Introduction to Algebraic Topology

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

The Higher Homotopy Groups

- Introduction
- Equivalent Definitions of $\pi_n(X, x_0)$
- Basic Properties and Examples
- Homotopy Equivalence
- Homotopy Groups of Spheres
- The Relation Between $H_n(K)$ and $\pi_n(|K|)$

Subsection 1

Introduction

2-Dimensional Loops: 1st Definition

- We consider in an intuitive way the possible methods of defining the second homotopy group $\pi_2(X, x_0)$ of a space X at a point x_0 in X.
- Recall that π₁(X, x₀) is the set of homotopy classes of loops in X based at x₀.
- We would like to define a "2-dimensional loop".
- A "1-dimensional loop" is a continuous map α : I → X for which the boundary points 0 and 1 have image x₀.
- We might then define a 2-dimensional loop to be a continuous map $\beta: I \times I \to X$ from the unit square into X which maps the boundary of the square to x_0 .

2-Dimensional Loops: 2nd Definition

- From a slightly different point of view, we can consider a loop α in X as a continuous map from S¹ to X which takes 1 to x₀.
- This follows from the observation that the quotient space of the unit interval *I* obtained by identifying 0 and 1 to a single point is simply S¹.
- Thus, another possible definition of 2-dimensional loop is a continuous map from the 2-sphere S^2 into X.
- Both of the preceding definitions of 2-dimensional loop generalize to higher dimensions by considering higher dimensional cubes and spheres.

2-Dimensional Loops: 3rd Definition

- There is a third possibility.
- Perhaps a 2-dimensional loop should be a "loop of loops".
- That is to say, perhaps a 2-dimensional loop should be a function β , having domain *I*, such that:
 - Each value $\beta(t)$ is a loop in X;
 - $\beta(0) = \beta(1)$.
- To carry out this idea, we must define a topology on the set Ω(X, x₀) of loops in X with base point x₀.
- Once this topology is determined, one can define $\pi_2(X, x_0)$ to be the fundamental group of $\Omega(X, x_0)$.
- Remarkably, all three approaches lead to the same group $\pi_2(X, x_0)$.

Subsection 2

Equivalent Definitions of $\pi_n(X, x_0)$

The *n*-Cube

• If *n* is a positive integer, the symbol *Iⁿ* denotes the **unit** *n*-**cube**

$$I^{n} = \{t = (t_{1}, t_{2}, \dots, t_{n}) \in \mathbb{R}^{n} : 0 \le t_{i} \le 1, \text{ for each } i\}.$$

• ∂I^n , called the **boundary** of I^n , denotes its point set boundary

$$\partial I^n = \{t = (t_1, t_2, \dots, t_n) \in I^n : \text{some } t_i \text{ is } 0 \text{ or } 1\}.$$

 Note that the boundary symbol ∂ must not be confused with the boundary operator of homology theory.

n-Homotopy Classes (Definition A)

Definition A

Let X be a space and x_0 a point of X.

For a given positive integer *n*, consider the set $F_n(X, x_0)$ of all continuous maps α from the unit *n*-cube I^n into X for which $\alpha(\partial I^n) = x_0$. Define an equivalence relation \sim_{x_0} on $F_n(X, x_0)$ as follows:

For α and β in $F_n(X, x_0)$, α is equivalent modulo x_0 to β , written $\alpha \sim_{x_0} \beta$, if there is a homotopy $H: I^n \times I \to X$, such that

$$\begin{array}{lll} H(t_1,...,t_n,0) &=& \alpha(t_1,...,t_n), \\ H(t_1,...,t_n,1) &=& \beta(t_1,...,t_n), \quad (t_1,...,t_n) \in I^n, \\ H(t_1,...,t_n,s) &=& x_0, \quad (t_1,...,t_n) \in \partial I^n, s \in I. \end{array}$$

n-Homotopy Classes (Definition A Cont'd)

Definition A (Cont'd)

In shorter form the requirements on the homotopy H are

$$H(\cdot, 0) = \alpha, \quad H(\cdot, 1) = \beta,$$
$$H(\partial I^n \times I) = x_0.$$

Under this equivalence relation on $F_n(X, x_0)$ the equivalence class determined by α is denoted $[\alpha]$ and called the **homotopy class of** α **modulo** x_0 or simply the **homotopy class of** α .

The *n*-th Homotopy Group

Definition

Define an operation \star on $F_n(X, x_0)$ as follows:

For α, β in $F_n(X, x_0)$,

$$\alpha \star \beta = \begin{cases} \alpha(2t_1, t_2, \dots, t_n), & \text{if } 0 \le t_1 \le \frac{1}{2} \\ \beta(2t_1 - 1, t_2, \dots, t_n), & \text{if } \frac{1}{2} \le t_1 \le 1 \end{cases}$$

Note that the \star operation is completely determined by the first coordinate of the variable point (t_1, \ldots, t_n) and that the continuity of $\alpha \star \beta$ follows from the Continuity Lemma.

The *n*-th Homotopy Group (Cont'd)

Definition (Cont'd)

The \star operation induces an operation \circ on the set of homotopy classes of $F_n(X, x_0)$:

$$[\alpha] \circ [\beta] = [a \star \beta].$$

With this operation, the set of equivalence classes of $F_n(X, x_0)$ is a group. This group is called the *n*-th homotopy group of X at x_0 and is denoted by $\pi_n(X, x_0)$.

Details Needing Verification

- As in the case of the fundamental group, the definition requires that some details be verified:
 - (1) The relation \sim_{x_0} is an equivalence relation on $F_n(X, x_0)$.
 - (2) The operation \star determines the operation \circ completely.
 - In other words, if $\alpha \sim_{x_0} \alpha'$ and $\beta \sim_{x_0} \beta'$, then $\alpha \star \beta \sim_{x_0} \alpha' \star \beta'$.
 - (3) With the \circ operation, $\pi_n(X, x_0)$ is actually a group.
 - Its identity is the class [c] determined by the constant map $c(I^n) = x_0$.
 - The inverse $[\alpha]^{-1}$ of $[\alpha]$ is the class $[\overline{\alpha}]$, where $\overline{\alpha}$, called the **reverse** of α , is defined by

$$\overline{\alpha}(t_1, t_2, \dots, t_n) = \alpha(1 - t_1, t_2, \dots, t_n), \quad (t_1, t_2, \dots, t_n) \in I^n.$$

- The definition of $\pi_n(X, x_0)$ is completely analogous to that of $\pi_1(X, x_0)$ except for the extra coordinates.
- So the proofs of these facts are similar to those for $\pi_1(X, x_0)$.

n-Homotopy Classes (Definition B)

- The quotient space of I^n obtained by identifying ∂I^n to a point is homeomorphic to the *n*-sphere S^n .
- Assume that the point of identification is the point 1 = (1, 0, ..., 0) of S^n having first coordinate unity and all other coordinates zero.
- Then $\pi_n(X, x_0)$ can be defined in terms of maps from

$$(S^n,1) \to (X,x_0)$$

as detailed in the next slide.

n-Homotopy Classes (Definition B Cont'd)

Definition

For a given positive integer n, consider the set $G_n(X, x_0)$ of all continuous maps α from S^n to X, such that $\alpha(1) = x_0$. Define an equivalence relation on $G_n(X, x_0)$ in the following way:

For α, β in $G_n(X, x_0)$, α is equivalent modulo x_0 to β , written $\alpha \sim_{x_0} \beta$, if there is a homotopy $H: S^n \times I \to X$, such that

$$H(\cdot,0) = \alpha, \quad H(\cdot,1) = \beta,$$

$$H(1,s) = x_0, \quad s \in I.$$

The equivalence class $[\alpha]$ determined by α is called the **homotopy class of** α . The set of homotopy classes is denoted by $\pi_n(X, x_0)$.

