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The Fundamental Group Introduction

Idea of Homotopic Paths

Recall that two closed paths in a space are homotopic provided that
each of them can be “continuously deformed into the other”.

Example:

Paths C2 and C3 are homotopic to each
other.

C1 is homotopic to a constant path.

Path C1 is not homotopic to either C2

or C3, since neither C2 nor C3 can be
pulled across the hole that they enclose.

The basic idea is a special case of the homotopy relation for
continuous functions considered in the proof of the Simplicial
Approximation Theorem.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Subsection 2
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The Fundamental Group Homotopic Paths and the Fundamental Group

Paths, Equivalence of Paths and Homotopies

Definition

A path in a topological space X is a continuous function α from the closed
unit interval I = [0,1] into X . The points α(0) and α(1) are the initial

point and terminal point of α, respectively.
Paths α and β with common initial point α(0)=β(0) and common
terminal point α(1)=β(1) are equivalent provided that there is a
continuous function H : I × I →X , such that

H(t ,0)=α(t), H(t ,1)=β(t), t ∈ I ,

H(0,s)=α(0)=β(0), H(1,s)=α(1)=β(1), s ∈ I .

The function H is called a homotopy between α and β. For a given value
of s, the restriction of H to I × {s} is called the s-level of the homotopy and
is denoted H(·,s).
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The Fundamental Group Homotopic Paths and the Fundamental Group

Loops, Equivalence of Loops

Definition

A loop in a topological space X is a path α in X with α(0)=α(1).
The common value of the initial point and terminal point is referred to as
the base point of the loop.
Two loops α and β having common base point x0 are equivalent or
homotopic modulo x0 provided that they are equivalent as paths.
In other words, α and β are homotopic modulo x0 (denoted α∼x0 β)
provided that there is a homotopy H : I × I →X , such that

H(·,0)=α, H(·,1)=β, H(0,s)=H(1,s)= x0, s ∈ I .

Since H(0,s) and H(1,s) always have value x0 regardless of the choice of
s in [0,1], it is sometimes said that the base point “stays fixed throughout
the homotopy”.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Example

The paths α and β are equivalent.

A homotopy H demonstrating the equivalence is defined by

H(t ,s)= sβ(t)+ (1− s)α(t), (s ,t) ∈ I × I .

The homotopy “pulls α across to β” leaving the end points fixed.

If the space had a “hole” between the ranges of α and β, then the
paths would not be equivalent.
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The Fundamental Group Homotopic Paths and the Fundamental Group

The Continuity Lemma

The Continuity Lemma

Let X be a topological space with closed subsets A and B , such that
A∪B =X . Let f :A→Y and g :B →Y be continuous maps to a space Y ,
such that

f (x)= g(x), for all x in A∩B .

Then the map h :X →Y defined by

h(x)=

{
f (x), if x ∈A

g(x), if x ∈B

is continuous.

If x 6∈A, then x ∈Ac , which is an open subset of B .

Therefore, by the continuity of g , h is continuous.

The case x 6∈B is treated similarly.
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The Fundamental Group Homotopic Paths and the Fundamental Group

The Continuity Lemma

In the remaining case x ∈A∩B .

Let ε> 0.

By continuity of f , there exists δ1 > 0, such that, for all y ∈X ∩A,

|x −y | < δ1 implies |f (x)− f (y)| < ε;

By continuity of g , there exists δ2 > 0, such that, for all y ∈X ∩A,

|x −y | < δ2 implies |g(x)−g(y)| < ε.

It follows that, for all y ∈X ,

|x −y | <min{δ1,δ2} implies |h(x)−h(y)| < ǫ.

This shows that h is continuous.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Equivalence of Paths and of Loops are Equivalences

Theorem

(a) Equivalence of paths is an equivalence relation on the set of paths in a
space X .

(b) Equivalence of loops is an equivalence relation on the set of loops in X

with base point x0.

We only prove Part (b).

Consider the set of loops in X having base point x0.

Any such loop α is equivalent to itself under the homotopy

F (t ,s)=α(t), (t ,s) ∈ I × I .

Thus, the relation ∼x0 is reflexive.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Equivalence of Paths and of Loops (Cont’d)

Suppose α∼x0 β.

Then there is a homotopy H : I × I →X satisfying

H(·,0)= a, H(·,1)=β, H(0,s)=H(1,s)= x0, s ∈ I .

Consider the homotopy

H(t ,s)=H(t ,1− s), (s ,t) ∈ I × I .

It shows that β∼x0 α.

Hence, that equivalence of loops is a symmetric relation.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Equivalence of Paths and of Loops (Cont’d)

Suppose that for loops α,β, and γ, we have α∼x0 β and β∼x0 γ.

Then there are homotopies H and K , such that

H(·,0)=α, H(·,1)=β, H(0,s)=H(1,s)= x0, s ∈ I ,

K (·,0)=β, K (·,1)= γ, K (0,s)=K (1,s)= x0, s ∈ I .

Consider the homotopy L between α and γ defined by

L(ts)=

{
H(t ,2s), if 0≤ s ≤ 1

2

K (t ,2s −1), if 1
2
≤ s ≤ 1

The continuity of L follows from the Continuity Lemma with
A= I × [0,

1
2
] and B = I × [1

2
,1].

This shows that α∼x0 γ.

