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Chains and Chain Groups

Definition

Let K be an oriented simplicial complex. If p is a positive integer, a
p-dimensional chain, or p-chain, is a function cp from the family of
oriented p-simplexes of K to the integers such that, for each p-simplex σp,

cp(−σ
p)=−cp(+σ

p).

A 0-dimensional chain or 0-chain is a function from the 0-simplexes of K
to the integers.
With the operation of pointwise addition induced by the integers, the
family of p-chains forms a group, the p-dimensional chain group of K .
This group is denoted by Cp(K ).

George Voutsadakis (LSSU) Algebraic Topology May 2024 4 / 88



Simplicial Homology Groups Chains, Cycles, Boundaries and Homology Groups

Elementary Chains

Definition (Cont’d)

Let K be an oriented simplicial complex. Let p be a positive integer.
An elementary p-chain is a p-chain cp for which there is a p-simplex σp

such that
cp(τ

p)= 0,

for each p-simplex τp distinct from σp. Such an elementary p-chain is
denoted by

g ·σp
,

where g = cp(+σ
p).

With this notation, an arbitrary p-chain dp can be expressed as a formal
finite sum

dp =
∑

gi ·σ
p

i

of elementary p-chains, where the index i ranges over all p-simplexes of K .
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Remarks on the Group Cp(K )

(a) Let
cp =

∑
fi ·σ

p

i
;

dp =
∑
gi ·σ

p

i

be two p-chains on K .

Then
cp +dp =

∑
(fi +gi ) ·σ

p

i
.

(b) The additive inverse of the chain cp =
∑
fi ·σ

p

i
in the group Cp(K ) is

the chain
−cp =

∑
−fi ·σ

p

i
.
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Remarks on the Group Cp(K ) (Cont’d)

(c) The chain group Cp(K ) is isomorphic to the direct sum of the group
Z of integers over the family of p-simplexes of K .

In more detail, suppose K has αp p-simplexes.

Then Cp(K ) is isomorphic to the direct sum of αp copies of Z.

One isomorphism is given by the correspondence

αp∑

i=1

gi ·σ
p

i
↔ (g1,g2, . . . ,gαp

).

Any commutative group, commutative ring or field could be used as
the coefficient set for the p-chains, thus making Cp(K ) a commutative
group, a module or a vector space.
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Boundaries

Definition

If g ·σp is an elementary p-chain with p ≥ 1, the boundary of g ·σp,
denoted by ∂(g ·σp), is defined by

∂(g ·σp)=
∑

[σp
,σ

p−1

i
]g ·σ

p−1

i
, σ

p−1

i
∈K .

The boundary operator ∂ is extended by linearity to a homomorphism

∂ :Cp(K )→Cp−1(K ).

I.e., if cp =
∑
gi ·σ

p

i
is an arbitrary p-chain, then

∂(cp)=
∑

∂(gi ·σ
p

i
).

The boundary of a 0-chain is defined to be zero.
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A Comment on Boundaries

Strictly speaking, the boundary homomorphism should be denoted by

∂p :Cp(K )→Cp−1(K ).

However, the dimension involved is indicated by the chain group
Cp(K ).

So it is customary to omit the subscript.

George Voutsadakis (LSSU) Algebraic Topology May 2024 9 / 88



Simplicial Homology Groups Chains, Cycles, Boundaries and Homology Groups

Composition of Boundary Operators

Theorem

If K is an oriented complex and p ≥ 2, then the composition
∂∂ :Cp(K )→Cp−2(K ) in the diagram

Cp(K )
∂
✲ Cp−1(K )

∂
✲ Cp−2(K )

is the trivial homomorphism.

We show that ∂∂(cp)= 0 for each p-chain.

It suffices to show ∂∂(g ·σp)= 0, for every elementary p-chain g ·σp.

Observe that

∂∂(g ·σp) = ∂(
∑

σ
p−1
i

∈K
[σp ,σ

p−1

i
]g ·σ

p−1

i
)

=
∑

σ
p−1
i

∈K
∂([σp ,σ

p−1

i
]g ·σ

p−1

i
)

=
∑

σ
p−1
i

∈K

∑
σ
p−2
j

∈K
[σp ,σ

p−1

i
][σ

p−1

i
,σ

p−2

j
]g ·σ

p−2

j
.
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Composition of Boundary Operators (Cont’d)

We have ∂∂(g ·σp)=
∑

σ
p−1
i

∈K

∑
σ
p−2
j

∈K
[σp ,σ

p−1

i
][σp−1

i
,σ

p−2

j
]g ·σ

p−2

j
.

Reversing the order of summation and collecting coefficients of each
simplex σ

p−2

j
gives

∂∂(g ·σp)=
∑

σ
p−2
j

∈K



 ∑

σ
p−1
i

∈K

[σp
,σ

p−1

i
][σp−1

i
,σ

p−2

j
]g ·σ

p−2

j



 .

By a preceding theorem, for every σ
p−2

j
,

∑

σ
p−1
i

∈K

[σp
,σ

p−1

i
][σ

p−1

i
,σ

p−2

j
]= 0.

Therefore, ∂∂(g ·σp)= 0.
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Cycles and Cycle Groups

Definition

Let K be an oriented complex. Let p is a positive integer.
A p-dimensional cycle on K , or p-cycle, is a p-chain zp such that

∂(zp)= 0.

The family of p-cycles is thus the kernel of the homomorphism

∂ :Cp(K )→Cp−1(K )

and is a subgroup of Cp(K ). This subgroup, denoted by Zp(K ), is called
the p-dimensional cycle group of K .
Recall that, by definition, the boundary of every 0-chain is 0.
So we define a 0-cycle to be synonymous with a 0-chain.
Thus the group Z0(K ) of 0-cycles is the group C0(K ) of 0-chains.
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Boundaries and Boundary Groups

Definition

If p ≥ 0, a p-chain bp is a p-dimensional boundary on K , or p-boundary,
if there is a (p+1)-chain cp+1 such that

∂(cp+1)= bp .

