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Subsection 1

Introduction
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The Higher Homotopy Groups Introduction

2-Dimensional Loops: 1st Definition

@ We consider in an intuitive way the possible methods of defining the
second homotopy group m2(X,xp) of a space X at a point xg in X.

o Recall that m1(X,xp) is the set of homotopy classes of loops in X
based at xg.

o We would like to define a “2-dimensional loop”.

o A “1-dimensional loop” is a continuous map a: | — X for which the
boundary points 0 and 1 have image xg.

o We might then define a 2-dimensional loop to be a continuous map
B:1x1— X from the unit square into X which maps the boundary of
the square to xg.
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2-Dimensional Loops: 2nd Definition

o From a slightly different point of view, we can consider a loop a in X
as a continuous map from S* to X which takes 1 to xg.

o This follows from the observation that the quotient space of the unit
interval / obtained by identifying 0 and 1 to a single point is simply S.

o Thus, another possible definition of 2-dimensional loop is a continuous
map from the 2-sphere S? into X.

o Both of the preceding definitions of 2-dimensional loop generalize to
higher dimensions by considering higher dimensional cubes and
spheres.
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2-Dimensional Loops: 3rd Definition

(*]

There is a third possibility.

(4]

Perhaps a 2-dimensional loop should be a “loop of loops”.

(4]

That is to say, perhaps a 2-dimensional loop should be a function g,
having domain /, such that:

o Each value f(t) is a loop in X;

o p(0)=p(1).
To carry out this idea, we must define a topology on the set Q(X,xp)
of loops in X with base point xg.

(4]

o Once this topology is determined, one can define m2(X,xp) to be the
fundamental group of Q(X,xp).

o Remarkably, all three approaches lead to the same group m2(X, xp).
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Subsection 2

Equivalent Definitions of 7,(X, xo)
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The n-Cube

o If nis a positive integer, the symbol /" denotes the unit n-cube
I"={t=(t1,t2,...,tn) ER":0<t; <1, for each i}.
o 01", called the boundary of /", denotes its point set boundary
ol" ={t=(t1,t2,...,tn) € 1" :some t; is 0 or 1}.

o Note that the boundary symbol 8 must not be confused with the
boundary operator of homology theory.
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n-Homotopy Classes (Definition A)

Definition A
Let X be a space and xg a point of X.
For a given positive integer n, consider the set F,(X,xp) of all continuous
maps @ from the unit n-cube /" into X for which a(d/") = xp.
Define an equivalence relation ~,, on Fp(X,xp) as follows:
For @ and B in F,(X,xp), a is equivalent modulo xq to §, written
a ~x, B, if there is a homotopy H: /" x | — X, such that

H(ti,...,tn,0) = a(ty,...,tn),

H(ty,...,tn,1) = PB(t1,....tn), (t1,...,tn)€l",
H(ti,...,tn,s) = xo, (t1,...,tn)€0l",s€l.
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n-Homotopy Classes (Definition A Cont'd)

Definition A (Cont'd)
In shorter form the requirements on the homotopy H are
H(',O):a, H(';l):ﬁ’
H(aI" x I) = xg.
Under this equivalence relation on F,(X,xp) the equivalence class

determined by a is denoted [a] and called the homotopy class of a
modulo xp or simply the homotopy class of a.
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The n-th Homotopy Group

Define an operation x on F,(X,xp) as follows:
For a, B in Fn(X,x0),

a2ty tr,..., th), fo<t; <1
k= (2ty, t n) " 1=5
B(2ti—1,ta,...,t), if 5=t1=1

Note that the % operation is completely determined by the first coordinate
of the variable point (t1,...,t,) and that the continuity of a x f follows
from the Continuity Lemma.
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The n-th Homotopy Group (Cont'd)

Definition (Cont'd)
The % operation induces an operation o on the set of homotopy classes of
Fn(X,x0):

[a]o[B] =[ax p].

With this operation, the set of equivalence classes of F,(X,x) is a group.
This group is called the n-th homotopy group of X at xg and is denoted
by 7,(X,xp)-
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Details Needing Verification

@ As in the case of the fundamental group, the definition requires that
some details be verified:
(1) The relation ~, is an equivalence relation on F,(X,xp).
(2) The operation % determines the operation o completely.
In other words, if @ ~x, @' and B ~x, B/, then a* f ~,, a' x .
(3) With the o operation, ,(X,xp) is actually a group.
o lts identity is the class [c] determined by the constant map c(/”) = xg.
o The inverse [a]~1 of [a] is the class [@], where @, called the reverse of
a, is defined by

a(ty,ty,....tn) =a(l—ty,t2,...,tn), (t1,t2,...,tn) €.

o The definition of ,(X,xp) is completely analogous to that of
71(X,xp) except for the extra coordinates.

@ So the proofs of these facts are similar to those for 71(X,xp).
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n-Homotopy Classes (Definition B)

@ The quotient space of /" obtained by identifying d/" to a point is
homeomorphic to the n-sphere S”.

o Assume that the point of identification is the point 1=(1,0,...,0) of
5" having first coordinate unity and all other coordinates zero.

o Then m,(X,x0) can be defined in terms of maps from
(5",1) = (X, %)

as detailed in the next slide.
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n-Homotopy Classes (Definition B Cont'd)

For a given positive integer n, consider the set G,(X,xp) of all continuous

maps a from S” to X, such that a(1) =xp. Define an equivalence relation
on Gu(X,xp) in the following way:

For a,B in Gp(X,xp), @ is equivalent modulo xp to §, written
@ ~x, B, if there is a homotopy H: 5" x | — X, such that

H(»0)=a, H(,1)=p
H(l,s)=xp, sel.

