy1dy2 · · ·dyn

= |detA|
∫1

0
· · ·

∫1

0
1dy1 · · ·dyn

= |detA|.
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Lattices and Geometrical Methods Lattices

Centrally Symmetric and Convex Regions

Consider a vector space V , which we identify with Rn so that we can
define a volume for subsets of V .

Definition

A region X ⊂V is centrally symmetric if

x ∈X implies −x ∈X .

Definition

A region X ⊂V is convex if given x ,y ∈X , and t ∈ [0,1], then

tx + (1− t)y ∈X .

That is, if x and y lie in X , so does the line joining them.
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Lattices and Geometrical Methods Lattices

Minkowski’s Theorem

Theorem (Minkowski)

Let Γ be a complete lattice in V . Let X be a centrally symmetric convex
subset of V . Suppose

vol(X )> 2nvol(Γ).

Then X contains at least one non-zero lattice point of V .

It suffices to prove that there exist distinct γ1,γ2 ∈Γ such that
(

1

2
X +γ1

)

∩
(

1

2
X +γ2

)

6= ;.

In fact, suppose γ1+ 1
2
x1 = γ2+ 1

2
x2.

Then γ1−γ2 = 1
2
x2+ 1

2
(−x1).

By central symmetry, −x1 ∈X .

By convexity, γ1−γ2 ∈X .

Hence, γ1−γ2 ∈X ∩Γ.
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Lattices and Geometrical Methods Lattices

Proof of Minkowski’s Theorem

Suppose, to the contrary, {
1
2
X +γ}γ∈Γ are pairwise disjoint.

The same holds for the intersections {ΦΓ∩ (1
2
X +γ)}γ∈Γ with ΦΓ.

These sets are all contained in ΦΓ.

So we have

vol(Γ)≥
∑

γ∈Γ
vol

(

ΦΓ∩
(

1

2
X +γ

))

.

(ΦΓ−γ)∩ 1
2
X is a translation of ΦΓ∩ (1

2
X +γ) by −γ.

So ΦΓ∩ (1
2
X +γ) and (ΦΓ−γ)∩ 1

2
X have the same volume.

The set {ΦΓ−γ}γ∈Γ covers V .

So {(ΦΓ−γ)∩ 1
2
X }γ∈Γ covers 1

2
X .

Then

vol(Γ)≥
∑

γ∈Γ
vol

(

(ΦΓ−γ)∩
1

2
X

)

= vol

(

1

2
X

)

=
1

2n
vol(X ).

This contradicts the hypothesis on vol(X ).
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Lattices and Geometrical Methods Geometry of Number Fields

Subsection 2

Geometry of Number Fields
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Lattices and Geometrical Methods Geometry of Number Fields

Embeddings Revisited

Let K be a number field.

Inside ZK , we have the units Z×
K

.

Recall that:

An element ǫ ∈ZK is a unit if and only if NK/Q(ǫ)=±1;

Non-zero elements x1,x2 ∈ZK are associates if x1
x2

∈Z×
K

.

By a previous proposition, if [K :Q]= n, there are n embeddings of K
into C.
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Lattices and Geometrical Methods Geometry of Number Fields

Real and Complex Embeddings

Definition

If σ :K ,→C has σ(K )⊂R, then σ is said to be real.
Otherwise σ is said to be complex.
In the complex case, the conjugate, σ, defined by

σ(k)=σ(k),

is also an embedding.

Thus, if there are r1 real embeddings and r2 conjugate pairs of
complex embeddings, one has r1+2r2 = n.

We will tend to write ρ for a real embedding, σ and σ for complex
pairs, and τ when discussing an arbitrary embedding.

Using this notation, the real embeddings are {ρ1, . . . ,ρr1}, and the
complex embeddings will be {σ1,σ1, . . . ,σr2 ,σr2}.
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Lattices and Geometrical Methods Geometry of Number Fields

Embedding K into KR

Define a map

i :K ,→ Rr1 ×Cr2 ;
α 7→ (ρ1(α), . . . ,ρr1(α),σ1(α), . . . ,σr2(α)).

Suppose addition and multiplication on Rr1 ×Cr2 are defined
componentwise.

Then i preserves the additive and multiplicative structure of K .

Set KR =Rr1 ×Cr2 .

Note that, as C∼=R2 and r1+2r2 = n, KR is an n-dimensional real
vector space.

The map i embeds K into KR.
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Lattices and Geometrical Methods Geometry of Number Fields

Embedding of K into KR and a Norm

One has the norm map NK/Q on K , where NK/Q(α) was defined as
the determinant of the map mα : x 7→αx on K (using any basis for K
as a Q-vector space).

