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The Higher Homotopy Groups Introduction

2-Dimensional Loops: 1st Definition

We consider in an intuitive way the possible methods of defining the
second homotopy group π2(X ,x0) of a space X at a point x0 in X .

Recall that π1(X ,x0) is the set of homotopy classes of loops in X

based at x0.

We would like to define a “2-dimensional loop”.

A “1-dimensional loop” is a continuous map α : I →X for which the
boundary points 0 and 1 have image x0.

We might then define a 2-dimensional loop to be a continuous map
β : I × I →X from the unit square into X which maps the boundary of
the square to x0.
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The Higher Homotopy Groups Introduction

2-Dimensional Loops: 2nd Definition

From a slightly different point of view, we can consider a loop α in X

as a continuous map from S1 to X which takes 1 to x0.

This follows from the observation that the quotient space of the unit
interval I obtained by identifying 0 and 1 to a single point is simply S1.

Thus, another possible definition of 2-dimensional loop is a continuous
map from the 2-sphere S2 into X .

Both of the preceding definitions of 2-dimensional loop generalize to
higher dimensions by considering higher dimensional cubes and
spheres.
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The Higher Homotopy Groups Introduction

2-Dimensional Loops: 3rd Definition

There is a third possibility.

Perhaps a 2-dimensional loop should be a “loop of loops”.

That is to say, perhaps a 2-dimensional loop should be a function β,
having domain I , such that:

Each value β(t) is a loop in X ;
β(0)=β(1).

To carry out this idea, we must define a topology on the set Ω(X ,x0)
of loops in X with base point x0.

Once this topology is determined, one can define π2(X ,x0) to be the
fundamental group of Ω(X ,x0).

Remarkably, all three approaches lead to the same group π2(X ,x0).
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

Subsection 2

Equivalent Definitions of πn(X ,x0)
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

The n-Cube

If n is a positive integer, the symbol I n denotes the unit n-cube

I n = {t = (t1,t2, . . . ,tn) ∈R
n : 0≤ ti ≤ 1, for each i }.

∂I n, called the boundary of I n, denotes its point set boundary

∂I n = {t = (t1,t2, . . . ,tn) ∈ I
n : some ti is 0 or 1}.

Note that the boundary symbol ∂ must not be confused with the
boundary operator of homology theory.
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

n-Homotopy Classes (Definition A)

Definition A

Let X be a space and x0 a point of X .
For a given positive integer n, consider the set Fn(X ,x0) of all continuous
maps α from the unit n-cube I n into X for which α(∂I n)= x0.
Define an equivalence relation ∼x0 on Fn(X ,x0) as follows:

For α and β in Fn(X ,x0), α is equivalent modulo x0 to β, written
α∼x0 β, if there is a homotopy H : I n× I →X , such that

H(t1, . . . ,tn,0) = α(t1, . . . ,tn),

H(t1, . . . ,tn,1) = β(t1, . . . ,tn), (t1, . . . ,tn) ∈ I
n,

H(t1, . . . ,tn,s) = x0, (t1, . . . ,tn) ∈ ∂I n,s ∈ I .
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

n-Homotopy Classes (Definition A Cont’d)

Definition A (Cont’d)

In shorter form the requirements on the homotopy H are

H(·,0)=α, H(·,1)=β,

H(∂I n × I )= x0.

Under this equivalence relation on Fn(X ,x0) the equivalence class
determined by α is denoted [α] and called the homotopy class of α

modulo x0 or simply the homotopy class of α.
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

The n-th Homotopy Group

Definition

Define an operation ⋆ on Fn(X ,x0) as follows:

For α,β in Fn(X ,x0),

α⋆β=

{
α(2t1,t2, . . . ,tn), if 0≤ t1 ≤

1
2

β(2t1−1,t2, . . . ,tn), if 1
2
≤ t1 ≤ 1

Note that the ⋆ operation is completely determined by the first coordinate
of the variable point (t1, . . . ,tn) and that the continuity of α⋆β follows
from the Continuity Lemma.
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

The n-th Homotopy Group (Cont’d)

Definition (Cont’d)

The ⋆ operation induces an operation ◦ on the set of homotopy classes of
Fn(X ,x0):

[α]◦ [β]= [a⋆β].

With this operation, the set of equivalence classes of Fn(X ,x0) is a group.
This group is called the n-th homotopy group of X at x0 and is denoted
by πn(X ,x0).
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

Details Needing Verification

As in the case of the fundamental group, the definition requires that
some details be verified:

(1) The relation ∼x0 is an equivalence relation on Fn(X ,x0).
(2) The operation ⋆ determines the operation ◦ completely.

In other words, if α∼x0 α
′ and β∼x0 β

′, then α⋆β∼x0 α
′
⋆β′.

(3) With the ◦ operation, πn(X ,x0) is actually a group.

Its identity is the class [c] determined by the constant map c(In)= x0.

The inverse [α]−1 of [α] is the class [α], where α, called the reverse of

α, is defined by

α(t1,t2, . . . ,tn)=α(1− t1,t2, . . . ,tn), (t1,t2, . . . ,tn)∈ I
n

.

The definition of πn(X ,x0) is completely analogous to that of
π1(X ,x0) except for the extra coordinates.

So the proofs of these facts are similar to those for π1(X ,x0).
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

n-Homotopy Classes (Definition B)

The quotient space of I n obtained by identifying ∂I n to a point is
homeomorphic to the n-sphere Sn.

Assume that the point of identification is the point 1= (1,0, . . . ,0) of
Sn having first coordinate unity and all other coordinates zero.

Then πn(X ,x0) can be defined in terms of maps from

(Sn
,1)→ (X ,x0)

as detailed in the next slide.
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

n-Homotopy Classes (Definition B Cont’d)

Definition

For a given positive integer n, consider the set Gn(X ,x0) of all continuous
maps α from Sn to X , such that α(1)= x0. Define an equivalence relation
on Gn(X ,x0) in the following way:

For α,β in Gn(X ,x0), α is equivalent modulo x0 to β, written
α∼x0 β, if there is a homotopy H : Sn× I →X , such that

H(·,0)=α, H(·,1)=β,

H(1,s)= x0, s ∈ I .

