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Other Fields of Small Degree

Units in Real Quadratic Fields

Let K be the number field Q(
p
d), with d > 0 a squarefree integer.

Suppose
p
d is chosen to be the positive square root of d .

This is equivalent to choosing an embedding from K into R.

It allows regarding one element of K as larger or smaller than another.

We work out some units for Q(
p

2).

Previous calculations show that the ring of integers is Z[
p

2].

So a general integer is one of the form

a+b
p

2, a,b ∈Z.
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Other Fields of Small Degree

Units in Real Quadratic Fields

A general integer is one of the form

a+b
p

2, a,b ∈Z.

The norm of a+b
p

2 is given by

NQ(
p

2)/Q(a+b
p

2)= (a+b
p

2)(a−b
p

2)= a2−2b2
.

Units have the property that their norm is ±1.

We therefore need to solve the equation

a2−2b2 =±1.

This is an example of Pell’s equation,

x2−ny2 = 1.

In the next section, we see how to solve it using continued fractions.
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Other Fields of Small Degree

Some Solutions of a2−2b2 =±1

Consider the equation
a2−2b2 =±1.

It certainly has the trivial solutions a=±1, b = 0.

These correspond to the elements ±1 in Q(
p

2).

We can see that a=±1, b =±1, also give solutions.

They corresponding to units ±1±
p

2.

Notice that:
−(1+

p
2) = −1−

p
2;

(1+
p

2)−1 = −1+
p

2;

− (1+
p

2)−1 = 1−
p

2.

So all these units are easily generated from 1+
p

2.
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Other Fields of Small Degree

Some Solutions of a2−2b2 =±1 (Cont’d)

In the imaginary quadratic case, it was always true that the units were
roots of unity.

1+
p

2 is not a root of unity, since it is a real number greater than 1.

The product of units is again a unit.

So any power of 1+
p

2 is also a unit.

E.g., (1+
p

2)2 = 3+2
p

2 is a unit.

Its inverse is 3−2
p

2.

More generally, (1+
p

2)n is a unit, for all n ≥ 1.

Since (1+
p

2)−1 = (−1+
p

2), we can conclude that (1+
p

2)n is a
unit, for every integer n.

So, from the single unit 1+
p

2, we can generate infinitely many units
{±(1+

p
2)n}.

We will see that these are the only units in Z[
p

2].
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Other Fields of Small Degree

The Case ZK =Z[
p
d ]

Let ZK =Z[
p
d ].

An element λ= a+b
p
d is a unit if and only if its norm is ±1.

The norm is given by

NK/Q(λ)= (a+b
p
d)(a−b

p
d)= a2−db2

.

So we need (a,b) to be a solution of the equation

x2−dy2 =±1.

The equation x2−dy2 = 1, where d is a positive integer and not a
square, is known as Pell’s equation.
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Other Fields of Small Degree

The Case ZK =Z[
p
d ] (Cont’d)

Pell’s equation
x2−dy2 =±1

always has infinitely many integral solutions.

To find them, one way is to observe that the equation x2−dy2 = 1
implies that x2 and dy2 are very close, so that x2

y2 is approximately d .

In particular, x
y is very close to

p
d .

Finding rational numbers close to a given real number can be done
using the theory of continued fractions.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 8 / 82



Other Fields of Small Degree Continued Fractions

Subsection 1

Continued Fractions
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Other Fields of Small Degree Continued Fractions

Example of a Continued Fraction

Considered again Euclid’s algorithm for the pair 630 and 132.

630 = 4 ·132+102

132 = 1 ·102+30

102 = 3 ·30+12

30 = 2 ·12+6

12 = 2 ·6+0

One consequence is that we can cancel the highest common factor of
6 from the numerator and denominator to get the fraction 105

22
in

lowest terms.
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Other Fields of Small Degree Continued Fractions

Example of a Continued Fraction (Cont’d)

We also see that:
630
132

= 4+ 102
132

132
102

= 1+ 30
102

102
30

= 3+ 12
30

30
12

= 2+ 6
12

12
6

= 2+ 0
6

We see that the left-hand side of each equation is the reciprocal of the
final term on the right-hand side of the previous one.
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Other Fields of Small Degree Continued Fractions

Example of a Continued Fraction (Cont’d)

We can combine the preceding equations into a single expression.

630
132

= 4+ 102
132

= 3+ 1
132
102

= 4+ 1

1+ 30
102

= 4+ 1

1+ 1
102
30

= ·· ·
= 4+ 1

1+ 1

3+ 1

2+ 1
2

.

This last expression is the continued fraction for 630
132

.

We use the abbreviated form [4;1,3,2,2].
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Other Fields of Small Degree Continued Fractions

Example of a Continued Fraction (Cont’d)

We can obtain fractions which approximate the original expression by
taking only the initial parts of the expression.

[4] = 4

[4;1] = 4+ 1
1
= 5

[4;1,3] = 4+ 1

1+ 1
3

= 19
4

[4;1,3,2] = 4+ 1

1+ 1

3+ 1
2

= 43
9

.

These fractions approach the original expression very quickly.

They are known as the convergents.
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Other Fields of Small Degree Continued Fractions

Tabular Representation

To recover the convergents we list the numbers appearing in the
continued fraction expansion, together with two further rows, in a

table as follows:
4 1 3 2 2

0 1

1 0

Each column is completed by taking the previous column, multiplying
by the integer at the top, and adding the column before that.

4 1 3 2 2

0 1 4×1+0
1 0 4×0+1

4 1 3 2 2

0 1 4 1×4+1
1 0 1 1×1+0

4 1 3 2 2

0 1 4 5 3×5+4
1 0 1 1 3×1+1

4 1 3 2 2

0 1 4 5 19 43 105
1 0 1 1 4 9 22

The numerator and denominator of the convergents appear as the
columns.
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Other Fields of Small Degree Continued Fractions

Notation for Convergents

Consider a number ξ ∈R.

Write ρn = pn
qn

for the convergents to ξ.
p0

q0
corresponds to the entry below the first number.

