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Geometric Complexes and Polyhedra Introduction

Introduction

Point-Set Topology

Georg Cantor 1880: Theory of Sets;
Maurice Frechet 1906: Theory of Metric Spaces;
Felix Hausdorff 1912: “Basics of Set Theory”.

Algebraic Topology

Henri Poincaré 1895-1901:

Analysis Situs;

Complément à l’Analysis Situs;

Deuxième Complément;

Cinquième Complément.
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Geometric Complexes and Polyhedra Examples

Equivalence of Paths I

Suppose we evaluate curve integrals

∫

C
pdx +qdy ,

where p = p(x ,y) and q = q(x ,y) are
continuous functions of two variables
whose partial derivatives are continuous
and satisfy the relation ∂p

∂y =
∂q
∂x .

Since curve C1 can be continuously deformed to a point in the
annulus, we have

∫

C1
pdx +qdy = 0.

Thus C1 is considered to be negligible as far as curve integrals are
concerned.

We say that C1 is “equivalent” to a constant path.
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Equivalence of Paths II

Consider now the paths C2 and C3.

Recall Green’s Theorem
∫

∂D
(pdx +qdy)=

Ï

D

(

∂q

∂x
−
∂p

∂y

)

dxdy .

It ensures that the two integrals

∫

C2
pdx +qdy ,

∫

C3
pdx +qdy

are equal.

So we can consider C2 and C3 to be “equivalent”.
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Basic Idea of Homotopy

One way is to consider C2 and C3

equivalent because each can be transformed
continuously into the other within the
annulus.

This is the basic idea of homotopy theory

Accordingly, we would say that C2 and C3

are homotopic paths.

Curve C1 is homotopic to a trivial (or constant) path since it can be
shrunk to a point.

C2 and C1 are not homotopic paths since C2 cannot be pulled across
the “hole” that it encloses.

For the same reason, C1 is not homotopic to C3.
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Basic Idea of Homology

Another approach is to say that C2 and C3

are equivalent because they form the
boundary of a region enclosed in the
annulus.

This is the basis of homology theory.

Accordingly, C2 and C3 would be called
homologous paths.

Curve C1 is homologous to zero since it is the entire boundary of a
region enclosed in the annulus.

C1 is not homologous to either C2 or C3.

The ideas of homology and homotopy were introduced by Poincaré in
his original paper Analysis Situs in 1895.
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The Sphere and the Torus

Consider the problem of explaining the difference between a sphere S2

and a torus T .

The difference is that the sphere has one hole, and the torus has two.

Moreover, the hole in the sphere is somehow different from those in
the torus.

The problem is to explain this difference in a mathematically rigorous
way which can be applied to more complicated examples.
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Homotopy versus Homology

Homotopy:

Any simple closed curve on the sphere can be continuously deformed to
a point on the spherical surface.
Meridian and parallel circles on the torus do not have this property.

George Voutsadakis (LSSU) Algebraic Topology May 2024 11 / 48



Geometric Complexes and Polyhedra Examples

Homotopy versus Homology (Cont’d)

Homotopy:

Every simple closed curve on the sphere is the boundary of the portion
of the spherical surface that it encloses and also the boundary of the
complementary region.
A meridian or parallel circle on the torus is not the boundary of two
regions of the torus since such a circle does not separate the torus.
Thus any simple closed curve on the sphere is homologous to zero, but
meridian and parallel circles on the torus are not homologous to zero.
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A Polyhedron

Consider the configuration shown below:

It consists of:
Triangles 〈abc〉,〈bcd〉,〈abd〉, and 〈acd〉;
Edges 〈ab〉,〈ac〉,〈ad〉,〈bc〉,〈bd〉,〈cd〉,〈df 〉,〈de〉,〈ef 〉 and 〈fg 〉;
Vertices 〈a〉,〈b〉,〈c〉,〈d〉,〈e〉,〈f 〉 and 〈g 〉.

The interior of the tetrahedron and the interior of triangle 〈def 〉 are
not included.