We can similarly define a map N :KR →R so that if α ∈KR, then
N(α) is defined as the determinant of the multiplication map x 7→αx

on the space KR.

It is easy to see that the map is given explicitly by

N :KR→R; (x1, . . . ,xr1 ,z1, . . . ,zr2) 7→
r1
∏

i=1

xi ·
r2
∏

i=1

|zi |2.
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Lattices and Geometrical Methods Geometry of Number Fields

The Two Norms

We can see that the following diagram commutes

K
i
✲ KR

Q

NK/Q
❄

✲ R

N
❄

In other words, given α ∈K , there is an equality

N(i(α))=NK/Q(α).

We have

N(i(α)) = N(ρ1(α), . . . ,ρr1(α),σ1(α), . . . ,σr2(α))

=
∏r1

i=1
ρi(α) ·

∏r2
i=1

|σi (α)|2

= NK/Q(α).
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Lattices and Geometrical Methods Geometry of Number Fields

An Embedding into Cn

Think of KR as a subset of Cn by defining iC :KR ,→Cn by

(x1, . . . ,xr1 ,z1, . . . ,zr2) 7→ (x1, . . . ,xr1 ,z1,z1, . . . ,zr2 ,z r2).

Notice that the map K ,→KR ,→Cn is then given by

x 7→ (ρ1(x), . . . ,ρr1(x),σ1(x),σ1(x), . . . ,σ2(x),σ2(x)).

Note that this is a ring homomorphism.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 23 / 72



Lattices and Geometrical Methods Geometry of Number Fields

A Notion of Volume

Cn has a natural inner product which, given two elements
z = (z1, . . . ,zn) and z ′ = (z ′1, . . . ,z ′n), is defined by

(z ,z ′)=
n
∑

i=1

ziz
′
i .

This gives us a length on Cn, where

‖z‖= (z ,z)1/2.

As KR is a subset, we get a length, distance, etc., on KR.

In particular, we can define the volume

vol(X )

of a subset X of KR.
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Lattices and Geometrical Methods Geometry of Number Fields

Another Notion of Volume

We can identify KR with Rn using the isomorphism

iR : (x1, . . . ,xr1 ,z1, . . . ,zr2) 7→ (x1, . . . ,xr1 ,u1,v1, . . . ,ur2 ,vr2),

where zk = uk + ivk , for k = 1, . . . ,r2.

Notice that iR is a linear map.

However, the multiplicative structure of KR is not preserved.

The space Rn has a natural inner product, the usual dot product,
which, given two elements (a1, . . . ,an) and (b1, . . . ,bn) in Rn, is given
by

〈a,b〉 =
n
∑

i=1

aibi .
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Lattices and Geometrical Methods Geometry of Number Fields

Another Notion of Volume (Cont’d)

This gives a notion of the usual Euclidean length of a vector x ∈Rn,

‖x‖=
√

〈x ,x〉.

Then we get the usual notions of distances, areas, volumes etc.

We write
volR(X )

for the volume of a subset X ⊂KR using this definition.

We will make computations of volumes of lattices in KR by mapping
them to Rn using iR and then using the previous definition.
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Lattices and Geometrical Methods Geometry of Number Fields

Relation Between vol(Γ) and volR(Γ)

Proposition

If Γ is a lattice in KR, then vol(Γ)= 2r2volR(Γ).

We illustrate the proof with a short example.

Suppose [K :Q]= 3, and we have one real embedding ρ, and one pair
of complex embeddings σ and σ.

Let ω1, ω2 and ω3 be 3 elements in K .

The volume of the lattice Γ they generate in KR is obtained by taking
the embedding iC :KR ,→Cn and computing

vol(Γ)=

∣

∣

∣

∣

∣

∣

ρ(ω1) σ(ω1) σ(ω1)
ρ(ω2) σ(ω2) σ(ω2)
ρ(ω3) σ(ω3) σ(ω3)

∣

∣

∣

∣

∣

∣

.
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Lattices and Geometrical Methods Geometry of Number Fields

Relation Between vol(Γ) and volR(Γ) (Cont’d)

On the other hand, suppose we use iR to regard KR as a subset of Rn.

Then the relevant determinant is computed as

volR(Γ)=

∣

∣

∣

∣

∣

∣

ρ(ω1) Re(σ(ω1)) Im(σ(ω1))
ρ(ω1) Re(σ(ω1)) Im(σ(ω1))
ρ(ω1) Re(σ(ω1)) Im(σ(ω1))

∣

∣

∣

∣

∣

∣

.

