Introduction to Algebraic Topology

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

- Introduction
- Examples
- Geometric Complexes and Polyhedra
- Orientation of Geometric Complexes

Subsection 1

Introduction

Introduction

Point-Set Topology

- Georg Cantor 1880: Theory of Sets;
- Maurice Frechet 1906: Theory of Metric Spaces;
- Felix Hausdorff 1912: "Basics of Set Theory".

Algebraic Topology

- Henri Poincaré 1895-1901:
 - Analysis Situs;
 - Complément à l'Analysis Situs;
 - Deuxième Complément;
 - Cinquième Complément.

Subsection 2

Examples

Equivalence of Paths I

• Suppose we evaluate curve integrals

$$\int_C pdx + qdy,$$

where p = p(x, y) and q = q(x, y) are continuous functions of two variables whose partial derivatives are continuous and satisfy the relation $\frac{\partial p}{\partial y} = \frac{\partial q}{\partial x}$.

- Since curve C_1 can be continuously deformed to a point in the annulus, we have $\int_{C_1} p dx + q dy = 0$.
- Thus C₁ is considered to be negligible as far as curve integrals are concerned.
- We say that C_1 is "equivalent" to a constant path.

Equivalence of Paths II

- Consider now the paths C_2 and C_3 .
- Recall Green's Theorem

$$\int_{\partial D} \left(p \, dx + q \, dy \right) = \iint_D \left(\frac{\partial q}{\partial x} - \frac{\partial p}{\partial y} \right) dx dy.$$

• It ensures that the two integrals

$$\int_{C_2} pdx + qdy,$$
$$\int_{C_3} pdx + qdy$$

are equal.

• So we can consider C_2 and C_3 to be "equivalent".

Basic Idea of Homotopy

- One way is to consider C₂ and C₃ equivalent because each can be transformed continuously into the other within the annulus.
- This is the basic idea of homotopy theory
- Accordingly, we would say that C₂ and C₃ are homotopic paths.

- Curve C₁ is homotopic to a trivial (or constant) path since it can be shrunk to a point.
- C₂ and C₁ are not homotopic paths since C₂ cannot be pulled across the "hole" that it encloses.
- For the same reason, C_1 is not homotopic to C_3 .

Basic Idea of Homology

- Another approach is to say that C₂ and C₃ are equivalent because they form the boundary of a region enclosed in the annulus.
- This is the basis of homology theory.
- Accordingly, C_2 and C_3 would be called homologous paths.

- Curve C₁ is homologous to zero since it is the entire boundary of a region enclosed in the annulus.
- C_1 is not homologous to either C_2 or C_3 .
- The ideas of homology and homotopy were introduced by Poincaré in his original paper *Analysis Situs* in 1895.

The Sphere and the Torus

• Consider the problem of explaining the difference between a sphere S^2 and a torus T.

- The difference is that the sphere has one hole, and the torus has two.
- Moreover, the hole in the sphere is somehow different from those in the torus.
- The problem is to explain this difference in a mathematically rigorous way which can be applied to more complicated examples.

Homotopy versus Homology

• Homotopy:

- Any simple closed curve on the sphere can be continuously deformed to a point on the spherical surface.
- Meridian and parallel circles on the torus do not have this property.

Homotopy versus Homology (Cont'd)

• Homotopy:

- Every simple closed curve on the sphere is the boundary of the portion of the spherical surface that it encloses and also the boundary of the complementary region.
- A meridian or parallel circle on the torus is not the boundary of two regions of the torus since such a circle does not separate the torus.
- Thus any simple closed curve on the sphere is homologous to zero, but meridian and parallel circles on the torus are not homologous to zero.