So ∼x0 is an equivalence relation.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Path Products

Definition

If α and β are paths in X with α(1)=β(0), then the path product α⋆β

is the path defined by

α⋆β(t)=

{
α(2t), if 0≤ t ≤ 1

2

β(2t −1), if 1
2
≤ t ≤ 1

The continuity of α⋆β is a consequence of the Continuity Lemma.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Visualizing Path Products

Thinking of t as time, a path α in X can be visualized by the motion
of a point beginning at α(0) and tracing a continuous route to α(1).

A product α⋆β is then visualized as follows.

The moving point begins at α(0) and follows path α at twice the
normal rate, arriving at α(1) when t = 1

2 ;
The point then follows path β at twice the normal rate and arrives at
β(1) at time t = 1.

The condition α(1)=β(0) is required for the product of paths in order
to avoid discontinuities.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Congruence Property of Loop Homotopy

We focus on products of loops α and β having common base point x0.

In this case the product α⋆β is also a loop with base point x0.

Lemma

Suppose that loops α,α′,β,β′ in a space X all have base point x0 and
satisfy the relations α∼x0 α

′ and β∼x0 β
′. Then the products α⋆β and

α′
⋆β′ are homotopic modulo x0.

Since α∼x0 α
′ and β∼x0 β

′, there are homotopies H and K , such that

H(·,0)=α, H(·,1)=α′, H(0,s)=H(1,s)= x0;

K (·,0)=β, K (·,1)=β′, K (0,s)=K (1,s)= x0.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Congruence Property of Loop Homotopy (Cont’d)

Define the homotopy

L(t ,s)=

{
H(2t ,s), if 0≤ t ≤ 1

2
,

K (2t −1,s), if 1
2
≤ t ≤ 1.

Then L(t ,s) is continuous.

Moreover, we have

L(·,0) =

{
α(2t), if 0≤ t ≤ 1

2

β(2t −1), if 1
2
≤ t ≤ 1

}
= (α⋆β)(t);

L(·,1) =

{
α′(2t), if 0≤ t ≤ 1

2

β′(2t −1), if 1
2
≤ t ≤ 1

}
= (α′

⋆β′)(t);

L(0,s) = H(0,s)= x0;

L(1,s) = K (1,s)= x0.

So L is the required homotopy from α⋆β to α′
⋆β′.
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The Fundamental Group Homotopic Paths and the Fundamental Group

The Fundamental Group

Definition

Consider the family of loops in X with base point x0.
Homotopy modulo x0 is an equivalence relation on this family.
Therefore, it partitions it into disjoint equivalence classes.
We denote by

[α]

the equivalence class determined by loop α.
The class [α] is called the homotopy class of α.
The set of such homotopy classes is denoted by

π1(X ,x0).
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The Fundamental Group Homotopic Paths and the Fundamental Group

The Fundamental Group (Cont’d)

Definition (Cont’d)

If [α] and [β] belong to π1(X ,x0), then the product [α]◦ [β] is defined by

[α]◦ [β]= [α⋆β].

Thus the product of two homotopy classes is the class determined by the
path product of their representative elements.
By the preceding lemma, the product ◦ is well-defined on π1(X ,x0).
The set π1(X ,x0) with the ◦ operation is called the fundamental group of
X at x0, the first homotopy group of X at x0, or the Poincaré group of
X at x0.
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The Fundamental Group Homotopic Paths and the Fundamental Group

The Group Property of π1(X ,x0)

Theorem

The set π1(X ,x0) is a group under the ◦ operation.

To show that π1(X ,x0) is a group, we must show that:

There is a loop c for which [c] is an identity element;
Each homotopy class [α] has an inverse [α]= [α]−1;
The multiplication ◦ is associative.

We prove each of these as a separate lemma.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Lemma A: Existence of Identity

Lemma A

π1(X ,x0) has an identity element [c], where c is the constant loop whose
only value is x0.

The constant loop c is defined by c(t)= x0, t ∈ I .

Let α be a loop in X based at x0.

Then

c ⋆α(t)=

{
x0, if 0≤ t ≤ 1

2
,

α(2t −1), if 1
2
≤ t ≤ 1.

We must show that [c ⋆α]= [α].

We need a homotopy H : I × I →X , such that

H(·,0)= c ⋆α, H(·,1)=α, H(0,s)=H(1,s)= x0, s ∈ I .
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The Fundamental Group Homotopic Paths and the Fundamental Group

Lemma A: Existence of Identity (Cont’d)

We define

H(s ,t)=

{
x0, if 0≤ t ≤ 1−s

2
,

α
(
2t+s−1
s+1

)
, if 1−s

2
≤ t ≤ 1.

Then we have

H(t ,0)=

{
x0, if 0≤ t ≤ 1

2

α(2t −1), if 1
2
≤ t ≤ 1

}
= c ⋆α(t);

H(t ,1)=

{
x0, if 0≤ t ≤ 0
α(t), if 0≤ t ≤ 1

}
=α(t);

H(0,s)= x0, H(1,s)=α

(
2+ s −1

s +1

)
=α(1)= x0, s ∈ I .

Continuity of H is assured by the Continuity Lemma, since 2t+s−1
s+1

is a
continuous function of (t ,s) and the two parts of the definition of H
agree when t = 1−s

2
.
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The Fundamental Group Homotopic Paths and the Fundamental Group

The Homotopy H(s ,t) of Lemma A

The homotopy H was obtained from the diagram as follows.