So we have p0 = ⌊ξ⌋ and q0 = 1.

We extend this to the left.

We obtain
p−2 = 0, q−2 = 1,

p−1 = 1, q−1 = 0.

These represent the first two columns of the table.

Suppose the continued fraction of ξ is [a0;a1,a2, . . .].

Then
pk = akpk−1+pk−2,

qk = akqk−1+qk−2.
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Other Fields of Small Degree Continued Fractions

Successive Convergents

Lemma

If pn
qn

and pn+1

qn+1
are successive convergents, then

pn+1qn−pnqn+1 = (−1)n.

We prove this by induction on n.

For n=−2, p−1q−2−p−2q−1 = 1.

Now suppose that pk+1qk −pkqk+1 = (−1)k .

We have
pk+2 = ak+2pk+1+pk ,

qk+2 = ak+2qk+1+qk .

It follows that

pk+2qk+1−pk+1qk+2 = (ak+2pk+1+pk)qk+1−pk+1(ak+2qk+1+qk)

= − (pk+1qk −pkqk+1).
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Other Fields of Small Degree Continued Fractions

Notation for Continued Fractions

Suppose

ξ= [a0;a1,a2, . . .]= a0+
1

a1+ 1
a2+···

.

Set
ξn = [an;an+1,an+2, . . .].

Then we have, e.g.,
ξ = a0+ 1

ξ1

= a0+ 1

a1+ 1
ξ2

= ·· · .
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Other Fields of Small Degree Continued Fractions

An Expression in Terms of Continued Fractions

Lemma

We have

ξ= [a0;a1, . . . ,an−1,ξn]=
ξnpn−1+pn−2

ξnqn−1+qn−2

.

By definition, ξ= [a0;a1, . . . ,an−1,ξn].

The second is a special case of the general claim that, for all x ,

[a0;a1, . . . ,an,x ]=
xpn+pn−1

xqn+qn−1
.

We prove this by induction.

For n= 0,

[a0;x ]=
xp0+p−1

xq0+q−1
=
x⌊ξ⌋+1

x ·1+0
= ⌊ξ⌋+

1

x
.

This is clearly true, by definition.
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Other Fields of Small Degree Continued Fractions

An Expression in Terms of Continued Fractions (Cont’d)

Suppose that it is also true when n= k −1.

Then we have

[a0;a1, . . . ,ak ,x ] = [a0;a1, . . . ,ak + 1
x ]

=
(ak + 1

x )pk−1+pk−2

(ak + 1
x
)qk−1+qk−2

(induction hypothesis)

=
x(akpk−1+pk−2)+pk−1

x(akqk−1+qk−2)+qk−1

=
xpk +pk−1

xqk +qk−1

.
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Other Fields of Small Degree Continued Fractions

Rational Approximations Using Convergents

If ξ is irrational, the continued fraction convergents are very close
rational approximations.

Proposition

Suppose that ξ is irrational. For any n≥ 0,
∣

∣

∣

∣

ξ−
pn

qn

∣

∣

∣

∣

<
1

qnqn+1
.

We have, using the lemma,

ξ−
pn

qn
=

ξn+1pn+pn−1

ξn+1qn+qn−1
−
pn

qn

=
pn−1qn−pnqn−1

qn(ξn+1qn+qn−1)

=
(−1)n

qn(ξn+1qn+qn−1)
.
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Other Fields of Small Degree Continued Fractions

Rational Approximations Using Convergents (Cont’d)

We got

ξ−
pn

qn
=

(−1)n

qn(ξn+1qn+qn−1)
.

So
∣

∣

∣

∣

ξ−
pn

qn

∣

∣

∣

∣

=
1

qn(ξn+1qn+qn−1)
an+1 = ⌊ξn+1⌋ < ξn+1<

1

qn(an+1qn+qn−1)

=
1

qnqn+1
.
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Other Fields of Small Degree Continued Fractions

Relative Size of a Number and its Convergents

Corollary

If ρn = pn
qn

are the convergents to ξ, then if ξ< ρn, it follows that ξ>ρn+1

and vice versa.

Recall the expression

ξ−
pn

qn
=

(−1)n

qn(ξn+1qn+qn−1)
.

It is clearly alternating in sign.

This yields the conclusion.
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Other Fields of Small Degree Continued Fractions

Rational Numbers and Convergents

Proposition

Suppose a
b

is a rational number such that

|bξ−a| < |qnξ−pn|.

Then b ≥ qn+1.

Suppose that we have |bξ−a| < |qnξ−pn|, for some b < qn+1.

We know pnqn+1−pn+1qn =±1.

So there are integers x and y , such that

xpn+ypn+1 = a,

xqn+yqn+1 = b.

Clearly x 6= 0, for otherwise yqn+1 = b, and so b ≥ qn+1.
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Other Fields of Small Degree Continued Fractions

Rational Numbers and Convergents (Cont’d)

Suppose y = 0.

Then a= xpn and b = xqn.

Hence,
|bξ−a| = |x | · |qnξ−pn| ≥ |qnξ−pn|.

This gives a contradiction.

Suppose y < 0. Then xqn = b−yqn+1. So x > 0.

Suppose y > 0. Then, as b < qn+1, xqn = b−yqn+1 < 0. So, x < 0.

So x and y have opposite signs.

Then x(qnξ−pn) and y(qn+1ξ−pn+1) have the same signs, by the
preceding corollary.

So we have

|bξ−a| = |x(qnξ−pn)+y(qn+1ξ−pn+1)| > |x(qnξ−pn)| ≥ |qnξ−pn|.

This gives a contradiction.
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Other Fields of Small Degree Continued Fractions

Optimality Property of Convergents

We next show that pn
qn

is the best convergent amongst rationals with
denominators of the same size or smaller.

Corollary

If a
b

is a rational number such that

∣

∣

∣ξ−
a

b

∣

∣

∣<
∣

∣

∣

∣

ξ−
pn

qn

∣

∣

∣

∣

, for some n,

then b > qn.

