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Lattices and Geometrical Methods

Definition
Let V be an n-dimensional real vector space. A lattice in V is a subgroup
of the form I'=Zvq +--- + Zv,,, where {vq,...,vn} is a linearly independent
set of vectors in V. The lattice is called complete if m=n. To T (or
rather, to its generating set {vi,...,vp}) is associated its fundamental
mesh or fundamental region, ®r, defined as

(Dr={a’1V1+~~~+a’me:OSa’,'<1}.

: Completeness is equivalent to V' =Uyer(®r +7).

The right-hand side is easily seen to be equal to the real vector space
spanned by vi,...,Vpy.

o In order words, T is complete if every element of V is a translate of an
element in the fundamental region by a lattice point.
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Characterization of Lattices

Definition
A subset T of R" is said to be discrete if, for any radius r =0, T contains
only finitely many points at a radius at most r from 0.

Proposition

A subgroup T'c V is a lattice if and only if it is discrete.

o Suppose, first, that T is a lattice.
Choose a basis vi,...,Vm.
Consider the vector space Vg spanned by these vectors.
By linear independence of the set, every vector v € V{ can be
expressed uniquely as a linear combination of the basis.
So we can define a continuous ¢ : R™ — R™ by

P(aivi+--+amvm)=(a1,...,am)-
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Characterization of Lattices (Cont'd)

o Pick some radius r = 0.
Consider the closed ball B of radius r around 0.
Since B is closed and bounded, it is compact.
Thus, ¢(B) is also compact.
Thus, is a subset of the closed ball of some radius M, say.
If v=ajvi+-+-+amvm € B, then we must have [[¢p(v)] = M.
So lI(a1,..-,am)ll = M.
This implies that |a;| < M, for all i.
Thus, there are only finitely many points in T with this property.

So T is discrete.
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Characterization of Lattices (Converse)

o Conversely, suppose T is discrete.
Let Vo be the R-span of T', of some dimension m.
Let {u1,...,un} be a basis of V formed of elements in T.

Let
Io=%Zu1+---+Zupy,<T.
Suppose
I'={J(To+7i),
iel

a (disjoint) union of cosets of I'g in T.
Now Iy is complete in Vp, and y; € V.
So v; is the translate of some p; € ®r, by an element of T.
Then To+7y;=To+ ;.
So
I'=J(To+ i)
iel
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Characterization of Lattices (Converse Cont'd)

o However, p; €T as well as pu; € @r,.
As T is discrete, I N ®r, is finite, since @r, certainly lies inside some
closed ball.
It follows that / is finite.
Thus, if g denotes the index of Ty in T', we have qI' cT'g.
Then
1 1
IrecZ|—w|+---+Z|—uny|.
q q

But now we can apply a previous proposition.
I is a subset of a free abelian group of rank m.
So T admits a Z-basis. |.e., for some r<m,

F=%Zvi+--+2Zv,.
The set {vi,..., v} is linearly independent as the vectors span Vj (so

that in fact r =m).

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 8/72



Lattices and Geometrical Methods Lattices

Example of a Non-Lattice

o Consider Z1+7Z+/2 inside R.

This is a perfectly good subgroup of R (under addition).
Each of the basis elements is a multiple of the other.

So Z1+ 7?2 is not a lattice.

Nor is it discrete.

We can find a,b€Z, such that a+ bv2 is arbitrarily close to 0.
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Criterion for Completeness

Proposition

A lattice T < V is complete if and only if there exists a bounded By c V/,
such that

V= U (BV +’)’).
vel

o Suppose I is complete. Then we may take By = @r.
Assume, conversely, that By is bounded, such that V =Uyer(By +7).

There exists a constant d, such that every point of By lies at a
distance of at most d from 0.

Then the collection of translates {By + 7y :y €'} contains no point
which lies at a distance greater than d from some element of T.

However, if V4 denotes the span of T', and V; is not all of V/, then it is
of strictly smaller dimension.

Thus, there exist points in V' which lie arbitrarily far from V.
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Volumes of Fundamental Domains

o We compute the volume of a fundamental domain for a lattice in R".
If T is a lattice, write vol(T') for vol(®r).

Suppose that I'=Zvy +---+Zv,, is a lattice in R". If v;=(aj; -+ ajn), then

vol(T) = |det(aj)I.

o Write {ey,...,e,} for the standard basis of R", so that v;=Y" ; ajie;.