Equivalence of Definitions A and B

- Recall the discussion preceding the definition.
- There is a natural one-to-one correspondence between $F_n(X, x_0)$ and $G_n(X, x_0)$ under which a map α in $G_n(X, x_0)$ corresponds to the map

$$\alpha' = \alpha q$$

where q is the map from I^n to S^n which identifies ∂I^n to the point 1.

- Two members α and β in $G_n(X, x_0)$ are equivalent modulo x_0 if and only if their counterparts α' and β' are equivalent in $F_n(X, x_0)$.
- Thus, Definitions A and B give equivalent definitions of the set $\pi_n(X, x_0)$.
- The elements [α] are usually more easily visualized in terms of Definition B.

The Operation \circ in Definition B

- The \circ operation for Definition B is defined in terms of the identification of I^n to S^n .
- Let $\alpha, \beta \in G_n(X, x_0)$.

• The identification map q takes the sets

$$A = \{(t_1, \dots, t_n) \in I^n : t_1 \le \frac{1}{2}\},\$$

$$B = \{(t_1, \dots, t_n) \in I^n : t_1 \ge \frac{1}{2}\}$$

to hemispheres A' and B', respectively, of S^n .

• Their intersection $A' \cap B' = q(A \cap B)$ if homeomorphic to S^{n-1} .

The Operation • in Definition B (Cont'd)

- Imagine that $A' \cap B'$ is identified to the base point 1 by an identification map r.
- The resulting space consists of two *n*-spheres tangent at their common base point.
- The product $\alpha \star \beta$ is now defined by

$$\alpha \star \beta(x) = \begin{cases} \alpha r(x), & \text{if } x \in A' \\ \beta r(x), & \text{if } x \in B' \end{cases}$$

• The group operation \circ is defined by $[\alpha] \circ [\beta] = [\alpha \star \beta]$.

The Compact-Open Topology

Definition

Let F be a collection of continuous functions from a space Y into a space Z. Suppose:

- K is a compact subset of Y;
- U is an open subset of Z.

Define

$$W(K, U) = \{ \alpha \in F : \alpha(K) \subseteq U \}.$$

The family of all such sets W(K, U), as K ranges over the compact sets in Y and U ranges over the open sets in Z, is a subbase for a topology for F. This topology is called the **compact-open topology** for F.

The Compact-Open Topology for $\Omega(X, x_0)$

• Since we shall apply the compact-open topology only to the set of loops in a space X, we repeat the definition for this case.

Definition

Let X be a space and x_0 a point of X. Consider the set $\Omega(X, x_0)$ of all loops in X with base point x_0 . If K is a compact subset of I and U is open in X, let

$$W(K, U) = \{ \alpha \in \Omega(X, x_0) : \alpha(K) \subseteq U \}.$$

The family of all such sets W(K, U), where K is compact in I and U is open in X, is a subbase for a topology for $\Omega(X, x_0)$. This topology is the **compact-open topology** for $\Omega(X, x_0)$. Note that basic open sets in this topology have the form $\bigcap_{i=1}^{r} W(K_i, U_i)$, where K_1, \ldots, K_r are compact sets in I and U_1, \ldots, U_r are open in X. A loop a belongs to this basic open set if and only if $\alpha(K_1) \subseteq U_i$, for each $i = 1, 2, \ldots, r$.

Characterization of the Compact-Open Topology

Theorem

If X is a metric space, the compact-open topology for $\Omega(X, x_0)$ is the same as its topology of uniform convergence.

Let d denote the metric on X.
 Recall that the topology of uniform convergence on Ω(X, x₀) is determined by the metric ρ defined as follows:
 If α and β are in Ω(X, x₀), then ρ(α, β) is the supremum (or least

If α and β are in $\Omega(X, x_0)$, then $\rho(\alpha, \beta)$ is the supremum (or leas upper bound) of the distances from $\alpha(t)$ to $\beta(t)$ for t in I:

 $\rho(\alpha,\beta) = \sup \{ d(\alpha(t),\beta(t)) : t \in I \}.$

Then the topology of uniform convergence has as a basis the set of all spherical neighborhoods

$$S(\alpha, r) = \{\beta \in \Omega(X, x_0) : \rho(\alpha, \beta) < r\},\$$

where $\alpha \in \Omega(X, x_0)$ and r is a positive number.

Characterization of the Compact-Open Topology $(T \subseteq T')$

- Let T denote the compact-open topology on Ω(X,x₀).
 Let T' denote the topology of uniform convergence on Ω(X,x₀).
 We show, first, that T ⊆ T'.
 - Let W(K, U) be a subbasic open set in T, where K is compact in Iand U is open in X. Let $\alpha \in W(K, U)$.
 - The compact set $\alpha(K)$ is contained in U.
 - So, there is a positive number ϵ , such that any point of X at a distance less than ϵ from $\alpha(K)$ is also in U.
 - Consider the basic open set $S(\alpha, \epsilon)$ in T'.
 - If $\beta \in S(\alpha, \epsilon)$, then for each t in K, $d(\alpha(t), \beta(t)) < \epsilon$.
 - Thus, the distance of $\beta(t)$ from a point of $\alpha(K)$ is less than ϵ . Hence, $\beta(t)$ must be in U. Thus, $\beta(K) \subseteq U$. So $\beta \in W(K, U)$. We get $\alpha \in S(\alpha, \epsilon) \subseteq W(K, U)$. So W(K, U) must be open in T'. Then $T \subseteq T'$, since T' contains a subbase for T.

Characterization of the Compact-Open Topology $(T' \subseteq T)$

• We show, next, that $T' \subseteq T$.

Let $S(\gamma, r)$ with center γ and radius r > 0 be a basic open set in T'. To prove that $S(\gamma, r)$ is in T, it is sufficient to find a member of T which contains γ and is contained in $S(\gamma, r)$.

Let $\{U_j\}$ be a cover of X by open sets having diameters less than r. Let η be a Lebesgue number for the open cover $\{\gamma^{-1}(U_j)\}$ of I. Let

$$0 = t_0 < t_1 < \cdots < t_n = 1$$

be a subdivision of I with successive points differing by less than η . Then, for i = 1, 2, ..., n, γ maps each of the compact sets $K_i = [t_{i-1}, t_i]$ into one of the open sets of the cover $\{U_i\}$.