Let us write σ(ωj )= uj + ivj .
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Lattices and Geometrical Methods Geometry of Number Fields

Relation Between vol(Γ) and volR(Γ) (Cont’d)

Simple column operations give

vol(Γ) =

∣

∣

∣

∣

∣

∣

ρ(ω1) u1+ iv1 u1− iv1

ρ(ω2) u2+ iv2 u1− iv2

ρ(ω3) u3+ iv3 u1− iv3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

ρ(ω1) 2u1 u1− iv1

ρ(ω2) 2u2 u2− iv2

ρ(ω3) 2u3 u3− iv3

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∣

ρ(ω1) u1 u1− iv1

ρ(ω2) u2 u2− iv2

ρ(ω3) u3 u3− iv3

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∣

ρ(ω1) u1 −iv1

ρ(ω2) u2 −iv2

ρ(ω3) u3 −iv3

∣

∣

∣

∣

∣

∣

= |−2i |

∣

∣

∣

∣

∣

∣

ρ(ω1) u1 v1

ρ(ω2) u2 v2

ρ(ω3) u3 v3

∣

∣

∣

∣

∣

∣

= 2volR(Γ).

Exactly the same happens in the general case.

Every pair of complex conjugate embeddings gives an extra factor of 2
in the volume computation.
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Lattices and Geometrical Methods Geometry of Number Fields

Lattice Property of i(ZK)

Proposition

Γ= i(ZK ) is a complete lattice in KR and

vol(Γ)= |DK |1/2.

Let ZK =Zω1+·· ·+Zωn.

Then Γ=Zi(ω1)+·· ·+Zi(ωn)⊂KR.

Let M be the matrix (τiωj) as τi runs over all embeddings K ,→C.

By a previous definition, DK =∆{ω1, . . . ,ωn} = det(M)2.

So |DK |1/2 = |det(M)|.
The same argument as in a previous proposition (this works in Cn

rather than Rn) shows that vol(Γ)= |det(τiωj )|.
So we conclude that vol(Γ)= |DK |1/2.
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Lattices and Geometrical Methods Geometry of Number Fields

Discriminant of an Ideal

Let a be an integral ideal of K .

Recall that, if n= [K :Q], then a admits a Z-basis,

a=Zα1+·· ·+Zαn.

Define the discriminant of the ideal a to be

D(a)=∆{α1, . . . ,αn} = det(τiαj)
2

,

where τi runs over all of the embeddings of K into C.

D(a) is independent of the choice of Z-basis.

By definition, DK =D(ZK ).
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Lattices and Geometrical Methods Geometry of Number Fields

Volume and Discriminant

Proposition

If a is a non-zero ideal of ZK , then Γ= i(a) is a complete lattice in KR.
Further, D(a)=NK/Q(a)

2DK , and ΦΓ has volume

vol(Γ)= |D(a)|1/2 =NK/Q(a) · |DK |1/2.

By definition of the ideal norm, ZK is the (disjoint) union of NK/Q(a)
cosets of a.

Then i(a) has volume NK/Q(a) ·vol(i(ZK )).

By the preceding proposition, vol(i(ZK ))= |DK |1/2.
Therefore, vol(Γ)= |D(a)|1/2 =NK/Q(a) · |DK |1/2.
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Lattices and Geometrical Methods Geometry of Number Fields

Bounding the Volume of ΦΓ

Proposition

Let Γ be a lattice in KR. Let c1, . . . ,cr1 ,C1, . . . ,Cr2 ∈R>0 satisfy

c1 · · ·cr1(C1 · · ·Cr2)
2 >

(

2

π

)r2

vol(Γ).

Then there exists a non-zero v = (x1, . . . ,xr1 ,z1, . . . ,zr2) ∈Γ, such that
|xj | < cj , for all j = 1, . . . ,r1, and |zk | <Ck , for all k = 1, . . . ,r2.

Let X denote the set of all elements

(x1, . . . ,xr1 ,u1+ iv1, . . . ,ur2 + ivr2)

in KR =Rr1 ×Cr2 , such that:
|xj | < cj , for j = 1, . . . ,r1;

|uk + ivk |2 = u2
k
+v2

k
<C2

k
, for k = 1, . . . ,r2.

Then X is centrally symmetric and convex.
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Lattices and Geometrical Methods Geometry of Number Fields

Bounding the Volume of ΦΓ (Cont’d)

Note, also, that X is the Cartesian product of r1 intervals −cj < xj < cj
and r2 circles u2

k
+v2

k
<C 2

k
.