The equivalence class [α] determined by α is called the homotopy class of

α. The set of homotopy classes is denoted by πn(X ,x0).
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

Equivalence of Definitions A and B

Recall the discussion preceding the definition.

There is a natural one-to-one correspondence between Fn(X ,x0) and
Gn(X ,x0) under which a map α in Gn(X ,x0) corresponds to the map

α′
=αq,

where q is the map from I n to Sn which identifies ∂I n to the point 1.

Two members α and β in Gn(X ,x0) are equivalent modulo x0 if and
only if their counterparts α′ and β′ are equivalent in Fn(X ,x0).

Thus, Definitions A and B give equivalent definitions of the set
πn(X ,x0).

The elements [α] are usually more easily visualized in terms of
Definition B.
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

The Operation ◦ in Definition B

The ◦ operation for Definition B is defined in terms of the
identification of I n to Sn.

Let α,β ∈Gn(X ,x0).

The identification map q takes the sets

A = {(t1, . . . ,tn) ∈ I
n : t1 ≤

1
2

},

B = {(t1, . . . ,tn) ∈ I
n : t1 ≥

1
2

}

to hemispheres A′ and B ′, respectively, of Sn.

Their intersection A′∩B ′ = q(A∩B) if homeomorphic to Sn−1.

George Voutsadakis (LSSU) Algebraic Topology May 2024 17 / 89



The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

The Operation ◦ in Definition B (Cont’d)

Imagine that A′∩B ′ is identified to the base point 1 by an
identification map r .

The resulting space consists of two n-spheres tangent at their common
base point.

The product α⋆β is now defined by

α⋆β(x)=

{
αr(x), if x ∈A′

βr(x), if x ∈B ′

The group operation ◦ is defined by [α]◦ [β]= [α⋆β].
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

The Compact-Open Topology

Definition

Let F be a collection of continuous functions from a space Y into a space
Z . Suppose:

K is a compact subset of Y ;

U is an open subset of Z .

Define
W (K ,U)= {α ∈F :α(K )⊆U}.

The family of all such sets W (K ,U), as K ranges over the compact sets in
Y and U ranges over the open sets in Z , is a subbase for a topology for F .
This topology is called the compact-open topology for F .
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

The Compact-Open Topology for Ω(X ,x0)

Since we shall apply the compact-open topology only to the set of
loops in a space X , we repeat the definition for this case.

Definition

Let X be a space and x0 a point of X . Consider the set Ω(X ,x0) of all
loops in X with base point x0. If K is a compact subset of I and U is open
in X , let

W (K ,U)= {α ∈Ω(X ,x0) :α(K )⊆U}.

The family of all such sets W (K ,U), where K is compact in I and U is
open in X , is a subbase for a topology for Ω(X ,x0). This topology is the
compact-open topology for Ω(X ,x0). Note that basic open sets in this

topology have the form
r⋂

i=1

W (Ki ,Ui), where K1, . . . ,Kr are compact sets in

I and U1, . . . ,Ur are open in X . A loop a belongs to this basic open set if
and only if α(K1)⊆Ui , for each i = 1,2, . . . ,r .
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

Characterization of the Compact-Open Topology

Theorem

If X is a metric space, the compact-open topology for Ω(X ,x0) is the same
as its topology of uniform convergence.

Let d denote the metric on X .
Recall that the topology of uniform convergence on Ω(X ,x0) is
determined by the metric ρ defined as follows:

If α and β are in Ω(X ,x0), then ρ(α,β) is the supremum (or least
upper bound) of the distances from α(t) to β(t) for t in I :

ρ(α,β)= sup {d(α(t),β(t)) : t ∈ I }.

Then the topology of uniform convergence has as a basis the set of all
spherical neighborhoods

S(α,r)= {β ∈Ω(X ,x0) : ρ(α,β)< r },

where α ∈Ω(X ,x0) and r is a positive number.
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

Characterization of the Compact-Open Topology (T ⊆T ′)

Let T denote the compact-open topology on Ω(X ,x0).

Let T ′ denote the topology of uniform convergence on Ω(X ,x0).

We show, first, that T ⊆T ′.

Let W (K ,U) be a subbasic open set in T , where K is compact in I

and U is open in X . Let α ∈W (K ,U).

The compact set α(K ) is contained in U .

So, there is a positive number ǫ, such that any point of X at a
distance less than ǫ from α(K ) is also in U .

Consider the basic open set S(α,ǫ) in T ′.

If β ∈ S(α,ǫ), then for each t in K , d(α(t),β(t))< ǫ.

Thus, the distance of β(t) from a point of α(K ) is less than ǫ.

Hence, β(t) must be in U . Thus, β(K )⊆U . So β ∈W (K ,U).

We get α ∈ S(α,ǫ)⊆W (K ,U). So W (K ,U) must be open in T ′.

Then T ⊆T ′, since T ′ contains a subbase for T .
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

Characterization of the Compact-Open Topology (T ′ ⊆T )

We show, next, that T ′ ⊆T .

Let S(γ,r) with center γ and radius r > 0 be a basic open set in T ′.

To prove that S(γ,r) is in T , it is sufficient to find a member of T
which contains γ and is contained in S(γ,r).

Let {Uj } be a cover of X by open sets having diameters less than r .

Let η be a Lebesgue number for the open cover {γ−1(Uj)} of I .

Let
0= t0 < t1 < ·· · < tn = 1

be a subdivision of I with successive points differing by less than η.

Then, for i = 1,2, . . . ,n, γ maps each of the compact sets Ki = [ti−1,ti ]
into one of the open sets of the cover {Uj }.
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

Characterization of the Compact-Open Topology (Cont’d))

Choose such an open set, say Ui , for each i .

Then
γ(Ki )⊆Ui , i = 1,2, . . . ,n.

So γ ∈
⋂n
i=1

W (Ki ,Ui). The set
⋂n
i=1

W (Ki ,Ui) is open in T .

So it suffices to show that it is contained in S(γ,r).

