## Introduction to Algebraic Topology

## George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science<br>Lake Superior State University

LSSU Math 500

(1) Further Developments in Homology

- Chain Derivation
- The Lefschetz Fixed Point Theorem
- Relative Homology Groups
- Singular Homology Theory
- Axioms for Homology Theory


## Subsection 1

## Chain Derivation

## Extension of a p-Simplex

- Let $\sigma^{p}=\left\langle v_{0} \ldots v_{p}\right\rangle$ be a $p$-simplex.
- Let $v$ be a vertex, such that $\left\{v, v_{0}, \ldots, v_{p}\right\}$ is geometrically independent.
- The symbol $v \sigma^{p}$ denotes the $(p+1)$-simplex

$$
v \sigma^{p}=\left\langle v v_{0} \ldots v_{p}\right\rangle
$$

- Let $c=\sum g_{i} \cdot \sigma_{i}^{p}$ be a $p$-chain.
- Then vc denotes the $(p+1)$-chain

$$
v c=\sum g_{i} \cdot v \sigma_{i}^{p}
$$

## Boundary of the Extension

## Lemma

Let $c$ be a $p$-chain on a complex $K$ and $v$ a vertex for which the $(p+1)$-chain $v c$ is defined. Then

$$
\partial(v c)=c-v \partial c .
$$

- We perform the calculation for a $p$-simplex $\sigma^{p}=\left\langle v_{0} \ldots v_{p}\right\rangle$ and a geometrically independent vertex $v$.

$$
\begin{aligned}
\partial\left(v \sigma^{p}\right) & =\partial\left(\left\langle v v_{0} \ldots v_{p}\right\rangle\right) \\
& =\left\langle v_{0} \ldots, v_{p}\right\rangle-\left\langle v v_{1} \ldots v_{p}\right\rangle+\cdots+(-1)^{p+1}\left\langle v v_{0} \ldots v_{p-1}\right\rangle \\
& =\sigma^{p}-v\left(\left\langle v_{1} \ldots v_{p}\right\rangle-\cdots+(-1)^{p}\left\langle v_{0} \ldots v_{p-1}\right\rangle\right) \\
& =\sigma^{p}-v \partial \sigma^{p} .
\end{aligned}
$$

## First Chain Derivations

## Definition

Let $K$ be a complex. A chain mapping

$$
\varphi=\left\{\varphi_{p}: C_{p}(K) \rightarrow C_{p}\left(K^{(1)}\right)\right\}
$$

is defined inductively as follows:

- Each 0-simplex $\sigma^{0}$ of $K$ is a 0 -simplex of the barycentric subdivision $K^{(1)}$. So we may consider $C_{0}(K)$ as a subgroup of $C_{0}\left(K^{(1)}\right)$. Define

$$
\varphi_{0}: C_{0}(K) \rightarrow C_{0}\left(K^{(1)}\right)
$$

to be the inclusion map:

$$
\varphi_{0}(c)=c, \quad c \in C_{0}(K) .
$$

## First Chain Derivations (Cont'd)

## Definition (Cont'd)

- For an elementary $p$-chain $1 \cdot \sigma^{p}$ on $K$, define

$$
\varphi_{p}\left(1 \cdot \sigma^{p}\right)=\dot{\sigma}^{p} \varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right)
$$

where $\dot{\sigma}^{p}$ denotes the barycenter of $\sigma^{p}$. Extend $\varphi_{p}$ by linearity to a homomorphism

$$
\begin{gathered}
\varphi_{p}: C_{p}(K) \rightarrow C_{p}\left(K^{(1)}\right) ; \\
\varphi_{p}\left(\sum g_{i} \cdot \sigma_{i}^{p}\right)=\sum \varphi_{p}\left(g_{i} \cdot \sigma_{i}^{p}\right), \quad \sum g_{i} \cdot \sigma_{i}^{p} \in C_{p}(K)
\end{gathered}
$$

The sequence $\varphi=\left\{\varphi_{p}\right\}$ of homomorphisms defined in this way is called the first chain derivation on $K$.