Write xi,...,x, for the co-ordinates of a general point of R" with
respect to the standard basis.

Then we have

vol(T) = ldxidxs. .. dxp,.
®r
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Volumes of Fundamental Domains (Cont'd)

o @r is given very simply in co-ordinates with respect to {vs,..., vy}
®r is the set of points ayvy +-+-+apvy,, with 0<a; <1.
So we want to change basis from the standard basis to {v,...,v,}.
We have

n
v;=Za;jej, l1<i<n.
i=1

So the change of basis matrix from {vq,...,v,} to {ey,...,e,} is given by
A= (aj).
Suppose x € R" is equal to

n n
x=) xiej and x=) yv;.
i=]_ i=1

The coefficients are transformed by the matrix A.
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Volumes of Fundamental Domains (Cont'd)

o The co-ordinates of ®r in {vy,...,v,} are 0 <y; <1, by definition.

The formula for changing the variable in multiple integrals involves the
Jacobian of the transformation, which is just |detA].

More precisely, we have
vol(T) = f ldxidxo---dxp
@r

= |detAldy1dys - - - dy,
Or

1 1

= |detA|f ...f 1dy1...dyn
0 0

= |detAl.
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Centrally Symmetric and Convex Regions

o Consider a vector space V, which we identify with R" so that we can
define a volume for subsets of V.

Definition

A region X c V is centrally symmetric if

x€X implies —-xeX.

Definition

A region X c V is convex if given x,y € X, and t € [0,1], then
tx+(1-t)yeX.
That is, if x and y lie in X, so does the line joining them.
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Minkowski's Theorem

Theorem (Minkowski)

Let T be a complete lattice in V. Let X be a centrally symmetric convex
subset of V. Suppose

vol(X) > 2"vol(T).

Then X contains at least one non-zero lattice point of V.

o It suffices to prove that there exist distinct y1,y2 €T such that
(B oo (Lxra] e
AL M VLT ke
In fact, suppose y1 + %xl =Y+ %xz.
Then y1—72 = 3%+ 3(-x1).
By central symmetry, —x; € X.
By convexity, y1 —y2 € X.
Hence, y1 —y2€ X nT.
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o Suppose, to the contrary, {%X+y}yer are pairwise disjoint.
The same holds for the intersections {@rn(%Xer)}yer with ®r.
These sets are all contained in ®r.
So we have

vol(T') = ) vol (tbr N (%X+y)).

yer

(Pr—y)n3X is a translation of ®rn (X +y) by -y.
So @rn (53X +7y) and (Pr—y)N1X have the same volume.
The set {®r —Ylyer covers V.
So {(®r-vy)n %X}y(—:r covers %X.
Then

vol(T Zvol( (Pr—-vy)n= X) —vol( X) —vol(X).

yer

This contradicts the hypothesis on vol(X).
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Subsection 2

Geometry of Number Fields
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Embeddings Revisited

o Let K be a number field.
o Inside Zg, we have the units Zj .
o Recall that:
o An element € € Z is a unit if and only if Ny /q(€) = +1;
o Non-zero elements xq,xp € Zi are associates if % €Zj.
o By a previous proposition, if [K: Q] = n, there are n embeddings of K

into C.
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Real and Complex Embeddings

Definition

If 0: K— C has 0(K)cRR, then o is said to be real.
Otherwise ¢ is said to be complex.

In the complex case, the conjugate, o, defined by
o(k)=a(k),

is also an embedding.

o Thus, if there are r; real embeddings and r, conjugate pairs of
complex embeddings, one has r; +2r, = n.

o We will tend to write p for a real embedding, o and @ for complex
pairs, and T when discussing an arbitrary embedding.

o Using this notation, the real embeddings are {p1,...,p}, and the
complex embeddings will be {o1,071,...,0,0}.
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Embedding K into Kr

o Define a map
itK — R*"xC"
a — (pi(a)....pn(a) 01(a),....0n(a)).
o Suppose addition and multiplication on R x C" are defined
componentwise.
o Then i preserves the additive and multiplicative structure of K.
o Set Kr =R xC",
o Note that, as C=R? and r; +2r> = n, Ky is an n-dimensional real

vector space.
o The map i embeds K into KR.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 20/ 72



