Introduction to Algebraic Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Algebraic Number Theory

- Continued Fractions
- Continued Fractions of Square Roots
- Real Quadratic Fields
- Biquadratic Fields
- Cubic Fields

Units in Real Quadratic Fields

- Let K be the number field $\mathbb{Q}(\sqrt{d})$, with d > 0 a squarefree integer.
- Suppose \sqrt{d} is chosen to be the positive square root of d.
- This is equivalent to choosing an embedding from K into \mathbb{R} .
- It allows regarding one element of K as larger or smaller than another.
- We work out some units for $\mathbb{Q}(\sqrt{2})$.
- Previous calculations show that the ring of integers is $\mathbb{Z}[\sqrt{2}]$.
- So a general integer is one of the form

$$a+b\sqrt{2}, \quad a,b\in\mathbb{Z}.$$

Units in Real Quadratic Fields

• A general integer is one of the form

$$a+b\sqrt{2}, \quad a,b\in\mathbb{Z}.$$

• The norm of $a + b\sqrt{2}$ is given by

$$N_{\mathbb{Q}(\sqrt{2})/\mathbb{Q}}(a+b\sqrt{2}) = (a+b\sqrt{2})(a-b\sqrt{2}) = a^2 - 2b^2.$$

- Units have the property that their norm is ± 1 .
- We therefore need to solve the equation

$$a^2 - 2b^2 = \pm 1.$$

• This is an example of Pell's equation,

$$x^2 - ny^2 = 1.$$

• In the next section, we see how to solve it using continued fractions.

Some Solutions of $a^2 - 2b^2 = \pm 1$

Consider the equation

$$a^2 - 2b^2 = \pm 1.$$

- It certainly has the trivial solutions $a = \pm 1$, b = 0.
- These correspond to the elements ± 1 in $\mathbb{Q}(\sqrt{2})$.
- We can see that $a = \pm 1$, $b = \pm 1$, also give solutions.
- They corresponding to units $\pm 1 \pm \sqrt{2}$.
- Notice that:

$$\begin{array}{rcl} -(1+\sqrt{2}) &=& -1-\sqrt{2};\\ (1+\sqrt{2})^{-1} &=& -1+\sqrt{2};\\ -(1+\sqrt{2})^{-1} &=& 1-\sqrt{2}. \end{array}$$

• So all these units are easily generated from $1 + \sqrt{2}$.

Some Solutions of $a^2 - 2b^2 = \pm 1$ (Cont'd)

- In the imaginary quadratic case, it was always true that the units were roots of unity.
- $1 + \sqrt{2}$ is not a root of unity, since it is a real number greater than 1.
- The product of units is again a unit.
- So any power of $1 + \sqrt{2}$ is also a unit.
- E.g., $(1+\sqrt{2})^2 = 3+2\sqrt{2}$ is a unit.
- Its inverse is $3-2\sqrt{2}$.
- More generally, $(1 + \sqrt{2})^n$ is a unit, for all $n \ge 1$.
- Since $(1 + \sqrt{2})^{-1} = (-1 + \sqrt{2})$, we can conclude that $(1 + \sqrt{2})^n$ is a unit, for every integer n.
- So, from the single unit $1 + \sqrt{2}$, we can generate infinitely many units $\{\pm(1+\sqrt{2})^n\}$.
- We will see that these are the only units in $\mathbb{Z}[\sqrt{2}]$.

The Case $\mathbb{Z}_K = \mathbb{Z}[\sqrt{d}]$

- Let $\mathbb{Z}_{K} = \mathbb{Z}[\sqrt{d}].$
- An element $\lambda = a + b\sqrt{d}$ is a unit if and only if its norm is ± 1 .
- The norm is given by

$$N_{\mathcal{K}/\mathbb{Q}}(\lambda) = (a+b\sqrt{d})(a-b\sqrt{d}) = a^2 - db^2.$$

• So we need (a, b) to be a solution of the equation

$$x^2 - dy^2 = \pm 1.$$

• The equation $x^2 - dy^2 = 1$, where *d* is a positive integer and not a square, is known as **Pell's equation**.

The Case $\mathbb{Z}_{\mathcal{K}} = \mathbb{Z}[\sqrt{d}]$ (Cont'd)

Pell's equation

$$x^2 - dy^2 = \pm 1$$

always has infinitely many integral solutions.

- To find them, one way is to observe that the equation $x^2 dy^2 = 1$ implies that x^2 and dy^2 are very close, so that $\frac{x^2}{y^2}$ is approximately d.
- In particular, $\frac{x}{v}$ is very close to \sqrt{d} .
- Finding rational numbers close to a given real number can be done using the theory of continued fractions.

Subsection 1

Continued Fractions

Example of a Continued Fraction

• Considered again Euclid's algorithm for the pair 630 and 132.

630	=	$4 \cdot 132 + 102$
132	=	$1 \cdot 102 + 30$
102	=	3.30+12
30	=	$2 \cdot 12 + 6$
12	=	$2 \cdot 6 + 0$

One consequence is that we can cancel the highest common factor of 6 from the numerator and denominator to get the fraction $\frac{105}{22}$ in lowest terms.

Example of a Continued Fraction (Cont'd)

• We also see that:

We see that the left-hand side of each equation is the reciprocal of the final term on the right-hand side of the previous one.

Example of a Continued Fraction (Cont'd)

• We can combine the preceding equations into a single expression.

$$\frac{630}{132} = 4 + \frac{102}{132} \\ = 3 + \frac{1}{\frac{132}{102}} \\ = 4 + \frac{1}{1 + \frac{30}{102}} \\ = 4 + \frac{1}{1 + \frac{1}{\frac{102}{30}}} \\ = \cdots \\ = 4 + \frac{1}{1 + \frac{1}{\frac{1}{3+\frac{1}{2+1}}}}$$

This last expression is the **continued fraction** for $\frac{630}{132}$. We use the abbreviated form [4;1,3,2,2].

George Voutsadakis (LSSU)

Algebraic Number Theory

Example of a Continued Fraction (Cont'd)

• We can obtain fractions which approximate the original expression by taking only the initial parts of the expression.

$$[4] = 4$$

$$[4;1] = 4 + \frac{1}{1} = 5$$

$$[4;1,3] = 4 + \frac{1}{1+\frac{1}{3}} = \frac{19}{4}$$

$$[4;1,3,2] = 4 + \frac{1}{1+\frac{1}{3+\frac{1}{2}}} = \frac{43}{9}.$$

These fractions approach the original expression very quickly. They are known as the **convergents**.

Tabular Representation

Each column is completed by taking the previous column, multiplying by the integer at the top, and adding the column before that.

			4	1 3	3	2	2				4		1	3	2	2	
0	1	4 ×	1+	0					0	1	4	$1 \times$	4+1				
1	0	$4 \times 0 + 1$							1	0	1	$1 \times 1 + 0$					
		4	1	3		2	2				4	1	3	2	2		
0	1	4	5	3 × 5 +	4				0	1	4	5	19	43	10	5	
1	0	1	1	3×1+	1				1	0	1	1	4	9	22	2	

The numerator and denominator of the convergents appear as the columns.