A Polyhedron

• Consider the configuration shown below:

- It consists of:
 - Triangles (*abc*), (*bcd*), (*abd*), and (*acd*);
 - Edges $\langle ab \rangle, \langle ac \rangle, \langle ad \rangle, \langle bc \rangle, \langle bd \rangle, \langle cd \rangle, \langle df \rangle, \langle de \rangle, \langle ef \rangle$ and $\langle fg \rangle$;
 - Vertices $\langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle, \langle e \rangle, \langle f \rangle$ and $\langle g \rangle$.
- The interior of the tetrahedron and the interior of triangle (*def*) are not included.
- This type of space is called a "polyhedron" (the term will be defined formally in the next section).

George Voutsadakis (LSSU)

Chains

- A 0-chain is a formal linear combination of vertices, with coefficients modulo 2.
- A 1-chain is a formal linear combination of edges with coefficients modulo 2.
- A 2-chain is a formal linear combination of triangles with coefficients modulo 2.
- To simplify the notation, we omit those terms with coefficient 0 and consider only those terms in a chain with coefficient 1.

• Consider again the configuration

• An example of a 2-chain is

 $1 \cdot \langle abc \rangle + 1 \cdot \langle abd \rangle + 0 \cdot \langle acd \rangle + 0 \cdot \langle bcd \rangle.$

• According to the convention, it can be written

 $\langle abc \rangle + \langle abd \rangle.$

The Boundary Operator

• The **boundary operator** ∂ is defined as follows for chains of length one and extended linearly:

$$\begin{array}{lll} \partial \langle abc \rangle &=& \langle ab \rangle + \langle ac \rangle + \langle bc \rangle, \\ \partial \langle ab \rangle &=& \langle a \rangle + \langle b \rangle. \end{array}$$

• A *p*-chain c_p (p = 1 or 2) is a **boundary** means that there is a (p+1)-chain c_{p+1} with

$$\partial c_{p+1} = c_p.$$

We think of this as indicating that the union of the members of c_p forms the point-set boundary of the union of the members of c_{p+1}.

- Recall that we are operating modulo 2.
- This means that, in a sum, terms occurring twice cancel out.
- So we have the following calculation:

$$\langle ab \rangle + \langle bc \rangle + \langle cd \rangle + \langle da \rangle = \langle ab \rangle + \langle bc \rangle + \langle ca \rangle + \langle ac \rangle + \langle cd \rangle + \langle da \rangle = \partial (\langle abc \rangle + \langle acd \rangle).$$

For any 2-chain c₂, one easily observes that ∂∂c₂ = 0.
 It suffices to consider a single triangle.
 We have

$$\partial \partial \langle abc \rangle = \partial (\langle ab \rangle + \langle ac \rangle + \langle bc \rangle)$$
$$= \partial \langle ab \rangle + \partial \langle ac \rangle + \partial \langle bc \rangle$$
$$= \langle a \rangle + \langle b \rangle + \langle a \rangle + \langle c \rangle + \langle b \rangle + \langle c \rangle$$
$$= 0.$$

• A
$$p$$
-cycle ($p = 1$ or 2) is a p -chain c_p with

$$\partial c_p = 0.$$

- Since $\partial \partial$ is the trivial operator, every boundary is a cycle.
- Intuitively speaking, a cycle is a chain whose terms fulfill on the following:
 - They close a "hole";
 - They form the boundary of a chain of the next higher dimension.
- We investigate the "holes" in the polyhedron by determining the cycles which are not boundaries.

• Consider again the previous configuration.

• Except for the 2-chain having all coefficients zero, the only 2-cycle is

$$\langle abc \rangle + \langle bcd \rangle + \langle acd \rangle + \langle abd \rangle.$$

• It is nonbounding since the interior of the tetrahedron is not included.

Example (Cont'd)

• There is a nonbounding 1-cycle

 $z = \langle df \rangle + \langle fe \rangle + \langle de \rangle.$

- Any other 1-cycle is of one of the two types:
 - A boundary;
 - The sum of z and a boundary.
- Thus any 1-cycle is homologous to zero or homologous to the fundamental 1-cycle *z*.
- This indicates the presence of two holes in the polyhedron:
 - One enclosed by the nonbounding 2-cycle;
 - One enclosed by the nonbounding 1-cycle z.