This type of space is called a “polyhedron” (the term will be defined
formally in the next section).
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Chains

A 0-chain is a formal linear combination of vertices, with coefficients
modulo 2.

A 1-chain is a formal linear combination of edges with coefficients
modulo 2.

A 2-chain is a formal linear combination of triangles with coefficients
modulo 2.

To simplify the notation, we omit those terms with coefficient 0 and
consider only those terms in a chain with coefficient 1.
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Example

Consider again the configuration

An example of a 2-chain is

1 · 〈abc〉+1 · 〈abd〉+0 · 〈acd〉+0 · 〈bcd〉.

According to the convention, it can be written

〈abc〉+〈abd〉.
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The Boundary Operator

The boundary operator ∂ is defined as follows for chains of length
one and extended linearly:

∂〈abc〉 = 〈ab〉+〈ac〉+〈bc〉,

∂〈ab〉 = 〈a〉+〈b〉.

A p-chain cp (p = 1 or 2) is a boundary means that there is a
(p+1)-chain cp+1 with

∂cp+1 = cp .

We think of this as indicating that the union of the members of cp
forms the point-set boundary of the union of the members of cp+1.
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Example

Recall that we are operating modulo 2.

This means that, in a sum, terms occurring twice cancel out.

So we have the following calculation:

〈ab〉+〈bc〉+〈cd〉+〈da〉 = 〈ab〉+〈bc〉+〈ca〉+〈ac〉+〈cd〉+〈da〉

= ∂(〈abc〉+〈acd〉).
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Example

For any 2-chain c2, one easily observes that ∂∂c2 = 0.

It suffices to consider a single triangle.

We have

∂∂〈abc〉 = ∂(〈ab〉+〈ac〉+〈bc〉)

= ∂〈ab〉+∂〈ac〉+∂〈bc〉

= 〈a〉+〈b〉+〈a〉+〈c〉+〈b〉+〈c〉

= 0.
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Cycles

A p-cycle (p = 1 or 2) is a p-chain cp with

∂cp = 0.

Since ∂∂ is the trivial operator, every boundary is a cycle.

Intuitively speaking, a cycle is a chain whose terms fulfill on the
following:

They close a “hole”;
They form the boundary of a chain of the next higher dimension.

We investigate the “holes” in the polyhedron by determining the cycles
which are not boundaries.
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Example

Consider again the previous configuration.

Except for the 2-chain having all coefficients zero, the only 2-cycle is

〈abc〉+〈bcd〉+〈acd〉+〈abd〉.

It is nonbounding since the interior of the tetrahedron is not included.
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Example (Cont’d)

There is a nonbounding 1-cycle

z = 〈df 〉+〈fe〉+〈de〉.

Any other 1-cycle is of one of the
two types:

A boundary;
The sum of z and a boundary.

Thus any 1-cycle is homologous to zero or homologous to the
fundamental 1-cycle z .

This indicates the presence of two holes in the polyhedron:

One enclosed by the nonbounding 2-cycle;
One enclosed by the nonbounding 1-cycle z .
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Subsection 3

Geometric Complexes and Polyhedra
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Geometric Independence

For each positive integer n, we shall consider n-dimensional Euclidean
space

R
n
= {x = (x1,x2, . . . ,xn) : each xi is a real number}

as a vector space over the field R of real numbers.

We will use some basic ideas from the theory of vector spaces.

Definition

A set A= {a0,a1, . . . ,ak } of k +1 points in Rn is geometrically

independent means that no hyperplane of dimension k −1 contains all the
points.
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Explanation

Consider a set
{a0,a1, . . . ,ak }

of points in Rn.

That this set is geometrically independent means that:

All the points are distinct;
No three of them lie on a line;
No four of them lie in a plane;
...
No p+1 of them lie in a hyperplane of dimension p−1 or less.
...
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Example

The set {a0,a1,a2} is geometrically independent.

The only hyperplane in R2 containing all the points is the entire plane.

