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Cyclotomic Fields and the Fermat Equation Definitions

Subsection 1

Definitions
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Cyclotomic Fields and the Fermat Equation Definitions

Roots of Unity

An n-th root of unity is a number { € C, such that (" =1, so that

¢ =e2™k/n " for some k.
We say that ( is primitive if {? #1, for any 0 < a<n, so that

{=e¥k/" " for k coprime to n.

o It follows that the number of primitive nth roots of unity is

¢(n)={0<k<n:k and n are coprime}|.
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Cyclotomic Fields and the Fermat Equation Definitions

Cyclotomic Fields

Definition

The n-th cyclotomic field is the number field Q({), where { is any
primitive n-th root of unity.

: Let { € C be a primitive 5th root of unity.
The minimal polynomial of { over Q is

X+ X34+ X2+ X +1.

The remaining roots of this polynomial are the other three primitive
5th roots of unity.
If & is one of them, then & ={J, for some j.

It follows that Q(&) = Q(Q).
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Cyclotomic Fields and the Fermat Equation Definitions

Cyclotomic Polynomials

Let n=1. Define the n-th cyclotomic polynomial by

Aa(X)= I (X=0).

primitive n-th
roots of unity

o We write down the first few cyclotomic polynomials.
o Let w denote a primitive cube root of unity.
MX) = X-1;
LX) = X+1;
13(X) = (X-0)(X-0?)=X2+X+1;
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Cyclotomic Fields and the Fermat Equation Definitions

Cyclotomic Polynomials

o Continuing,

Aa(X) = (X+i)(X-i)=X2+1;
Xo-1 v, y3_ y2

As(X) = X1 =X+ X2+ X+ X +1;

A(X) = X+0)(X+w?)=X>-X+1.

o In general, when p is a prime,

_XP-1

= =XPleXP 2441,

Ap(X)

o There is a factor of A, for every primitive n-th root of unity.

o |t follows that
degd, = ¢(n).
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Cyclotomic Fields and the Fermat Equation Definitions

X"—=1 in terms of Cyclotomic Polynomials

For all n, we have

X"=1=[]Aq(X).
din

o Let ¢ be n-th root of unity.
Then ¢ is a primitive d-th root for some d | n.
Conversely, let ¢ be a primitive d-th root of unity, for some d | n.

Then ¢ is an n-th root of unity.
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Cyclotomic Fields and the Fermat Equation Definitions

Example
o Let n=6.
The 6-th roots of unity are
L, -1, o, =*o0?
where @ = 2™/3 = _1+T\/__3 is a primitive cube root of unity.

We split these into:
o The primitive 1-st roots, i.e., 1;
o The primitive square roots, i.e., —1;
o The primitive cube roots, i.e., w and w?;
o The primitive 6-th roots, i.e., —w and —w?.
For the product of the cyclotomic polynomials A4 for d |6, we have

a6 Aa(X) A1(X)A2(X)A3(X)A6(X)
(X=1)(X+1)(X?+X+1)(X2-X+1)
(X2-1)(X*+X2+1)

X®-1.
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Cyclotomic Fields and the Fermat Equation Definitions

Properties of A,

Proposition
An is a monic polynomial with integer coefficients.

o We prove this by induction on n.
Note A; = X —1 satisfies the statement.
Let

(X)= 1 Aa(X).

d|n,d<n
Then by induction, f is monic with integer coefficients.
By the preceding lemma,

X"-1="fA,.

We show, next, that, if p=gr is a product of polynomials, where p
and g are monic with integer coefficients, then so is r.
Applying this to p=X""1, g=f and r= A, yields the result.
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Cyclotomic Fields and the Fermat Equation Definitions

Properties of A, (Cont'd)

: If p=gr is a product of polynomials, where p and g are monic
with integer coefficients, then so is r.

Suppose that

p(X) — Xs+t+P1Xs+t_1+"'+Ps+t,
aX) = X+qX=lioig,
r(X) = nXt+nXl+tr,.

By comparing coefficients of X5*t, we see rp=1. So r is monic.
Also, suppose we have shown that ry,...,r._1 € Z.
Then, comparing coefficients of X5*tK we see that

Pk =qk + qk-1n + -+ q1rk—1+ rk.

So we see r € Z. Inductively, each r;e Z. So re Z[X].
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Cyclotomic Fields and the Fermat Equation

Irreducibility of A,(X)

Definitions

If p is prime, the polynomial 1,(X) is irreducible.

o In this case,

XP-1
So
_ (X+1)P-1 (X+1)P-1
LX) = o T x

XPL4 (Q)XP2 4+ ()XP3 44 () X+ (2.

All the coefficients except the leading term are divisible by p.
Moreover, the constant term is equal to p.