## n-th Chain Derivations

## Definition

For $n>1$, the $n$-th chain derivation on $k$ is the composition

$$
C_{p}(K) \xrightarrow{\varphi_{p}^{(n-1)}} C_{p}\left(K^{(n-1)}\right) \xrightarrow{\varphi_{p}} C_{p}\left(K^{(n)}\right)
$$

of $\varphi^{(n-1)}$, the $(n-1)$ st chain derivation on $K$, with the first chain derivation of the $(n-1)$ st barycentric subdivision $K^{(n-1)}$. Thus, the $n$th chain derivation on $K$ is a chain mapping

$$
\varphi^{(n)}=\left\{\varphi_{p}^{(n)}: C_{p}(K) \rightarrow C_{p}\left(K^{(n)}\right)\right\}
$$

## Example

- Consider the complex $K=\mathrm{Cl}\left(\sigma^{2}\right)$, the closure of a 2-simplex

$$
\sigma^{2}=+\left\langle v_{0} v_{1} v_{2}\right\rangle .
$$

It is shown below with its barycentric subdivision $K^{(1)}$.


We examine the first chain derivation of this complex.

## Example (Cont'd)

- Let $v_{3}, v_{4}, v_{5}$ and $v_{6}$ be the barycenters of $\left\langle v_{0} v_{1}\right\rangle,\left\langle v_{0} v_{2}\right\rangle,\left\langle v_{1} v_{2}\right\rangle$, and $\left\langle v_{0} v_{1} v_{2}\right\rangle$, respectively.


Then $\varphi_{0}: C_{0}(K) \rightarrow C_{0}\left(K^{(1)}\right)$ is the inclusion map.
For $\varphi_{1}$, we have

$$
\begin{aligned}
\varphi_{1}\left(1 \cdot\left\langle v_{0} v_{1}\right\rangle\right) & =v_{3} \varphi_{0} \partial\left(1 \cdot\left\langle v_{0} v_{1}\right\rangle\right) \\
& =v_{3}\left(1 \cdot\left\langle v_{1}\right\rangle-1 \cdot\left\langle v_{0}\right\rangle\right) \\
& =1 \cdot\left\langle v_{3} v_{1}\right\rangle-1 \cdot\left\langle v_{3} v_{0}\right\rangle
\end{aligned}
$$

## Example (Cont'd)



$$
\begin{aligned}
\varphi_{1}\left(1 \cdot\left\langle v_{0} v_{2}\right\rangle\right)= & v_{4} \varphi_{0} \partial\left(1 \cdot\left\langle v_{0} v_{2}\right\rangle\right)=v_{4}\left(1 \cdot\left\langle v_{2}\right\rangle-1 \cdot\left\langle v_{0}\right\rangle\right) \\
= & 1 \cdot\left\langle v_{4} v_{2}\right\rangle-1 \cdot\left\langle v_{4} v_{0}\right\rangle ; \\
\varphi_{1}\left(1 \cdot\left\langle v_{1} v_{2}\right\rangle\right)= & v_{5} \varphi_{0} \partial\left(1 \cdot\left\langle v_{1} v_{2}\right\rangle\right)=v_{5}\left(1 \cdot\left\langle v_{2}\right\rangle-1 \cdot\left\langle v_{1}\right\rangle\right) \\
= & 1 \cdot\left\langle v_{5} v_{2}\right\rangle-1 \cdot\left\langle v_{5} v_{1}\right\rangle ; \\
\varphi_{2}\left(1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle\right)= & v_{6} \varphi_{1} \partial\left(1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle\right) \\
= & v_{6} \varphi_{1}\left(1 \cdot\left\langle v_{1} v_{2}\right\rangle-1 \cdot\left\langle v_{0} v_{2}\right\rangle+1 \cdot\left\langle v_{0} v_{1}\right\rangle\right) \\
= & 1 \cdot\left\langle v_{6} v_{5} v_{2}\right\rangle-1 \cdot\left\langle v_{6} v_{5} v_{1}\right\rangle-1 \cdot\left\langle v_{6} v_{4} v_{2}\right\rangle \\
& +1 \cdot\left\langle v_{6} v_{4} v_{0}\right\rangle+1 \cdot\left\langle v_{6} v_{3} v_{1}\right\rangle-1 \cdot\left\langle v_{6} v_{3} v_{0}\right\rangle .
\end{aligned}
$$

## Chain Derivations are Chain Mappings

## Theorem

Each chain derivation is a chain mapping.