Lattices and Geometrical Methods |Geometry of Number Fields

Embedding of K into Kgr and a Norm

@ One has the norm map N /q on K, where Ny q(a) was defined as
the determinant of the map my : x — ax on K (using any basis for K
as a Q-vector space).

o We can similarly define a map N: Kgr — IR so that if a € KR, then
N(a) is defined as the determinant of the multiplication map x— ax
on the space KR.

o It is easy to see that the map is given explicitly by

N:Kr—R; (X1,...,Xr,21,...,2r,) — Hx, le,
= i=1
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The Two Norms

o We can see that the following diagram commutes
K —L Ky
NK/Ql l’V
Q——R
In other words, given a € K, there is an equality
N(i(a)) = Nk /().
We have
N(i(a))

’V(Pl(“) opr(a)oi(a)....on(a))
2, pi(@) -T2, loi(a)l?
Nk q(a).
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An Embedding into C”

o Think of KR as a subset of C" by defining ic: K — C" by
(X1yee s Xrpr Z1y e ey Zry) = (X1y ooy Xy » 21, 215442 21y 21y ).

o Notice that the map K — Kr — C" is then given by

X = (p1(x), -+ P (%), 01(x),01(x), .., 02(x), 02(x))-

o Note that this is a ring homomorphism.
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A Notion of Volume

C" has a natural inner product which, given two elements
z=(z1,...,zp) and z' =(z],...,2;,), is defined by

n
(z,2')=) z7Z.
i=1

©

This gives us a length on C", where
Izl = (z,2)"2.

As KR is a subset, we get a length, distance, etc., on KR.

In particular, we can define the volume

vol(X)

of a subset X of KR.
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Another Notion of Volume

o We can identify Kg with R" using the isomorphism

IR (X1yee s Xryy 215 e er Zry ) = (X1y ey Xp, UL, VA, ey Upy, Viy ),

where zi = ug +ivy, for k=1,...,r.
o Notice that iR is a linear map.
o However, the multiplicative structure of KR is not preserved.

o The space R" has a natural inner product, the usual dot product,
which, given two elements (ay,...,a,) and (b1,...,b,) in R”, is given
by

n
(a,b) = Z ajb;.
i=1
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Another Notion of Volume (Cont'd)

o This gives a notion of the usual Euclidean length of a vector x e R”,

IxIl = v/ {x, x).

o Then we get the usual notions of distances, areas, volumes etc.
o We write
VO|]R(X)
for the volume of a subset X ¢ KR using this definition.

o We will make computations of volumes of lattices in Kg by mapping
them to R” using /g and then using the previous definition.
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Relation Between vol(T') and volg(T)

If T is a lattice in KR, then vol(T') = 2"2volr(T).

o We illustrate the proof with a short example.

o Suppose [K : Q] =3, and we have one real embedding p, and one pair
of complex embeddings o and .

Let w1, wo and w3 be 3 elements in K.

The volume of the lattice T’ they generate in K is obtained by taking
the embedding ic : Kr — C" and computing

(w1) o(w1) o(w1)

0
vol(T) =| p(w2) o(w2) o(w2) |.
p(ws) o(ws) o(ws)
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Relation Between vol(T") and volg(T') (Cont'd)

@ On the other hand, suppose we use /g to regard KR as a subset of R".

Then the relevant determinant is computed as

p(w1) Re(o(w1)) Im(o(w1))
volg(T) =| p(w1) Re(o(w1)) Im(o(w1)) |.
p(w1) Re(o(w1)) Im(o(w1))

Let us write o(w;) = uj + iv;.
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Relation Between vol(T") and volg(T') (Cont'd)

Simple column operations give

p(wl) up + iV1 uy — iV1 p(wl) 2U1 uy — iV1
vol(T) = p(w2) w+ive ui—iva [=| p(w2) 2u2 w—ivy
p(w3) u3z + iV3 uy — iV3 p(a)3) 2U3 usz — iV3

p(w1) w1 uv1—ivg plw1)) v -y
2 p(wz) un U2—iV2 =2 p(wz) us —in
p(w3s) us uz—iv3 p(ws) us —iv3
plow1) v w1
[=2il| p(w2) ux wva |=2volr(T).
plws) w3 vs

Exactly the same happens in the general case.

