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@ Other Fields of Small Degree
o Continued Fractions
o Continued Fractions of Square Roots
o Real Quadratic Fields
o Biquadratic Fields
o Cubic Fields
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Other Fields of Small Degree

Units in Real Quadratic Fields

Let K be the number field Q(V/d), with d >0 a squarefree integer.
Suppose Vd is chosen to be the positive square root of d.

It allows regarding one element of K as larger or smaller than another.
We work out some units for Q(v2).

°
°
o This is equivalent to choosing an embedding from K into R.
o
o
o Previous calculations show that the ring of integers is Z[v2].

o So a general integer is one of the form

a+bv2, abelZ.
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Other Fields of Small Degree

Units in Real Quadratic Fields

o A general integer is one of the form
a+bv2, abeZ.
o The norm of a+ bV is given by
Ng(va) q(a+bv2) = (a+bv2)(a—bv2) = a° - 2%,

o Units have the property that their norm is +1.
o We therefore need to solve the equation

a®-2b% = +1.
o This is an example of Pell’s equation,
x2—ny?=1.

o In the next section, we see how to solve it using continued fractions.
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Other Fields of Small Degree

Some Solutions of a2 —2b% = +1

Consider the equation
a’—2b*=+1.
o It certainly has the trivial solutions a=+1, b=0.
o These correspond to the elements +1 in Q(v2).
o We can see that a=+1, b=+1, also give solutions.
o They corresponding to units +1+ v/2.
o Notice that:

—-(1+v2) -1-v2;
(1+v2)7! -1+v2:
-(1+v2)! = 1-v2.

o So all these units are easily generated from 1+ /2.
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Other Fields of Small Degree

o In the imaginary quadratic case, it was always true that the units were
roots of unity.

o 1++/2is not a root of unity, since it is a real number greater than 1.
o The product of units is again a unit.

o So any power of 1+ V2 is also a unit.

o Eg, (1+Vv2)?2=3+2v2 is a unit.

o lts inverse is 3—2v/2.

o More generally, (1+v2)" is a unit, for all n>1.

o Since (1+v2)7'=(~1+V2), we can conclude that (1+V?2)" is a
unit, for every integer n.

o So, from the single unit 1+ /2, we can generate infinitely many units
{+(1+v2)".

o We will see that these are the only units in Z[v2].
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The Case Zk = Z[Vd]

Let Zk = Z[Vd].
An element A =a+ bv/d is a unit if and only if its norm is +1.

©

@ The norm is given by
Nk q(A) = (a+bVd)(a—bVd) = 2> - db°.
o So we need (a,b) to be a solution of the equation
x2—dy® = +1.

o The equation x> —dy? =1, where d is a positive integer and not a
square, is known as Pell’s equation.
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Other Fields of Small Degree

The Case Zk = Z[Vd] (Cont'd)

o Pell's equation
x?—dy?=+1

always has infinitely many integral solutions.

o To find them, one way is to observe that the equzation x?—dy’=1
implies that x? and dy? are very close, so that }% is approximately d.

o In particular, }5, is very close to Vd.

o Finding rational numbers close to a given real number can be done
using the theory of continued fractions.
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Other Fields of Small Degree |SContinued Fractions

Subsection 1

Continued Fractions
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Example of a Continued Fraction

o Considered again Euclid’s algorithm for the pair 630 and 132.

630 = 4-132+102
132 = 1-102+30
102 = 3-30+12
30 = 2-12+6
12 = 2:6+0

One consequence is that we can cancel the highest common factor of

6 from the numerator and denominator to get the fraction 12025 in

lowest terms.
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Example of a Continued Fraction (Cont'd)

o We also see that:

2 - 2

We see that the left-hand side of each equation is the reciprocal of the
final term on the right-hand side of the previous one.
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Example of a Continued Fraction (Cont'd)

o We can combine the preceding equations into a single expression.

630 _ 102
32 = 4t
W

= 4+ 30
1+302
- 4+1+1(1)2
30

This last expression is the continued fraction for ?gg

We use the abbreviated form [4;1,3,2,2].
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Example of a Continued Fraction (Cont'd)

o We can obtain fractions which approximate the original expression by
taking only the initial parts of the expression.

[4] = 4
[4;1] = 4+1=
[4;1,3] = 4+ﬁ=149
[4;1,3,2] = 4+1+211 2
*t3

These fractions approach the original expression very quickly.