The family of p-boundaries is the homomorphic image ∂(Cp+1(K )) and is
a subgroup of Cp(K ). This subgroup is called the p-dimensional

boundary group of K and is denoted by Bp(K ).
If n is the dimension of K , then there are no p-chains on K for p > n.
In this case we say that Cp(K ) is the trivial group {0}.
In particular, note that there are no (n+1)-chains on K , which implies:

Cn+1(K )= {0};

Bn(K )= {0}.
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Cycle Groups and Boundary Groups

Theorem

If K is an oriented complex, then Bp(K )⊆Zp(K ), for each integer p such
that 0≤ p ≤ n, where n is the dimension of K .

Suppose that bp is a p-boundary of K .

Thus, there exists a (p+1)-chain cp+1, such that

∂cp+1 = bp .

But then, we get
∂bp = ∂∂cp+1 = 0.

Thus, bp is also a p-cycle of K .
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Introducing Homology

We think of a p-cycle as a linear combination of p-simplexes which
makes a complete circuit.

The p-cycles which enclose “holes” are the interesting cycles.

They are the ones which are not boundaries of (p+1)-chains.

We use the relation of homology between cycles to restrict our
attention to nonbounding cycles and to weed out the bounding ones.
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Homologous Cycles

Definition

Two p-cycles wp and zp on a complex K are homologous, written

wp ∼ zp,

provided that there is a (p+1)-chain cp+1, such that

∂(cp+1)=wp −zp .

If a p-cycle tp is the boundary of a (p+1)-chain, we say that tp is
homologous to zero and write tp ∼ 0.
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Homology Classes and Group Structure

The relation ∼ of homology for p-cycles is an equivalence relation.

So it partitions Zp(K ) into homology classes

[zp]= {wp ∈Zp(K ) :wp ∼ zp}.

The homology class [zp] is actually the coset

zp +Bp(K )= {zp+∂(cp+1) : ∂(cp+1) ∈Bp(K )}.

So the homology classes are the members of the quotient group
Zp(K )/Bp(K ).

We can use the quotient group structure to add homology classes.
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The Homology Groups

Definition

Let K is an oriented complex. Let p be a non-negative integer. The
p-dimensional homology group of K is the quotient group

Hp(K )=Zp(K )/Bp(K ).

George Voutsadakis (LSSU) Algebraic Topology May 2024 18 / 88



Simplicial Homology Groups Examples of Homology Groups

Subsection 2

Examples of Homology Groups
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Example I

Let K be the closure of a 2-simplex 〈a0a1a2〉 with orientation induced
by the ordering a0 < a1 < a2.

K has:

0-simplexes 〈a0〉,〈a1〉 and 〈a2〉;
Positively oriented 1-simplexes 〈a0a1〉,〈a1a2〉 and 〈a0a2〉;
A positively oriented 2-simplex 〈a0a1a2〉.

A 0-chain on K is a sum of the form

c0 = g0 · 〈a0〉+g1 · 〈a1〉+g2 · 〈a2〉,

where g0, g1 and g2 are integers.

Hence, C0(K )=Z0(K ) is isomorphic to the direct sum Z⊕Z⊕Z of
three copies of the group of integers.
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Example I (1-Chains)

A 1-chain on K is a sum of the form

c1 = h0 · 〈a0a1〉+h1 · 〈a1a2〉+h2 · 〈a0a2〉,

where h0,h1 and h2 are integers.

So C1(K ) is isomorphic to Z⊕Z⊕Z.
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Example I (1-Cycles)

We have

∂(c1)= (−h0−h2) · 〈a0〉+ (h0−h1) · 〈a1〉+ (h1+h2) · 〈a2〉.

Hence c1 is a 1-cycle if and only if h0,h1 and h2 satisfy the equations

−h0−h2 = 0, h0−h1 = 0, h1+h2 = 0.

This system gives h0 = h1 =−h2.

So the 1-cycles are chains of the form

h · 〈a0a1〉+h · 〈a1a2〉−h · 〈a0a2〉,

where h is any integer.

Thus Z1(K ) is isomorphic to the group Z of integers.
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Example I (2-Homology and 1-Homology)

The only 2-simplex of K is 〈a0a1a2〉.

So the only 2-chains are the elementary ones

h · 〈a0a1a2〉,

where h is an integer.

Thus, C2(K )∼=Z.

We have

∂(h · 〈a0a1a2〉)= h · 〈a0a1〉+h · 〈a1a2〉−h · 〈a0a2〉.

So ∂(h · 〈a0a1a2〉)= 0 only when h= 0. Thus, Z2(K )= {0}.

This gives H2(K )= {0}.

The 1-cycles and the 1-boundaries have precisely the same form,

h · 〈a0a1〉+h · 〈a1a2〉−h · 〈a0a2〉.

So we get Z1(K )=B1(K ).

This gives H1(K )= {0}.
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Example I (0-Homology)

A 0-cycle g0 · 〈a0〉+g1 · 〈a1〉+g2 · 〈a2〉 is a 0-boundary if and only if
there are integers h0,h1 and h2, such that

−h0−h2 = g0, h0−h1 = g1, h1+h2 = g2.

Then we have g0+g1 =−g2.

So, for 0-boundaries, two coefficients are arbitrary, and the third is
determined by the first two.

This gives B0(K )∼=Z⊕Z.

But B0(K )∼=Z⊕Z and Z0(K )∼=Z⊕Z⊕Z.

So we suspect H0(K )∼=Z.
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Example I (0-Homology Cont’d)

To complete the proof, consider a 0-cycle

g0 · 〈a0〉+g1 · 〈a1〉+g2 · 〈a2〉.

Write

g0 · 〈a0〉+g1 · 〈a1〉+g2 · 〈a2〉

= ∂(g1 · 〈a0a1〉+g2 · 〈a0a2〉)+ (g0 +g1+g2) · 〈a0〉.