Characterization of the Compact-Open Topology (Cont'd))

• Choose such an open set, say *U_i*, for each *i*. Then

$$\gamma(K_i) \subseteq U_i, \quad i=1,2,\ldots,n.$$

So $\gamma \in \bigcap_{i=1}^{n} W(K_i, U_i)$. The set $\bigcap_{i=1}^{n} W(K_i, U_i)$ is open in T. So it suffices to show that it is contained in $S(\gamma, r)$. Let $\beta \in \bigcap_{i=1}^{n} W(K_i, U_i)$. Then $\rho(\gamma, \beta)$ cannot exceed the maximum of the diameters of U_1, \ldots, U_n . Thus, $\rho(\gamma, \beta) < r$. So $\beta \in S(\gamma, r)$. It follows that $S(\gamma, r)$ is open in T. Now T contains T', since it contains a basis for T'. Since we showed that $T \subseteq T'$ and $T' \subseteq T$, we get T = T'.

n-Homotopy Classes (Definition C)

Definition

Let X be a space with $x_0 \in X$. Consider the set $\Omega(X, x_0)$ of loops in X based at x_0 with the compact-open topology. If $n \ge 2$, the *n*-th homotopy group of X at x_0 is the (n-1)-st homotopy group of $\Omega(X, x_0)$ at c, where c is the constant loop at x_0 . Thus,

$$\pi_{2}(X, x_{0}) = \pi_{1}(\Omega(X, x_{0}), c),$$

$$\vdots$$

$$\pi_{n}(X, x_{0}) = \pi_{n-1}(\Omega(X, x_{0}), c).$$

Comments on the Definitions

- To understand homotopy theory, one must know all three definitions and be able to apply the one that fits best in a given situation.
- Definitions A, B, and C of the higher homotopy groups are all equivalent.
- The operation for Definition B has been designed expressly to show that Definitions A and B describe isomorphic groups.
- We will discuss a comparison of Definitions A with C for n = 2.
- The extension to higher values of *n* involves little more than writing additional coordinates.

Comparison of A with C for n = 2

- Suppose α is a member of $F_2(X, x_0)$. That is:
 - α is a continuous map from the unit square I^2 to X;
 - α takes ∂I^2 to x_0 .

Then α determines a member $\hat{\alpha}$ of $\Omega(\Omega(X, x_0), c)$ defined by

$$\widehat{\alpha}(t_1)(t_2) = \alpha(t_1, t_2), \quad t_1, t_2 \in I.$$

By continuity of α , each $\hat{\alpha}(t_1)$ is continuous from I into X. Now $(t_1, 0)$ and $(t_1, 1)$ are in ∂I^2 . So $\hat{\alpha}(t_1)(0) = \hat{\alpha}(t_1)(1) = x_0$. Thus, $\hat{\alpha}(t_1) \in \Omega(X, x_0)$. Clearly, $\hat{\alpha}(0) = \hat{\alpha}(1)$ is the constant loop c whose only value is x_0 .

Comparison of A with C for n = 2 (Cont'd)

Claim: $\hat{\alpha}$ is continuous as a function from I into $\Omega(X, x_0)$. Let W(K, U) be a subbasic open set in $\Omega(X, x_0)$. As usual, K is compact in I and U is open in X. Let $t_1 \in \hat{\alpha}^{-1}(W(K, U))$. Then $\hat{\alpha}(t_1)(K) = \alpha(\{t_1\} \times K) \subseteq U$. But K is compact. So there is open O in I, such that $t_1 \in O$ and $\alpha(O \times K) \subseteq U$.

Thus, $t_1 \in O \subseteq \widehat{\alpha}^{-1}(W(K, U))$.

So $\hat{\alpha}^{-1}(W(K, U))$ is an open set and α is continuous.

Thus, each member of $F_2(X, x_0)$ determines in a natural way a member of $\Omega(\Omega(X, x_0), c)$.

Comparison of A with C for n = 2 (Cont'd)

- We now reverse the process.
 - Start with a member $\hat{\alpha}$ of $\Omega(\Omega(X, x_0), c)$.
 - Then $\widehat{\alpha}$ determines a function $\alpha: I^2 \to X$ defined by

$$\alpha(t_1, t_2) = \widehat{\alpha}(t_1)(t_2), \quad (t_1, t_2) \in I^2.$$

We may show that $\alpha \in F_2(X, x_0)$.

In this way, we have established a one-to-one correspondence between $F_2(X, x_0)$ and $\Omega(\Omega(X, x_0), c)$.

Comparison of A with C for n = 2 (Conclusion)

Suppose that H: I² × I → X is a homotopy demonstrating the equivalence of α and β as prescribed in Definition A.
 Consider the homotopy Ĥ: I × I → Ω(X, x₀), defined by

$$\widehat{H}(t_1,s)(t_2) = H(t_1,t_2,s), \quad t_1,t_2,s \in I.$$

- This demonstrates the equivalence of the loops $\hat{\alpha}$ and $\hat{\beta}$.
- The reverse argument shows that $\hat{\alpha}$ equivalent to $\hat{\beta}$ implies that α is equivalent to β .
- Thus, there is a one-to-one correspondence between homotopy classes $[\alpha]$ of Definition A and homotopy classes $[\hat{\alpha}]$ of Definition C.
- Finally, the \star operation in Definition A is completely determined in the first coordinate.

Thus, for any $\alpha, \beta \in F_2(X, x_0)$, $[\alpha \star \beta]$ corresponds to $[\widehat{\alpha} \star \widehat{\beta}]$. So the two definitions of $\pi_2(X, x_0)$ lead to isomorphic groups.

Subsection 3

Basic Properties and Examples

Path Connectedness and *n*-Homotopy Groups

• The following three results can be proved by methods very similar to those used to prove their analogues for the fundamental group.

Theorem

If the space X is path connected and x_0 and x_1 are points of X, then $\pi_n(X, x_0)$ is isomorphic to $\pi_n(X, x_1)$, for each $n \ge 1$.

• As in the case of the fundamental group, when X is path connected, we refer to the "*n*-th homotopy group of X" and write $\pi_n(X)$, .

Contractiblity, Products and *n*-Homotopy Groups

Theorem

If X is contractible by a homotopy that leaves x_0 fixed, then

 $\pi_n(X, x_0) = \{0\}, \text{ for each } n \ge 1.$

Theorem

Let X and Y be spaces with points x_0 in X and y_0 in Y. Then, for all $n \ge 1$,

$$\pi_n(X \times Y, (x_0, y_0)) \cong \pi_n(X, x_0) \oplus \pi_n(Y, y_0).$$

Contractible Spaces

- The following spaces are contractible, so each has *n*-th homotopy group {0}, for each value of *n*:
 - (a) The real line;
 - (b) Euclidean space of any dimension;
 - (c) An interval;
 - (d) A convex figure in Euclidean space.
- We saw that the fundamental group is usually difficult to determine.
- This is doubly true of the higher homotopy groups.
 Example: The homotopy groups π_k(Sⁿ) of the *n*-sphere have never been completely determined. (The hard part is the case k > n.)
 The groups π_k(Sⁿ), for k ≤ n, are computed in the following examples.

The Groups $\pi_k(S^n)$ for k < n

- Claim: For k < n, the k-th homotopy group $\pi_k(S^n)$ is the trivial group. Let $[\alpha]$ be a member of $\pi_k(S^n)$.
- Consider α as a continuous map from $(S^k, 1)$ to $(S^n, 1)$.