George Voutsadakis (LSSU)

Notation for Convergents

- Consider a number $\xi \in \mathbb{R}$.
- Write $\rho_n = \frac{p_n}{q_n}$ for the convergents to ξ .
- $\frac{p_0}{q_0}$ corresponds to the entry below the first number.
- So we have $p_0 = \lfloor \xi \rfloor$ and $q_0 = 1$.
- We extend this to the left.
- We obtain

$$p_{-2} = 0, \quad q_{-2} = 1,$$

 $p_{-1} = 1, \quad q_{-1} = 0.$

- These represent the first two columns of the table.
- Suppose the continued fraction of ξ is $[a_0; a_1, a_2, \ldots]$.
- Then

$$p_k = a_k p_{k-1} + p_{k-2},$$

$$q_k = a_k q_{k-1} + q_{k-2}.$$

George Voutsadakis (LSSU)

Successive Convergents

Lemma

If
$$\frac{p_n}{q_n}$$
 and $\frac{p_{n+1}}{q_{n+1}}$ are successive convergents, then

$$p_{n+1}q_n - p_nq_{n+1} = (-1)^n$$
.

• We prove this by induction on
$$n$$
.
For $n = -2$, $p_{-1}q_{-2} - p_{-2}q_{-1} = 1$.
Now suppose that $p_{k+1}q_k - p_kq_{k+1} = (-1)^k$.
We have

$$p_{k+2} = a_{k+2}p_{k+1} + p_k,$$

$$q_{k+2} = a_{k+2}q_{k+1} + q_k.$$

It follows that

$$p_{k+2}q_{k+1} - p_{k+1}q_{k+2} = (a_{k+2}p_{k+1} + p_k)q_{k+1} - p_{k+1}(a_{k+2}q_{k+1} + q_k)$$

= $-(p_{k+1}q_k - p_kq_{k+1}).$

Notation for Continued Fractions

Suppose

$$\xi = [a_0; a_1, a_2, \ldots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}.$$

Set

$$\xi_n = [a_n; a_{n+1}, a_{n+2}, \ldots].$$

• Then we have, e.g.,

$$\xi = a_0 + \frac{1}{\xi_1} \\ = a_0 + \frac{1}{a_1 + \frac{1}{\xi_2}} \\ = \cdots.$$

George Voutsadakis (LSSU)

An Expression in Terms of Continued Fractions

Lemma

We have

$$\xi = [a_0; a_1, \dots, a_{n-1}, \xi_n] = \frac{\xi_n p_{n-1} + p_{n-2}}{\xi_n q_{n-1} + q_{n-2}}$$

By definition, ξ = [a₀; a₁,..., a_{n-1}, ξ_n].
 The second is a special case of the general claim that, for all x,

$$[a_0; a_1, \dots, a_n, x] = \frac{xp_n + p_{n-1}}{xq_n + q_{n-1}}$$

We prove this by induction.

For n = 0,

$$[a_0; x] = \frac{xp_0 + p_{-1}}{xq_0 + q_{-1}} = \frac{x\lfloor\xi\rfloor + 1}{x \cdot 1 + 0} = \lfloor\xi\rfloor + \frac{1}{x}.$$

This is clearly true, by definition.

George Voutsadakis (LSSU)

An Expression in Terms of Continued Fractions (Cont'd)

• Suppose that it is also true when n = k - 1. Then we have

$$[a_{0}; a_{1}, \dots, a_{k}, x] = [a_{0}; a_{1}, \dots, a_{k} + \frac{1}{x}]$$

$$= \frac{(a_{k} + \frac{1}{x})p_{k-1} + p_{k-2}}{(a_{k} + \frac{1}{x})q_{k-1} + q_{k-2}}$$
(induction hypothesis)
$$= \frac{x(a_{k}p_{k-1} + p_{k-2}) + p_{k-1}}{x(a_{k}q_{k-1} + q_{k-2}) + q_{k-1}}$$

$$= \frac{xp_{k} + p_{k-1}}{xq_{k} + q_{k-1}}.$$

Rational Approximations Using Convergents

• If ξ is irrational, the continued fraction convergents are very close rational approximations.

Proposition

Suppose that ξ is irrational. For any $n \ge 0$,

$$\left|\xi-\frac{p_n}{q_n}\right|<\frac{1}{q_nq_{n+1}}.$$

• We have, using the lemma,

$$\xi - \frac{p_n}{q_n} = \frac{\xi_{n+1}p_n + p_{n-1}}{\xi_{n+1}q_n + q_{n-1}} - \frac{p_n}{q_n}$$
$$= \frac{p_{n-1}q_n - p_nq_{n-1}}{q_n(\xi_{n+1}q_n + q_{n-1})}$$
$$= \frac{(-1)^n}{q_n(\xi_{n+1}q_n + q_{n-1})}.$$

Rational Approximations Using Convergents (Cont'd)

We got $\xi - \frac{p_n}{q_n} = \frac{(-1)^n}{q_n(\xi_{n+1}q_n + q_{n-1})}.$ So $\frac{1}{q_n(\xi_{n+1}q_n+q_{n-1})}$ $\left|\xi-\frac{p_n}{q_n}\right|$ $\stackrel{a_{n+1} = \lfloor \xi_{n+1} \rfloor < \xi_{n+1}}{<}$ $\overline{q_n(a_{n+1}q_n+q_{n-1})}$ = $q_n q_{n+1}$

Relative Size of a Number and its Convergents

Corollary

If $\rho_n = \frac{p_n}{q_n}$ are the convergents to ξ , then if $\xi < \rho_n$, it follows that $\xi > \rho_{n+1}$ and vice versa.

Recall the expression

$$\xi - \frac{p_n}{q_n} = \frac{(-1)^n}{q_n(\xi_{n+1}q_n + q_{n-1})}.$$

It is clearly alternating in sign. This yields the conclusion.

Rational Numbers and Convergents

Proposition

Suppose $\frac{a}{b}$ is a rational number such that

$$|b\xi-a|<|q_n\xi-p_n|.$$

Then $b \ge q_{n+1}$.

• Suppose that we have $|b\xi - a| < |q_n\xi - p_n|$, for some $b < q_{n+1}$. We know $p_nq_{n+1} - p_{n+1}q_n = \pm 1$. So there are integers x and y, such that

 $\begin{array}{rcl} xp_n+yp_{n+1}&=&a,\\ xq_n+yq_{n+1}&=&b. \end{array}$

Clearly $x \neq 0$, for otherwise $yq_{n+1} = b$, and so $b \ge q_{n+1}$.

Rational Numbers and Convergents (Cont'd)

• Suppose y = 0.

Then $a = xp_n$ and $b = xq_n$.

Hence,

$$|b\xi-a|=|x|\cdot|q_n\xi-p_n|\ge |q_n\xi-p_n|.$$

This gives a contradiction.

Suppose y < 0. Then $xq_n = b - yq_{n+1}$. So x > 0. Suppose y > 0. Then, as $b < q_{n+1}$, $xq_n = b - yq_{n+1} < 0$. So, x < 0. So x and y have opposite signs. Then $x(q_n\xi - p_n)$ and $y(q_{n+1}\xi - p_{n+1})$ have the same signs, by the preceding corollary.

So we have

$$|b\xi - a| = |x(q_n\xi - p_n) + y(q_{n+1}\xi - p_{n+1})| > |x(q_n\xi - p_n)| \ge |q_n\xi - p_n|.$$

This gives a contradiction.