This shows that any 0-cycle is homologous to a 0-cycle of the form
t · 〈a0〉, t an integer.

Hence, each 0-homology class has a representative t · 〈a0〉.

So H0(K ) is isomorphic to Z.
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Example I (Summary)

Summarizing, we have:

H0(K )∼=Z ;
H1(X )= {0};
H2(K )= {0}.

The trivial groups H1(X ) and H2(K ) indicate the absence of holes in
the polyhedron |K |.

As we shall see later, the fact that H0(K ) is isomorphic to Z indicates
that |K | has one component.
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Example II (Möbius Strip)

Let M denote the triangulation of the Möbius strip.

Assume the orientation induced by

a0 < a1 < a2 < a3 < a4 < a5.

There are no 3-simplexes in M.

So B2(M)= {0}.
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Example II (2-Homology)

Consider a 2-cycle

w = g0 · 〈a1a3a4〉+g1 · 〈a0a1a4〉+g2 · 〈a1a4a5〉

g3 · 〈a1a2a5〉+g4 · 〈a0a2a5〉+g5 · 〈a0a2a3〉.

In ∂(w), the coefficient that appears with 〈a3a4〉 is g0.

To have ∂(w)= 0, it must be true that g0 = 0.

Similar reasoning applied to the other horizontal 1-simplexes shows
that each coefficient in w must be 0.

Thus Z2(M)= {0}.

This shows that H2(M)= {0}.
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Example II (1-Homology)

Using a bit of intuition, we suspect that the 1-chains

z = 1 · 〈a0a1〉+1 · 〈a1a2〉+1 · 〈a2a3〉−1 · 〈a0a3〉,

z ′ = 1 · 〈a0a3〉+1 · 〈a3a4〉+1 · 〈a4a5〉−1 · 〈a0a5〉

are 1-cycles (both make complete circuits beginning at a0).

Direct computation verifies that z and z ′ are cycles.

However, z −z ′ traverses the boundary of M.

So z −z ′ should be the boundary of some 2-chain.

A straightforward computation shows that

z −z ′ = ∂(1 · 〈a0a1a4〉+1 · 〈a1a2a5〉+1 · 〈a0a2a3〉

−1 · 〈a0a2a5〉−1 · 〈a1a4a5〉−1 · 〈a0a3a4〉).

So z ∼ z ′.
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Example II (1-Homology Cont’d))

A similar calculation verifies that any 1-cycle is homologous to a
multiple of z .

Hence,
H1(M)= {[g ·z ] : g is an integer}.

So H1(M)∼=Z.

This result indicates that the polyhedron |M | has one hole bounded by
1-simplexes.
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Example II (0-Homology)

Observe that any two elementary 0-chains 1 · 〈ai 〉 and 1 · 〈aj〉 (i , j range
from 0 to 5) are homologous.

E.g.,
1 · 〈a5〉−1 · 〈a0〉 = ∂(1 · 〈a0a4〉+1 · 〈a4a5〉).

Hence,
H0(M)= {[g · 〈a0〉] : g is an integer}.

So H0(M)∼=Z.

This indicates that |M | has only one component.
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Example III (The Projective Plane)

The projective plane is obtained from a finite
disk by identifying each pair of diametrically
opposite points.

A triangulation P of the projective plane,
with orientations indicated by the arrows, is
shown in the figure.

To compute Z2(P), observe that each 1-simplex σ1 of P is a face of
exactly two 2-simplexes σ2

1 and σ2
2.

When σ1 is 〈a3a4〉,〈a4a5〉 or 〈a5a3〉, both incidence numbers [σ2
1

,σ1]

and [σ2
2

,σ1] are +1.

For all other choices of σ1, the two incidence numbers are negatives of
each other.
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Example III (2-Homology)

Let us call 〈a3a4〉,〈a4a5〉 and 〈a5a3〉 1-simplexes of type I and the
others 1-simplexes of type II.

Suppose that w is a 2-cycle.

In order for the coefficients of the type II 1-simplexes in ∂(w) to be 0,
all the coefficients in w must have a common value, say g .

But then
∂(w)= 2g · 〈a3a4〉+2g · 〈a4a5〉+2g · 〈a5a3〉,

since both incidence numbers for the type I 1-simplexes are +1.

Hence w is a 2-cycle only when g = 0.

So Z2(P)= {0}.

Thus, H2(P)= {0}.
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Example III (Cont’d)

Observe that any 1-cycle is homologous to a multiple of

z = 1 · 〈a3a4〉+1 · 〈a4a5〉+1 · 〈a5a3〉.

Furthermore, the previous equation shows that any even multiple of z
is a boundary.

Thus H1(P)∼=Z2, the group of integers modulo 2.

This result indicates the twisting that occurs around the “hole” in the
polyhedron |P |.
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Chains in terms of Negatively Oriented Simplexes

In the computation of homology groups, it is sometimes convenient to
express an elementary chain in terms of a negatively oriented simplex.

We use g · (−σp) to denote the elementary p-chain −g ·σp.

In other words, if 〈a0 . . .ap〉 represents a positively or negatively
oriented p-simplex, then g · 〈a0 . . .ap〉 denotes the elementary p-chain
which assigns value:

g to the orientation determined by the class of even permutations of
the given ordering;
−g to the orientation determined by the class of odd permutations of
the given ordering.
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Example

Consider the Projective Plane triangulation.

〈a5a3〉 denotes a positively oriented
1-simplex.

The symbols g · 〈a5a3〉 and −g · 〈a3a5〉 now
denote the same elementary 1-chain.

An elementary 2-chain h · 〈a0a1a2〉 may be written in any of six ways:

h · 〈a0a1a2〉 = h · 〈a1a2a0〉 = h · 〈a2a0a1〉

=−h · 〈a1a0a2〉 =−h · 〈a0a2a1〉 =−h · 〈a2a1a0〉.
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Subsection 3

The Structure of Homology Groups
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Form of Chains, Cycles and Boundaries

Suppose that K has αp p-simplexes.