Every pair of complex conjugate embeddings gives an extra factor of 2
in the volume computation.
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Lattice Property of i(Zk)

Proposition

I'=i(Zk) is a complete lattice in Ky and

vol(T) = IDK|1/2.

o Let Zk=2w1+--+Zw,.
Then I' =Zi(w1)+ -+ Zi(wp) < KR.
Let M be the matrix (7;w;) as 7; runs over all embeddings K — C.
By a previous definition, Dx = A{wy,...,w,} = det(M)?.
So |Dk|*/? = |det(M)|.
The same argument as in a previous proposition (this works in C”
rather than R") shows that vol(T) = |det(7;w;)|.

So we conclude that vol(T) = | Dk |*/2.
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Discriminant of an Ideal

o Let a be an integral ideal of K.
Recall that, if n=[K:Q)], then a admits a Z-basis,

a:Za1+...+Zan.
o Define the discriminant of the ideal a to be
D(a) = A{al,...,an} =] det(Ti(Zj)Z,

where 7; runs over all of the embeddings of K into C.
o D(a) is independent of the choice of Z-basis.
o By definition, Dk = D(Z).
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Volume and Discriminant

If a is a non-zero ideal of Z, then T =i(a) is a complete lattice in KR.
Further, D(a) = Nk /q(a)?Dk, and ®r has volume

VO|(F) = |D(a)|1/2 = NK/Q(a) . |DK|1/2.

o By definition of the ideal norm, Z is the (disjoint) union of Nk q(a)
cosets of a.

Then i(a) has volume Ny q(a)-vol(i(Zk)).
By the preceding proposition, vol(i(Zx)) = |Dk|"/2.
Therefore, vol(T') = |D(a)|*/? = Nk q(a)- |DkIM2.
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Bounding the Volume of ®r

Let T be a lattice in Kr. Let cy,...,¢r, G, ..., Cr, € Rsg satisfy

2 2 2
ciocy(CieeG) >(;) vol(T).

Then there exists a non-zero v =(xy,...,Xy,,21,...,2r,) €L, such that
Ixjl < ¢cj, forall j=1,...,r1, and |z¢| < C, for all k=1,...,r.

o Let X denote the set of all elements

(X1 e Xppy UL + VA, ooy Upy + 1V,)
in Kr =IR™ x C"2, such that:
o Ixjl<cj, for j=1,...,n;
° |uk+ivk|2: uf+v£ < Cf, fork=1,...,m.

Then X is centrally symmetric and convex.
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Bounding the Volume of @ (Cont'd)

o Note, also, that X is the Cartesian product of r; intervals —¢; <x; < ¢;
and r, circles ui+ vlf < le.

So

V0|]R(X) (2C1)"'(2Cr1)(”cl2)"'(”Cr22)

= 2r17'[r2C1"'Cr1(C12"'C,-22).

Under the hypothesis of the statement, we see that

vol(X) = 2"2volR (X)
> 2n+rgr2(2)r2yo|(T)
v 2"vol(T).

The result now follows from Minkowski's Theorem.
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Bounding the Norm

o We will be particularly interested in the special case where I' = i(a) is
the lattice associated to an ideal.

Proposition

Let a be a non-zero integral ideal of Zk. Then there exists a nonzero
a € a, such that

2\"
INk jq (@)l < (;) Ni /()| Dk |2

|1/2

o By a previous proposition, vol(a) = Nk q(a)IDk|*/*. Choose

2\"2 (2 r
M>|— NK/Q(a)lDKl =|— VO|(C£).
7 b4
Then choose c,...,c, G, ..., Cr, € Rso, satisfying

Cl"'Crl(Cl"'Crg)z = M.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 35/72



Lattices and Geometrical Methods |Geometry of Number Fields

Bounding the Norm (Cont'd)

o By the preceding proposition, there is a non-zero element a € a, such

that:
o lpr(a)l<ci, ... lon (@)l <cr;
o lo1(a)l<C, ..., lop(a)l < Cp,.

Note that this also implies that [o4 ()| < Ck.

Now Niq(a) is formed from the product over all embeddings
(including the complex conjugates).

It follows that
NK/Q(a) <ccn(Cree- Cr2)2 =M.

We can do this for any M bigger than the given bound.
We conclude that there exists a non-zero @ € a as in the statement.
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Subsection 3

Finiteness of the Class Number
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The Class Group Revisited

o Recall that the class group is the group of all fractional ideals of Z,
modulo the principal fractional ideals.