- The composition of chain mappings is a chain mapping.

So we show that the first chain derivation is a chain mapping. Let $\varphi=\left\{\varphi_{p}: C_{p}(K) \rightarrow C_{p}\left(K^{(1)}\right)\right\}$ be a chain derivation. It must be shown that the following is commutative for $p \geq 1$.

$$
\begin{gathered}
C_{p}(K) \xrightarrow{\varphi_{p}} C_{p}\left(K^{(1)}\right) \\
\partial \downarrow \\
C_{p-1}(K) \xrightarrow{\varphi_{p-1}} C_{p-1}\left(K^{(1)}\right)
\end{gathered}
$$

Thus, we must show that, for each elementary $p$-chain $1 \cdot \sigma^{p}$,

$$
\partial \varphi_{p}\left(1 \cdot \sigma^{p}\right)=\varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right)
$$

## Chain Derivations are Chain Mappings (Cont'd)

- For $p=1$, we have

$$
\begin{array}{cc}
C_{1}(K) \xrightarrow{\varphi_{1}} & C_{1}\left(K^{(1)}\right) \\
\partial \downarrow & \downarrow \partial \\
C_{0}(K) \xrightarrow[\varphi_{0}]{\longrightarrow} & C_{0}\left(K^{(1)}\right)
\end{array}
$$

$$
\begin{array}{ccl}
\partial \varphi_{1}\left(1 \cdot \sigma^{1}\right) & \stackrel{\varphi_{1}}{=} & \partial\left(\dot{\sigma}^{1} \varphi_{0} \partial\left(1 \cdot \sigma^{1}\right)\right) \\
& \stackrel{\text { Lemma }}{=} & \varphi_{0} \partial\left(1 \cdot \sigma^{1}\right)-\dot{\sigma}^{1} \partial \varphi_{0} \partial\left(1 \cdot \sigma^{1}\right) \\
& \stackrel{\varphi_{0}}{=} & \varphi_{0} \partial\left(1 \cdot \sigma^{1}\right)-\dot{\sigma}^{1} \partial \partial\left(1 \cdot \sigma^{1}\right) \\
& \stackrel{\partial \partial=0}{=} & \varphi_{0} \partial\left(1 \cdot \sigma^{1}\right) .
\end{array}
$$

## Chain Derivations are Chain Mappings (Cont'd)

- Thus $\partial \varphi_{1}=\varphi_{0} \partial$. So the desired conclusion holds for $p=1$. Proceeding inductively, let $1 \cdot \sigma^{p}$ be an elementary $p$-chain on $K$. Then

$$
\begin{aligned}
& C_{p}(K) \xrightarrow{\varphi_{p}} C_{p}\left(K^{(1)}\right) \\
& \partial \downarrow \downarrow \partial \\
& C_{p-1}(K) \underset{\varphi_{p-1}}{\longrightarrow} C_{p-1}\left(K^{(1)}\right) \\
& \begin{array}{rll}
\partial \varphi_{p}\left(1 \cdot \sigma^{p}\right) & \stackrel{\varphi_{p}}{=} & \partial\left(\dot{\sigma}^{p} \varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right)\right) \\
& \stackrel{\text { Lemma }}{=} & \varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right)-\dot{\sigma}^{p} \partial \varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right) \\
& \stackrel{\varphi_{p-1}}{=} & \varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right)-\dot{\sigma}^{p} \varphi_{p-2} \partial \partial\left(1 \cdot \sigma^{p}\right) \\
& \stackrel{\partial \partial=0}{=} & \varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right) .
\end{array}
\end{aligned}
$$

Thus, $\partial \varphi_{p}=\varphi_{p-1} \partial$, for elementary $p$-chains, and, hence, for all $p$-chains.