Subsection 3

Geometric Complexes and Polyhedra

Geometric Independence

• For each positive integer *n*, we shall consider *n*-dimensional Euclidean space

 $\mathbb{R}^n = \{x = (x_1, x_2, \dots, x_n) : \text{each } x_i \text{ is a real number}\}$

as a vector space over the field ${\rm I\!R}$ of real numbers.

• We will use some basic ideas from the theory of vector spaces.

Definition

A set $A = \{a_0, a_1, ..., a_k\}$ of k+1 points in \mathbb{R}^n is **geometrically independent** means that no hyperplane of dimension k-1 contains all the points.

Explanation

• Consider a set

$$\{a_0, a_1, \dots, a_k\}$$

of points in \mathbb{R}^n .

- That this set is geometrically independent means that:
 - All the points are distinct;
 - No three of them lie on a line;
 - No four of them lie in a plane;

```
• No p+1 of them lie in a hyperplane of dimension p-1 or less.
```

.

• The set $\{a_0, a_1, a_2\}$ is geometrically independent.

The only hyperplane in \mathbb{R}^2 containing all the points is the entire plane.

The set {b₀, b₁, b₂} is not geometrically independent.
 All three points lie on a line, a hyperplane of dimension 1.

Simplexes

Definition

Let $\{a_0, \ldots, a_k\}$ be a set of geometrically independent points in \mathbb{R}^n . The *k*-dimensional geometric simplex or *k*-simplex, σ^k , spanned by $\{a_0, \ldots, a_k\}$ is the set of all points *x* in \mathbb{R}^n for which there exist nonnegative real numbers $\lambda_0, \ldots, \lambda_k$, such that

$$x = \sum_{i=0}^{k} \lambda_i a_i, \quad \sum_{i=0}^{k} \lambda_i = 1.$$

The numbers $\lambda_0, ..., \lambda_k$ are the **barycentric coordinates** of the point *x*. The points $a_0, ..., a_k$ are the **vertices** of σ^k . The set of all points *x* in σ^k with all barycentric coordinates positive is called the **open geometric** *k*-simplex spanned by $\{a_0, ..., a_k\}$.

Simplexes of Small Order

- Simplexes of small orders give us the following:
 - A 0-simplex is simply a singleton set.
 - A 1-simplex is a closed line segment.
 - A 2-simplex is a triangle (interior and boundary).
 - A 3-simplex is a tetrahedron (interior and boundary).
- For open simplexes, we have:
 - An open 0-simplex is a singleton set.
 - An open 1-simplex is a line segment with end points removed.
 - An open 2-simplex is the interior of a triangle.
 - An open 3-simplex is the interior of a tetrahedron.

Faces

Definition

A simplex σ^k is a **face** of a simplex σ^n , $k \le n$, means that each vertex of σ^k is a vertex of σ^n . The faces of σ^n other than σ^n itself are called **proper faces**.

• If σ^n is the simplex with vertices a_0, \ldots, a_n , we write

$$\sigma^n = \langle a_0 \dots a_n \rangle.$$

Example: The faces of the 2-simplex $\langle a_0 a_1 a_2 \rangle$ are:

- The 2-simplex itself;
- The 1-simplexes $\langle a_0 a_1 \rangle$, $\langle a_1 a_2 \rangle$ and $\langle a_0 a_2 \rangle$;
- The 0-simplexes $\langle a_0 \rangle, \langle a_1 \rangle$ and $\langle a_2 \rangle$.

Properly Joined Simplexes

Definition

Two simplexes σ^m and σ^n are **properly joined** provided that they do not intersect or the intersection $\sigma^m \cap \sigma^n$ is a face of both σ^m and σ^n .

Example: The following examples show proper joining:

Example: The following examples show improper joining:

Geometric Complexes

Definition

A geometric complex (or simplicial complex or complex) is a finite family K of geometric simplexes, such that:

- Membes of K are properly joined;
- Each face of a member of K is also a member of K.