@ We showed the finiteness of the class number in the case of imaginary
quadratic fields.

o We write C(K) for the class group.
o The order hyk of C(K) is the class number.
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Finiteness of the Class Group

Theorem

The class group C(K) is finite.

: Every ideal class [a] contains an integral ideal ¢ of norm at

most

r
M= (g) |Dk M2,
n

We first take any representative b of the class [a71].

We assume that b is contained in Z.

If not, we can multiply through by a suitable element in Z.

By the preceding proposition, there exists S € b, with §#0, such that

INk /(B < (2) 2 |DkI/2Nic o (b).
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Finiteness of the Class Group (Cont'd)

o Define
c=(Bbtelal
Since B € b, every element of ¢ is integral. So ¢ < Zk.

Finally,
1_(2) 1/2
Nk q(c) =Nk /q(B)INk/q(b) S(;) |Dk "% =M.

But there are only finitely many integral ideals whose norm is at most
any given bound M.

To see this, consider the factorization of an integral ideal into primes.
Use the multiplicativity of the norm.
There can only be finitely many primes whose norm is bounded.

Thus, there can only be finitely many ideal classes.
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o Given a number field K, compute Dk and the constant M.
We know that:

o Every ideal of Z is equivalent to an ideal with norm at most M;
o ldeals factor uniquely into prime ideals;
o The norm is multiplicative.

We list all prime ideals whose norm is bounded by M.

Then we list all products of those whose norm is at most M.

Every integral ideal will be equivalent to at least one ideal on this list.
So the class number is bounded by the number of these ideals.

o In fact, the claim that every ideal class contains an ideal of norm at
most M = (2)|Dk|*/? is far from being best possible.

o When it comes to finding the class group explicitly, it is helpful to
have a much better bound.
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o The main problem is that the convex shape X is a “hypercube”.
o Something more spherical gives better bounds.

. In R?, consider the open square of area 4 given by
{(x,y):IxI<1lyl <1

It has no lattice point other than (0,0).
Note that the bound for circles is much better.

There is no circle of area more than 7 containing no lattice point
other than (0,0).

Better still is a square with sides which are diagonal, parallel to y = +x.

Every such square of area more than 2 contains a lattice point other
than (0,0).

George Voutsadakis (LSSU) Algebraic Number Theory



Lattices and Geometrical Methods [FFiniteness of the Class Number

X: and its Volume

o Suppose, for t >0, we consider the subset of KR defined by
Xe ={(X1) o) Xryy 210 e s Zry ) X1+ oo 4 Xy |+ 2] 20| + 22+ + 2] 2, | <t}

o Now we get a region of a different shape.

o It is clearly bounded and centrally symmetric.

The volume of the region X; is

tn
vol(X¢) = 2'171'2H.

o We use g to write X; as a subset of R".

We set zj = uj+ivj, for j=1,...,n.
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X: and its Volume (Cont'd)

o Then ig(X¢) is the set of points

{(X1, s Xryy UL, Vs Uy Vi )

[xq|+-- +|x,1|+2\/u1+v1 +2\/u,2+v,2<t

We compute vol(X) = 2"2volg (X).
Make a change of variable to put

satisfying

i 0; i 9)
(uJ,vJ)—(2 costj, - —Lsin
The usual formula for change of variables to polar co-ordinates gives

4dujdv; = R;dR;d0;.
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X: and its Volume (Cont'd)

o Then
volr(X:) = f1dx1---dxrlduldvl---du,zdv,2
Xe
= 2’1f ldxq -+ dxp, duidvy - duy, dvy,
Xt,X,'ZO
= 2M4r Ri---Rpdxq -+ dx,, dR1d6; - dR,,d6,,
Xt,X,'EO
= 2’14"2(271)’2[ Ri---Rpdxy---dxy, dRy---dR.,,
Y:
where

Yt:{(Xl""’XrI’Rl""’er):)(ijkZO,
X1+ +Xq + R+ + Ry, <t}
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X: and its Volume (Cont'd)

o Write /,1,,2(t)=f Ry Rydxy - dxy dRy -~ dR,,.
Yi
Then simple changes of variables show that

Ir—l,s(]-) _ 10.5—1(1)