Then Cp(K ) is isomorphic to Z⊕·· ·⊕Z (αp summands).

So Cp(K ) is a free abelian group on αp generators.

Every subgroup of a free abelian group is a free abelian group.

So Zp(K ) and Bp(K ) are both free abelian groups.
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Structure of the Homology Groups

The quotient group

Hp(K )=Zp(K )/Bp(K )

may not be free.

Its structure is given by the Decomposition Theorem for Finitely
Generated Abelian Groups,

Hp(K )=G ⊕T1⊕·· ·⊕Tm,

where:
G is a free abelian group;
Each Ti is a finite cyclic group.

The direct sum
T1⊕·· ·⊕Tm

is called the torsion subgroup of Hp(K ).

The torsion subgroup describes the “twisting” in the polyhedron |K |.
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Homology and Orientations

Theorem

Let K be a geometric complex with two orientations, and let K1,K2 denote
the resulting oriented geometric complexes. Then, for each dimension p,
the homology groups Hp(K1) and Hp(K2) are isomorphic.

For a p-simplex σp of K , let iσp denote the positive orientation of σp

in the complex Ki , i = 1,2. Then there is a function α defined on the
simplexes of K , such that α(σp) is ±1 and

1σp
=α(σp) 2σp

.

Define a sequence ϕp = {ϕp} of homomorphisms ϕp :Cp(K1)→Cp(K2)
by

ϕp(
∑

gi ·
1σ

p

i
)=

∑
α(σ

p
1 )gi ·

2σ
p

i
,

where
∑
gi ·

1σ
p

i
represents a p-chain on K1.
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Homology and Orientations (Cont’d)

For an elementary p-chain g · 1σp on K1 with p ≥ 1,

ϕp−1(∂(g · 1σp)) = ϕp−1(
∑

σp−1∈K g [1σp ,1σp−1] · 1σp−1)

=
∑

σp−1∈K α(σp−1)g [1σp ,1σp−1] · 2σp−1

=
∑

σp−1∈K α(σp−1)gα(σp−1)α(σp)[2σp ,2σp−1] · 2σp−1

= α(σp)g
∑

σp−1∈K [
2σp ,2σp−1] · 2σp−1

= ∂(α(σp)g · 2σp)

= ∂ϕp(g · 1σp).

Thus the relation ϕp−1∂= ∂ϕp holds in the diagram

Cp(K1)
ϕp

✲ Cp(K2)

Cp−1(K1)

∂
❄

ϕp−1

✲ Cp−1(K2)

∂
❄
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Homology and Orientations (Cont’d)

If zp ∈Zp(K1), then

∂ϕp(zp)=ϕp−1∂(zp)=ϕp−1(0)= 0.

So ϕp(zp) ∈Zp(K2). Hence, ϕp(Zp(K1)) is a subset of Zp(K2).

If ∂(cp+1) ∈Bp(K1), then

ϕp∂(cp+1)= ∂ϕp+1(cp+1).

So ϕp∂(cp+1) is in Bp(K2). Thus, ϕp maps Bp(K1) into Bp(K2).

Hence, ϕp induces a homomorphism ϕ∗
p from the quotient group

Hp(K1)=Zp(K1)/Bp(K1) to Hp(K2)=Zp(K2)/Bp(K2) defined by

ϕ∗
p([zp])= [ϕp(zp)],

for each homology class [zp] in Hp(K1).

George Voutsadakis (LSSU) Algebraic Topology May 2024 42 / 88



Simplicial Homology Groups The Structure of Homology Groups

Homology and Orientations (Conclusion)

Now reverse the roles of K1 and K2.

We, thus, get a sequence ψ= {ψp} of homomorphisms

ψp :Cp(K2)→Cp(K1),

such that ϕp and ψp are inverses of each other for each p.

This implies that ψ∗
p is the inverse of ϕ∗

p.

Hence,
ϕ∗
p :Hp(K1)→Hp(K2)

is an isomorphism for each dimension p.
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Connectivity and Combinatorial Components

We next show that there is no torsion in dimension zero.

Moreover, the rank of the free abelian group H0(K ) is the number of
components of the polyhedron |K |.

Definition

Let K be a complex. Two simplexes s1 and s2 are connected if either of
the following conditions is satisfied:

(a) s1∩ s2 6= ;;

(b) There is a sequence σ1, . . . ,σp of 1-simplexes of K , such that s1∩σ1 is a
vertex of s1, s2∩σp is a vertex of s2 and, for 1≤ i < p, σi ∩σi+1 is a
common vertex of σ1 and σi+1.

This concept of connectedness is an equivalence relation.
Its equivalence classes are called the combinatorial components of K .
K is said to be connected if it has only one combinatorial component.
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H0(K ) and Number of Combinatorial Components

Theorem

Let K be a complex with r combinatorial components. Then H0(K ) is
isomorphic to the direct sum of r copies of the group Z of integers.

Let K ′ be a combinatorial component of K .

Let 〈a′〉 a 0-simplex in K ′.

By assumption, given any 0-simplex 〈b〉 in K ′, there is a sequence of
1-simplexes 〈ba0〉,〈a0a1〉,〈a1a2〉, . . . ,〈apa

′〉 from b to a′, such that each
two successive 1-simplexes have a common vertex.

If g is an integer, we define a 1-chain c1 on the sequence of
1-simplexes by assigning either g or −g to each simplex (depending on
orientation) so that ∂(c1) is g · 〈b〉−g · 〈a′〉 or g · 〈b〉+g · 〈a′〉.
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H0(K ) and Number of Combinatorial Components (Cont’d)

Hence, any elementary 0-chain g · 〈b〉 is homologous to one of the
0-chains g · 〈a′〉 or −g · 〈a′〉.

It follows that any 0-chain on K ′ is homologous to an elementary
0-chain h · 〈a′〉, where h is some integer.