The **dimension** of K is the largest positive integer r such that K has an r-simplex.

The union of the members of K with the Euclidean subspace topology is denoted by |K| and is called the **geometric carrier** of K or the **polyhedron associated with** K.

- We shall be concerned, for the purposes of homology, with geometric complexes and polyhedra composed of a finite number of simplexes.
- Greater generality, at the expense of greater complexity, can be obtained by allowing an infinite number of simplexes.

George Voutsadakis (LSSU)

Algebraic Topology

Triangulations, Closures and Skeletons

Definition (Triangulable Spaces and Triangulations)

Let X be a topological space. If there is a geometric complex K whose geometric carrier |K| is homeomorphic to X, then X is said to be a **triangulable space**, and the complex K is called a **triangulation** of X.

Definition (Closure of a Simplex)

The **closure** of a *k*-simplex σ^k , denoted $Cl(\sigma^k)$, is the complex consisting of σ^k and all its faces.

Definition (Skeleton of a Complex)

If K is a complex and r a positive integer, the r-skeleton of K is the complex consisting of all simplexes of K of dimension less than or equal to r.

Example: 3-Simplex

- Consider a 3-simplex $\sigma^3 = \langle a_0 a_1 a_2 a_3 \rangle$.
- The 2-skeleton of the closure of σ³ is the complex K whose simplexes are the proper faces of σ³.
- The geometric carrier of K is the boundary of a tetrahedron.
- It is therefore homeomorphic to the 2-sphere

$$S^{2} = \left\{ (x_{1}, x_{2}, x_{3}) \in \mathbb{R}^{3} : \sum_{i=1}^{3} x_{i}^{3} = 1 \right\}.$$

• It follows that S^2 is triangulable with K as one triangulation.

Example: *n*-Sphere

• The *n*-sphere

$$S^{n} = \left\{ (x_{1}, x_{2}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x_{i}^{2} = 1 \right\}$$

is a triangulable space for $n \ge 0$.

• The *n*-skeleton of the closure of an (n+1)-simplex σ^{n+1} is one triangulation of S^n .

Example: *n*-Sphere (More Details)

• Let
$$\sigma^{n+1} = \langle a_0 a_1 \dots a_n \rangle$$
 be the $(n+1)$ -simplex in \mathbb{R}^{n+1} , with:

- *a*₀ the origin;
- a_i , i > 0, the point with *i*-th coordinate 1 and all other coordinates 0.
- If K the n-skeleton of the closure of σ^{n+1} , |K| is its point set boundary.
- Apply in turn the following homeomorphisms:
 - $f: \sigma^{n+1} \rightarrow [0,1]^{n+1}$, defined by

$$f(x_0,...,x_n) = \frac{\sum_{i=0}^n x_i}{\max_{0 \le i \le n} \{x_i\}} (x_0,...,x_n);$$

• $g:[0,1]^{n+1} \to [-1,1]^{n+1}$, defined by

$$g(x_0,...,x_n) = (2x_0 - 1,...,2x_n - 1);$$

• $h: [-1,1]^{n+1} \rightarrow D^{n+1}$ is normalization, where D^n is the *n*-disk.

• The composition hgf restricts to a homeomorphism from $|K| \rightarrow S^n$.

Example: Möbius Strip

• The **Möbius strip** is obtained by identifying two opposite ends of a rectangle after twisting it through 180 degrees.

- The right figure shows a triangulation of the Möbius strip. where:
 - The two vertices labeled *a*₀ are identified, the two vertices labeled *a*₃ are identified, corresponding points of the two segments $\langle a_0 a_3 \rangle$ are identified;
 - The resulting quotient space, the geometric carrier of the triangulation, is considered as a subspace of $\mathbb{R}^3.$

The Torus

• A torus is obtained from a cylinder by identifying corresponding points of the circular ends with no twisting.

