Introduction to Algebraic Topology

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Geometric Complexes and Polyhedra

- Introduction
- Examples
- Geometric Complexes and Polyhedra
- Orientation of Geometric Complexes

Subsection 1

Introduction

Introduction

- Point-Set Topology
- Georg Cantor 1880: Theory of Sets;
- Maurice Frechet 1906: Theory of Metric Spaces;
- Felix Hausdorff 1912: "Basics of Set Theory".
- Algebraic Topology
- Henri Poincaré 1895-1901:
- Analysis Situs;
- Complément à l'Analysis Situs;
- Deuxième Complément;
- Cinquième Complément.

Subsection 2

Examples

Equivalence of Paths I

- Suppose we evaluate curve integrals

$$
\int_{C} p d x+q d y
$$

where $p=p(x, y)$ and $q=q(x, y)$ are continuous functions of two variables whose partial derivatives are continuous and satisfy the relation $\frac{\partial p}{\partial y}=\frac{\partial q}{\partial x}$.

- Since curve C_{1} can be continuously deformed to a point in the annulus, we have $\int_{C_{1}} p d x+q d y=0$.
- Thus C_{1} is considered to be negligible as far as curve integrals are concerned.
- We say that C_{1} is "equivalent" to a constant path.

Equivalence of Paths II

- Consider now the paths C_{2} and C_{3}.
- Recall Green's Theorem

$$
\int_{\partial D}(p d x+q d y)=\iint_{D}\left(\frac{\partial q}{\partial x}-\frac{\partial p}{\partial y}\right) d x d y
$$

- It ensures that the two integrals

$$
\begin{aligned}
& \int_{C_{2}} p d x+q d y, \\
& \int_{C_{3}} p d x+q d y
\end{aligned}
$$

are equal.

- So we can consider C_{2} and C_{3} to be "equivalent".

Basic Idea of Homotopy

- One way is to consider C_{2} and C_{3} equivalent because each can be transformed continuously into the other within the annulus.
- This is the basic idea of homotopy theory
- Accordingly, we would say that C_{2} and C_{3} are homotopic paths.

- Curve C_{1} is homotopic to a trivial (or constant) path since it can be shrunk to a point.
- C_{2} and C_{1} are not homotopic paths since C_{2} cannot be pulled across the "hole" that it encloses.
- For the same reason, C_{1} is not homotopic to C_{3}.

Basic Idea of Homology

- Another approach is to say that C_{2} and C_{3} are equivalent because they form the boundary of a region enclosed in the annulus.
- This is the basis of homology theory.
- Accordingly, C_{2} and C_{3} would be called homologous paths.

- Curve C_{1} is homologous to zero since it is the entire boundary of a region enclosed in the annulus.
- C_{1} is not homologous to either C_{2} or C_{3}.
- The ideas of homology and homotopy were introduced by Poincaré in his original paper Analysis Situs in 1895.

The Sphere and the Torus

- Consider the problem of explaining the difference between a sphere S^{2} and a torus T.

- The difference is that the sphere has one hole, and the torus has two.
- Moreover, the hole in the sphere is somehow different from those in the torus.
- The problem is to explain this difference in a mathematically rigorous way which can be applied to more complicated examples.

Homotopy versus Homology

- Homotopy:
- Any simple closed curve on the sphere can be continuously deformed to a point on the spherical surface.
- Meridian and parallel circles on the torus do not have this property.

Homotopy versus Homology (Cont'd)

- Homotopy:
- Every simple closed curve on the sphere is the boundary of the portion of the spherical surface that it encloses and also the boundary of the complementary region.
- A meridian or parallel circle on the torus is not the boundary of two regions of the torus since such a circle does not separate the torus.
- Thus any simple closed curve on the sphere is homologous to zero, but meridian and parallel circles on the torus are not homologous to zero.

A Polyhedron

- Consider the configuration shown below:

- It consists of:
- Triangles $\langle a b c\rangle,\langle b c d\rangle,\langle a b d\rangle$, and $\langle a c d\rangle$;
- Edges $\langle a b\rangle,\langle a c\rangle,\langle a d\rangle,\langle b c\rangle,\langle b d\rangle,\langle c d\rangle,\langle d f\rangle,\langle d e\rangle,\langle e f\rangle$ and $\langle f g\rangle$;
- Vertices $\langle a\rangle,\langle b\rangle,\langle c\rangle,\langle d\rangle,\langle e\rangle,\langle f\rangle$ and $\langle g\rangle$.
- The interior of the tetrahedron and the interior of triangle $\langle d e f\rangle$ are not included.
- This type of space is called a "polyhedron" (the term will be defined formally in the next section).

