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Greedy Algorithms

Greedy Algorithms

Algorithms for optimization problems typically go through a sequence
of steps, with a set of choices at each step.

For many optimization problems, using dynamic programming to
determine the best choices is overkill, since, simpler, more efficient
algorithms will do.

A greedy algorithm always makes the choice that looks best at the
moment. It makes a locally optimal choice in the hope that this
choice will lead to a globally optimal solution.

The greedy method is quite powerful and works well for a wide range
of problems, e.g.:

Minimum-spanning-tree algorithms;
Dijkstra’s algorithm for shortest paths from a single source;
Chvátal’s greedy set-covering heuristic.
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Greedy Algorithms An Activity Selection Problem

Subsection 1

An Activity Selection Problem

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 4 / 69



Greedy Algorithms An Activity Selection Problem

The Activity Selection Problem

Suppose we have a set S = {a1, a2, . . . , an} of n proposed activities

that wish to use a resource, able to serve only one activity at a time.

Each activity ai has a start time si and a finish time fi , where
0 ≤ si < fi < ∞. If selected, activity ai takes place during the
half-open time interval [si , fi).

Activities ai and aj are compatible if the intervals [si , fi ) and [sj , fj )
do not overlap.

That is, ai and aj are compatible if si ≥ fj or sj ≥ fi .

In the activity-selection problem, we wish to select a maximum-size
subset of mutually compatible activities.

We assume that the activities are sorted in monotonically increasing
order of finish time: f1 ≤ f2 ≤ f3 ≤ · · · ≤ fn−1 ≤ fn.
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Greedy Algorithms An Activity Selection Problem

Example

Consider the following set S of activities:

i 1 2 3 4 5 6 7 8 9 10 11

si 1 3 0 5 3 5 6 8 8 2 12
fi 4 5 6 7 9 9 10 11 12 14 16

For this example, the subset {a3, a9, a11} consists of mutually
compatible activities.

It is not a maximum subset, since the subset {a1, a4, a8, a11} is larger.

In fact, {a1, a4, a8, a11} is a largest subset of mutually compatible
activities.

Another largest subset is {a2, a4, a9, a11}.
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Greedy Algorithms An Activity Selection Problem

From Dynamic Programming to Greedy Algorithms

We shall solve this problem in several steps:

We start by thinking about a dynamic-programming solution, in which
we consider several choices when determining which subproblems to
use in an optimal solution.
We shall then observe that we need to consider only one choice, the
greedy choice, and that when we make the greedy choice, only one
subproblem remains.
Based on these observations, we shall develop a recursive greedy
algorithm to solve the activity-scheduling problem.
We shall complete the process by converting the recursive algorithm to
an iterative one.

We develop a greedy algorithm while emphasizing the relationship
between greedy algorithms and dynamic programming.
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Greedy Algorithms An Activity Selection Problem

The Optimal Substructure of Activity Selection

We denote by Sij the set of activities that start after activity ai
finishes and that finish before activity aj starts.

Suppose that we wish to find a maximum set of mutually compatible
activities in Sij .
If such a maximum set Aij includes some activity ak , we are left with
two subproblems:

Finding mutually compatible activities in the set Sik (activities that
start after activity ai finishes and that finish before activity ak starts);
Finding mutually compatible activities in the set Skj (activities that
start after activity ak finishes and that finish before activity aj starts).

Let Aik = Aij ∩ Sik and Akj = Aij ∩ Skj :
Aik contains the activities in Aij that finish before ak starts;
Akj contains the activities in Aij that start after ak finishes.

Thus, we have Aij = Aik ∪ {ak} ∪ Akj .

So the maximum-size set Aij of mutually compatible activities in Sij
consists of |Aij | = |Aik |+ |Akj |+ 1 activities.
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Greedy Algorithms An Activity Selection Problem

Optimality

Cut-and-paste shows that the optimal solution Aij must also include
optimal solutions to the two subproblems for Sik and Skj .

If we could find a set A′

kj of mutually compatible activities in Skj
where |A′

kj | > |Akj |, then we could use A′

kj , rather than Akj , in a
solution to the subproblem for Sij .

We would have constructed a set of

|Aik |+ |A′

kj |+ 1 > |Aik |+ |Akj |+ 1 = |Aij |

mutually compatible activities, which contradicts the optimality
assumption on Aij .

A symmetric argument applies to the activities in Sik .
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Greedy Algorithms An Activity Selection Problem

A Recursive Formula

If we denote the size of an optimal solution for the set Sij by c[i , j],
then we would have the recurrence

c[i , j] = c[i , k] + c[k , j] + 1.

But we do not know that an optimal solution for the set Sij includes
activity ak .

So we have to examine all activities in Sij to find which one to choose.

c[i , j] =

{

0, if Sij = ∅
maxak∈Sij {c[i , k] + c[k , j] + 1}, if Sij 6= ∅

.

We could then develop a recursive algorithm and memoize it, or we
could work bottom-up and fill in table entries as we proceed.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 10 / 69



Greedy Algorithms An Activity Selection Problem

Making the Greedy Choice

Intuition tells us to choose the activity a1 in S with the earliest finish
time so as to leave the resource available for as many other activities
as possible.

If we make the greedy choice, we have only one remaining subproblem
to solve: Finding activities that start after a1 finishes.