Suppose that there is some a
b
, with |ξ− a

b
| < |ξ− pn

qn
| and b ≤ qn.

Then

b
∣

∣

∣ξ−
a

b

∣

∣

∣< qn

∣

∣

∣

∣

ξ−
pn

qn

∣

∣

∣

∣

.

So |bξ−a| < |qnξ−pn|.
This contradicts the proposition.
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Other Fields of Small Degree Continued Fractions

Criterion for Convergents

Proposition

Suppose that ξ is irrational and that a
b is a rational, with

∣

∣

∣ξ−
a

b

∣

∣

∣<
1

2b2
.

Then a
b

is a continued fraction convergent to ξ.

As before, write pn
qn

for the convergents to ξ.

Suppose that a
b

is not a convergent.

Then qn ≤ b < qn+1, for some n.

By a preceding proposition, we also have |bξ−a| ≥ |qnξ−pn|.
Then

|qnξ−pn| ≤ |bξ−a| <
1

2b
.
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Other Fields of Small Degree Continued Fractions

Criterion for Convergents (Cont’d)

We found |qnξ−pn| < 1
2b

.

So
∣

∣

∣

∣

ξ−
pn

qn

∣

∣

∣

∣

<
1

2bqn
.

But this means that

1

bqn
≤

|bpn−aqn|
bqn

=
∣

∣

∣

∣

pn

qn
−
a

b

∣

∣

∣

∣

≤
∣

∣

∣

∣

ξ−
pn

qn

∣

∣

∣

∣

+
∣

∣

∣ξ−
a

b

∣

∣

∣

<
1

2bqn
+

1

2b2
.

This implies that b < qn, a contradiction.
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Other Fields of Small Degree Continued Fractions of Square Roots

Subsection 2

Continued Fractions of Square Roots
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Other Fields of Small Degree Continued Fractions of Square Roots

Example

We compute the continued fraction of
p

19.

It turns out that we just need to know that 4<
p

19< 5.

Start with the integer part and remainder

p
19= 4+ (

p
19−4).

Then do the same for the reciprocal of the remainder, rationalizing the
denominator:

1
p

19−4
=

p
19+4

3
= 2+

p
19−2

3
.
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Other Fields of Small Degree Continued Fractions of Square Roots

Example (Cont’d)

This repeats:

3p
19−2

=
p

19+2
5

= 1+
p

19−3
5

;

5p
19−3

=
p

19+3
2

= 3+
p

19−3
2

;

2p
19−3

=
p

19+3
5

= 1+
p

19−2
5

;

5p
19−2

=
p

19+2
3

= 2+
p

19−4
3

;

3p
19−4

=
p

19+4= 8+ (
p

19−4).

Then the process repeats and we get the infinite continued fraction

[4;2,1,3,1,2,8,2,1,3,1,2,8,2,1,3,1,2,8, . . .].

This is abbreviated [4;2,1,3,1,2,8].
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Other Fields of Small Degree Continued Fractions of Square Roots

Real Square Roots as Continuous Fractions

Proposition

Let d be a positive integer, not a square. Define

M0 = 0, N0 = 1, ξ0 =
p
d , a0 = ⌊ξ0⌋.

Then define recursively sequences by

Mn+1 = anNn−Mn, Nn+1 =
d −M2

n+1

Nn
,

ξn+1 =
p
d +Mn+1

Nn+1
, an+1 = ⌊ξn+1⌋.

Then:

1. Mn and Nn are integers for all n;

2. ξn = an+ 1
ξn+1

, and so ξ= [a0;a1,a2, . . .].
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Other Fields of Small Degree Continued Fractions of Square Roots

Real Square Roots as Continuous Fractions (Cont’d)

1. We prove this by induction.

Clearly M0 and N0 are integers.

The inductive hypothesis is that Mk and Nk are integers for k ≤ n.

By definition, an is always an integer.

So clearly Mn+1 = anNn−Mn is an integer.

The real content of this proposition is that Nn+1 should be an integer.

Now we have

Nn+1 =
d −M2

n+1

Nn
=
d − (anNn−Mn)

2

Nn
=
d −M2

n

Nn
+2anMn−a2

nNn.

So we just need to check that
d−M2

n

Nn
is an integer.

If n≥ 1, Nn =
d−M2

n

Nn−1
. So Nn | d −M2

n .

If i = 0, N0 = 1. So N0 | d −M2
0 .
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Other Fields of Small Degree Continued Fractions of Square Roots

Real Square Roots as Continuous Fractions (Cont’d)

2. We work by substituting the expressions for ξn+1 into an+
1

ξn+1

.

an+
1

ξn+1
= an+

Nn+1p
d +Mn+1

= an+
d−M2

n+1
Nnp

d +Mn+1

= an+
p
d −Mn+1

Nn

= an+
p
d +Mn−anNn

Nn

=
p
d +Mn

Nn
= ξn.
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Other Fields of Small Degree Continued Fractions of Square Roots

Real Square Roots as Continuous Fractions (Cont’d)

Lemma

With the notation of the previous result, Nn > 0 for all sufficiently large n.

Write ξ′n =
−
p
d+Mn

Nn
for the conjugate of ξn.

By a previous lemma, ξ= ξ0 = ξnpn−1+pn−2

ξnqn−1+qn−2
. So ξ′0 =

ξ′npn−1+pn−2

ξ′nqn−1+qn−2
.

Solving for ξ′n, we have ξ′n =−qn−2ξ
′
0−pn−2

qn−1ξ
′
0−pn−1

. Rearranging, we get

ξ′n =−
qn−2

qn−1

(

ξ′0−
pn−2

qn−2

ξ′
0
− pn−1

qn−1

)

.

As k →∞, pk
qk

→ ξ0. So the bracket tends to 1.

Thus, for large enough n, ξ′n < 0.

Hence, ξn > 0 and ξ′n < 0 for such n.

We get 2
p
d

Nn
= ξn−ξ′n > 0. Therefore, Nn > 0.
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Other Fields of Small Degree Continued Fractions of Square Roots

Repetition of the ξ’s

Lemma

With the notation of the previous results, there exists an integer k > 0 with
ξj = ξj+k , for some j .