Now apply the result to each combinatorial component K1, . . . ,Kr of K .

It shows that, there is a vertex ai of Ki , such that any 0-cycle on Ki is
homologous to a 0-chain of the form hi · 〈a

i 〉, where hi is an integer.

So, given any 0-cycle c0 on K , there are integers h1, . . . ,hr , such that

c0 ∼
r∑

i=1

hi · 〈a
i
〉.
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H0(K ) and Number of Combinatorial Components (Cont’d)

Suppose that two such 0-chains

∑
hi · 〈a

i
〉 and

∑
gi · 〈a

i
〉

represent the same homology class.

Then
∑
(gi −hi )〈a

i 〉 = ∂(c1), for some 1-chain c1.

But, for i 6= j , ai and aj belong to different combinatorial components.

So the last equation is impossible unless gi = hi , for each i .

Hence, each homology class [c0] in H0(K ) has a unique representative
of the form

∑
hi · 〈a

i 〉.

The function ∑
hi · 〈a

i
〉→ (h1, . . . ,hr )

is the required isomorphism between H0(K ) and the direct sum of r
copies of Z.
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Number of Components of Polyhedra

The components of |K | and the geometric carriers of the
combinatorial components of K are identical.

So we obtain the following

Corollary

If a polyhedron |K | has r components and triangulation K , then H0(K ) is
isomorphic to the direct sum of r copies of Z.
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Subsection 4

The Euler-Poincaré Theorem
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Linear Independence with Respect to Homology

Definition

Let K be an oriented complex. A family {z1
p , . . . ,z rp} of p-cycles is linearly

independent with respect to homology, or linearly independent mod

Bp(K ), means that there do not exist integers g1, . . . ,gr not all zero, such
that the chain

∑
giz

i
p is homologous to 0.

The largest integer r for which there exist r p-cycles linearly independent
with respect to homology is denoted by Rp(K ) and called the p-th Betti

number of the complex K .

In the theorem that follows, we assume that the coefficient group has
been chosen to be the rational numbers and not the integers.

Linear independence with integral coefficients is equivalent to linear
independence with rational coefficients.
Moreover, this change does not alter the values of the Betti numbers.
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The Euler-Poincaré Theorem

Theorem (The Euler-Poincaré Theorem)

Let K be an oriented geometric complex of dimension n. For p = 0,1, . . . ,n,
let αp denote the number of p-simplexes of K . Then

n∑

p=0

(−1)pαp =

n∑

p=0

(−1)pRp(K ),

where Rp(K ) denotes the p-th Betti number of K .

Since K is the only complex under consideration, the notation will be
simplified by omitting reference to it in the group notations.

Cp ,Zp, and Bp are vector spaces over the field of rational numbers.

Let {d i
p} be a maximal set of p-chains such that no proper linear

combination of the d i
p is a cycle.

Let Dp be the linear subspace of Cp spanned by {d i
p}.
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The Euler-Poincaré Theorem (Cont’d)

By definition of Dp, Dp ∩Zp = {0}.

So, as a vector space, Cp is the direct sum of Zp and Dp.

Now we have
αp = dimCp = dimDp +dimZp.

That is,
dimZp =αp −dimDp , 1≤ p ≤ n,

where dim denotes vector space dimension.

For p = 0, . . . ,n−1, let bip = ∂(d i
p+1).

The set {bip} forms a basis for Bp.

Let
{z ip}, i = 1, . . . ,Rp ,

be a maximal set of p-cycles linearly independent mod Bp.
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The Euler-Poincaré Theorem (Cont’d)

The cycles in {z ip} span a subspace Gp of Zp, and

Zp =Gp⊕Bp , 0≤ p ≤ n−1.

But Rp = dimGp.

So we get
dimZp = dimGp+dimBp =Rp +dimBp .

Then

Rp = dimZp −dimBp =αp −dimDp−dimBp, 1≤ p ≤ n−1.

Observe that Bp is spanned by the boundaries of elementary chains

∂(1 ·σp+1

i
)=

∑
ηij (p) ·σ

p

j
,

where (ηij (p))= η(p) is the p-th incidence matrix.

Thus, dimBp = rankη(p).
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The Euler-Poincaré Theorem (Conclusion)

Since the number of d i
p+1 is the same as the number of bip,

dimDp+1 = dimBp = rankη(p), 0≤ p ≤ n−1.

Then

Rp = αp −dimDp −dimBp

= αp − rankη(p−1)− rankη(p), 1≤ p ≤ n−1.

Note also that:

R0 = dimZ0−dimB0 =α0− rankη(0);

Rn = dimZn =αn−dimDn =αn− rankη(n−1).

In the alternating sum
∑n

p=0(−1)pRp, all the terms rankη(p) cancel.

So we obtain
∑n

p=0(−1)pRp =
∑n

p=0(−1)pαp .
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The Euler Characteristic

Definition

If K is a complex of dimension n, the number

χ(K )=
n∑

p=0

(−1)pRp

is called the Euler characteristic of K .

Chains, cycles, boundaries, the homology relation, and Betti numbers
were defined by Poincaré in his paper Analysis Situs in 1895.

The proof of the Euler-Poincaré Theorem given is essentially
Poincaré’s original one.

Complexes (in slightly different form) and incidence numbers were
defined in Complément à l’Analysis Situs in 1899.
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Betti Numbers and Topological Invariance

The Betti numbers were named for Enrico Betti (1823-1892).

J. W. Alexander (1888-1971) in 1915 showed that the Betti numbers
are topological invariants.

This means that, if the geometric carriers |K | and |L| are
homeomorphic, then Rp(K )=Rp(L) in each dimension p.

Topological invariance of the homology groups was proved by Oswald
Veblen in 1922.

These results ensure that the homology characters Hp(|K |),Rp(|K |)
and χ(|K |) are well-defined, i.e., independent of the triangulation of
the polyhedron |K |.