They are known as the convergents.
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Other Fields of Small Degree

o To recover the convergents we list the numbers appearing in the

continued fraction expansion, together with two further rows, in a
|4 1 3 2 2
table as follows: "0 1 ‘

1 0
Each column is completed by taking the previous column, multiplying
by the integer at the top, and adding the column before that.

| 4 1322 4 1 322
0 1{4x1+0 0 1|4 1x4+1
1 0‘4><0+1 1 0‘1 1x1+0
41 3 22 |41 3 2 2
0 1[4 5 3x5+4 0 1|4 5 19 43 105
1 0‘1 1 3x1+1 1 0‘1 1 4 9 22

The numerator and denominator of the convergents appear as the
columns.
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Notation for Convergents

o Consider a number & € R.

o Write p, = % for the convergents to €.

% corresponds to the entry below the first number.

o
o So we have pg=[¢] and gog=1.
o We extend this to the left.
o We obtain
p-2=0, g-2=1,
p-1=1, q-1=0.

©

These represent the first two columns of the table.

Suppose the continued fraction of & is [ag; a1, a2,...].
Then

akPk-1+ Pk-2,
akqk-1+ qk—2.

Pk
qk

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 15 /82



Other Fields of Small Degree |SContinued Fractions

Successive Convergents

Lemma

If % and % are successive convergents, then
n n

Pn+1Gn = Pnqn+1 = (=1)".

o We prove this by induction on n.
For n=-2, p_19-2—p-2qg-1=1.
Now suppose that Py 410k — Pkdist = (~1)F.

We have
Pk+2 = adk+2Pk+1t Pk,

qk+2 Ak+29k+1 T qk-

It follows that
Pk+29k+1 — Pk+19k+2

(ak+2Pk+1+ Pk)Gk+1 — Pr+1(3k+2Gk+1 + k)
— (Pk+19k — PkQk+1)-
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Notation for Continued Fractions

o Suppose

cf= [30;31,32,...] =aqg+ — 1
art =

o Set
$n= [an; dn+1,dn+2;-- ]

o Then we have, e.g.,

Ea%
Il

1
30+a
1

ap+—r
0 a1+é
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An Expression in Terms of Continued Fractions

We have

EnPn-1+Pp-2
¢=laoia1,...,an-1,¢n] = —— .
[ ! n] $nGn-1+Qqn-2
o By definition, & =[ag;a1,...,an-1,&n].

The second is a special case of the general claim that, for all x,

XPn + Pn-1
ap;at,...,am x| = ——.
= w ] Xqn+ qn-1

We prove this by induction.
For n=0, el .
Xpo+p-1 X6l +
: = = = + —.
[a0; x] ot da X140 1] "

This is clearly true, by definition.
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An Expression in Terms of Continued Fractions (Cont'd)

o Suppose that it is also true when n=k—1.

Then we have

[a0; a1,..-,ak,x] = [ao;a1,...,akx+ %]

(ak +2)Pk-1+ P2
(ak +L)qr-1+ qu—2
(induction hypothesis)
x(akpk-1+ Pk—2) + Pk-1
x(akqk-1+ qk-2) + Gk-1
XPk + Pk—-1
Xqk + qk-1
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Rational Approximations Using Convergents

o If & is irrational, the continued fraction convergents are very close
rational approximations.

Proposition

Suppose that ¢ is irrational. For any n=0,

1
‘E— (2] < .
dn dnqn+1
o We have, using the lemma,
Pn_ Sn+1Pn*Pn-1 Pn
L A e LU ot S L
An $n+1Gn+dn-1 Gn

Pn-19n = Pnqn-1
qn(€ns1qn+qn-1)
(="

qn(Enr1qn+qn-1) '
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Rational Approximations Using Convergents (Cont'd)

o We got
g Pn_ (=1)"
Adn qn(fn+1qn + qn—l)
So
Pn 1
f_ - =

dn qn(€n+1qn + qn—l)

an+1 = Ene1l <Ens1 1
gn(ant1qn+qn-1)

B 1
qndn+1 ’
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Relative Size of a Number and its Convergents

Corollary

If pp= % are the convergents to ¢&, then if & < pj, it follows that &> ppi1
and vice versa.

o Recall the expression

N JR G
Gn  Gn(€n+1Gn+ qn-1)

It is clearly alternating in sign.
This yields the conclusion.
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Rational Numbers and Convergents

Suppose { is a rational number such that

[b¢ — al < 1qné — Pl
Then b= gn.1.
o Suppose that we have |bé —a| < |g,é — pnl, for some b< gpi1.

We know ppGn+1— Pni1qn = =1.
So there are integers x and y, such that

XPp+YPn+1 = 4,
Xqn+ YQn+1 b.

Clearly x #0, for otherwise ygni1=b, and so b= gn1.
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Rational Numbers and Convergents (Cont'd)

o Suppose y =0.
Then a=xp, and b= xq,.
Hence,
|b¢ — al = |x|-1gn€ = pnl 2190 — pal.

This gives a contradiction.

Suppose y <0. Then xq,=b-yqgn+1. So x>0.

Suppose y > 0. Then, as b< gp+1, Xgn = b—yqn+1 <0. So, x<0.
So x and y have opposite signs.

