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Covering Spaces The Definition and Some Examples

Local Path Connectivity

Recall that a space X is path connected provided that each pair of
points in X can be joined by a path in X .

A space that satisfies this property locally is called “ locally path

connected”.

Definition

A topological space X is locally path connected means that X has a
basis of path connected open sets.
In other words, if x ∈X and O is an open set containing x , then there
exists an open set U containing x and contained in O such that U is path
connected.
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Covering Spaces The Definition and Some Examples

Path Components

Definition

A maximal path connected subset of a space X is called a path

component.
Thus, A is a path component of X means that A is path connected and is
not a proper subset of any path connected subset of X .
The path components of a subset B of X are the path components of B
in its subspace topology.

All spaces considered in this set are assumed path connected and
locally path connected unless stated otherwise.
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Covering Spaces The Definition and Some Examples

Covering Spaces

Definition

Let E and B be spaces and p :E →B a continuous map.
The pair (E ,p) is a covering space of B if, for each point x in B , there is
a path connected open set U ⊆B , such that x ∈U and p maps each path
component of p−1(U) homeomorphically onto U .
Such an open set U is called an admissible neighborhood or an
elementary neighborhood.
The space B is the base space and p is a covering projection.

In cases where the covering projection is clearly understood, one
sometimes refers to E as the covering space.

We avoid ambiguity by referring to the covering space as (E ,p).
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Covering Spaces The Definition and Some Examples

Example

Consider the map p :R→ S1 from the real line to the unit circle

p(t)= e2πit
= cos(2πt)+ i sin(2πt), t ∈R.

Then p is a covering projection.

Any proper open interval or arc on S1 can serve as an elementary
neighborhood.

For the particular point 1
in S1, let U denote the
right hand open interval
on S1 from −i to i .

Then

p−1(U)=
∞⋃

n=−∞

(
n−

1

4
,n+

1

4

)
.

The path components of p−1(U) are the real intervals (n− 1
4

,n+ 1
4
).

p maps each of these homeomorphically onto U .
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Covering Spaces The Definition and Some Examples

Example

For any positive integer n, let qn : S
1 → S1 be the map defined by

qn(z)= zn, z ∈ S1
,

where zn is the n-th power of the complex number z .

Then (S1,qn) is a covering space of S1.

In polar coordinates, the action of qn is described by

qn takes any point (1,θ) to (1,nθ).

Let U be an open interval on S1 subtended by an angle θ, 0≤ θ ≤ 2π,
and containing a point x . Then p−1(U) consists of n open intervals
each determining an angle θ

n and each containing one n-th root of x .

These n intervals are the path components of p−1(U).

Each is mapped by p homeomorphically onto U .

Thus, any proper open interval in S1 is an admissible neighborhood.
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Covering Spaces The Definition and Some Examples

Example

Consider a space X .

Recall that, according to our general assumption, X must be path
connected and locally path connected.

It follows that the identity map

i :X →X

is a covering projection.

So (X , i) is a covering space of X .
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Covering Spaces The Definition and Some Examples

Example

Let P denote the projective plane.

Consider the natural map

p : S2
→P

which identifies each pair of antipodal or diametrically opposite points.

We show the existence of admissible neighborhoods.

Let w be a point in P which is the image of two antipodal points x
and −x .

Let O be a path connected open set in S2 containing x such that O
does not contain any pair of antipodal points.

E.g., a small disc centered at x will do nicely.
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Covering Spaces The Definition and Some Examples

Example (Cont’d)

Then p(O) is an open set containing w .

Moreover, p−1p(O) has path components O and the set of points
antipodal to points in O.

Note that p maps each of these path components homeomorphically
onto p(O).

So p(O) is an admissible neighborhood.

Thus, (S2,p) is a covering space of P .
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Covering Spaces The Definition and Some Examples

Example

Consider the map r :R2 → S1×S1 from the plane to the torus defined
by

r(t1,t2)= (e2πit1 ,e2πit2 ), (t1,t2) ∈R
2

.

Then (R2,r) is a covering space of S1×S1.

This example is essentially a generalization of the covering projection
p :R→ S1 of a previous example.

For any point (z1,z2) in S1×S1, let U denote a small open rectangle
formed by the product of two proper open intervals in S1 containing
z1 and z2, respectively.

Then U is an admissible neighborhood whose inverse image consists of
a countably infinite family of open rectangles in the plane.
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Covering Spaces The Definition and Some Examples

Example

Let Q denote an infinite spiral.
Let q :Q → S1 denote the projection shown.
Each point on the spiral is projected to the point
on the circle directly beneath it.
We can show that (Q ,q) is a covering space of S1.

It is important that the spiral be infinite.
A finite spiral projected in the same manner is
not a covering space.
The points p(x0) and p(x1) lying under the ends
of the spiral do not have admissible neighbor-
hoods.
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Covering Spaces The Definition and Some Examples

Example

The following is not an example of a covering space.

Let R be a rectangle which is mapped by the projection onto the first
coordinate to an interval A.

Let U be an open interval in A.

Then p−1(U) is a strip in R consisting of all points above U .

This strip cannot be mapped homeomorphically onto U .