The p-th Betti number Rp(K ) of a complex K is the rank of the free
part of the p-th homology group Hp(K ).

The p-th Betti number indicates the number of “p-dimensional holes”
in the polyhedron |K |.
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Rectilinear Polyhedra

Definition

A rectilinear polyhedron in Euclidean 3-space R
3 is a solid bounded by

properly joined convex polygons.

The bounding polygons are called faces.

The intersections of the faces are called edges.

The intersections of the edges are called vertices.

A simple polyhedron is a rectilinear polyhedron whose boundary is
homeomorphic to the 2-sphere S2.
A regular polyhedron is a rectilinear polyhedron whose faces are regular
plane polygons and whose polyhedral angles are congruent.
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Betti Numbers and Euler Characteristic of Sphere

The tetrahedron forms a triangulation of S2.

Using brute force, we may compute

H2 =Z, H1 = 0, H0 =Z.

So the Betti numbers of the 2-sphere S2 are

R0(S
2)= 1, R1(S

2)= 0, R2(S
2)= 1.

Thus, S2 has Euler characteristic

χ(S2)=
2∑

p=0

(−1)pRp(S
2)= 1−0+1= 2.
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Euler’s Theorem

Theorem (Euler’s Theorem)

If S is a simple polyhedron with V vertices, E edges and F faces, then
V −E +F = 2.

S may have some non-triangular faces.

This situation can be dealt with as follows.

Consider a face τ of S having n0 vertices and n1 edges.

Computing vertices − edges + faces gives n0−n1+1 for τ.

Choose a new vertex v in the interior of τ.
Join the new vertex to each of the original vertices
by a line segment as illustrated in the figure.
In the triangulation of τ:

One new vertex and n0 new edges were added;

Face τ is replaced by n0 new faces.
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Euler’s Theorem (Cont’d)

Then

vertices−edges+ faces= (n0+1)− (n1 +n0)+n0 = n0−n1+1.

So the sum V −E +F is not changed in the triangulation process.

Let αi , i = 0,1,2, denote the number of i -simplexes in the
triangulation of S obtained in this way.

BY the preceding argument,

V −E +F =α0−α1+α2.

The Euler-Poincaré Theorem shows that

α0−α1 +α2 =R0(S
2)−R1(S

2)+R2(S
2)= 2.

Hence F −E +F = 2 for any simple polyhedron.
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The Regular Simple Polyhedra

Theorem

There are only five regular, simple polyhedra.

Suppose S is such a polyhedron with V vertices, E edges and F faces.
Denote by:

m the number of edges meeting at each vertex;
n the number of edges of each face.

We have the following:
n≥ 3;
mV = 2E = nF ;
V −E +F = 2.

So we obtain
nF

m
−
nF

2
+F = 2.

Equivalently,
F (2n−mn+2m)= 4m.
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The Regular Simple Polyhedra (Cont’d)

We got F (2n−mn+2m)= 4m.

It must be true that 2n−mn+2m> 0.

Since n≥ 3, this gives

2m> n(m−2)≥ 3(m−2)= 3m−6 ⇒ m< 6.

Thus m can only be 1, 2, 3, 4, or 5.

The three relations

F (2n−mn+2m)= 4m, n≥ 3, m< 6,

produce the following possible values for (m,n,F ):
(a) (3,3,4);
(b) (3,4,6);
(c) (4,3,8);
(d) (3,5,12);
(e) (5,3,20).

For example, m= 4 implies F (8−2n)= 16 implies F = 8,n = 3.
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The Regular Simple Polyhedra (Cont’d)

The five possibilities for (m,n,F ) are realized as follows:

(3,3,4) in the tetrahedron;
(3,4,6) in the cube;
(4,3,8) in the octahedron;
(3,5,12) in the dodecahedron;
(5,3,20) in the icosahedron.
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Subsection 5

Pseudomanifolds and the Homology Groups of Sn
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Manifolds

“Manifolds” can be traced to the work of G. F. B. Riemann
(1826-1866) on differentials and multivalued functions.

A manifold is a generalization of an ordinary surface like a sphere or a
torus and its primary characteristic is its ”local” Euclidean structure.

Definition

An n-dimensional manifold, or n-manifold, is a compact, connected
Hausdorff space each of whose points has a neighborhood homeomorphic
to an open ball in Euclidean n-space R

n.
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Pseudomanifolds

Definition

An n-pseudomanifold is a complex K with the following properties:

(a) Each simplex of K is a face of some n-simplex of K .

(b) Each (n−1)-simplex is a face of exactly two n-simplexes of K .

(c) Given a pair σn
1 and σn

2 of n-simplexes of K , there is a sequence of
n-simplexes beginning with σn

1 and ending with σn
2 , such that any two

successive terms of the sequence have a common (n−1)-face.
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Examples

(a) Consider the complex K consisting of all proper faces of a 3-simplex
〈a0a1a2a3〉.

It is a 2-pseudomanifold.

Moreover, it is a triangulation of the 2-sphere S2.
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Examples (Cont’d)

(b) Consider the triangulation of the projective plane.

It is also a 2-pseudomanifold.
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Examples (Cont’d)

(c) Consider the triangulation of the torus.

It is a 2-pseudomanifold.
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Examples (Cont’d)

(d) The Klein Bottle is constructed from a cylinder by identifying
opposite ends with the orientations of the circles reversed.

Consider a triangulation of the Klein Bottle shown on the left.

It is a 2-pseudomanifold.

The Klein Bottle cannot be embedded in Euclidean 3-space without
self-intersection.

Allowing self-intersection, we get the figure on the right.
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Remarks on Terminology

Each space in the preceding examples is a 2-manifold.

The n-sphere Sn, n≥ 1, is an n-manifold.

This indicates why the unit sphere in R
n+1 is called the “n-sphere”

and not the “(n+1)-sphere”.

The integer n refers to the local dimension as a manifold and not to
the dimension of the containing Euclidean space.