Represent S^k and S^n as the boundary complexes of simplexes of dimensions k+1 and n+1, respectively.

By the Simplicial Approximation Theorem, α has a simplicial approximation $\alpha': S^k \to S^n$, such that $[\alpha] = [\alpha']$.

Simplicial maps cannot map a simplex onto one of higher dimension. Thus, α' is not onto.

The Groups $\pi_k(S^n)$ for k < n (Cont'd)

Let p be a point in Sⁿ which is not in the range of α'. Then Sⁿ\{p} is contractible, since it is homeomorphic to ℝⁿ.
So the range of α' is contained in a contractible space.
It follows that α' is null-homotopic.
Thus,

$$[\alpha] = [\alpha'] = [c].$$

So $\pi_k(S^n)$ is the trivial group whose only member is the class [c] determined by the constant map.
The Groups $\pi_n(S^n)$

Claim: For $n \ge 1$, the *n*-th homotopy group $\pi_n(S^n)$ is isomorphic to the group \mathbb{Z} of integers.

The case n = 1 was considered previously.

Consider $\pi_n(S^n)$, $n \ge 2$, as the set of homotopy classes of maps $\alpha: (S^n, 1) \to (S^n, 1)$ as in Definition B.

Define $\rho: \pi_n(S^n) \to \mathbb{Z}$ by

$$\rho([\alpha]) = \text{degree of } \alpha, \quad [\alpha] \in \pi_n(S^n).$$

Brouwer's Degree Theorem insures that ρ is well-defined. By the Hopf Classification Theorem, it is one-to-one.

The Groups $\pi_n(S^n)$ (Cont'd)

• The identity map $i: (S^n, 1) \rightarrow (S^n, 1)$ has degree 1.

The description of the \star operation in Definition B shows that the map

$$i^k = i \star i \star \cdots \star i$$
 (k terms)

has degree k.

Thus, [*i*] is a generator of $\pi_n(S^n)$.

Moreover, we have, for any positive integer k:

•
$$\rho([i]^k) = k;$$

• $\rho([i]^{-k}) = -k$

$$\rho([i]^{-\kappa}) = -\kappa.$$

It follows easily that ρ is an isomorphism.

Fundamental Groups of Topological Groups

Theorem

Let G be a topological group with identity element e. Then $\pi_1(G, e)$ is abelian.

 The operation on G induces an operation · on the set Ω(G, e) of loops in G based at e defined by

$$\alpha \cdot \beta(t) = \alpha(t)\beta(t), \quad \alpha, \beta \in \Omega(G, e), \ t \in I,$$

where the juxtaposition of $\alpha(t)$ and $\beta(t)$ indicates their product in *G*. This operation induces an operation \Box on $\pi_1(G, e)$:

$$[\alpha] \square [\beta] = [\alpha \cdot \beta], \quad [\alpha], [\beta] \in \pi_1(G,).$$

Let *c* denote the constant loop at *e*. Let $[\alpha]$ and $[\beta]$ be members of $\pi_1(G, e)$.

Fundamental Groups of Topological Groups (Cont'd)

Observe the following.

$$(\alpha \star c) \cdot (c \star \beta)(t) = \begin{cases} \alpha(2t)e = \alpha(2t), & \text{if } 0 \le t \le \frac{1}{2} \\ e\beta(2t-1) = \beta(2t-1), & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

$$(c \star \alpha) \cdot (c \star \beta)(t) = \begin{cases} e\beta(2t) = \beta(2t), & \text{if } 0 \le t \le \frac{1}{2} \\ \alpha(2t-1)e = \alpha(2t-1), & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

This gives

$$(\alpha \star c) \cdot (c \star \beta) = \alpha \star \beta,$$

$$(c \star \alpha) \cdot (\beta \star c) = \beta \star \alpha.$$

Fundamental Groups of Topological Groups (Cont'd)

• Then

$$[\alpha] \circ [\beta] = [\alpha \star \beta]$$

= $[(\alpha \star c) \cdot (c \star \beta)]$
= $[\alpha \star c] \Box [c \star \beta]$
= $[c \star \alpha] \Box [\beta \star c]$
= $[(c \star \alpha) \cdot (\beta \star c)]$
= $[\beta \star \alpha]$
= $[\beta] \circ [\alpha].$

So $\pi_1(G, e)$ is abelian.

• Note that the operations \circ and \square are precisely equal:

$$[\alpha] \circ [\beta] = [\alpha \star \beta] = [(\alpha \star c) \cdot (c \star \beta)] = [\alpha \star c] \Box [c \star \beta] = [\alpha] \Box [\beta].$$

Introducing Hopf Spaces

- Not all of the group properties were used in the proof of the preceding theorem.
- The existence of a multiplication with identity element *e* is sufficient.
- In fact, even that assumption can be weakened.
- This motivates the definition of Hopf spaces.

Hopf Spaces

Definition

An **H**-space or **Hopf space** is a topological space Y with a continuous multiplication (indicated by juxtaposition) and a point y_0 in Y for which:

- The map defined by multiplying on the left by y_0 ,
- The map defined by multiplying on the right by y_0

are both homotopic to the identity map on Y by homotopies that leave y_0 fixed.

In other words, there exist homotopies L and R from $Y \times I$ into Y, such that, for all y in Y and t in I:

$$L(y,0) = y_0y, \quad L(y,1) = y, \quad L(y_0,t) = y_0;$$

$$R(y,0) = yy_0, \quad R(y,1) = y, \quad R(y_0,t) = y_0.$$

The point y_0 is called the **homotopy unit** of Y.

Example of a Hopf Space

• Let X be a space and x_0 a point of X.

The loop space $\Omega(X, x_0)$ with the compact-open topology is an H-space.

- The multiplication is the ***** operation;
- The homotopy unit is the constant map *c*.

The required homotopies L and R are defined for α in $\Omega(X, x_0)$ and s in I by

$$L(\alpha, s)(t) = \begin{cases} x_0, & \text{if } 0 \le t \le \frac{1-s}{2} \\ \alpha\left(\frac{2t+s-1}{s+1}\right), & \text{if } \frac{1-s}{2} \le t \le 1 \end{cases}$$
$$R(\alpha, s)(t) = \begin{cases} \alpha\left(\frac{2t}{s+1}\right), & \text{if } 0 \le t \le \frac{s+1}{2} \\ x_0, & \text{if } \frac{s+1}{2} \le t \le 1 \end{cases}$$

We can show that the multiplication \star and the homotopies *L* and *R* are continuous with respect to the compact-open topology.

Fundamental Groups of H-Spaces

Theorem

Let Y be an H-space with homotopy unit y_0 . Then $\pi_1(Y, y_0)$ is abelian.