So this situation does not allow admissible neighborhoods.
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Covering Spaces Basic Properties of Covering Spaces

Subsection 2

Basic Properties of Covering Spaces
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Covering Spaces Basic Properties of Covering Spaces

Characterization of Local Path Connectedness

Lemma

A space X is locally path connected if and only if each path component of
each open subset of X is open.

Suppose X is locally path connected.

Take an open set A and a path component C of A.

We must show that A\C is closed in A.

Take a point x in A\C .

By local path connectedness we can find a path connected
neighborhood N of x .

If x ∈C , then N ⊆C . But N intersects A\C , a contradiction.

So C is open in A. Hence, it is open in X .

The converse follows from the obvious fact that every open set is the
union of its components.
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Covering Spaces Basic Properties of Covering Spaces

Openness of Covering Projections

Theorem

Every covering projection is an open mapping.

Let p :E →B be a covering projection.

We show that for each open set F in E , p(V ) is open in B .

Let x ∈ p(V ).

Let x̃ be a point of F , such that p(x̃)= x .

Let U be an admissible neighborhood for x .

Let W be the path component of p−1(U) which contains x .
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Covering Spaces Basic Properties of Covering Spaces

Openness of Covering Projections (Cont’d)

By hypothesis, E is locally path connected.

So, by the preceding lemma, W is open in E .

Also p maps W homeomorphically onto U .

So p maps the open set W ∩V to an open subset p(W ∩V ) in B .

Thus, x ∈ p(W ∩V ).

So p(W ∩V ) is an open set contained in p(V ).

Since x was an arbitrary point of p(V ), it follows that p(V ) is a union
of open sets.

Thus, p(V ) is an open set.

So p is an open mapping.
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Covering Spaces Basic Properties of Covering Spaces

Continuous Maps to a Covering Space

Theorem

Let (E ,p) be a covering space of B . Let X be a space and f and g be
continuous maps from X into E for which pf = pg . Then the set of points
at which f and g agree is an open and closed subset of X . (Here, we do
not assume that X is path connected or locally path connected.)

Denote by A the set of points at which f and g agree,

A= {x ∈X : f (x)= g(x)}.

To see that A is open, let x be a member of A.

Let U an admissible neighborhood of pf (x).

Let V be the path component of p−1(U) to which f (x) belongs.

V is an open set in E .

Hence, f −1(V ) and g−1(V ) are open in X .

But f (x) ∈V and f (x)= g(x). So x belongs to f −1(V )∩g−1(V ).
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Covering Spaces Basic Properties of Covering Spaces

Continuous Maps to a Covering Space (Cont’d)

Claim: f −1(V )∩g−1(V ) is a subset of A.

Note that the claim implies that A is open.

Indeed, by the claim, A contains a neighborhood of each of its points.

Let t ∈ f −1(V )∩g−1(V ).

Then f (t) and g(t) are in V .

Moreover, they are mapped by p to the common point pf (t)= pg(t).

But p maps V homeomorphically onto U .

Thus, it must be true that f (t)= g(t).

Then t ∈A.

We conclude that A is an open set.
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Covering Spaces Basic Properties of Covering Spaces

Continuous Maps to a Covering Space (Claim)

Suppose that A is not closed.

Let y be a limit point of A not in A.

Then f (y) 6= g(y).

The point pf (y)= pg(y) has an elementary neighborhood W .

Moreover, f (y) and g(y) must belong to distinct path components V0

and V1 of p−1(W ).

But y belongs to the open set f −1(V0)∩g−1(V0).

So f −1(V0)∩g−1(V1) must contain a point t ∈A.

This is a contradiction, since the point f (t)= g(t) would have to
belong to the disjoint sets V0 and V1.

Thus, A contains all its limit points.

Hence, A is a closed set.
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Covering Spaces Basic Properties of Covering Spaces

Continuous Maps from a Connected to a Covering Space

Corollary

Let (E ,p) be a covering space of B . Let f ,g be continuous maps from a
connected space X into E , such that pf = pg . If f and g agree at a point
of X , then f = g .

In a connected space X , the only sets that are both open and closed
are X and the empty set ;. Thus, for the set A of the theorem,

A=X or A=;.

So f and g must be precisely equal or must disagree at every point.

Note that the corollary requires only that X be connected.

It does not require path connectedness or local path connectedness.
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Covering Spaces Basic Properties of Covering Spaces

Lifting or Covering of a Map

Suppose that spaces E and B are to be compared using a continuous
map p :E →B .

Assume, further that there is given another map f :C →B from a
space C into B .

Then a map f̃ :C →E for which the diagram
on the right is commutative, that is for
which pf̃ = f , is called a lifting or covering

of f .

E

C
f

✲

f̃
✲

B

p

❄

We are interested in lifting two kinds of maps:

Paths;
Homotopies between paths.
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Covering Spaces Basic Properties of Covering Spaces

The Covering Path Property

Definition

Let (E ,p) be a covering space of B , and let α : I →B be a path.
A path α̃ : I →E , such that

pα̃=α,

is called a lifting or covering path of α.
If F : I × I →B is a homotopy, then a homotopy F̃ : I × I →E , such that

pF̃ = F ,

is called a lifting or covering homotopy of F .
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Covering Spaces Basic Properties of Covering Spaces

Covering Paths and Covering Homotopies

Theorem (The Covering Path Property)

Let (E ,p) be a covering space of B . Let α : I →B be a path in B

beginning at a point b0. If e0 is a point in E with p(e0)= b0, then there is
a unique covering path of α beginning at e0.