The equivalence class [@] determined by a is called the homotopy class of
a. The set of homotopy classes is denoted by 7,(X,xp).
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Equivalence of Definitions A and B

o Recall the discussion preceding the definition.

o There is a natural one-to-one correspondence between F,(X,xg) and
Gn(X,x0) under which a map a in G,(X,xg) corresponds to the map

a' =agq,

where q is the map from /" to S™ which identifies /" to the point 1.

o Two members @ and B in G,(X,xg) are equivalent modulo xg if and
only if their counterparts a’ and ' are equivalent in F,(X,xp).

o Thus, Definitions A and B give equivalent definitions of the set
ﬂn(X,Xo).

o The elements [a] are usually more easily visualized in terms of
Definition B.
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The Operation o in Definition B

@ The o operation for Definition B is defined in terms of the
identification of /" to S".

o Let a,fe Gp(X,xp).

o The identification map g takes the sets

A = {(ti...tn)el"ty =iy,
B = {(ti...tn)el":ty=1}
to hemispheres A" and B’, respectively, of S".

o Their intersection A'n B’ =q(An B) if homeomorphic to S~
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The Operation o in Definition B (Cont'd)

—’—' XX
el
=

o Imagine that A'n B’ is identified to the base point 1 by an
identification map r.

@ The resulting space consists of two n-spheres tangent at their common
base point.

o The product a x f is now defined by

ar(x), if xe A

a*ﬁ(x):{ pr(x), if xeB’

o The group operation o is defined by [a]o[B] = [a x f].
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The Compact-Open Topology

Let F be a collection of continuous functions from a space Y into a space
Z. Suppose:

o K is a compact subset of Y;
o U is an open subset of Z.
Define
W(K,U)={aeF:a(K)c U.

The family of all such sets W(K, U), as K ranges over the compact sets in
Y and U ranges over the open sets in Z, is a subbase for a topology for F.
This topology is called the compact-open topology for F.
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The Compact-Open Topology for Q(X, xp)

@ Since we shall apply the compact-open topology only to the set of
loops in a space X, we repeat the definition for this case.

Let X be a space and xg a point of X. Consider the set Q(X,xp) of all
loops in X with base point xg. If K is a compact subset of / and U is open

in X, let

W(K,U)={a e Q(X,x): a(K) < U}.

The family of all such sets W(K, U), where K is compact in / and U is

open in X, is a subbase for a topology for Q(X,xp). This topology is the

compact-open topology for Q(X,xp). Note that basic open sets in this
r

topology have the form (W(K;, U;), where Ki,..., K, are compact sets in
i=1

I and Us,..., U, are open in X. A loop a belongs to this basic open set if

and only if (K1) c U, for each i=1,2,...,r.
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Characterization of the Compact-Open Topology

If X is a metric space, the compact-open topology for Q(X,xp) is the same
as its topology of uniform convergence.
o Let d denote the metric on X.

Recall that the topology of uniform convergence on Q(X,xp) is
determined by the metric p defined as follows:

If @ and B are in Q(X,xp), then p(a, B) is the supremum (or least
upper bound) of the distances from a(t) to B(t) for t in I:
p(a, B) =supid(a(t), f(t)) : te ).

Then the topology of uniform convergence has as a basis the set of all
spherical neighborhoods

S(a,r)={eQ(X,x0): p(a, B) <r},

where a € Q(X,x0) and r is a positive number.
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Characterization of the Compact-Open Topology (T < T')

o Let T denote the compact-open topology on Q(X,xp).
Let T’ denote the topology of uniform convergence on Q(X,xp).
We show, first, that T< T".

Let W(K, U) be a subbasic open set in T, where K is compact in /
and U is open in X. Let € W(K,U).

The compact set a(K) is contained in U.

So, there is a positive number ¢, such that any point of X at a
distance less than € from a(K) is also in U.

Consider the basic open set S(a,¢) in T'.

If BeS(a,€), then for each t in K, d(a(t),B(t)) <e.

Thus, the distance of B(t) from a point of a(K) is less than e.
Hence, B(t) must be in U. Thus, B(K)< U. So pe W(K,U).
We get a € S(a,e) = W(K,U). So W(K,U) must be open in T'.
Then T = T', since T’ contains a subbase for T.
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Characterization of the Compact-Open Topology (T'< T)

o We show, next, that T'c T.
Let S(y,r) with center y and radius r >0 be a basic open set in T'.

To prove that S(y,r) is in T, it is sufficient to find a member of T
which contains y and is contained in S(y,r).

Let {U;} be a cover of X by open sets having diameters less than r.
Let n be a Lebesgue number for the open cover {y‘l(Uj)} of I.
Let
O=th<ti<---<th=1
be a subdivision of / with successive points differing by less than 7.

Then, for i=1,2,...,n, y maps each of the compact sets K; = [tj_1, tj]
into one of the open sets of the cover {Uj}.
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Characterization of the Compact-Open Topology (Cont'd))

o Choose such an open set, say Uj;, for each i.
Then
Y(K,')EU,', i=1,2,...,n.
Soyen, W(K;, U;). The set N7, W(K;,U;) is openin T.
So it suffices to show that it is contained in S(y,r).

Let Be N, W(K;, U;). Then p(y,B) cannot exceed the maximum of
the diameters of Uy,...,U,. Thus, p(y,B)<r. So Be S(y,r).