• The operation on Y induces an operation \cdot on $\Omega(Y, y_0)$:

$$\alpha \cdot \beta(t) = \alpha(t)\beta(t), \quad \alpha, \beta \in \Omega(Y, y_0), \ t \in I.$$

This operation induces an operation \square on $\pi_1(Y, y_0)$:

$$[\alpha]\Box[\beta] = [\alpha \cdot \beta], \quad [\alpha], [\beta] \in \pi_1(Y, y_0).$$

Letting c denote the constant loop at y_0 ,

$$(\alpha \star c) \cdot (c \star \beta)(t) = \begin{cases} \alpha(2t)y_0, & \text{if } 0 \le t \le \frac{1}{2} \\ y_0\beta(2t-1), & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

$$(c \star \alpha) \cdot (\beta \star c)(t) = \begin{cases} y_0\beta(2t), & \text{if } 0 \le t \le \frac{1}{2} \\ \alpha(2t-1)y_0, & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

Fundamental Groups of H-Spaces (Cont'd)

Now multiplication on the left by y₀ and multiplication on the right by y₀ are both homotopic to the identity map on Y.
 So we obtain

$$[(\alpha \star c) \cdot (c \star \beta)] = [\alpha \star \beta], \quad [(c \star \alpha) \cdot (\beta \star c)] = [\beta \star \alpha].$$

Thus,

$$[\alpha] \circ [\beta] = [\alpha \star \beta]$$

= $[(\alpha \star c) \cdot (c \star \beta)]$
= $[(c \star \alpha) \cdot (\beta \star c)]$
= $[\beta \star \alpha]$
= $[\beta] \circ [\alpha].$

• It follows, as before, that the operations \circ and \square are equal.

Commutativity of Higher Homotopic Groups

Theorem

The higher homotopy groups $\pi_n(X, x_0)$, $n \ge 2$, of any space X are abelian.

Ω(X, x₀) is an H-space with the constant loop c as homotopy unit.
 Hence, the second homotopy group

$$\pi_2(X, x_0) = \pi_1(\Omega(X, x_0), c)$$

is abelian.

Proceeding inductively, suppose that, for every space Y, the (n-1)-st homotopy group $\pi_{n-1}(Y, y_0)$ is abelian.

Then

$$\pi_n(X,x_0) = \pi_{n-1}(\Omega(X,x_0),c)$$

must be abelian.

George Voutsadakis (LSSU)

The Induced Homomorphism f_*

Definition

Let $f: (X, x_0) \to (Y, y_0)$ be a continuous map on the indicated pairs. If $[\alpha] \in \pi_n(X, x_0), n \ge 1$, then the composition $f\alpha: I^n \to Y$ is a continuous map which takes ∂I^n to y_0 . So $f\alpha$ represents an element $[f\alpha]$ in $\pi_n(Y, y_0)$. Thus, f induces a function $f_*: \pi_n(X, x_0) \to \pi_n(Y, y_0)$, defined by

$$f_*([\alpha]) = [f\alpha], \quad [\alpha] \in \pi_n(X, x_0).$$

The function f_* is the homomorphism induced by f in dimension n.

- To be very precise we should refer to f_*^n , indicating the dimension n, but the dimension becomes known from the subscripts on the homotopy groups involved.
- We can show that f_* is a well-defined homomorphism.

Compositionality of Induced Homomorphisms

Theorem

(a) If $f: (X, x_0) \to (Y, y_0)$ and $g: (Y, y_0) \to (Z, z_0)$ are continuous maps on the indicated pairs, then the induced homomorphism $(gf)_*$ is the composite map

$$g_*f_*:\pi_n(X,x_0)\to\pi_n(Z,z_0)$$

in each dimension n.

- (b) If $h: (X, x_0) \to (Y, y_0)$ is a homeomorphism, then the homomorphism h_* induced by h is an isomorphism for each value of n.
- (a) If $[\alpha] \in \pi_n(X, x_0)$, then

$$(gf)_*([\alpha]) = [gf\alpha] = g_*([f\alpha]) = g_*f_*([\alpha]).$$

So $(gf)_* = g_*f_*$.

Compositionality of Induced Homomorphisms (Cont'd)

(b) Suppose that $h^{-1}: (Y, y_0) \to (X, x_0)$ is the inverse of h. Then for $[\alpha]$ in $\pi_n(X, x_0)$,

$$(h^{-1})_* h_*([\alpha]) = [h^{-1}h\alpha] = [\alpha].$$

So $(h^{-1})_*h_*$ is the identity map on $\pi_n(X, x_0)$. By symmetry, $h_*(h^{-1})_*$ is the identity map on $\pi_n(Y, y_0)$. So h_* is an isomorphism.

Covering Spaces and Induced Homomorphisms

• We saw that a covering projection $p: E \rightarrow B$ induces a monomorphism (i.e., a one-to-one homomorphism)

$$p_*: \pi_1(E) \to \pi_1(B).$$

Theorem

Let (E, p) be a covering space of B. Let e_0 in E and b_0 in B be points such that $p(e_0) = b_0$. Then the induced homomorphism

$$p_*:\pi_n(E,e_0)\to\pi_n(B,b_0)$$

is an isomorphism for $n \ge 2$.

Covering Spaces and Induced Homomorphisms (Cont'd)

Claim: p_* is onto.

Consider an element $[\alpha]$ in $\pi_n(B, b_0)$.

Think of α as a continuous map from $(S^n, \overline{1})$ to (B, b_0) , where $\overline{1}$ is used as the base point of S^n to avoid confusion with the number 1. Since $n \ge 2$, the fundamental group $\pi_1(S^n, \overline{1})$ is trivial.

Hence, for α_* the homomorphism induced by α on $\pi_1(S^n, \overline{1})$,

$$\alpha_*\pi_1(S^n,\overline{1})=\{0\}\subseteq p_*\pi_1(E,e_0).$$

By a preceding theorem, α has a continuous lifting $\tilde{\alpha}: (S^n, \overline{1}) \to (E, e_0)$, such that

$$p\widetilde{\alpha} = \alpha$$
.

Then $\tilde{\alpha}$ determines a member $[\tilde{\alpha}]$ in $\pi_n(E, e_0)$ for which

$$p_*([\widetilde{\alpha}]) = [p\widetilde{\alpha}] = [\alpha].$$

So p_* maps $\pi_n(E, e_0)$ onto $\pi_n(B, b_0)$.

Covering Spaces and Induced Homomorphisms (Cont'd)

Claim: p_* is one-to-one.

Suppose that $[\beta]$ belongs to its kernel.

I.e., assume $p_*([\beta]) = [p\beta] = [c]$, with *c* constant, $c(S^n) = b_0$. As maps from $(S^n, \overline{1})$ to (B, b_0) , $p\beta$ and *c* are equivalent. So there is a homotopy $H : S^n \times I \to B$ satisfying

$$H(t,0) = p\beta(t), \quad H(t,1) = b_0, \quad t \in S^n, \\ H(\overline{1},s) = b_0, \quad s \in I.$$

The fundamental group $\pi_1(S^n \times I, (\overline{1}, 0))$ is trivial, since $n \ge 2$. So there exists a lifting $\widetilde{H} : S^n \times I \to E$, with $p\widetilde{H} = H$, $\widetilde{H}(\overline{1}, 0) = e_0$. Subclaim (To be proven in the next slide): The lifted homotopy \widetilde{H} is a homotopy between β and the constant map $d(S^n) = e_0$. Then $[\beta] = [d]$ is the identity element of $\pi_n(E, e_0)$. Thus, the kernel of p_* contains only the identity element of $\pi_n(E, e_0)$. This shows that p_* is one-to-one.