## Left Invertibility of Chain Derivations

## Theorem

Let $K$ be a complex with first chain derivation $\varphi=\left\{\varphi_{p}\right\}$. There is a chain mapping

$$
\psi=\left\{\psi_{p}: C_{p}\left(K^{(1)}\right) \rightarrow C_{p}(K)\right\}
$$

such that $\psi_{p} \varphi_{p}$ is the identity map on $C_{p}(K)$, for each $p \geq 0$.

- Such a chain mapping $\psi$ is called a left inverse for $\varphi$. Let $f$ be any simplicial map from $K^{(1)}$ to $K$ satisfying:

If $\dot{\sigma}$ is a vertex of $K^{(1)}$, then $f(\dot{\sigma})$ is a vertex of the simplex $\sigma$ of which
$\dot{\sigma}$ is the barycenter.
Let $\psi=\left\{\psi_{p}\right\}$ be the chain mapping induced by $f$.
Suppose that $\tau_{p}$ is a $p$-simplex of $K^{(1)}$.
Then $\psi_{p}\left(1 \cdot \tau^{p}\right)=\eta \cdot \sigma^{p}$, where:

- $\eta$ is 0,1 or -1 ;
- $\sigma^{p}$ is the $p$-simplex of $K$ which produces $\tau^{p}$ in its barycentric subdivision.


## Left Invertibility of Chain Derivations (Cont'd)

- Clearly $\psi_{0} \varphi_{0}$ is the identity map on $C_{0}(K)$. Suppose that $\psi_{p-1} \varphi_{p-1}: C_{p-1}(K) \rightarrow C_{p-1}(K)$ is the identity. Consider $\psi_{p} \varphi_{p}: C_{p}(K) \rightarrow C_{p}(K)$.
Suppose $1 \cdot \sigma^{p}$ is an elementary $p$-chain on $K$.
Then

$$
\psi_{p} \varphi_{p}\left(1 \cdot \sigma^{p}\right)=\psi_{p}\left(\dot{\sigma} \varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right)\right)=m \cdot \sigma^{p}
$$

for some integer $m$. But

$$
\begin{aligned}
\partial\left(m \cdot \sigma^{p}\right) & =\partial \psi_{p} \varphi_{p}\left(1 \cdot \sigma^{p}\right)=\psi_{p-1} \partial \varphi_{p}\left(1 \cdot \sigma^{p}\right) \\
& =\psi_{p-1} \varphi_{p-1} \partial\left(1 \cdot \sigma^{p}\right)=\partial\left(1 \cdot \sigma^{p}\right)
\end{aligned}
$$

So we get $m \partial\left(1 \cdot \sigma^{p}\right)=\partial\left(m \cdot \sigma^{p}\right)=\partial\left(1 \cdot \sigma^{p}\right)$.
Hence, $m=1$. Thus, $\psi_{p} \varphi_{p}\left(1 \cdot \sigma^{p}\right)=1 \cdot \sigma^{p}$.
So $\psi_{p} \varphi_{p}$ is the identity on $C_{p}(K)$.

## Example

- Consider the chain derivation $\varphi=\left\{\varphi_{p}\right\}_{0}^{2}$ of the preceding example. We may define the simplicial map $f$ from $K^{(1)}$ to $K$, the closure of the 2 -simplex $\left\langle v_{0} v_{1} v_{2}\right\rangle$, in any manner consistent with having $f\left(v_{i}\right)$ a vertex of the simplex of which $v_{i}$ is the barycenter.
Thus we must have

$$
f\left(v_{0}\right)=v_{0}, \quad f\left(v_{1}\right)=v_{1}, \quad f\left(v_{2}\right)=v_{2}
$$



One possible definition for $f$ on the remaining vertices is $f\left(v_{3}\right)=f\left(v_{4}\right)=v_{0}, f\left(v_{5}\right)=v_{1}, f\left(v_{6}\right)=v_{2}$.