Chains

- A 0-chain is a formal linear combination of vertices, with coefficients modulo 2.
- A 1-chain is a formal linear combination of edges with coefficients modulo 2.
- A 2-chain is a formal linear combination of triangles with coefficients modulo 2.
- To simplify the notation, we omit those terms with coefficient 0 and consider only those terms in a chain with coefficient 1.

Example

- Consider again the configuration

- An example of a 2-chain is

$$
1 \cdot\langle a b c\rangle+1 \cdot\langle a b d\rangle+0 \cdot\langle a c d\rangle+0 \cdot\langle b c d\rangle .
$$

- According to the convention, it can be written

$$
\langle a b c\rangle+\langle a b d\rangle .
$$

The Boundary Operator

- The boundary operator ∂ is defined as follows for chains of length one and extended linearly:

$$
\begin{aligned}
\partial\langle a b c\rangle & =\langle a b\rangle+\langle a c\rangle+\langle b c\rangle \\
\partial\langle a b\rangle & =\langle a\rangle+\langle b\rangle .
\end{aligned}
$$

- A p-chain c_{p} ($p=1$ or 2) is a boundary means that there is a $(p+1)$-chain c_{p+1} with

$$
\partial c_{p+1}=c_{p}
$$

- We think of this as indicating that the union of the members of c_{p} forms the point-set boundary of the union of the members of c_{p+1}.

Example

- Recall that we are operating modulo 2 .
- This means that, in a sum, terms occurring twice cancel out.
- So we have the following calculation:

$$
\begin{aligned}
\langle a b\rangle+\langle b c\rangle+\langle c d\rangle+\langle d a\rangle & =\langle a b\rangle+\langle b c\rangle+\langle c a\rangle+\langle a c\rangle+\langle c d\rangle+\langle d a\rangle \\
& =\partial(\langle a b c\rangle+\langle a c d\rangle) .
\end{aligned}
$$

Example

- For any 2-chain c_{2}, one easily observes that $\partial \partial c_{2}=0$.

It suffices to consider a single triangle.
We have

$$
\begin{aligned}
\partial \partial\langle a b c\rangle & =\partial(\langle a b\rangle+\langle a c\rangle+\langle b c\rangle) \\
& =\partial\langle a b\rangle+\partial\langle a c\rangle+\partial\langle b c\rangle \\
& =\langle a\rangle+\langle b\rangle+\langle a\rangle+\langle c\rangle+\langle b\rangle+\langle c\rangle \\
& =0
\end{aligned}
$$

Cycles

- A p-cycle $(p=1$ or 2$)$ is a p-chain c_{p} with

$$
\partial c_{p}=0
$$

- Since $\partial \partial$ is the trivial operator, every boundary is a cycle.
- Intuitively speaking, a cycle is a chain whose terms fulfill on the following:
- They close a "hole";
- They form the boundary of a chain of the next higher dimension.
- We investigate the "holes" in the polyhedron by determining the cycles which are not boundaries.

Example

- Consider again the previous configuration.

- Except for the 2-chain having all coefficients zero, the only 2-cycle is

$$
\langle a b c\rangle+\langle b c d\rangle+\langle a c d\rangle+\langle a b d\rangle .
$$

- It is nonbounding since the interior of the tetrahedron is not included.

Example (Cont'd)

- There is a nonbounding 1-cycle

$$
z=\langle d f\rangle+\langle f e\rangle+\langle d e\rangle .
$$

- Any other 1-cycle is of one of the two types:
- A boundary;

- The sum of z and a boundary.
- Thus any 1-cycle is homologous to zero or homologous to the fundamental 1 -cycle z.
- This indicates the presence of two holes in the polyhedron:
- One enclosed by the nonbounding 2-cycle;
- One enclosed by the nonbounding 1-cycle z.

Subsection 3

Geometric Complexes and Polyhedra

Geometric Independence

- For each positive integer n, we shall consider n-dimensional Euclidean space

$$
\mathbb{R}^{n}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right): \text { each } x_{i} \text { is a real number }\right\}
$$

as a vector space over the field \mathbb{R} of real numbers.