So
volR(X ) = (2c1) · · ·(2cr1)(πC 2

1 ) · · ·(πC
2
r2
)

= 2r1πr2c1 · · ·cr1(C 2
1 · · ·C 2

r2
).

Under the hypothesis of the statement, we see that

vol(X ) = 2r2volR(X )

> 2r1+r2πr2( 2
π
)r2vol(Γ)

r1 +2r2 =n= 2nvol(Γ).

The result now follows from Minkowski’s Theorem.
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Lattices and Geometrical Methods Geometry of Number Fields

Bounding the Norm

We will be particularly interested in the special case where Γ= i(a) is
the lattice associated to an ideal.

Proposition

Let a be a non-zero integral ideal of ZK . Then there exists a nonzero
α ∈ a, such that

|NK/Q(α)| ≤
(

2

π

)r2

NK/Q(a)|DK |1/2.

By a previous proposition, vol(a)=NK/Q(a)|DK |1/2. Choose

M >
(

2

π

)r2

NK/Q(a)|DK |1/2 =
(

2

π

)r2

vol(a).

Then choose c1, . . . ,cr1 ,C1, . . . ,Cr2 ∈R>0, satisfying

c1 · · ·cr1(C1 · · ·Cr2)
2 =M .
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Lattices and Geometrical Methods Geometry of Number Fields

Bounding the Norm (Cont’d)

By the preceding proposition, there is a non-zero element α ∈ a, such
that:

|ρ1(α)| < c1, . . ., |ρr1(α)| < cr1 ;

|σ1(α)| <C1, . . ., |σr2(α)| <Cr2 .

Note that this also implies that |σk(α)| <Ck .

Now NK/Q(α) is formed from the product over all embeddings
(including the complex conjugates).

It follows that

NK/Q(α)< c1 · · ·cr1(C1 · · ·Cr2)
2 =M .

We can do this for any M bigger than the given bound.

We conclude that there exists a non-zero α ∈ a as in the statement.
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Lattices and Geometrical Methods Finiteness of the Class Number

Subsection 3

Finiteness of the Class Number
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Lattices and Geometrical Methods Finiteness of the Class Number

The Class Group Revisited

Recall that the class group is the group of all fractional ideals of ZK ,
modulo the principal fractional ideals.

We showed the finiteness of the class number in the case of imaginary
quadratic fields.

We write C (K ) for the class group.

The order hK of C (K ) is the class number.
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Finiteness of the Class Group

Theorem

The class group C (K ) is finite.

Claim: Every ideal class [a] contains an integral ideal c of norm at
most

M =
(

2

π

)r2

|DK |1/2.

We first take any representative b of the class [a−1].

We assume that b is contained in ZK .

If not, we can multiply through by a suitable element in ZK .

By the preceding proposition, there exists β ∈ b, with β 6= 0, such that

|NK/Q(β)| ≤
(

2

π

)r2

|DK |1/2NK/Q(b).
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Finiteness of the Class Group (Cont’d)

Define
c= 〈β〉b−1 ∈ [a].

Since β ∈ b, every element of c is integral. So c⊆ZK .

Finally,

NK/Q(c)= |NK/Q(β)|NK/Q(b)
−1 ≤

(

2

π

)r2

|DK |1/2 =M .

But there are only finitely many integral ideals whose norm is at most
any given bound M.

To see this, consider the factorization of an integral ideal into primes.

Use the multiplicativity of the norm.

There can only be finitely many primes whose norm is bounded.

Thus, there can only be finitely many ideal classes.
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Constructing the Class Group

Given a number field K , compute DK and the constant M.

We know that:

Every ideal of ZK is equivalent to an ideal with norm at most M ;

Ideals factor uniquely into prime ideals;

The norm is multiplicative.

We list all prime ideals whose norm is bounded by M.

Then we list all products of those whose norm is at most M.

Every integral ideal will be equivalent to at least one ideal on this list.

So the class number is bounded by the number of these ideals.

In fact, the claim that every ideal class contains an ideal of norm at
most M =

(

2
π

)r2 |DK |1/2 is far from being best possible.

When it comes to finding the class group explicitly, it is helpful to
have a much better bound.
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Finding Better Bounds

The main problem is that the convex shape X is a “hypercube”.

Something more spherical gives better bounds.

Example: In R2, consider the open square of area 4 given by

{(x ,y) : |x | < 1, |y | < 1}.

It has no lattice point other than (0,0).

Note that the bound for circles is much better.

There is no circle of area more than π containing no lattice point
other than (0,0).

