Introduction to Algebraic Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Algebraic Number Theory

Occupie Cyclotomic Fields and the Fermat Equation

- Definitions
- Discriminants and Integral Bases
- Gauss Sums and Quadratic Reciprocity

Subsection 1

Definitions

George Voutsadakis (LSSU)

Algebraic Number Theory

Roots of Unity

Definition

An *n*-th root of unity is a number $\zeta \in \mathbb{C}$, such that $\zeta^n = 1$, so that

$$\zeta = e^{2\pi i k/n}$$
, for some k.

We say that ζ is **primitive** if $\zeta^a \neq 1$, for any 0 < a < n, so that

$$\zeta = e^{2\pi i k/n}$$
, for k coprime to n.

• It follows that the number of primitive *n*th roots of unity is $\phi(n) = |\{0 \le k < n : k \text{ and } n \text{ are coprime}\}|.$

Cyclotomic Fields

Definition

The *n*-th cyclotomic field is the number field $\mathbb{Q}(\zeta)$, where ζ is any primitive *n*-th root of unity.

Example: Let $\zeta \in \mathbb{C}$ be a primitive 5th root of unity. The minimal polynomial of ζ over \mathbb{Q} is

 $X^4 + X^3 + X^2 + X + 1.$

The remaining roots of this polynomial are the other three primitive 5th roots of unity.

- If ξ is one of them, then $\xi = \zeta^{j}$, for some *j*.
- It follows that $\mathbb{Q}(\xi) = \mathbb{Q}(\zeta)$.

Cyclotomic Polynomials

Definition

Let $n \ge 1$. Define the *n*-th cyclotomic polynomial by

$$\lambda_n(X) = \prod_{\text{primitive } n-\text{th}} (X - \zeta).$$

roots of unity

- We write down the first few cyclotomic polynomials.
- Let ω denote a primitive cube root of unity.

$$\lambda_1(X) = X - 1;$$

 $\lambda_2(X) = X + 1;$
 $\lambda_3(X) = (X - \omega)(X - \omega^2) = X^2 + X + 1;$

Cyclotomic Polynomials

Continuing,

$$\lambda_4(X) = (X+i)(X-i) = X^2 + 1;$$

$$\lambda_5(X) = \frac{X^5 - 1}{X - 1} = X^4 + X^3 + X^2 + X + 1;$$

$$\lambda_6(X) = (X+\omega)(X+\omega^2) = X^2 - X + 1.$$

• In general, when p is a prime,

$$\lambda_p(X) = \frac{X^p - 1}{X - 1} = X^{p-1} + X^{p-2} + \dots + 1.$$

There is a factor of λ_n for every primitive *n*-th root of unity.
It follows that

$$\deg \lambda_n = \phi(n).$$

$X^n - 1$ in terms of Cyclotomic Polynomials

Lemma

For all *n*, we have

$$X^n - 1 = \prod_{d|n} \lambda_d(X).$$

• Let ξ be *n*-th root of unity.

Then ξ is a primitive *d*-th root for some $d \mid n$. Conversely, let ξ be a primitive *d*-th root of unity, for some $d \mid n$. Then ξ is an *n*-th root of unity.

Example

• Let n = 6.

The 6-th roots of unity are

1,
$$-1$$
, $\pm \omega$, $\pm \omega^2$,

where $\omega = e^{2\pi i/3} = \frac{-1+\sqrt{-3}}{2}$ is a primitive cube root of unity. We split these into:

- The primitive 1-st roots, i.e., 1;
- The primitive square roots, i.e., -1;
- The primitive cube roots, i.e., ω and ω^2 ;
- The primitive 6-th roots, i.e., $-\omega$ and $-\omega^2$.

For the product of the cyclotomic polynomials λ_d for $d \mid 6$, we have

$$\Pi_{d|6} \lambda_d(X) = \lambda_1(X) \lambda_2(X) \lambda_3(X) \lambda_6(X)$$

= $(X-1)(X+1)(X^2+X+1)(X^2-X+1)$
= $(X^2-1)(X^4+X^2+1)$
= $X^6-1.$

Properties of λ_n

Proposition

 λ_n is a monic polynomial with integer coefficients.