- We will use some basic ideas from the theory of vector spaces.

Definition

A set $A=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ of $k+1$ points in \mathbb{R}^{n} is geometrically independent means that no hyperplane of dimension $k-1$ contains all the points.

Explanation

- Consider a set

$$
\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}
$$

of points in \mathbb{R}^{n}.

- That this set is geometrically independent means that:
- All the points are distinct;
- No three of them lie on a line;
- No four of them lie in a plane;
- No $p+1$ of them lie in a hyperplane of dimension $p-1$ or less.

Example

- The set $\left\{a_{0}, a_{1}, a_{2}\right\}$ is geometrically independent. The only hyperplane in \mathbb{R}^{2} containing all the points is the entire plane.
- The set $\left\{b_{0}, b_{1}, b_{2}\right\}$ is not geometrically independent.

All three points lie on a line, a hyperplane of dimension 1.

Simplexes

Definition

Let $\left\{a_{0}, \ldots, a_{k}\right\}$ be a set of geometrically independent points in \mathbb{R}^{n}. The k-dimensional geometric simplex or k-simplex, σ^{k}, spanned by $\left\{a_{0}, \ldots, a_{k}\right\}$ is the set of all points x in \mathbb{R}^{n} for which there exist nonnegative real numbers $\lambda_{0}, \ldots, \lambda_{k}$, such that

$$
x=\sum_{i=0}^{k} \lambda_{i} a_{i}, \quad \sum_{i=0}^{k} \lambda_{i}=1
$$

The numbers $\lambda_{0}, \ldots, \lambda_{k}$ are the barycentric coordinates of the point x. The points a_{0}, \ldots, a_{k} are the vertices of σ^{k}.
The set of all points x in σ^{k} with all barycentric coordinates positive is called the open geometric k-simplex spanned by $\left\{a_{0}, \ldots, a_{k}\right\}$.

Simplexes of Small Order

- Simplexes of small orders give us the following:
- A 0 -simplex is simply a singleton set.
- A 1 -simplex is a closed line segment.
- A 2-simplex is a triangle (interior and boundary).
- A 3-simplex is a tetrahedron (interior and boundary).
- For open simplexes, we have:
- An open 0 -simplex is a singleton set.
- An open 1 -simplex is a line segment with end points removed.
- An open 2 -simplex is the interior of a triangle.
- An open 3-simplex is the interior of a tetrahedron.

Faces

Definition

A simplex σ^{k} is a face of a simplex $\sigma^{n}, k \leq n$, means that each vertex of σ^{k} is a vertex of σ^{n}. The faces of σ^{n} other than σ^{n} itself are called proper faces.

- If σ^{n} is the simplex with vertices a_{0}, \ldots, a_{n}, we write

$$
\sigma^{n}=\left\langle a_{0} \ldots a_{n}\right\rangle
$$

Example: The faces of the 2 -simplex $\left\langle a_{0} a_{1} a_{2}\right\rangle$ are:

- The 2-simplex itself;
- The 1-simplexes $\left\langle a_{0} a_{1}\right\rangle,\left\langle a_{1} a_{2}\right\rangle$ and $\left\langle a_{0} a_{2}\right\rangle$;
- The 0-simplexes $\left\langle a_{0}\right\rangle,\left\langle a_{1}\right\rangle$ and $\left\langle a_{2}\right\rangle$.

Properly Joined Simplexes

Definition

Two simplexes σ^{m} and σ^{n} are properly joined provided that they do not intersect or the intersection $\sigma^{m} \cap \sigma^{n}$ is a face of both σ^{m} and σ^{n}.

Example: The following examples show proper joining:

Example: The following examples show improper joining:

Geometric Complexes

Definition

A geometric complex (or simplicial complex or complex) is a finite family K of geometric simplexes, such that:

- Membes of K are properly joined;
- Each face of a member of K is also a member of K.

The dimension of K is the largest positive integer r such that K has an r-simplex.
The union of the members of K with the Euclidean subspace topology is denoted by $|K|$ and is called the geometric carrier of K or the polyhedron associated with K.

- We shall be concerned, for the purposes of homology, with geometric complexes and polyhedra composed of a finite number of simplexes.
- Greater generality, at the expense of greater complexity, can be obtained by allowing an infinite number of simplexes.