Note that:

Each point of a circle has a neighborhood homeomorphic to an open
interval in R;
Each point of S2 has a neighborhood homeomorphic to an open disk in
R

2;
...
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Manifolds versus Pseudomanifolds

The relation between manifold (a type of topological space) and
pseudomanifold (a type of geometric complex) is as follows.

If X is a triangulable n-manifold, then each triangulation K of X is an
n-pseudomanifold.
The homology groups of the pseudomanifold K reflect the connectivity,
the “holes” and “twisting”, of the associated manifold X .

The computation of homology groups of pseudomanifolds is thus a
worthwhile project.

If X is a space each of whose triangulations is a pseudomanifold, it is
sometimes said that “X is a pseudomanifold”.

A space and a triangulation of the space are different.
So this is an abuse of language.
In some situations, such as in the computation of homology groups, the
distinction between space and complex is not important.
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Number of Simplexes in 2-Pseudomanifolds

Theorem

Let K be a 2-pseudomanifold with α0 vertices, α1 1-simplexes, and α2

2-simplexes. Then:

(a) 3α2 = 2α1;

(b) α1 = 3(α0−χ(K ));

(c) α0 ≥
1
2
(7+

√
49−24χ(K )).

Each 1-simplex is a face of exactly two 2-simplexes.

Each 2-simplex has exactly 3 1-simplexes as 1-faces.

It follows that 3α2 = 2α1. Hence α2 =
2
3
α1.

The Euler-Poincaré Theorem gives α0−α1+α2 = χ(K ).

Then α0−α1 +
2
3
α1 =χ(K ). Hence, α1 = 3(α0−χ(K )).
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Number of Simplexes in 2-Pseudomanifolds (Part (c))

To prove (c), note that α0 ≥ 4 and that α1 ≤
(α0

2

)
=

1
2
α0(α0−1).

By elementary algebra,

3α2 = 2α1

6α2 = 4α1

2α1 = 6α1−6α2

α0(α0−1) ≥ 6α1−6α2

α2
0−α0 −6α0 ≥ 6α1−6α2 −6α0 =−6χ(K )

4α2
0−28α0+49 ≥ 49−24χ(K )

(2α0 −7)2 ≥ 49−24χ(K )

α0 ≥
1
2
(7+

√
49−24χ(K )).
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Example (The 2-Sphere)

We use the theorem to determine the 2-pseudomanifold triangulation
of a polyhedron having the minimum number of simplexes in each
dimension.

Example: Consider the 2-sphere S2. We know χ(S2)= 2.

So we get
α0 ≥

1
2
(7+

√
49−24χ(K ))= 4;

α1 = 3(α0−χ(K ))≥ 3(4−2)= 6;
α2 =

2
3
α1 ≥

2
3
·6= 4.

Hence any triangulation of S2 must have at
least four vertices, at least six 1-simplexes,
and at least four 2-simplexes.

This minimal triangulation is achieved by the
boundary complex of a tetrahedron (proper
faces of a 3-simplex).
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Example: The Projective Plane

Consider the projective plane P , a 2-manifold.

We know that H2(P)= {0}, H1(P)∼=Z2.

Since P is connected, by a preceding theorem, H0(P)∼=Z.

So we have R2(P)=R1(P)= 0, R0(P)= 1. Hence, χ(P)= 1.

This gives
α0 ≥

1
2
(7+

√
49−24χ(P))= 6;

α1 ≥ 3(6−1)= 15;

α2 ≥
2
3
·5= 10.

Thus, any triangulation of P must have at
least six vertices, fifteen 1-simplexes, and ten
2-simplexes.

So the triangulation shown is minimal.
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Orientable and Nonorientable Pseudomanifolds

Definition

Let K be an n-pseudomanifold. For each (n−1)-simplex σn−1 of K , let σn
1

and σn
2 denote the two n-simplexes of which σn−1 is a face. An orientation

for K having the property

[σn
1 ,σn−1]=−[σn

2 ,σn−1],

for each (n−1)-simplex σn−1 of K is a coherent orientation.
An n-pseudomanifold is orientable if it can be assigned a coherent
orientation. Otherwise, it is nonorientable.

Orientability is a topological property of the underlying polyhedron |K |

and is not dependent on the particular triangulation K .

We shall assume this statement without proof.
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Examples of Orientable and Nonorientable Pseudomanifolds

Orientable pseudomanifolds include:

The 2-sphere;
The torus.

Nonorientable pseudomanifolds include:

The projective plane;
The Klein Bottle.
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Orienting the n-Skeleton of an (n+1)-Simplex

Let σn+1 be an (n+1)-simplex in R
n+1, n≥ 1.

Denote by K the n-skeleton of the closure of σn+1.

Then K is an n-pseudomanifold.

Moreover, it is a triangulation of the n-sphere Sn.

The following notation is used only in this example.

For an integer j , with 0≤ j ≤ n+1, let

σj = 〈a0 . . . âj . . .an+1〉,

where the symbol âj indicates that the vertex aj is deleted.
The positively oriented simplex +σj has:

The given ordering when j is even;
The opposite ordering (an odd permutation of the given ordering)
when j is odd.

The (n−1)-simplex +σij =+〈a0 . . . âi . . . âj . . .an+1〉 is then a face of the
two n-simplexes σi and σj .
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Orienting the n-Skeleton of an (n+1)-Simplex (Cont’d)

Claim: This orientation for the n-simplexes and (n−1)-simplexes gives
[σi ,σij ]=−[σj ,σij ] in each case.

Let us look at two examples regarding 〈a0a1a2a3a4a5〉 in R
6.

We calculate the following:

[σ1,σ14]= sgn〈a4a0a2a3a5〉 = −1= +〈a0a2a3a4a5〉;

[σ4,σ14]= sgn〈a1a0a2a3a5〉 = −1= −〈a0a1a2a3a5〉;

[σ2,σ24]= sgn〈a4a0a1a3a5〉 = −1= −〈a0a1a3a4a5〉;

[σ4,σ24]= sgn〈a2a0a1a3a5〉 = +1= +〈a0a1a2a3a5〉.