By Eisenstein’s Criterion, A,(X +1) is irreducible.

Therefore, 1,(X) is also irreducible.
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Cyclotomic Fields and the Fermat Equation Definitions

Irreducibility of A,(X)

The polynomial A,(X) is irreducible.

o Let f{p(X)=X"-1.
We work out the discriminant of f,(X), defined as the product of the
squares of the differences of roots.
The same argument as in a previous proof shows that

But f,,(X)=nX""1. So we get

@ n-1
H((i_(j)zzilnn(lnci) =in".
i<j j=1
Suppose that g(X) | f,(X), and that { is a root of g(X).
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Cyclotomic Fields and the Fermat Equation Definitions

Irreducibility of A,(X) (Cont'd)

: (P is a root of g(X), for any prime number p1n.
Suppose not, so that g(¢{P) #0.
As g(X) | fa(X), we have, for some d,

g(X)=(X=¢1)--(X=La).

Then g(¢P) is a product of differences of n-th roots of unity.
So it divides the discriminant +n" already calculated.
Modulo p, we have g(XP)=g(X)P (mod p).

So plg(¢P)-g(¢)P.

Thus p|g(¢P) as g(¢) =0.

But g(¢P) is an algebraic number dividing n".

So p|n, a contradiction.
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Cyclotomic Fields and the Fermat Equation Definitions

Irreducibility of A,(X) (Cont'd)

o Suppose g(X) is a nontrivial factor of 1,(X).
Then g(X) is a nontrivial factor of f,(X).
Let ¢ be a primitive n-th root of unity which is a root of g(X).

Then all powers ¥ must be roots of g(X), for all k coprime to n.
To see this:

o Factor k into primes;
o Apply the claim above successively.

In particular, every primitive n-th root of unity is a root of g(X).
This shows that g(X) = A,(X). Hence, 1,(X) is irreducible.

Corollary
If { is a primitive n-th root of unity, then [Q({): Q] = ¢(n).
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Subsection 2

Discriminants and Integral Bases
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Ramification Behavior of p in K= Q](]

o Let ¢ be a primitive n-th root of unity.
o Let K=Q(7).
o We will show that Zk =Z|[(].

o This implies that
{ve,....co0-t

forms an integral basis.

o We start with the case when n=p" is a power of a single prime p.
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Ramification Behavior of p in K =Q[{] (Cont'd)

Lemma

Let n=p", let { denote a primitive n-th root of unity, and put 7=1-¢.
Then

pZic = (m)¥,
where k=[Q((): Q] =¢(p") = p"*(p—1). Furthermore, Ny g () = p.

o The minimal polynomial of ¢ is the n-th cyclotomic polynomial.
In the case of a prime power n=p",
XP' -1

Apr(X) = e = XPTH ) L PP Ly xPT

=il +1.
XP -1

The roots of A,r(X) are all the primitive n-th roots of unity.
These are given by (8, with ge G={1<k<n:ptk}.
S0 Ay (X) = Tlgec(X %),
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Ramification Behavior of p in K =Q[{] (Cont'd)

o We obtained the expressions

Apr(X) = XPTHP )L PP oy X 41
AP’(X) = ngG(X_(g)-
Put X =1 in these two expressions for A, (X).
We get
p=[1(1-¢8).
geG
Therefore,

pZic = (p) = [] <1-¢5).
geG

: The ideals in the factorization in this product are all the same.
This follows as the generators are associates,
1-¢8

¢ =1+(+---+(8LeZ[C).
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Ramification Behavior of p in K =Q[{] (Cont'd)

o Conversely, we can find he G, with gh=1 (mod p").

Then
1-¢  1-(¢8)"
1-¢8 1-(8
Thus, (1-¢8)=(1-{), for all ge G.
Then, with k as in the statement of the lemma,

=148+ +8De7[).

pZix = []1-¢8 =1-0¢=m*~
geG

To get the claim about the norm, apply N q to this equality.
We know that Nk ,q(p) = plK:Ql = pk.

On the other hand, the norm of the right-hand side is Ny q (7).
So Nk q(m)=p.
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Discriminant of the Basis {1,(,..., k1

With notation as in the previous lemma, the discriminant

AL, = 2p5,
fOI’ some exponent S.

o Write .

XP -1

A(X) = APF(X) = ﬁ

Rearrange this as
(XP —1AUX)=XP - 1.
We will use
AL, ¢ = (-1)" D2 N o (A (0))

to compute the discriminant.
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

Discriminant of the Basis {1,(,...,{*7} (Cont'd)

o So we need to compute the norm of A'({).
Differentiate the formula, to get

(P IXPTIHAX) + (XPT = D)A(X) = prXP L
Substitute X =,
((pr—l _ 1)A,(() — prcpf_]_ — prc—l.