Basic idea of the proof: Subdivide the range of the path α into
sections so that each section lies in an admissible neighborhood.

If U is one of these admissible neighborhoods, then p maps each path
component of p−1(U) homeomorphically onto U .

We can then choose a path component V of p−1(U) and consider the
restriction p |V of p to V , a homeomorphism from V onto U .

Composing with (p |V )
−1 “lifts” one section of α to E .
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Covering Spaces Basic Properties of Covering Spaces

The Covering Path Property (Cont’d)

Let {Uj } be an open cover of B by admissible neighborhoods.

Let ǫ be a Lebesgue number for the open cover {α−1(Uj)} of I .

Choose a sequence
0= t0 < t1 < ·· · < tn−1

of numbers in I with each successive pair differing by less than ǫ.

Then each subinterval [ti ,ti+1], 0≤ i ≤ n−1, is mapped by α into an
admissible neighborhood Ui+1.

First consider α([t0,t1]), which is contained in U1.

Let V1 denote the path component of p−1(U1) to which the desired
initial point e0 belongs.

Then, for t ∈ [t0,t1], define

α̃(t)= (p |V1
)−1α(t).
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Covering Spaces Basic Properties of Covering Spaces

The Covering Path Property (Conclusion)

Suppose now that α̃ has been defined on the interval [t0,tk ].

Then α([tk ,tk+1])⊆Uk+1.

Let Vk+1 be the path component of p−1(Uk+1) to which α̃(tk)
belongs. p |Vk+1

is a homeomorphism.

So the desired extension of α̃ to [tk ,tk+1] is obtained by defining

α̃(t)= (p |Vk+1
)−1α(t), t ∈ [tk ,tk+1].

The continuity of α̃ follows from the Continuity Lemma since the
lifted sections match properly at the end points.

The uniqueness of the covering path α̃ can be proved from the
uniqueness of each lifted section.

However, it is simpler to apply the preceding corollary.

Suppose α′ is another covering path of α with α′(0)= e0.

Then α̃ and α′ agree at 0. Hence, they must be identical.
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Covering Spaces Basic Properties of Covering Spaces

The Covering Homotopy Property

Theorem (The Covering Homotopy Property)

Let (E ,p) be a covering space of B . Let F : I × I →B be a homotopy such
that F (0,0)= b0. If e0 is a point of E with p(e0)= b0, then there is a
unique covering homotopy F̃ : I × I →E , such that F̃ (0,0)= e0.

One can piece together the proof from:

The special case presented in the preceding chapter;
The Covering Path Property for covering spaces.

The proof follows that of the Covering Path Property by subdividing
I × I into rectangles in the way that I was subdivided into intervals.
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Covering Spaces Basic Properties of Covering Spaces

The Monodromy Theorem

Theorem (The Monodromy Theorem)

Let (E ,p) be a covering space of B . Suppose that α̃ and β̃ are paths in E

with common initial point e0. Then α̃ and β̃ are equivalent if and only if
pα̃ and pβ̃ are equivalent paths in B . In particular, if pα̃ and pβ̃ are
equivalent, then α̃ and β̃ must have common terminal point.

If α̃ and β̃ are equivalent by a homotopy G , then the homotopy pG

demonstrates the equivalence of pα̃ and pβ̃.

Conversely, let b0 and b1 denote the common initial point and
common terminal point respectively of pα̃ and pβ̃.

Let H : I × I →B be a homotopy witnessing pα̃∼ pβ̃,

H(·,0)= pα̃, H(·,1)= pβ̃,

H(0,t)= b0, H(1,t)= b1, t ∈ I .
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Covering Spaces Basic Properties of Covering Spaces

The Monodromy Theorem (Cont’d)

By the Covering Homotopy Property, there is a covering homotopy H̃

of H, with H̃(0,0)= e0.

Both α̃ and the initial level H̃(·,0) are covering paths of pα̃, and they
have common value e0 at 0. By the preceding corollary, H̃(·,0)= α̃.

Similarly, we conclude that H̃(·,1)= β̃.

It remains to be seen that H̃(0, ·) and H̃(1, ·) are constant paths.

H̃(0, ·) is a lifting of the constant path H(0, ·), with H̃(0,0)= e0.

The unique lifting of a constant path is obviously a constant path.

So H̃(0, ·) must be the constant path whose only value is e0.

Similarly, H̃(1, ·) must be the constant path whose only value is

α̃(1)= H̃(1,0)= H̃(1,1)= β̃(1).

Thus, H̃ is a homotopy that demonstrates the equivalence of α̃ and β̃.
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Covering Spaces Basic Properties of Covering Spaces

Covering Spaces and Pre-Images of Points

Theorem

Let (E ,p) is a covering space of B . Then all the sets p−1(b), b ∈B , have
the same cardinal number.

Let b0 and b1 be points in B .

We define a one-to-one correspondence between p−1(b0) and p−1(b1).

Let α be a path in B from b0 to b1. Let x ∈ p−1(b0).

Let α̃x denote the unique covering path of α beginning at x .

The terminal point α̃x (1) is a point in p−1(b1).

So, for each x in p−1(b0), set f (x)= α̃x(1), a point in p−1(b1).