Optimality Property of Convergents

• We next show that $\frac{p_n}{q_n}$ is the best convergent amongst rationals with denominators of the same size or smaller.

Corollary

If $\frac{a}{b}$ is a rational number such that

$$\left|\xi - \frac{a}{b}\right| < \left|\xi - \frac{p_n}{q_n}\right|, \text{ for some } n,$$

then $b > q_n$.

• Suppose that there is some $\frac{a}{b}$, with $|\xi - \frac{a}{b}| < |\xi - \frac{p_n}{q_n}|$ and $b \le q_n$. Then

$$b\left|\xi-\frac{a}{b}\right| < q_n\left|\xi-\frac{p_n}{q_n}\right|.$$

So $|b\xi - a| < |q_n\xi - p_n|$. This contradicts the proposition.

Criterion for Convergents

Proposition

Suppose that ξ is irrational and that $\frac{a}{b}$ is a rational, with

$$\left|\xi - \frac{a}{b}\right| < \frac{1}{2b^2}.$$

Then $\frac{a}{b}$ is a continued fraction convergent to ξ .

As before, write ^{p_n}/_{q_n} for the convergents to ξ.
 Suppose that ^a/_b is not a convergent.
 Then q_n ≤ b < q_{n+1}, for some n.
 By a preceding proposition, we also have |bξ - a| ≥ |q_nξ - p_n|.
 Then

$$|q_n\xi-p_n|\leq |b\xi-a|<\frac{1}{2b}.$$

Criterion for Convergents (Cont'd)

• We found
$$|q_n\xi - p_n| < \frac{1}{2b}$$
.
So

$$\left|\xi - \frac{p_n}{q_n}\right| < \frac{1}{2bq_n}$$

But this means that

$$\frac{1}{bq_n} \leq \frac{|bp_n - aq_n|}{bq_n}$$
$$= \left|\frac{p_n}{q_n} - \frac{a}{b}\right|$$
$$\leq \left|\xi - \frac{p_n}{q_n}\right| + \left|\xi - \frac{a}{b}\right|$$
$$< \frac{1}{2bq_n} + \frac{1}{2b^2}.$$

This implies that $b < q_n$, a contradiction.

George Voutsadakis (LSSU)

Algebraic Number Theory

Subsection 2

Continued Fractions of Square Roots

Example

We compute the continued fraction of √19.
 It turns out that we just need to know that 4 < √19 < 5.

Start with the integer part and remainder

$$\sqrt{19} = 4 + (\sqrt{19} - 4).$$

Then do the same for the reciprocal of the remainder, rationalizing the denominator:

$$\frac{1}{\sqrt{19}-4} = \frac{\sqrt{19}+4}{3} = 2 + \frac{\sqrt{19}-2}{3}.$$

Example (Cont'd)

• This repeats:

$$\begin{array}{rcl} \frac{3}{\sqrt{19}-2} & = & \frac{\sqrt{19}+2}{5} = 1 + \frac{\sqrt{19}-3}{5};\\ \frac{5}{\sqrt{19}-3} & = & \frac{\sqrt{19}+3}{2} = 3 + \frac{\sqrt{19}-3}{2};\\ \frac{2}{\sqrt{19}-3} & = & \frac{\sqrt{19}+3}{5} = 1 + \frac{\sqrt{19}-2}{5};\\ \frac{5}{\sqrt{19}-2} & = & \frac{\sqrt{19}+2}{3} = 2 + \frac{\sqrt{19}-4}{3};\\ \frac{3}{\sqrt{19}-4} & = & \sqrt{19}+4 = 8 + (\sqrt{19}-4). \end{array}$$

Then the process repeats and we get the infinite continued fraction

[4; 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, ...].

This is abbreviated $[4; \overline{2, 1, 3, 1, 2, 8}]$.

Real Square Roots as Continuous Fractions

Proposition

Let d be a positive integer, not a square. Define

$$M_0 = 0$$
, $N_0 = 1$, $\xi_0 = \sqrt{d}$, $a_0 = \lfloor \xi_0 \rfloor$.

Then define recursively sequences by

$$M_{n+1} = a_n N_n - M_n, \quad N_{n+1} = \frac{d - M_{n+1}^2}{N_n},$$

$$\xi_{n+1} = \frac{\sqrt{d} + M_{n+1}}{N_{n+1}}, \quad a_{n+1} = \lfloor \xi_{n+1} \rfloor.$$

Then:

1.
$$M_n$$
 and N_n are integers for all n ;
2. $\xi_n = a_n + \frac{1}{\xi_{n+1}}$, and so $\xi = [a_0; a_1, a_2, ...]$.

Real Square Roots as Continuous Fractions (Cont'd)

1. We prove this by induction.

Clearly M_0 and N_0 are integers.

The inductive hypothesis is that M_k and N_k are integers for $k \le n$. By definition, a_n is always an integer.

So clearly $M_{n+1} = a_n N_n - M_n$ is an integer.

The real content of this proposition is that N_{n+1} should be an integer. Now we have

$$N_{n+1} = \frac{d - M_{n+1}^2}{N_n} = \frac{d - (a_n N_n - M_n)^2}{N_n} = \frac{d - M_n^2}{N_n} + 2a_n M_n - a_n^2 N_n.$$

So we just need to check that $\frac{d-M_n^2}{N_n}$ is an integer. If $n \ge 1$, $N_n = \frac{d-M_n^2}{N_{n-1}}$. So $N_n \mid d - M_n^2$. If i = 0, $N_0 = 1$. So $N_0 \mid d - M_0^2$.

Real Square Roots as Continuous Fractions (Cont'd)

an

2. We work by substituting the expressions for ξ_{n+1} into $a_n + \frac{1}{\xi_{n+1}}$.

$$a_{n} + \frac{1}{\xi_{n+1}} = a_{n} + \frac{N_{n+1}}{\sqrt{d} + M_{n+1}}$$

$$= a_{n} + \frac{\frac{d - M_{n+1}^{2}}{N_{n}}}{\sqrt{d} + M_{n+1}}$$

$$= a_{n} + \frac{\sqrt{d} - M_{n+1}}{N_{n}}$$

$$= a_{n} + \frac{\sqrt{d} - M_{n+1}}{N_{n}}$$

$$= \frac{\sqrt{d} + M_{n}}{N_{n}} = \xi_{n}.$$

George Voutsadakis (LSSU)

Real Square Roots as Continuous Fractions (Cont'd)

Lemma

With the notation of the previous result, $N_n > 0$ for all sufficiently large n.

• Write $\xi'_n = \frac{-\sqrt{d}+M_n}{N_n}$ for the conjugate of ξ_n . By a previous lemma, $\xi = \xi_0 = \frac{\xi_n p_{n-1} + p_{n-2}}{\xi_n q_{n-1} + q_{n-2}}$. So $\xi'_0 = \frac{\xi'_n p_{n-1} + p_{n-2}}{\xi'_n q_{n-1} + q_{n-2}}$. Solving for ξ'_n , we have $\xi'_n = -\frac{q_{n-2}\xi'_0 - p_{n-2}}{q_{n-1}\xi'_0 - p_{n-1}}$. Rearranging, we get

$$\xi'_{n} = -\frac{q_{n-2}}{q_{n-1}} \left(\frac{\xi'_{0} - \frac{p_{n-2}}{q_{n-2}}}{\xi'_{0} - \frac{p_{n-1}}{q_{n-1}}} \right)$$

As $k \to \infty$, $\frac{p_k}{q_k} \to \xi_0$. So the bracket tends to 1. Thus, for large enough n, $\xi'_n < 0$. Hence, $\xi_n > 0$ and $\xi'_n < 0$ for such n. We get $\frac{2\sqrt{d}}{N_n} = \xi_n - \xi'_n > 0$. Therefore, $N_n > 0$.