Better still is a square with sides which are diagonal, parallel to y =±x .

Every such square of area more than 2 contains a lattice point other
than (0,0).
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Xt and its Volume

Suppose, for t > 0, we consider the subset of KR defined by

Xt =
{

(x1, . . . ,xr1 ,z1, . . . ,zr2) : |x1|+ · · ·+ |xr1 |+2|z1|+ · · ·+2|zr2 | < t
}

.

Now we get a region of a different shape.

It is clearly bounded and centrally symmetric.

Lemma

The volume of the region Xt is

vol(Xt)= 2r1πr2
tn

n!
.

We use iR to write Xt as a subset of Rn.

We set zj = uj + ivj , for j = 1, . . . ,r2.
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Xt and its Volume (Cont’d)

Then iR(Xt) is the set of points
{

(x1, . . . ,xr1 ,u1,v1, . . . ,ur2 ,vr2)
}

,

satisfying

|x1|+ · · ·+ |xr1 |+2
√

u2
1 +v2

1 +·· ·+2
√

u2
r2 +v2

r2 < t .

We compute vol(X )= 2r2volR(X ).

Make a change of variable to put

(uj ,vj)=
(

Rj

2
cosθj ,

Rj

2
sinθj

)

.

The usual formula for change of variables to polar co-ordinates gives

4dujdvj =RjdRjdθj .
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Xt and its Volume (Cont’d)

Then

volR(Xt) =
∫

Xt

1dx1 · · ·dxr1du1dv1 · · ·dur2dvr2

= 2r1
∫

Xt ,xi≥0
1dx1 · · ·dxr1du1dv1 · · ·dur2dvr2

= 2r14−r2
∫

Xt ,xi≥0
R1 · · ·Rr2dx1 · · ·dxr1dR1dθ1 · · ·dRr2dθr2

= 2r14−r2(2π)r2
∫

Yt

R1 · · ·Rr2dx1 · · ·dxr1dR1 · · ·dRr2 ,

where

Yt =
{

(x1, . . . ,xr1 ,R1, . . . ,Rr2) : xj ,Rk ≥ 0,

x1+·· ·+xr1 +R1+·· ·+Rr2 < t
}

.
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Xt and its Volume (Cont’d)

Write Ir1,r2(t)=
∫

Yt

R1 · · ·Rr2dx1 · · ·dxr1dR1 · · ·dRr2 .

Then simple changes of variables show that

Ir ,s(t)= tr+2s Ir ,s(1), Ir ,s(1)=
Ir−1,s(1)

r +2s
, I0,s(1)=

I0,s−1(1)

2s(2s −1)
.

Using the second repeatedly gives Ir ,s(1)=
(2s)!

(r+2s)! I0,s(1).

Then the third, using I0,0(1)= 1, gives I0,s(1)= 1
(2s)! .

Then we get

Ir1,r2(t)= tnIr1,r2(1)= tn
(2r2)!

n!
I0,r2(1)=

1

n!
tn.

Combining these shows that

vol(Xt)= 2r2volR(Xt)= 2r22r14−r2(2π)r2 Ir1,r2(t)= 2r1πr2
tn

n!
.
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The Minkowski Bound

Proposition

Every ideal class of K contains an integral ideal c of norm at most

n!

nn

(

4

π

)r2

|DK |1/2.

The set Xt has a more natural interpretation when we consider those
elements α ∈K such that i(α) ∈Xt .

Suppose α ∈K .

Let
i(α)= (x1, . . . ,xr1 ,z1, . . . ,zr2).

Then xj = ρj(α), and zk =σk(α). Now 2|zk | = |zk |+ |zk |.
So the expression |x1|+ · · ·+ |xr1 |+2|z1|+ · · ·+2|zr2 | can be viewed as
∑

τ |τ(α)|, where τ runs over all embeddings of K into C.
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The Minkowski Bound (Cont’d)

Let [a] be any ideal class.

Take any integral representative b of [a−1].

In order to apply Minkowski’s Theorem, we choose a value of t for
which the volume of Xt is at least 2nNK/Q(b)|DK |1/2.
This simply requires choosing t so that

2r1πr2
tn

n!
> 2nvol(b)= 2nNK/Q(b)|DK |1/2.

Equivalently, since n= r1+2r2,

tn > n!

(

4

π

)r2

NK/Q(b)|DK |1/2.

By Minkowski’s Theorem, there exists a non-zero element β ∈ b with
i(β) in Xt . This is valid for any t satisfying this inequality.
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The Minkowski Bound (Cont’d)

We deduce that there is a non-zero element β ∈ b in Xt , where

tn = n!