We know that ξn =
p
d+Mn

Nn
.

Moreover, NnNn+1 = d −M2
n+1 and Nn > 0, for sufficiently large n.

For all such n, M2
n+1 < d .

So there are only finitely many possibilities for each Mn.

Also, NnNn+1 < d .

Hence, if Nn > 0, we get Nn+1 < d .

So that there are only finitely many possibilities for Nn also.

This shows that eventually, ξj = ξj+k , for some j and k > 0.
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Other Fields of Small Degree Continued Fractions of Square Roots

Form of the Continued Fraction for
p
d

Theorem

The continued fraction of
p
d has the form [b0;b1, . . . ,bk ] where bk = 2b0.

Take ξ0 =
p
d +⌊

p
d⌋.

We work out the continued fraction [a0,a1, . . .] of ξ0.

Certainly ξ0 > 1 and a0 ≥ 1.

ξ′0 = ⌊
p
d⌋−

p
d satisfies −1< ξ′0 < 0.

Claim: −1< ξ′n < 0, for all non-negative integers n.

By induction.

We have 1
ξn+1

= ξn−an. So 1
ξ′n+1

= ξ′n−an.

Suppose ξ′n < 0. Then 1
ξ′n+1

< 0. Hence, ξ′n+1 < 0.

Suppose, again, ξ′n < 0.

Since an ≥ 1 as d is not a square, 1
ξ′
n+1

<−1.

So −1< ξ′n+1. Thus, −1< ξ′n+1 < 0.
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Other Fields of Small Degree Continued Fractions of Square Roots

Form of the Continued Fraction for
p
d (Cont’d)

Now we have −1< ξ′n < 0.

So we get −1< 1
ξ′n+1

−an < 0.

Thus, an =
⌊

− 1
ξ′
n+1

⌋

.

By the previous lemma, there are integers j and k > 0, with ξj = ξj+k .

But this implies that ξ′
j
= ξ′

j+k .

Then

aj−1 =
⌊

−
1

ξ′
j

⌋

=
⌊

−
1

ξ′
j+k

⌋

= aj+k−1.

Finally,

ξj−1 = aj−1+
1

ξj
= aj+k−1+

1

ξj+k
= ξj+k−1.

Applying this repeatedly, we see that ξ0 = ξk .

So the continued fraction repeats.
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Other Fields of Small Degree Continued Fractions of Square Roots

Form of the Continued Fraction for
p
d (Cont’d)

We get that ξ0 = [a0,a1, . . . ,ak−1].

We have ξ0 =
p
d +⌊

p
d⌋.

So the continued fraction [a0,a1, . . .] of ξ0 is identical to the continued
fraction [b0,b1, . . .] of

p
d except that b0 = a0−⌊

p
d⌋.

But a0 = ⌊ξ0⌋ = 2⌊
p
d⌋.

So b0 = ⌊
p
d⌋ and a0 = 2b0.

By the periodicity of the continued fraction for ξ0, we have
a0 = ak = bk . So bk = 2b0, as claimed.

Definition

We say that k > 0 is the period of
p
d if it is the smallest index with

ξk = ξ0.
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Other Fields of Small Degree Continued Fractions of Square Roots

Relation Between Convergents and the ξn’s

Recall that if ξ=
p
d , we put ξn =

p
d+Mn

Nn
.

Proposition

If pn
qn

denotes the nth convergent to
p
d , then p2

n−dq2
n = (−1)n+1Nn+1.

Put ξ0 =
p
d , and define ξn =

p
d+Mn

Nn
.

By a previous lemma,
p
d = ξn+1pn+pn−1

ξn+1qn+qn−1
.

By definition, ξn+1 =
p
d+Mn+1

Nn+1
.

We substitute this in and simplify to get

p
d =

ξn+1pn+pn−1

ξn+1qn+qn−1
=

p
d+Mn+1

Nn+1
pn+pn−1

p
d+Mn+1

Nn+1
qn+qn−1

=
Mn+1pn+Nn+1pn−1+pn

p
d

Mn+1qn+Nn+1qn−1+qn
p
d

.
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Other Fields of Small Degree Continued Fractions of Square Roots

Relation Between Convergents and the ξn’s (Cont’d)

Rearranging this gives

dqn+
p
d(Mn+1qn+Nn+1qn−1)=Mn+1pn+Nn+1pn−1+

p
dpn.

Equating coefficients of
p
d and the remaining terms gives the two

equations

Mn+1pn+Nn+1pn−1 = dqn, Mn+1qn+Nn+1qn−1 = pn.

Multiply the first equation by qn, and the second by pn, to get

Mn+1pnqn+Nn+1pn−1qn = dq2
n;

Mn+1pnqn+Nn+1qn−1pn = p2
n.

Subtract to get

p2
n−dq2

n =Nn+1(pnqn−1−qnpn−1).

The result follows from a previous lemma.
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Other Fields of Small Degree Continued Fractions of Square Roots

Solutions of Pell’s Equation

We deduce the main result on Pell’s equation.

If x2−dy2 = 1, then x2

y2 will be close to d .

So x
y

will be close to
p
d .

So we look for solutions among the convergents to
p
d .

Theorem

Let d > 0 be an integer, not a square.

The equation x2−dy2 = 1 has infinitely many solutions;

The equation x2−dy2 =−1 has infinitely many solutions if the continued
fraction for

p
d has odd period.
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Other Fields of Small Degree Continued Fractions of Square Roots

Solutions of Pell’s Equation (Cont’d)

From the previous result, we know that

p2
n−dq2

n = (−1)n+1Nn+1,

where:
pn
qn

is a convergent to
p
d ;

Nn+1 is the denominator of ξn+1.

We also know that the sequence (ξn) repeats with some period k .

This means that (Nn) repeats with period k .

As N0 = 1, we deduce that Nsk = 1, for all integers s ≥ 0.

Suppose s or k even and n is of the form sk −1.