We wish to define a homotopy H on the unit
square which agrees with c⋆α on the bottom
and with α on the top.
We define the s-level H(·,s) to have value x0

at each point (t ,s) from t = 0 out to the di-
agonal line L.
Then H(·,s) follows the route of α.
Since L has equation t = 1−s

2
and the “time” remaining when t = 1−s

2
is

1− 1−s
2

= 1+s
2

, the desired effect is accomplished by defining

H(t ,s)=

{
x0, if 0≤ t ≤ 1−s

2
,

α((t − 1−s
2
) 2
1+s ), if 1−s

2
≤ t ≤ 1.

This expression reduces to the formula for H given previously.
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The Fundamental Group Homotopic Paths and the Fundamental Group

The Right Identity Property

We have now proved the following.

If [α] ∈π1(X ,x0), then

[c]◦ [α]= [c ⋆α]= [α].

So [c] is a left identity for π1(X ,x0).

To show that [c] is also a right identity, we must show [α⋆c]= [α].

This is accomplished by the homotopy

H ′(t ,s)=

{
α( 2t

s+1
), if 0≤ t ≤ s+1

2
,

x0, if s+1
2

≤ t ≤ 1.

The details are similar.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Existence of Inverses

Lemma B

For each homotopy class [α] in π1(X ,x0), the inverse of [α] with respect to
the operation ◦ and the identity element [c] is the class [α], where

α(t)=α(1− t), t ∈ I .

The path α(t)=α(1− t) is called the reverse of the path α.

It begins at α(1)= x0 and traces the route of α backwards.

We must prove that

[α]◦ [α]= [α]◦ [α]= [c].

Note that [α]◦ [α]= [α∗α], where

α∗α(t)=

{
α(2t), if 0≤ t ≤ 1

2
,

α(2−2t), if 1
2
≤ t ≤ 1.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Existence of Inverses (Cont’d)

The path α∗α follows α and then the reverse of α back to x0.

We shall define a homotopy K for which the s-level K (·,s):

Follows route α out to α(s);
Then retraces its steps back to x0.

This is accomplished by defining

K (t ,s)=

{
α(2ts), if 0≤ t ≤ 1

2
,

α(2s −2ts), if 1
2
≤ t ≤ 1.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Existence of Inverses (Cont’d)

Observe that:

K (·,0)=α(0)= c ;
K (·,1)=α∗α;
K (0,s)=K (1,s)= x0, for s ∈ I .

Moreover, K is continuous.

Thus,
[α]◦ [α]= [α∗α]= [c].

So [α] is a right inverse for [α].

Since the reverse of the reverse of α is α (i.e., α=α), the same proof
shows that

[α]◦ [α]= [α]◦
[
α

]
= [c].

Hence [α]= [α]−1 is a two-sided inverse for [α].
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The Fundamental Group Homotopic Paths and the Fundamental Group

Associativity of Multiplication

Lemma C

The multiplication ◦ is associative.

Let [α], [β] and [γ] be members of π1(X ,x0).

We must prove that ([α]◦ [β])◦ [γ]= [α]◦ ([β]◦ [γ]).

Equivalently, we must show

[(α⋆β)⋆γ]= [α⋆ (β⋆γ)].

A little arithmetic shows that

(α∗β)∗γ(t)=





α(4t), if 0≤ t ≤ 1
4

,

β(4t −1), if 1
4
≤ t ≤ 1

2
,

γ(2t −1), if 1
2
≤ t ≤ 1.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Associativity of Multiplication (Cont’d)

Similarly,

α∗ (β∗γ)(t)=





α(2t), if 0≤ t ≤ 1
2

,

β(4t −2), if 1
2
≤

3
4

,

γ(4t −3), if 3
4
≤ t ≤ 1.

We use the figure on the right.
We obtain the homotopy

L(t ,s)=





α( 4t
s+1

), if 0≤ t ≤ s+1
4

,

β(4t −1− s), if s+1
4

≤ t ≤ s+2
4

,

γ(4t−2−s
2−s ), if s+2

4
≤ t ≤ 1.

One can verify that L is a homotopy modulo x0 between (α⋆β)⋆γ

and α⋆ (β⋆γ).
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The Fundamental Group Homotopic Paths and the Fundamental Group

Path Connected Spaces

Definition

A space X is path connected if each pair of points in X can be joined by
a path. In other words, if x0 and x1 are points in X , then there is a path in
X with initial point x0 and terminal point x1.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Path Connected Spaces and Fundamental Groups

Theorem

If a space X is path connected and x0, x1 are points in X , then the
fundamental groups π1(X ,x0) and π1(X ,x1) are isomorphic.

Let ρ : I →X be a path such that ρ(0)= x0, ρ(1)= x1.

Let α be a loop based at x0.

Then (ρ⋆α)⋆ρ is a loop based at x1, where ρ is the reverse of ρ,

ρ(t)= ρ(1− t), 0≤ t ≤ 1.

We define a function P :π1(X ,x0)→π1(X ,x1) by

P([α])= [(ρ⋆α)⋆ρ], [α] ∈π1(X ,x0).

The image of [α] is independent of the choice of path in [α].

So P is well defined.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Path Connected Spaces (Obsevations)

We make some observations before continuing with the proof.

Lemma B with minor modifications shows that [ρ⋆ρ] and [ρ⋆ρ] are
the identity elements of π1(X ,x0) and π1(X ,x1), respectively.

Lemma C can be easily modified to show that for any paths α,β,γ for
which (α⋆β)⋆γ and α⋆ (β⋆γ) are defined, the indicated triple
products are equivalent.