We prove this by induction on n.
 Note λ₁ = X - 1 satisfies the statement.
 Let

$$f(X) = \prod_{d|n,d < n} \lambda_d(X).$$

Then by induction, f is monic with integer coefficients. By the preceding lemma,

$$X^n - 1 = f\lambda_n.$$

We show, next, that, if p = qr is a product of polynomials, where p and q are monic with integer coefficients, then so is r. Applying this to $p = X^{n-1}$, q = f and $r = \lambda_n$ yields the result.

Properties of λ_n (Cont'd)

Claim: If p = qr is a product of polynomials, where p and q are monic with integer coefficients, then so is r.

Suppose that

$$p(X) = X^{s+t} + p_1 X^{s+t-1} + \dots + p_{s+t},$$

$$q(X) = X^s + q_1 X^{s-1} + \dots + q_s,$$

$$r(X) = r_0 X^t + r_1 X^{t-1} + \dots + r_t.$$

By comparing coefficients of X^{s+t} , we see $r_0 = 1$. So r is monic. Also, suppose we have shown that $r_0, \ldots, r_{k-1} \in \mathbb{Z}$. Then, comparing coefficients of X^{s+t-k} , we see that

$$p_k = q_k + q_{k-1}r_1 + \dots + q_1r_{k-1} + r_k.$$

So we see $r_k \in \mathbb{Z}$. Inductively, each $r_i \in \mathbb{Z}$. So $r \in \mathbb{Z}[X]$.

Irreducibility of $\lambda_p(X)$

Lemma

If p is prime, the polynomial $\lambda_p(X)$ is irreducible.

In this case,

$$\lambda_p(X) = \frac{X^p - 1}{X - 1}.$$

So

$$\begin{split} \lambda_p(X+1) &= \frac{(X+1)^p - 1}{(X+1) - 1} = \frac{(X+1)^p - 1}{X} \\ &= X^{p-1} + {p \choose 1} X^{p-2} + {p \choose 2} X^{p-3} + \dots + {p \choose p-2} X + {p \choose p-1}. \end{split}$$

All the coefficients except the leading term are divisible by p. Moreover, the constant term is equal to p. By Eisenstein's Criterion, $\lambda_p(X+1)$ is irreducible. Therefore, $\lambda_p(X)$ is also irreducible.

George Voutsadakis (LSSU)

Algebraic Number Theory

Irreducibility of $\lambda_n(X)$

Proposition

The polynomial $\lambda_n(X)$ is irreducible.

• Let
$$f_n(X) = X^n - 1$$
.

We work out the **discriminant** of $f_n(X)$, defined as the product of the squares of the differences of roots.

The same argument as in a previous proof shows that

$$\prod_{i< j} (\zeta^i - \zeta^j)^2 = \pm \prod_{j=1}^n f'_n(\zeta^i).$$

But $f'_n(X) = nX^{n-1}$. So we get

$$\prod_{i< j} (\zeta^i - \zeta^j)^2 = \pm \ln^n \left(\prod_{j=1}^n \zeta^j\right)^{n-1} = \pm n^n.$$

Suppose that $g(X) | f_n(X)$, and that ζ is a root of g(X).

Irreducibility of $\lambda_n(X)$ (Cont'd)

Claim: ζ^p is a root of g(X), for any prime number $p \nmid n$. Suppose not, so that $g(\zeta^p) \neq 0$. As $g(X) \mid f_n(X)$, we have, for some d,

$$g(X) = (X - \zeta_1) \cdots (X - \zeta_d).$$

Then $g(\zeta^p)$ is a product of differences of *n*-th roots of unity. So it divides the discriminant $\pm n^n$ already calculated. Modulo *p*, we have $g(X^p) \equiv g(X)^p \pmod{p}$. So $p \mid g(\zeta^p) - g(\zeta)^p$. Thus $p \mid g(\zeta^p)$ as $g(\zeta) = 0$. But $g(\zeta^p)$ is an algebraic number dividing n^n . So $p \mid n$, a contradiction.