(

4

π

)r2

NK/Q(b)|DK |1/2.

The arithmetic mean - geometric mean inequality implies that
(

∏

τ
|τ(β)|

)1/n

≤
1

n

∑

τ
|τ(β)|.

The left-hand side is just NK/Q(β).

The right-hand side is at most 1
n
t, by definition of Xt .

Thus, |NK/Q(β)|1/n ≤ t
n . I.e., |NK/Q(β)| < ( tn )

n.

By picking tn as above, we conclude that there exists β ∈ i−1(Xt)∩b,
such that

|NK/Q(β)| <
n!

nn

(

4

π

)r2

NK/Q(b)|DK |1/2.

So, if c= 〈β〉b−1 ∈ [a], then NK/Q(c)= |NK/Q(β)|NK/Q(b)
−1.
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Example

Suppose K =Q(
p

5).

Then d = 5≡ 1 mod 4.

Hence D = d = 5.

Moreover, r2 = 0.

The Minkowski bound is

n!

nn

(

4

π

)r2

|DK |1/2 =
2

22

(

4

π

)0

|5|1/2 =
p

5

2
= 1.118 . . . .

So every ideal is equivalent to one with norm 1.

But the only ideal of norm 1 is the full ring of integers, which is
principal.

Thus the class number is 1.
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Example

Consider K =Q( 3
p

2).

The discriminant is 108.

Moreover, r2 = 1.

The Minkowski bound is

n!

nn

(

4

π

)r2

|DK |1/2 =
3!

33

(

4

π

)1

|108|1/2 =
6

27

(

4

π

)p
108= 2.940 . . . .

So every ideal is equivalent to one whose norm is at most 2.

The only ideal of norm 1 is the full ring of integers, which is principal.

The ideal 〈2〉 = p3
2, where p2 = 〈 3

p
2〉 is also principal.

Thus every ideal is equivalent to a principal ideal.

So the class group is trivial.
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Example

Consider K =Q(
p
−5).

Here, d =−5≡ 3 mod 4.

So the discriminant is D = 4d =−20.

Moreover, r2 = 1.

The Minkowski bound is

n!

nn

(

4

π

)r2

|DK |1/2 =
2

22

(

4

π

)1

|−20|1/2 =
1

2

4

π

p
20= 2.84 . . . .

So every ideal is equivalent to an integral ideal of norm at most 2.

The full ring of integers is the only ideal of norm 1.

An ideal of norm 2 must divide the prime 2.

We have 〈2〉 = p2
2, where p2 = 〈2,1+

p
−5〉.

So there is a unique prime ideal of norm 2, and it is not principal.

Thus the class number is 2.
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Solutions to a Diophantine Equation

Corollary

There are no integer solutions to x3 = y2+5.

Suppose x is even.

Then y is odd.

So y2+5≡ 2 (mod 4).

This is impossible, as 8 | x3.

So x must be odd.

Suppose p | (x ,y).

Then p | x3−y2.

So p | 5.
The only possible common factor is 5.

Now if 5 | x and 5 | y , then 53 | x3.

However, 52 ∤ y2+5.

So x and y are coprime.
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Solutions to a Diophantine Equation (Cont’d)

Suppose that x3 = y2+5.

Then x3 = (y +
p
−5)(y −

p
−5).

Suppose y +
p
−5 and y −

p
−5 both lie in some prime ideal p (i.e.,

they are not coprime).

Notice that this implies that x3 ∈ p.
As p is prime, x ∈ p.
Now 2y is in p.

As x is odd, 2 is not in p.

But p is prime.

So this implies that y ∈ p.
This contradicts the coprimality of x and y .
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Solutions to a Diophantine Equation (Cont’d)

Now we have
〈y +

p
−5〉 = a3

, 〈y −
p
−5〉 = b3

.

The class number of Q(
p
−5) is 2.

Moreover, a is an ideal whose cube is principal.

We conclude that a is principal.

Similarly, b is also principal.

So y +
p
−5= uα3, for some unit u.

But the units in Q(
p
−5) are just ±1, which are both cubes.

So y +
p
−5=α3, for some α= a+b

p
−5.

Then y +
p
−5= (a+b

p
−5)3.

By considering the coefficients of
p
−5, 1= b(3a2−5b2).

Then b =±1. So 3a2−5=±1.

However, the latter has no integral solutions for a.
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Degree and Discriminant of a Number Field

Corollary

If K is a number field with [K :Q]> 1, then |DK | > 1.

