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Cyclotomic Fields and the Fermat Equation Definitions

Roots of Unity

Definition

An n-th root of unity is a number ζ ∈C, such that ζn = 1, so that

ζ= e2πik/n
, for some k .

We say that ζ is primitive if ζa 6= 1, for any 0< a< n, so that

ζ= e2πik/n
, for k coprime to n.

It follows that the number of primitive nth roots of unity is

φ(n)= |{0≤ k < n : k and n are coprime}|.
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Cyclotomic Fields and the Fermat Equation Definitions

Cyclotomic Fields

Definition

The n-th cyclotomic field is the number field Q(ζ), where ζ is any
primitive n-th root of unity.

Example: Let ζ ∈C be a primitive 5th root of unity.

The minimal polynomial of ζ over Q is

X 4+X 3+X 2+X +1.

The remaining roots of this polynomial are the other three primitive
5th roots of unity.

If ξ is one of them, then ξ= ζj , for some j .

It follows that Q(ξ)=Q(ζ).
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Cyclotomic Fields and the Fermat Equation Definitions

Cyclotomic Polynomials

Definition

Let n≥ 1. Define the n-th cyclotomic polynomial by

λn(X )=
∏

primitive n-th
roots of unity

(X −ζ).

We write down the first few cyclotomic polynomials.

Let ω denote a primitive cube root of unity.

λ1(X ) = X −1;

λ2(X ) = X +1;

λ3(X ) = (X −ω)(X −ω2)=X 2+X +1;
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Cyclotomic Fields and the Fermat Equation Definitions

Cyclotomic Polynomials

Continuing,

λ4(X ) = (X + i)(X − i)=X 2+1;

λ5(X ) =
X 5−1

X −1
=X 4+X 3+X 2+X +1;

λ6(X ) = (X +ω)(X +ω2)=X 2−X +1.

In general, when p is a prime,

λp(X )=
X p−1

X −1
=X p−1+X p−2+·· ·+1.

There is a factor of λn for every primitive n-th root of unity.

It follows that
degλn =φ(n).
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Cyclotomic Fields and the Fermat Equation Definitions

X n−1 in terms of Cyclotomic Polynomials

Lemma

For all n, we have
X n−1=

∏

d |n
λd(X ).

Let ξ be n-th root of unity.

Then ξ is a primitive d -th root for some d | n.

Conversely, let ξ be a primitive d -th root of unity, for some d | n.

Then ξ is an n-th root of unity.
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Cyclotomic Fields and the Fermat Equation Definitions

Example

Let n= 6.
The 6-th roots of unity are

1, −1, ±ω, ±ω2
,

where ω= e2πi/3 = −1+
p
−3

2
is a primitive cube root of unity.

We split these into:
The primitive 1-st roots, i.e., 1;

The primitive square roots, i.e., −1;

The primitive cube roots, i.e., ω and ω2;

The primitive 6-th roots, i.e., −ω and −ω2.

For the product of the cyclotomic polynomials λd for d | 6, we have
∏

d |6λd(X ) = λ1(X )λ2(X )λ3(X )λ6(X )

= (X −1)(X +1)(X 2+X +1)(X 2 −X +1)

= (X 2−1)(X 4+X 2+1)

= X 6−1.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 9 / 37



Cyclotomic Fields and the Fermat Equation Definitions

Properties of λn

Proposition

λn is a monic polynomial with integer coefficients.

We prove this by induction on n.

Note λ1 =X −1 satisfies the statement.

Let
f (X )=

∏

d |n,d<n
λd (X ).

Then by induction, f is monic with integer coefficients.

By the preceding lemma,

X n−1= f λn.

We show, next, that, if p = qr is a product of polynomials, where p

and q are monic with integer coefficients, then so is r .

Applying this to p =X n−1, q = f and r =λn yields the result.
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Cyclotomic Fields and the Fermat Equation Definitions

Properties of λn (Cont’d)

Claim: If p = qr is a product of polynomials, where p and q are monic
with integer coefficients, then so is r .

Suppose that

p(X ) = X s+t +p1X
s+t−1+·· ·+ps+t ,

q(X ) = X s +q1X
s−1+·· ·+qs ,

r(X ) = r0X
t + r1X

t−1+·· ·+ rt .

By comparing coefficients of X s+t , we see r0 = 1. So r is monic.

Also, suppose we have shown that r0, . . . ,rk−1 ∈Z.

Then, comparing coefficients of X s+t−k , we see that

pk = qk +qk−1r1+·· ·+q1rk−1+ rk .