Repetition of the ξ 's

Lemma

With the notation of the previous results, there exists an integer k > 0 with $\xi_j = \xi_{j+k}$, for some j.

• We know that $\xi_n = \frac{\sqrt{d+M_n}}{N}$. Moreover, $N_n N_{n+1} = d - M_{n+1}^2$ and $N_n > 0$, for sufficiently large n. For all such n, $M_{n+1}^2 < d$. So there are only finitely many possibilities for each M_n . Also, $N_n N_{n+1} < d$. Hence, if $N_n > 0$, we get $N_{n+1} < d$. So that there are only finitely many possibilities for N_n also. This shows that eventually, $\xi_i = \xi_{i+k}$, for some j and k > 0.

Form of the Continued Fraction for \sqrt{d}

Theorem

The continued fraction of \sqrt{d} has the form $[b_0; \overline{b_1, \ldots, b_k}]$ where $b_k = 2b_0$.

• Take $\xi_0 = \sqrt{d} + |\sqrt{d}|$. We work out the continued fraction $[a_0, a_1, ...]$ of ξ_0 . Certainly $\xi_0 > 1$ and $a_0 \ge 1$. $\xi'_0 = \lfloor \sqrt{d} \rfloor - \sqrt{d}$ satisfies $-1 < \xi'_0 < 0$. Claim: $-1 < \xi'_n < 0$, for all non-negative integers *n*. By induction. We have $\frac{1}{\xi_{n+1}} = \xi_n - a_n$. So $\frac{1}{\xi'-1} = \xi'_n - a_n$. Suppose $\xi'_n < 0$. Then $\frac{1}{\xi'_{n+1}} < 0$. Hence, $\xi'_{n+1} < 0$. Suppose, again, $\xi'_n < 0$. Since $a_n \ge 1$ as d is not a square, $\frac{1}{\xi'_{n+1}} < -1$. So $-1 < \xi'_{n+1}$. Thus, $-1 < \xi'_{n+1} < 0$.

George Voutsadakis (LSSU)
Form of the Continued Fraction for \sqrt{d} (Cont'd)

• Now we have $-1 < \xi'_n < 0$. So we get $-1 < \frac{1}{\xi'_{n+1}} - a_n < 0$. Thus, $a_n = \left\lfloor -\frac{1}{\xi'_{n+1}} \right\rfloor$. By the previous lemma, there are integers j and k > 0, with $\xi_j = \xi_{j+k}$. But this implies that $\xi'_j = \xi'_{j+k}$. Then

$$a_{j-1} = \left\lfloor -\frac{1}{\xi'_j} \right\rfloor = \left\lfloor -\frac{1}{\xi'_{j+k}} \right\rfloor = a_{j+k-1}.$$

Finally,

$$\xi_{j-1} = a_{j-1} + \frac{1}{\xi_j} = a_{j+k-1} + \frac{1}{\xi_{j+k}} = \xi_{j+k-1}.$$

Applying this repeatedly, we see that $\xi_0 = \xi_k$. So the continued fraction repeats.

George Voutsadakis (LSSU)

Form of the Continued Fraction for \sqrt{d} (Cont'd)

Definition

We say that k > 0 is the **period** of \sqrt{d} if it is the smallest index with $\xi_k = \xi_0$.

Relation Between Convergents and the ξ_n 's

• Recall that if
$$\xi = \sqrt{d}$$
, we put $\xi_n = \frac{\sqrt{d} + M_n}{N_n}$.

Proposition

- If $\frac{p_n}{q_n}$ denotes the *n*th convergent to \sqrt{d} , then $p_n^2 dq_n^2 = (-1)^{n+1} N_{n+1}$.
 - Put $\xi_0 = \sqrt{d}$, and define $\xi_n = \frac{\sqrt{d} + M_n}{N_n}$. By a previous lemma, $\sqrt{d} = \frac{\xi_{n+1}p_n + p_{n-1}}{\xi_{n+1}q_n + q_{n-1}}$. By definition, $\xi_{n+1} = \frac{\sqrt{d} + M_{n+1}}{N_{n+1}}$. We substitute this in and simplify to get

$$\sqrt{d} = \frac{\xi_{n+1}p_n + p_{n-1}}{\xi_{n+1}q_n + q_{n-1}} = \frac{\frac{\sqrt{d} + M_{n+1}}{N_{n+1}}p_n + p_{n-1}}{\frac{\sqrt{d} + M_{n+1}}{N_{n+1}}q_n + q_{n-1}}$$
$$= \frac{M_{n+1}p_n + N_{n+1}p_{n-1} + p_n\sqrt{d}}{M_{n+1}q_n + N_{n+1}q_{n-1} + q_n\sqrt{d}}.$$

Relation Between Convergents and the ξ_n 's (Cont'd)

Rearranging this gives

$$dq_n + \sqrt{d}(M_{n+1}q_n + N_{n+1}q_{n-1}) = M_{n+1}p_n + N_{n+1}p_{n-1} + \sqrt{d}p_n.$$

Equating coefficients of \sqrt{d} and the remaining terms gives the two equations

$$M_{n+1}p_n + N_{n+1}p_{n-1} = dq_n, \quad M_{n+1}q_n + N_{n+1}q_{n-1} = p_n.$$

Multiply the first equation by q_n , and the second by p_n , to get

$$M_{n+1}p_nq_n + N_{n+1}p_{n-1}q_n = dq_n^2$$

$$M_{n+1}p_nq_n + N_{n+1}q_{n-1}p_n = p_n^2.$$

Subtract to get

$$p_n^2 - dq_n^2 = N_{n+1}(p_n q_{n-1} - q_n p_{n-1}).$$

The result follows from a previous lemma.

George Voutsadakis (LSSU)

Algebraic Number Theory

Solutions of Pell's Equation

- We deduce the main result on Pell's equation.
- If $x^2 dy^2 = 1$, then $\frac{x^2}{y^2}$ will be close to d.
- So $\frac{x}{v}$ will be close to \sqrt{d} .
- So we look for solutions among the convergents to \sqrt{d} .

Theorem

Let d > 0 be an integer, not a square.

- The equation $x^2 dy^2 = 1$ has infinitely many solutions;
- The equation $x^2 dy^2 = -1$ has infinitely many solutions if the continued fraction for \sqrt{d} has odd period.

Solutions of Pell's Equation (Cont'd)

• From the previous result, we know that

$$p_n^2 - dq_n^2 = (-1)^{n+1} N_{n+1},$$

where:

- $\frac{p_n}{q_n}$ is a convergent to \sqrt{d} ;
- \tilde{N}_{n+1} is the denominator of ξ_{n+1} .

We also know that the sequence (ξ_n) repeats with some period k. This means that (N_n) repeats with period k.

As
$$N_0 = 1$$
, we deduce that $N_{sk} = 1$, for all integers $s \ge 0$.

Suppose *s* or *k* even and *n* is of the form sk-1.