By considering the reverse path from b1 to b0, one can define in the
same manner a function g : p−1(b1)→ p−1(b0).

The functions f and g can be shown to be inverses of each other.

So p−1(b0) and p−1(b1) must have the same cardinal number.
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Covering Spaces Basic Properties of Covering Spaces

Number of Sheets of a Covering

We showed that for (E ,p) a covering space of B , all sets

p−1(b), b ∈B ,

have the same cardinal number.

Definition

Let (E ,p) be a covering space of B .
The common cardinal number of the sets p−1(b), b ∈B , is called the
number of sheets of the covering.
A covering of n sheets is called an n-fold covering.
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Covering Spaces Basic Properties of Covering Spaces

Example

Consider the covering projection

p : S2
→P

of the projective plane that identifies each pair of antipodal or
diametrically opposite points.

Now p identifies pairs of antipodal points.

So the number of sheets of this covering is two.

Thus, (S2,p) is referred to as the “double covering” of the projective
plane.
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Covering Spaces Basic Properties of Covering Spaces

Example

Recall the covering projection p :R→ S1, given by

p(t)= e2πit
= cos(2πt)+ sin(2πt), t ∈R.

It maps each integer and only the integers to 1 ∈ S1.

Thus the number of sheets of this covering is countably infinite.
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Covering Spaces Basic Properties of Covering Spaces

Coverings and Homomorphisms of Fundamental Groups

Let (E ,p) be a covering of a space B .

We consider the fundamental groups of E and B .

Choose base points e0 in E and b0 = p(e0) in B .

Suppose α is a loop in E based at e0.

The composition pα is a loop in B with base point b0.

Thus, p induces a function

p∗ :π1(E ,e0)→π1(B ,b0)

defined by
p∗([α])= [pα], [α] ∈π1(E ,e0).

This function p∗ is a group homomorphism.

It is called the homomorphism induced by p.
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Covering Spaces Basic Properties of Covering Spaces

Injectivity of the Homomorphisms of Fundamental Groups

Theorem

Let (E ,p) be a covering space of B . The induced homomorphism

p∗ :π1(E ,e0)→π1(B ,b0)

is one-to-one.

The proof uses the Monodromy Theorem.
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Covering Spaces Classification of Covering Spaces

Subsection 3

Classification of Covering Spaces
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Covering Spaces Classification of Covering Spaces

Homomorphisms of Covering Spaces

Definition

Let (E1,p1) and (E2,p2) be covering spaces of the
same space B . A homomorphism from (E1,p1)
to (E2,p2) is a continuous map h : E1 → E2 for
which p2h= p1.

E1

h
✲ E2

B
✛

p 2
p
1 ✲

A homomorphism h :E1 →E2 of covering spaces which is also a
homeomorphism is called an isomorphism.
If there is an isomorphism from one covering space to another, the two
covering spaces are called isomorphic.

A homomorphism of covering spaces is actually a covering projection.

That is, if h :E1 →E2 is a homomorphism, then (E1,h) is a covering
space of E2.
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Covering Spaces Classification of Covering Spaces

Coverings and Conjugacy Classes of Subgroups

Theorem

Let (E ,p) be a covering space of B . If b0 ∈B , then the groups p∗π1(E ,e),
as e varies over p−1(b0), form a conjugacy class of subgroups of π1(B ,b0).

Recall that subgroups H and K of a group G are conjugate subgroups
if and only if

H = x−1Kx , for some x ∈G .

The theorem then makes two assertions.

(a) For any e0,e1 in p−1(b0), the subgroups p∗π1(E ,e0) and p∗π1(E ,e1)
are conjugate;

(b) Any subgroup of π1(B ,b0) conjugate to p∗π1(E ,e0) must equal
p∗π1(E ,e), for some e in p−1(b0).
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Covering Spaces Classification of Covering Spaces

Coverings and Conjugacy Classes of Subgroups (a)

Claim: For any e0,e1 in p−1(b0), the subgroups p∗π1(E ,e0) and
p∗π1(E ,e1) are conjugate.

Consider two points e0 and e1 in p−1(b0).

Let ρ : I →E be a path from e0 to e1.

By a previous theorem, P :π1(E ,e0)→π1(E ,e1) defined by

P([α])= [ρ⋆α⋆ρ], [α] ∈π1(E ,e0),

is an isomorphism.

In particular, π1(E ,e1)=Pπ1(E ,e0).

So p∗π1(E ,e1)= p∗Pπ1(E ,e0).

It follows from the definition of P , however, that

p∗Pπ1(E ,e0)= [pρ]−1
◦π1(E ,e0)◦ [pρ].

Note that [pρ] is an element of π1(B ,b0).

So p∗π1(E ,e0) and p∗π1(E ,e1) are conjugate subgroups of π1(B ,b0).
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Covering Spaces Classification of Covering Spaces

Coverings and Conjugacy Classes of Subgroups (b)

Claim: Any subgroup of π1(B ,b0) conjugate to p∗π1(E ,e0) must
equal p∗π1(E ,e) for some e in p−1(b0).

Suppose that H is a subgroup conjugate to p∗π1(E ,e0) by some
element [δ] in π1(B ,b0),

H = [δ]−1
◦p∗π1(E ,e0)◦ [δ].