We do not have to consider activities that finish before a1 starts, since
s1 < f1, and f1 is the earliest finish time of any activity, so no activity
can have a finish time less than or equal to s1.
Furthermore, we have already established that the activity-selection
problem exhibits optimal substructure.

Let Sk = {ai ∈ S : si ≥ fk} be the set of activities that start after
activity ak finishes. If we make the greedy choice of activity a1, then
S1 remains as the only subproblem to solve.

Optimal substructure tells us that if a1 is in the optimal solution, then
an optimal solution to the original problem consists of activity a1 and
all the activities in an optimal solution to the subproblem S1.
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Greedy Algorithms An Activity Selection Problem

Justification of the Greedy Choice

Is our intuition correct, i.e., is the greedy choice always part of some
optimal solution?

Theorem

Consider any nonempty subproblem Sk , and let am be an activity in Sk
with the earliest finish time. Then am is included in some maximum size
subset of mutually compatible activities of Sk .

Let Ak be a maximum-size subset of mutually compatible activities in
Sk . Let aj be the activity in Ak with the earliest finish time.

If aj = am, we are done, since we have shown that am is in some
maximum-size subset of mutually compatible activities of Sk .
If aj 6= am, consider the set A′

k = (Ak − {aj}) ∪ {am}.
The activities in A′

k are disjoint, which follows because the activities in
Ak are disjoint, aj is the first activity in Ak to finish, and fm ≤ fj .
Since |A′

k | = |Ak |, A′

k is a maximum-size subset of mutually compatible
activities of Sk and it includes am.
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Greedy Algorithms An Activity Selection Problem

Top-Down design vs. Dynamic Programming

Instead of solving the activity-selection problem with dynamic
programming, we can:

Repeatedly choose the activity that finishes first;
Keep only the activities compatible with this activity;
Repeat until no activities remain.

Since we always choose the activity with the earliest finish time, the
finish times of the activities we choose must strictly increase.

An algorithm to solve the activity selection problem does not need to
work bottom-up, like a table based dynamic programming algorithm.

It can work top-down, choosing an activity to put into the optimal
solution and then solving the subproblem of choosing activities from
those that are compatible with those already chosen.

Greedy algorithms typically have this top-down design: Make a choice
and then solve a subproblem.
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Greedy Algorithms An Activity Selection Problem

A Recursive Greedy Algorithm

The procedure RecursiveActivitySelector takes as input:

The arrays s and f with the start and finish times;
The index k defining the subproblem Sk to solve;
The size n of the original problem.

It returns a maximum size set of mutually compatible activities in Sk .

We assume that the n input activities are already ordered by
monotonically increasing finish time.

If this is not the case, we can sort them into this order in O (n log n)
time, breaking ties arbitrarily.
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Greedy Algorithms An Activity Selection Problem

A Recursive Greedy Algorithm (Cont’d)

To start, we add the fictitious activity a0 with f0 = 0.

To solve the entire problem call
RecursiveActivitySelector(s, f , 0, n).

RecursiveActivitySelector(s, f , k , n)

1. m = k + 1

2. while m ≤ n and s[m] < f [k ] //find the first activity in Sk to finish

3. m = m + 1

4. if m ≤ n

5. return {am} ∪RecursiveActivitySelector(s, f ,m, n)

6. else return ∅
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Greedy Algorithms An Activity Selection Problem

How RecursiveActivitySelector Works

In a given recursive call,
the while loop of Lines 2-
3 looks for the first activity
in Sk to finish. The loop
examines ak+1, ak+2, . . .,
an, until it finds the first
activity am that is compat-
ible with ak , such an ac-
tivity has sm ≥ fk . If the
loop terminates because it
finds such an activity, Line
5 returns the union of {am}
and the maximum size sub-
set of Sm returned by a re-
cursive call.
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Greedy Algorithms An Activity Selection Problem

Time Requirements

If the activities have already been sorted by finish times, the running
time of the call RecursiveActivitySelector(s, f , 0, n) is Θ(n),
which we can see as follows:

Over all recursive calls, each activity is examined exactly once in the
while loop test of Line 2.

In particular, activity ai is examined in the last call made in which
k < i .
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Greedy Algorithms An Activity Selection Problem

An Iterative Greedy Algorithm

RecursiveActivitySelector is almost “tail recursive”: It ends
with a recursive call to itself followed by a union operation.

As written, RecursiveActivitySelector works for subproblems
Sk , i.e., subproblems that consist of the last activities to finish.

The procedure GreedyActivitySelector is an iterative version
of the procedure RecursiveActivitySelector.

It assumes that the input activities are ordered by finish time.

GreedyActivitySelector(s, f )

1. n = s.length
2. A = {a1}
3. k = 1
4. for m = 2 to n

5. if s[m] ≥ f [k ]
6. A = A ∪ {am}
7. k = m

8. return A
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Greedy Algorithms An Activity Selection Problem

How GreedyActivitySelector Works

The variable k indexes the most recent addition to A, corresponding
to the activity ak in the recursive version.

Since activities are in order of increasing finish time, fk is always the
maximum finish time of any activity in A, i.e., fk = max {fi : ai ∈ A}.

Lines 2-3 select activity a1, initialize A to contain just this activity,
and initialize k to index this activity.

The for loop of Lines 4-7 finds the earliest activity in Sk to finish.

The loop considers each activity am in turn and adds am to A if it is
compatible with all previously selected activities.