Then
$$(p_n, q_n)$$
 solves $x^2 - dy^2 = 1$.

So there are always infinitely many solutions.

Suppose k and s are odd and
$$n = sk - 1$$
.

Then
$$(p_n, q_n)$$
 solves $x^2 - dy^2 = -1$.

George Voutsadakis (LSSU)

Example

• We repeat the table of convergents for $\sqrt{19}$. We add an extra row corresponding to the $p_n^2 - dq_n^2$.

		4	2	1	3	1	2	8
0	1	4	9	13	48	61	170	1421
1	0	1	2	3	11	14	39	326
	$p_n^2 - dq_n^2$	-3	5	-2	5	-3	1	-3

Subsection 3

Real Quadratic Fields

Work Plan

- Write K for the number field $\mathbb{Q}(\sqrt{d})$, where d > 0 is squarefree.
- We know that numbers of the form $\pm (1 + \sqrt{2})^n$ were all units in $\mathbb{Z}[\sqrt{2}]$.
- So $\mathbb{Q}(\sqrt{2})$ has infinitely many units.
- We suggested that, in general, units $s + t\sqrt{d}$ (for the moment, we will suppose $\mathbb{Z}_{K} = \mathbb{Z}[\sqrt{d}]$) should have the property that $\frac{s}{t}$ is a continued fraction convergent to \sqrt{d} .
- In the previous sections we have shown how to compute these.
- We now turn to proving this is indeed the case.

Solutions of Pell's Equation and Convergents

Theorem

Let *d* be a squarefree positive integer, and write $\frac{p_n}{q_n}$ for the convergents to \sqrt{d} . Suppose that *m* is an integer with $|m| < \sqrt{d}$. Then any solution (s, t) to $x^2 - dy^2 = m$, with (s, t) = 1 satisfies $s = p_n$ and $t = q_n$, for some *n*.

• First consider the case m > 0. Suppose that $s^2 - dt^2 = m$. Then we have

$$\frac{s}{t} = \sqrt{d + \frac{m}{t^2}} > \sqrt{d};$$

$$0 < \frac{s}{t} - \sqrt{d} = \frac{m}{t(s + t\sqrt{d})} < \frac{\sqrt{d}}{t(s + t\sqrt{d})} = \frac{1}{t^2(\frac{s}{t\sqrt{d}} + 1)}.$$

As $\frac{s}{t} > \sqrt{d}$, we get $\frac{s}{t\sqrt{d}} > 1$. So $\left|\frac{s}{t} - \sqrt{d}\right| < \frac{1}{2t^2}$. The result follows from a previous proposition.

Solutions of Pell's Equation and Convergents (Cont'd)

- A similar argument applies when m < 0, but with some complications.
- We can check that $\frac{s}{t}$ is a convergent to \sqrt{d} precisely when $\frac{t}{s}$ is a convergent to $\frac{1}{\sqrt{d}}$.
- Rewrite the expression $s^2 dt^2 = m$ as

$$t^2 - \left(\frac{1}{d}\right)s^2 = \left(-\frac{m}{d}\right).$$

- Observe that $-\frac{m}{d} > 0$ and $\left|\frac{m}{d}\right| < \sqrt{\frac{1}{d}}$.
- So we may apply the preceding argument.
- In the same way, we conclude that $\frac{t}{s}$ is a convergent to $\sqrt{\frac{1}{d}}$.
- Therefore, $\frac{s}{t}$ is a convergent to \sqrt{d} .

Finding Units Using Convergents

- It follows that units $s + t\sqrt{d}$ can be computed by:
 - Looking through the continued fraction convergents to \sqrt{d} ;
 - Finding those convergents $\frac{p_n}{q_n}$ with

$$p_n^2 - dq_n^2 = \pm 1.$$

- There are always solutions to this equation.
- We have already remarked that $N_{sk} = 1$, for all values of s, where k denotes the period of \sqrt{d} .
- This means that there are convergents $\frac{p_n}{q_n}$, with

$$p_n^2 - dq_n^2 = \pm 1.$$

Finding Units Using Convergents $(d \equiv 1 \pmod{4})$

- The same method works also for the case $d \equiv 1 \pmod{4}$.
- Here, though, integers are of two forms.
 - Some integers are of the form a + b√d with a, b ∈ Z.
 We can find units of this form by solving a² db² = ±1 as above.
 - Other integers are of the form $a + b\sqrt{d}$, with a, b halves of odd integers. In this case, we need solutions to $a^2 - db^2 = \pm 1$, with $a, b \in \frac{1}{2}\mathbb{Z}$. Multiplying by 4, we need to solve $A^2 - dB^2 = \pm 4$, with $A, B \in \mathbb{Z}$. The theorem guarantees that all solutions may be found in the continued fraction convergents to \sqrt{d} (at least for $d \ge 17$; smaller cases can be treated by hand).

Example $\mathbb{Q}(\sqrt{61})$

• We find some units for $\mathbb{Q}(\sqrt{61})$. The continued fraction expansion of $\sqrt{61}$ is given by

 $[7; \overline{1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14}].$

We can compute:

The convergents p_n/q_n;
The corresponding values of p_n²-61q_n².
The 7th convergent is 39/5.
Moreover, 39² - 61 ⋅ 5² = -4.
It follows that 39+5√61/2 is a unit.
Then, for any integer n, ±(39+5√61)ⁿ are also units.

Example $\mathbb{Q}(\sqrt{2})$

• We explain that the units $\pm (1 + \sqrt{2})^n$ are the only units of $\mathbb{Z}[\sqrt{2}]$. We first compute the continued fraction.

$$\sqrt{2} = 1 + (\sqrt{2} - 1), \quad \frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1 = 2 + (\sqrt{2} - 1).$$

Then the process repeats with period 1. Thus, the continued fraction is $[1;\overline{2}]$. The table of convergents begins:

$$a_n$$
 1
 2
 2
 2
 2
 2

 0
 1
 1
 3
 7
 17
 41
 99

 1
 0
 1
 2
 5
 12
 29
 70

 $p_n^2 - 2q_n^2$
 -1
 1
 -1
 1
 -1
 1

Example $\mathbb{Q}(\sqrt{2})$ (Cont'd)

• Suppose η denotes the smallest unit of $\mathbb{Z}[\sqrt{2}]$ satisfying

$$\eta > 1$$
 and $\eta = a + b\sqrt{2}$.

Then $\frac{a}{b}$ must be a continued fraction convergent of $\sqrt{2}$. The calculation above shows that $\eta = 1 + \sqrt{2}$. Claim: The units in $\mathbb{Z}[\sqrt{2}]$ are all necessarily of the form $\pm \eta^n$. Suppose that λ is a unit of $\mathbb{Z}[\sqrt{2}]$, and that $\lambda \neq \pm 1$. Then one of λ , $-\lambda$, $\frac{1}{\lambda}$ and $-\frac{1}{\lambda}$ is greater than 1. Suppose it is λ (if not, redefine λ so that it is this unit). For some *n*, we have $\eta^n \leq \lambda < \eta^{n+1}$. By multiplying throughout by η^{-n} , we get $1 \le \lambda \eta^{-n} < \eta$. So we find a unit $\lambda \eta^{-n}$ strictly less than η , and at least 1. But η was chosen to be the smallest unit which was greater than 1. So we must have $\lambda \eta^{-n} = 1$. Then $\lambda = \eta^n$, as required.