So we see rk ∈Z. Inductively, each ri ∈Z. So r ∈Z[X ].
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Cyclotomic Fields and the Fermat Equation Definitions

Irreducibility of λp(X )

Lemma

If p is prime, the polynomial λp(X ) is irreducible.

In this case,

λp(X )=
X p −1

X −1
.

So

λp(X +1) =
(X +1)p −1

(X +1)−1
=
(X +1)p −1

X

= X p−1+
(p
1

)

X p−2+
(p
2

)

X p−3+·· ·+
( p
p−2

)

X +
( p
p−1

)

.

All the coefficients except the leading term are divisible by p.

Moreover, the constant term is equal to p.

By Eisenstein’s Criterion, λp(X +1) is irreducible.

Therefore, λp(X ) is also irreducible.
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Cyclotomic Fields and the Fermat Equation Definitions

Irreducibility of λn(X )

Proposition

The polynomial λn(X ) is irreducible.

Let fn(X )=X n−1.

We work out the discriminant of fn(X ), defined as the product of the
squares of the differences of roots.

The same argument as in a previous proof shows that

∏

i<j
(ζi −ζj )2 =±1

n
∏

j=1

f ′n(ζ
i ).

But f ′n(X )= nX n−1. So we get

∏

i<j
(ζi −ζj )2 = ±1nn

(

n
∏

j=1

ζi

)n−1

= ±nn.

Suppose that g(X ) | fn(X ), and that ζ is a root of g(X ).
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Cyclotomic Fields and the Fermat Equation Definitions

Irreducibility of λn(X ) (Cont’d)

Claim: ζp is a root of g(X ), for any prime number p ∤ n.

Suppose not, so that g(ζp) 6= 0.

As g(X ) | fn(X ), we have, for some d ,

g(X )= (X −ζ1) · · ·(X −ζd ).

Then g(ζp) is a product of differences of n-th roots of unity.

So it divides the discriminant ±nn already calculated.

Modulo p, we have g(X p)≡ g(X )p (mod p).

So p | g(ζp)−g(ζ)p .

Thus p | g(ζp) as g(ζ)= 0.

But g(ζp) is an algebraic number dividing nn.

So p | n, a contradiction.
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Cyclotomic Fields and the Fermat Equation Definitions

Irreducibility of λn(X ) (Cont’d)

Suppose g(X ) is a nontrivial factor of λn(X ).

Then g(X ) is a nontrivial factor of fn(X ).

Let ζ be a primitive n-th root of unity which is a root of g(X ).

Then all powers ζk must be roots of g(X ), for all k coprime to n.

To see this:

Factor k into primes;

Apply the claim above successively.

In particular, every primitive n-th root of unity is a root of g(X ).

This shows that g(X )=λn(X ). Hence, λn(X ) is irreducible.

Corollary

If ζ is a primitive n-th root of unity, then [Q(ζ) :Q]=φ(n).

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 15 / 37



Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Subsection 2

Discriminants and Integral Bases
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Ramification Behavior of p in K =Q[ζ]

Let ζ be a primitive n-th root of unity.

Let K =Q(ζ).

We will show that ZK =Z[ζ].

This implies that
{

1,ζ, . . . ,ζφ(n)−1
}

forms an integral basis.

We start with the case when n= pr is a power of a single prime p.
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Ramification Behavior of p in K =Q[ζ] (Cont’d)

Lemma

Let n= pr , let ζ denote a primitive n-th root of unity, and put π= 1−ζ.
Then

pZK = 〈π〉k ,

where k = [Q(ζ) :Q]=φ(pr )= pr−1(p−1). Furthermore, NK/Q(π)= p.

The minimal polynomial of ζ is the n-th cyclotomic polynomial.

In the case of a prime power n= pr ,

λpr (X )=
X pr −1

X pr−1 −1
=X pr−1(p−1)+X pr−1(p−2)+·· ·+X pr−1

+1.

The roots of λpr (X ) are all the primitive n-th roots of unity.

These are given by ζg , with g ∈G = {1≤ k ≤ n : p ∤ k}.

So λpr (X )=
∏

g∈G (X −ζg ).
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Ramification Behavior of p in K =Q[ζ] (Cont’d)

We obtained the expressions

λpr (X ) = X pr−1(p−1)+X pr−1(p−2)+·· ·+X pr−1 +1;
λpr (X ) =

∏

g∈G (X −ζg ).

Put X = 1 in these two expressions for λpr (X ).

We get
p =

∏

g∈G
(1−ζg ).