Irreducibility of $\lambda_n(X)$ (Cont'd)

 Suppose g(X) is a nontrivial factor of λ_n(X). Then g(X) is a nontrivial factor of f_n(X).

Let ζ be a primitive *n*-th root of unity which is a root of g(X). Then all powers ζ^k must be roots of g(X), for all *k* coprime to *n*. To see this:

- Factor k into primes;
- Apply the claim above successively.

In particular, every primitive *n*-th root of unity is a root of g(X). This shows that $g(X) = \lambda_n(X)$. Hence, $\lambda_n(X)$ is irreducible.

Corollary

If ζ is a primitive *n*-th root of unity, then $[\mathbb{Q}(\zeta) : \mathbb{Q}] = \phi(n)$.

Subsection 2

Discriminants and Integral Bases

Ramification Behavior of p in $K = \mathbb{Q}[\zeta]$

- Let ζ be a primitive *n*-th root of unity.
- Let $K = \mathbb{Q}(\zeta)$.
- We will show that $\mathbb{Z}_{\mathcal{K}} = \mathbb{Z}[\zeta]$.
- This implies that

$$\left\{1,\zeta,\ldots,\zeta^{\phi(n)-1}\right\}$$

forms an integral basis.

• We start with the case when $n = p^r$ is a power of a single prime p.

Ramification Behavior of p in $K = \mathbb{Q}[\zeta]$ (Cont'd)

Lemma

Let $n = p^r$, let ζ denote a primitive *n*-th root of unity, and put $\pi = 1 - \zeta$. Then

$$p\mathbb{Z}_K = \langle \pi \rangle^k,$$

where $k = [\mathbb{Q}(\zeta) : \mathbb{Q}] = \phi(p^r) = p^{r-1}(p-1)$. Furthermore, $N_{K/\mathbb{Q}}(\pi) = p$.

The minimal polynomial of ζ is the *n*-th cyclotomic polynomial.
 In the case of a prime power n = p^r,

$$\lambda_{p^{r}}(X) = \frac{X^{p^{r}} - 1}{X^{p^{r-1}} - 1} = X^{p^{r-1}(p-1)} + X^{p^{r-1}(p-2)} + \dots + X^{p^{r-1}} + 1.$$

The roots of $\lambda_{p'}(X)$ are all the primitive *n*-th roots of unity. These are given by ζ^g , with $g \in G = \{1 \le k \le n : p \nmid k\}$. So $\lambda_{p'}(X) = \prod_{g \in G} (X - \zeta^g)$.

Ramification Behavior of p in $K = \mathbb{Q}[\zeta]$ (Cont'd)

• We obtained the expressions

$$\begin{array}{lll} \lambda_{p'}(X) & = & X^{p'^{-1}(p-1)} + X^{p'^{-1}(p-2)} + \dots + X^{p'^{-1}} + 1; \\ \lambda_{p'}(X) & = & \prod_{g \in G} (X - \zeta^g). \end{array}$$

Put X = 1 in these two expressions for $\lambda_{p^r}(X)$. We get

$$p=\prod_{g\in G}(1-\zeta^g).$$

Therefore,

$$p\mathbb{Z}_{K} = \langle p \rangle = \prod_{g \in G} \langle 1 - \zeta^{g} \rangle.$$

Claim: The ideals in the factorization in this product are all the same. This follows as the generators are associates,

$$\frac{1-\zeta^g}{1-\zeta}=1+\zeta+\cdots+\zeta^{g-1}\in\mathbb{Z}[\zeta].$$

George Voutsadakis (LSSU)

Ramification Behavior of p in $K = \mathbb{Q}[\zeta]$ (Cont'd)

• Conversely, we can find $h \in G$, with $gh \equiv 1 \pmod{p^r}$. Then

$$\frac{1-\zeta}{1-\zeta^g} = \frac{1-(\zeta^g)^h}{1-\zeta^g} = 1+\zeta^g+\dots+\zeta^{g(h-1)} \in \mathbb{Z}[\zeta].$$

Thus, $\langle 1-\zeta^g \rangle = \langle 1-\zeta \rangle$, for all $g \in G$.