George Voutsadakis (LSSU)

Covering Spaces and Induced Homomorphisms (Cont'd)

Subclaim: The lifted homotopy \tilde{H} is a homotopy between β and the constant map $d(S^n) = e_0$.

Observe first that $p\widetilde{H}(\cdot,0) = p\beta$, $\widetilde{H}(\overline{1},0) = \beta(\overline{1})$.

By a previous corollary, $\widetilde{H}(\cdot, 0) = \beta$, since S^n is connected.

The same argument shows that $\widetilde{H}(\cdot, 1) = d$.

It remains to be seen that $\widetilde{H}(\overline{1},s) = e_0$, for each s in I.

The path $\widetilde{H}(\overline{1}, \cdot) : I \to E$ has initial point e_0 and covers $c = H(\overline{1}, \cdot)$. But the unique covering path of c which begins at e_0 is the constant path at e_0 , $\widetilde{H}(\overline{1}, s) = e_0$, $s \in I$.

Thus, $\widetilde{H}: S^n \times I \to E$ is a homotopy such that

$$\begin{split} \widetilde{H}(\cdot,0) &= \beta, \quad \widetilde{H}(\cdot,1) = d, \\ \widetilde{H}(\overline{1},s) &= e_0, \quad s \in I. \end{split}$$

Example

Consider the universal covering space (R, p) of the unit circle S¹.
 By the preceding theorem,

$$p_*:\pi_n(\mathbb{R})\to\pi_n(S^1)$$

is an isomorphism for $n \ge 2$.

But all the homotopy groups of the contractible space ${\rm I\!R}$ are trivial. So

$$\pi_n(S^1) = \{0\}, \quad n \ge 2.$$

Example

Consider the double covering (Sⁿ, p) over projective n-space Pⁿ.
 By the preceding theorem,

$$\pi_k(P^n) \cong \pi_k(S^n), \quad k \ge 2, \ n \ge 2.$$

By a previous example,

$$\pi_n(S^n) \cong \mathbb{Z}, \quad n \ge 2.$$

Therefore, we have

$$\pi_n(P^n)\cong\mathbb{Z},\quad n\geq 2.$$

Subsection 4

Homotopy Equivalence

Homotopy Equivalent Spaces

- Homotopy equivalence is a relation between topological spaces.
- It is a weaker relation than homeomorphism.
- On the other hand, it is strong enough to ensure that equivalent spaces have isomorphic homotopy groups in corresponding dimensions.

Definition

Let X and Y be topological spaces. Then X and Y are **homotopy** equivalent or have the same homotopy type provided that there exist continuous maps $f: X \to Y$ and $g: Y \to X$ for which the composite maps gf and fg are homotopic to the identity maps on X and Y, respectively. The map f is called a **homotopy equivalence**, and g is a **homotopy** inverse for f.

Homeomorphic spaces are homotopy equivalent.

Homotopy Equivalence is an Equivalence Relation

Theorem

The relation "X is homotopy equivalent to Y" is an equivalence relation for topological spaces.

• The relation is reflexive since the identity map on any space X is a homotopy equivalence.

The symmetric property is implicit in the definition: Both f and g are homotopy equivalences and each is a homotopy inverse for the other.

For transitivity transitive, let $f: X \to Y$ and $h: Y \to Z$ be homotopy equivalences with homotopy inverses $g: Y \to X$ and $k: Z \to Y$, respectively. We must show that X and Z are homotopy equivalent. The most likely candidate for a homotopy equivalence between X and Z is hf, with gk as the leading contender for homotopy inverse.

Homotopy Equivalence is an Equivalence Relation (Cont'd)

• Let $L: Y \times I \to Y$ be a homotopy such that

$$L(\cdot,0) = kh;$$

$$L(\cdot,1) = i_Y.$$

Consider the map $M: X \times I \rightarrow X$, defined by

$$M(x,t) = gL(f(x),t), \quad (x,t) \in X \times I.$$

M is a homotopy, such that

$$M(\cdot,0) = gL(f(\cdot),0) = (gk)(hf); M(\cdot,1) = gL(f(\cdot),1) = gf.$$

So (gk)(hf) is homotopic to gf. Hence, it is homotopic to i_X . Similarly, (hf)(gk) is homotopic to the identity on Z. So X and Z are homotopy equivalent.

George Voutsadakis (LSSU)

Algebraic Topology

Example

Claim: A circle and an annulus are homotopy equivalent.

Consider the unit circle S^1 and the annulus

$$A = \{y \in \mathbb{R}^2 : 1 \le |y| \le 2\}.$$

A homotopy equivalence $f: S^1 \to A$ and homotopy inverse $g: A \to S^1$ are defined by $f(x) = x, x \in S^1$ and $g(y) = \frac{y}{|y|}, y \in A$. Then gf is the identity map on S^1 . Moreover $fg(y) = \frac{y}{|y|}, y \in A$. The required homotopy between fg and the identity on A is given by

$$H(y,t) = ty + (1-t)\frac{y}{|y|}.$$

Homotopy Type of a Contractible Space

Theorem

A space X is contractible if and only if it has the homotopy type of a one point space.

 Suppose X is contractible with homotopy H: X × I → X and point x₀ in X, such that

$$H(x,0) = x$$
, $H(x,1) = x_0$, $x \in X$.

Then X is homotopy equivalent to the singleton space $\{x_0\}$. The homotopy equivalence $f : X \to \{x_0\}$ and homotopy inverse $g : \{x_0\} \to X$ are defined by

$$f(x) = x_0, x \in X;$$

 $g(x_0) = x_0.$

Homotopy Type of a Contractible Space (Cont'd)

Suppose, conversely, that f: X → {a} is a homotopy equivalence between X and the one point space {a}, with homotopy inverse g: {a} → X.

Then there is a homotopy K between gf and the identity map on X. Moreover, by definition,

$$K(x,0) = x;$$

 $K(x,1) = gf(x) = g(a), x \in X.$

Thus, the homotopy K is a contraction. So the space X is contractible.

Homotopy Equivalence and Deformation Retracts

Theorem

If X is a space and D a deformation retract of X, then D and X are homotopy equivalent.

• There is a homotopy $H: X \times I \to X$, such that

$$H(x,0) = x, \quad H(x,1) \in D, \quad x \in X, \\ H(a,t) = a, \quad a \in D, \ t \in I.$$

Let $f: D \to X$ denote the inclusion map f(a) = a. Define $g: X \to D$ by

$$g(x) = H(x,1), \quad x \in X.$$

Then gf is the identity map on D. H is a homotopy between fg and the identity on X. Thus, f is a homotopy equivalence, with homotopy inverse g.