Triangulations, Closures and Skeletons

Definition (Triangulable Spaces and Triangulations)

Let X be a topological space. If there is a geometric complex K whose geometric carrier $|K|$ is homeomorphic to X, then X is said to be a triangulable space, and the complex K is called a triangulation of X.

Definition (Closure of a Simplex)

The closure of a k-simplex σ^{k}, denoted $\mathrm{Cl}\left(\sigma^{k}\right)$, is the complex consisting of σ^{k} and all its faces.

Definition (Skeleton of a Complex)

If K is a complex and r a positive integer, the r-skeleton of K is the complex consisting of all simplexes of K of dimension less than or equal to r.

Example: 3-Simplex

- Consider a 3-simplex $\sigma^{3}=\left\langle a_{0} a_{1} a_{2} a_{3}\right\rangle$.
- The 2-skeleton of the closure of σ^{3} is the complex K whose simplexes are the proper faces of σ^{3}.
- The geometric carrier of K is the boundary of a tetrahedron.
- It is therefore homeomorphic to the 2 -sphere

$$
S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: \sum_{i=1}^{3} x_{i}^{3}=1\right\} .
$$

- It follows that S^{2} is triangulable with K as one triangulation.

Example: n-Sphere

- The n-sphere

$$
S^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: \sum_{i=1}^{n+1} x_{i}^{2}=1\right\}
$$

is a triangulable space for $n \geq 0$.

- The n-skeleton of the closure of an $(n+1)$-simplex σ^{n+1} is one triangulation of S^{n}.

Example: n-Sphere (More Details)

- Let $\sigma^{n+1}=\left\langle a_{0} a_{1} \ldots a_{n}\right\rangle$ be the $(n+1)$-simplex in \mathbb{R}^{n+1}, with:
- a_{0} the origin;
- $a_{i}, i>0$, the point with i-th coordinate 1 and all other coordinates 0 .
- If K the n-skeleton of the closure of $\sigma^{n+1},|K|$ is its point set boundary.
- Apply in turn the following homeomorphisms:
- $f: \sigma^{n+1} \rightarrow[0,1]^{n+1}$, defined by

$$
f\left(x_{0}, \ldots, x_{n}\right)=\frac{\sum_{i=0}^{n} x_{i}}{\max _{0 \leq i \leq n}\left\{x_{i}\right\}}\left(x_{0}, \ldots, x_{n}\right) ;
$$

- $g:[0,1]^{n+1} \rightarrow[-1,1]^{n+1}$, defined by

$$
g\left(x_{0}, \ldots, x_{n}\right)=\left(2 x_{0}-1, \ldots, 2 x_{n}-1\right)
$$

- $h:[-1,1]^{n+1} \rightarrow D^{n+1}$ is normalization, where D^{n} is the n-disk.
- The composition hgf restricts to a homeomorphism from $|K| \rightarrow S^{n}$.

Example: Möbius Strip

- The Möbius strip is obtained by identifying two opposite ends of a rectangle after twisting it through 180 degrees.

- The right figure shows a triangulation of the Möbius strip. where:
- The two vertices labeled a_{0} are identified, the two vertices labeled a_{3} are identified, corresponding points of the two segments $\left\langle a_{0} a_{3}\right\rangle$ are identified;
- The resulting quotient space, the geometric carrier of the triangulation, is considered as a subspace of \mathbb{R}^{3}.

The Torus

- A torus is obtained from a cylinder by identifying corresponding points of the circular ends with no twisting.

- The following diagram, with proper identifications, gives a triangulation of the torus:

Subsection 4

Orientation of Geometric Complexes

Orientation

Definition

An oriented n-simplex, $n \geq 1$, is obtained from an n-simplex

$$
\sigma^{n}=\left\langle a_{0} \ldots a_{n}\right\rangle
$$

by choosing an ordering for its vertices.

- The equivalence class of even permutations of the chosen ordering determines the positively oriented simplex $+\sigma^{n}$.
- The equivalence class of odd permutations determines the negatively oriented simplex $-\sigma^{n}$.
An oriented geometric complex is obtained from a geometric complex by assigning an orientation to each of its simplexes.