If activity am is compatible, then Lines 6-7 add activity am to A and
set k to m.

Like the recursive version, GreedyActivitySelector schedules a
set of n activities in Θ(n) time, assuming that the activities were
already sorted initially by their finish times.
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Subsection 2

Elements of the Greedy Strategy
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Greedy Algorithms Elements of the Greedy Strategy

Steps to Develop a Greedy Strategy

A greedy algorithm obtains an optimal solution to a problem by
making a sequence of choices.

At each decision point, the algorithm makes the choice that seems
best at the moment.

This heuristic strategy does not always produce an optimal solution,
but sometimes it does.

To develop a greedy algorithm, we went through the following steps:
1. Determine the optimal substructure of the problem.
2. Develop a recursive solution.
3. Show that if we make the greedy choice, then only one subproblem

remains.
4. Prove that it is always safe to make the greedy choice.
5. Develop a recursive algorithm that implements the greedy strategy.
6. Convert the recursive algorithm to an iterative algorithm.

In going through these steps, we saw in great detail the dynamic
programming underpinnings of a greedy algorithm.
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Greedy Algorithms Elements of the Greedy Strategy

A More Direct Approach

We may also start with an optimal substructure having a greedy
choice in mind, so that the choice leaves just one subproblem to solve.

In the activity selection problem, we could have started by dropping
the second subscript and defining subproblems of the form Sk .

Then, we could have proven that a greedy choice (the first activity am
to finish in Sk), combined with an optimal solution to the remaining
set Sm of compatible activities, yields an optimal solution to Sk .

Thus, we design greedy algorithms according to the following:
1. Cast the optimization problem as one in which we make a choice and

are left with one subproblem to solve.
2. Prove that there is always an optimal solution to the original problem

that makes the greedy choice, so that the greedy choice is always safe.
3. Demonstrate optimal substructure by showing that, having made the

greedy choice, what remains is a subproblem with the property that if
we combine an optimal solution to the subproblem with the greedy
choice we have made, we arrive at an optimal solution.
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Greedy Algorithms Elements of the Greedy Strategy

Greedy Choice Property

In dynamic programming, we make a choice at each step, but the
choice usually depends on the solutions to subproblems.

Typically dynamic programming problems are solved in a bottom-up
manner, progressing from smaller subproblems to larger subproblems.

In a greedy algorithm, we make whatever choice seems best at the
moment and then solve the subproblem that remains.

The choice made may depend on choices so far, but it cannot depend
on any future choices or on the solutions to subproblems.

We must prove that a greedy choice at each step yields a globally
optimal solution: The proof examines a globally optimal solution to a
subproblem and shows how to modify the solution to substitute the
greedy choice for some other choice, resulting in a smaller subproblem.

We can usually make the greedy choice more efficiently than when we
have to consider a wider set of choices.
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Greedy Algorithms Elements of the Greedy Strategy

Optimal substructure

A problem exhibits optimal substructure if an optimal solution to
the problem contains within it optimal solutions to subproblems.

For greedy algorithms, all we need to do is argue that an optimal
solution to the subproblem, combined with the greedy choice already
made, yields an optimal solution to the original problem.

This scheme implicitly uses induction on the subproblems to prove
that making the greedy choice produces an optimal solution.
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Greedy Algorithms Elements of the Greedy Strategy

0-1 Knapsack and Fractional Knapsack Problems

0-1 Knapsack Problem:

A thief robbing a store finds n items.
The i-th item is worth vi dollars and weighs wi pounds, where vi and
wi are integers.
The thief wants to take as valuable a load as possible, but he can carry
at most W pounds in his knapsack, for some integer W .
Which items should he take?

Fractional Knapsack Problem:

The setup is the same.
However, the thief can take fractions of items, rather than having to
make a binary (0-1) choice for each item.
Which fraction of each item should he take?
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Greedy Algorithms Elements of the Greedy Strategy

Knapsack Problems and Optimal Substructure

Both knapsack problems exhibit the optimal-substructure property:

For the 0-1 problem, consider the most valuable load that weighs at
most W pounds.
If we remove item j from this load, the remaining load must be the
most valuable load weighing at most W − wj that the thief can take
from the n − 1 original items excluding j .
For the comparable fractional problem, consider that if we remove a
weight w of one item j from the optimal load, the remaining load must
be the most valuable load weighing at most W − w that the thief can
take from the n− 1 original items plus wj − w pounds of item j .
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Greedy Algorithms Elements of the Greedy Strategy

Applicability of Greedy Strategy for Fractional Knapsack

We can solve the fractional knapsack problem by a greedy strategy.

We first compute the value per pound vi
wi

for each item.

Obeying a greedy strategy, the thief begins by taking as much as
possible of the item with the greatest value per pound.

If the supply is exhausted and he can still carry more, he takes as
much as possible of the item with the next greatest value per pound.

He continues in the same way, until he reaches his weight limit W .

By sorting the items by value per pound, the greedy algorithm runs in
O (n log n) time.
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Greedy Algorithms Elements of the Greedy Strategy

Non-Applicability of Greedy Strategy for 0-1 Knapsack

We cannot solve the 0-1 problem by such a strategy.

Consider 3 items and a knapsack that can hold 50 pounds.