Let β ∈
⋂n
i=1

W (Ki ,Ui). Then ρ(γ,β) cannot exceed the maximum of
the diameters of U1, . . . ,Un. Thus, ρ(γ,β)< r . So β ∈ S(γ,r).

It follows that S(γ,r) is open in T .

Now T contains T ′, since it contains a basis for T ′.

Since we showed that T ⊆T ′ and T ′ ⊆T , we get T =T ′.
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

n-Homotopy Classes (Definition C)

Definition

Let X be a space with x0 ∈X . Consider the set Ω(X ,x0) of loops in X

based at x0 with the compact-open topology.
If n ≥ 2, the n-th homotopy group of X at x0 is the (n−1)-st homotopy
group of Ω(X ,x0) at c , where c is the constant loop at x0.
Thus,

π2(X ,x0) = π1(Ω(X ,x0),c),

...
πn(X ,x0) = πn−1(Ω(X ,x0),c).
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

Comments on the Definitions

To understand homotopy theory, one must know all three definitions
and be able to apply the one that fits best in a given situation.

Definitions A, B, and C of the higher homotopy groups are all
equivalent.

The operation for Definition B has been designed expressly to show
that Definitions A and B describe isomorphic groups.

We will discuss a comparison of Definitions A with C for n= 2.

The extension to higher values of n involves little more than writing
additional coordinates.
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

Comparison of A with C for n = 2

Suppose α is a member of F2(X ,x0).

That is:

α is a continuous map from the unit square I 2 to X ;
α takes ∂I 2 to x0.

Then α determines a member α̂ of Ω(Ω(X ,x0),c) defined by

α̂(t1)(t2)=α(t1,t2), t1,t2 ∈ I .

By continuity of α, each α̂(t1) is continuous from I into X .

Now (t1,0) and (t1,1) are in ∂I 2.

So α̂(t1)(0)= α̂(t1)(1)= x0.

Thus, α̂(t1) ∈Ω(X ,x0).

Clearly, α̂(0)= α̂(1) is the constant loop c whose only value is x0.
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

Comparison of A with C for n = 2 (Cont’d)

Claim: α̂ is continuous as a function from I into Ω(X ,x0).

Let W (K ,U) be a subbasic open set in Ω(X ,x0).

As usual, K is compact in I and U is open in X .

Let t1 ∈ α̂−1(W (K ,U)).

Then α̂(t1)(K )=α({t1}×K )⊆U .

But K is compact.

So there is open O in I , such that t1 ∈O and α(O ×K )⊆U .

Thus, t1 ∈O ⊆ α̂−1(W (K ,U)).

So α̂−1(W (K ,U)) is an open set and α is continuous.

Thus, each member of F2(X ,x0) determines in a natural way a
member of Ω(Ω(X ,x0),c).
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

Comparison of A with C for n = 2 (Cont’d)

We now reverse the process.

Start with a member α̂ of Ω(Ω(X ,x0),c).

Then α̂ determines a function α : I 2 →X defined by

α(t1,t2)= α̂(t1)(t2), (t1,t2)∈ I
2

.

We may show that α ∈F2(X ,x0).

In this way, we have established a one-to-one correspondence between
F2(X ,x0) and Ω(Ω(X ,x0),c).
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The Higher Homotopy Groups Equivalent Definitions of πn(X ,x0)

Comparison of A with C for n = 2 (Conclusion)

Suppose that H : I 2× I →X is a homotopy demonstrating the
equivalence of α and β as prescribed in Definition A.

Consider the homotopy Ĥ : I × I →Ω(X ,x0), defined by

Ĥ(t1,s)(t2)=H(t1,t2,s), t1,t2,s ∈ I .

This demonstrates the equivalence of the loops α̂ and β̂.

The reverse argument shows that α̂ equivalent to β̂ implies that α is
equivalent to β.

Thus, there is a one-to-one correspondence between homotopy classes
[α] of Definition A and homotopy classes [α̂] of Definition C.

Finally, the ⋆ operation in Definition A is completely determined in
the first coordinate.

Thus, for any α,β ∈ F2(X ,x0), [α⋆β] corresponds to [α̂⋆ β̂].

So the two definitions of π2(X ,x0) lead to isomorphic groups.
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The Higher Homotopy Groups Basic Properties and Examples

Subsection 3

Basic Properties and Examples
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The Higher Homotopy Groups Basic Properties and Examples

Path Connectedness and n-Homotopy Groups

The following three results can be proved by methods very similar to
those used to prove their analogues for the fundamental group.

Theorem

If the space X is path connected and x0 and x1 are points of X , then
πn(X ,x0) is isomorphic to πn(X ,x1), for each n≥ 1.

As in the case of the fundamental group, when X is path connected,
we refer to the “n-th homotopy group of X ” and write πn(X ), .

George Voutsadakis (LSSU) Algebraic Topology May 2024 32 / 89



The Higher Homotopy Groups Basic Properties and Examples

Contractiblity, Products and n-Homotopy Groups

Theorem

If X is contractible by a homotopy that leaves x0 fixed, then

πn(X ,x0)= {0}, for each n ≥ 1.

Theorem

Let X and Y be spaces with points x0 in X and y0 in Y . Then, for all
n≥ 1,

πn(X ×Y ,(x0,y0))∼=πn(X ,x0)⊕πn(Y ,y0).
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The Higher Homotopy Groups Basic Properties and Examples

Contractible Spaces

The following spaces are contractible, so each has n-th homotopy
group {0}, for each value of n:

(a) The real line;
(b) Euclidean space of any dimension;
(c) An interval;
(d) A convex figure in Euclidean space.

We saw that the fundamental group is usually difficult to determine.

This is doubly true of the higher homotopy groups.

Example: The homotopy groups πk(S
n) of the n-sphere have never

been completely determined. (The hard part is the case k > n.)

The groups πk(S
n), for k ≤ n, are computed in the following examples.
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The Higher Homotopy Groups Basic Properties and Examples

The Groups πk(S
n) for k < n

Claim: For k < n, the k-th homotopy group πk(S
n) is the trivial group.

Let [α] be a member of πk(S
n).

Consider α as a continuous map from (Sk ,1) to (Sn,1).