• The following diagram, with proper identifications, gives a triangulation of the torus:

Subsection 4

Orientation of Geometric Complexes

Orientation

Definition

An oriented *n*-simplex, $n \ge 1$, is obtained from an *n*-simplex

$$\sigma^n = \langle a_0 \dots a_n \rangle$$

by choosing an ordering for its vertices.

- The equivalence class of even permutations of the chosen ordering determines the **positively oriented simplex** $+\sigma^n$.
- The equivalence class of odd permutations determines the **negatively** oriented simplex $-\sigma^n$.

An **oriented geometric complex** is obtained from a geometric complex by assigning an orientation to each of its simplexes.

Remarks on Orientation

- If vertices a₀,..., a_p of a complex K are the vertices of a p-simplex σ^p, then the symbol:
 - +(a₀...a_p) denotes the class of even permutations of the indicated order a₀,..., a_p;
 - $-\langle a_0...a_p \rangle$ denotes the class of odd permutations of the indicated order $a_0,...,a_p$.
- If we wanted the class of even permutations of this order to determine the positively oriented simplex, then we would write

$$+\sigma^{p} = \langle a_{0} \dots a_{p} \rangle$$
 or $+\sigma^{p} = + \langle a_{0} \dots a_{p} \rangle$.

- Since ordering vertices requires more than one vertex, we need not worry about orienting 0-simplexes.
- It is convenient, however, to consider a 0-simplex (*a*₀) as positively oriented.

Example: 1-Simplexes

- In the 1-simplex $\sigma^1 = \langle a_0 a_1 \rangle$ let us agree that the ordering is given by $a_0 < a_1$.
- Then

$$+\sigma^1 = \langle a_0 a_1 \rangle, \quad -\sigma^1 = \langle a_1 a_0 \rangle.$$

 If we imagine that the segment (a_ia_j) is directed from a_i toward a_j, then (a₀a₁) and (a₁a₀) have opposite directions.

Example: 2-Simplexes

- In the 2-simplex σ² = (a₀a₁a₂), assign the order a₀ < a₁ < a₂.
 Then:
 - $\langle a_0 a_1 a_2 \rangle, \langle a_1 a_2 a_0 \rangle$ and $\langle a_2 a_0 a_1 \rangle$ all denote $+\sigma^2$;
 - $\langle a_0 a_2 a_1 \rangle, \langle a_2 a_1 a_0 \rangle$ and $\langle a_1 a_0 a_2 \rangle$ all denote $-\sigma^2$.

In this case

$$+\sigma^{2} = +\langle a_{0}a_{1}a_{2}\rangle, \quad -\sigma^{2} = -\langle a_{0}a_{1}a_{2}\rangle = +\langle a_{0}a_{2}a_{1}\rangle.$$

+(a₀a₂a₁) denotes the class of even permutations of a₀, a₂, a₁.
-(a₀a₁a₂) denotes the class of odd permutations of a₀, a₁, a₂.

Incidence Number

Definition

Let K be an oriented geometric complex with simplexes σ^{p+1} and σ^p whose dimensions differ by 1. We associate with each such pair (σ^{p+1}, σ^p) an **incidence number** $[\sigma^{p+1}, \sigma^p]$ defined as follows:

• If σ^p is not a face of σ^{p+1} , then

$$[\sigma^{p+1},\sigma^p]=0.$$

$$+\sigma^{p+1} = \pm \langle va_0 \dots a_p \rangle.$$

• If $+\sigma^{p+1} = +\langle va_0 \dots a_p \rangle$, then $[\sigma^{p+1}, \sigma^p] = 1$. • If $+\sigma^{p+1} = -\langle va_0 \dots a_p \rangle$, then $[\sigma^{p+1}, \sigma^p] = -1$.