Therefore,
pZK = 〈p〉 =

∏

g∈G
〈1−ζg 〉.

Claim: The ideals in the factorization in this product are all the same.

This follows as the generators are associates,

1−ζg

1−ζ
= 1+ζ+·· ·+ζg−1 ∈Z[ζ].
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Ramification Behavior of p in K =Q[ζ] (Cont’d)

Conversely, we can find h ∈G , with gh≡ 1 (mod pr ).

Then
1−ζ

1−ζg
=

1− (ζg )h

1−ζg
= 1+ζg +·· ·+ζg (h−1) ∈Z[ζ].

Thus, 〈1−ζg 〉 = 〈1−ζ〉, for all g ∈G .

Then, with k as in the statement of the lemma,

pZK =
∏

g∈G
〈1−ζg 〉 = 〈1−ζ〉|G | = 〈π〉k .

To get the claim about the norm, apply NK/Q to this equality.

We know that NK/Q(p)= p[K :Q] = pk .

On the other hand, the norm of the right-hand side is NK/Q(π)
k .

So NK/Q(π)= p.
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Discriminant of the Basis {1,ζ, . . . ,ζk−1}

Lemma

With notation as in the previous lemma, the discriminant

∆{1,ζ, . . . ,ζk−1
} =±ps ,

for some exponent s.

Write

λ(X )=λpr (X )=
X pr −1

X pr−1 −1
.

Rearrange this as
(X pr−1

−1)λ(X )=X pr

−1.

We will use

∆{1,ζ, . . . ,ζk−1
} = (−1)n(n−1)/2NK/Q(λ

′(ζ))

to compute the discriminant.
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Discriminant of the Basis {1,ζ, . . . ,ζk−1} (Cont’d)

So we need to compute the norm of λ′(ζ).

Differentiate the formula, to get

(pr−1X pr−1−1)λ(X )+ (X pr−1
−1)λ′(X )= prX pr−1

.

Substitute X = ζ,

(ζp
r−1

−1)λ′(ζ)= prζp
r−1 = prζ−1

.

Put ξ= ζp
r−1

.

This is a p-th root of unity.

By the preceding lemma,

NQ(ξ)/Q(ξ−1)=±p.

Then
NQ(ζ)/Q(ξ−1)= (±p)[Q(ζ):Q(ξ)] = ±pp

r−1
.
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Discriminant of the Basis {1,ζ, . . . ,ζk−1} (Cont’d)

Take norms of the equality (ξ−1)λ′(ζ)= prζ−1, and find

NQ(ζ)/Q(ξ−1)NQ(ζ)/Q(λ
′(ζ))=NQ(ζ)/Q(p

r )NQ(ζ)/Q(ζ)
−1

.

Substituting in the earlier calculations, noting that ζ is a root of unity
(and thus has norm ±1), this becomes

±pp
r−1

NQ(ζ)/Q(λ
′(ζ))= (pr )p

r−1(p−1)
.

Now we obtain by a previous proposition,

∆{1,ζ, . . . ,ζk−1
} =±NQ(ζ)/Q(λ

′(ζ)).

This can be written ±ps , where s = rpr−1(p−1)−pr−1.

Note that this implies that p is the only prime ramifying in Q(ζpr ).

We can also use this to see that Q(ζ) is monogenic, so that it has an
integral basis generated by a single element.
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

The Ring of Integers for n= pr

Proposition

Let n = pr , and let ζ denote a primitive n-th root of unity. Then the ring of
integers of K =Q(ζ) is given by Z[ζ].

Write ZK for the ring of integers.

We know
∆{1,ζ, . . . ,ζk−1

} =±ps ,

for some integer s, where k = [Q(ζ) :Q].

So, by a previous lemma, psZK ⊆Z[ζ]⊆ZK .

As in the previous lemma, if π= 1−ζ, then NQ(ζ)/Q(π)= p.

Thus,
ZK/πZK

∼=Z/pZ.

So
ZK =Z+πZK .
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

The Ring of Integers for n= pr (Cont’d)

Therefore,
ZK =Z[ζ]+πZK .

Multiplying through by π gives

πZK =πZ[ζ]+π2ZK .

Substituting,

ZK =Z[ζ]+ (πZ[ζ]+π2ZK )=Z[ζ]+π2ZK .

We can repeat this procedure to get

ZK =Z[ζ]+πmZK , for all m≥ 1.

However, if we put m= s, we have already observed that

πsZK ⊆Z[ζ].