Represent Sk and Sn as the boundary complexes of simplexes of
dimensions k +1 and n+1, respectively.

By the Simplicial Approximation Theorem, α has a simplicial
approximation α′ : Sk → Sn, such that [α]= [α′].

Simplicial maps cannot map a simplex onto one of higher dimension.

Thus, α′ is not onto.
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The Higher Homotopy Groups Basic Properties and Examples

The Groups πk(S
n) for k < n (Cont’d)

Let p be a point in Sn which is not in the range of α′.

Then Sn\{p} is contractible, since it is homeomorphic to Rn.

So the range of α′ is contained in a contractible space.

It follows that α′ is null-homotopic.

Thus,
[α]= [α′]= [c].

So πk(S
n) is the trivial group whose only member is the class [c]

determined by the constant map.
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The Higher Homotopy Groups Basic Properties and Examples

The Groups πn(S
n)

Claim: For n≥ 1, the n-th homotopy group πn(S
n) is isomorphic to

the group Z of integers.

The case n = 1 was considered previously.

Consider πn(S
n), n≥ 2, as the set of homotopy classes of maps

α : (Sn,1)→ (Sn,1) as in Definition B.

Define ρ :πn(S
n)→Z by

ρ([α])= degree of α, [α] ∈πn(S
n).

Brouwer’s Degree Theorem insures that ρ is well-defined.

By the Hopf Classification Theorem, it is one-to-one.
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The Higher Homotopy Groups Basic Properties and Examples

The Groups πn(S
n) (Cont’d)

The identity map i : (Sn,1)→ (Sn,1) has degree 1.

The description of the ⋆ operation in Definition B shows that the map

ik = i ⋆ i ⋆ · · ·⋆ i (k terms)

has degree k .

Thus, [i ] is a generator of πn(S
n).

Moreover, we have, for any positive integer k :

ρ([i ]k)= k ;
ρ([i ]−k)=−k .

It follows easily that ρ is an isomorphism.
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The Higher Homotopy Groups Basic Properties and Examples

Fundamental Groups of Topological Groups

Theorem

Let G be a topological group with identity element e. Then π1(G ,e) is
abelian.

The operation on G induces an operation · on the set Ω(G ,e) of loops
in G based at e defined by

α ·β(t)=α(t)β(t), α,β ∈Ω(G ,e), t ∈ I ,

where the juxtaposition of α(t) and β(t) indicates their product in G .

This operation induces an operation � on π1(G ,e):

[α]�[β]= [α ·β], [α], [β] ∈π1(G ,).

Let c denote the constant loop at e.

Let [α] and [β] be members of π1(G ,e).

George Voutsadakis (LSSU) Algebraic Topology May 2024 39 / 89



The Higher Homotopy Groups Basic Properties and Examples

Fundamental Groups of Topological Groups (Cont’d)

Observe the following.

(α⋆c) · (c ⋆β)(t) =

{
α(2t)e =α(2t), if 0≤ t ≤ 1

2

eβ(2t −1)=β(2t −1), if 1
2
≤ t ≤ 1

(c ⋆α) · (c ⋆β)(t) =

{
eβ(2t)=β(2t), if 0≤ t ≤ 1

2

α(2t −1)e =α(2t −1), if 1
2
≤ t ≤ 1

This gives
(α⋆c) · (c ⋆β) = α⋆β,

(c ⋆α) · (β⋆c) = β⋆α.
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Fundamental Groups of Topological Groups (Cont’d)

Then
[α]◦ [β] = [α⋆β]

= [(α⋆c) · (c ⋆β)]

= [α⋆c]�[c ⋆β]

= [c ⋆α]�[β⋆c]

= [(c ⋆α) · (β⋆c)]

= [β⋆α]

= [β]◦ [α].

So π1(G ,e) is abelian.

Note that the operations ◦ and � are precisely equal:

[α]◦ [β]= [α⋆β]= [(α⋆c) · (c ⋆β)]= [α⋆c]�[c ⋆β]= [α]�[β].
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Introducing Hopf Spaces

Not all of the group properties were used in the proof of the preceding
theorem.

The existence of a multiplication with identity element e is sufficient.

In fact, even that assumption can be weakened.

This motivates the definition of Hopf spaces.
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Hopf Spaces

Definition

An H-space or Hopf space is a topological space Y with a continuous
multiplication (indicated by juxtaposition) and a point y0 in Y for which:

The map defined by multiplying on the left by y0,

The map defined by multiplying on the right by y0

are both homotopic to the identity map on Y by homotopies that leave y0

fixed.
In other words, there exist homotopies L and R from Y × I into Y , such
that, for all y in Y and t in I :

L(y ,0)= y0y , L(y ,1)= y , L(y0,t)= y0;

R(y ,0)= yy0, R(y ,1)= y , R(y0,t)= y0.

The point y0 is called the homotopy unit of Y .

George Voutsadakis (LSSU) Algebraic Topology May 2024 43 / 89



The Higher Homotopy Groups Basic Properties and Examples

Example of a Hopf Space

Let X be a space and x0 a point of X .

The loop space Ω(X ,x0) with the compact-open topology is an
H-space.

The multiplication is the ⋆ operation;
The homotopy unit is the constant map c .

The required homotopies L and R are defined for α in Ω(X ,x0) and s

in I by

L(α,s)(t) =

{
x0, if 0≤ t ≤ 1−s

2

α
(
2t+s−1
s+1

)
, if 1−s

2
≤ t ≤ 1

R(α,s)(t) =

{
α

(
2t
s+1

)
, if 0≤ t ≤ s+1

2

x0, if s+1
2

≤ t ≤ 1

We can show that the multiplication ⋆ and the homotopies L and R

are continuous with respect to the compact-open topology.
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Fundamental Groups of H-Spaces

Theorem

Let Y be an H-space with homotopy unit y0. Then π1(Y ,y0) is abelian.

The operation on Y induces an operation · on Ω(Y ,y0):

α ·β(t)=α(t)β(t), α,β ∈Ω(Y ,y0), t ∈ I .