Then x(gné —pn) and y(qn+1& — pn+1) have the same signs, by the
preceding corollary.

So we have

|b¢ — al = 1x(qné — Pn) + ¥ (Gn+1& = Pn+1)l > 1x(gné — Pn)| = 1gné — phl.

This gives a contradiction.
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Other Fields of Small Degree |SContinued Fractions

Optimality Property of Convergents

o We next show that % is the best convergent amongst rationals with
denominators of the same size or smaller.

Corollary

If 2 is a rational number such that

, for some n,

=3l <fe-22

then b> q,.

o Suppose that there is some 2, with [§ - 2| <[~ %I and b<q,.

Then
Pn

ble- 2| <an

n
So |b¢ —al <1qn¢ — pal.
This contradicts the proposition.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 25 /82



Other Fields of Small Degree |SContinued Fractions

Criterion for Convergents

Proposition

Suppose that ¢ is irrational and that £ is a rational, with

Then 7 is a continued fraction convergent to ¢.

o As before, wrlte for the convergents to ¢.
Suppose that 2 |s not a convergent.
Then g, < b< gn+1, for some n.
By a preceding proposition, we also have |bé —a| = |gné — pnl.
Then "
[gn¢ — pnl = 1bS —al < TS
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Criterion for Convergents (Cont'd)

o We found |gn¢é — pnl < 2_1b

So
1

2bqn

é‘__

I1

But this means that

1 |bp, — aqnl
ban ban
Pn a

qnb

IA

|f— |
 °
Fq,,+2b2

This implies that b< g, a contradiction.
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Subsection 2

Continued Fractions of Square Roots
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Example

o We compute the continued fraction of v/19.
It turns out that we just need to know that 4 < 19 <5.

Start with the integer part and remainder
V19=4+(V19-4).
Then do the same for the reciprocal of the remainder, rationalizing the

denominator:
1 _VI9+4 , V19-2
V19-4 3 3
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Example (Cont'd)

o This repeats:

3 _  Y19+2 _q, v19-3.
V192 5 B
5 — \/E+3=3+\/E—3.
V19-3 2 .
2 _ V1943 _ g, V19-2.
V19-3 5 5
5 — \/E+2=2+\/E—4.
V19-2 3 E
3 - - -
o = VI9+4=8+(V19-4).

Then the process repeats and we get the infinite continued fraction
[4:2,1,3,1,2,8,2,1,3,1,2,8,2,1,3,1,2,8,...].

This is abbreviated [4;2,1,3,1,2,8].
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Real Square Roots as Continuous Fractions

Proposition

Let d be a positive integer, not a square. Define

Mo=0, No=1, &=vd, ao=I&l.

Then define recursively sequences by

d—M?
Mps1=anNy—Mp, Npy1= T’Hly
n
vVd+M
$n+1= N—n+1, an+1 = L€n+1l.
n+1

Then:
1. M, and N, are integers for all n;

2. &p=ap+ 51 and so ¢ = [ag; a1, a2, .- .|
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Other Fields of Small Degree

We prove this by induction.

Clearly My and Ny are integers.

The inductive hypothesis is that M, and N are integers for k < n.

By definition, a, is always an integer.

So clearly Mp,1 =a,N,— M, is an integer.

The real content of this proposition is that N,.1 should be an integer.
Now we have

d-MZ2, d—(asN,—M,)? d-M?
Nn+1: Nn+1: ( nNn n) — N n+2anMn_a%Nn.
n n n
: d-M2 . .
So we just need to check that —— is an integer.
d—M?

ifn=1, N, = N1 So N, |d—M?2.
o _ Y
|fl—0, No—l. So N0|d MO'
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Real Square Roots as Continuous Fractions (Cont'd)

2. We work by substituting the expressions for &,,1 into a, +
n+1

an+ = apnt——
$n+l \/H+ Mpi1

Ny
+ \/a+ Mn_anNn
Ny
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Real Square Roots as Continuous Fractions (Cont'd)

With the notation of the previous result, N, >0 for all sufficiently large n.
\/_+M

o Write &), = ==5—= for the conjugate of ¢&,.

EnPn-1+Pn-2 f,-,Pn 1+Pn-2
By a previous Iemma E=¢éy= YRR So ¢y = Faitars

H / ! _ _qn—2£6_pn—2 .
Solving for &', we have &), = Irate P Rearranging, we get
6/ _ Pn-—2
6, _ qn-2 ( 0 dn-2 )
- I _ Pn1 |
qn_l 60 Adn-1

As k — oo, —k — &g. So the bracket tends to 1.
Thus, for large enough n, ¢/ <O0.

Hence, &,>0 and &), <0 for such n.