## Example (Cont'd)

- Let $f\left(v_{3}\right)=f\left(v_{4}\right)=v_{0}, f\left(v_{5}\right)=v_{1}, f\left(v_{6}\right)=v_{2}$.

Let $\psi=\left\{\psi_{p}\right\}$ be the chain mapping induced by $f$ as in the proof of the preceding theorem:

$$
\begin{gathered}
\psi_{0}\left(1 \cdot\left\langle v_{0}\right\rangle\right)=\psi_{0}\left(1 \cdot\left\langle v_{3}\right\rangle\right)=\psi_{0}\left(1 \cdot\left\langle v_{4}\right\rangle\right)=1 \cdot\left\langle v_{0}\right\rangle ; \\
\psi_{0}\left(1 \cdot\left\langle v_{1}\right\rangle\right)=\psi_{0}\left(1 \cdot\left\langle v_{5}\right\rangle\right)=1 \cdot\left\langle v_{1}\right\rangle ; \\
\psi_{0}\left(1 \cdot\left\langle v_{2}\right\rangle\right)=\psi_{0}\left(1 \cdot\left\langle v_{6}\right\rangle\right)=1 \cdot\left\langle v_{2}\right\rangle ; \\
\psi_{1}\left(1 \cdot\left\langle v_{0} v_{4}\right\rangle\right)=0 ; \quad \psi_{1}\left(1 \cdot\left\langle v_{0} v_{6}\right\rangle\right)=1 \cdot\left\langle v_{6} v_{2}\right\rangle ; \quad \text { etc. } \\
\psi_{2}\left(1 \cdot\left\langle v_{3} v_{1} v_{6}\right\rangle\right)=1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle ; \quad \psi_{2}\left(1 \cdot\left\langle v_{0} v_{4} v_{6}\right\rangle\right)=0 ; \quad \text { etc. }
\end{gathered}
$$

## Example (Cont'd)

- Consider, for example,

$$
\begin{aligned}
\psi_{1} \varphi_{1}\left(1 \cdot\left\langle v_{0} v_{1}\right\rangle\right) & =\psi_{1}\left(1 \cdot\left\langle v_{3} v_{1}\right\rangle-1 \cdot\left\langle v_{3} v_{0}\right\rangle\right) \\
& =1 \cdot\left\langle v_{0} v_{1}\right\rangle-0 \\
& =1 \cdot\left\langle v_{0} v_{1}\right\rangle
\end{aligned}
$$

We compute $\psi_{2} \varphi_{2}\left(1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle\right)$, where $\varphi_{2}\left(1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle\right)$ is expressed as in the preceding example,

$$
\begin{aligned}
\varphi_{2}\left(1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle\right)= & 1 \cdot\left\langle v_{6} v_{5} v_{2}\right\rangle-1 \cdot\left\langle v_{6} v_{5} v_{1}\right\rangle-1 \cdot\left\langle v_{6} v_{4} v_{2}\right\rangle \\
& +1 \cdot\left\langle v_{6} v_{4} v_{0}\right\rangle+1 \cdot\left\langle v_{6} v_{3} v_{1}\right\rangle-1 \cdot\left\langle v_{6} v_{3} v_{0}\right\rangle .
\end{aligned}
$$

But $f$ collapses all 2-simplexes except $\left\langle v_{6} V_{3} v_{1}\right\rangle$.
So we get

$$
\psi_{2} \varphi_{2}\left(1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle\right)=\psi_{2}\left(1 \cdot\left\langle v_{6} v_{3} v_{1}\right\rangle\right)=1 \cdot\left\langle v_{2} v_{0} v_{1}\right\rangle=1 \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle .
$$