Item 1 weighs 10 pounds and is worth 60 dollars.
Item 2 weighs 20 pounds and is worth 100 dollars.
Item 3 weighs 30 pounds and is worth 120 dollars.

The values per pound in decreasing order are:

Item 1, 6 dollars per pound;
Item 2, 5 dollars per pound;
Item 3, 4 dollars per pound.

The greedy strategy, therefore, would take item 1 first.

However, the optimal solution takes items 2 and 3, leaving item 1
behind.
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Subsection 3

Huffman Codes

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 29 / 69



Greedy Algorithms Huffman Codes

Data Compression

Huffman codes compress data:

The data is a sequence of characters.
Huffman’s greedy algorithm uses a table giving how often each
character occurs (its frequency) to build up an optimal way of
representing each character as a binary string.

We consider the problem of designing a binary character code (or
code for short) in which each character is represented by a unique
binary string, which we call a codeword.

If we use a fixed length code, we need, e.g., 3 bits to represent 6
characters. Thus, a 100,00 character file consisting of 6 character
words requires 300,000 bits.

A variable length code can do considerably better than a fixed
length code, by giving frequent characters short codewords and
infrequent characters long codewords.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 30 / 69



Greedy Algorithms Huffman Codes

Prefix Codes

We consider only codes in which no codeword is also a prefix of some
other codeword, called prefix codes.

A prefix code can always achieve the optimal data compression
among any character code, and so we suffer no loss of generality by
restricting our attention to prefix codes.

Encoding is always simple for any binary character code. We just
concatenate the codewords representing each character of the file.

Prefix codes simplify decoding. Since no codeword is a prefix of any
other, the initial codeword in a file is unambiguous.

We identify the initial codeword;
We translate it back to the original character;
We repeat the decoding process on the remainder of the encoded file.

The decoding process needs a convenient representation for the prefix
code so that the initial codeword can be easily picked off.

We can use a binary tree whose leaves are the given characters.
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Greedy Algorithms Huffman Codes

Binary Tree Representation of a Prefix Code

We interpret the binary codeword for a character as the path from the
root to that character, where 0 means “go to the left child” and 1
means “go to the right child”.

An optimal code for a file is always represented by a full binary tree,
in which every nonleaf node has two children.

If C is the alphabet from which the characters are drawn and all
character frequencies are positive, then the tree for an optimal prefix
code has exactly |C | leaves and |C | − 1 internal nodes.
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Greedy Algorithms Huffman Codes

Number of Bits Encoding a File

Given a tree T corresponding to a prefix code, we compute the
number of bits required to encode a file.

For each character c in the alphabet C , let:

c .freq denote the frequency of c in the file;
dT (c) denote the depth of c ’s leaf in the tree.
dT (c) is also the length of the codeword for character c .

The number of bits required to encode a file is thus

B(T ) =
∑

c∈C

c .freq · dT (c).

We define B(T ) as the cost of the tree T .
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Greedy Algorithms Huffman Codes

Constructing a Huffman Code

Huffman invented a greedy algorithm that constructs an optimal
prefix code called a Huffman code.

Its proof of correctness relies on the greedy-choice property and
optimal substructure.

In the pseudocode that follows, we assume that C is a set of n
characters and that each character c ∈ C is an object with an
attribute c .freq giving its frequency.

The algorithm builds the tree T corresponding to the optimal code in
a bottom-up manner.

It begins with a set of |C | leaves and performs a sequence of |C | − 1
“merging” operations to create the final tree.
The algorithm uses a min-priority queue Q, keyed on the freq attribute,
to identify the two least-frequent objects to merge together.
When we merge two objects, the result is a new object whose frequency
is the sum of the frequencies of the two objects that were merged.
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The Huffman Procedure

Huffman(C )

1. n = |C |

2. Q = C

3. for i = 1 to n − 1

4. allocate a new node z

5. z .left = x = ExtractMin(Q)

6. z .right = y = ExtractMin(Q)

7. z .freq = x .freq + y .freq

8. Insert(Q, z)

9. return ExtractMin(Q)
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Illustration of Huffman

Symbol a b c d e f

Frequency 45 13 12 16 9 5
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Greedy Algorithms Huffman Codes

How Huffman Works

Line 2 initializes the min-priority queue Q with the characters in C .

The for loop in Lines 3-8 repeatedly extracts the two nodes x and y

of lowest frequency from the queue, and replaces them in the queue
with a new node z representing their merger.

The frequency of z is computed as the sum of the frequencies of x
and y in Line 7.

The node z has x as its left child and y as its right child.

(This order is arbitrary; switching the left and right child of any node
yields a different code of the same cost.)

After n− 1 mergers, the one node left in the queue, the root of the
code tree, is returned in Line 9.
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Time Requirements of the Huffman Procedure

To analyze the running time of Huffman’s algorithm, we assume that
Q is implemented as a binary min-heap.

For a set C of n characters, we can initialize Q in Line 2 in O (n) time
using the BuildMinHeap procedure.
The for loop in Lines 3-8 executes exactly n − 1 times.
Each heap operation requires time O (log n).
So the loop contributes O (n log n) to the running time.

Thus, the total running time of Huffman on a set of n characters is
O (n log n).

We note that can reduce the running time to O (n log log n) by
replacing the binary min-heap with a van Emde Boas tree.
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Correctness of Huffman’s Algorithm: Greedy Choice

Lemma

Let C be an alphabet in which each character c ∈ C has frequency c .freq.
Let x and y be two characters in C having the lowest frequencies. Then
there exists an optimal prefix code for C in which the codewords for x and
y have the same length and differ only in the last bit.