This operation induces an operation � on π1(Y ,y0):

[α]�[β]= [α ·β], [α], [β] ∈π1(Y ,y0).

Letting c denote the constant loop at y0,

(α⋆c) · (c ⋆β)(t) =

{
α(2t)y0, if 0≤ t ≤ 1

2

y0β(2t −1), if 1
2
≤ t ≤ 1

(c ⋆α) · (β⋆c)(t) =

{
y0β(2t), if 0≤ t ≤ 1

2

α(2t −1)y0, if 1
2
≤ t ≤ 1
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Fundamental Groups of H-Spaces (Cont’d)

Now multiplication on the left by y0 and multiplication on the right by
y0 are both homotopic to the identity map on Y .

So we obtain

[(α⋆c) · (c ⋆β)]= [α⋆β], [(c ⋆α) · (β⋆c)]= [β⋆α].

Thus,
[α]◦ [β] = [α⋆β]

= [(α⋆c) · (c ⋆β)]

= [(c ⋆α) · (β⋆c)]

= [β⋆α]

= [β]◦ [α].

It follows, as before, that the operations ◦ and � are equal.
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Commutativity of Higher Homotopic Groups

Theorem

The higher homotopy groups πn(X ,x0), n ≥ 2, of any space X are abelian.

Ω(X ,x0) is an H-space with the constant loop c as homotopy unit.

Hence, the second homotopy group

π2(X ,x0)=π1(Ω(X ,x0),c)

is abelian.

Proceeding inductively, suppose that, for every space Y , the (n−1)-st
homotopy group πn−1(Y ,y0) is abelian.

Then
πn(X ,x0)=πn−1(Ω(X ,x0),c)

must be abelian.
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The Induced Homomorphism f∗

Definition

Let f : (X ,x0)→ (Y ,y0) be a continuous map on the indicated pairs. If
[α] ∈πn(X ,x0), n ≥ 1, then the composition f α : I n →Y is a continuous
map which takes ∂I n to y0. So f α represents an element [f α] in πn(Y ,y0).
Thus, f induces a function f∗ :πn(X ,x0)→πn(Y ,y0), defined by

f∗([α])= [f α], [α] ∈πn(X ,x0).

The function f∗ is the homomorphism induced by f in dimension n.

To be very precise we should refer to f n∗ , indicating the dimension n,
but the dimension becomes known from the subscripts on the
homotopy groups involved.

We can show that f∗ is a well-defined homomorphism.
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Compositionality of Induced Homomorphisms

Theorem

(a) If f : (X ,x0)→ (Y ,y0) and g : (Y ,y0)→ (Z ,z0) are continuous maps on
the indicated pairs, then the induced homomorphism (gf )∗ is the
composite map

g∗f∗ :πn(X ,x0)→ πn(Z ,z0)

in each dimension n.

(b) If h : (X ,x0)→ (Y ,y0) is a homeomorphism, then the homomorphism
h∗ induced by h is an isomorphism for each value of n.

(a) If [α] ∈πn(X ,x0), then

(gf )∗([α])= [gf α]= g∗([f α])= g∗f∗([α]).

So (gf )∗ = g∗f∗.

George Voutsadakis (LSSU) Algebraic Topology May 2024 49 / 89



The Higher Homotopy Groups Basic Properties and Examples

Compositionality of Induced Homomorphisms (Cont’d)

(b) Suppose that h−1 : (Y ,y0)→ (X ,x0) is the inverse of h.

Then for [α] in πn(X ,x0),

(h−1)∗h∗([α])= [h−1hα]= [α].

So (h−1)∗h∗ is the identity map on πn(X ,x0).

By symmetry, h∗(h
−1)∗ is the identity map on πn(Y ,y0).

So h∗ is an isomorphism.
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Covering Spaces and Induced Homomorphisms

We saw that a covering projection p :E →B induces a monomorphism
(i.e., a one-to-one homomorphism)

p∗ :π1(E )→π1(B).

Theorem

Let (E ,p) be a covering space of B . Let e0 in E and b0 in B be points
such that p(e0)= b0. Then the induced homomorphism

p∗ :πn(E ,e0)→πn(B ,b0)

is an isomorphism for n≥ 2.
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The Higher Homotopy Groups Basic Properties and Examples

Covering Spaces and Induced Homomorphisms (Cont’d)

Claim: p∗ is onto.

Consider an element [α] in πn(B ,b0).

Think of α as a continuous map from (Sn,1) to (B ,b0), where 1 is
used as the base point of Sn to avoid confusion with the number 1.

Since n≥ 2, the fundamental group π1(S
n,1) is trivial.

Hence, for α∗ the homomorphism induced by α on π1(S
n,1),

α∗π1(S
n

,1)= {0} ⊆ p∗π1(E ,e0).

By a preceding theorem, α has a continuous lifting
α̃ : (Sn,1)→ (E ,e0), such that

pα̃=α.

Then α̃ determines a member [α̃] in πn(E ,e0) for which

p∗([α̃])= [pα̃]= [α].

So p∗ maps πn(E ,e0) onto πn(B ,b0).
George Voutsadakis (LSSU) Algebraic Topology May 2024 52 / 89



The Higher Homotopy Groups Basic Properties and Examples

Covering Spaces and Induced Homomorphisms (Cont’d)

Claim: p∗ is one-to-one.

Suppose that [β] belongs to its kernel.

I.e., assume p∗([β])= [pβ]= [c], with c constant, c(Sn)= b0.

As maps from (Sn,1) to (B ,b0), pβ and c are equivalent.

So there is a homotopy H :Sn× I →B satisfying

H(t ,0)= pβ(t), H(t ,1)= b0, t ∈ Sn,

H(1,s)= b0, s ∈ I .

The fundamental group π1(S
n× I ,(1,0)) is trivial, since n ≥ 2.

So there exists a lifting H̃ : Sn× I →E , with pH̃ =H, H̃(1,0)= e0.

Subclaim (To be proven in the next slide): The lifted homotopy H̃ is a
homotopy between β and the constant map d(Sn)= e0.

Then [β]= [d ] is the identity element of πn(E ,e0).