## Chain Homotopic Mappings and Chain Homotopies

## Definition

A pair $\varphi=\left\{\varphi_{p}\right\}_{0}^{\infty}$ and $\mu=\left\{\mu_{p}\right\}_{0}^{\infty}$ of chain mappings from a complex $K$ to a complex $L$

$$
C_{p}(K) \underset{\mu_{p}}{\stackrel{\varphi_{p}}{\Longrightarrow}} C_{p}(L)
$$

are chain homotopic means that there is a sequence $\mathscr{D}=\left\{D_{p}\right\}_{-1}^{\infty}$ of homomorphisms $D_{p}: C_{p}(K) \rightarrow C_{p+1}(L)$, such that

$$
\begin{gathered}
C_{p}(K) \xrightarrow{D_{p}} C_{p+1}(L) \xrightarrow{\partial} C_{p}(L) \quad C_{p}(K) \xrightarrow{\partial} C_{p-1}(L) \xrightarrow{D_{p-1}} C_{p}(L) \\
\partial D_{p}+D_{p-1} \partial=\varphi_{p}-\mu_{p}, \quad D_{-1}=0 .
\end{gathered}
$$

The sequence $\mathscr{D}$ is called a deformation operator or a chain homotopy.

## Homomorphisms Induced by Chain Homotopies

## Theorem

If $\varphi$ and $\mu$ are chain homotopic chain mappings from complex $K$ to complex $L$, then the induced homomorphisms $\varphi_{\rho}^{*}$ and $\mu_{\rho}^{*}$ from $H_{p}(K)$ to $H_{p}(L)$ are equal, $p \geq 0$.

- Suppose $\varphi$ and $\mu$ are chain homotopic.

By definition, there is a deformation operator $\mathscr{D}=\left\{D_{p}\right\}_{-1}^{\infty}$, such that

$$
\partial D_{p}+D_{p-1} \partial=\varphi_{p}-\mu_{p}, \quad D_{-1}=0
$$

For $\left[z_{p}\right] \in H_{p}(K)$,

$$
\begin{aligned}
\varphi_{p}^{*}\left(\left[z_{p}\right]\right)-\mu_{p}^{*}\left(\left[z_{p}\right]\right) & =\left[\varphi_{p}\left(z_{p}\right)-\mu_{p}\left(z_{p}\right)\right] \\
& =\left[\partial D_{p}\left(z_{p}\right)+D_{p-1}\left(\partial z_{p}\right)\right]=0
\end{aligned}
$$

since $\partial z_{p}=0$, for any cycle, and $\partial D_{p}\left(z_{p}\right)$ is a boundary.
Thus, $\varphi_{p}^{*}=\mu_{p}^{*}$, for each value of $p$.

## Chain Equivalent Complexes

## Definition

Complexes $K$ and $L$ are chain equivalent means that there are chain mappings

$$
\begin{aligned}
& \varphi=\left\{\varphi_{p}\right\}: K \rightarrow L ; \\
& \psi=\left\{\psi_{p}\right\}: L \rightarrow K,
\end{aligned}
$$

such that the composite chain mappings

$$
\psi \varphi=\left\{\psi_{p} \varphi_{p}\right\} \quad \text { and } \quad \varphi \psi=\left\{\varphi_{p} \psi_{p}\right\}
$$

are chain homotopic to the identity chain mappings on $K$ and $L$, respectively.

- Chain homotopy is an equivalence relation for chain mappings.
- Chain equivalence is an equivalence relation for complexes.


## Chain Equivalent Complexes and Homology Groups

## Theorem

Chain equivalent complexes $K$ and $L$ have isomorphic homology groups in corresponding dimensions.

- Suppose $K$ and $L$ are chain equivalent complexes.

Let $\varphi$ and $\psi$ be the witnessing chain mappings.
By the preceding theorem,

$$
\begin{aligned}
\psi_{p}^{*} \varphi_{p}^{*}: H_{p}(K) & \rightarrow H_{p}(K) \\
\varphi_{p}^{*} \psi_{p}^{*}: H_{p}(L) & \rightarrow H_{p}(L)
\end{aligned}
$$

are the identity maps.
So $\varphi_{p}^{*}$ is an isomorphism for each value of $p$.