So we conclude that ZK =Z[ζ].
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

The Ring of Integers of Q(ζ)

Theorem

Let n ∈Z≥1, and let ζ denote a primitive n-th root of unity. Then the ring
of integers of K =Q(ζ) is given by Z[ζ].

Let n= p
r1
1
· · ·prss .

For i = 1, . . . ,s, write
ζi = ζn/p

ri
i .

ζi is a p
ri
i
-th root of unity.

Let Ki =Q(ζi )⊆Q(ζ).

The Ki are cyclotomic fields.

By the preceding proposition, ZKi
=Z[ζi ],

So each ZKi
is generated by powers of ζi .

These are, in turn, powers of ζ.
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

The Ring of Integers of Q(ζ) (Cont’d)

Now the discriminants of K1 and K2 are coprime.

By a previous proposition, the ring of integers of K1K2 =Q(ζ1,ζ2) has
a basis consisting of powers ζ

a1

1
ζ
a2

2
, which are again all powers of ζ.

Similarly, the ring of integers of K1K2K3 =Q(ζ1,ζ2,ζ3) also has a
basis consisting of powers of ζ.

Continuing in this way, we see that the ring of integers of

K1 · · ·Ks =Q(ζ1, . . . ,ζs)=Q(ζ)

has a basis consisting of powers of ζ.

So ZK =Z[ζ] as required.
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Cyclotomic Fields and the Fermat Equation Gauss Sums and Quadratic Reciprocity

Subsection 3

Gauss Sums and Quadratic Reciprocity
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Cyclotomic Fields and the Fermat Equation Gauss Sums and Quadratic Reciprocity

On Unique Factorization of Cyclotomic Fields

We will sketch a proof that cyclotomic fields need not always have
unique factorization.

Even in the case Q(ζ), with ζ a p-th root of unity, for some prime p, it
turns out that Q(ζ) does not always have unique factorization.

Q(ζ) has unique factorization for all p ≤ 19.

But for all p > 19, Q(ζ) fails to have unique factorization.

We sketch the argument that Q(ζ23) fails to have unique factorization.
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Cyclotomic Fields and the Fermat Equation Gauss Sums and Quadratic Reciprocity

Properties of Q(ζ23)

Lemma

Q(
p
−23)⊆Q(ζ23) and [Q(ζ23) :Q(

p
−23)]= 11.

Set

τ=
22
∑

a=1

( a

23

)

ζa,

where ζ= ζ23, and
(

a
23

)

is the Legendre symbol.

Claim: τ2 =−23, so that
p
−23=±τ ∈Q(ζ23).

We have

τ2 =
22
∑

a=1

22
∑

b=1

( a

23

)

ζa
(

b

23

)

ζb.

Consider a pair a pair (a,b).

Define c by b ≡ ac (mod 23).

Think of a as fixed.

Then, when b runs through all values 1, . . . ,22, so does c .
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Cyclotomic Fields and the Fermat Equation Gauss Sums and Quadratic Reciprocity

Properties of Q(ζ23) (Cont’d)

Thus:

τ2 =
∑22

a=1

∑22
b=1

(

a
23

)

ζa
(

b
23

)

ζb

=
∑22

a=1

∑22
c=1

(

a2c
23

)

ζa+ac

=
∑22

a=1

∑21
c=1

(

c
23

)

ζa(1+c)+
∑22

a=1

(−1
23

)

=
∑21

c=1[
(

c
23

)

∑22
a=1ζ

a(1+c)]+22 · (−1) (as
(−1
23

)

=−1)

= [
∑21

c=1

(

c
23

)

· (−1)]−22 (
∑22

a=0 ζ
ka = 0,k 6≡ 0 (mod 23))

= 1 · (−1)−22= −23. (
∑22

c=1

(

c
23

)

= 0)

The second claim follows from the tower law for field extensions.

We know [Q(ζ23) :Q]=φ(23)= 22, and [Q(
p
−23) :Q]= 2.

Therefore,

[Q(ζ23) :Q(
p
−23)]=

[Q(ζ23) :Q]

[Q(
p
−23) :Q]

=
22

2
= 11.
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Cyclotomic Fields and the Fermat Equation Gauss Sums and Quadratic Reciprocity

Quadratic Reciprocity Theorem

Theorem

Suppose that p and q are distinct odd primes. Then

(

p

q

)(

q

p

)

= (−1)(p−1)(q−1)/4
.

Write ζ= ζp.

Consider the Gauss sum τ(ζ)=
∑p−1

a=1

(

a
p

)

ζa.

Consider also

τ(ζq)=
p−1
∑

a=1

(

a

p

)

(ζq)a.