It follows that S(y,r) is openin T.
Now T contains T', since it contains a basis for T'.
Since we showed that T T/ and T'c T, weget T=T".

George Voutsadakis (LSSU) Algebraic Topology May 2024 24 /89



The Higher Homotopy Groups Equivalent Definitions of 7n(X,xg)

n-Homotopy Classes (Definition C)

Definition

Let X be a space with xg € X. Consider the set Q(X,xp) of loops in X
based at xp with the compact-open topology.

If n=2, the n-th homotopy group of X at xp is the (n—1)-st homotopy
group of Q(X,xp) at ¢, where c is the constant loop at xp.

Thus,

7'[2(X,X0) nl(Q(X,Xo),C),

nh-1(Q(X,x0), €).

ﬂn(X,Xo)
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Comments on the Definitions

o To understand homotopy theory, one must know all three definitions
and be able to apply the one that fits best in a given situation.

o Definitions A, B, and C of the higher homotopy groups are all
equivalent.

o The operation for Definition B has been designed expressly to show
that Definitions A and B describe isomorphic groups.

o We will discuss a comparison of Definitions A with C for n=2.

o The extension to higher values of n involves little more than writing
additional coordinates.
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Comparison of A with C for n=2

o Suppose a is a member of F(X,xp).
That is:

o a is a continuous map from the unit square /2 to X;
o a takes 8/2 to xp.

Then a determines a member @ of Q(Q(X,xp),c) defined by
a(t1)(t2) = a(t,, ), t, el

By continuity of a, each @(t1) is continuous from / into X.
Now (t1,0) and (t,1) are in 0/2.

So @(t1)(0) = a(t1)(1) =xo.

Thus, a(t1) € Q(X, xo).

Clearly, @(0) = @(1) is the constant loop ¢ whose only value is xp.
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Comparison of A with C for n=2 (Cont'd)

Claim: @ is continuous as a function from / into Q(X,xp).
Let W(K, U) be a subbasic open set in Q(X,xp).

As usual, K is compact in / and U is open in X.

Let t; e a Y(W(K,U)).

Then @(t1)(K) =a({ti} x K)c U.

But K is compact.

So there is open O in /, such that t; € O and a(O x K) < U.
Thus, t;e Oca Y (W(K,U)).

So @ 1(W(K,U)) is an open set and « is continuous.

Thus, each member of F2(X,xg) determines in a natural way a
member of Q(Q(X,xp),¢).
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Comparison of A with C for n=2 (Cont'd)

o We now reverse the process.
Start with a member @ of Q(Q(X,xp),¢).

Then @ determines a function a: /2 — X defined by

a(tl,tg):c’i(tl)(tg), (tl,t2)€/2.

We may show that a € Fo(X,xp).

In this way, we have established a one-to-one correspondence between
FQ(X,Xo) and .Q(.Q(X,Xo),c).
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Comparison of A with C for n=2 (Conclusion)

o Suppose that H:/? x| — X is a homotopy demonstrating the
equivalence of @ and B as prescribed in Definition A.

Consider the homotopy H: 1 x | —Q(X,xp), defined by
ﬁ(tl,s)(tz)ZH(tl,tz,S), t1,t,s€ /.

This demonstrates the equivalence of the loops @ and B.

The reverse argument shows that @ equivalent to B implies that a is
equivalent to B.

Thus, there is a one-to-one correspondence between homotopy classes
[a] of Definition A and homotopy classes [&] of Definition C.

Finally, the x operation in Definition A is completely determined in
the first coordinate.

Thus, for any @, B € F2(X,xp), [@x f] corresponds to [@ * B].
So the two definitions of 7m2(X,xp) lead to isomorphic groups.
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Subsection 3

Basic Properties and Examples
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Path Connectedness and n-Homotopy Groups

o The following three results can be proved by methods very similar to
those used to prove their analogues for the fundamental group.

Theorem

If the space X is path connected and xp and x; are points of X, then
7n(X,x0) is isomorphic to m,(X,x1), for each n=1.

@ As in the case of the fundamental group, when X is path connected,
we refer to the “n-th homotopy group of X" and write 7,(X), .

George Voutsadakis (LSSU) Algebraic Topology May 2024 32/89



The Higher Homotopy Groups  Basic Properties and Examples

Contractiblity, Products and n-Homotopy Groups

Theorem

If X is contractible by a homotopy that leaves xg fixed, then

n(X,x0) =1{0}, for each n=1.

Theorem

Let X and Y be spaces with points xg in X and yg in Y. Then, for all
n=1,

(X xY,(x0,¥0)) E7mn(X,x0) ®7n(Y,y0)-
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Contractible Spaces

o The following spaces are contractible, so each has n-th homotopy
group {0}, for each value of n:

(a) The real line;

(b) Euclidean space of any dimension;
(¢) An interval;

(d) A convex figure in Euclidean space.

o We saw that the fundamental group is usually difficult to determine.
o This is doubly true of the higher homotopy groups.

Example: The homotopy groups 7,(S") of the n-sphere have never
been completely determined. (The hard part is the case k > n.)

The groups mx(S"), for k < n, are computed in the following examples.
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The Groups mx(S") for k <n

Claim: For k < n, the k-th homotopy group 7x(S") is the trivial group.
Let [a] be a member of m,(S").
Consider a as a continuous map from (SK,1) to (S”,1).

Represent S and S” as the boundary complexes of simplexes of
dimensions k+1 and n+1, respectively.