Then, with k as in the statement of the lemma,

$$p\mathbb{Z}_{K} = \prod_{g \in G} \langle 1 - \zeta^{g} \rangle = \langle 1 - \zeta \rangle^{|G|} = \langle \pi \rangle^{k}.$$

To get the claim about the norm, apply $N_{K/\mathbb{Q}}$ to this equality. We know that $N_{K/\mathbb{Q}}(p) = p^{[K:\mathbb{Q}]} = p^k$. On the other hand, the norm of the right-hand side is $N_{K/\mathbb{Q}}(\pi)^k$. So $N_{K/\mathbb{Q}}(\pi) = p$.

Discriminant of the Basis $\{1, \zeta, \dots, \zeta^{k-1}\}$

Lemma

With notation as in the previous lemma, the discriminant

$$\Delta\{1,\zeta,\ldots,\zeta^{k-1}\}=\pm p^s,$$

for some exponent *s*.

Write

$$\lambda(X) = \lambda_{p'}(X) = \frac{X^{p'}-1}{X^{p'-1}-1}.$$

Rearrange this as

$$(X^{p^{r-1}}-1)\lambda(X) = X^{p^r}-1.$$

We will use

$$\Delta\{1,\zeta,\ldots,\zeta^{k-1}\} = (-1)^{n(n-1)/2} N_{\mathcal{K}/\mathbb{Q}}(\lambda'(\zeta))$$

to compute the discriminant.

George Voutsadakis (LSSU)

Discriminant of the Basis $\{1, \zeta, \dots, \zeta^{k-1}\}$ (Cont'd)

So we need to compute the norm of λ'(ζ).
 Differentiate the formula, to get

$$(p^{r-1}X^{p^{r-1}-1})\lambda(X) + (X^{p^{r-1}}-1)\lambda'(X) = p^rX^{p^r-1}.$$

Substitute $X = \zeta$,

$$(\zeta^{p^{r-1}}-1)\lambda'(\zeta) = p^r \zeta^{p^r-1} = p^r \zeta^{-1}.$$

Put $\xi = \zeta^{p^{r-1}}$. This is a *p*-th root of unity. By the preceding lemma,

$$N_{\mathbb{Q}(\xi)/\mathbb{Q}}(\xi-1) = \pm p.$$

Then

$$N_{\mathbb{Q}(\zeta)/\mathbb{Q}}(\zeta-1) = (\pm p)^{[\mathbb{Q}(\zeta):\mathbb{Q}(\zeta)]} = \pm p^{p'-1}.$$

Discriminant of the Basis $\{1, \zeta, \dots, \zeta^{k-1}\}$ (Cont'd)

• Take norms of the equality $(\xi - 1)\lambda'(\zeta) = p'\zeta^{-1}$, and find

$$\mathsf{N}_{\mathbb{Q}(\zeta)/\mathbb{Q}}(\xi-1)\mathsf{N}_{\mathbb{Q}(\zeta)/\mathbb{Q}}(\lambda'(\zeta)) = \mathsf{N}_{\mathbb{Q}(\zeta)/\mathbb{Q}}(p^r)\mathsf{N}_{\mathbb{Q}(\zeta)/\mathbb{Q}}(\zeta)^{-1}.$$

Substituting in the earlier calculations, noting that ζ is a root of unity (and thus has norm ± 1), this becomes

$$\pm p^{p^{r-1}} N_{\mathbb{Q}(\zeta)/\mathbb{Q}}(\lambda'(\zeta)) = (p^r)^{p^{r-1}(p-1)}.$$

Now we obtain by a previous proposition,

$$\Delta\{1,\zeta,\ldots,\zeta^{k-1}\} = \pm N_{\mathbb{Q}(\zeta)/\mathbb{Q}}(\lambda'(\zeta)).$$

This can be written $\pm p^s$, where $s = rp^{r-1}(p-1) - p^{r-1}$.