Thus, the kernel of p∗ contains only the identity element of πn(E ,e0).

This shows that p∗ is one-to-one.
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Covering Spaces and Induced Homomorphisms (Cont’d)

Subclaim: The lifted homotopy H̃ is a homotopy between β and the
constant map d(Sn)= e0.

Observe first that pH̃(·,0)= pβ, H̃(1,0)=β(1).

By a previous corollary, H̃(·,0)=β, since Sn is connected.

The same argument shows that H̃(·,1)= d .

It remains to be seen that H̃(1,s)= e0, for each s in I .

The path H̃(1, ·) : I →E has initial point e0 and covers c =H(1, ·).

But the unique covering path of c which begins at e0 is the constant
path at e0, H̃(1,s)= e0, s ∈ I .

Thus, H̃ : Sn× I →E is a homotopy such that

H̃(·,0)=β, H̃(·,1)= d ,

H̃(1,s)= e0, s ∈ I .
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Example

Consider the universal covering space (R,p) of the unit circle S1.

By the preceding theorem,

p∗ :πn(R)→πn(S
1)

is an isomorphism for n≥ 2.

But all the homotopy groups of the contractible space R are trivial.

So
πn(S

1)= {0}, n≥ 2.
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Example

Consider the double covering (Sn,p) over projective n-space Pn.

By the preceding theorem,

πk(P
n)∼=πk(S

n), k ≥ 2, n≥ 2.

By a previous example,

πn(S
n)∼=Z, n≥ 2.

Therefore, we have
πn(P

n)∼=Z, n≥ 2.
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Subsection 4

Homotopy Equivalence
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Homotopy Equivalent Spaces

Homotopy equivalence is a relation between topological spaces.

It is a weaker relation than homeomorphism.

On the other hand, it is strong enough to ensure that equivalent
spaces have isomorphic homotopy groups in corresponding dimensions.

Definition

Let X and Y be topological spaces. Then X and Y are homotopy

equivalent or have the same homotopy type provided that there exist
continuous maps f :X →Y and g :Y →X for which the composite maps
gf and fg are homotopic to the identity maps on X and Y , respectively.
The map f is called a homotopy equivalence, and g is a homotopy

inverse for f .

Homeomorphic spaces are homotopy equivalent.
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Homotopy Equivalence is an Equivalence Relation

Theorem

The relation “X is homotopy equivalent to Y ” is an equivalence relation for
topological spaces.

The relation is reflexive since the identity map on any space X is a
homotopy equivalence.

The symmetric property is implicit in the definition: Both f and g are
homotopy equivalences and each is a homotopy inverse for the other.

For transitivity transitive, let f :X →Y and h :Y →Z be homotopy
equivalences with homotopy inverses g :Y →X and k :Z →Y ,
respectively. We must show that X and Z are homotopy equivalent.

The most likely candidate for a homotopy equivalence between X and
Z is hf , with gk as the leading contender for homotopy inverse.
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Homotopy Equivalence is an Equivalence Relation (Cont’d)

Let L :Y × I →Y be a homotopy such that

L(·,0) = kh;
L(·,1) = iY .

Consider the map M :X × I →X , defined by

M(x ,t)= gL(f (x),t), (x ,t) ∈X × I .

M is a homotopy, such that

M(·,0) = gL(f (·),0)= (gk)(hf );
M(·,1) = gL(f (·),1)= gf .

So (gk)(hf ) is homotopic to gf . Hence, it is homotopic to iX .

Similarly, (hf )(gk) is homotopic to the identity on Z .

So X and Z are homotopy equivalent.
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Example

Claim: A circle and an annulus are homotopy equivalent.

Consider the unit circle S1

and the annulus

A= {y ∈R2 : 1≤ |y | ≤ 2}.

A homotopy equivalence f :S1 →A and homotopy inverse g :A→ S1

are defined by f (x)= x , x ∈ S1 and g(y)= y
|y | , y ∈A.

Then gf is the identity map on S1. Moreover fg(y)= y
|y |

, y ∈A.

The required homotopy between fg and the identity on A is given by

H(y ,t)= ty + (1− t)
y

|y |
.
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Homotopy Type of a Contractible Space

Theorem

A space X is contractible if and only if it has the homotopy type of a one
point space.

Suppose X is contractible with homotopy H :X × I →X and point x0

in X , such that

H(x ,0)= x , H(x ,1)= x0, x ∈X .

Then X is homotopy equivalent to the singleton space {x0}.

The homotopy equivalence f :X → {x0} and homotopy inverse
g : {x0} →X are defined by

f (x) = x0, x ∈X ;
g(x0) = x0.
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Homotopy Type of a Contractible Space (Cont’d)

Suppose, conversely, that f :X → {a} is a homotopy equivalence
between X and the one point space {a}, with homotopy inverse
g : {a} →X .

Then there is a homotopy K between gf and the identity map on X .

Moreover, by definition,

K (x ,0) = x ;
K (x ,1) = gf (x)= g(a), x ∈X .

Thus, the homotopy K is a contraction.

So the space X is contractible.
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Homotopy Equivalence and Deformation Retracts

Theorem

If X is a space and D a deformation retract of X , then D and X are
homotopy equivalent.

There is a homotopy H :X × I →X , such that

H(x ,0)= x , H(x ,1) ∈D , x ∈X ,

H(a,t)= a, a ∈D , t ∈ I .

Let f :D →X denote the inclusion map f (a)= a.

Define g :X →D by

g(x)=H(x ,1), x ∈X .

Then gf is the identity map on D.

H is a homotopy between fg and the identity on X .

Thus, f is a homotopy equivalence, with homotopy inverse g .
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Homotopy Equivalence Between Pointed Spaces

Definition

Let X and Y be spaces with points x0 in X and y0 in Y . Then the pairs
(X ,x0) and (Y ,y0) are homotopy equivalent or of the same homotopy

type means that there exist continuous maps

f : (X ,x0)→ (Y ,y0) and g : (Y ,y0)→ (X ,x0)

for which the composite maps gf and fg are homotopic to the identity
maps on X and Y , respectively, by homotopies that leave the base points
fixed. In other words, it is required that there exist homotopies
H :X × I →X and K :Y × I →Y , such that

H(x ,0)= gf (x), H(x ,1)= x , H(x0,t)= x0, x ∈X , t ∈ I ,

K (y ,0)= fg(y), K (y ,1)= y , K (y0,t)= y0, y ∈Y , t ∈ I .