Let δ̃ be the unique covering path of δ beginning at e0.

Then δ̃ has a terminal point e ∈ p−1(b0).

The argument for Part (a) shows that

p∗π1(E ,e)= [pδ̃]−1
◦p∗π1(E ,e0)◦ [pδ̃]= [δ]−1

◦p∗π1(E ,e0)◦ [δ]=H.

Thus, p∗π1(E ,e)=H.

It follows that the set

{p∗π1(E ,e) : e ∈ p−1(b0)}

is precisely a conjugacy class of subgroups of π1(B ,b0).
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Covering Spaces Classification of Covering Spaces

Conjugacy Classes Determined by a Covering Space

Definition

Let (E ,p) be a covering space of B and b0 ∈B .
The conjugacy class of subgroups

{p∗π1(E ,e) : e ∈ p−1(b0)}

is called the conjugacy class determined by the covering space (E ,p).
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Covering Spaces Classification of Covering Spaces

Characterization of Isomorphic Covering Spaces

Theorem

Let B be a space with base point b0. Covering spaces (E1,p1) and (E2,p2)
of B are isomorphic if and only if they determine the same conjugacy class
of subgroups of π1(B ,b0).

We present the “if” part of the proof.

Suppose the conjugacy classes of the covering spaces are identical.

Then there must be points e1 ∈ p
−1
1 (b0) and e2 ∈ p

−1
2 (b0), such that

p1∗π1(E1,e1)= p2∗π1(E2,e2).

We define the covering space isomorphism h :E1 →E2.
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Characterization of Isomorphic Covering Spaces (Cont’d)

We define the covering space isomorphism h :E1 →E2.

Let x ∈ E1. Let α be a path in E1 from e1 to x .

Then p1α is a path in B from b0 to p1(x).

This path has a unique covering path p̃1α in E2 beginning at e2 and
ending at some point y in E2.

We then define h(x)= y .
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Covering Spaces Classification of Covering Spaces

Characterization (h is well-defined)

We show that h is well-defined.

Let β be another path in E1 from e1 to x .

Note that α and β both begin at e1 and terminate at x .

So the product path α⋆β is a loop in E1 based at e1.

Thus,
p1∗([α⋆β])= [p1α⋆p1β] ∈ p1∗π1(E1,e1).

But p1∗π1(E1,e1) and p2∗π1(E2,e2) are equal.

So there is a member [γ] ∈π1(E2,e2), such that

[p1α⋆p1β]= [p2γ].

Thus, the loops p1α⋆p1β and p2γ are equivalent loops in B .

Using the Covering Homotopy Property to lift a homotopy between
p1α⋆p1β and p2γ to E2, we obtain a loop γ′ in E2 based at e2 for
which p2γ

′ = p1α⋆p1β.
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Covering Spaces Classification of Covering Spaces

Characterization (h is well-defined Cont’d)

Divide γ′ into the product of two paths α′ and β
′
as follows:

α′(t)= γ′(t/2), β′(t)= γ′((2− t)/2), t ∈ I .

It is a simple matter to observe that p2α
′ = p1α, p2β

′ = p1β.

But α′ and β′ have initial point e2.

So they are the unique covering paths of p1α and p1β with respect to
the covering (E2,p2). I.e., α′ = p̃1α and β′ = p̃1β.

Then

p̃1α(1)=α′(1)= γ′
(
1

2

)
, p̃1β(1)=β′(1)=γ′

(
1

2

)
.

So the same value h(x)= γ′(1
2
) results regardless of the choice of the

path from e1 to x . This concludes the proof that h is well-defined.
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Characterization (h is continuous)

In showing that h is continuous, we use the fact that the admissible
neighborhoods form a basis for the topology of B .

Let O be an open set in E2 and x a member of h−1(O).

We show there is an open set V in E1, with x ∈V and h(V )⊆O.

By the definition of h, p2h= p1.

Since p2 is an open mapping, p1(x) is in the open set p2(O)⊆B .

The admissible neighborhoods form a basis for B .

So there is an admissible neighborhood U , with p1(x) ∈U ⊆ p2(O).

Let W be the path component of p−1
2 (U) to which h(x) belongs.

Then h(x) belongs to the open set O ′ =O ∩W .

Moreover, the restriction f = p2 |O ′ :O ′ → p2(O
′) is a homeomorphism.

Since p2(O
′) is open in B , p−1

1 p2(O
′) is open in E1.

Let V be a path connected open set in E1 which contains x and is
contained p−1

1 p2(O
′).
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Characterization (h is continuous Cont’d)

Claim: h(V )⊆O.

Let t ∈V . Let:

α be a path in E1 from e1 to x ;
β a path in V from x to t.

Then
h(x)= p̃1α(1), h(t)= ãp1α⋆p1β(1).

Now f = p2 |O ′ is a homeomorphism.

So the covering path of p1α⋆p1β is p̃1α⋆ f −1p1β.

Thus,
h(t)= f −1p1β(1)= f −1p1(t).

But f is a homeomorphism between O ′ and p2(O
′).

So, since p1(t) ∈ p2(O
′), f −1p1(t) ∈O

′.

Since O ′ ⊆O, it follows that h(t) ∈O. Hence, h(V )⊆O.
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Characterization (h has an inverse)

The proof thus far has shown that there is a covering space
homomorphism h from E1 to E2.