We get %ﬁa =¢p—¢&>0. Therefore, N, >0.
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Repetition of the ¢'s

With the notation of the previous results, there exists an integer k >0 with
=<k, for some j.

o We know that &, = ‘/_+M

Moreover, N, N, 11 = d M2+1 and N, >0, for sufficiently large n.
For all such n, M2+1 <d.

So there are only finitely many possibilities for each M,,.

Also, N,N,.1 <d.

Hence, if N, >0, we get N1 <d.

So that there are only finitely many possibilities for N, also.

This shows that eventually, ¢; = ¢, for some j and k> 0.
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Form of the Continued Fraction for v/d

The continued fraction of v/d has the form [bg; by, .. bk] where by =2bg.

o Take &o=Vd+|Vd].
We work out the continued fraction [ag, a1,...] of &p.
Certainly ég>1 and ag=1.
&= 1Vd| —Vd satisfies —1 < &, <0.

: =1< ¢ <0, for all non-negative integers n.

By induction.
Wehave(fizgr — Soiz&’—
Suppose &/, <0. Then , <0 Hence, ¢, <O.
Suppose, again, ¢ <0. -
Since a, =1 as d is not a square, ﬁ <-1.
So-1<¢' ;. Thus, —-1<¢] ., <O.
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Form of the Continued Fraction for v/d (Cont'd)

o Now we have —1< ¢/, <0.

So we get —1< E,L—a,,<0.
n+1l

_|_
Thus, a, = { :MJ.
By the previous lemma, there are integers j and k>0, with {; =& y.
But this implies that EJ’. =

Then

!
J+k*

1 1
dj-1= —? = | =7 | T dj+k-1-
j j+k

1 1
§j-1=aj-1+ T = djk-1+ T
/ ! T $jrk
Applying this repeatedly, we see that &y = &.

Finally,

= €j+k—1-

So the continued fraction repeats.
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Form of the Continued Fraction for v/d (Cont'd)

o We get that &y =[ag, a1,---, ak_1]-
We have & = vVd+ [Vd].

So the continued fraction [ag, a1,...] of &g is identical to the continued
fraction [bg, by,...] of Vid except that by = ap— |Vd].

But ag = [¢o) =2(V/d].

So by = [V/d] and ag = 2bg.

By the periodicity of the continued fraction for &y, we have
ap = ay = bx. So by =2by, as claimed.

Definition

We say that k >0 is the period of V/d if it is the smallest index with
$k = <o
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Relation Between Convergents and the &,'s

o Recall that if & =V/d, we put &, = ‘/aN;:V’".

Proposition

If % denotes the nth convergent to v/d, then p2 —dq2 = (=1)"*1 N,,1.

o Put &y =Vd, and define &, = ‘/EN;;V’".

. _ &nr1PntPn-1
By a previous lemma, vd = NPT

By definition, &, = ‘/_,\J;M"’“l

We substitute this in and S|mp||fy to get

\/_+Mn+
Vd Ent1Pn* Pn-1 _ ~ Npn Ny PntPn-1

§n+1qn + qn—l \/_+Mn+1 q + qn 1

Mn+1pn + Nn+1pn—1 + pn\/a
Mp+1Gn+ Npr1gn-1+ CIn\/a
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Relation Between Convergents and the &,'s (Cont'd)

o Rearranging this gives
dqn + \/H(Mn+1qn + Nn+1 qn—l) = Mn+1pn + Nn+1pn—1 + \/gpn-

Equating coefficients of V/d and the remaining terms gives the two
equations

Mni1pn+ Npr1pn-1=dqn,  Mpy1qn+ Nns1Gn-1= pn.
Multiply the first equation by g,, and the second by p,, to get

Mns1PnGn+ Nns1Pn-19n = dg;
Mi1PnGn+ Nnr1Gn-1pn P%-

Subtract to get
P = dq; = Np+1(Pndn-1 = GnPn-1)-

The result follows from a previous lemma.
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Solutions of Pell's Equation

o We deduce the main result on Pell’s equation.

o If x2—dy?=1, then ;—2 will be close to d.

o So }5, will be close to V/d.

o So we look for solutions among the convergents to v/d.

Let d >0 be an integer, not a square.

o The equation x2—dy2 =1 has infinitely many solutions;

o The equation x2—dy2 = -1 has infinitely many solutions if the continued
fraction for v/d has odd period.
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o From the previous result, we know that
p3—das=(~1)"" Nps1,

where:
Pn

° N is a convergent to \/3;
o N1 is the denominator of &,,1.
We also know that the sequence (¢,,) repeats with some period k.
This means that (/N,) repeats with period k.
As Ng =1, we deduce that Ng =1, for all integers s =0.
Suppose s or k even and n is of the form sk—1.
Then (pn,qn) solves x> —dy? =1.
So there are always infinitely many solutions.
Suppose k and s are odd and n=sk—1.
Then (pn,qn) solves x? —dy? = —1.
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Example

o We repeat the table of convergents for v/19.