Irs(t) = tr+2slr,s(1)» lrs(1) = o 0,s(1) = 25(2s— 1)-

Using the second repeatedly gives /,s(1) = A2 lo,s(1).

r+25)|

Then the third, using lpo(1) =1, gives lo,s(1) =
Then we get

2o

2r 1
b= 1 p () = E2 )= L

Combining these shows that

n

vol(X;) = 2"volr(X¢) =272147"2(27) "2 1, 1, (t) = 2" " oy
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The Minkowski Bound

Every ideal class of K contains an integral ideal ¢ of norm at most

- (i)rz |Dk M2,
T

nn

o The set X; has a more natural interpretation when we consider those
elements @ € K such that i(a) € X;.

Suppose a € K.
Let
i(@) = (X1y- ) Xryr 215 r Zry)-
Then x; = pj(a), and zx = ok (a). Now 2|zx| = |z,| + [Zl.
So the expression |xq|+ -+ +|xp | +2|z1|+ -+ +2|z,| can be viewed as
Y. 17(a)l, where T runs over all embeddings of K into C.
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o Let [a] be any ideal class.
Take any integral representative b of [a~!].

In order to apply Minkowski's Theorem, we choose a value of t for
which the volume of X; is at least 2"NK/Q(E1)|DK|1/2.

This simply requires choosing t so that

n

I I t n n
277" — > 2"vol(b) =2 Nk jq(b)IDk /2.
Equivalently, since n=r; +2r,
4\"
t”>n!(;) Nk /q(b)| Dk /.

By Minkowski's Theorem, there exists a non-zero element € b with
i(B) in X¢. This is valid for any t satisfying this inequality.
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o We deduce that there is a non-zero element S € b in X;, where

n 4\ 1/2
t :n!(;) NK/Q([J)|DK| .

The arithmetic mean - geometric mean inequality implies that

(l;[ IT(ﬁ)I)l/n < %; z(B)!.

The left-hand side is just Nk q(B).
The right-hand side is at most %t, by definition of X;.

Thus, [Nk /q(B)IY/"< L. Le., INk/q(B) < (£)".
By picking t" as above, we conclude that there exists f€i~*(X;)nb,
such that

| (4\
|NK/Q(,3)|<%(;) Ni q(b)IDc 2.

So, if c=(BYb~ € [a], then Ni/q(c) =Nk q(B)INk/q(b)™t.
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Example

o Suppose K = Q(V5).
Then d=5=1 mod4.
Hence D =d =5.
Moreover, r, = 0.

The Minkowski bound is

| (4)\" 0
n (i) |D |2 = 2 (i) I5]1/2 = ? =1.118....

n"\m 22\

So every ideal is equivalent to one with norm 1.

But the only ideal of norm 1 is the full ring of integers, which is
principal.

Thus the class number is 1.
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Example

o Consider K = Q(V2).

The discriminant is 108.

Moreover, r, = 1.

The Minkowski bound is

:—L(%) |Dk 1M/ = g( ) 1108/%/2 = ( )\/W 2.940....

So every ideal is equivalent to one whose norm is at most 2.
The only ideal of norm 1 is the full ring of integers, which is principal.
The ideal (2) =p§, where ps = (¥/2) is also principal.
Thus every ideal is equivalent to a principal ideal.

So the class group is trivial.
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o Consider K = Q(V-5).
Here, d =-5=3 mod 4.
So the discriminant is D = 4d = —20.
Moreover, rp, = 1.
The Minkowski bound is
n (i)’2 D22 2 (£)1|_20|1/2 14 -2
n"\x 22\n 27
So every ideal is equivalent to an integral ideal of norm at most 2.
The full ring of integers is the only ideal of norm 1.
An ideal of norm 2 must divide the prime 2.
We have (2) = p%, where p> = (2,1+ v/=5).
So there is a unique prime ideal of norm 2, and it is not principal.

Thus the class number is 2.
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Solutions to a Diophantine Equation

Corollary

There are no integer solutions to x3 = y? +5.

o Suppose x is even.
Then y is odd.
So y2+5=2 (mod 4).
This is impossible, as 8| x3.
So x must be odd.
Suppose p|(x,y).
Then p|x3 - y?2.
So p|5.
The only possible common factor is 5.
Now if 5|x and 5|y, then 53| x3.
However, 52 J(yz +5.
So x and y are coprime.
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Solutions to a Diophantine Equation (Cont'd)

o Suppose that x3 = y?+5.
Then x3 = (y +Vv=5)(y - V-5).