By looking at constant paths, it is easy to see that h(e1)= e2.

We must also show the existence of a continuous inverse for h.

The proof thus far has essentially done that.

Reversing the roles of E1 and E2, there must exist a continuous map
g :E2 →E1, such that

p1g = p2, g(e2)= e1.

Consider the composite map gh from E1 to E1,

p1gh = p2h= p1i1,

where i1 is the identity map on E1. Also, gh and i1 agree at e1.

By a previous corollary, gh is the identity map on E1.

By symmetry, hg must be the identity map on E2.

Thus, h is an isomorphism between (E1,p1) and (E2,p2).
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Notation

It is often necessary to make the statement

“f is a function from space X to space Y which maps a particular
point x0 in X to the point y0 in Y ”.

We shall shorten this by referring to f as a function from the “pair”
(X ,x0) to the pair (Y ,y0).

In this case we write
f : (X ,x0)→ (Y ,y0).
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A Lifting Theorem

Minor modifications in the proof of the preceding theorem establish

Theorem

Let E ,B , and X be spaces with base points e0,b0, and x0 respectively, and
suppose that (E ,p) is a covering space of B with p(e0)= b0.

Suppose f : (X ,x0) → (B ,b0) is a continu-
ous map for which f∗π1(X ,x0)⊆ p∗π1(E ,e0).
Then there is a continuous map f̃ : (X ,x0)→
(E ,e0), for which pf̃ = f .

(E ,e0)

(X ,x0)
f
✲

f̃
✲

(B ,b0)

p
❄

The theorem remains valid if the requirement on X is reduced to
connectedness in place of path connected and locally path connected.
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Example

In all our examples of covering spaces, the fundamental group of each
base space is abelian.

It follows that each conjugacy class has only one member.

Example: Consider the covering (R,p) over S1.

The fundamental group of R is trivial.

So p1∗π1(R)= {0}.

Thus, the conjugacy class consists of only the trivial subgroup of
π1(S

1).
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Example

The map qn : S
1 → S1 defined by

qn(z)= zn, z ∈ S1
,

wraps S1 around itself n times.

Thus, if [α] ∈π1(S
1), the loop qnα has degree deg(qnα)= ndegα.

Represent π1(S
1) as the group of integers.

Then qn∗π1(S
1,1) is the subgroup of Z, consisting of all multiples of

the integer n.
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Examples

Example: Suppose i :X →X is the identity map.

Then
i∗π1(X )=π1(X ).

So the conjugacy class contains only the fundamental group of X .

Example: Consider the double covering

(S2
,p)

over the projective plane P .

The 2-sphere is simply connected.

So the conjugacy class contains only the trivial subgroup.
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Examples

Example: The plane is simply connected.

So the conjugacy class of (R2,r) over the torus also contains only the
trivial subgroup.

Example: The infinite spiral Q is contractible.

Thus, it has a trivial fundamental group.

Then (Q ,q) determines the conjugacy class of i1(S
1) consisting of

only the trivial subgroup.

This is the conjugacy class determined in the first example.

So, by the last theorem, (Q ,q) and (R,p) are isomorphic covering
spaces of S1.
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Classifying Covering Spaces of S1

The only subgroups of π1(S
1)=Z are the groups Wn of all multiples

of the non-negative integer n.

Since Z is abelian, each singleton set {Wn} is a conjugacy class.

The subgroup W0 = {0} corresponds to the covering space (R,p) of the
first example.
Wn corresponds to the covering (S1,qn), n= 1,2, . . ..

By the classification of covering spaces, any covering space of S1 must
be isomorphic either to (R,p) or to one of the coverings (S1,qn).
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Subsection 4

Universal Covering Spaces
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Covering Spaces Universal Covering Spaces

Universal Covering Spaces

Let B be a topological space.

Then there is always a covering space corresponding to the conjugacy
class of the entire fundamental group.

This is the pair (B , i), where i is the identity map on B .

This covering space is of little interest for obvious reasons.

At the other extreme, the covering space corresponding to the
conjugacy class of the trivial subgroup {0} of π1(B) is the most
interesting.

This covering space, if it exists for a particular base space, is called the
“universal covering space”.

Definition

Let B be a space. A covering space (U ,q) of B for which U is simply
connected is called the universal covering space of B .
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Universality of Universal Covering Spaces

Theorem

(a) Any two universal covering spaces of a base space B are isomorphic.

(b) If (U ,q) is the universal covering space of B and (E ,p) is a covering
space of B , then there is a continuous map r :U →E , such that (U ,r)
is a covering space of E .

(a) This follows immediately from a preceding theorem, since any universal
covering space determines the conjugacy class of the trivial subgroup.

(b) Consider the diagram. Choose base points u0,e0 and
b0 in U ,E and B , respectively, for which q(u0) =

p(e0)= b0. Since π1(U) is trivial, then q∗π1(U ,u0)⊆
p∗π1(E ,e0). The preceding theorem guarantees the
existence of a continuous map q̃ : (U ,q0)→ (E ,e0) for

E

U
q
✲

q̃
✲

B

p
❄

which pq̃ = q. This means that r = q̃ is a covering space
homomorphism. Thus, it is a covering projection for U over E .
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Group of Automorphisms of a Covering Space

Definition

Let (E ,p) be a covering space of B . An isomorphism from (E ,p) to itself is
called an automorphism. Under the operation of composition, the set of
automorphisms of (E ,p) forms a group. This group is called the group of

automorphisms of (E ,p) and is denoted by A(E ,p).