We add an extra row corresponding to the p2 —dqg2.

4 2 1 3 1 2 8
0 1 4 9 13 48 61 170 1421
1 2
5

3 11 14 39 326
-2 5 -3 1 -3
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Subsection 3

Real Quadratic Fields
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Work Plan

o Write K for the number field Q(v/d), where d > 0 is squarefree.
o We know that numbers of the form +(1++v/2)" were all units in Z[v2].
o So Q(V?2) has infinitely many units.

o We suggested that, in general, units s+tv/d (for the moment, we will
suppose Zy = Z[V/d]) should have the property that 2 is a continued
fraction convergent to V/d.

o In the previous sections we have shown how to compute these.

@ We now turn to proving this is indeed the case.
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Real Quadratic Fields

Solutions of Pell's Equation and Convergents

Theorem

Let d be a squarefree positive integer, and wrlte " for the convergents to

Vd. Suppose that m is an integer with |m| < \/—. Then any solution (s, t)
to x2—dy? = m, with (s, t) = 1 satisfies s = p, and t = qp,, for some n.

o First consider the case m>0. Suppose that s?—dt? =m.
Then we have

$ = ([d+3>Vd,
S_\/d=__m vd _ _ 1
s G vd= t(s+tVd) < t(s+tvd) 2 (T5+1)

As $>Vd, we get ~*=>1. So| \/_| >3
The result follows from a previous proposition.
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Solutions of Pell's Equation and Convergents (Cont'd)

o A similar argument applies when m <0, but with some complications.
@ We can check that 2 is a convergent to Vd precisely when % is a
1
convergent to —=.
o Rewrite the expression s? —dt? =m as
1 m
oo (D)=l
d d
m m 1
o Observe that -2 >0 and |J| < \/;.
o So we may apply the preceding argument.
o In the same way, we conclude that % is a convergent to \/g.
o Therefore, £ is a convergent to Vd.
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Finding Units Using Convergents

o It follows that units s+ tv/d can be computed by:
o Looking through the continued fraction convergents to Vd;

o Finding those convergents % with

p2—dg? = 1.

o There are always solutions to this equation.

o We have already remarked that Ny =1, for all values of s, where k
denotes the period of V/d.

o This means that there are convergents %, with

pa—dq; = £1.
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o The same method works also for the case d =1 (mod 4).
o Here, though, integers are of two forms.
o Some integers are of the form a+ bv'd with a,be Z.
We can find units of this form by solving a? — db? = +1 as above.
o Other integers are of the form a+bv/d, with a, b halves of odd integers.
In this case, we need solutions to a2 —db? = +1, with a,be %Z.
Multiplying by 4, we need to solve A2 —dB? = +4, with A, B€ Z.
The theorem guarantees that all solutions may be found in the
continued fraction convergents to Vd (at least for d = 17; smaller cases
can be treated by hand).
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Example Q(v/61)

o We find some units for Q(v/61).
The continued fraction expansion of v/61 is given by

[7,1,4,3,1,2,2,1,3,4,1,14].

We can compute:
o The convergents %;
o The corresponding values of p% —61q,2,.
The 7th convergent is %.
Moreover, 39° —61-5% = -4,
It follows that M is a unit.

Then, for any integer n, £(39+5v61)" are also units.
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Example Q(Vv2)

o We explain that the units +(1+ v/2)" are the only units of Z[v2].

We first compute the continued fraction.

1
V2=1+(vV2-1), —— =V2+1=2+(v2-1).
(V2-1), —— (v2-1)
Then the process repeats with period 1.
Thus, the continued fraction is [1;2].

The table of convergents begins:

an 1 2 2 2 2 2

0 1 1 3 7 17 41 99
1 0 1 2 5 12 29 70
p>-2¢2|-1 1 -1 1 -1 1
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o Suppose 71 denotes the smallest unit of Z[v?2] satisfying
n>1 and n=a+bv2.

Then Z must be a continued fraction convergent of V2.
The calculation above shows that n=1++/2.
: The units in Z[v'2] are all necessarily of the form +n".
Suppose that A is a unit of Z[v2], and that A # +1.
Then one of /1,—)[,% and —% is greater than 1.
Suppose it is A (if not, redefine A so that it is this unit).
For some n, we have n" <A <n"*1.
By multiplying throughout by 7", we get 1< An~" <1n.
So we find a unit An~" strictly less than ), and at least 1.
But ) was chosen to be the smallest unit which was greater than 1.
So we must have An~"=1.
Then A =n", as required.
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Units in Real Quadratic Fields

Theorem

Suppose that K is a real quadratic field. Then there exists some unit > 1,
such that every unit of Z is of the form +n", for some integer n.

o Let ) denote the smallest unit of Zy greater than 1.
This can always be found from the convergents of v/d.
Let A be a unit of Zk, and that A # +1 (corresponding to n=0).
Suppose first that 1 > 1.
For some n=1, we have n" <A <n"*!,
By multiplying throughout by 7", we get 1< An~" <.
So we find a unit An~" strictly less than 7, and at least 1.
But ) was chosen to be the smallest unit which was greater than 1.
So we must have An~" =1.