- Note that this implies that p is the only prime ramifying in $\mathbb{Q}(\zeta_{p^r})$.
- We can also use this to see that $\mathbb{Q}(\zeta)$ is monogenic, so that it has an integral basis generated by a single element.

George Voutsadakis (LSSU)

Algebraic Number Theory

The Ring of Integers for $n = p^r$

Proposition

Let $n = p^r$, and let ζ denote a primitive *n*-th root of unity. Then the ring of integers of $K = \mathbb{Q}(\zeta)$ is given by $\mathbb{Z}[\zeta]$.

Write Z_K for the ring of integers.
 We know

$$\Delta\{1,\zeta,\ldots,\zeta^{k-1}\}=\pm p^s,$$

for some integer s, where $k = [\mathbb{Q}(\zeta) : \mathbb{Q}]$. So, by a previous lemma, $p^s \mathbb{Z}_K \subseteq \mathbb{Z}[\zeta] \subseteq \mathbb{Z}_K$. As in the previous lemma, if $\pi = 1 - \zeta$, then $N_{\mathbb{Q}(\zeta)/\mathbb{Q}}(\pi) = p$. Thus,

$$\mathbb{Z}_{K}/\pi\mathbb{Z}_{K}\cong\mathbb{Z}/p\mathbb{Z}.$$

So

$$\mathbb{Z}_K = \mathbb{Z} + \pi \mathbb{Z}_K.$$

The Ring of Integers for $n = p^r$ (Cont'd)

Therefore,

$$\mathbb{Z}_{K} = \mathbb{Z}[\zeta] + \pi \mathbb{Z}_{K}.$$

Multiplying through by π gives

$$\pi\mathbb{Z}_{K}=\pi\mathbb{Z}[\zeta]+\pi^{2}\mathbb{Z}_{K}.$$

Substituting,

$$\mathbb{Z}_{\mathcal{K}} = \mathbb{Z}[\zeta] + (\pi \mathbb{Z}[\zeta] + \pi^2 \mathbb{Z}_{\mathcal{K}}) = \mathbb{Z}[\zeta] + \pi^2 \mathbb{Z}_{\mathcal{K}}.$$

We can repeat this procedure to get

$$\mathbb{Z}_{K} = \mathbb{Z}[\zeta] + \pi^{m} \mathbb{Z}_{K}, \quad \text{for all } m \ge 1.$$

However, if we put m = s, we have already observed that

$$\pi^{s}\mathbb{Z}_{K}\subseteq\mathbb{Z}[\zeta].$$

So we conclude that $\mathbb{Z}_{\mathcal{K}} = \mathbb{Z}[\zeta]$.

The Ring of Integers of $\mathbb{Q}(\zeta)$

Theorem

Let $n \in \mathbb{Z}_{\geq 1}$, and let ζ denote a primitive *n*-th root of unity. Then the ring of integers of $K = \mathbb{Q}(\zeta)$ is given by $\mathbb{Z}[\zeta]$.

• Let
$$n = p_1^{r_1} \cdots p_s^{r_s}$$
.
For $i = 1, \dots, s$, write

$$\zeta_i = \zeta^{n/p_i^{r_i}}.$$

 ζ_i is a $p_i^{r_i}$ -th root of unity.

Let $K_i = \mathbb{Q}(\zeta_i) \subseteq \mathbb{Q}(\zeta)$.

The K_i are cyclotomic fields.

By the preceding proposition, $\mathbb{Z}_{K_i} = \mathbb{Z}[\zeta_i]$,

So each \mathbb{Z}_{K_i} is generated by powers of ζ_i .