Put &=¢P"".
This is a p-th root of unity.
By the preceding lemma,

Ny ,q(E—1) = %p.
Then
Noy/o(€ 1) = (£p) QORI = 4 =1
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Cyclotomic Fields and the Fermat Equation

o Take norms of the equality (¢ —1)A'(¢) =p"¢7t, and find

Noy,q (€ - 1)Ng@yo(A (0)) = Nge) o (P ) Now) /(@)™

Substituting in the earlier calculations, noting that { is a root of unity
(and thus has norm +1), this becomes

r-1 r=1(p_
£pP NogyQ(A'(€)) = (p7)P 7.

Now we obtain by a previous proposition,

AL, 0N = £Ngy (V' (())-

This can be written +p°, where s=rp"!(p-1)—p 1.
o Note that this implies that p is the only prime ramifying in Q({pr).

o We can also use this to see that Q({) is monogenic, so that it has an
integral basis generated by a single element.
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

The Ring of Integers for n=p"

Let n=p", and let { denote a primitive n-th root of unity. Then the ring of
integers of K =Q(() is given by Z[{].

o Write Zk for the ring of integers.
We know
AL, 871 = £p°,

for some integer s, where k =[Q((): Q).
So, by a previous lemma, p*Zk < Z[{] < Z.
As in the previous lemma, if 7=1-(, then Ng()/q(7) = p.
Thus,

Zy|nlk =7 pZ.
So

ZK =7+ JTZK.
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

The Ring of Integers for n=p" (Cont'd)

o Therefore,
Zk =7Z[(|+nZk.

Multiplying through by 7 gives
nZy = nZ[(]+ 7.

Substituting,

Zy = Z[C) + (nZ[() + 7°Zk) = Z[{] + n°Zk.
We can repeat this procedure to get

Zk =7Z[()+n"Zk, forall m=1.
However, if we put m=s, we have already observed that
n°Zk < Z[(].

So we conclude that Zk =Z|[(].
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

The Ring of Integers of Q(()

Let n€ Z>1, and let { denote a primitive n-th root of unity. Then the ring
of integers of K =Q({) is given by Z[{].

r

o Let n=p;*--ps.

For i=1,...,s, write B
{i=¢Pr

(i is a p['-th root of unity.
Let Ki=Q(¢7) < Q(¢).
The K; are cyclotomic fields.
By the preceding proposition, Z, = Z[(;],
So each Z; is generated by powers of {;.

These are, in turn, powers of (.
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Cyclotomic Fields and the Fermat Equation Discriminants and Integral Bases

The Ring of Integers of Q({) (Cont'd)

o Now the discriminants of K1 and K> are coprime.

By a previous proposition, the ring of integers of K1 K> = Q({1,{2) has
a basis consisting of powers (il(,’;z, which are again all powers of (.

Similarly, the ring of integers of K1K>K3 =Q({1,{2,{3) also has a
basis consisting of powers of (.

Continuing in this way, we see that the ring of integers of

Kl"'Ks :Q((lw--:cs):Q(()

has a basis consisting of powers of (.
So Zk =Z[{] as required.
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Cyclotomic Fields and the Fermat Equation [Gauss Sums and Quadratic Reciprocity

Subsection 3

Gauss Sums and Quadratic Reciprocity
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Cyclotomic Fields and the Fermat Equation [Gauss Sums and Quadratic Reciprocity

On Unique Factorization of Cyclotomic Fields

o We will sketch a proof that cyclotomic fields need not always have
unique factorization.

o Even in the case Q({), with { a p-th root of unity, for some prime p, it
turns out that Q({) does not always have unique factorization.

o Q(¢) has unique factorization for all p <19.
o But for all p>19, Q(¢) fails to have unique factorization.

o We sketch the argument that Q({23) fails to have unique factorization.
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Cyclotomic Fields and the Fermat Equation [Gauss Sums and Quadratic Reciprocity

Properties of Q({23)

Q(v=23) = Q((23) and [Q(¢23) - Q(V-23)] =

o Set
22

T= 2(23)(a

a=1
where { = (23, and (53) is the Legendre symbol.
72 =-23, so that V=23 =+7 € Q({23).

We have 2 2 .
=1 2 (70 (z)"

a=1h=1
Consider a pair a pair (a, b).
Define ¢ by b=ac (mod 23).
Think of a as fixed.
Then, when b runs through all values 1,...,22, so does c.
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Cyclotomic Fields and the Fermat Equation [Gauss Sums and Quadratic Reciprocity

Properties of Q({23) (Cont'd)

£2, (%) (5)¢

— (a c)ca+ac

= Zazl Zc:l (23)(a(l+c) + Z§2:1 (E_;)

= 2?1[(2%)23;21(3(1“)]"‘22 (-1) (as (23) =-1)

= [Z (%) (-1)]-22 (X22,¢%=0,k#0 (mod 23))
1-(-1)-22=-23. (X%,(5)=0)

The second claim follows from the tower law for field extensions.