Then A =n", for some integer n>1.
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Units in Real Quadratic Fields (Cont'd)

o Suppose A # =1 is any unit.
Then one of A,—A,% and —% is greater than 1.
Thus, it is of the form 1", for some n= 1.

So A =+n", for some neZ.
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Fundamental Units

Definition

A unit 7> 1, such that every unit in Z is of the form £n" is called a
fundamental unit.

o From the proof of the theorem, it is clear that n may be chosen to be
the smallest unit of Zk greater than 1.
o We know that these may be found by examining the continued
fraction expansion of V/d.
o The units in Zg, written U(Zg) or Z3,, are therefore given by
{+1} xn%, and are isomorphic as an abstract group to C x Z.
o The first component corresponds to the choice of sign;

o The second component corresponds to the power of the fundamental
unit.
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Subsection 4

Biquadratic Fields
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Biquadratic Fields

o We consider degree 4 extensions of the form Q(v/m,+/n), where m
and n are two squarefree integers, with m # n.

@ Such fields are known as biquadratic.
o Let K=Q(v/m,v/n).
o Consider
o _mn
(m, n)?

Note that vVke K.

o The three fields Q(v/m), Q(v/n) and Q(v'k) form the three quadratic
subfields of K.
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Embeddings

o There are four embeddings from K into C:

a+bym+cyn+dvk,
a+bym-cyn-dvk,
a—-bym+cyn-dvk,
a—bym-cyn+dvk.

a+byvm+cyn+dvVk—

o These can be viewed as “conjugations” fixing each of the three
quadratic subfields in turn.

©

Each embedding actually has image equal to K.

©

So these embeddings are automorphisms of K.
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Possible Cases for m,n and k

If K=Q(v/m,v/n), then we can assume, without loss of generality, that we
are in one of the following cases:

1. m=3 (mod 4), k=n=2 (mod 4);
2. m=1 (mod 4), k=n=2 (mod 4);
2 m=1 (mod 4), k=n=3 (mod 4);
4 - m=1 (mod 4), k=n=1 (mod 4).

o First, suppose 2| m and 2| n.

As m and n are squarefree, k = m n)2 is odd.

We have Q(v/m, v/7) = Q(v/, VK).

So we can always assume that (at least) one of the two generators is
the square root of an odd integer.
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o Suppose m=3 (mod 4) and n=1 (mod 4).

We can simply interchange m and n as Q(v/m,v/n) = Q(v/n,v/m).
o Suppose m=3 (mod 4) and n=3 (mod 4).

We can replace n by k.

Now mn = k(m,n)?, and (m,n) is odd (as m and n are).

So (m,n) has square congruent to 1 (mod 4).

So k=mn (mod 4).

This implies that k= mn=1 (mod 4), and Q(v/m,v/n) = Q(v/m, Vk).
Thus after permuting m, n and k, we can assume that m and n satisfy
the given congruences.

Now m is always odd.
So (m, n) is always odd, as well.
Hence, k= mn (mod 4) by the argument given above.

So k also satisfies the given congruence.
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Integral Basis for Biquadratic Fields

With the numbering of the preceding lemma, an integral basis for (the
rings of integers of) Q(v/m,/n) are given by:

1L, vm, v, Lo

5 {1,1+§/E,\/ﬁ, n;ﬁ},

3. {1, 1+5/m,\/ﬁ, \/E;\/F},

4 {1 1+vm 1+vn (1+\/ﬁ)(1+\/ﬁ)}
B e e 4 '
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Integral Basis for Biquadratic Fields (Cont'd)

o Let aeZkg.
Then we can write

a=a+bym+cvn+dvVk, ab,cdeqQ.
As a € Z, all of its conjugates
a» = a-bym+cyn-dvk,
az = a+bym-cyn-dvk,
as = a-bym-cyn+dvk
are also algebraic integers.

The set of algebraic integers is closed under addition.
So the following are also algebraic integers

a+ar, = 2a+2cy/n,
a+asz = 2a+2bym,
a+as = 2a+2dvk.
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Integral Basis for Biquadratic Fields (Case 1)

o Suppose m=3 (mod 4) and k=n=2 (mod 4).
By a previous proposition, these are integral if 2a,2b,2¢,2d € Z.
Thus,

a_A+B\/E+C\/E+D\/F
= > )
for A,B,C,D e Z, where A=2a, B=2b, C=2c and D =2d.