Then (pn,qn) solves x2−dy2 = 1.

So there are always infinitely many solutions.

Suppose k and s are odd and n= sk −1.

Then (pn,qn) solves x2−dy2 =−1.
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Other Fields of Small Degree Continued Fractions of Square Roots

Example

We repeat the table of convergents for
p

19.

We add an extra row corresponding to the p2
n−dq2

n.

4 2 1 3 1 2 8

0 1 4 9 13 48 61 170 1421
1 0 1 2 3 11 14 39 326

p2
n−dq2

n −3 5 −2 5 −3 1 −3
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Other Fields of Small Degree Real Quadratic Fields

Subsection 3

Real Quadratic Fields
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Other Fields of Small Degree Real Quadratic Fields

Work Plan

Write K for the number field Q(
p
d), where d > 0 is squarefree.

We know that numbers of the form ±(1+
p

2)n were all units in Z[
p

2].

So Q(
p

2) has infinitely many units.

We suggested that, in general, units s + t
p
d (for the moment, we will

suppose ZK =Z[
p
d ]) should have the property that s

t is a continued

fraction convergent to
p
d .

In the previous sections we have shown how to compute these.

We now turn to proving this is indeed the case.
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Other Fields of Small Degree Real Quadratic Fields

Solutions of Pell’s Equation and Convergents

Theorem

Let d be a squarefree positive integer, and write pn
qn

for the convergents to
p
d . Suppose that m is an integer with |m| <

p
d . Then any solution (s ,t)

to x2−dy2 =m, with (s ,t)= 1 satisfies s = pn and t = qn, for some n.

First consider the case m> 0. Suppose that s2−dt2 =m.

Then we have

s
t =

√

d + m
t2

>
p
d ;

0 < s
t −

p
d = m

t(s+t
p
d)

<
p
d

t(s+t
p
d)

= 1
t2( s

t
p
d
+1)

.

As s
t
>
p
d , we get s

t
p
d
> 1. So

∣

∣

∣

s
t
−
p
d

∣

∣

∣< 1
2t2

.

The result follows from a previous proposition.
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Other Fields of Small Degree Real Quadratic Fields

Solutions of Pell’s Equation and Convergents (Cont’d)

A similar argument applies when m< 0, but with some complications.

We can check that s
t

is a convergent to
p
d precisely when t

s
is a

convergent to 1p
d
.

Rewrite the expression s2−dt2 =m as

t2−
(

1

d

)

s2 =
(

−
m

d

)

.

Observe that −m
d > 0 and

∣

∣
m
d

∣

∣<
√

1
d .

So we may apply the preceding argument.

In the same way, we conclude that t
s is a convergent to

√

1
d
.

Therefore, s
t

is a convergent to
p
d .
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Other Fields of Small Degree Real Quadratic Fields

Finding Units Using Convergents

It follows that units s + t
p
d can be computed by:

Looking through the continued fraction convergents to
p
d ;

Finding those convergents pn
qn

with

p2
n −dq2

n =±1.

There are always solutions to this equation.

We have already remarked that Nsk = 1, for all values of s, where k

denotes the period of
p
d .

This means that there are convergents pn
qn

, with

p2
n−dq2

n =±1.
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Other Fields of Small Degree Real Quadratic Fields

Finding Units Using Convergents (d ≡ 1 (mod 4))

The same method works also for the case d ≡ 1 (mod 4).

Here, though, integers are of two forms.

Some integers are of the form a+b
p
d with a,b ∈Z.

We can find units of this form by solving a2−db2 =±1 as above.
Other integers are of the form a+b

p
d , with a, b halves of odd integers.

In this case, we need solutions to a2−db2 =±1, with a,b ∈ 1
2Z.

Multiplying by 4, we need to solve A2−dB2 =±4, with A,B ∈Z.
The theorem guarantees that all solutions may be found in the
continued fraction convergents to

p
d (at least for d ≥ 17; smaller cases

can be treated by hand).
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Other Fields of Small Degree Real Quadratic Fields

Example Q(
p

61)

We find some units for Q(
p

61).

The continued fraction expansion of
p

61 is given by

[7;1,4,3,1,2,2,1,3,4,1,14].

We can compute:

The convergents pn
qn

;

The corresponding values of p2
n −61q2

n .

The 7th convergent is 39
5

.

Moreover, 392−61 ·52 =−4.

It follows that 39+5
p

61
2

is a unit.

Then, for any integer n, ±(39+5
p

61)n are also units.
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Other Fields of Small Degree Real Quadratic Fields

Example Q(
p

2)

We explain that the units ±(1+
p

2)n are the only units of Z[
p

2].

We first compute the continued fraction.

p
2= 1+ (

p
2−1),

1
p

2−1
=
p

2+1= 2+ (
p

2−1).

Then the process repeats with period 1.

Thus, the continued fraction is [1;2].

The table of convergents begins:

an 1 2 2 2 2 2

0 1 1 3 7 17 41 99
1 0 1 2 5 12 29 70

p2
n−2q2

n −1 1 −1 1 −1 1
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Other Fields of Small Degree Real Quadratic Fields

Example Q(
p

2) (Cont’d)

Suppose η denotes the smallest unit of Z[
p

2] satisfying

η> 1 and η= a+b
p

2.

Then a
b must be a continued fraction convergent of

p
2.

The calculation above shows that η= 1+
p

2.

Claim: The units in Z[
p

2] are all necessarily of the form ±ηn.
Suppose that λ is a unit of Z[

p
2], and that λ 6= ±1.

Then one of λ,−λ,
1
λ

and − 1
λ

is greater than 1.

Suppose it is λ (if not, redefine λ so that it is this unit).

For some n, we have ηn ≤λ< ηn+1.

By multiplying throughout by η−n, we get 1≤λη−n < η.

So we find a unit λη−n strictly less than η, and at least 1.

But η was chosen to be the smallest unit which was greater than 1.

So we must have λη−n = 1.