We know [Q(¢23) : Q] = ¢(23) =22, and [Q(V=23): Q] =

Therefore,

[Q(¢23): Q] _ 22
[Q(v-23):Q] 2
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Cyclotomic Fields and the Fermat Equation [Gauss Sums and Quadratic Reciprocity

Quadratic Reciprocity Theorem

Suppose that p and g are distinct odd primes. Then

(E) (ﬂ) _ (~1)(P-D(a-1)/4

q)\p

o Write { =(.
Consider the Gauss sum 7({) = Zg;} (%)(a.
Consider also
p=l/,
@)=Y (2@
a=1\P
By the multiplicativity of the Legendre symbol,

cr-E (fer=ra

a=1
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Cyclotomic Fields and the Fermat Equation [Gauss Sums and Quadratic Reciprocity

Quadratic Reciprocity Theorem (Cont'd)

o We can also evaluate 7({9) by working modulo gZ|[(,],
(¢?) = ()7
= (O
Q@D (1P =(F)p=p")
)

(%)

using Euler's criterion a(9-1/2 = (3) (mod q).

(
= ‘[(
= ‘[(

Now, we compare this with the previous equation.

we s (5(5) 1
Finally, we calculate

(3-S5 ) o)
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Cyclotomic Fields and the Fermat Equation Gauss Sums and Quadratic Reciprocity

Relative Ideal Norm

Suppose that L 2 K is an extension of number fields. Let %[ be an ideal in

Z,. Then the relative ideal norm N/« (21) is the ideal in Z generated
by all of the elements N /i (A), where A€ 2L

o The relative ideal norm has the following properties:
Lo Nk (AB) = Ny (A)Ny (B), for ideals A and B in Zy;
2. If Pis a prime ideal in Z, then N/ (P) =pf, where p=PnZyk and
f is the degree of the residue field extension Z; /B2 Zk /p;
3 If ais an ideal of Zy, then N /,c(aZy) = alb:KI;
4. If A=<(a) is a principal ideal of Z;, then Ny, () = (Ny/k(a)) is a
principal ideal of Z;
5. if M2 L2 K are extensions of number fields, then, for 2 an ideal of
Zn,
Nk () = Ny (N (1))
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Cyclotomic Fields and the Fermat Equation [Gauss Sums and Quadratic Reciprocity

Q(¢23) Does Not Have Unique Factorization

o Recall that the ring of integers of Q(v—-23) is Z[p], where

1++v-23
P=T-

o We can compute the class number of Q(v'—23) using the quadratic
forms method.

o There are three distinct reduced forms of discriminant —23:
X2 +xy + 6y2, 2x2 +Xxy + 3y2, 2x°2 — Xy + 3y2.

o Thus the class number of Q(v-23) is 3.

o The class group is therefore isomorphic to Cz, the cyclic group of
order 3.
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Cyclotomic Fields and the Fermat Equation [Gauss Sums and Quadratic Reciprocity

Q(¢23) Does Not Have Unique Factorization (Cont'd)

o We also consider the factorization of the prime 2 in Q(v-23).
o The minimal polynomial of p is

X2 - X +6.

o We have
X2-X+6=X2+X=X(X+1) (mod?2).

o So, in Z[p], we have
2Z[p] =pp'.

o Earlier tecniques show that we can take
p=¢2,0) and p'=2,p-1).

o Previous methods show that p and p’ are not principal.
o There are no elements of norm 2 in the ring of integers of Q(v'—-23).
o Thus, p is not trivial in the class group.

George Voutsadakis (LSSU) Algebraic Number Theory June 2024 36 /37



Cyclotomic Fields and the Fermat Equation

Since the class number of Q(v/~23) is 3, we see that p3 is principal.
So p has order 3 in the class group.

Let B be a prime ideal of Q((23) lying above p.

Write Noy..)/0(v/=33 (‘,13) as p, for some f.

As f|[Q(¢23): Q(V-23)] we see that f|11.

It follows that NQ(223)/Q(v=23) (B) =p or pi!
But p has order 3 in the class group.

© ©6 o o

So pf can only be principal if 3| f.
We conclude that NQ((23)/Q(\/—_23)(q3) is not principal in Q(v—-23).

If 33 were a principal ideal in Q({23), the norm NQ((B)/Q(\/_—B)(‘B)
would be a principal ideal in Q(v—-23).
o Hence, P is not a principal ideal in Q({23).

© 6 06 o o

©

o It follows that Q({23) does not have unique factorization.
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