Thus, in [(ρ⋆α)⋆ρ] we may ignore the inner parentheses and simply
write [ρ⋆α⋆ρ], since the equivalence class is the same regardless of
the way in which the terms of the product are associated.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Path Connected Spaces (Homomorphism)

Consider [α], [β] in π1(X ,x0).

Then we have

P([α]◦ [β]) = P([α⋆β])

= [ρ⋆α⋆β⋆ρ]

= [ρ⋆α⋆ρ⋆ρ⋆β⋆ρ]

= [ρ⋆α⋆ρ]◦ [ρ⋆β⋆ρ]

= P([α])◦P([β]).

Thus, P is a homomorphism.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Path Connected Spaces (Isomorphism)

The inverse of P is the function Q :π1(X ,x1)→π1(X ,x0) defined by

Q([σ])= [ρ⋆σ⋆ρ], [σ] ∈π1(X ,x1).

To see this, observe that for [α] ∈π1(X ,x0),

QP([α]) = Q([ρ⋆α⋆ρ])

= [ρ⋆ρ⋆α⋆ρ⋆ρ]

= [ρ⋆ρ]◦ [α]◦ [ρ⋆ρ]

= [α].

Thus, QP is the identity map on π1(X ,x0).

By symmetry, PQ must be the identity map on π1(X ,x1).

Thus the indicated fundamental groups are isomorphic.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Remarks on Fundamental Groups and Base Points

By the preceding theorem, when X is path connected, the same
fundamental group results regardless of the choice of the base point.

So, when X is path connected, we refer to “the fundamental group of
X ”, written π1(X ).

This applies primarily to the process of computing the fundamental
group of a given space.

Note, however, that the theorem does not guarantee that the
isomorphism between π1(X ,x0) and π1(X ,x1) is unique.

Quite often different paths lead to different isomorphisms.

For this reason, there are many applications of the fundamental group
in which the specification of a base point is important.

E.g., when comparing fundamental groups of two spaces X and Y on
the basis of a continuous map f :X →Y , it is usually necessary to
specify a base point for each space.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Simply Connected Spaces

Definition

A path connected space X is simply connected provided that π1(X ) is
the trivial group.

Theorem

Every contractible space is simply connected.

Let X be a contractible space.

There is a point x0 in X and a homotopy H :X × I →X , such that

H(x ,0)= x , H(x ,1)= x0, x ∈X .
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The Fundamental Group Homotopic Paths and the Fundamental Group

Simply Connected Spaces (A Special Case)

Claim: X is path connected.

Consider a point x ∈X .

Define the function
αx =H(x , ·) : I →X .

αx is a path from H(x ,0)= x to H(x ,1)= x0.

Thus, any two points x and y are joined by the path

αx ⋆αy ,

where αy is the reverse of αy .
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The Fundamental Group Homotopic Paths and the Fundamental Group

Simply Connected Spaces (A Special Case)

Assume for a moment that H has the additional property

H(x0,s)= x0, s ∈ I .

For [α] ∈π1(X ,x0), define a homotopy h : I × I →X by

h(t ,s)=H(α(t),s).

Then
h(t ,0)=α(t), h(t ,1)= x0, t ∈ I ,

h(0,s)= h(1,s)= x0, s ∈ I .

The extra assumption H(x0,s)= x0 gives h(0,s)= h(1,s)= x0.

Thus, h demonstrates that α is equivalent to c , the constant loop
whose only value is x0.

So [α]= [c] and π1(X ,x0) consists only of an identity element.
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The Fundamental Group Homotopic Paths and the Fundamental Group

Simply Connected Spaces (General Case)

The process needs tweaking if the path H(x0, ·) : I →X is not constant.

We must modify each level of the homotopy h to produce at each
level a loop based at x0.

The procedure is illustrated in the figure.

The details are omitted.
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The Fundamental Group The Covering Homotopy Property for S1

Subsection 3

The Covering Homotopy Property for S1
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The Fundamental Group The Covering Homotopy Property for S1

The Function exp

We determine the fundamental group of the circle.

We consider the unit circle S1 as a subset of the complex plane.

Consider R2 as the set of all complex numbers x = x1+ ix2.

We refer several times to the function p :R→ S1, defined by

p(t)= exp(2πit), t ∈R.

Here exp denotes the exponential function on the complex plane.

If t is in the set R of real numbers, then

exp(2πit)= cos(2πt)+ i sin(2πt).

p maps each integer n in R to 1 in S1.
p wraps each interval [n,n+1] exactly once around S1 in the
counterclockwise direction.
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The Fundamental Group The Covering Homotopy Property for S1

Covering Paths and Homotopies

Definition

Let σ : I → S1 be a path. Then a path σ̃ : I →R, such that

pσ̃=σ

is called a covering path of σ or a lifting of σ to the real line R.
Let F : I × I → S1 be a homotopy. Then a homotopy F̃ : I × I →R, such that

pF̃ = F

is called a covering homotopy or a lifting of F .
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The Fundamental Group The Covering Homotopy Property for S1

The Covering Path Property

Theorem (The Covering Path Property)

If σ : I → S1 is a path in S1 with initial point 1, then there is a unique
covering path σ̃ : I →R with initial point 0.

Consider the following open arcs in S1.

U1 begins at 1 and extends counterclockwise to −i ;
U2 begins at −1 and extends counterclockwise to i .
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The Covering Path Property (Cont’d)

By definition, U1 and U2 are open sets in S1.