The idea is to take the tree T representing an arbitrary optimal prefix
code and modify it to make a tree representing another optimal prefix
code such that x and y appear as sibling leaves of maximum depth in
the new tree. Then the codewords for x and y will have the same
length and differ only in the last bit.

Let a and b be two characters that are sibling leaves of maximum
depth in T . Without loss of generality, we assume that a.freq ≤ b.freq
and x .freq ≤ y .freq. Since x .freq and y .freq are the two lowest leaf
frequencies, in order, and a.freq and b.freq are two arbitrary
frequencies, in order, we have x .freq ≤ a.freq and y .freq ≤ b.freq.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 39 / 69



Greedy Algorithms Huffman Codes

Correctness: Greedy Choice (Cont’d)

In the remainder of the proof, it is possible that we could have
x .freq = a.freq or y .freq = b.freq. However, if we had x .freq = b.freq,
then we would have a.freq = b.freq = x .freq = y .freq, and the lemma
would be trivially true. Thus, we assume x .freq 6= b.freq. So x 6= b.

We exchange the positions in T of a and x to produce a tree T ′.

Then we exchange the positions in T ′ of b and y to produce T ′′.

In T ′′, x and y and sibling leaves of maximum depth.
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Correctness: Greedy Choice (Conclusion)

The difference in cost between T and T ′ is B(T )− B(T ′)

=
∑

c∈C c .freqdT (c)−
∑

c∈C c .freqdT ′(c)
= x .freqdT (x) + a.freqdT (a)− x .freqdT ′(x)− a.freqdT ′(a)
= x .freqdT (x) + a.freqdT (a)− x .freqdT (a)− a.freqdT (x)
= (a.freq− x .freq)(dT (a)− dT (x)) ≥ 0,

because both a.freq− x .freq and dT (a)− dT (x) are nonnegative.

Similarly, exchanging y and b does not increase the cost, and, so,
B(T ′)− B(T ′′) is nonnegative. Therefore, B(T ′′) ≤ B(T ). Since T

is optimal, B(T ) ≤ B(T ′′). This implies B(T ′′) = B(T ).

Thus, T ′′ is an optimal tree in which x and y appear as sibling leaves
of maximum depth.
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Correctness of Huffman’s Algorithm: Optimal Substructure

Lemma

Let C be a given alphabet with frequency c .freq defined for each character
c ∈ C . Let x and y be two characters in C with minimum frequency. Let
C ′ be the alphabet C with the characters x and y removed and a new
character z added, so that C ′ = (C − {x , y}) ∪ {z}. Define freq for C ′ as
for C , except that z .freq = x .freq+ y .freq. Let T ′ be any tree representing
an optimal prefix code for the alphabet C ′. Then the tree T , obtained
from T ′ by replacing the leaf node for z with an internal node having x

and y as children, represents an optimal prefix code for the alphabet C .

We express the cost B(T ) of tree T in terms of the cost B(T ′) of
tree T ′: For each c ∈ C − {x , y}, we have that dT (c) = dT ′(c), and,
hence, c .freqdT (c) = c .freqdT ′(c). Since dT (x) = dT (y) = dT ′(z)+
1, we have x .freqdT (x) + y .freqdT (y) = (x .freq + y .freq)dT (x) =
(x .freq + y .freq)(dT ′(z) + 1) = z .freqdT ′(z) + (x .freq + y .freq). So
B(T ) = B(T ′) + x .freq + y .freq or B(T ′) = B(T )− x .freq− y .freq.
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Proof of Optimal Substructure (Cont’d)

We now prove the lemma by contradiction.

Suppose that T does not represent an optimal prefix code for C .
Then there exists an optimal tree T ′′, such that B(T ′′) < B(T ).
Without loss of generality, by the preceding lemma, T ′′ has x and y

as siblings. Let T ′′′ be the tree T ′′ with the common parent of x and
y replaced by a leaf z with frequency z .freq = x .freq + y .freq. Then

B(T ′′′) = B(T ′′)− x .freq− y .freq
< B(T )− x .freq− y .freq
= B(T ′).

This contradicts the assumption that T ′ represents an optimal prefix
code for C ′. Thus, T must represent an optimal prefix code for the
alphabet C .

Theorem

Procedure Huffman produces an optimal prefix code.
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Subsection 4

Matroids and Greedy Methods
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Matroids

A matroid is an ordered pair M = (S ,I) satisfying the following
conditions:

1. S is a finite set.
2. I is a nonempty family of subsets of S , called the independent

subsets of S , such that if B ∈ I and A ⊆ B, then A ∈ I.
We say that I is hereditary if it satisfies this property.
Note that the empty set ∅ is necessarily a member of I.

3. If A ∈ I, B ∈ I, and |A| < |B|, then there exists some element
x ∈ B − A, such that A ∪ {x} ∈ I.
We say that M satisfies the exchange property.
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Matric and Graphic Matroids

The word “matroid” is due to Hassler Whitney.

He was studying matric matroids, in which the elements of S are the
rows of a given matrix and a set of rows is independent if they are
linearly independent in the usual sense.

This structure defines a matroid.