By the Simplicial Approximation Theorem, a has a simplicial
approximation &' : SK — S", such that [a] = [@/].
Simplicial maps cannot map a simplex onto one of higher dimension.

Thus, a' is not onto.
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The Groups mx(S") for k < n (Cont'd)

o Let p be a point in S” which is not in the range of a'.
Then S™\{p} is contractible, since it is homeomorphic to R".
So the range of &’ is contained in a contractible space.
It follows that a’ is null-homotopic.
Thus,
[a] =[] =[c].
So 7, (S") is the trivial group whose only member is the class [c]
determined by the constant map.
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The Groups m,(S")

Claim: For n=1, the n-th homotopy group m,(S") is isomorphic to
the group Z of integers.

The case n=1 was considered previously.

Consider m,(S™), n=2, as the set of homotopy classes of maps
a:(5",1)—(S"1) as in Definition B.
Define p:7m,(S") — Z by

p([a]) = degree of @, [a] € my(S™).

Brouwer's Degree Theorem insures that p is well-defined.

By the Hopf Classification Theorem, it is one-to-one.

George Voutsadakis (LSSU) Algebraic Topology May 2024 37/89



The Higher Homotopy Groups  Basic Properties and Examples

The Groups m,(S") (Cont'd)

o The identity map i:(S",1) — (5",1) has degree 1.
The description of the x operation in Definition B shows that the map
iK=ixi%---xi (kterms)
has degree k.
Thus, [i] is a generator of m,(S").
Moreover, we have, for any positive integer k:
 p([1) = k
o p([I17%) =~k

It follows easily that p is an isomorphism.
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Fundamental Groups of Topological Groups

Let G be a topological group with identity element e. Then 71(G,e) is
abelian.

o The operation on G induces an operation - on the set Q(G,e) of loops
in G based at e defined by

a-B(t)=a(t)p(t), aPeQ(G,e), tel,

where the juxtaposition of a(t) and B(t) indicates their product in G.
This operation induces an operation o on 71(G,e):

[a]olp] = [a- Bl [al,[B] € m1(G,).
Let ¢ denote the constant loop at e.
Let [a] and [B] be members of 71(G,e).
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Fundamental Groups of Topological Groups (Cont'd)

o Observe the following.

5 a(2t)e = a(2t), ifo<t<l
(axc)-(exp)t) = {eﬁ(2t—1):ﬁ(2t—1), if l=t=1
_ ef(2t) = B(2t), ifo<st<l
(exa)-(exp)(®) = {a(2t—1)e:a(2t—1), ifler<l
This gives
(axc)-(cxB) = axp,
(cxa)-(Bxc) = Pxa.
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Fundamental Groups of Topological Groups (Cont'd)

o Then
[a]o[f] = [axpf]

= [(axc)-(cxp)]
= [axclofcxf]
= [cxa]o[f*]
= [(exa)-(bxc)]
= [Bxa]
= [pleo[a].

So m1(G,e) is abelian.

o Note that the operations o and o are precisely equal:

[a]o[B] = [a* f] =[(axc)-(c*p)] = [axc]o[cx f] = [a]o[A].
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Introducing Hopf Spaces

o Not all of the group properties were used in the proof of the preceding
theorem.

o The existence of a multiplication with identity element e is sufficient.
o In fact, even that assumption can be weakened.
o This motivates the definition of Hopf spaces.
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Hopf Spaces

An H-space or Hopf space is a topological space Y with a continuous
multiplication (indicated by juxtaposition) and a point yp in Y for which:

o The map defined by multiplying on the left by yq,
o The map defined by multiplying on the right by yg
are both homotopic to the identity map on Y by homotopies that leave yq
fixed.
In other words, there exist homotopies L and R from Y x [ into Y/, such
that, for all y in Y and ¢t in [:
L(y,0)=yoy, L(y,1)=y, L(yo,t)=y0;
R(y,0)=yyo, R(y,1)=y, R(yo,t)=yo.

The point yq is called the homotopy unit of Y.
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Example of a Hopf Space

o Let X be a space and xp a point of X.
The loop space Q(X,xp) with the compact-open topology is an
H-space.
o The multiplication is the % operation;
o The homotopy unit is the constant map c.

The required homotopies L and R are defined for a in Q(X,xp) and s

in | by
X0, fOo<st<Lls
e s)(e) = {ao(zt:fl_l), |f%st521
2t 2 s+1
a(=), fO0st=<==
R(a,s)(t) = {Xo(,m) iy

We can show that the multiplication * and the homotopies L and R
are continuous with respect to the compact-open topology.
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Fundamental Groups of

H-Spaces

Basic Properties and Examples

Let Y be an H-space with homotopy unit yp. Then m1(Y,yo) is abelian.

o The operation on Y induces an operation - on Q(Y,y):

a-B(t) = a(t)p(t),

a,BeQ(Y,n) tel.

This operation induces an operation o on m1(Y,yp):

[a]olB] =

(axc)-(cxp)(t)

(cxa)-(Bxc)(t)

George Voutsadakis (LSSU)

[a-pl,  [a].[B] € m1(Y, y0)-

Letting ¢ denote the constant loop at yy,

{ a(2t)yo,
yoB(2t-1),

_ { Yop(2t),
a(2t = l)yo,

Algebraic Topology

if0<t<

1

ﬁ§sts
t
t
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Fundamental Groups of H-Spaces (Cont'd)

@ Now multiplication on the left by yo and multiplication on the right by
Yo are both homotopic to the identity map on Y.