Then λ= ηn, as required.
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Other Fields of Small Degree Real Quadratic Fields

Units in Real Quadratic Fields

Theorem

Suppose that K is a real quadratic field. Then there exists some unit η> 1,
such that every unit of ZK is of the form ±ηn, for some integer n.

Let η denote the smallest unit of ZK greater than 1.

This can always be found from the convergents of
p
d .

Let λ be a unit of ZK , and that λ 6= ±1 (corresponding to n= 0).

Suppose first that λ> 1.

For some n≥ 1, we have ηn ≤λ< ηn+1.

By multiplying throughout by η−n, we get 1≤λη−n < η.

So we find a unit λη−n strictly less than η, and at least 1.

But η was chosen to be the smallest unit which was greater than 1.

So we must have λη−n = 1.

Then λ= ηn, for some integer n≥ 1.
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Other Fields of Small Degree Real Quadratic Fields

Units in Real Quadratic Fields (Cont’d)

Suppose λ 6= ±1 is any unit.

Then one of λ,−λ,
1
λ and − 1

λ is greater than 1.

Thus, it is of the form ηn, for some n≥ 1.

So λ=±ηn, for some n ∈Z.
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Other Fields of Small Degree Real Quadratic Fields

Fundamental Units

Definition

A unit η> 1, such that every unit in ZK is of the form ±ηn is called a
fundamental unit.

From the proof of the theorem, it is clear that η may be chosen to be
the smallest unit of ZK greater than 1.

We know that these may be found by examining the continued
fraction expansion of

p
d .

The units in ZK , written U(ZK ) or Z×
K

, are therefore given by

{±1}×ηZ, and are isomorphic as an abstract group to C2×Z.

The first component corresponds to the choice of sign;
The second component corresponds to the power of the fundamental
unit.
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Other Fields of Small Degree Biquadratic Fields

Subsection 4

Biquadratic Fields
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Other Fields of Small Degree Biquadratic Fields

Biquadratic Fields

We consider degree 4 extensions of the form Q(
p
m,

p
n), where m

and n are two squarefree integers, with m 6= n.

Such fields are known as biquadratic.

Let K =Q(
p
m,

p
n).

Consider
k =

mn

(m,n)2
.

Note that
p
k ∈K .

The three fields Q(
p
m), Q(

p
n) and Q(

p
k) form the three quadratic

subfields of K .
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Other Fields of Small Degree Biquadratic Fields

Embeddings

There are four embeddings from K into C:

a+b
p
m+c

p
n+d

p
k 7→



















a+b
p
m+c

p
n+d

p
k ,

a+b
p
m−c

p
n−d

p
k ,

a−b
p
m+c

p
n−d

p
k ,

a−b
p
m−c

p
n+d

p
k .

These can be viewed as “conjugations” fixing each of the three
quadratic subfields in turn.

Each embedding actually has image equal to K .

So these embeddings are automorphisms of K .
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Other Fields of Small Degree Biquadratic Fields

Possible Cases for m,n and k

Lemma

If K =Q(
p
m,

p
n), then we can assume, without loss of generality, that we

are in one of the following cases:

1. m≡ 3 (mod 4), k ≡ n≡ 2 (mod 4);

2. m≡ 1 (mod 4), k ≡ n≡ 2 (mod 4);

3. m≡ 1 (mod 4), k ≡ n≡ 3 (mod 4);

4. m≡ 1 (mod 4), k ≡ n≡ 1 (mod 4).

First, suppose 2 |m and 2 | n.

As m and n are squarefree, k = mn
(m,n)2

is odd.

We have Q(
p
m,

p
n)=Q(

p
m,

p
k).

So we can always assume that (at least) one of the two generators is
the square root of an odd integer.
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Other Fields of Small Degree Biquadratic Fields

Possible Cases for m,n and k (Cont’d)

Suppose m≡ 3 (mod 4) and n≡ 1 (mod 4).
We can simply interchange m and n as Q(

p
m,

p
n)=Q(

p
n,
p
m).

Suppose m≡ 3 (mod 4) and n≡ 3 (mod 4).
We can replace n by k .
Now mn= k(m,n)2, and (m,n) is odd (as m and n are).
So (m,n) has square congruent to 1 (mod 4).
So k ≡mn (mod 4).
This implies that k ≡mn≡ 1 (mod 4), and Q(

p
m,

p
n)=Q(

p
m,

p
k).

Thus after permuting m,n and k , we can assume that m and n satisfy
the given congruences.

Now m is always odd.

So (m,n) is always odd, as well.

Hence, k ≡mn (mod 4) by the argument given above.

So k also satisfies the given congruence.
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Other Fields of Small Degree Biquadratic Fields

Integral Basis for Biquadratic Fields

Proposition

With the numbering of the preceding lemma, an integral basis for (the
rings of integers of) Q(

p
m,

p
n) are given by:

1.
{

1,
p
m,

p
n,

p
n+

p
k

2

}

;

2.
{

1,
1+

p
m

2
,
p
n,

p
n+

p
k

2

}

;

3.
{

1,
1+

p
m

2
,
p
n,

p
n+

p
k

2

}

;

4.
{

1,
1+

p
m

2
,
1+

p
n

2
,
(1+

p
m)(1+

p
n)

4

}

.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 61 / 82



Other Fields of Small Degree Biquadratic Fields

Integral Basis for Biquadratic Fields (Cont’d)

Let α ∈ZK .

Then we can write

α= a+b
p
m+c

p
n+d

p
k , a,b,c ,d ∈Q.

As α ∈ZK , all of its conjugates

α2 = a−b
p
m+c

p
n−d

p
k ,

α3 = a+b
p
m−c

p
n−d

p
k ,

α4 = a−b
p
m−c

p
n+d

p
k

are also algebraic integers.

The set of algebraic integers is closed under addition.

So the following are also algebraic integers

α+α2 = 2a+2c
p
n,

α+α3 = 2a+2b
p
m,

α+α4 = 2a+2d
p
k .
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Other Fields of Small Degree Biquadratic Fields

Integral Basis for Biquadratic Fields (Case 1)

Suppose m≡ 3 (mod 4) and k ≡ n≡ 2 (mod 4).