As another example of matroids, consider the graphic matroid
MG = (SG ,IG ), defined in terms of a given undirected graph
G = (V ,E ) as follows:

The set SG is defined to be E , the set of edges of G .
If A is a subset of E , then A ∈ IG if and only if A is acyclic.
That is, a set of edges A is independent if and only if the subgraph
GA = (V ,A) forms a forest.
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Graphic Matroids are Matroids

Theorem

If G = (V ,E ) is an undirected graph, then MG = (SG ,IG ) is a matroid.

Clearly, SG = E is a finite set. Furthermore, IG is hereditary, since
removing edges from an acyclic set of edges cannot create cycles.
It remains to show that MG satisfies the exchange property.
Suppose that GA = (V ,A) and GB = (V ,B) are forests of G and
that |B | > |A|. That is, A and B are acyclic sets of edges, and B

contains more edges than A does.
Claim: A forest F = (VF ,EF ) contains exactly |VF | − |EF | trees.
To see why, suppose that F consists of t trees, where the i -th tree
contains vi vertices and ei edges. Then, we have

|EF | =
t

∑

i=1

ei =

t
∑

i=1

(vi − 1) =

t
∑

i=1

vi − t = |VF | − t.

This implies that t = |VF | − |EF |.
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The Exchange Property of Graphic Matroids

Forest GA contains |V | − |A| trees, and GB contains |V | − |B | trees.

Thus, forest GB has fewer trees than forest GA.

So forest GB must contain some tree T whose vertices are in two
different trees in forest GA.

Moreover, since T is connected, it must contain an edge (u, v) such
that vertices u and v are in different trees in forest GA.

Since the edge (u, v) connects vertices in two different trees in forest
GA, we can add the edge (u, v) to forest GA without creating a cycle.

Therefore, MG satisfies the exchange property, completing the proof
that MG is a matroid.
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Extensions

Given a matroid M = (S ,I), we call an element x 6∈ A an extension

of A ∈ I if we can add x to A while preserving independence,

i.e., x is an extension of A ∈ I if A ∪ {x} ∈ I.

Example: Consider a graphic matroid MG = (SG ,IG ).

If A is an independent set of edges, then edge e is an extension of A
if and only if e is not in A and the addition of e to A does not create
a cycle.
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Maximal Independent Sets

If A is an independent subset in a matroid M, we say that A is
maximal if it has no extensions, i.e., A is maximal if it is not
contained in any larger independent subset of M.

Theorem

All maximal independent subsets in a matroid have the same size.

Suppose A is a maximal independent subset of M and there exists
another larger maximal independent subset B of M. The exchange
property implies that, for some x ∈ B − A, we can extend A to a
larger independent set A ∪ {x}, contradicting the maximality of A.
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Weighted Matroids

Example: Consider a graphic matroid MG = (SG ,IG ) for a
connected, undirected graph G .

Every maximal independent subset of MG must be a free tree with
exactly |V | − 1 edges that connects all the vertices of G .

Such a tree is called a spanning tree of G .

We say that a matroid M = (S ,I) is weighted if it is associated with
a weight function w that assigns a strictly positive weight w(x) to
each element x ∈ S .

The weight function w extends to subsets of S by summation:

w(A) =
∑

x∈A

w(x), for any A ⊆ S .

Example: Suppose w(e) denote the weight of an edge e in a graphic
matroid MG . Then w(A) is the total weight of the edges in set A.
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Greedy Algorithms on Weighted Matroids

Many problems for which a greedy approach provides optimal
solutions can be formulated in terms of finding a maximum weight
independent subset in a weighted matroid:

Given a weighted matroid M = (S , I), find an independent set A ∈ I,
such that w(A) is maximized.

In a weighted matroid, a subset that is independent and has
maximum possible weight is called an optimal subset.

Because the weight w(x) of any element x ∈ S is positive, an optimal
subset is always a maximal independent subset.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 52 / 69



Greedy Algorithms Matroids and Greedy Methods

Minimum Spanning Tree

The minimum spanning tree problem:
Given a connected undirected graph G = (V ,E ) and a length function
w , such that w(e) is the (positive) length of edge e, find a subset of
the edges that connects all the vertices and has minimum total length.

Any algorithm that can find an optimal subset A in an arbitrary
matroid can solve the minimum-spanning-tree problem.

Consider the weighted matroid MG with weight function w ′, where
w ′(e) = w0 − w(e) and w0 is larger than the max length of any edge.

In the weighted matroid, all weights are positive and an optimal
subset is a spanning tree of minimum total length in the graph:

Each maximal independent subset A corresponds to a spanning tree
with |V | − 1 edges. We have w ′(A) =

∑

e∈A w ′(e) =
∑

e∈A(w0−w(e)) = (|V |−1)w0−
∑

e∈A w(e) = (|V |−1)w0−w(A).

So, for any maximal independent subset A, an independent subset
that maximizes the quantity w ′(A) must minimize w(A).
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A Greedy Matroid Procedure

We give a greedy algorithm that works for any weighted matroid.

It takes as input a weighted matroid M = (S ,I), with an associated
positive weight function w , and returns an optimal subset A.

M.S , M.I denote the components and w the weight function.

The algorithm is greedy because it considers in turn each element
x ∈ S , in order of monotonically decreasing weight, and immediately
adds it to the set A being accumulated if A ∪ {x} is independent.