So we obtain

[(axc)-(cxp)l=[axpl, [(cxa) (Bxc)]=[p*a]
Thus,

[ax f]

= [(axc)-(cxp)]
= [(exa)-(B*c)]
= [f*a

= [Ble]al.

o It follows, as before, that the operations o and o are equal.

[a] (6]
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Commutativity of Higher Homotopic Groups

The higher homotopy groups 7,(X,xp), n=2, of any space X are abelian.

o Q(X,xp) is an H-space with the constant loop ¢ as homotopy unit.

Hence, the second homotopy group
7T2(X,X0) =7t1(Q(X,X0),C)

is abelian.

Proceeding inductively, suppose that, for every space Y, the (n—1)-st
homotopy group m,-1(Y, ) is abelian.

Then
7'[,,(X,Xo) = nn_l(Q(X,Xo),C)

must be abelian.
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The Induced Homomorphism f,

Let 7:(X,x0) — (Y,y0) be a continuous map on the indicated pairs. If
[a] € mh(X,x0), n=1, then the composition fa: /" — Y is a continuous

map which takes 8/” to yp. So fa represents an element [fa] in m,(Y,y0).
Thus, f induces a function £, : w,(X,x0) — wn(Y,y0), defined by

f([a]) =[fa], [a]emn(X,x0).
The function f, is the homomorphism induced by f in dimension n.

@ To be very precise we should refer to £, indicating the dimension n,
but the dimension becomes known from the subscripts on the
homotopy groups involved.

o We can show that f, is a well-defined homomorphism.
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Compositionality of Induced Homomorphisms

Theorem

(a) If £:(X,x0)—(Y,y) and g:(Y,y0) — (Z,2z) are continuous maps on
the indicated pairs, then the induced homomorphism (gf). is the
composite map

g«fx :7mn(X,x0) = mn(Z, 2p)
in each dimension n.

(b) If h:(X,x0) = (Y,y0) is a homeomorphism, then the homomorphism
h. induced by h is an isomorphism for each value of n.

(a) If [a] emn(X,x0), then
(&f)«([a]) = [gf a] = g« ([ a]) = g+ F+ ([al)-

So (gf )« = gufs.
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Compositionality of Induced Homomorphisms (Cont'd)

(b) Suppose that h™1: (Y,y0) — (X, xo) is the inverse of h.
Then for [a] in 7,(X,x0),

(h™)+h.([a]) = [h™"ha] = [a].

So (h71). h, is the identity map on 7,(X,xo).
By symmetry, h.(h™1), is the identity map on 7,(Y,y0).

So h, is an isomorphism.
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Covering Spaces and Induced Homomorphisms

o We saw that a covering projection p: E — B induces a monomorphism
(i.e., a one-to-one homomorphism)

ps :m1(E) — m1(B).

Theorem

Let (E,p) be a covering space of B. Let ey in E and by in B be points
such that p(ep) = byp. Then the induced homomorphism

p* :nn(EreO) _’”n(B: bO)

is an isomorphism for n= 2.
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Covering Spaces and Induced Homomorphisms (Cont'd)

Claim: ps is onto.

Consider an element [a] in 7,(B, bp).

Think of a as a continuous map from (S5”,1) to (B, by), where 1 is
used as the base point of S” to avoid confusion with the number 1.
Since n=2, the fundamental group 71(S",1) is trivial.

Hence, for a, the homomorphism induced by a on nl(S”,I),

a.m1(S",1) =10} < p.71(E, e).

By a preceding theorem, a has a continuous lifting
@:(S5"1)— (E,e), such that
pa =a.
Then @ determines a member [@] in 7,(E,ep) for which
p«([a]) = [pa] = [a].
So p. maps 7m,(E,ey) onto m,(B, bp).
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Covering Spaces and Induced Homomorphisms (Cont'd)

Claim: ps is one-to-one.

Suppose that [fB] belongs to its kernel.

l.e., assume p.([B]) = [pB] = [c], with ¢ constant, c(5") = by.
As maps from (5",1) to (B, bg), pB and c are equivalent.
So there is a homotopy H:S" x | — B satisfying

H(t,0) = pp(t), H(t,1)=bo, teS",
H(I,S)=bo, sel.

The fundamental group m1 (5" x/, (1,0)) is trivial, since n>2.

So there exists a lifting H: 5" x | — E, with pH = H, H(1,0) =

Subclaim (To be proven in the next slide): The lifted homotopy H is a
homotopy between 8 and the constant map d(S") = ep.

Then [B] =[d] is the identity element of 7,(E,ep).

Thus, the kernel of p. contains only the identity element of 7,(E,ep).
This shows that p, is one-to-one.
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Covering Spaces and Induced Homomorphisms (Cont'd)

Subclaim: The lifted homotopy H is a homotopy between f and the
constant map d(5") = e.
Observe first that pH(-,0) = pB, H(1,0) = B(1).
By a previous corollary, H(-,0) = f, since S" is connected.
The same argument shows that H(:,1) = d.
It remains to be seen that H(1,s) = e, for each s in /.
The path H(1,-): I — E has initial point ey and covers ¢ = H(T,).
But the unique covering path of ¢ which begins at ¢ is the constant
path at ey, H(1,s)=ep, s€l.
Thus, H: 5" x| — E is a homotopy such that
H(,0)=8, H(,1)=d,

H(l,s)=e, sel.
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Example

o Consider the universal covering space (IR, p) of the unit circle St.
By the preceding theorem,

ps i n(R) = mn(S)

is an isomorphism for n = 2.