These are, in turn, powers of ζ .

The Ring of Integers of $\mathbb{Q}(\zeta)$ (Cont'd)

• Now the discriminants of K_1 and K_2 are coprime.

By a previous proposition, the ring of integers of $K_1K_2 = \mathbb{Q}(\zeta_1, \zeta_2)$ has a basis consisting of powers $\zeta_1^{a_1}\zeta_2^{a_2}$, which are again all powers of ζ . Similarly, the ring of integers of $K_1K_2K_3 = \mathbb{Q}(\zeta_1, \zeta_2, \zeta_3)$ also has a basis consisting of powers of ζ .

Continuing in this way, we see that the ring of integers of

$$K_1 \cdots K_s = \mathbb{Q}(\zeta_1, \dots, \zeta_s) = \mathbb{Q}(\zeta)$$

has a basis consisting of powers of ζ . So $\mathbb{Z}_K = \mathbb{Z}[\zeta]$ as required.

Subsection 3

Gauss Sums and Quadratic Reciprocity

On Unique Factorization of Cyclotomic Fields

- We will sketch a proof that cyclotomic fields need not always have unique factorization.
- Even in the case Q(ζ), with ζ a p-th root of unity, for some prime p, it turns out that Q(ζ) does not always have unique factorization.
 - $\mathbb{Q}(\zeta)$ has unique factorization for all $p \leq 19$.
 - But for all p > 19, $\mathbb{Q}(\zeta)$ fails to have unique factorization.
- We sketch the argument that $\mathbb{Q}(\zeta_{23})$ fails to have unique factorization.

Properties of $\mathbb{Q}(m{\zeta}_{23})$

Lemma

$$\mathbb{Q}(\sqrt{-23}) \subseteq \mathbb{Q}(\zeta_{23}) \text{ and } [\mathbb{Q}(\zeta_{23}) : \mathbb{Q}(\sqrt{-23})] = 11.$$

Set

$$\tau = \sum_{a=1}^{22} \left(\frac{a}{23}\right) \zeta^a,$$

where $\zeta = \zeta_{23}$, and $\left(\frac{a}{23}\right)$ is the Legendre symbol. Claim: $\tau^2 = -23$, so that $\sqrt{-23} = \pm \tau \in \mathbb{Q}(\zeta_{23})$. We have

$$\tau^{2} = \sum_{a=1}^{22} \sum_{b=1}^{22} \left(\frac{a}{23}\right) \zeta^{a} \left(\frac{b}{23}\right) \zeta^{b}.$$

Consider a pair a pair (a, b). Define c by $b \equiv ac \pmod{23}$. Think of a as fixed. Then, when b runs through all values 1,...,22, so does c.

Properties of $\mathbb{Q}(\zeta_{23})$ (Cont'd)

• Thus:

τ

$$\begin{split} & 2^{2} = \sum_{a=1}^{22} \sum_{b=1}^{22} \left(\frac{a}{23}\right) \zeta^{a} \left(\frac{b}{23}\right) \zeta^{b} \\ & = \sum_{a=1}^{22} \sum_{c=1}^{22} \left(\frac{a^{2}c}{23}\right) \zeta^{a+ac} \\ & = \sum_{a=1}^{22} \sum_{c=1}^{21} \left(\frac{c}{23}\right) \zeta^{a(1+c)} + \sum_{a=1}^{22} \left(\frac{-1}{23}\right) \\ & = \sum_{c=1}^{21} \left[\left(\frac{c}{23}\right) \sum_{a=1}^{22} \zeta^{a(1+c)}\right] + 22 \cdot (-1) \quad (\text{as } \left(\frac{-1}{23}\right) = -1) \\ & = \left[\sum_{c=1}^{21} \left(\frac{c}{23}\right) \cdot (-1)\right] - 22 \quad \left(\sum_{a=0}^{22} \zeta^{ka} = 0, k \neq 0 \pmod{23}\right) \\ & = 1 \cdot (-1) - 22 = -23. \quad \left(\sum_{c=1}^{22} \left(\frac{c}{23}\right) = 0\right) \end{split}$$