By the multiplicativity of the Legendre symbol,
(

q

p

)

τ(ζq)=
p−1
∑

a=1

(

aq

p

)

ζaq = τ(ζ).
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Cyclotomic Fields and the Fermat Equation Gauss Sums and Quadratic Reciprocity

Quadratic Reciprocity Theorem (Cont’d)

We can also evaluate τ(ζq) by working modulo qZ[ζp],

τ(ζq) ≡ τ(ζ)q

= τ(ζ)(τ(ζ)2)(q−1)/2

= τ(ζ)p∗(q−1)/2 (τ(ζ)2 =
(

−1
p

)

p =: p∗)

= τ(ζ)
(

p∗

q

)

,

using Euler’s criterion a(q−1)/2 ≡
(

a
q

)

(mod q).

Now, we compare this with the previous equation.

We get
(

q
p

)(

p∗

q

)

= 1.

Finally, we calculate
(

p∗

q

)

=
(

(−1)(p−1)/2p

q

)

=
(−1

q

)(p−1)/2 (

p

q

)

= (−1)(p−1)(q−1)/4
(

p

q

)

.
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Cyclotomic Fields and the Fermat Equation Gauss Sums and Quadratic Reciprocity

Relative Ideal Norm

Definition

Suppose that L⊇K is an extension of number fields. Let A be an ideal in
ZL. Then the relative ideal norm NL/K (A) is the ideal in ZK generated
by all of the elements NL/K (A), where A ∈A.

The relative ideal norm has the following properties:
1. NL/K (AB)=NL/K (A)NL/K (B), for ideals A and B in ZL;

2. If P is a prime ideal in ZL, then NL/K (P)= pf , where p=P∩ZK and

f is the degree of the residue field extension ZL/P⊇ZK /p;

3. If a is an ideal of ZK , then NL/K (aZL)= a[L:K ];

4. If A= 〈α〉 is a principal ideal of ZL, then NL/K (A)= 〈NL/K (α)〉 is a

principal ideal of ZK ;

5. if M ⊇ L⊇K are extensions of number fields, then, for A an ideal of

ZM ,

NM/K (A)=NL/K (NM/L(A)).
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Cyclotomic Fields and the Fermat Equation Gauss Sums and Quadratic Reciprocity

Q(ζ23) Does Not Have Unique Factorization

Recall that the ring of integers of Q(
p
−23) is Z[ρ], where

ρ =
1+

p
−23

2
.

We can compute the class number of Q(
p
−23) using the quadratic

forms method.

There are three distinct reduced forms of discriminant −23:

x2+xy +6y2
, 2x2+xy +3y2

, 2x2−xy +3y2
.

Thus the class number of Q(
p
−23) is 3.

The class group is therefore isomorphic to C3, the cyclic group of
order 3.
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Cyclotomic Fields and the Fermat Equation Gauss Sums and Quadratic Reciprocity

Q(ζ23) Does Not Have Unique Factorization (Cont’d)

We also consider the factorization of the prime 2 in Q(
p
−23).

The minimal polynomial of ρ is

X 2−X +6.

We have
X 2−X +6≡X 2+X =X (X +1) (mod 2).

So, in Z[ρ], we have
2Z[ρ]= pp′.

Earlier tecniques show that we can take

p= 〈2,ρ〉 and p′ = 〈2,ρ−1〉.

Previous methods show that p and p′ are not principal.

There are no elements of norm 2 in the ring of integers of Q(
p
−23).

Thus, p is not trivial in the class group.
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Cyclotomic Fields and the Fermat Equation Gauss Sums and Quadratic Reciprocity

Q(ζ23) Does Not Have Unique Factorization (Cont’d)

Since the class number of Q(
p
−23) is 3, we see that p3 is principal.

So p has order 3 in the class group.

Let P be a prime ideal of Q(ζ23) lying above p.

Write NQ(ζ23)/Q(
p
−23)(P) as pf , for some f .

As f | [Q(ζ23) :Q(
p
−23)] we see that f | 11.

It follows that NQ(ζ23)/Q(
p
−23)(P)= p or p11.

But p has order 3 in the class group.

So pf can only be principal if 3 | f .
We conclude that NQ(ζ23)/Q(

p
−23)(P) is not principal in Q(

p
−23).

If P were a principal ideal in Q(ζ23), the norm NQ(ζ23)/Q(
p
−23)(P)

would be a principal ideal in Q(
p
−23).

Hence, P is not a principal ideal in Q(ζ23).

It follows that Q(ζ23) does not have unique factorization.
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