But all the homotopy groups of the contractible space R are trivial.
So
mn(SY) =10, n=2.
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Example

o Consider the double covering (5", p) over projective n-space P".
By the preceding theorem,

a(P") =2 m(S"), k=2, n=2.

By a previous example,

112

Tn(STV2Z, nz2.

Therefore, we have

11

tn(P")2Z, n=2.
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Subsection 4

Homotopy Equivalence
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Homotopy Equivalent Spaces

o Homotopy equivalence is a relation between topological spaces.
o It is a weaker relation than homeomorphism.

@ On the other hand, it is strong enough to ensure that equivalent
spaces have isomorphic homotopy groups in corresponding dimensions.

Let X and Y be topological spaces. Then X and Y are homotopy
equivalent or have the same homotopy type provided that there exist
continuous maps f: X — Y and g: Y — X for which the composite maps
gf and fg are homotopic to the identity maps on X and Y, respectively.
The map f is called a homotopy equivalence, and g is a homotopy

inverse for f.

o Homeomorphic spaces are homotopy equivalent.
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Homotopy Equivalence is an Equivalence Relation

Theorem

The relation “X is homotopy equivalent to Y" is an equivalence relation for
topological spaces.

o The relation is reflexive since the identity map on any space X is a
homotopy equivalence.

The symmetric property is implicit in the definition: Both f and g are
homotopy equivalences and each is a homotopy inverse for the other.

For transitivity transitive, let f: X — Y and h: Y — Z be homotopy
equivalences with homotopy inverses g: Y - X and k: Z—- Y,
respectively. We must show that X and Z are homotopy equivalent.

The most likely candidate for a homotopy equivalence between X and
Z is hf, with gk as the leading contender for homotopy inverse.
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Homotopy Equivalence is an Equivalence Relation (Cont'd)

o Let L: Y xI— Y be a homotopy such that

L(0) = kh;
L(-1) = iy.

Consider the map M: X x | — X, defined by
M(x,t) = gL(f(x),t), (

x,t)e X x|I.
M is a homotopy, such that

M(-,0) = gL(f(-),0 )=(gk)(hf)
M(,1) = el(f(:).1)=

So (gk)(hf) is homotopic to gf. Hence, it is homotopic to ix
Similarly, (hf)(gk) is homotopic to the identity on Z

So X and Z are homotopy equivalent
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Example

Claim: A circle and an annulus are homotopy equivalent.

Consider the unit circle St
and the annulus '

gy
A={y€]R2:1S|y|52}. "1_

=g~ ¢
I

A homotopy equivalence f: S* — A and homotopy inverse g : A— S?
are defined by f(x) =x, x€ S* and g(y) = IyI y€eA.

Then gf is the identity map on S'. Moreover fg(y) = |y| y€eA.
The required homotopy between fg and the identity on A is given by

H(y,t)=ty+(1- t)%.
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Homotopy Type of a Contractible Space

Theorem

A space X is contractible if and only if it has the homotopy type of a one
point space.

@ Suppose X is contractible with homotopy H : X x | — X and point xq
in X, such that

H(x,0)=x, H(x,1)=x9, xeX.

Then X is homotopy equivalent to the singleton space {xg}.

The homotopy equivalence f: X — {xp} and homotopy inverse
g : {xo} — X are defined by

f(x) = x, xeX;
g(xo)

X0-
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Homotopy Type of a Contractible Space (Cont'd)

o Suppose, conversely, that f: X — {a} is a homotopy equivalence
between X and the one point space {a}, with homotopy inverse
g:{a— X.

Then there is a homotopy K between gf and the identity map on X.

Moreover, by definition,

K(x,0)
K(x,1)

X

gf(x)=g(a), xeX.

Thus, the homotopy K is a contraction.

So the space X is contractible.
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Homotopy Equivalence and Deformation Retracts

If X is a space and D a deformation retract of X, then D and X are
homotopy equivalent.

o There is a homotopy H: X x I — X, such that

H(x,0)=x, H(x,1)eD, xelX,
H(a,t)=a, a€eD, tel.

Let f: D — X denote the inclusion map f(a) = a.
Define g: X — D by

g(x)=H(x,1), xeX.
Then gf is the identity map on D.
H is a homotopy between fg and the identity on X.

Thus, f is a homotopy equivalence, with homotopy inverse g.
George Voutsadakis (LSSU) Algebraic Topology May 2024 64 /89



The Higher Homotopy Groups Homotopy Equivalence

Homotopy Equivalence Between Pointed Spaces

Let X and Y be spaces with points xg in X and yp in Y. Then the pairs

(X,x0) and (Y, y0) are homotopy equivalent or of the same homotopy
type means that there exist continuous maps

f:(XrXO)_'(Y!yO) and gZ(Y,yo)—'(X,Xo)

for which the composite maps gf and fg are homotopic to the identity
maps on X and Y, respectively, by homotopies that leave the base points
fixed. In other words, it is required that there exist homotopies
H:XxI— X and K:Y x| —Y, such that

H(x,0)=gf(x), H(x,1)=x, H(xo,t)=x0, x€X, tel,
K(y,0)=fg(y), K(v,1)=y, K(Oo.t)=yo, yevY, tel.