We may check that

[σ1,σ14] = −[σ4,σ14];

[σ2,σ24] = −[σ4,σ24].
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Orienting the n-Skeleton of an (n+1)-Simplex (Cont’d)

It follows that any n-chain of the form

∑

σi∈K

g ·σi , g an integer,

is an n-cycle.

Furthermore, suppose z =
∑

σi∈K g ·σi is an n-cycle.

Then
0= ∂(z)=

∑

σij∈K

hij ·σij ,

where hij is either gi −gj or gj −gi .

Hence, z is an n-cycle if and only if all gi are equal.

Thus Zn(S
n) ∈Z.

Since Bn(S
n)= {0}, we get Hn(S

n)∼=Z.
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The Homology Groups of Sn

Theorem

The homology groups of the n-sphere, n≥ 1, are

Hp(S
n)∼=

{
Z, if p = 0 or p = n

{0}, if 0< p < n

Since Sn is connected, a preceding theorem implies that H0(S
n)∼=Z.

The above example shows that Hn(S
n)∼=Z.

In handling the case 0< p < n, we use the following notation.
Suppose +σp = 〈a0 . . .ap〉 and v is a vertex for which the set
{v ,a0, . . . ,ap} is geometrically independent.
Then vσp denotes the positively oriented (p+1)-simplex +〈va0 . . .ap〉.
For c =

∑
gi ·σ

p

i
a p-chain, vc denotes the (p+1)-chain vc =

∑
gi ·vσ

p

i
.

Then
∂(1 ·vσp)= 1 ·σp

−v∂(1 ·σp).
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The Homology Groups of Sn (Cont’d)

Let v be a vertex in the triangulation of Sn of the preceding example.

Any p-simplex containing v can be expressed in the form vσp−1.

So any p-cycle z can be written

z =
∑

gi ·σ
p

i
+

∑
hj ·vσ

p−1

j
,

where:
Simplexes in the second sum have v as a vertex;
Simplexes in the first sum do not have v as a vertex.

Since z is a p-cycle,

0 = ∂(z)

= ∂(
∑
gi ·σ

p

i
)+∂(

∑
hj ·vσ

p−1

j
)

= ∂(
∑
gi ·σ

p

i
)+

∑
hj ·σ

p−1

j
−v(∂

∑
hj ·σ

p−1

j
).
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The Homology Groups of Sn (Cont’d)

We found

∂(
∑

gi ·σ
p

i
)+

∑
hj ·σ

p−1

j
−v(∂

∑
hj ·σ

p−1

j
)= 0.

Thus,
∂(

∑
hj ·σ

p−1

j
) = 0;

∂(
∑
gi ·σ

p

i
) = −

∑
hj ·σ

p−1

j
.

This gives

∂(
∑
gi ·vσ

p

i
) =

∑
gi ·σ

p

i
−v∂(

∑
gi ·σ

p

i
)

=
∑
gi ·σ

p

i
+v

∑
hj ·σ

p−1

j

= z .

Thus, every p-cycle on Sn is a boundary.

It follows that Hp(S
n)= {0}, for 0< p < n.
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Orientability and Homology Groups

Theorem

An n-pseudomanifold K is orientable if and only if the n-th homology
group Hn(K ) is not the trivial group.

Assume first that K is orientable.

Assign K a coherent orientation.

If the (n−1)-simplex σn−1 is a face of σn
1 and σn

2 , we have

[σn
1 ,σn−1]=−[σn

2 ,σn−1].

So any n-chain of the form c =
∑

σn∈K g ·σn is an n-cycle.

Thus, Zn(K ) 6= {0}.

On the other hand, Bn(K )= {0}.

Therefore, Hn(K ) 6= {0}.
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Orientability and Homology Groups (Cont’d)

Claim: If Hn(K ) 6= {0}, then K is orientable.

Suppose that z =
∑

σn
i
∈K gi ·σ

n
i

is a nonzero n-cycle.

By the definition of a pseudomanifold:

Each pair of n-simplexes in K can be joined by a sequence of
n-simplexes;
Each (n−1)-simplex is a face of exactly two n-simplexes.

So any two coefficients in z can differ only in sign.

That is to say, gi =±g0 if ∂(z)= 0.

By reorienting σn
i

if gi =−g0, we obtain an n-cycle

∑

σn
i
∈K

g0 ·σ
n
i = g0



 ∑

σn
i
∈K

1 ·σn
i



 .

It follows that
∑

1 ·σn
i

is an n-cycle.
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Orientability and Homology Groups (Cont’d)

We showed that
∑

1 ·σn
i

is an n-cycle.

This means that each (n−1)-simplex must have:

Positive incidence number with one of the n-simplexes of which it is a
face;
Negative incidence number with the other of the n-simplexes of which
it is a face.

We conclude that K is orientable.

Corollary

An n-pseudomanifold L is nonorientable if and only if Hn(L)= {0}.
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Closed Surfaces

A 2-manifold is called a closed surface.

The topological power of the homology groups is demonstrated by the
following classification theorem for closed surfaces.

Theorem

Two closed surfaces are homeomorphic if and only if they have the same
Betti numbers in corresponding dimensions.

The proof of the theorem is omitted.

The proof requires a lengthy digression into the theory of closed
surfaces.

The theorem preceded Poincaré’s formalization of algebraic topology.

It was a motivating force behind Poincaré’s work.

George Voutsadakis (LSSU) Algebraic Topology May 2024 88 / 88


	Outline
	Simplicial Homology Groups
	Chains, Cycles, Boundaries and Homology Groups
	Examples of Homology Groups
	The Structure of Homology Groups
	The Euler-Poincaré Theorem
	Pseudomanifolds and the Homology Groups of Sn