Greedy(M,w)

1. A = ∅
2. sort M .S into monotonically decreasing order by weight w
3. for each x ∈ M .S , taken in monotonically decreasing order by weight w(x)
4. if A ∪ {x} ∈ M .I
5. A = A ∪ {x}
6. return A
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Operation, Correctness and Running Time

Line 4 checks whether adding each element x to A would maintain A
as an independent set.

If A would remain independent, then Line 5 adds x to A.
Otherwise, x is discarded.

Since the empty set is independent, and since each iteration of the for
loop maintains A’s independence, the subset A is always independent,
by induction.

Therefore, Greedy always returns an independent subset A.

We will also show that A is a subset of maximum possible weight.

The running time of Greedy is easy to analyze: Let n denote |S |.
The sorting phase of Greedy takes time O (n log n). Line 4 executes
exactly n times, once for each element of S . Each execution of Line 4
requires a check on whether or not the set A ∪ {x} is independent. If
each such check takes time O (f (n)), the entire algorithm runs in
time O (n log n + nf (n)).
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Correctness: Greedy Returns an Optimal Subset

Lemma (Matroids Exhibit the Greedy-Choice Property)

Suppose that M = (S ,I) is a weighted matroid with weight function w

and that S is sorted into monotonically decreasing order by weight. Let x
be the first element of S , such that {x} is independent, if any such x

exists. If x exists, there exists an optimal subset A of S that contains x .

If no such x exists, then the only independent subset is the empty set
and the lemma is vacuously true.

Otherwise, let B be any nonempty optimal subset. Assume that
x 6∈ B ; otherwise, letting A = B gives an optimal subset of S that
contains x . No element of B has weight greater than w(x). To see
why, observe that y ∈ B implies that {y} is independent, since B ∈ I
and I is hereditary. Our choice of x therefore ensures that
w(x) ≥ w(y), for any y ∈ B .
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Greedy Returns an Optimal Subset: Construction of A

Construct the set A as follows:

Begin with A = {x}. By the choice of x , set A is independent.
Using the exchange property, repeatedly find a new element of B that
we can add to A until |A| = |B|, while preserving the independence of
A.
At that point, A and B are the same except that A has x and B has
some other element y .

We have, A = (B − {y}) ∪ {x}, for some y ∈ B . So

w(A) = w(B)− w(y) + w(x) ≥ w(B).

Because set B is optimal, set A, which contains x , must also be
optimal.
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No Skipped Element is an Option Later

If an element is not an option initially, then it cannot be an option
later.

Lemma

Let M = (S ,I) be any matroid. If x is an element of S that is an
extension of some independent subset A of S , then x is also an extension
of ∅.

Since x is an extension of A, we have that A ∪ {x} is independent.
Since I is hereditary, {x} must be independent. Thus, x is an
extension of ∅.

Corollary

Let M = (S ,I) be any matroid. If x is an element of S , such that x is not
an extension of ∅, then x is not an extension of any independent subset A
of S .

The corollary is the contrapositive of the lemma.
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Matroids Exhibit the Optimal-Substructure Property

Lemma (Matroids Exhibit the Optimal-Substructure Property)

Let x be the first element of S chosen by Greedy for the weighted
matroid M = (S ,I). The remaining problem of finding a maximum-weight
independent subset containing x reduces to finding a maximum-weight
independent subset of the weighted matroid M ′ = (S ′,I ′), where:

S ′ = {y ∈ S : {x , y} ∈ I};

I ′ = {B ⊆ S − {x} : B ∪ {x} ∈ I}

and the weight function for M ′ is the weight function for M, restricted to
S ′. We call M ′ the contraction of M by the element x .

If A is any maximum-weight independent subset of M containing x ,
then A′ = A− {x} is an independent subset of M ′.

Conversely, any independent subset A′ of M ′ yields an independent
subset A = A′ ∪ {x} of M. In both cases w(A) = w(A′) + w(x).

So a maximum-weight solution in M containing x yields a
maximum-weight solution in M ′, and vice versa.
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Correctness of the Greedy Algorithm on Matroids

Theorem (Correctness of the Greedy Algorithm on Matroids)

If M = (S ,I) is a weighted matroid with weight function w , then
Greedy(M,w) returns an optimal subset.

By the corollary, any elements that Greedy passes over initially
because they are not extensions of ∅ can never be useful.

Once Greedy selects the first element x , the lemma implies that the
algorithm does not err by adding x to A, since there exists an optimal
subset containing x .

Finally, the lemma implies that the remaining problem is one of
finding an optimal subset in the matroid M ′ that is the contraction of
M by x . After the procedure Greedy sets A to {x}, all remaining
steps act in the matroid M ′ = (S ′,I ′), because B is independent in
M ′ if and only if B ∪ {x} is independent in M, for all sets B ∈ I ′.

Thus, the subsequent operation will find an optimal subset for M ′.
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Subsection 5

A Task Scheduling Problem as a Matroid
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Scheduling Unit-Time Tasks with Deadlines and Penalties

A unit-time task is a job, such as a program to be run on a
computer, that requires exactly one unit of time to complete.
Given a finite set S of unit-time tasks, a schedule for S is a
permutation of S specifying the order in which to perform these
tasks.

The first task in the schedule begins at time 0 and finishes at time 1;
The second task begins at time 1 and finishes at time 2, and so on.