The set {b0,b1,b2} is not geometrically independent.

All three points lie on a line, a hyperplane of dimension 1.
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Simplexes

Definition

Let {a0, . . . ,ak } be a set of geometrically independent points in Rn.
The k-dimensional geometric simplex or k-simplex, σk , spanned by
{a0, . . . ,ak } is the set of all points x in Rn for which there exist nonnegative
real numbers λ0, . . . ,λk , such that

x =

k
∑

i=0

λiai ,
k
∑

i=0

λi = 1.

The numbers λ0, . . . ,λk are the barycentric coordinates of the point x .
The points a0, . . . ,ak are the vertices of σk .
The set of all points x in σk with all barycentric coordinates positive is
called the open geometric k-simplex spanned by {a0, . . . ,ak }.
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Simplexes of Small Order

Simplexes of small orders give us the following:

A 0-simplex is simply a singleton set.
A 1-simplex is a closed line segment.
A 2-simplex is a triangle (interior and boundary).
A 3-simplex is a tetrahedron (interior and boundary).

For open simplexes, we have:

An open 0-simplex is a singleton set.
An open 1-simplex is a line segment with end points removed.
An open 2-simplex is the interior of a triangle.
An open 3-simplex is the interior of a tetrahedron.
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Faces

Definition

A simplex σk is a face of a simplex σn, k ≤ n, means that each vertex of
σk is a vertex of σn. The faces of σn other than σn itself are called proper

faces.

If σn is the simplex with vertices a0, . . . ,an, we write

σn
= 〈a0 . . .an〉.

Example: The faces of the 2-simplex 〈a0a1a2〉 are:

The 2-simplex itself;
The 1-simplexes 〈a0a1〉,〈a1a2〉 and 〈a0a2〉;
The 0-simplexes 〈a0〉,〈a1〉 and 〈a2〉.

George Voutsadakis (LSSU) Algebraic Topology May 2024 28 / 48



Geometric Complexes and Polyhedra Geometric Complexes and Polyhedra

Properly Joined Simplexes

Definition

Two simplexes σm and σn are properly joined provided that they do not
intersect or the intersection σm∩σn is a face of both σm and σn.

Example: The following examples show proper joining:

Example: The following examples show improper joining:
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Geometric Complexes

Definition

A geometric complex (or simplicial complex or complex) is a finite
family K of geometric simplexes, such that:

Membes of K are properly joined;

Each face of a member of K is also a member of K .

The dimension of K is the largest positive integer r such that K has an
r -simplex.
The union of the members of K with the Euclidean subspace topology is
denoted by |K | and is called the geometric carrier of K or the
polyhedron associated with K .

We shall be concerned, for the purposes of homology, with geometric
complexes and polyhedra composed of a finite number of simplexes.

Greater generality, at the expense of greater complexity, can be
obtained by allowing an infinite number of simplexes.
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Triangulations, Closures and Skeletons

Definition (Triangulable Spaces and Triangulations)

Let X be a topological space. If there is a geometric complex K whose
geometric carrier |K | is homeomorphic to X , then X is said to be a
triangulable space, and the complex K is called a triangulation of X .

Definition (Closure of a Simplex)

The closure of a k-simplex σk , denoted Cl(σk), is the complex consisting
of σk and all its faces.

Definition (Skeleton of a Complex)

If K is a complex and r a positive integer, the r -skeleton of K is the
complex consisting of all simplexes of K of dimension less than or equal to
r .
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Example: 3-Simplex

Consider a 3-simplex σ3 = 〈a0a1a2a3〉.

The 2-skeleton of the closure of σ3 is the complex K whose simplexes
are the proper faces of σ3.

The geometric carrier of K is the boundary of a tetrahedron.

It is therefore homeomorphic to the 2-sphere

S2
=

{

(x1,x2,x3) ∈R
3 :

3
∑

i=1

x3
i = 1

}

.