- Suppose $+\sigma^1 = \langle a_0 a_1 \rangle$. Then we have: • $[\sigma_1^1, \langle a_0 \rangle] = -1;$
 - $[\sigma^1, \langle a_1 \rangle] = 1.$
- Consider

$$+\sigma^{2} = +\langle a_{0}a_{1}a_{2}\rangle, \quad +\sigma^{1} = \langle a_{0}a_{1}\rangle \quad +\tau^{1} = \langle a_{0}a_{2}\rangle.$$

Then:

• $[\sigma^2, \sigma^1] = 1;$ • $[\sigma^2, \tau^1] = -1.$

The Incidence Number Formula

Theorem

Let K be an oriented complex, σ^p an oriented p-simplex of K and σ^{p-2} a (p-2)-face of σ^p . Then

$$\sum_{\sigma^{p-1}\in \mathcal{K}} [\sigma^p, \sigma^{p-1}] [\sigma^{p-1}\sigma^{p-2}] = 0.$$

• Label the vertices v_0, \ldots, v_{p-2} of σ^{p-2} so that

$$+\sigma^{p-2}=\langle v_0\ldots v_{p-2}\rangle.$$

Then σ^p has two additional vertices *a* and *b*. Without loss of generality, assume

$$+\sigma^{p} = \langle abv_0 \dots v_{p-2} \rangle.$$

The Incidence Number Formula

• Nonzero terms occur in the sum for only two values of σ^{p-1} . These are

$$\sigma_1^{p-1} = \langle av_0 \dots v_{p-2} \rangle, \quad \sigma_2^{p-1} = \langle bv_0 \dots v_{p-2} \rangle.$$

We must now treat a total of four cases determined by the orientations of σ_1^{p-1} and σ_2^{p-1} . We treat two of them in detail.

The other two may be treated similarly.

The Incidence Number Formula (Cont'd)

• Case I: Suppose that

$$+\sigma_1^{p-1} = +\langle av_0 \dots v_{p-2} \rangle, \quad +\sigma_2^{p-1} = +\langle bv_0 \dots v_{p-2} \rangle.$$

Then

$$\begin{split} & [\sigma^p, \sigma_1^{p-1}] = -1, \quad [\sigma_1^{p-1}, \sigma^{p-2}] = +1, \\ & [\sigma^p, \sigma_2^{p-1}] = +1, \quad [\sigma_2^{p-1}, \sigma^{p-2}] = +1. \end{split}$$

So the sum in the statement in 0.

• Case II: Suppose that

$$+\sigma_1^{p-1}+\langle av_0\ldots v_{p-2}\rangle, \quad +\sigma_2^{p-1}=-\langle bv_0\ldots v_{p-2}\rangle.$$

Then

$$\begin{split} [\sigma^p,\sigma_1^{p-1}] &= -1, \quad [\sigma_1^{p-1},\sigma^{p-2}] = +1, \\ [\sigma^p,\sigma_2^{p-1}] &= -1, \quad [\sigma_2^{p-1},\sigma^{p-2}] = -1. \end{split}$$

So the sum in the statement in 0 also.

George Voutsadakis (LSSU)

Algebraic Topology

The Incidence Matrix of an Oriented Complex

Definition

In the oriented complex K, let $\{\sigma_i^p\}_{i=1}^{\alpha_p}$ and $\{\sigma_i^{p+1}\}_{i=1}^{\alpha_{p+1}}$ denote the *p*-simplexes and (p+1)-simplexes of K, where α_p and α_{p+1} denote the numbers of simplexes of dimensions *p* and *p*+1, respectively. The matrix

$$\eta(p) = (\eta_{ij}(p)),$$

where

$$\eta_{ij}(p) = [\sigma_i^{p+1}, \sigma_j^p],$$

is called the *p*-th incidence matrix of *K*.

Comments

- Incidence matrices were used to describe the arrangement of simplexes in a complex during the early days of algebraic or "combinatorial" topology.
- Today group theory has given a much more efficient method of describing the same property.
- The group theoretic formulation seems to have been suggested by Emmy Noether (1882-1935) in around 1925.
- These groups follow quite naturally from Poincaré's original description of homology theory.