Homotopy Equivalence Between Pointed Spaces

Definition

Let X and Y be spaces with points x_0 in X and y_0 in Y. Then the pairs (X, x_0) and (Y, y_0) are **homotopy equivalent** or of the **same homotopy type** means that there exist continuous maps

$$f:(X,x_0) \rightarrow (Y,y_0)$$
 and $g:(Y,y_0) \rightarrow (X,x_0)$

for which the composite maps gf and fg are homotopic to the identity maps on X and Y, respectively, by homotopies that leave the base points fixed. In other words, it is required that there exist homotopies $H: X \times I \to X$ and $K: Y \times I \to Y$, such that

$$\begin{array}{ll} H(x,0) = gf(x), & H(x,1) = x, & H(x_0,t) = x_0, & x \in X, \ t \in I, \\ K(y,0) = fg(y), & K(y,1) = y, & K(y_0,t) = y_0, & y \in Y, \ t \in I. \end{array}$$

The map f is called a **homotopy equivalence** with **homotopy inverse** g.

Pointed Homotopy Equivalence is an Equivalence

Theorem

Homotopy equivalence between pairs is an equivalence relation.

• The proof is similar to the that of the theorem on homotopy equivalence of topological spaces.

Homotopy Equivalence and Induced Homomorphisms

Theorem

If the map $f: (X, x_0) \rightarrow (Y, y_0)$ is a homotopy equivalence between the indicated pairs, then the induced homomorphism

$$f_*:\pi_n(X,x_0)\to\pi_n(Y,y_0)$$

is an isomorphism for each positive integer n.

Let g: (Y, y₀) → (X, x₀) be a homotopy inverse for f.
Let H a homotopy between gf and i_X, which leaves x₀ fixed.
Let [α] ∈ π_n(X, x₀).
Consider α as a function from Iⁿ to X, such that

$$\alpha(\partial I^n) = x_0.$$

Homotopy Equivalence and Homomorphisms (Cont'd)

• Define a homotopy $K: I^n \times I \to X$ by

$$K(t,s) = H(\alpha(t),s), \quad t \in I^n, \ s \in I.$$

Then

$$K(\cdot,0) = gf\alpha, \quad K(\cdot,1) = \alpha, \\ K(\partial I^n \times I) = H(\{x_0\} \times I) = x_0.$$

So $[gf \alpha] = [\alpha]$. This means that $g_* f_*[\alpha] = [\alpha]$. So g_* is a left inverse for f_* . But f is a homotopy inverse for g. So, by symmetry, g_* is also a right inverse for f_* . So f_* is an isomorphism.

Homotopy Equivalence and Homomorphisms (Cont'd)

• The preceding theorem can be strengthened to show that a homotopy equivalence $f: X \to Y$ with $f(x_0) = y_0$ induces an isomorphism between

$$\pi_n(X, x_0) \cong \pi_n(Y, y_0)$$
, for each n .

• The proof is more complicated because the homotopies may not leave the base points fixed.

Subsection 5

Homotopy Groups of Spheres

Introduction

- The homotopy groups $\pi_k(S^n)$ are not completely known.
- Previous examples have shown that

$$\pi_k(S^n) = \{0\}, \ k < n, \ \pi_k(S^1) = \{0\}, \ k > 1, \ \pi_n(S^n) \cong \mathbb{Z}.$$

- It may seem natural to conjecture that $\pi_k(S^n)$ is trivial for k > n, since the corresponding result holds for the homology groups.
- This would simply mean that every continuous map $f: S^k \to S^n$, where k > n is homotopic to a constant map.
- However, this is not true.
- Hopf showed, in 1931, that $\pi_3(S^2)$ is not trivial.
- We examine some examples.

The Hopf map $p: S^3 \rightarrow S^2$

- $\bullet\,$ Let ${\mathbb C}$ denote the field of complex numbers.
- Consider S³, the unit sphere in Euclidean 4-space, as a set of ordered pairs of complex numbers, each pair having length 1:

$$S^3 = \{(z_1, z_2) \in \mathbb{C} \times \mathbb{C} : |z_1|^2 + |z_2|^2 = 1\}.$$

• Define an equivalence relation \equiv on S^3 by

$$(z_1,z_2)\equiv(z_1',z_2')$$

if and only if there is a complex number λ of length 1 such that (z₁, z₂) = (λz'₁, λz'₂).
For (z₁, z₂) in S³, let (z₁, z₂) denote the equivalence class of (z₁, z₂).
Let

$$T = \{ \langle z_1, z_2 \rangle : (z_1, z_2) \in S^3 \}$$

be the set of equivalence classes.

George Voutsadakis (LSSU)
• Let $p: S^3 \to T$ be the projection map

$$p(z_1, z_2) = \langle z_1, z_2 \rangle, \quad (z_1, z_2) \in S^3.$$

- Assign T the quotient topology determined by p.
- I.e., a set O is open in T provided that $p^{-1}(O)$ is open in S^3 .
- the inverse image $p^{-1}(\langle z_1, z_2 \rangle)$, called the fiber over $\langle z_1, z_2 \rangle$.
- For $\langle z_1, z_2 \rangle$ in T, the fiber over $\langle z_1, z_2 \rangle$, is a circle in S^3 .
- We pursue the following strategy.
 - Show that T is homeomorphic to S^2 ;
 - Use the homeomorphism to replace T by S^2 ;
 - Obtain the Hopf map $p: S^3 \to S^2$.
- Strictly speaking, the Hopf map is the map hp: S³ → S², where h: T → S² is the homeomorphism whose existence we must show.

• Consider the unit disc D in \mathbb{C} ,

$$D = \{z \in \mathbb{C} : |z| \le 1\}.$$

- The 2-sphere is the quotient space of *D* obtained by identifying the boundary of *D* to a point.
- We show T satisfies the same description.
- Consider the map $f: D \to T$, defined by

$$f(z) = \langle \sqrt{1 - |z|^2}, z \rangle, \quad z \in D.$$

- Then f is a closed, continuous map.
- For $\langle z_1, z_2 \rangle$ in T,

$$f^{-1}(\langle z_1, z_2 \rangle) = \{z \in D : \langle z_1, z_2 \rangle = \langle \sqrt{1 - |z|^2}, z \rangle\}$$
$$= \{z \in D : \sqrt{1 - |z|^2} = \lambda z_1, z = \lambda z_2, \text{ for some } \lambda \in S^1\}.$$

• We got

$$f^{-1}(\langle z_1, z_2 \rangle) = \left\{ z \in D : \sqrt{1 - |z|^2} = \lambda z_1, z = \lambda z_2, \text{ for some } \lambda \in S^1 \right\}.$$

- We distinguish two cases:
 - Suppose z₁ ≠ 0. The equations above imply λz₁ = |z₁|. So λ = |z₁|/(z₁, z₂) is a single point.
 Suppose z₁ = 0. Then

$$f^{-1}(\langle z_1, z_2 \rangle) = f^{-1}(\langle 0, z_2 \rangle)$$

= $\{z \in D : \sqrt{1 - |z|^2} = 0, z = \lambda, \text{ for some } \lambda \in S^1\}$
= S^1 .

So $f^{-1}(\langle 0, z_2 \rangle)$ is the boundary of D.

- Using f as quotient map, T is the quotient space of D obtained by identifying the boundary S^1 to a point.
- Then T is homeomorphic to S^2 .
- So we replace T by S^2 and have the Hopf map $p: S^3 \to S^2$.
- Showing that *p* is not homotopic to a constant map requires more background than we have developed.
- So we only sketch the basic idea.