Moreover, U1∪U2 = S1.

We also have

p−1(U1)=
∞⋃

n=−∞

(
n,n+

3

4

)
, p−1(U2)=

∞⋃
n=−∞

(
n−

1

2
,n+

1

4

)
.

Note that p maps:

Each interval (n,n+ 3
4 ) homeomorphically onto U1;

Each interval (n− 1
2 ,n+ 1

4 ) homeomorphically onto U2.

George Voutsadakis (LSSU) Algebraic Topology May 2024 44 / 78



The Fundamental Group The Covering Homotopy Property for S1

Covering Path Property (Idea of Proof)

We summarize the idea of the proof of the Covering Path Property.

We subdivide the range of the path α into sections so that each
section is contained either in U1 or in U2.

Suppose a particular section is contained in U1.
Then we choose one of the intervals V = (n,n+ 3

4 ).
We consider the restriction p |V of p to this interval.
We compose (p |V )−1 with this section of the path.
This “lifts” the section to a section of a path in R.
The same method applies to sections lying in U2.

For continuity, we must ensure that the initial point of a given lifted
section is the terminal point of the lifted section that precedes it.
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Covering Paths Property (Proof)

The following is applied inductively.

Consider the open cover {σ−1(U1),σ−1(U2)} of I .

Let ǫ be a Lebesgue number for the open cover.

Choose a sequence

0= t0 < t1 < t2 < ·· · < tn = 1

of numbers in I , with each successive pair differing by less than ǫ.

Then the image σ([ti ,ti+1]) of any subinterval [ti ,ti+1], 0≤ i ≤ n−1,
must be contained in either U1 or U2

Note that σ(t0)=σ(0)= 1 6∈U1.

So σ([t0,t1]) must be contained in U2.

Let V1 = (−1
2

,
1
4
).

Define σ̃ on [t0,t1] by

σ̃(t)= (p |V1
)−1σ(t).
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The Fundamental Group The Covering Homotopy Property for S1

Covering Paths Property (Proof)

Suppose that σ has been defined on the interval [t0,tk ].

Then σ([tk ,tk+1])⊆U , where U is either U1 or U2.

Let Vk+1 be the component of p−1(U) to which σ̃(tk) belongs.

Note that Vk+1 is one of the intervals (n,n+ 3
4
) or (n− 1

2
,n+ 1

4
).

Then p |Vk+1
is a homeomorphism.

The desired extension of σ̃ to [tk ,tk+1] is obtained by defining

σ̃(t)= (p |Vk+1
)−1σ(t), t ∈ [tk ,tk+1].

The continuity of σ̃ is guaranteed by the Continuity Lemma since the
lifted sections agree at the endpoints tk .

This extends σ̃ to [t0,tn]= I .
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The Fundamental Group The Covering Homotopy Property for S1

Covering Paths Property (Uniqueness)

To prove that σ̃ is the only such covering path, suppose that σ′ also
satisfies the required properties pσ′ =σ and σ′(0)= 0.

Then the path σ̃−σ′ has initial point 0 and, for all t ∈ I ,

p(σ̃(t)−σ′(t))=
pσ̃(t)

pσ′(t)
=

σ(t)

σ(t)
= 1.

So σ̃−σ′ is a covering path of the constant path with value is 1.

But p maps only integers to 1.

So σ̃−σ′ must have only integral values.

Since I is connected, σ̃−σ′ can have only one integral value.

This one value must be the initial value, 0.

Therefore, σ̃−σ′ = 0. So σ̃=σ′.

So the required lifting σ̃ is unique.
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The Generalized Covering Path Property

Corollary (The Generalized Covering Path Property)

Let σ be a path in S1 and r is a real number such that p(r)=σ(0). Then
there is a unique covering path σ̃ of σ with initial point r .

The path σ
σ(0)

is a path in S1 with initial point
σ(0)
σ(0)

= 1.

Therefore, it has a unique covering path η with initial point 0.

Consider the path σ̃ : I →R defined by

σ̃(t)= r +η(t), t ∈ I .

It is the required covering path of σ with initial point r .

The uniqueness of σ̃ follows from that of η.

George Voutsadakis (LSSU) Algebraic Topology May 2024 49 / 78
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The Covering Homotopy Property

Theorem (The Covering Homotopy Property)

Let F : I × I → S1 be a homotopy such that F (0,0)= 1. Then there is a
unique covering homotopy F̃ : I × I →R, such that F (0,0)= 0.

The proof is similar to that of the Covering Path Property.

We use the same open sets U1,U2 in S1.

By a Lebesgue number argument, there must exist numbers

0= t0 < t1 < ·· · < tn = 1, 0= s0 < s1 < ·· · < sm = 1,

such that F maps any [ti ,ti+1]× [sk ,sk+1] into either U1 or U2.

Since F (0,0)= 1 6∈U1, F ([t0,t1]× [s0,s1]) must be contained in U2.

Let V1 = (−1
2

,
1
4
).

Define F̃ on [t0,t1]× [s0,s1] by

F̃ (t ,s)= (p |V1
)−1F (t ,s).
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The Covering Homotopy Property (Existence)

Extend the definition of F̃ over the rectangles [t1,ti+1]× [s0,s1] in
succession as in the proof of the Covering Path Property.

Take care that, at each step, the definitions agree on common edges
of adjacent rectangles.

This will define F̃ on I × [s0,s1].

Proceeding inductively, suppose that F̃
has been defined on

(I × [s0,sk ])∪ ([t0,ti ]× [sk ,sk+1]).