The second claim follows from the tower law for field extensions. We know $[\mathbb{Q}(\zeta_{23}):\mathbb{Q}] = \phi(23) = 22$, and $[\mathbb{Q}(\sqrt{-23}):\mathbb{Q}] = 2$. Therefore,

$$[\mathbb{Q}(\zeta_{23}):\mathbb{Q}(\sqrt{-23})] = \frac{[\mathbb{Q}(\zeta_{23}):\mathbb{Q}]}{[\mathbb{Q}(\sqrt{-23}):\mathbb{Q}]} = \frac{22}{2} = 11.$$

Quadratic Reciprocity Theorem

Theorem

Suppose that p and q are distinct odd primes. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}.$$

• Write $\zeta = \zeta_p$. Consider the Gauss sum $\tau(\zeta) = \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a$. Consider also

$$\tau(\zeta^q) = \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) (\zeta^q)^a.$$

By the multiplicativity of the Legendre symbol,

$$\left(\frac{q}{p}\right)\tau(\zeta^{q}) = \sum_{a=1}^{p-1} \left(\frac{aq}{p}\right)\zeta^{aq} = \tau(\zeta).$$

Quadratic Reciprocity Theorem (Cont'd)

• We can also evaluate $\tau(\zeta^q)$ by working modulo $q\mathbb{Z}[\zeta_p]$,

$$\begin{aligned} &(\zeta^q) &\equiv \tau(\zeta)^q \\ &= \tau(\zeta)(\tau(\zeta)^2)^{(q-1)/2} \\ &= \tau(\zeta)p^{*(q-1)/2} \quad (\tau(\zeta)^2 = \left(\frac{-1}{p}\right)p =: p^*) \\ &= \tau(\zeta)\left(\frac{p^*}{q}\right), \end{aligned}$$

using Euler's criterion $a^{(q-1)/2} \equiv \left(\frac{a}{q}\right) \pmod{q}$. Now, we compare this with the previous equation. We get $\left(\frac{q}{p}\right)\left(\frac{p^*}{q}\right) = 1$. Finally, we calculate

$$\left(\frac{p^*}{q}\right) = \left(\frac{(-1)^{(p-1)/2}p}{q}\right) = \left(\frac{-1}{q}\right)^{(p-1)/2} \left(\frac{p}{q}\right) = (-1)^{(p-1)(q-1)/4} \left(\frac{p}{q}\right).$$

Relative Ideal Norm

Definition

Suppose that $L \supseteq K$ is an extension of number fields. Let \mathfrak{A} be an ideal in \mathbb{Z}_L . Then the **relative ideal norm** $N_{L/K}(\mathfrak{A})$ is the ideal in \mathbb{Z}_K generated by all of the elements $N_{L/K}(A)$, where $A \in \mathfrak{A}$.

• The relative ideal norm has the following properties:

- 1. $N_{L/K}(\mathfrak{AB}) = N_{L/K}(\mathfrak{A})N_{L/K}(\mathfrak{B})$, for ideals \mathfrak{A} and \mathfrak{B} in \mathbb{Z}_L ;
- 2. If \mathfrak{P} is a prime ideal in \mathbb{Z}_L , then $N_{L/K}(\mathfrak{P}) = \mathfrak{p}^f$, where $\mathfrak{p} = \mathfrak{P} \cap \mathbb{Z}_K$ and f is the degree of the residue field extension $\mathbb{Z}_L/\mathfrak{P} \supseteq \mathbb{Z}_K/\mathfrak{p}$;
- 3. If a is an ideal of \mathbb{Z}_K , then $N_{L/K}(\mathfrak{a}\mathbb{Z}_L) = \mathfrak{a}^{[L:K]}$;
- If 𝔅 = ⟨α⟩ is a principal ideal of ℤ_L, then N_{L/K}(𝔅) = ⟨N_{L/K}(α)⟩ is a principal ideal of ℤ_K;
- 5. if $M \supseteq L \supseteq K$ are extensions of number fields, then, for \mathfrak{A} an ideal of \mathbb{Z}_M ,