Suppose y + V-5 and y — V=5 both lie in some prime ideal p (i.e.,
they are not coprime).

Notice that this implies that x3 € p.
As p is prime, x €p.

Now 2y is in p.

As x is odd, 2 is not in p.

But p is prime.

So this implies that y € p.

This contradicts the coprimality of x and y.
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o Now we have
(y+V-By=da®, (y-V-5)=b>
The class number of Q(v/-5) is 2.
Moreover, a is an ideal whose cube is principal.
We conclude that a is principal.
Similarly, b is also principal.
So y +v—=5=ua3, for some unit u.
But the units in Q(v/~5) are just +1, which are both cubes.
So y +v—=5=a3, for some a =a+ bv-5.
Then y +v=5=(a+bv-5)3.
By considering the coefficients of V=5, 1 = b(3a%—5b?).
Then b=+1. So 3a°—5=+1.
However, the latter has no integral solutions for a.
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Degree and Discriminant of a Number Field

Corollary

If K is a number field with [K: Q] > 1, then |Dg|>1.

o By choosing any ideal a in Zx (whose norm is at least 1), the
Minkowski bound shows that

So
12 n"myr2 _n" (m\n/2
Let y, denote the constant on the right-hand side of this inequality.
Then y2 = 7 > 1. Moreover, for n=2,
Ve (5)1/2 (1+ l)n >1.
Yn 4 n
So the vy, are increasing. Thus [Dg|>1.
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Degree of a Number Field and Ramification

Corollary

If K is a number field with [K : Q] > 1, then some prime p ramifies in K.

o The primes that ramify in K include all those dividing the discriminant.

So the result follows from the preceding corollary.
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Subsection 4

Dirichlet's Unit Theorem
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Two Logarithmic Maps

o The group of units Zj for any number field K is multiplicative.
o Minkowski's Theorem refers to vector spaces, which are additive.
o To pass from a multiplicative to an additive setting, define a logarithm
map by
C:KE — RATE
(X1)+er X1y 21,29 2Zr,)  —  (loglxil,...,log|xy, |, loglz11?,...,log |z, %)

o Define, also, another logarithm map (we will use the same letter, but
this should cause no confusion):

/:R* - R;
x — log|x|.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 59 /72



Lattices and Geometrical Methods [ Dirichlet's'Unit Theorem

Relation Between Logarithmic Maps

o Let tr denotes the map

tr: Rt - R

(X1, s X 4r,) = X1+ Xpytry
o Then we have the commutative diagram
K> —I> K _€> Rt
R
NK/Ql Nl {tr

Q - R gv]R
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Embedding Units in Zk into R™*"2

o Recall that
Z;(( ={eeZlk: NK/Q(E) =+1}.
o Put
S = {yeKj:N(y)==1},
H = {xeR"*""2:tr(x)=0}.
o Notice that i maps Zj into S.
o Note, also, that £ maps S < K} into H< R "2,
o The composite map takes the units Z; into the vector space H.
o Since R"*"2 has dimension r; +r;, and H is defined by the vanishing

of a single linear function, H is a subspace of dimension r=r; +r» —1.
Let A denote the composite map, taking Zj into H:

©

275 S L H.
o Let T=A(Z}) < H.
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Structure of the Kernel of A

The kernel of A is u(K), the group of roots of unity in K.

o Let x e pu(K).
For all embeddings 7 of K into C, one has |7(x)|=1.
So the image of x in K is killed by 2.
Thus, u(K) cker(1).
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Structure of the Kernel of A (Cont'd)

o Conversely, suppose € € kerA.
Then |7(€)l =1, for all embeddings 7.
Thus, i(€) lies in a bounded region of KRy.
Also, i(€) € i(Zk), a lattice in K.
But lattices are discrete.
Thus, there are finitely many possibilities for i(e).
Hence, ker(A) is finite.
ker(A) is also closed under multiplication.
So every element in ker(A) is of finite order.

Thus, it is a root of unity.
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Algebraic Structure of T

I is a subgroup of H.

© Z, is a group.
Moreover, A is a homomorphism.