The Hopf map $p: S^3 \rightarrow S^2$ (Conclusion)

- Let $H: S^3 \times I \to S^2$ be a homotopy between p and a constant map.
- The Hopf map is not a covering projection.
- But it is close enough to permit a covering homotopy $\widetilde{H}: S^3 \times I \to S^2$,

- The map \widetilde{H} is a homotopy between the identity map on S^3 and a constant map.
- But this implies that S^3 is contractible, an obvious contradiction.
- Thus *p* is not homotopic to a constant map.
- So $\pi_3(S^2) \neq \{0\}$.

The Hopf maps $S^7 \rightarrow S^4$ and $S^{15} \rightarrow S^8$

- $\bullet\,$ We switch to the division ring ${\mathbb Q}$ of quaternions.
- We represent S^7 , the unit sphere in Euclidean 8-space, as ordered pairs of members of \mathbb{Q} ,

$$S^{7} = \{ (z_{1}, z_{2}) \in \mathbb{Q} : ||z_{1}||^{2} + ||z_{2}||^{2} = 1 \}.$$

• The quotient space T in this case is the quotient space of the unit disc

$$D=\{z\in\mathbb{Q}:\|z\|\leq 1\}$$

obtained by identifying the boundary of D to a single point.

- Now *D* has real dimension four.
- So this quotient space is homeomorphic to S^4 .

The Hopf maps $S^7 \rightarrow S^4$ and $S^{15} \rightarrow S^8$ (Cont'd)

• The Hopf map

$$p: S^7 \to S^4$$

with fiber S^3 is then defined as in the preceding example.

- This map shows that $\pi_7(S^4) \neq \{0\}$.
- In E^{16} , one can perform a similar construction by representing the unit sphere S^{15} as ordered pairs of Cayley numbers.
- This produces the Hopf map $p: S^{15} \to S^8$ with fiber S^7 .
- It shows that $\pi_{15}(S^8) \neq \{0\}$.

Suspension Homomorphism

• There is for each pair k, n of positive integers a natural homomorphism

$$E:\pi_k(S^n)\to\pi_{k+1}(S^{n+1})$$

called the suspension homomorphism.

- Consider $\pi_k(S^n)$ as homotopy classes of maps from $(S^k, 1)$ to $(S^n, 1)$, where we denote the base point of each sphere by 1.
- Consider Sⁿ as the subspace of Sⁿ⁺¹ consisting of all points of Sⁿ⁺¹ having last coordinate 0.
- In this identification, S^n is usually called the "equator" of S^{n+1} .
- Continuing this geographical metaphor:
 - The point (0,...,0,1) is called the "north pole";
 - The point $(0, \dots, 0, -1)$ of S^{n+1} is called the "south pole".

The Suspension

- Suppose that $[\alpha] \in \pi_k(S^n)$.
- Then α is a continuous map from S^k to S^n .
- Extend α to a continuous map $\widehat{\alpha}: S^{k+1} \to S^{n+1}$ as follows.

The function is then extended radially as in the figure.

 The arc from the north pole to a point x in S^k is mapped linearly onto the arc from the north pole of Sⁿ⁺¹ to α(x).

This defines a on the "northern hemisphere".

• The "southern hemisphere" is treated the same way.

The extended map $\hat{\alpha}$ is called the **suspension** of α .

The Freudenthal Suspension Theorem

• The suspension homomorphism E is defined by

$$E([\alpha]) = [\widehat{\alpha}], \quad [\alpha] \in \pi_k(S^n).$$

Claim: *E* is a homomorphism.

Theorem (The Freudenthal Suspension Theorem)

The suspension homomorphism

$$E:\pi_k(S^n)\to\pi_{k+1}(S^{n+1})$$

is an isomorphism for k < 2n-1 and is onto for $k \le 2n-1$.

A Consequence of the Suspension Theorem

Corollary

The homotopy groups $\pi_k(S^n)$ are trivial for k < n.

For any positive integer r < k, we have k+r+1 < 2n.
Hence, k-r < 2(n-r)-1.
Then

$$\pi_k(S^n) \cong \pi_{k-1}(S^{n-1}) \cong \cdots \cong \pi_1(S^{n-k+1}).$$

Now note that, for k < n, we have n - k + 1 > 1. Therefore, $\pi_1(S^{n-k+1})$ is trivial. So its isomorphic image $\pi_k(S^n)$ is also trivial.

Another Consequence of the Suspension Theorem

Corollary

The homotopy groups $\pi_n(S^n)$, $n \ge 1$, are all isomorphic to the group \mathbb{Z} of integers.

• We rely on our previous arguments to show that

$$\pi_1(S^1) \cong \pi_2(S^2) \cong \mathbb{Z}.$$

If $n \ge 2$, then n < 2n - 1.

The Freudenthal Suspension Theorem shows that

$$\pi_2(S^2) \cong \pi_3(S^3) \cong \pi_4(S^4) \cong \cdots \cong \pi_n(S^n).$$

Subsection 6

The Relation Between $H_n(K)$ and $\pi_n(|K|)$

The Hurewicz Isomorphism Theorem

• The last theorem of this chapter shows a relationship between the homology groups and the homotopy groups of polyhedra.

Theorem (The Hurewicz Isomorphism Theorem)

Let K be a connected complex and $n \ge 2$ a positive integer. If the first n-1 homotopy groups of |K| are trivial, then $H_n(K)$ and $\pi_n(|K|)$ are isomorphic.

Example: Consider the *n*-sphere S^n , for $n \ge 2$. We know that $\pi_k(S^n) = \{0\}$, for k < n.

So, by the Hurewicz Isomorphism Theorem,

 $\pi_n(S^n) \cong H_n(S^n) \cong \mathbb{Z}.$

Comment on Classification

- The homotopy groups do not provide for general topological spaces the type of classification already given for 2-manifolds and for covering spaces.
- There are examples of spaces X and Y which have isomorphic homotopy groups in each dimension but which are not homotopy equivalent (and therefore not homeomorphic).
- The induced homomorphism f_{*} : π_n(X) → π_n(Y) has been successful in classifying the homotopy type of spaces known as "CW-complexes".
- These spaces can be used to approximate arbitrary topological spaces.

Non-Homeomorphic Spaces

- Although the homotopy groups have not been completely successful in showing when spaces are homeomorphic, they are extremely useful in showing when spaces are not homeomorphic.
- To show that X and Y are not homeomorphic, compute the homotopy groups $\pi_n(X)$ and $\pi_n(Y)$.
- If $\pi_n(X)$ is not isomorphic to $\pi_n(Y)$, for some *n*, then X and Y are not homeomorphic.
- The same method can be used with the homology groups.

Example

- Recall that the Poincaré Conjecture asserts that every simply connected 3-manifold is homeomorphic to S³.
- Our work on homotopy groups shows that the corresponding conjecture in dimension four is false.
- The 4-manifold $S^2 \times S^2$ is simply connected.
- However, we have

$$\pi_2(S^2 \times S^2) \cong \mathbb{Z} \oplus \mathbb{Z}$$
 and $\pi_2(S^4) = \{0\}.$

• So $S^2 \times S^2$ is not homeomorphic to S^4 .