It follows that S2 is triangulable with K as one triangulation.
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Example: n-Sphere

The n-sphere

Sn
=

{

(x1,x2, . . . ,xn+1) ∈R
n+1 :

n+1
∑

i=1

x2
i = 1

}

is a triangulable space for n≥ 0.

The n-skeleton of the closure of an (n+1)-simplex σn+1 is one
triangulation of Sn.
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Example: n-Sphere (More Details)

Let σn+1 = 〈a0a1 . . .an〉 be the (n+1)-simplex in Rn+1, with:

a0 the origin;
ai , i > 0, the point with i-th coordinate 1 and all other coordinates 0.

If K the n-skeleton of the closure of σn+1, |K | is its point set boundary.

Apply in turn the following homeomorphisms:

f :σn+1 → [0,1]n+1, defined by

f (x0, . . . ,xn)=

∑n
i=0 xi

max0≤i≤n {xi }
(x0, . . . ,xn);

g : [0,1]n+1 → [−1,1]n+1, defined by

g(x0, . . . ,xn)= (2x0−1, . . . ,2xn−1);

h : [−1,1]n+1 →Dn+1 is normalization, where Dn is the n-disk.

The composition hgf restricts to a homeomorphism from |K | → Sn.
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Example: Möbius Strip

The Möbius strip is obtained by identifying two opposite ends of a
rectangle after twisting it through 180 degrees.

The right figure shows a triangulation of the Möbius strip. where:

The two vertices labeled a0 are identified, the two vertices labeled a3

are identified, corresponding points of the two segments 〈a0a3〉 are
identified;
The resulting quotient space, the geometric carrier of the triangulation,
is considered as a subspace of R3.
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The Torus

A torus is obtained from a cylinder by identifying corresponding points
of the circular ends with no twisting.

The following diagram, with proper identifications, gives a
triangulation of the torus:
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Subsection 4

Orientation of Geometric Complexes
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Orientation

Definition

An oriented n-simplex, n≥ 1, is obtained from an n-simplex

σn
= 〈a0 . . .an〉

by choosing an ordering for its vertices.

The equivalence class of even permutations of the chosen ordering
determines the positively oriented simplex +σn.

The equivalence class of odd permutations determines the negatively

oriented simplex −σn.

An oriented geometric complex is obtained from a geometric complex by
assigning an orientation to each of its simplexes.
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Remarks on Orientation

If vertices a0, . . . ,ap of a complex K are the vertices of a p-simplex σp,
then the symbol:

+〈a0 . . .ap〉 denotes the class of even permutations of the indicated
order a0, . . . ,ap;
−〈a0 . . .ap〉 denotes the class of odd permutations of the indicated order
a0, . . . ,ap .

If we wanted the class of even permutations of this order to determine
the positively oriented simplex, then we would write

+σp
= 〈a0 . . .ap〉 or +σp

=+〈a0 . . .ap〉.

Since ordering vertices requires more than one vertex, we need not
worry about orienting 0-simplexes.

It is convenient, however, to consider a 0-simplex 〈a0〉 as positively
oriented.
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Example: 1-Simplexes

In the 1-simplex σ1 = 〈a0a1〉 let us agree that the ordering is given by
a0 < a1.

Then
+σ1

= 〈a0a1〉, −σ1
= 〈a1a0〉.

If we imagine that the segment 〈aiaj 〉 is directed from ai toward aj ,
then 〈a0a1〉 and 〈a1a0〉 have opposite directions.
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Example: 2-Simplexes

In the 2-simplex σ2 = 〈a0a1a2〉, assign the order a0 < a1 < a2.

Then:

〈a0a1a2〉,〈a1a2a0〉 and 〈a2a0a1〉 all denote +σ2;
〈a0a2a1〉,〈a2a1a0〉 and 〈a1a0a2〉 all denote −σ2.

In this case

+σ2
=+〈a0a1a2〉, −σ2

=−〈a0a1a2〉 =+〈a0a2a1〉.

+〈a0a2a1〉 denotes the class of even permutations of a0,a2,a1.