The problem of scheduling unit-time tasks with deadlines and
penalties for a single processor has the following inputs:

A set S = {a1, a2, . . . , an} of n unit-time tasks;
A set of n integer deadlines d1, d2, . . . , dn, such that each di satisfies
1 ≤ di ≤ n, and task ai is supposed to finish by time di ;
A set of n nonnegative weights or penalties w1,w2, . . . ,wn, such that
we incur a penalty of wi if task ai is not finished by time di , and we
incur no penalty if a task finishes by its deadline.

We wish to find a schedule for S that minimizes the total penalty
incurred for missed deadlines.
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Early-First and Canonical Forms

Given a schedule, we say that a task is late in this schedule if it
finishes after its deadline. Otherwise, the task is early in the schedule.

We can always transform an arbitrary schedule into early-first form,
in which the early tasks precede the late tasks.

To see why, note that if some early task ai follows some late task aj ,
then we can switch the positions of ai and aj , and ai will still be early
and aj will still be late.

We can always transform an arbitrary schedule into canonical form,
in which the early tasks precede the late tasks and we schedule the
early tasks in order of monotonically increasing deadlines:

Put the schedule into early-first form;
As long as there exist two early tasks ai and aj finishing at respective
times k and k + 1 in the schedule such that dj < di , we swap the
positions of ai and aj .
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Early-First and Canonical Forms (Cont’d)

Since aj is early before the swap, k + 1 ≤ dj . Therefore, k + 1 < di ,
and so ai is still early after the swap.
Because task aj is moved earlier in the schedule, it remains early after
the swap.

The search for an optimal schedule, thus, reduces to finding a set A
of tasks that we assign to be early in the optimal schedule.

Having determined A, we can create the actual schedule by:

Listing the elements of A in order of monotonically increasing deadlines;
Then listing the late tasks (i.e., S − A) in any order;

thus, producing a canonical ordering of the optimal schedule.
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Independence of Tasks

We say that a set A of tasks is independent if there exists a schedule
for these tasks such that no tasks are late.

Clearly, the set of early tasks for a schedule forms an independent set
of tasks.

Let I denote the set of all independent sets of tasks.

We would like to characterize independence in order to be able to
determine whether a given set A of tasks is independent.

For t = 0, 1, . . . , n, let Nt(A) denote the number of tasks in A whose
deadline is t or earlier.

Note that N0(A) = 0, for any set A.
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Characterization of Independence

Lemma

For any set of tasks A, the following statements are equivalent:

1. The set A is independent.

2. For t = 0, 1, 2, . . . , n, we have Nt(A) ≤ t.

3. If the tasks in A are scheduled in order of monotonically increasing
deadlines, then no task is late.

(1)⇒(2) If Nt(A) > t for some t, then there is no way to make a schedule with
no late tasks for set A, because more than t tasks must finish before
time t.

(2)⇒(3) There is no way to “get stuck” when scheduling the tasks in order of
monotonically increasing deadlines, since (2) implies that the ith
largest deadline is at least i .

(3)⇒(1) Obvious.
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Tasks with Independent Sets Form a Matroid

The problem of minimizing the sum of the penalties of the late tasks
is the same as the problem of maximizing the sum of the penalties of
the early tasks.

Theorem

If S is a set of unit-time tasks with deadlines, and I is the set of all
independent sets of tasks, then the system (S ,I) is a matroid.

Every subset of an independent set of tasks is certainly independent.

For exchange, suppose that B and A are independent sets of tasks
and that |B | > |A|. Let k be the largest t such that Nt(B) ≤ Nt(A)
(such a t exists, since N0(A) = N0(B) = 0). Since Nn(B) = |B | and
Nn(A) = |A|, but |B | > |A|, we must have that k < n and that
Nj(B) > Nj (A), for all j in the range k + 1 ≤ j ≤ n. Therefore, B
contains more tasks with deadline k +1 than A does. Let ai be a task
in B − A with deadline k + 1. Let A′ = A ∪ {ai}.
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Tasks with Independent Sets Form a Matroid (Cont’d)

Claim: A′ is independent.

We use Property 2 of the preceding lemma. For 0 ≤ t ≤ k , we have
Nt(A

′) = Nt(A) ≤ t, since A is independent. For k < t ≤ n, we have
Nt(A

′) ≤ Nt(B) ≤ t, since B is independent. Therefore, A′ is
independent.

By the theorem, we can use a greedy algorithm to find a
maximum-weight independent set of tasks A.

We can then create an optimal schedule having the tasks in A as its
early tasks.

This method is an efficient algorithm for scheduling unit-time tasks
with deadlines and penalties for a single processor:

The running time is O
(

n2
)

using Greedy, since each of the O (n)
independence checks made by that algorithm takes time O (n).
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Example

An instance of the problem of scheduling unit time tasks with
deadlines and penalties for a single processor is

ai 1 2 3 4 5 6 7

di 4 2 4 3 1 4 6
wi 70 60 50 40 30 20 10

In this example, the greedy algorithm selects, in order, tasks a1, a2, a3
and a4, then rejects a5 (because N4({a1, a2, a3, a4, a5}) = 5) and a6
(because N4({a1, a2, a3, a4, a6}) = 5), and finally accepts a7.

The final optimal schedule is 〈a2, a4, a1, a3, a7, a5, a6〉.

It has a total penalty incurred of w5 + w6 = 50.
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