Units in Real Quadratic Fields

Theorem

Suppose that K is a real quadratic field. Then there exists some unit $\eta > 1$, such that every unit of \mathbb{Z}_K is of the form $\pm \eta^n$, for some integer n.

 Let η denote the smallest unit of Z_K greater than 1. This can always be found from the convergents of √d. Let λ be a unit of Z_K, and that λ ≠ ±1 (corresponding to n=0). Suppose first that λ > 1.

For some
$$n \ge 1$$
, we have $\eta^n \le \lambda < \eta^{n+1}$.

By multiplying throughout by η^{-n} , we get $1 \le \lambda \eta^{-n} < \eta$.

So we find a unit $\lambda \eta^{-n}$ strictly less than η , and at least 1.

But η was chosen to be the smallest unit which was greater than 1. So we must have $\lambda \eta^{-n} = 1$.

Then $\lambda = \eta^n$, for some integer $n \ge 1$.

Units in Real Quadratic Fields (Cont'd)

 Suppose λ ≠ ±1 is any unit. Then one of λ, -λ, ¼ and -¼ is greater than 1. Thus, it is of the form ηⁿ, for some n≥1. So λ = ±ηⁿ, for some n ∈ Z.

Fundamental Units

Definition

A unit $\eta > 1$, such that every unit in \mathbb{Z}_{K} is of the form $\pm \eta^{n}$ is called a **fundamental unit**.

- From the proof of the theorem, it is clear that η may be chosen to be the smallest unit of \mathbb{Z}_{K} greater than 1.
- We know that these may be found by examining the continued fraction expansion of \sqrt{d} .
- The units in \mathbb{Z}_K , written $U(\mathbb{Z}_K)$ or \mathbb{Z}_K^{\times} , are therefore given by $\{\pm 1\} \times \eta^{\mathbb{Z}}$, and are isomorphic as an abstract group to $C_2 \times \mathbb{Z}$.
 - The first component corresponds to the choice of sign;
 - The second component corresponds to the power of the fundamental unit.

Subsection 4

Biquadratic Fields

George Voutsadakis (LSSU)

Algebraic Number Theory

Biquadratic Fields

- We consider degree 4 extensions of the form $\mathbb{Q}(\sqrt{m}, \sqrt{n})$, where m and n are two squarefree integers, with $m \neq n$.
- Such fields are known as biquadratic.
- Let $K = \mathbb{Q}(\sqrt{m}, \sqrt{n})$.
- Consider

$$k=\frac{mn}{(m,n)^2}.$$

- Note that $\sqrt{k} \in K$.
- The three fields $\mathbb{Q}(\sqrt{m})$, $\mathbb{Q}(\sqrt{n})$ and $\mathbb{Q}(\sqrt{k})$ form the three quadratic subfields of K.

Embeddings

• There are four embeddings from K into \mathbb{C} :

$$a+b\sqrt{m}+c\sqrt{n}+d\sqrt{k}\mapsto \begin{cases} a+b\sqrt{m}+c\sqrt{n}+d\sqrt{k},\\ a+b\sqrt{m}-c\sqrt{n}-d\sqrt{k},\\ a-b\sqrt{m}+c\sqrt{n}-d\sqrt{k},\\ a-b\sqrt{m}-c\sqrt{n}+d\sqrt{k}. \end{cases}$$

- These can be viewed as "conjugations" fixing each of the three quadratic subfields in turn.
- Each embedding actually has image equal to K.
- So these embeddings are automorphisms of K.

Possible Cases for m, n and k

Lemma

If $K = \mathbb{Q}(\sqrt{m}, \sqrt{n})$, then we can assume, without loss of generality, that we are in one of the following cases:

1. $m \equiv 3 \pmod{4}$, $k \equiv n \equiv 2 \pmod{4}$;

2.
$$m \equiv 1 \pmod{4}$$
, $k \equiv n \equiv 2 \pmod{4}$;

3.
$$m \equiv 1 \pmod{4}$$
, $k \equiv n \equiv 3 \pmod{4}$;

4.
$$m \equiv 1 \pmod{4}, k \equiv n \equiv 1 \pmod{4}$$
.

• First, suppose $2 \mid m$ and $2 \mid n$.

As *m* and *n* are squarefree, $k = \frac{mn}{(m,n)^2}$ is odd. We have $\mathbb{Q}(\sqrt{m}, \sqrt{n}) = \mathbb{Q}(\sqrt{m}, \sqrt{k})$.

So we can always assume that (at least) one of the two generators is the square root of an odd integer.

Possible Cases for m, n and k (Cont'd)

Suppose m ≡ 3 (mod 4) and n ≡ 1 (mod 4). We can simply interchange m and n as Q(√m, √n) = Q(√n, √m).
Suppose m ≡ 3 (mod 4) and n ≡ 3 (mod 4). We can replace n by k. Now mn = k(m, n)², and (m, n) is odd (as m and n are). So (m, n) has square congruent to 1 (mod 4). So k ≡ mn (mod 4). This implies that k ≡ mn ≡ 1 (mod 4), and Q(√m, √n) = Q(√m, √k).

Thus after permuting m, n and k, we can assume that m and n satisfy the given congruences.

Now *m* is always odd.

So (m, n) is always odd, as well.

Hence, $k \equiv mn \pmod{4}$ by the argument given above.

So k also satisfies the given congruence.

Integral Basis for Biquadratic Fields

Proposition

With the numbering of the preceding lemma, an integral basis for (the rings of integers of) $\mathbb{Q}(\sqrt{m}, \sqrt{n})$ are given by:

1.
$$\left\{1, \sqrt{m}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{k}}{2}\right\};$$

2. $\left\{1, \frac{1+\sqrt{m}}{2}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{k}}{2}\right\};$
3. $\left\{1, \frac{1+\sqrt{m}}{2}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{k}}{2}\right\};$
4. $\left\{1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \frac{(1+\sqrt{m})(1+\sqrt{n})}{4}\right\}.$

Integral Basis for Biquadratic Fields (Cont'd)

• Let $\alpha \in \mathbb{Z}_K$.

Then we can write

$$\alpha = a + b\sqrt{m} + c\sqrt{n} + d\sqrt{k}, \quad a, b, c, d \in \mathbb{Q}.$$

As $\alpha \in \mathbb{Z}_K$, all of its conjugates

$$\begin{aligned} \alpha_2 &= a - b\sqrt{m} + c\sqrt{n} - d\sqrt{k}, \\ \alpha_3 &= a + b\sqrt{m} - c\sqrt{n} - d\sqrt{k}, \\ \alpha_4 &= a - b\sqrt{m} - c\sqrt{n} + d\sqrt{k} \end{aligned}$$

are also algebraic integers.

The set of algebraic integers is closed under addition. So the following are also algebraic integers

$\alpha + \alpha_2$	=	$2a+2c\sqrt{n}$,
$\alpha + \alpha_3$	=	$2a+2b\sqrt{m}$,
$\alpha + \alpha_4$	=	$2a+2d\sqrt{k}$.

Integral Basis for Biquadratic Fields (Case 1)

• Suppose $m \equiv 3 \pmod{4}$ and $k \equiv n \equiv 2 \pmod{4}$.