By a previous proposition, these are integral if 2a,2b,2c ,2d ∈Z.

Thus,

α=
A+B

p
m+C

p
n+D

p
k

2
,

for A,B ,C ,D ∈Z, where A= 2a, B = 2b, C = 2c and D = 2d .

We also have

αα3 = (a+b
p
m)2− (c

p
n+d

p
k)2

= a2+2
p
mab+mb2−nc2−2ncd

p
m

(m,n)
−kd2

= A2+mB2−nC2−kD2

4
+ AB−nCD/(m,n)

2

p
m.

This is also integral.

Thus 4 |A2+mB2−nC 2−kD2 and 2|AB −nCD/(m,n).
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Other Fields of Small Degree Biquadratic Fields

Integral Basis for Biquadratic Fields (Case 1 Cont’d)

We know that n is even and m is odd.

So (m,n) is odd and n/(m,n) is even.

Hence, 2|AB −nCD/(m,n) implies that 2 |AB .

So at least one of A and B is even.

If only one were even, then A2+mB2−nC 2−kD2 would be odd.

So the first requirement would fail.

So both A and B are even.

The second divisibility is automatic.

The first reduces to 4 | nC 2+kD2. Equivalently, 2 |C 2+D2.

So C and D are both even or both odd.

So integers are all of the form

α= a+b
p
m+c

p
n+d

p
k ,

a,b ∈Z and c and d both integral or both halves of odd integers.
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Other Fields of Small Degree Biquadratic Fields

Integral Basis for Biquadratic Fields (Case 1 Conclusion)

Such elements are integer linear combinations of

1,
p
m,

p
n,

p
n+

p
k

2
.

The first three are obviously integral.

Let γ=
p
n+

p
k

2
.

Then

(4γ2− (n+k))2 =
4mn2

(m,n)2
.

The congruence conditions on m, n and k imply that this simplifies to
a monic polynomial with integer coefficients,

γ4−
n+k

2
γ2+

(

n+k

4

)2

=
mn2

4(m,n)2
.

So γ is also integral.

Thus, an integral basis is
{

1,
p
m,

p
n,

p
n+

p
k

2

}

.
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Other Fields of Small Degree Biquadratic Fields

Integral Basis for Biquadratic Fields (Cases 2 and 3)

The remaining cases are similar and will be sketched.

In the second and third cases, which can be treated together,

m≡ 1 (mod 4) and k ≡ n≡ 2 or 3 (mod 4).

Suppose
α= a+b

p
m+c

p
n+d

p
k ∈ZK .

One shows as in the first case that

α= a+b
p
m+c

p
n+d

p
k , 2a,2b,2c ,2d ∈Z.

Let α2, α3 and α4 denote the conjugates of α.
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Other Fields of Small Degree Biquadratic Fields

Integral Basis for Biquadratic Fields (Cases 2 and 3 Cont’d)

Considering α+αi again, one sees that:

a and b are both integers or both halves of odd integers;
c and d are both integers or both halves of odd integers.

Then every integer must be an integer linear combination of

1,
1+

p
m

2
,

p
n,

p
n+

p
k

2
.

We can then show that these are all integral.
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Other Fields of Small Degree Biquadratic Fields

Integral Basis for Biquadratic Fields (Case 4)

The final case, m≡ k ≡ n ≡ 1 (mod 4) is a little different.

Again we consider α+α2, α+α3 and α+α4.

By a previous proposition, these are integral if 4a,4b,4c ,4d ∈Z, with
2a,2b,2c and 2d all integral or all halves of odd integers.

Thus,

α=
A+B

p
m+C

p
n+D

p
k

4
, A,B ,C ,D ∈Z,

where A= 4a,B = 4b,C = 4c and D = 4d are all even or all odd.

So we can write

α=
A′+B ′pm+C ′pn

4
+D ′

(

1+
p
m

2

)(

1+
p
n

2

)

, D ′ ∈Z.
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Other Fields of Small Degree Biquadratic Fields

Integral Basis for Biquadratic Fields (Case 4 Cont’d)

But
A′+B ′pm+C ′pn

4
=α−D ′

(

1+
p
m

2

)(

1+
p
n

2

)

must be integral.

So A′,B ′,C ′ are all even (the coefficient of
p
k is 0, which is even).

Thus, A′ = 2a′, B ′ = 2b′ and C ′ = 2c ′, and we consider

a′+b′
p
m+c ′

p
n

2
.

This is the sum of

b′
(

1+
p
m

2

)

+c ′
(

1+
p
n

2

)

and
a′−b′−c ′

2
.

It is an integer. So 2 | a′−b′−c ′.

It follows that the integral basis is
{

1,
1+

p
m

2
,
1+

p
n

2
,
(1+

p
m)(1+

p
n)

4

}

.
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Other Fields of Small Degree Biquadratic Fields

Order of the Roots of Unity

Lemma

If K =Q(
p
m,

p
n), then the roots of unity in K have order 2, 4, 6, 8 or 12.

Suppose K contains the r -th roots of unity.

Then µr ⊆K . So Q(µr )⊆K .

Then we must have [Q(µr ) :Q]≤ 4.

However, we will see that [Q(µr ) :Q]=φ(r).

So r must satisfy φ(r)≤ 4.

Suppose r =
∏

p|r p
rp . Then, φ(r)=

∏

p|r p
rp−1(p−1).

We conclude that:

No prime p ≥ 7 can divide n (otherwise p−1≥ 6 would divide φ(r));
52 ∤ r , 32 ∤ r and 24 ∤ r .
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Other Fields of Small Degree Biquadratic Fields

Order of the Roots of Unity (Cont’d)

This leads to a small list of possibilities for r .

We find that r = 1, 2, 3, 4, 5, 6, 8, 10 or 12.

Of course, −1∈K .

So we always have square roots.

So r will be even.

K =Q(µ10) is ruled out as it is not biquadratic.

On the one hand, it contains Q(
p

5).

On the other, there is no other integer d , with Q(
p
d)⊆Q(µ10).