We wish to extend the domain to include
[ti ,ti+1]× [sk ,sk+1], as shown.
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The Fundamental Group The Covering Homotopy Property for S1

The Covering Homotopy Property (Existence Cont’d)

Let
A= {(x ,y) ∈ [ti ,ti+1]× [sk ,sk+1] : x = ti or y = sk }

be the boundary of the present domain of F with [ti ,ti+1]× [sk ,sk+1].

Now, F ([ti ,ti+1]× [sk ,sk+1]) is contained in either U1 or U2.

Denote this containing set by U .

Let V be the component of p−1(U) which contains F̃ (A).

Define F̃ on [ti ,ti+1]× [sk ,sk+1] by

F̃ (t ,s)= (p |V )
−1F (t ,s).

The continuity of F̃ follows from the Continuity Lemma since the old
and new definitions of F̃ agree on the closed set A.

This induction extends the domain of F̃ to [t0,tn]× [s0,sm]= I × I .
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The Covering Homotopy Property (Uniqueness)

F̃ is the only covering homotopy of F with F̃ (0,0)= 0.

Suppose that F ′ is another one.

Then the homotopy F̃ −F ′ has the properties

(F̃ −F ′)(0,0)= F̃ (0,0)−F ′(0,0)= 0

and, for all (t ,s) in I × I ,

p(F̃ −F ′)(t ,s)=
pF̃ (t ,s)

pF ′(t ,s)
=
F (t ,s)

F (t ,s)
= 1.

Thus, as in the case of covering paths, F̃ −F ′ can have only one
integral value, namely 0.

Then F̃ = F ′ and the covering homotopy is unique.
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The Fundamental Group The Covering Homotopy Property for S1

Degree of a Loop

Definition

Let α be a loop in S1 with base point 1.
By the Covering Path Property, there is exactly one covering path

α̃

of α with initial point 0. We have

1=α(1)= pα̃(1)= exp(2πi α̃(1)).

So α̃(1) must be an integer.
This integer is called the degree of the loop α.
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The Fundamental Group The Covering Homotopy Property for S1

Equivalent Loops

Theorem

Two loops α and β in S1 with base point 1 are equivalent if and only if
they have the same degree.

Let α̃ and β̃ denote the covering paths of α and β, respectively,
having initial point 0 in R.

Suppose that α and β have the same degree so that α̃(1)= β̃(1).

Define a homotopy H : I × I →R by

H(t ,s)= (1− s)α̃(t)+ sβ̃(t), (t ,s) ∈ I × I .

Then H demonstrates the equivalence of α̃ and β̃ as paths in R.

Note that H(1,s) is the common degree of α and β for each s in I .

The homotopy pH : I × I → S1 shows the equivalence of α and β as
loops in S1.
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The Fundamental Group The Covering Homotopy Property for S1

Equivalent Loops (Cont’d)

Suppose, next, that α and β are equivalent loops in S1.

Let K : I × I → S1 be a homotopy such that

K (·,0)=α, K (·,1)=β, K (0,s)=K (1,s)= 1, s ∈ I .

By the Covering Homotopy Property, there is a covering homotopy
K̃ : I × I →R, such that K̃ (0,0)= 0, pK̃ =K . Then, for all s ∈ I ,

pK̃(0,s)=K (0,s)= 1.

So K̃ (0,s) must be an integer for each value of s.

Since I is connected, K̃ (0, ·) must have only the value K̃ (0,0)= 0.

A similar argument shows that K̃ (1, ·) is also a constant function.
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The Fundamental Group The Covering Homotopy Property for S1

Equivalent Loops (Cont’d)

We have

pK̃(·,0)=K (·,0)=α;
pK̃(·,1)=K (·,1)=β.

Hence, K̃ (·,0)= α̃ and K̃ (·,1)= β̃ are the unique covering paths of α
and β, respectively, with initial point 0.

It follows that

degreeα= α̃(1)= K̃ (1,0)= K̃ (1,1)= β̃(1)= degreeβ.

So α and β must have the same degree.
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The Fundamental Group The Covering Homotopy Property for S1

The Fundamental Group π1(S
1)

Corollary

The fundamental group π1(S
1) is isomorphic to the group Z of integers

under addition.

Consider π1(S
1,1).

Define a function deg :π1(S
1,1)→Z by deg[α]= degreeα.

By the preceding theorem, deg is well-defined and one-to-one.

We show that deg maps π1(S
1,1) onto Z.

Let n be an integer.

The loop γ in S1 defined by

γ(t)= exp(2πint)

is covered by the path t 7→ nt, t ∈ I .

Therefore, it has degree n. Thus, deg[γ]= n.
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The Fundamental Group The Covering Homotopy Property for S1

The Fundamental Group π1(S
1) (Cont’d)

Suppose now that [α] and [β] are in π1(S
1,1). We must show that

deg([α]◦ [β])= deg[α]+deg[β].

Let α̃, β̃ be the unique covering paths of α, β which begin at 0.

The path f : I →R defined by

f (t)=

{
α̃(2t), if 0≤ t ≤ 1

2
,

α̃(1)+ β̃(2t −1), if 1
2
≤ t ≤ 1,

is the covering path of α⋆β with initial point 0. Thus

degree(α⋆β)= f (1)= α̃(1)+ β̃(1)= degreeα+degreeβ.