We also have

(a+bym)? - (cyv/n+dvk)?

aasz =
_ 2 2 2 Vm D)
= a“+2v/mab+ mb--nc 2ncd(m,n) kd
A2+ mB2—nC2—kD? , AB=nCD/(m,n)
- 4 ar 2 Vv m.

This is also integral.
Thus 4| A% + mB? — nC? — kD? and 2|AB—nCD/(m, n).
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o We know that n is even and m is odd.
So (m,n) is odd and n/(m,n) is even.
Hence, 2|AB—nCD/(m,n) implies that 2| AB.
So at least one of A and B is even.
If only one were even, then A2+ mB?—nC? - kD? would be odd.
So the first requirement would fail.
So both A and B are even.
The second divisibility is automatic.
The first reduces to 4| nC?+ kD?. Equivalently, 2| C?+ D?.
So C and D are both even or both odd.
So integers are all of the form

a=a+bym+cyvn+dvk,

a,beZ and c and d both integral or both halves of odd integers.
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Integral Basis for Biquadratic Fields (Case 1 Conclusion)

o Such elements are integer linear combinations of

k
L v Ve YK
The first three are obviously integral.
_ Vntvk
Let y= ¥,
Then
2 4mn?

(4y° = (n+k))* = (m,—n)2
The congruence conditions on m, n and k imply that this simplifies to
a monic polynomial with integer coefficients,
4 nh+k 5 (n+k 2_ mn?
== ( 4 ) ~ 4(m,n)?’

So y is also integral.
Thus, an integral basis is {1,\/5, \/E,M}
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Integral Basis for Biquadratic Fields (Cases 2 and 3)

o The remaining cases are similar and will be sketched.

In the second and third cases, which can be treated together,
m=1 (mod4) and k=n=2or3 (mod 4).

Suppose
a=a+bvm+cvn+dVkeZg.

One shows as in the first case that
a=a+bym+cyn+dvVk, 2a2b2c2deZ.

Let ap, a3 and a4 denote the conjugates of a.
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Integral Basis for Biquadratic Fields (Cases 2 and 3 Cont'd)

o Considering a + a; again, one sees that:

o aand b are both integers or both halves of odd integers;
o c and d are both integers or both halves of odd integers.

Then every integer must be an integer linear combination of

1+vm / vn+vk

1! ’
2 2

We can then show that these are all integral.
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Integral Basis for Biquadratic Fields (Case 4)

o The final case, m=k=n=1 (mod 4) is a little different.
Again we consider @+ a», a+a3 and a+ay.

By a previous proposition, these are integral if 4a,4b,4c,4d € Z, with
2a,2b,2¢ and 2d all integral or all halves of odd integers.

Thus,
‘e A+ Bym+ Cyn+DVk
2 )
where A=4a,B=4b,C=4c and D =4d are all even or all odd.
So we can write
ye A +B'v/m+C'\/n
4

AB,C,DeZ,

+D,(1+2\/ﬁ)(1+2\/ﬁ

), D'eZ.
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Integral Basis for Biquadratic Fields (Case 4 Cont'd)

o But

A'+B'vm+C'\/n :a_D,(1+\/E)(1+\/ﬁ)
4 2 2
must be integral.
So A',B',C" are all even (the coefficient of v’k is 0, which is even).
Thus, A'=23", B'=2b" and C' =2¢’, and we consider
a+bvm+c'vn
5 .

This is the sum of

(BN R
(1+2\/m)+c,(1+\/ﬁ) g dmb=c

bl
2 2

It is an integer. So 2|a'— b —C'.

It follows that the integral basis is { 1+‘/_ 1+‘/_ (1+‘/_)(1+‘/_)}
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Order of the Roots of Unity

Lemma

If K=Q(v/m,+/n), then the roots of unity in K have order 2, 4, 6, 8 or 12.

o Suppose K contains the r-th roots of unity.
Then g, =K. So Q(ur) S K.
Then we must have [Q(u/): Q] <4.
However, we will see that [Q(u,): Q] = ¢(r).
So r must satisfy ¢(r) < 4.
Suppose r=[Ip,p. Then, ¢(r) =T, p* (p-1).
We conclude that:

o No prime p=7 can divide n (otherwise p—1=6 would divide ¢(r));
o 52¢r, 3%fr and 2*¢r.
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Order of the Roots of Unity (Cont'd)

o This leads to a small list of possibilities for r.
We find that r=1, 2, 3, 4, 5, 6, 8, 10 or 12.
Of course, —1€ K.
So we always have square roots.
So r will be even.
K = Q(10) is ruled out as it is not biquadratic.
On the one hand, it contains Q(v/5).
On the other, there is no other integer d, with Q(v/d) € Q(u10).
So Q(u10) cannot be written Q(v/5,/n) for any n.
This just leaves the list in the statement.
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o The only possibility with r =12 is Q(u12) = Q(u4, ts) = Q(i, v-3).
o The only possibility with r =8 is Q(ug) = Q(i, v2).