Remarks on Orientation

- If vertices a_{0}, \ldots, a_{p} of a complex K are the vertices of a p-simplex σ^{p}, then the symbol:
- $+\left\langle a_{0} \ldots a_{p}\right\rangle$ denotes the class of even permutations of the indicated order a_{0}, \ldots, a_{p};
- - $\left\langle a_{0} \ldots a_{p}\right\rangle$ denotes the class of odd permutations of the indicated order a_{0}, \ldots, a_{p}.
- If we wanted the class of even permutations of this order to determine the positively oriented simplex, then we would write

$$
+\sigma^{p}=\left\langle a_{0} \ldots a_{p}\right\rangle \quad \text { or } \quad+\sigma^{p}=+\left\langle a_{0} \ldots a_{p}\right\rangle .
$$

- Since ordering vertices requires more than one vertex, we need not worry about orienting 0 -simplexes.
- It is convenient, however, to consider a 0-simplex $\left\langle a_{0}\right\rangle$ as positively oriented.

Example: 1-Simplexes

- In the 1-simplex $\sigma^{1}=\left\langle a_{0} a_{1}\right\rangle$ let us agree that the ordering is given by $a_{0}<a_{1}$.
- Then

$$
+\sigma^{1}=\left\langle a_{0} a_{1}\right\rangle, \quad-\sigma^{1}=\left\langle a_{1} a_{0}\right\rangle .
$$

- If we imagine that the segment $\left\langle a_{i} a_{j}\right\rangle$ is directed from a_{i} toward a_{j}, then $\left\langle a_{0} a_{1}\right\rangle$ and $\left\langle a_{1} a_{0}\right\rangle$ have opposite directions.

Example: 2-Simplexes

- In the 2-simplex $\sigma^{2}=\left\langle a_{0} a_{1} a_{2}\right\rangle$, assign the order $a_{0}<a_{1}<a_{2}$.
- Then:
- $\left\langle a_{0} a_{1} a_{2}\right\rangle,\left\langle a_{1} a_{2} a_{0}\right\rangle$ and $\left\langle a_{2} a_{0} a_{1}\right\rangle$ all denote $+\sigma^{2}$;
- $\left\langle a_{0} a_{2} a_{1}\right\rangle,\left\langle a_{2} a_{1} a_{0}\right\rangle$ and $\left\langle a_{1} a_{0} a_{2}\right\rangle$ all denote $-\sigma^{2}$.

- In this case

$$
+\sigma^{2}=+\left\langle a_{0} a_{1} a_{2}\right\rangle, \quad-\sigma^{2}=-\left\langle a_{0} a_{1} a_{2}\right\rangle=+\left\langle a_{0} a_{2} a_{1}\right\rangle .
$$

- $+\left\langle a_{0} a_{2} a_{1}\right\rangle$ denotes the class of even permutations of a_{0}, a_{2}, a_{1}.
- $-\left\langle a_{0} a_{1} a_{2}\right\rangle$ denotes the class of odd permutations of a_{0}, a_{1}, a_{2}.

Incidence Number

Definition

Let K be an oriented geometric complex with simplexes σ^{p+1} and σ^{p} whose dimensions differ by 1 . We associate with each such pair $\left(\sigma^{p+1}, \sigma^{p}\right)$ an incidence number $\left[\sigma^{p+1}, \sigma^{p}\right.$] defined as follows:

- If σ^{p} is not a face of σ^{p+1}, then

$$
\left[\sigma^{p+1}, \sigma^{p}\right]=0
$$

- Suppose σ^{p} is a face of σ^{p+1}.

Label the vertices a_{0}, \ldots, a_{p} of σ^{p} so that $+\sigma^{p}=+\left\langle a_{0} \ldots a_{p}\right\rangle$.
Let v denote the vertex of σ^{p+1} which is not in σ^{p}. Then

$$
+\sigma^{p+1}= \pm\left\langle v a_{0} \ldots a_{p}\right\rangle
$$

- If $+\sigma^{p+1}=+\left\langle v a_{0} \ldots a_{p}\right\rangle$, then $\left[\sigma^{p+1}, \sigma^{p}\right]=1$.
- If $+\sigma^{p+1}=-\left\langle v a_{0} \ldots a_{p}\right\rangle$, then $\left[\sigma^{p+1}, \sigma^{p}\right]=-1$.

Example

- Suppose $+\sigma^{1}=\left\langle a_{0} a_{1}\right\rangle$.