So Q(µ10) cannot be written Q(
p

5,
p
n) for any n.

This just leaves the list in the statement.
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Other Fields of Small Degree Biquadratic Fields

Remarks on Roots of Unity in the Real Case

The only possibility with r = 12 is Q(µ12)=Q(µ4,µ6)=Q(i ,
p
−3).

The only possibility with r = 8 is Q(µ8)=Q(i ,
p

2).

If both m> 0 and n> 0, then also k > 0.

So every embedding of
p
m,

p
n and

p
k is real.

We shall refer to this case as a real biquadratic field.

Now the only real roots of unity are ±1.

So, by Dirichlet’s Unit Theorem, there are three units, ǫ1,ǫ2 and ǫ3,
such that every unit can be written in the form

±ǫa1

1
ǫ
a2

2
ǫ
a3

3
,

where a1, a2 and a3 are in Z.

The fundamental units ǫi are, in general, difficult to compute.
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Other Fields of Small Degree Biquadratic Fields

Remarks on Roots of Unity in the Imaginary Case

If m< 0, say, then each embedding maps
p
m to ±

p
m, not a real.

So all the embeddings are complex.

Moreover, they occur in two complex conjugate pairs.

We shall refer to this case as an imaginary biquadratic field.

By Dirichlet’s Unit Theorem, there is a single unit ǫ such that every
unit can be written as ζǫa, where ζ is a root of unity in K , and a ∈Z.

In this case, the computation of the fundamental unit ǫ is more
tractable.
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Other Fields of Small Degree Cubic Fields

Subsection 5

Cubic Fields
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Other Fields of Small Degree Cubic Fields

Cubic Fields

A cubic field is a degree 3 extension of Q.

It can therefore be defined as

K =Q(γ),

where γ is a root of an irreducible cubic equation f (X ) ∈Q[X ].

Let γ1 = γ, γ2 and γ3 denote the three complex roots of f (X ).

The three embeddings from K into C are given by sending γ to each
of the three roots,

τi :Q(γ) → C;
∑

k akγ
k 7→

∑

k akγ
k
i

.
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Other Fields of Small Degree Cubic Fields

Image of the Embeddings

A new phenomenon in the cubic case is that the image of the
embeddings may differ from K .

Indeed, the image of the embedding τi is Q(γi).

It may happen that γi 6∈Q(γ).

Example: Suppose that

f (X )=X 3−2.

Then K =Q(
3
p

2).

Set ω= e2πi/3 = −1+i
p

3
2

.

The other roots of f (X ) are ω
3
p

2 and ω2 3
p

2.

They do not belong to K .
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Other Fields of Small Degree Cubic Fields

Splitting Field

Consider again an irreducible cubic polynomial f (X ) ∈Q[X ].

The splitting field L of f (X ) is the field generated over Q by all of
the roots of f (X ),

L=Q(γ1,γ2,γ3).

Notice that
γ3 = ω2 3

p
2

= 1
2
(ω 3

p
2)2( 3

p
2)2

= 1
2
γ2

1γ
2
2

∈ Q(γ1,γ2).

So L=Q(γ1,γ2).
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Other Fields of Small Degree Cubic Fields

Degree of Splitting Field

Lemma

If L is the splitting field of an irreducible cubic equation f (X ), then

[L :Q]= 3 or 6.

Certainly L contains γ1. So L⊇Q(γ1).

As the minimal polynomial of γ1 is a cubic, [Q(γ1) :Q]= 3.

Over Q(γ1), the cubic f (X ) must factor as

f (X )= (X −γ1)f1(X ),

where f1(X ) ∈Q(γ1)[X ] is a quadratic with roots γ2 and γ3.
Suppose γ2 ∈Q(γ1). Then so is γ3. So L=Q(γ1), of degree 3.
Suppose γ2 6∈Q(γ1).
γ2 and γ3 are roots of an irreducible quadratic f1(X ) over Q(γ1).
So [Q(γ1,γ2) :Q(γ1)]= 2.
The tower law for degrees of field extensions now gives [L :Q]= 6.
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Other Fields of Small Degree Cubic Fields

Roots of the Cubic Equation

The cubic equation might have three real roots.

In this case, each of the embeddings τi are real.

By Dirichlet’s Unit Theorem, the units are of the form

±ηa1

1 η
a2

2 ,

where:

η1 and η2 are fundamental units;
a1 and a2 run through integers.
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Other Fields of Small Degree Cubic Fields

Roots of the Cubic Equation (Cont’d)

Alternatively, the cubic might have one real root, and one complex
conjugate pair of roots.

Then there is one real embedding, and one conjugate pair of complex
embeddings.

By Dirichlet’s Unit Theorem, the units are of the form

ζηa,

where:

ζ is a root of unity in K ;
η is a fundamental unit;
a ∈Z.
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Other Fields of Small Degree Cubic Fields

Example

The most natural family of cubics to consider are those of the form

Q( 3
p
a),

where a is an integer not divisible by a cube.

The minimal polynomial of 3
p
a is

X 3−a.

Letting ω= e2πi/3, the three roots of this are

3
p
a, ω 3

p
a, ω2 3

p
a.

Note that

ω2 = −
1

2
− i

p
3

2
= −

(

−
1

2
+ i

p
3

2

)

−1= −ω−1.

We therefore have one real root, and one complex conjugate pair.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 81 / 82



Other Fields of Small Degree Cubic Fields

Rings of Integers of Cubic Fields

Theorem

Suppose that K =Q( 3
p
m), where m=m1m

2
2, with m1 and m2 coprime and

squarefree. Write m′ =m2
1m2.

Then if m2 6≡ 1 (mod 9), the ring of integers has integral basis

{

1,
3
p
m,

3
p
m′

}

,

and K has discriminant −27m2
1m

2
2.

If m2 ≡ 1 (mod 9), the ring of integers has integral basis

{

1,
3
p
m,

m2±m2
3
p
m+ 3

p
m′

3

}

,

and K has discriminant −3m2
1m

2
2.
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