Concerning automorphisms of covering spaces, the following hold.

(a) If f and g are automorphisms of (E ,p), such that

f (x)= g(x), for some x ,

then f = g .
(b) The only member of A(E ,p) that has a fixed point is the identity map.
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Covering Spaces Universal Covering Spaces

Group of Automorphisms and Fundamental Group

Theorem

Let (U ,q) be the universal covering space of B . Then A(U ,q) is
isomorphic to π1(B). Moreover, the order of π1(B) is the number of sheets
of the universal covering space.

Choose a base point b0 in B and a u0 in U , such that q(u0)= b0.

We define a function T :A(U ,q)→π1(B).

For f ∈A(U ,q), f (u0) is a point in U .
Let γ be a path in U from u0 to f (u0).
Since qf = q, f (u0) ∈ q

−1(b0).
Hence, qγ is a loop in B, with base point b0.
We thus define T by T (f )= [qγ], f ∈A(U ,q).

Since U is simply connected, the choice of path γ from u0 to f (u0)
does not affect the homotopy class [qγ]. Thus, T is well-defined.
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Automorphisms and Fundamental Group (Cont’d)

Claim: T is a homomorphism.

Let f1, f2 ∈A(U ,q).

Let γ1,γ2 be paths in U from u0 to f1(u0) and f2(u0), respectively.

Then
T (f1)= [qγ1], T (f2)= [qγ2].

The product path γ1⋆ f1γ2 is a path from u0 to f1f2(u0).

Thus
T (f1f2) = [q(γ1⋆ f1γ2)]

= [qγ1⋆qf1γ2]

= [qγ1⋆qγ2]

= [qγ1]◦ [qγ2]

= T (f1)◦T (f2).

So T is a homomorphism.
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Covering Spaces Universal Covering Spaces

Automorphisms and Fundamental Group (Cont’d)

Claim: T is one-to-one.

Suppose that T (f1)=T (f2).

Thus, the loops qγ1 and qγ2 determined by f1 and f2 are equivalent.

By the Monodromy Theorem,

f1(u0)= f2(u0).

But distinct automorphisms must disagree at every point.

So f1 = f2.
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Covering Spaces Universal Covering Spaces

Automorphisms and Fundamental Group (Cont’d)

Claim: T maps A(U ,q) onto π1(B ,b0).

Let [α] ∈π1(B ,b0).

Let α̃ denote the unique covering path of α beginning at u0.

Since U is simply connected, we can apply a
preceding theorem to the right diagram to obtain
a continuous lifting h of q, such that h(u0) =
α̃(1). By commutativity of the diagram, qh= q.
Therefore, h is a homomorphism.

(U , α̃(1))

(U ,u0)
q
✲

h
✲

(B ,b0)

q
❄

Reversing the roles of α̃(1) and u0 determines a homomorphism k on
(U ,q), such that k(α̃(1))= u0. Then hk and kh are homomorphisms
which agree with the identity at some point. So hk and kh are the
identity map on U . Thus, k = h−1. So h is an automorphism.

It follows that T (h)= [qα̃]= [α].
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Automorphisms and Fundamental Group (Conclusion)

The proof that the order of π1(B) is the number of sheets of the
universal covering space is based on what has already been done.

The fact that T is one-to-one establishes a one-to-one correspondence
between q−1(b0) and a subset of π1(B ,b0).

In proving that T is onto, we showed that every homotopy class [α] in
π1(B ,b0) corresponds to a point α̃(1) in q−1(b0).

Thus, the cardinal number of q−1(b0) equals the order of π1(B).

This cardinal number is exactly the number of sheets of (U ,q).
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Examples

Example: The real line is simply connected.

Consider the covering space (R,p) over S1.

R

S1

p
❄

It is the universal covering space of the unit circle.

Example: The plane is simply connected.

Consider the covering space (R2,r) over the torus T.

R
2

T

r
❄

It is the universal covering space of the torus.
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Projective Plane

Consider the double covering (S2,p) of the projective plane P .

Since π1(S
2)= {0}, (S2,p) is the universal covering space of P .

The theorem allows us to determine π1(P) by determining A(S2,p).

p identifies pairs of antipodal points.

Hence, (S2,p) has two automorphisms.

The identity map;
The antipodal map.

Thus, A(S2,p) is the cyclic group of order two.

It follows that π1(P) is the same group.

Thus, π1(P) is essentially the group of integers modulo 2.
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Projective n-Space

Definition

Let Pn denote the quotient space of the n-sphere Sn obtained by
identifying each pair of antipodal points x and −x .
Then Pn is called projective n-space.

The quotient map p : Sn →Pn is a covering projection.

By the same reasoning applied to the projective plane, the
fundamental group of each projective space Pn, n≥ 2, is isomorphic to
the group of integers modulo 2.

A moment’s reflection will show that P1 is homeomorphic to S1.

Hence, π1(P
1) is not the group of integers mod 2.
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On the Existence of Covering Spaces

The classification of covering spaces shows that two covering spaces of
a space B are isomorphic if and only if they determine the same
conjugacy class of subgroups of π1(B).