The map f is called a homotopy equivalence with homotopy inverse g.
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Pointed Homotopy Equivalence is an Equivalence

Theorem

Homotopy equivalence between pairs is an equivalence relation.

o The proof is similar to the that of the theorem on homotopy
equivalence of topological spaces.
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Homotopy Equivalence and Induced Homomorphisms

Theorem

If the map 7 :(X,xp) — (Y, y0) is a homotopy equivalence between the
indicated pairs, then the induced homomorphism

fo :mn(X,x0) = (Y, y0)
is an isomorphism for each positive integer n.

o Let g:(Y,y)— (X,x0) be a homotopy inverse for f.

Let H a homotopy between gf and ix, which leaves xq fixed.
Let [a] € mn(X, X0).

Consider a as a function from /™ to X, such that

a(01™) = xo.
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Homotopy Equivalence and Homomorphisms (Cont'd)

o Define a homotopy K: /" x| — X by
K(t,s)=H(a(t),s), tel", sel.

Then
K(-,0)=gfa, K(,1)=a,
K(01" x 1) = H({xo} x I) = xo.

So [gfa] =[a].

This means that g, f.[a] =[a].

So g, is a left inverse for f,.

But f is a homotopy inverse for g.

So, by symmetry, g, is also a right inverse for f,.

So f, is an isomorphism.
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Homotopy Equivalence and Homomorphisms (Cont'd)

o The preceding theorem can be strengthened to show that a homotopy
equivalence f: X — Y with f(xp) = yp induces an isomorphism between

(X, x0) Z7wn(Y,y0), for each n.

@ The proof is more complicated because the homotopies may not leave
the base points fixed.
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Subsection 5

Homotopy Groups of Spheres
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Introduction

(~]

The homotopy groups 7x(S") are not completely known.

@ Previous examples have shown that
7 (S") =10} k<n, m(SY)=10}, k>1, m,(S")=Z.

o It may seem natural to conjecture that m,(S") is trivial for k > n,
since the corresponding result holds for the homology groups.

This would simply mean that every continuous map f : Sk — S where
k > n is homotopic to a constant map.

(4]

(~]

However, this is not true.
Hopf showed, in 1931, that 73(S?) is not trivial.

We examine some examples.

(~]

(7]
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The Hopf map p: S — S?

o Let C denote the field of complex numbers.

o Consider S3, the unit sphere in Euclidean 4-space, as a set of ordered
pairs of complex numbers, each pair having length 1:

S3={(z1,22) €Cx C: |z [P+ |z = 1.
o Define an equivalence relation = on S3 by
(21,22) = (1, 2)

if and only if there is a complex number A of length 1 such that
(z1,22) = (A2}, AZ)).
o For (z1,22) in S3, let (z1,20) denote the equivalence class of (z1,2).
o Let
T={z1,22): (z1,22) € S3
be the set of equivalence classes.
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The Hopf map p: S® — 52 (Cont'd)

(*]

Let p: S3— T be the projection map
p(z1,22) =(z1,23), (z21,22) €S>

Assign T the quotient topology determined by p.
l.e., a set O is open in T provided that p=(0) is open in S3.
the inverse image p~1((z1,22)), called the fiber over (z;,z).

For (z1,25) in T, the fiber over (z1,2), is a circle in S3.

© 6 6 o o

We pursue the following strategy.

o Show that T is homeomorphic to 52

o Use the homeomorphism to replace T by §2;

o Obtain the Hopf map p: S3 — 52
Strictly speaking, the Hopf map is the map hp: S3 — S2, where
h: T — S? is the homeomorphism whose existence we must show.

(7]
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The Hopf map p: S® — 52 (Cont'd)

o Consider the unit disc D in C,

D={zeC:|z| <1}

(4]

The 2-sphere is the quotient space of D obtained by identifying the
boundary of D to a point.

We show T satisfies the same description.
Consider the map f: D — T, defined by

(~]

(~]

f(z)=/1-1z1%,2z), zeD.

(4]

Then f is a closed, continuous map.
For (z1,z0) in T,

f1((z1,22))

(~]

{zeD:(z1,20) =(/1—-1zI2,2)}

{zeD:\/1-|z12=Az;,z= Az, for some Ae S1}.
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The Hopf map p: S® — 52 (Cont'd)

o We got

f 1z, 20)) = {ze D:\/1-|z|>=Az,z= Az, for some A€ 51}.

o We distinguish two cases:
o Suppose z1 #0.

The equations above imply Az; =|z1|. So A= Izll.
Thus, f~ ((21,22>) is a single point.
o Suppose z; =0. Then
fz,z)) = 1(0,2)
= {zeD:\/1-1z2=0,z= A, for some 1€ 51}
= SL

So f‘l((0,22)) is the boundary of D.
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The Hopf map p: S® — 52 (Cont'd)

(*]

Using f as quotient map, T is the quotient space of D obtained by
identifying the boundary S to a point.

(~]

Then T is homeomorphic to S2.

(~]

So we replace T by S? and have the Hopf map p:S3 — S2.

(4]

Showing that p is not homotopic to a constant map requires more
background than we have developed.

@ So we only sketch the basic idea.
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The Hopf map p: $® — 52 (Conclusion)

o Let H:S3x/— S? be a homotopy between p and a constant map.