Then
deg([α]◦ [β]) = degree(α⋆β)

= degreeα+degreeβ
= deg[α]+deg[β].
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The Fundamental Group Examples of Fundamental Groups

Subsection 4

Examples of Fundamental Groups
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The Fundamental Group Examples of Fundamental Groups

Deformation Retracts

Definition

Let X be a space and A a subspace of X .
The subspace A is a deformation retract of X if there exists a homotopy
H :X × I →X , such that

H(x ,0)= x , H(x ,1) ∈A, x ∈X ,

H(a,t)= a, a ∈A, t ∈ I .

The homotopy H is called a deformation retraction.
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The Fundamental Group Examples of Fundamental Groups

Deformation Retracts and Fundamental Groups

Theorem

Let A is a deformation retract of a space X and x0 is a point of A. Then
π1(X ,x0) is isomorphic to π1(A,x0).

Let H :X × I →X be a deformation retraction of X onto A.

Consider a loop α in X with base point x0.

Then
H(α(·),1)

is a loop in A with base point x0.

We, therefore, define h :π1(X ,x0)→π1(A,x0) by

h([α])= [H(α(·),1)].
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The Fundamental Group Examples of Fundamental Groups

Deformation Retracts and Fundamental Groups (Cont’d)

For [a], [β] in π1(X ,x0),

h([α]◦ [β]) = h([α⋆β])
= [H(α⋆β(·),1)]
= [H(α(·),1)⋆H(β(·),1)]
= h([α])◦h([β]).

So h is a homomorphism.

Now H(α(·),1) is equivalent to H(α(·),0)= a as loops in X .

Therefore, h is one-to-one.

Suppose, next, that [γ] is in π1(A,x0).

Then γ determines a homotopy class (still called [γ]) in π1(A,x0).

Since H leaves each point of A fixed, then

h([γ])=H(γ(·),1)= [γ].

So h maps π1(X ,x0) onto π1(A,x0). Thus, h is an isomorphism.
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The Fundamental Group Examples of Fundamental Groups

Fundamental Group of the Punctured Plane

Consider the punctured plane
R

2\{p} consisting of all points in
R

2 except a particular point p.
Let A be a circle with center p.
Let x ∈R2\{p}.

The half line from p through x intersects A at a point r(x).

This function r is clearly a retraction of R2\{p} onto A.

Define a homotopy H : (R2\{p})× I →R
2\{p} by

H(x ,t)= tr(x)+ (1− t)x , x ∈R
2

\{p}, t ∈ I .

We can show that H is a deformation retraction.

So A is a deformation retract of R2\{p}.

It follows that π1(R
2\{p})∼=π1(A)∼=Z.
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The Fundamental Group Examples of Fundamental Groups

Examples

Example: Consider an annulus X in the plane.

Both the inner and outer circles of X are deformation retracts.

So π1(X ) is the group of integers.

Example: Each of the following spaces is contractible.

(a) A single point;
(b) An interval on the real line;
(c) The real line;
(d) Euclidean n-space R

n;
(e) Any convex set in R

n.

It follows that each of these spaces has fundamental group {0}.
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The Fundamental Group Examples of Fundamental Groups

Fundamental Groups and Product Spaces

Theorem

Let X and Y be spaces with points x0 in X and y0 in Y . Then

π1(X ×Y ,(x0,y0))∼=π1(X ,x0)⊕π1(Y ,y0).

Let p1 and p2 denote the projections of the product space X ×Y on X

and Y , respectively:

p1(x ,y)= x , p2(x ,y)= y , (x ,y) ∈X ×Y .

Any loop α in X ×Y based at (x0,y0) determines loops

α1 = p1α, α2 = p2α

in X and Y based at x0 and y0, respectively.
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The Fundamental Group Examples of Fundamental Groups

Fundamental Groups and Product Spaces (Cont’d)

Conversely, consider a pair of loops

α1 and α2

in X and Y based at x0 and y0, respectively.

Such a pair determines a loop

α= (α1,α2)

in X ×Y based at (x0,y0).

The function h :π1(X ×Y ,(x0,y0))→ π1(X ,x0)⊕π1(Y ,y0) defined by

h([α])= ([α1], [α2]), [α] ∈π1(X ×Y ,(x0,y0)),

is the required isomorphism.
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The Fundamental Group Examples of Fundamental Groups

Examples

Example: The torus T is homeomorphic to the product S1×S1.

Hence
π1(T )∼=π1(S

1)⊕π1(S
1)∼=Z⊕Z.

Example: An n-dimensional torus T n is the product of n unit circles.
Hence, π1(T

n) is isomorphic to the direct sum of n copies of the
group of integers.

Example: A closed cylinder C is the product of a circle S1 and a
closed interval [a,b]. Thus,

π1(C )∼=π1(S
1)⊕π1([a,b])∼=Z⊕ {0} ∼=Z.
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The Fundamental Group Examples of Fundamental Groups

Connectivity

Theorem

Let X be a space for which there is an open cover {Vi } of X such that:

(a)
⋂
Vi 6= ;;

(b) Each Vi is simply connected;

(c) For i 6= j , Vi ∩Vj is path connected.

Then X is simply connected.

By hypothesis:

Each of the open sets Vi is path connected;
Their intersection is not empty.

It follows easily that X is path connected.

Let x0 be a point in
⋂
Vi .

We must show that π1(X ,x0) is the trivial group.
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The Fundamental Group Examples of Fundamental Groups

Connectivity (Cont’d)

Let [α] be a member of π1(X ,x0).