By choosing any ideal a in ZK (whose norm is at least 1), the
Minkowski bound shows that

1≤
n!

nn

(

4

π

)r2

|DK |1/2.

So

|DK |1/2 ≥
nn

n!

(π

4

)r2
≥
nn

n!

(π

4

)n/2
.

Let γn denote the constant on the right-hand side of this inequality.

Then γ2 = π
2
> 1. Moreover, for n≥ 2,

γn+1

γn
=

(π

4

)1/2
(

1+
1

n

)n

> 1.

So the γn are increasing. Thus |DK | > 1.
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Degree of a Number Field and Ramification

Corollary

If K is a number field with [K :Q]> 1, then some prime p ramifies in K .

The primes that ramify in K include all those dividing the discriminant.

So the result follows from the preceding corollary.
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Subsection 4

Dirichlet’s Unit Theorem
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Two Logarithmic Maps

The group of units Z×
K

for any number field K is multiplicative.

Minkowski’s Theorem refers to vector spaces, which are additive.

To pass from a multiplicative to an additive setting, define a logarithm
map by

ℓ :K×
R

→ Rr1+r2 ;
(x1, . . . ,xr1 ,z1, . . . ,zr2) 7→ (log |x1|, . . . , log |xr1 |, log |z1|2, . . . , log |zr2 |2)

Define, also, another logarithm map (we will use the same letter, but
this should cause no confusion):

ℓ :R× → R;
x 7→ log |x |.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 59 / 72



Lattices and Geometrical Methods Dirichlet’s Unit Theorem

Relation Between Logarithmic Maps

Let tr denotes the map

tr :Rr1+r2 → R

(x1, . . . ,xr1+r2) 7→ x1+·· ·+xr1+r2 .

Then we have the commutative diagram

K× i
✲ K×

R

ℓ
✲ Rr1+r2

Q×

NK/Q
❄

✲ R×

N
❄

ℓ
✲ R

tr
❄
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Embedding Units in ZK into Rr1+r2

Recall that
Z×
K = {ǫ ∈ZK :NK/Q(ǫ)=±1}.

Put
S = {y ∈K×

R
:N(y)=±1},

H = {x ∈Rr1+r2 : tr(x)= 0}.

Notice that i maps Z×
K

into S .

Note, also, that ℓ maps S ⊆K×
R

into H ⊆Rr1+r2 .

The composite map takes the units Z×
K

into the vector space H.

Since Rr1+r2 has dimension r1+ r2, and H is defined by the vanishing
of a single linear function, H is a subspace of dimension r = r1+ r2−1.

Let λ denote the composite map, taking Z×
K

into H:

λ :Z×
K

i→ S
ℓ→H.

Let Γ=λ(Z×
K
)⊆H.
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Structure of the Kernel of λ

Proposition

The kernel of λ is µ(K ), the group of roots of unity in K .

Let x ∈ µ(K ).

For all embeddings τ of K into C, one has |τ(x)| = 1.

So the image of x in K×
R

is killed by ℓ.

Thus, µ(K )⊆ ker(λ).
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Structure of the Kernel of λ (Cont’d)

Conversely, suppose ǫ ∈ kerλ.

Then |τ(ǫ)| = 1, for all embeddings τ.

Thus, i(ǫ) lies in a bounded region of KR.

Also, i(ǫ)∈ i(ZK ), a lattice in KR.

But lattices are discrete.

Thus, there are finitely many possibilities for i(ǫ).

Hence, ker(λ) is finite.

ker(λ) is also closed under multiplication.

So every element in ker(λ) is of finite order.

Thus, it is a root of unity.
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Algebraic Structure of Γ

Lemma

Γ is a subgroup of H.

Z×
K

is a group.

Moreover, λ is a homomorphism.

So
Γ=λ(Z×

K )

is a group, contained in H.
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Geometric Structure of Γ

Proposition

Γ is a lattice in H.

We know Γ=λ(Z×
K
) is a subgroup of H.

We need to check that Γ is discrete.

Let B denote a ball of radius r ≥ 0 in H.

We must show that Γ∩B is finite.

We have

ℓ−1(Γ∩B)= ℓ−1(Γ)∩ℓ−1(B)= i(Z×
K )∩ℓ−1(B).

By definition of ℓ, we see that ℓ−1(B) is contained in a bounded
region in KR. So ℓ−1(B) is in a ball of some radius.

Also, i(ZK ) is a lattice in KR. So it is discrete.

Hence, i(Z×
K
)∩ℓ−1(B)⊆ i(ZK )∩ℓ−1(B) is finite.