By a previous proposition, these are integral if $2a, 2b, 2c, 2d \in \mathbb{Z}$. Thus,

$$\alpha = \frac{A + B\sqrt{m} + C\sqrt{n} + D\sqrt{k}}{2},$$

for $A, B, C, D \in \mathbb{Z}$, where A = 2a, B = 2b, C = 2c and D = 2d. We also have

$$\begin{aligned} \alpha \alpha_3 &= (a+b\sqrt{m})^2 - (c\sqrt{n}+d\sqrt{k})^2 \\ &= a^2 + 2\sqrt{m}ab + mb^2 - nc^2 - 2ncd\frac{\sqrt{m}}{(m,n)} - kd^2 \\ &= \frac{A^2 + mB^2 - nC^2 - kD^2}{4} + \frac{AB - nCD/(m,n)}{2}\sqrt{m}. \end{aligned}$$

This is also integral. Thus $4 | A^2 + mB^2 - nC^2 - kD^2$ and 2|AB - nCD/(m, n).

Integral Basis for Biquadratic Fields (Case 1 Cont'd)

• We know that *n* is even and *m* is odd. So (m, n) is odd and n/(m, n) is even. Hence, 2|AB - nCD/(m, n) implies that 2|AB. So at least one of A and B is even. If only one were even, then $A^2 + mB^2 - nC^2 - kD^2$ would be odd. So the first requirement would fail. So both A and B are even. The second divisibility is automatic. The first reduces to $4 | nC^2 + kD^2$. Equivalently, $2 | C^2 + D^2$. So C and D are both even or both odd. So integers are all of the form

$$\alpha = a + b\sqrt{m} + c\sqrt{n} + d\sqrt{k},$$

 $a, b \in \mathbb{Z}$ and c and d both integral or both halves of odd integers.

Integral Basis for Biquadratic Fields (Case 1 Conclusion)

• Such elements are integer linear combinations of

1,
$$\sqrt{m}$$
, \sqrt{n} , $\frac{\sqrt{n}+\sqrt{k}}{2}$.

The first three are obviously integral. Let $\gamma = \frac{\sqrt{n} + \sqrt{k}}{2}$. Then

$$(4\gamma^2 - (n+k))^2 = \frac{4mn^2}{(m,n)^2}.$$

The congruence conditions on m, n and k imply that this simplifies to a monic polynomial with integer coefficients,

$$\gamma^{4} - \frac{n+k}{2}\gamma^{2} + \left(\frac{n+k}{4}\right)^{2} = \frac{mn^{2}}{4(m,n)^{2}}.$$

So γ is also integral. Thus, an integral basis is $\left\{1, \sqrt{m}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{k}}{2}\right\}$.

Integral Basis for Biquadratic Fields (Cases 2 and 3)

The remaining cases are similar and will be sketched.
 In the second and third cases, which can be treated together,

$$m \equiv 1 \pmod{4}$$
 and $k \equiv n \equiv 2 \text{ or } 3 \pmod{4}$.

Suppose

$$\alpha = a + b\sqrt{m} + c\sqrt{n} + d\sqrt{k} \in \mathbb{Z}_K.$$

One shows as in the first case that

$$\alpha = a + b\sqrt{m} + c\sqrt{n} + d\sqrt{k}, \quad 2a, 2b, 2c, 2d \in \mathbb{Z}.$$

Let α_2 , α_3 and α_4 denote the conjugates of α .

Integral Basis for Biquadratic Fields (Cases 2 and 3 Cont'd)

• Considering $\alpha + \alpha_i$ again, one sees that:

- a and b are both integers or both halves of odd integers;
- c and d are both integers or both halves of odd integers.

Then every integer must be an integer linear combination of

$$1, \quad \frac{1+\sqrt{m}}{2}, \quad \sqrt{n}, \quad \frac{\sqrt{n}+\sqrt{k}}{2}.$$

We can then show that these are all integral.

Integral Basis for Biquadratic Fields (Case 4)

• The final case, $m \equiv k \equiv n \equiv 1 \pmod{4}$ is a little different.

Again we consider $\alpha + \alpha_2$, $\alpha + \alpha_3$ and $\alpha + \alpha_4$.

By a previous proposition, these are integral if $4a, 4b, 4c, 4d \in \mathbb{Z}$, with 2a, 2b, 2c and 2d all integral or all halves of odd integers. Thus,

 $\alpha = \frac{A + B\sqrt{m} + C\sqrt{n} + D\sqrt{k}}{4}, \quad A, B, C, D \in \mathbb{Z},$

where A = 4a, B = 4b, C = 4c and D = 4d are all even or all odd. So we can write

$$\alpha = \frac{A' + B'\sqrt{m} + C'\sqrt{n}}{4} + D'\left(\frac{1+\sqrt{m}}{2}\right)\left(\frac{1+\sqrt{n}}{2}\right), \quad D' \in \mathbb{Z}.$$

Integral Basis for Biquadratic Fields (Case 4 Cont'd)

But

$$\frac{A'+B'\sqrt{m}+C'\sqrt{n}}{4} = \alpha - D'\left(\frac{1+\sqrt{m}}{2}\right)\left(\frac{1+\sqrt{n}}{2}\right)$$

must be integral.

So A', B', C' are all even (the coefficient of \sqrt{k} is 0, which is even). Thus, A' = 2a', B' = 2b' and C' = 2c', and we consider

$$\frac{a'+b'\sqrt{m}+c'\sqrt{n}}{2}.$$

This is the sum of

$$b'\left(\frac{1+\sqrt{m}}{2}\right)+c'\left(\frac{1+\sqrt{n}}{2}\right)$$
 and $\frac{a'-b'-c'}{2}$.

It is an integer. So 2 | a' - b' - c'. It follows that the integral basis is $\left\{1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \frac{(1+\sqrt{m})(1+\sqrt{n})}{4}\right\}$.

Order of the Roots of Unity

Lemma

If $K = \mathbb{Q}(\sqrt{m}, \sqrt{n})$, then the roots of unity in K have order 2, 4, 6, 8 or 12.

- Suppose K contains the r-th roots of unity. Then μ_r ⊆ K. So Q(μ_r) ⊆ K. Then we must have [Q(μ_r): Q] ≤ 4. However, we will see that [Q(μ_r): Q] = φ(r).
 - So r must satisfy $\phi(r) \leq 4$.

Suppose $r = \prod_{p|r} p^{r_p}$. Then, $\phi(r) = \prod_{p|r} p^{r_p-1}(p-1)$. We conclude that:

• No prime $p \ge 7$ can divide *n* (otherwise $p-1 \ge 6$ would divide $\phi(r)$); • $5^2 \nmid r$, $3^2 \nmid r$ and $2^4 \nmid r$.

Order of the Roots of Unity (Cont'd)

• This leads to a small list of possibilities for r.

We find that r = 1, 2, 3, 4, 5, 6, 8, 10 or 12.

Of course, $-1 \in K$.

So we always have square roots.

So r will be even.

 $K = \mathbb{Q}(\mu_{10})$ is ruled out as it is not biquadratic.

On the one hand, it contains $\mathbb{Q}(\sqrt{5})$.

On the other, there is no other integer d, with $\mathbb{Q}(\sqrt{d}) \subseteq \mathbb{Q}(\mu_{10})$.

So $\mathbb{Q}(\mu_{10})$ cannot be written $\mathbb{Q}(\sqrt{5}, \sqrt{n})$ for any *n*.