Then α : I →X is a continuous map.

So the set of all inverse images

{α−1(Vi)}

is an open cover of the unit interval I .

Since I is compact, this open cover has a Lebesgue number ǫ.

Thus, there is a partition

0= t0 < t1 < t2 < ·· · < tn = 1

of I , such that if 0≤ j ≤ n−1, α([tj ,tj+1]) is a subset of some Vi .

Indeed, we need only require that successive terms of the partition
differ by less than ǫ.
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The Fundamental Group Examples of Fundamental Groups

Connectivity (Cont’d)

We alter the notation of the open cover {Vi }, if necessary, so that

α([tj ,tj+1])⊆Vj , 0≤ j ≤ n−1.

Let, for s ∈ I ,

αj(s)=α((1− s)tj + stj+1).

We have a sequence {αj }
n−1
j=0

of

paths in X , such that:

αj (I ) is a subset of the simply connected set Vj ;
[α]= [α0⋆α1⋆ · · ·⋆αn−1].

But Vj−1∩Vj is path connected. So there is a path ρj from x0 to
α(tj), 1≤ j ≤ n−1, lying entirely in Vj−1∩Vj (note that α(tj) is the
terminal point of αj−1 and the initial point of αj ).
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The Fundamental Group Examples of Fundamental Groups

Connectivity (Conclusion)

The product ρj ⋆ρj of ρj is equivalent to the constant loop at x0.

Thus,

[α] = [α0 ⋆ρ1⋆ρ1⋆α1⋆ρ2⋆ρ2⋆α2⋆ · · ·⋆ρn−1⋆ρn−1⋆αn−1]
= [α0 ⋆ρ1]◦ [ρ1⋆α1⋆ρ2]◦ · · ·

◦ [ρn−1⋆αn−2⋆ρn−1]◦ [ρn−1⋆αn−1].

The term determined by αj in this product is the homotopy class of a
loop lying in the simply connected set Vj .

Hence, each term of the product represents the identity class.

So [α] must be the identity class as well.

Thus, π1(X )= {0}, and X is simply connected.
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The Fundamental Group Examples of Fundamental Groups

Example

Claim: The space Sn,n> 1, has an open cover with two members
satisfying the requirements of the theorem.

It follows that
π1(S

n)= {0}, for n> 1.
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Subsection 5

The Relation Between H1(K ) and π1(|K |)
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On the Relation Between H1(K ) and π1(|K |)

The fundamental group is defined for every topological space.

We have defined homology groups for polyhedra.

Suppose |K | is a polyhedron with triangulation K .

We ask how the groups H1(K ) and π1(|K |) are related.

For our examples thus far (interval, circle, torus, cylinder, annulus and
n-sphere),

π1(|K |)∼=H1(K ).

However, this is not true in general.

The precise answer is given by the following theorem.

Only an outline of the proof is given.
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The Relation Between H1(K ) and π1(|K |)

Theorem

Let K be a connected complex. Then H1(K ) is isomorphic to the quotient
group π1(|K |)/F , where F is the commutator subgroup of π1(|K |). Thus
whenever π1(|K |) is abelian, π1(|K |) and H1(K ) are isomorphic.

Choose a vertex v of K as the base point for the fundamental group.

Let σi be an oriented 1-simplex of K .

Let αi denote a linear homeomorphism from [0,1] onto σi .

The αi are called elementary edge paths.

An edge loop is a product of elementary edge paths with v as initial
point and terminal point.

Note that an edge loop α1⋆α2⋆ · · ·⋆αn corresponds in a natural way
to a 1-cycle 1 ·σ1+1 ·σ2+·· ·+1 ·σn.
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The Fundamental Group The Relation Between H1(K ) and π1(|K |)

The Relation Between H1(K ) and π1(|K |) (Cont’d)

Omitting lengthy details, the following hold.

(a) If an edge loop is equivalent to the constant loop at v , then the
corresponding 1-cycle is a boundary.

(b) If two edge loops are equivalent, then their corresponding 1-cycles are
homologous.

(c) Each loop in |K | with base point v is equivalent to an edge loop.

A homomorphism f :π1(|K |,v)→H1(K ) may be defined as follows.

Let [α] ∈π1(|K |,v).
Let α̂=α1⋆α2⋆ · · ·⋆αn be an edge loop equivalent to α.
Define the value f ([α]) to be the homology class determined by the
1-cycle which corresponds to α̂.

Then f is a homomorphism from π1(|K |,v) onto H1(K ).

Moreover, its kernel is the commutator subgroup F .

It follows, by the First Homomorphism Theorem, that the quotient
group π1(|K |,v)/F is isomorphic to H1(K ).
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Comments

The fundamental group was defined by Poincaré in Analysis Situs.

The relation between homology and homotopy given in the theorem
was known to him.

Poincaré did not prove the relation, but he stated in Analysis Situs
that “fundamental equivalence” of paths in the homotopy sense
corresponded precisely to homological equivalence of 1-chains except
for commutativity.

Since the commutator subgroup F of a group G is the smallest
subgroup for which G/F is abelian, it is sometimes said that

H1(K ) is “π1(|K |) made abelian”.

George Voutsadakis (LSSU) Algebraic Topology May 2024 78 / 78


	Outline
	The Fundamental Group
	Introduction
	Homotopic Paths and the Fundamental Group
	The Covering Homotopy Property for S1
	Examples of Fundamental Groups
	The Relation Between H1(K) and 1(|K|)