@ The Hopf map is not a covering projection.

o But it is close enough to permit a covering homotopy H:S3 x | — §2,
s3

P

Ry
' TH

o The map H is a homotopy between the identity map on S3 and a
constant map.

o But this implies that S3 is contractible, an obvious contradiction.
o Thus p is not homotopic to a constant map.
o So 73(S?) #1{0}.
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The Hopf maps S” — S* and S*° — S8

o We switch to the division ring Q of quaternions.
o We represent S”, the unit sphere in Euclidean 8-space, as ordered
pairs of members of Q,
" ={(z21,2) € Q: lz1l? + 1 2” = 1.
o The quotient space T in this case is the quotient space of the unit disc
D={zeQ:|zll =1}
obtained by identifying the boundary of D to a single point.
@ Now D has real dimension four.
o So this quotient space is homeomorphic to S*.
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The Hopf maps S” — S* and S*° — S8 (Cont'd)

o The Hopf map
p:S"T— 54
with fiber S3 is then defined as in the preceding example.
o This map shows that 77(S%) # {0}.

o In E' one can perform a similar construction by representing the unit
sphere S'° as ordered pairs of Cayley numbers.

o This produces the Hopf map p: S'® — 5% with fiber S7.
o It shows that m15(S%) # {0}.

George Voutsadakis (LSSU) Algebraic Topology May 2024 79 /89



The Higher Homotopy Groups Homotopy Groups of Spheres

Suspension Homomorphism

(*]

There is for each pair k, n of positive integers a natural homomorphism
E: nk(S") = ﬂk+1(5n+1)

called the suspension homomorphism.

o Consider 7x(S™) as homotopy classes of maps from (Sk,1) to (57,1),
where we denote the base point of each sphere by 1.

o Consider S™ as the subspace of S™! consisting of all points of S"*1
having last coordinate 0.

o In this identification, S" is usually called the “equator” of S"*1.

o Continuing this geographical metaphor:

o The point (0,...,0,1) is called the “north pole”;
o The point (0,...,0,—1) of S$m*1 s called the “south pole”.
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The Suspension

o Suppose that [a] € 74 (S").
o Then a is a continuous map from S¥ to S”.

o Extend a to a continuous map @: S¥*1 — S"*1 as follows.

o @|gk is just @, and maps the equator of Sk*1 t6 the equator of S"+1,
We require that @ map the north pole of Sk*1 to the north pole of
5$"*1 and the south pole of S¥*1 to the south pole of S™*1.

The function is then extended
radially as in the figure.

o The arc from the north pole to
a point x in SX is mapped
linearly onto the arc from the
north pole of S"*! to a(x). e s

This defines a on the “northern hemisphere”.
o The “southern hemisphere” is treated the same way.

The extended map @ is called the suspension of a.
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The Freudenthal Suspension Theorem

o The suspension homomorphism E is defined by
E([a])=[a], [a]emk(S").

Claim: E is a homomorphism.

Theorem (The Freudenthal Suspension Theorem)

The suspension homomorphism
E:mi(S™) — mpsr(S™1)

is an isomorphism for k <2n—1 and is onto for k<2n-1.
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A Consequence of the Suspension Theorem

Corollary

The homotopy groups 7x(S") are trivial for k < n.

o For any positive integer r < k, we have k+r+1<2n.
Hence, k—r<2(n—-r)-1.
Then
m(S") Empy (ST = 2y (ST
Now note that, for k <n, we have n—k+1>1.
Therefore, 71(S"~**1) is trivial.

So its isomorphic image m,(S") is also trivial.
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Another Consequence of the Suspension Theorem

Corollary

The homotopy groups 7,(S"), n=1, are all isomorphic to the group Z of
integers.

o We rely on our previous arguments to show that
N ELACHEY/
m1(S7) = m2(S7) = Z.

If n=2, then n<2n-1.

The Freudenthal Suspension Theorem shows that

m2(S?) = m3(S3) = ma(SY) = =mp(ST).
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Subsection 6

The Relation Between H,(K) and 7,(IK])
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The Hurewicz Isomorphism Theorem

o The last theorem of this chapter shows a relationship between the
homology groups and the homotopy groups of polyhedra.

Theorem (The Hurewicz Isomorphism Theorem)

Let K be a connected complex and n=2 a positive integer. If the first n—1
homotopy groups of |K| are trivial, then H,(K) and 7,(|K]) are isomorphic.
Example: Consider the n-sphere S”, for n>2.
We know that m,(S") = {0}, for k<n.

So, by the Hurewicz Isomorphism Theorem,

n(S") = Ha(S") = Z.
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Comment on Classification

@ The homotopy groups do not provide for general topological spaces
the type of classification already given for 2-manifolds and for covering
spaces.

o There are examples of spaces X and Y which have isomorphic
homotopy groups in each dimension but which are not homotopy
equivalent (and therefore not homeomorphic).

o The induced homomorphism f : ,(X) — m,(Y) has been successful
in classifying the homotopy type of spaces known as “CW-complexes”.

o These spaces can be used to approximate arbitrary topological spaces.
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Non-Homeomorphic Spaces

o Although the homotopy groups have not been completely successful in
showing when spaces are homeomorphic, they are extremely useful in
showing when spaces are not homeomorphic.

@ To show that X and Y are not homeomorphic, compute the homotopy
groups ,(X) and m,(Y).

o If my(X) is not isomorphic to m,(Y), for some n, then X and Y are
not homeomorphic.

o The same method can be used with the homology groups.
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Example

(4]

Recall that the Poincaré Conjecture asserts that every simply
connected 3-manifold is homeomorphic to S3.

Our work on homotopy groups shows that the corresponding
conjecture in dimension four is false.

(4]

The 4-manifold S2 x 52 is simply connected.

(~]

o However, we have
m2(S?xS%)=ZeZ and 7wy (S*) =10}

So 52 x 52 is not homeomorphic to S*.

(~]
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