This leaves open the question of the existence of covering spaces.

Given a conjugacy class in π1(B), is there a covering space that
determines this class?
In particular, does every space have a universal covering space?

It turns out the answer is negative for both questions.

Moreover, there are known necessary and sufficient conditions for the
existence of a universal covering space.
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Subsection 5

Applications
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Covering Spaces Applications

A Non-Abelian Fundamental Group

Let the base space B consist of two tangent circles

B = {(z ,w) ∈ S1
×S1 : z = 1 or w = 1}.

Let also
E = {(x ,y) ∈R2 : x or y is an integer}.
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A Non-Abelian Fundamental Group (Cont’d)

The map p :E →B defined by

p(x ,y)= (e2πix
,e2πiy ), (x ,y) ∈R2

,

is a covering projection.

The map p maps:

Each horizontal segment of a square once around the left hand circle;
Each vertical segment of a square once around the right hand circle.
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Covering Spaces Applications

A Non-Abelian Fundamental Group (Cont’d)

Let γ denote the loop in E based at (0,0) indicated by the arrows.

Let [α] and [β] denote generators of the fundamental groups of the
left and right circles of B , respectively.

Then [γ] is not the identity of π1(E ).

Since p∗ is one-to-one, p∗([γ])= [α]◦ [β]◦ [α]−1 ◦ [β]−1 is not the
identity in π1(B).

But, if π1(B) were abelian, the commutator [α]◦ [β]◦ [α]−1 ◦ [β]−1

would be the identity element of π1(B).

Thus, π1(B) is not abelian.
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The Borsuk-Ulam Theorem

Theorem (The Borsuk-Ulam Theorem)

There is no continuous map f : Sn → Sn−1 for which

f (−x)=−f (x), for all x ∈ Sn, n ≥ 1.

By the theorem, there is no continuous map from Sn to a sphere of
lower dimension which maps antipodal points to antipodal points.

Such a map would be said to “preserve antipodal points” and would be
called “antipode preserving”.

Note that S0 is a discrete space of two points and, therefore, not
connected.

So the result is clear for the case n = 1.
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The Borsuk-Ulam Theorem (The Case n= 2)

We prove the case n= 2 by contradiction.

Let f :S2 → S1 be continuous, with f (−x)=−f (x), for all x ∈ S2.

Consider the diagram, where (S2,p) and (S1,q)
denote the double coverings of the projective
spaces P2 and P1. p−1 is not single valued.
Since f preserves antipodal points, h = qfp−1 :
P2 →P1 is well-defined and continuous.
Moreover, the diagram is commutative.

S2 f
✲ S1

P2

p
❄

h

✲ P1

q
❄

Now π1(P
2) is cyclic of order 2.

In addition, π1(P
1)∼=π1(S

1) is infinite and cyclic.

Therefore, the induced homomorphism h∗ :π1(P
2)→ π1(P

1) must be
trivial.
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The Borsuk-Ulam Theorem (The Case n= 2 Cont’d)

Let y0 be a point of S2. Let b0 = qf (y0) be the
base point of P1. Suppose α is a path in S2

from y0 to −y0. Then qf α is a loop in P1. This
loop is not equivalent to the constant loop c at
b0 for the following reason:

S2 f
✲ S1

P2

p
❄

h

✲ P1

q
❄

Suppose qf α∼b0
c . By the Monodromy Theorem, f α is equivalent to

the constant loop based at f (y0). Now f preserves antipodal points.
So f α(1)= f (−y0)= − f (y0). So f α is not a loop. Hence it cannot
possibly be equivalent to a loop. Thus, [qf α] 6= [c].

Now calculate

h∗([pα])= [hpα]= [qfp−1pα]= [qf α].

So h∗([pα]) is not the identity of π1(B ,b0).

It follows that h∗ is not the trivial homomorphism.

This contradiction shows that no such map as f exists.
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A Consequence of the Borsuk-Ulam Theorem

Corollary

Let g :S2 →R
2 be a continuous map, such that

g(−x)=−g(x), for all x in S2.

Then g(x)= 0, for some x in S2.

Suppose on the contrary that g(x) is never 0.

Consider the map f : S2 → S1 defined by

f (x)=
g(x)

‖g(x)‖
, x ∈ S2

.

This map contradicts the Borsuk-Ulam Theorem for n= 2.
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Another Consequence of the Borsuk-Ulam Theorem

Corollary

Let h : S2 →R
2 be a continuous map. Then there is at least one pair x , −x

of antipodal points for which

h(x)= h(−x).

Assume to the contrary that for no x in S2

h(x)= h(−x).

Consider the function g : S2 →R
2 defined by

g(x)= h(x)−h(−x), x ∈ S2
.

This function contradicts the preceding corollary.
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Physical Interpretation of the Last Corollary

The last corollary has an interesting physical interpretation.

Imagine the surface of the earth to be a 2-dimensional sphere.

Suppose that the functions a(x) and t(x) which measure the
atmospheric pressure and temperature at x are continuous.

Then the map h : S2 →R
2 defined by

h(x)= (a(x),t(x)), x ∈ S2
,

is continuous.

The corollary guarantees that there is at least one pair of antipodal
points on the surface of the earth having identical atmospheric
pressures and identical temperatures!
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