$$N_{M/K}(\mathfrak{A}) = N_{L/K}(N_{M/L}(\mathfrak{A})).$$

$\mathbb{Q}(\zeta_{23})$ Does Not Have Unique Factorization

• Recall that the ring of integers of $\mathbb{Q}(\sqrt{-23})$ is $\mathbb{Z}[
ho]$, where

$$\rho = \frac{1 + \sqrt{-23}}{2}.$$

- We can compute the class number of Q(√-23) using the quadratic forms method.
- There are three distinct reduced forms of discriminant -23:

$$x^{2} + xy + 6y^{2}$$
, $2x^{2} + xy + 3y^{2}$, $2x^{2} - xy + 3y^{2}$.

- Thus the class number of $\mathbb{Q}(\sqrt{-23})$ is 3.
- The class group is therefore isomorphic to C₃, the cyclic group of order 3.

$\mathbb{Q}(\zeta_{23})$ Does Not Have Unique Factorization (Cont'd)

- We also consider the factorization of the prime 2 in $\mathbb{Q}(\sqrt{-23})$.
- The minimal polynomial of ho is

$$X^2 - X + 6.$$

We have

$$X^2 - X + 6 \equiv X^2 + X = X(X + 1) \pmod{2}$$
.

• So, in
$$\mathbb{Z}[
ho]$$
, we have

 $2\mathbb{Z}[\rho] = \mathfrak{p}\mathfrak{p}'.$

• Earlier tecniques show that we can take

$$\mathfrak{p} = \langle 2, \rho \rangle$$
 and $\mathfrak{p}' = \langle 2, \rho - 1 \rangle$.

- Previous methods show that p and p' are not principal.
- There are no elements of norm 2 in the ring of integers of $\mathbb{Q}(\sqrt{-23})$.
- Thus, p is not trivial in the class group.

George Voutsadakis (LSSU)

$\mathbb{Q}(\zeta_{23})$ Does Not Have Unique Factorization (Cont'd)

- Since the class number of $\mathbb{Q}(\sqrt{-23})$ is 3, we see that \mathfrak{p}^3 is principal.
- So p has order 3 in the class group.
- Let \mathfrak{P} be a prime ideal of $\mathbb{Q}(\zeta_{23})$ lying above \mathfrak{p} .
- Write $N_{\mathbb{Q}(\zeta_{23})/\mathbb{Q}(\sqrt{-23})}(\mathfrak{P})$ as \mathfrak{p}^{f} , for some f.
- As $f \mid [\mathbb{Q}(\zeta_{23}) : \mathbb{Q}(\sqrt{-23})]$ we see that $f \mid 11$.
- It follows that $N_{\mathbb{Q}(\zeta_{23})/\mathbb{Q}(\sqrt{-23})}(\mathfrak{P}) = \mathfrak{p}$ or \mathfrak{p}^{11} .
- But \mathfrak{p} has order 3 in the class group.
- So p^f can only be principal if 3 | f.
- We conclude that $N_{\mathbb{Q}(\zeta_{23})/\mathbb{Q}(\sqrt{-23})}(\mathfrak{P})$ is not principal in $\mathbb{Q}(\sqrt{-23})$.
- If \mathfrak{P} were a principal ideal in $\mathbb{Q}(\zeta_{23})$, the norm $N_{\mathbb{Q}(\zeta_{23})/\mathbb{Q}(\sqrt{-23})}(\mathfrak{P})$ would be a principal ideal in $\mathbb{Q}(\sqrt{-23})$.
- Hence, \mathfrak{P} is not a principal ideal in $\mathbb{Q}(\zeta_{23})$.
- $\bullet\,$ It follows that $\mathbb{Q}(\zeta_{23})$ does not have unique factorization.