The map f is called a homotopy equivalence with homotopy inverse g .
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Pointed Homotopy Equivalence is an Equivalence

Theorem

Homotopy equivalence between pairs is an equivalence relation.

The proof is similar to the that of the theorem on homotopy
equivalence of topological spaces.
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Homotopy Equivalence and Induced Homomorphisms

Theorem

If the map f : (X ,x0)→ (Y ,y0) is a homotopy equivalence between the
indicated pairs, then the induced homomorphism

f∗ :πn(X ,x0)→ πn(Y ,y0)

is an isomorphism for each positive integer n.

Let g : (Y ,y0)→ (X ,x0) be a homotopy inverse for f .

Let H a homotopy between gf and iX , which leaves x0 fixed.

Let [α] ∈πn(X ,x0).

Consider α as a function from I n to X , such that

α(∂I n)= x0.
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Homotopy Equivalence and Homomorphisms (Cont’d)

Define a homotopy K : I n× I →X by

K (t ,s)=H(α(t),s), t ∈ I n, s ∈ I .

Then
K (·,0)= gf α, K (·,1)=α,

K (∂I n× I )=H({x0}× I )= x0.

So [gf α]= [α].

This means that g∗f∗[α]= [α].

So g∗ is a left inverse for f∗.

But f is a homotopy inverse for g .

So, by symmetry, g∗ is also a right inverse for f∗.

So f∗ is an isomorphism.
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Homotopy Equivalence and Homomorphisms (Cont’d)

The preceding theorem can be strengthened to show that a homotopy
equivalence f :X →Y with f (x0)= y0 induces an isomorphism between

πn(X ,x0)∼=πn(Y ,y0), for each n.

The proof is more complicated because the homotopies may not leave
the base points fixed.
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Subsection 5

Homotopy Groups of Spheres
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The Higher Homotopy Groups Homotopy Groups of Spheres

Introduction

The homotopy groups πk(S
n) are not completely known.

Previous examples have shown that

πk(S
n)= {0}, k < n, πk(S

1)= {0}, k > 1, πn(S
n)∼=Z.

It may seem natural to conjecture that πk(S
n) is trivial for k > n,

since the corresponding result holds for the homology groups.

This would simply mean that every continuous map f : Sk → Sn, where
k > n is homotopic to a constant map.

However, this is not true.

Hopf showed, in 1931, that π3(S
2) is not trivial.

We examine some examples.
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The Hopf map p : S3 → S2

Let C denote the field of complex numbers.

Consider S3, the unit sphere in Euclidean 4-space, as a set of ordered
pairs of complex numbers, each pair having length 1:

S3
= {(z1,z2) ∈C×C : |z1|

2
+|z2|

2
= 1}.

Define an equivalence relation ≡ on S3 by

(z1,z2)≡ (z ′1,z ′2)

if and only if there is a complex number λ of length 1 such that
(z1,z2)= (λz ′1,λz ′2).

For (z1,z2) in S3, let 〈z1,z2〉 denote the equivalence class of (z1,z2).

Let
T = {〈z1,z2〉 : (z1,z2)∈ S

3
}

be the set of equivalence classes.
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The Hopf map p : S3 → S2 (Cont’d)

Let p :S3 →T be the projection map

p(z1,z2)= 〈z1,z2〉, (z1,z2) ∈ S
3

.

Assign T the quotient topology determined by p.

I.e., a set O is open in T provided that p−1(O) is open in S3.

the inverse image p−1(〈z1,z2〉), called the fiber over 〈z1,z2〉.

For 〈z1,z2〉 in T , the fiber over 〈z1,z2〉, is a circle in S3.

We pursue the following strategy.

Show that T is homeomorphic to S2;
Use the homeomorphism to replace T by S2;
Obtain the Hopf map p : S3 →S2.

Strictly speaking, the Hopf map is the map hp : S3 → S2, where
h :T → S2 is the homeomorphism whose existence we must show.
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The Hopf map p : S3 → S2 (Cont’d)

Consider the unit disc D in C,

D = {z ∈C : |z | ≤ 1}.

The 2-sphere is the quotient space of D obtained by identifying the
boundary of D to a point.

We show T satisfies the same description.

Consider the map f :D →T , defined by

f (z)= 〈

√
1−|z |2,z〉, z ∈D .

Then f is a closed, continuous map.

For 〈z1,z2〉 in T ,

f −1(〈z1,z2〉) = {z ∈D : 〈z1,z2〉 = 〈
√

1−|z |2,z〉}

= {z ∈D :
√

1−|z |2 =λz1,z =λz2, for some λ∈ S1}.
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The Hopf map p : S3 → S2 (Cont’d)

We got

f −1(〈z1,z2〉)=

{
z ∈D :

√
1−|z |2 =λz1,z =λz2, for some λ ∈ S1

}
.

We distinguish two cases:

Suppose z1 6= 0.
The equations above imply λz1 = |z1|. So λ=

|z1|
z1

.

Thus, f −1(〈z1,z2〉) is a single point.
Suppose z1 = 0. Then

f −1(〈z1,z2〉) = f −1(〈0,z2〉)

= {z ∈D :
√

1−|z |2 = 0,z =λ, for some λ∈ S1}

= S1.

So f −1(〈0,z2〉) is the boundary of D.
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The Hopf map p : S3 → S2 (Cont’d)

Using f as quotient map, T is the quotient space of D obtained by
identifying the boundary S1 to a point.

Then T is homeomorphic to S2.

So we replace T by S2 and have the Hopf map p :S3 → S2.

Showing that p is not homotopic to a constant map requires more
background than we have developed.

So we only sketch the basic idea.
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The Hopf map p : S3 → S2 (Conclusion)

Let H : S3× I → S2 be a homotopy between p and a constant map.

The Hopf map is not a covering projection.