−〈a0a1a2〉 denotes the class of odd permutations of a0,a1,a2.
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Incidence Number

Definition

Let K be an oriented geometric complex with simplexes σp+1 and σp

whose dimensions differ by 1. We associate with each such pair (σp+1,σp)
an incidence number [σp+1,σp] defined as follows:

If σp is not a face of σp+1, then

[σp+1
,σp]= 0.

Suppose σp is a face of σp+1.
Label the vertices a0, . . . ,ap of σp so that +σp =+〈a0 . . .ap〉.
Let v denote the vertex of σp+1 which is not in σp. Then

+σp+1
=±〈va0 . . .ap〉.

If +σp+1 =+〈va0 . . .ap〉, then [σp+1,σp ]= 1.
If +σp+1 =−〈va0 . . .ap〉, then [σp+1,σp ]=−1.
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Example

Suppose +σ1 = 〈a0a1〉.

Then we have:

[σ1,〈a0〉]= −1;
[σ1,〈a1〉]= 1.

Consider

+σ2
=+〈a0a1a2〉, +σ1

= 〈a0a1〉 +τ1
= 〈a0a2〉.

Then:

[σ2,σ1]= 1;
[σ2,τ1]= −1.

George Voutsadakis (LSSU) Algebraic Topology May 2024 43 / 48



Geometric Complexes and Polyhedra Orientation of Geometric Complexes

The Incidence Number Formula

Theorem

Let K be an oriented complex, σp an oriented p-simplex of K and σp−2 a
(p−2)-face of σp. Then

∑

σp−1∈K

[σp
,σp−1][σp−1σp−2]= 0.

Label the vertices v0, . . . ,vp−2 of σp−2 so that

+σp−2
= 〈v0 . . .vp−2〉.

Then σp has two additional vertices a and b.

Without loss of generality, assume

+σp
= 〈abv0 . . .vp−2〉.
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The Incidence Number Formula

Nonzero terms occur in the sum for only two values of σp−1.

These are

σ
p−1
1

= 〈av0 . . .vp−2〉, σ
p−1
2

= 〈bv0 . . .vp−2〉.

We must now treat a total of four cases determined by the
orientations of σp−1

1
and σ

p−1
2

.

We treat two of them in detail.

The other two may be treated similarly.
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The Incidence Number Formula (Cont’d)

Case I: Suppose that

+σ
p−1
1

=+〈av0 . . .vp−2〉, +σ
p−1
2

=+〈bv0 . . .vp−2〉.

Then
[σp ,σ

p−1
1

]= −1, [σp−1
1

,σp−2]= +1,

[σp ,σ
p−1

2
]= +1, [σ

p−1

2
,σp−2]= +1.

So the sum in the statement in 0.

Case II: Suppose that

+σ
p−1
1

+〈av0 . . .vp−2〉, +σ
p−1
2

=−〈bv0 . . .vp−2〉.

Then
[σp ,σ

p−1
1

]= −1, [σp−1
1

,σp−2]= +1,

[σp ,σ
p−1

2
]= −1, [σ

p−1

2
,σp−2]= −1.

So the sum in the statement in 0 also.
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The Incidence Matrix of an Oriented Complex

Definition

In the oriented complex K , let {σ
p

i
}
αp

i=1
and {σ

p+1

i
}
αp+1

i=1
denote the

p-simplexes and (p+1)-simplexes of K , where αp and αp+1 denote the
numbers of simplexes of dimensions p and p+1, respectively. The matrix

η(p)= (ηij (p)),

where
ηij (p)= [σp+1

i
,σ

p

j
],

is called the p-th incidence matrix of K .
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Comments

Incidence matrices were used to describe the arrangement of simplexes
in a complex during the early days of algebraic or “combinatorial”
topology.

Today group theory has given a much more efficient method of
describing the same property.

The group theoretic formulation seems to have been suggested by
Emmy Noether (1882-1935) in around 1925.

These groups follow quite naturally from Poincaré’s original
description of homology theory.
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