o If both m>0 and n>0, then also k> 0.

o So every embedding of v/m,v/n and Vk is real.

o We shall refer to this case as a real biquadratic field.

o Now the only real roots of unity are +1.

o So, by Dirichlet’s Unit Theorem, there are three units, €1,€5 and €3,

such that every unit can be written in the form

a .a a3
*eites’es’,

where aj, a> and a3 are in Z.

o The fundamental units ¢; are, in general, difficult to compute.
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Remarks on Roots of Unity in the Imaginary Case

o If m<0, say, then each embedding maps /m to +v/m, not a real.
o So all the embeddings are complex.

o Moreover, they occur in two complex conjugate pairs.

o We shall refer to this case as an imaginary biquadratic field.

o By Dirichlet's Unit Theorem, there is a single unit € such that every
unit can be written as {e?, where ( is a root of unity in K, and a€ Z.

o In this case, the computation of the fundamental unit € is more
tractable.
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Subsection 5

Cubic Fields
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Cubic Fields

o A cubic field is a degree 3 extension of Q.

o It can therefore be defined as

K=Q(y),

where vy is a root of an irreducible cubic equation 7(X) € Q[X].
o Let y1 =7, y2 and y3 denote the three complex roots of f(X).

o The three embeddings from K into C are given by sending y to each
of the three roots,

7;:Q(y) — C;
Yray® — Tiaryk.
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Image of the Embeddings

@ A new phenomenon in the cubic case is that the image of the
embeddings may differ from K.

o Indeed, the image of the embedding 7; is Q(y;).

o It may happen that y; ¢ Q(y).
: Suppose that

F(X)=X3-2.

Then K =Q(V2).
Set w = e*"/3 = _1+T’\/§
The other roots of f(X) are wv2 and w? V2.

They do not belong to K.
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Splitting Field

o Consider again an irreducible cubic polynomial f(X)e Q[X].

o The splitting field L of f(X) is the field generated over Q by all of
the roots of f(X),

L=Q(y1,72 73)-
o Notice that

3 = w’V2
= 3(wV2)’(V2)
= 1
€ Q(rure).

o So L=Q(y1,72)-
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Degree of Splitting Field

If L is the splitting field of an irreducible cubic equation f(X), then

[L:Q]=3or 6.

o Certainly L contains y1. So L2Q(y1).
As the minimal polynomial of y1 is a cubic, [Q(y1): Q] =3.
Over Q(y1), the cubic f(X) must factor as

F(X)=(X=r)(X),

where f1(X) € Q(y1)[X] is a quadratic with roots y, and 3.
o Suppose Y2 € Q(y1). Then so is y3. So L=Q(y1), of degree 3.

o Suppose 2 ZQ(y1)-
Y2 and y3 are roots of an irreducible quadratic f1(X) over Q(y1).

So [Q(y1,72): Q(r1)] =2.

The tower law for degrees of field extensions now gives [L: Q] =6.
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Roots of the Cubic Equation

o The cubic equation might have three real roots.
o In this case, each of the embeddings 7; are real.

o By Dirichlet’s Unit Theorem, the units are of the form

ai a2

1,715,
where:

o 11 and 72 are fundamental units;
o a1 and ap run through integers.
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Roots of the Cubic Equation (Cont'd)

o Alternatively, the cubic might have one real root, and one complex
conjugate pair of roots.

o Then there is one real embedding, and one conjugate pair of complex
embeddings.

o By Dirichlet’s Unit Theorem, the units are of the form
n?,

where:

o (is a root of unity in K;
o 7 is a fundamental unit;
o aeZ.
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Example

@ The most natural family of cubics to consider are those of the form
Q(Va),

where a is an integer not divisible by a cube.
The minimal polynomial of ¥/a is

K9 —a,
Letting w = €2™/3, the three roots of this are
Va, w¥a, o’¥a.
Note that

2

We therefore have one real root, and one complex conjugate pair.

2oL V3 (1 \/§)_1:_w_1_
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Rings of Integers of Cubic Fields

Theorem

Suppose that K = Q(+¥/m), where m= mlmg, with m; and m» coprime and
squarefree. Write m' = m%mg.

o Then if m?>#1 (mod 9), the ring of integers has integral basis
{1, ¥m, Yo},

and K has discriminant —27m3 m3.

o If m®=1 (mod 9), the ring of integers has integral basis

{1’%’ mp + moy/m+ W}’

3
and K has discriminant —3m%m§.
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