This just leaves the list in the statement.

Remarks on Roots of Unity in the Real Case

- The only possibility with r = 12 is $\mathbb{Q}(\mu_{12}) = \mathbb{Q}(\mu_4, \mu_6) = \mathbb{Q}(i, \sqrt{-3})$.
- The only possibility with r = 8 is $\mathbb{Q}(\mu_8) = \mathbb{Q}(i, \sqrt{2})$.
- If both m > 0 and n > 0, then also k > 0.
- So every embedding of \sqrt{m} , \sqrt{n} and \sqrt{k} is real.
- We shall refer to this case as a real biquadratic field.
- Now the only real roots of unity are ± 1 .
- So, by Dirichlet's Unit Theorem, there are three units, ϵ_1, ϵ_2 and ϵ_3 , such that every unit can be written in the form

$$\pm \epsilon_1^{a_1} \epsilon_2^{a_2} \epsilon_3^{a_3},$$

where a_1 , a_2 and a_3 are in \mathbb{Z} .

• The fundamental units ϵ_i are, in general, difficult to compute.
Remarks on Roots of Unity in the Imaginary Case

- If m < 0, say, then each embedding maps \sqrt{m} to $\pm \sqrt{m}$, not a real.
- So all the embeddings are complex.
- Moreover, they occur in two complex conjugate pairs.
- We shall refer to this case as an imaginary biquadratic field.
- By Dirichlet's Unit Theorem, there is a single unit ϵ such that every unit can be written as $\zeta \epsilon^a$, where ζ is a root of unity in K, and $a \in \mathbb{Z}$.
- In this case, the computation of the fundamental unit ϵ is more tractable.

Subsection 5

Cubic Fields

George Voutsadakis (LSSU)

Algebraic Number Theory

Cubic Fields

- $\bullet\,$ A cubic field is a degree 3 extension of $\mathbb{Q}.$
- It can therefore be defined as

$$K=\mathbb{Q}(\gamma),$$

where γ is a root of an irreducible cubic equation $f(X) \in \mathbb{Q}[X]$.

- Let $\gamma_1 = \gamma$, γ_2 and γ_3 denote the three complex roots of f(X).
- The three embeddings from K into $\mathbb C$ are given by sending γ to each of the three roots,

$$\begin{aligned} &\tau_i : \mathbb{Q}(\gamma) &\to \mathbb{C}; \\ &\sum_k a_k \gamma^k &\mapsto \sum_k a_k \gamma_i^k. \end{aligned}$$

Image of the Embeddings

- A new phenomenon in the cubic case is that the image of the embeddings may differ from *K*.
- Indeed, the image of the embedding τ_i is $\mathbb{Q}(\gamma_i)$.
- It may happen that $\gamma_i \not\in \mathbb{Q}(\gamma)$.

Example: Suppose that

$$f(X) = X^3 - 2.$$

Then $K = \mathbb{Q}(\sqrt[3]{2})$. Set $\omega = e^{2\pi i/3} = \frac{-1+i\sqrt{3}}{2}$. The other roots of f(X) are $\omega\sqrt[3]{2}$ and $\omega^2\sqrt[3]{2}$. They do not belong to K.

Splitting Field

- Consider again an irreducible cubic polynomial $f(X) \in \mathbb{Q}[X]$.
- The splitting field L of f(X) is the field generated over Q by all of the roots of f(X),

$$L = \mathbb{Q}(\gamma_1, \gamma_2, \gamma_3).$$

Notice that

$$\begin{array}{rcl} \gamma_{3} & = & \omega^{2}\sqrt[3]{2} \\ & = & \frac{1}{2}(\omega\sqrt[3]{2})^{2}(\sqrt[3]{2})^{2} \\ & = & \frac{1}{2}\gamma_{1}^{2}\gamma_{2}^{2} \\ & \in & \mathbb{Q}(\gamma_{1},\gamma_{2}). \end{array}$$

• So $L = \mathbb{Q}(\gamma_1, \gamma_2)$.

Degree of Splitting Field

Lemma

If L is the splitting field of an irreducible cubic equation f(X), then

 $[L: \mathbb{Q}] = 3$ or 6.

 Certainly L contains γ₁. So L⊇Q(γ₁). As the minimal polynomial of γ₁ is a cubic, [Q(γ₁):Q] = 3. Over Q(γ₁), the cubic f(X) must factor as

$$f(X) = (X - \gamma_1)f_1(X),$$

where $f_1(X) \in \mathbb{Q}(\gamma_1)[X]$ is a quadratic with roots γ_2 and γ_3 .

- Suppose $\gamma_2 \in \mathbb{Q}(\gamma_1)$. Then so is γ_3 . So $L = \mathbb{Q}(\gamma_1)$, of degree 3.
- Suppose γ₂ ∉ Q(γ₁).
 γ₂ and γ₃ are roots of an irreducible quadratic f₁(X) over Q(γ₁).
 So [Q(γ₁, γ₂): Q(γ₁)] = 2.

The tower law for degrees of field extensions now gives $[L:\mathbb{Q}] = 6$.

Roots of the Cubic Equation

- The cubic equation might have three real roots.
- In this case, each of the embeddings τ_i are real.
- By Dirichlet's Unit Theorem, the units are of the form

$$\pm\eta_1^{a_1}\eta_2^{a_2},$$

where:

- η_1 and η_2 are fundamental units;
- a_1 and a_2 run through integers.

Roots of the Cubic Equation (Cont'd)

- Alternatively, the cubic might have one real root, and one complex conjugate pair of roots.
- Then there is one real embedding, and one conjugate pair of complex embeddings.
- By Dirichlet's Unit Theorem, the units are of the form

$$\zeta \eta^{a}$$
,

where:

- ζ is a root of unity in K;
- η is a fundamental unit;
- *a*∈ℤ.

Example

• The most natural family of cubics to consider are those of the form $\mathbb{Q}(\sqrt[3]{a}),$

where *a* is an integer not divisible by a cube. The minimal polynomial of $\sqrt[3]{a}$ is

$$X^3 - a$$

Letting $\omega = e^{2\pi i/3}$, the three roots of this are

 $\sqrt[3]{a}$, $\omega \sqrt[3]{a}$, $\omega^2 \sqrt[3]{a}$.

Note that

$$\omega^{2} = -\frac{1}{2} - i\frac{\sqrt{3}}{2} = -\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) - 1 = -\omega - 1.$$

We therefore have one real root, and one complex conjugate pair.

Rings of Integers of Cubic Fields

Theorem

Suppose that $K = \mathbb{Q}(\sqrt[3]{m})$, where $m = m_1 m_2^2$, with m_1 and m_2 coprime and squarefree. Write $m' = m_1^2 m_2$.

• Then if $m^2 \not\equiv 1 \pmod{9}$, the ring of integers has integral basis

$$\left\{1,\sqrt[3]{m},\sqrt[3]{m'}\right\},\,$$

and K has discriminant $-27m_1^2m_2^2$.

• If $m^2 \equiv 1 \pmod{9}$, the ring of integers has integral basis

$$\left\{1, \sqrt[3]{m}, \frac{m_2 \pm m_2 \sqrt[3]{m} + \sqrt[3]{m'}}{3}\right\},\,$$

and K has discriminant $-3m_1^2m_2^2$.