But it is close enough to permit a covering homotopy H̃ : S3× I → S2,

S3

S3
× I

H
✲

.....
.....

.....
.....

.
H̃ ✲

S2

p
❄

The map H̃ is a homotopy between the identity map on S3 and a
constant map.

But this implies that S3 is contractible, an obvious contradiction.

Thus p is not homotopic to a constant map.

So π3(S
2) 6= {0}.
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The Hopf maps S7 → S4 and S15 → S8

We switch to the division ring Q of quaternions.

We represent S7, the unit sphere in Euclidean 8-space, as ordered
pairs of members of Q,

S7
= {(z1,z2)∈Q : ‖z1‖

2
+‖z2‖

2
= 1}.

The quotient space T in this case is the quotient space of the unit disc

D = {z ∈Q : ‖z‖≤ 1}

obtained by identifying the boundary of D to a single point.

Now D has real dimension four.

So this quotient space is homeomorphic to S4.
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The Hopf maps S7 → S4 and S15 → S8 (Cont’d)

The Hopf map
p :S7

→ S4

with fiber S3 is then defined as in the preceding example.

This map shows that π7(S
4) 6= {0}.

In E 16, one can perform a similar construction by representing the unit
sphere S15 as ordered pairs of Cayley numbers.

This produces the Hopf map p : S15 → S8 with fiber S7.

It shows that π15(S
8) 6= {0}.
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Suspension Homomorphism

There is for each pair k ,n of positive integers a natural homomorphism

E :πk(S
n)→πk+1(S

n+1)

called the suspension homomorphism.

Consider πk(S
n) as homotopy classes of maps from (Sk ,1) to (Sn,1),

where we denote the base point of each sphere by 1.

Consider Sn as the subspace of Sn+1 consisting of all points of Sn+1

having last coordinate 0.

In this identification, Sn is usually called the “equator” of Sn+1.

Continuing this geographical metaphor:

The point (0, . . . ,0,1) is called the “north pole”;
The point (0, . . . ,0,−1) of Sn+1 is called the “south pole”.
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The Suspension

Suppose that [α] ∈πk(S
n).

Then α is a continuous map from Sk to Sn.

Extend α to a continuous map α̂ : Sk+1 → Sn+1 as follows.
α̂ |Sk is just α, and maps the equator of Sk+1 to the equator of Sn+1.
We require that α̂ map the north pole of Sk+1 to the north pole of
Sn+1 and the south pole of Sk+1 to the south pole of Sn+1.

The function is then extended
radially as in the figure.

The arc from the north pole to
a point x in Sk is mapped
linearly onto the arc from the
north pole of Sn+1 to α(x).

This defines a on the “northern hemisphere”.
The “southern hemisphere” is treated the same way.

The extended map α̂ is called the suspension of α.
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The Freudenthal Suspension Theorem

The suspension homomorphism E is defined by

E ([α])= [α̂], [α] ∈πk(S
n).

Claim: E is a homomorphism.

Theorem (The Freudenthal Suspension Theorem)

The suspension homomorphism

E :πk(S
n)→πk+1(S

n+1)

is an isomorphism for k < 2n−1 and is onto for k ≤ 2n−1.
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A Consequence of the Suspension Theorem

Corollary

The homotopy groups πk(S
n) are trivial for k < n.

For any positive integer r < k , we have k + r +1< 2n.

Hence, k − r < 2(n− r)−1.

Then
πk(S

n)∼=πk−1(S
n−1)∼= ·· · ∼=π1(S

n−k+1).

Now note that, for k < n, we have n−k +1> 1.

Therefore, π1(S
n−k+1) is trivial.

So its isomorphic image πk(S
n) is also trivial.
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Another Consequence of the Suspension Theorem

Corollary

The homotopy groups πn(S
n), n≥ 1, are all isomorphic to the group Z of

integers.

We rely on our previous arguments to show that

π1(S
1)∼=π2(S

2)∼=Z.

If n≥ 2, then n< 2n−1.

The Freudenthal Suspension Theorem shows that

π2(S
2)∼=π3(S

3)∼=π4(S
4)∼= ·· · ∼=πn(S

n).
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Subsection 6

The Relation Between Hn(K ) and πn(|K |)
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The Hurewicz Isomorphism Theorem

The last theorem of this chapter shows a relationship between the
homology groups and the homotopy groups of polyhedra.

Theorem (The Hurewicz Isomorphism Theorem)

Let K be a connected complex and n ≥ 2 a positive integer. If the first n−1
homotopy groups of |K | are trivial, then Hn(K ) and πn(|K |) are isomorphic.

Example: Consider the n-sphere Sn, for n≥ 2.

We know that πk(S
n)= {0}, for k < n.

So, by the Hurewicz Isomorphism Theorem,

πn(S
n)∼=Hn(S

n)∼=Z.
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Comment on Classification

The homotopy groups do not provide for general topological spaces
the type of classification already given for 2-manifolds and for covering
spaces.

There are examples of spaces X and Y which have isomorphic
homotopy groups in each dimension but which are not homotopy
equivalent (and therefore not homeomorphic).

The induced homomorphism f∗ :πn(X )→πn(Y ) has been successful
in classifying the homotopy type of spaces known as “CW-complexes”.

These spaces can be used to approximate arbitrary topological spaces.
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Non-Homeomorphic Spaces

Although the homotopy groups have not been completely successful in
showing when spaces are homeomorphic, they are extremely useful in
showing when spaces are not homeomorphic.

To show that X and Y are not homeomorphic, compute the homotopy
groups πn(X ) and πn(Y ).

If πn(X ) is not isomorphic to πn(Y ), for some n, then X and Y are
not homeomorphic.

The same method can be used with the homology groups.
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Example

Recall that the Poincaré Conjecture asserts that every simply
connected 3-manifold is homeomorphic to S3.

Our work on homotopy groups shows that the corresponding
conjecture in dimension four is false.

The 4-manifold S2×S2 is simply connected.

However, we have

π2(S
2
×S2)∼=Z⊕Z and π2(S

4)= {0}.

So S2×S2 is not homeomorphic to S4.
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