Then we have:

- $\left[\sigma^{1},\left\langle a_{0}\right\rangle\right]=-1$;
- $\left[\sigma^{1},\left\langle a_{1}\right\rangle\right]=1$.
- Consider

$$
+\sigma^{2}=+\left\langle a_{0} a_{1} a_{2}\right\rangle, \quad+\sigma^{1}=\left\langle a_{0} a_{1}\right\rangle \quad+\tau^{1}=\left\langle a_{0} a_{2}\right\rangle .
$$

Then:

- $\left[\sigma^{2}, \sigma^{1}\right]=1$;
- $\left[\sigma^{2}, \tau^{1}\right]=-1$.

The Incidence Number Formula

Theorem

Let K be an oriented complex, σ^{p} an oriented p-simplex of K and σ^{p-2} a $(p-2)$-face of σ^{p}. Then

$$
\sum_{\sigma^{p-1} \in K}\left[\sigma^{p}, \sigma^{p-1}\right]\left[\sigma^{p-1} \sigma^{p-2}\right]=0
$$

- Label the vertices v_{0}, \ldots, v_{p-2} of σ^{p-2} so that

$$
+\sigma^{p-2}=\left\langle v_{0} \ldots v_{p-2}\right\rangle
$$

Then σ^{p} has two additional vertices a and b.
Without loss of generality, assume

$$
+\sigma^{p}=\left\langle a b v_{0} \ldots v_{p-2}\right\rangle
$$

The Incidence Number Formula

- Nonzero terms occur in the sum for only two values of σ^{p-1}. These are

$$
\sigma_{1}^{p-1}=\left\langle a v_{0} \ldots v_{p-2}\right\rangle, \quad \sigma_{2}^{p-1}=\left\langle b v_{0} \ldots v_{p-2}\right\rangle .
$$

We must now treat a total of four cases determined by the orientations of σ_{1}^{p-1} and σ_{2}^{p-1}.
We treat two of them in detail.
The other two may be treated similarly.

The Incidence Number Formula (Cont'd)

- Case I: Suppose that

$$
+\sigma_{1}^{p-1}=+\left\langle a v_{0} \ldots v_{p-2}\right\rangle, \quad+\sigma_{2}^{p-1}=+\left\langle b v_{0} \ldots v_{p-2}\right\rangle .
$$

Then

$$
\begin{array}{ll}
{\left[\sigma^{p}, \sigma_{1}^{p-1}\right]=-1,} & {\left[\sigma_{1}^{p-1}, \sigma^{p-2}\right]=+1} \\
{\left[\sigma^{p}, \sigma_{2}^{p-1}\right]=+1,} & {\left[\sigma_{2}^{p-1}, \sigma^{p-2}\right]=+1}
\end{array}
$$

So the sum in the statement in 0 .

- Case II: Suppose that

$$
+\sigma_{1}^{p-1}+\left\langle a v_{0} \ldots v_{p-2}\right\rangle, \quad+\sigma_{2}^{p-1}=-\left\langle b v_{0} \ldots v_{p-2}\right\rangle .
$$

Then

$$
\begin{array}{ll}
{\left[\sigma^{p}, \sigma_{1}^{p-1}\right]=-1,} & {\left[\sigma_{1}^{p-1}, \sigma^{p-2}\right]=+1} \\
{\left[\sigma^{p}, \sigma_{2}^{p-1}\right]=-1,} & {\left[\sigma_{2}^{p-1}, \sigma^{p-2}\right]=-1}
\end{array}
$$

So the sum in the statement in 0 also.

The Incidence Matrix of an Oriented Complex

Definition

In the oriented complex K, let $\left\{\sigma_{i}^{p_{i}}\right\}_{i=1}^{\alpha_{p}}$ and $\left\{\sigma_{i}^{p+1}\right\}_{i=1}^{\alpha_{p+1}}$ denote the p-simplexes and $(p+1)$-simplexes of K, where α_{p} and α_{p+1} denote the numbers of simplexes of dimensions p and $p+1$, respectively. The matrix

$$
\eta(p)=\left(\eta_{i j}(p)\right),
$$

where

$$
\eta_{i j}(p)=\left[\sigma_{i}^{p+1}, \sigma_{j}^{p}\right],
$$

is called the p-th incidence matrix of K.

Comments

- Incidence matrices were used to describe the arrangement of simplexes in a complex during the early days of algebraic or "combinatorial" topology.
- Today group theory has given a much more efficient method of describing the same property.
- The group theoretic formulation seems to have been suggested by Emmy Noether (1882-1935) in around 1925.
- These groups follow quite naturally from Poincaré's original description of homology theory.