So
r=A(Z)

is a group, contained in H.
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Geometric Structure of T

T is a lattice in H.

o We know T'=A(Z;) is a subgroup of H.
We need to check that T is discrete.
Let B denote a ball of radius r=0 in H.
We must show that T'n B is finite.
We have

e (rnB)=¢ )N (B)=i(Z})neY(B).

By definition of ¢, we see that £71(B) is contained in a bounded
region in Kr. So ¢71(B) is in a ball of some radius.

Also, i(Zk) is a lattice in Kg. So it is discrete.

Hence, i(Z},)n¢~Y(B) < i(Zk)n ¢ *(B) is finite.

Applying ¢ again, we see that I'n B is finite.
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A Decomposition of S

There is a bounded region Bs < S such that

S= U i(e)Bs.

X
€€Zy

o Let y denote an element of S. We want to write this as i(€)x for
some unit € and some element x in a bounded region Bs of S.

Consider the lattice i(Zk) < KR, of volume |D|1/2.

The lattice yi(Z) also has volume |Dy|'/?, since multiplication by y
has determinant N(y) =+1 (recall that y € S).

Choose ci,...,¢, G,..., Cr, € Rso, with

2 (2" 1/2
M=c--cr (G- Cp) >(;) Dk !|™/<.
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A Decomposition of S (Cont'd)

o Set
X =A(X1,. s Xr» 21+, 2r,) € KR 2 IXj1 < €y |2k| < Ci).
By a previous proposition, X contains a non-zero point x € yi(Z).
We have x =yi(a), for some a € Z.

This gives
N(x) = N(y)N(i(a)) = + Nk q(a).

Consequently, Nk /q(a) <M.
We know only finitely many ideals of Zyk have norm at most M.

Any element of norm at most M generates a principal ideal of norm at
most M.

It follows that there are only finitely many non-associate numbers of
norm at most M.
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A Decomposition of S (Cont'd)

o Choose a set {ay,...,ap} consisting of a complete set of non-associate
numbers of norm at most M.

So a =e"tay, for some k and some unit .
But then
y=xi(a)™t = xi(ax)i(e).

Consider the set
Bs=1{seS:sei(ay)™! for some k}.

X is bounded.

Moreover, Bs is the union of finitely many translates of X.

We conclude that Bg is bounded.

Every element y € S is of the form xi(e), for some x € Bs and unit e.
So S= Ueezz i(€)Bs.
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Structure of T

Corollary

I is a complete lattice in H.

o In Sc Ky, there is a bounded region Bs, with SteeZ; i(€)Bs.
Then we will apply our logarithm maps, and take By = ¢(Bs).
Since ¢ is a logarithm map, we need to verify that By is bounded.
Bs, as in the preceding proof, is a finite set of translates of X.

But ¢(X) is bounded, since X c S.

So every element x = (x1,...,Xn,21,...,2,) € X has N(x) =+1.

Now |x;j| and |z4| are bounded, so that HFZIWI'H;2=1|Z/<|2 =1

So each |xj| and |z| is bounded away from 0 (so there is a constant
¢ >0 such that each |xj| > ¢ and each |z| > c).

It follows easily that £(X) is bounded in H.
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Structure of T (Cont'd)

o A very similar argument applies to each translate £(i(ax) 1 X).
It follows that By = ¢(Bs) is bounded.
Applying ¢ to S =Ukcezx i(€)Bs, the equality becomes

H= U (A(e) + Bn).

X
€€Zy

But T'=A(Zj;). So this becomes

H=U(r+Bn).
yel

The result follows from a previous proposition.
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Dirichlet's Unit Theorem

Theorem (Dirichlet’s Unit Theorem)

With p(K) the group of roots of unity in K and r=r1 +r—1,
Zy = u(K)xZ".
Equivalently, there exist €1,...,€, such that all e € Z . can be written
uniquely in the form
62561/1...6:/’,
with { € u(K) and v; € Z.

o The map A: K* —R™*" restricts to a map A:Zj; — H.
Its kernel is u(K) and its image is T

By the corollary, T is a complete lattice in an r-dimensional vector
space.

Therefore, T = Z".
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Fundamental Units

Definition

The €; are called fundamental units.

o For the imaginary quadratic fields r; =0 and r» =1.
Sor=n+rn-1=0.

Therefore, we see again that imaginary quadratic fields have finitely
many units.
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