Applying ℓ again, we see that Γ∩B is finite.
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A Decomposition of S

Proposition

There is a bounded region BS ⊆ S such that

S =
⋃

ǫ∈Z×
K

i(ǫ)BS .

Let y denote an element of S . We want to write this as i(ǫ)x for
some unit ǫ and some element x in a bounded region BS of S .

Consider the lattice i(ZK )⊂KR, of volume |DK |1/2.
The lattice yi(ZK ) also has volume |DK |1/2, since multiplication by y

has determinant N(y)=±1 (recall that y ∈ S).

Choose c1, . . . ,cr1 , C1, . . . ,Cr2 ∈R>0, with

M = c1 · · ·cr1(C1 · · ·Cr2)
2 >

(

2

π

)r2

|DK |1/2.
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A Decomposition of S (Cont’d)

Set
X = {(x1, . . . ,xr1 ,z1, . . . ,zr2) ∈KR : |xj | < cj , |zk | <Ck }.

By a previous proposition, X contains a non-zero point x ∈ yi(ZK ).

We have x = yi(α), for some α ∈ZK .

This gives
N(x)=N(y)N(i(α)) = ±NK/Q(α).

Consequently, NK/Q(α)<M.

We know only finitely many ideals of ZK have norm at most M.

Any element of norm at most M generates a principal ideal of norm at
most M.

It follows that there are only finitely many non-associate numbers of
norm at most M.
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A Decomposition of S (Cont’d)

Choose a set {α1, . . . ,αN } consisting of a complete set of non-associate
numbers of norm at most M.

So α= ǫ−1αk , for some k and some unit ǫ.

But then
y = xi(α)−1 = xi(αk)

−1i(ǫ).

Consider the set

BS = {s ∈ S : s ∈ i(αk)
−1 for some k}.

X is bounded.

Moreover, BS is the union of finitely many translates of X .

We conclude that BS is bounded.

Every element y ∈ S is of the form xi(ǫ), for some x ∈BS and unit ǫ.

So S =
⋃

ǫ∈Z×
K
i(ǫ)BS .
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Structure of Γ

Corollary

Γ is a complete lattice in H.

In S ⊆K×
R

, there is a bounded region BS , with S =
⋃

ǫ∈Z×
K
i(ǫ)BS .

Then we will apply our logarithm maps, and take BH = ℓ(BS).

Since ℓ is a logarithm map, we need to verify that BH is bounded.

BS , as in the preceding proof, is a finite set of translates of X .

But ℓ(X ) is bounded, since X ⊂ S .

So every element x = (x1, . . . ,xr1 ,z1, . . . ,zr2) ∈X has N(x)=±1.

Now |xj | and |zk | are bounded, so that
∏r1

j=1
|xj | ·

∏r2
k=1

|zk |2 = 1

So each |xj | and |zk | is bounded away from 0 (so there is a constant
c > 0 such that each |xj | > c and each |zk | > c).

It follows easily that ℓ(X ) is bounded in H.
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Structure of Γ (Cont’d)

A very similar argument applies to each translate ℓ(i(αk)
−1X ).

It follows that BH = ℓ(BS) is bounded.

Applying ℓ to S =
⋃

ǫ∈Z×
K
i(ǫ)BS , the equality becomes

H =
⋃

ǫ∈Z×
K

(λ(ǫ)+BH).

But Γ=λ(Z×
K
). So this becomes

H =
⋃

γ∈Γ
(γ+BH).

The result follows from a previous proposition.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 70 / 72



Lattices and Geometrical Methods Dirichlet’s Unit Theorem

Dirichlet’s Unit Theorem

Theorem (Dirichlet’s Unit Theorem)

With µ(K ) the group of roots of unity in K and r = r1+ r2−1,

Z×
K
∼=µ(K )×Zr

.

Equivalently, there exist ǫ1, . . . ,ǫr such that all ǫ ∈Z×
K

can be written
uniquely in the form

ǫ= ζǫ
ν1

1
· · ·ǫνrr ,

with ζ ∈µ(K ) and νi ∈Z.

The map λ :K× →Rr1+r2 restricts to a map λ :Z×
K
→H.

Its kernel is µ(K ) and its image is Γ.

By the corollary, Γ is a complete lattice in an r -dimensional vector
space.

Therefore, Γ∼=Zr .
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Fundamental Units

Definition

The ǫi are called fundamental units.

For the imaginary quadratic fields r1 = 0 and r2 = 1.

So r = r1+ r2−1= 0.

Therefore, we see again that imaginary quadratic fields have finitely
many units.
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