## Homology Groups of Complex and Barycentric Subdivision

- We aim to prove that the homology groups of a complex $K$ are isomorphic to those of its barycentric subdivision $K^{(1)}$.
- By the preceding theorem, it is sufficient to show that $K$ and $K^{(1)}$ are chain equivalent.
- For this we need chain mappings $\varphi$ from $K$ to $K^{(1)}$ and $\psi$ from $K^{(1)}$ to $K$ for which $\psi \varphi$ and $\varphi \psi$ are chain homotopic to the appropriate identity chain maps.
- We have $\varphi$, the first chain derivation of $K$.
- We have $\psi$, the left inverse provided by a previous theorem.
- We know that $\psi \varphi$ is the identity chain map on $K$.
- So it remains to show that $\varphi \psi$ is chain homotopic to the identity chain map on $K^{(1)}$.


## Chain Equivalence of Complex and Barycentric Subdivision

## Theorem

A complex $K$ and its first barycentric subdivision are chain equivalent.

- We show that $\varphi \psi$ is chain homotopic to the identity on $K^{(1)}$.

This requires a deformation operator

$$
\mathscr{D}=\left\{D_{p}: C_{p}\left(K^{(1)}\right) \rightarrow C_{p+1}\left(K^{(1)}\right)\right\},
$$

such that $D_{-1}=0$ and, for each elementary $p$-chain $1 \cdot \tau^{p}$ on $K^{(1)}$,

$$
1 \cdot \tau^{p}-\varphi_{p} \psi_{p}\left(1 \cdot \tau^{p}\right)=\partial D_{p}\left(1 \cdot \tau^{p}\right)+D_{p-1} \partial\left(1 \cdot \tau^{p}\right)
$$

## Chain Equivalence (Cont'd)

- We must have $D_{-1}=0$.

To define $D_{0}$, let $w$ be a vertex of $K^{(1)}$.
Suppose

$$
\psi_{0}(1 \cdot\langle w\rangle)=1 \cdot\langle v\rangle
$$

$v$ a vertex of a simplex $\sigma$ of $K$ of which $w$ is the barycenter.
Then

$$
\varphi_{0} \psi_{0}(1 \cdot\langle w\rangle)=\varphi_{0}(1 \cdot\langle v\rangle)=1 \cdot\langle v\rangle .
$$

Thus,

$$
1 \cdot\langle w\rangle-\varphi_{0} \psi_{0}(1 \cdot\langle w\rangle)=1 \cdot\langle w\rangle-1 \cdot\langle v\rangle=\partial(1 \cdot\langle v w\rangle)
$$

So we define

$$
D_{0}(1 \cdot\langle w\rangle)=1 \cdot\langle v w\rangle .
$$

Being defined for every elementary 0-chain, it can be extended by linearity to a homomorphism $D_{0}: C_{0}\left(K^{(1)}\right) \rightarrow C_{1}\left(K^{(1)}\right)$.

## Chain Equivalence (Cont'd)

- Suppose, now, that $D_{0}, \ldots, D_{p-1}$ have all been defined. Let $1 \cdot \tau^{p}$ be an elementary $p$-chain on $K^{(1)}$.
Then, for every $(p-1)$-chain $c$,

$$
c-\varphi_{p-1} \psi_{p-1}(c)=\partial D_{p-1}(c)+D_{p-2} \partial(c)
$$

So

$$
\partial D_{p-1}(c)=c-\varphi_{p-1} \psi_{p-1}(c)-D_{p-2} \partial(c)
$$

Consider

$$
z:=1 \cdot \tau^{p}-\varphi_{p} \psi_{p}\left(1 \cdot \tau^{p}\right)-D_{p-1} \partial\left(1 \cdot \tau^{p}\right)
$$

## Chain Equivalence (Cont'd)

- We set $z:=1 \cdot \tau^{p}-\varphi_{p} \psi_{p}\left(1 \cdot \tau^{p}\right)-D_{p-1} \partial\left(1 \cdot \tau^{p}\right)$.

We compute

$$
\begin{aligned}
\partial z= & \partial\left(1 \cdot \tau^{p}\right)-\partial \varphi_{p} \psi_{p}\left(1 \cdot \tau^{p}\right)-\partial D_{p-1} \partial\left(1 \cdot \tau^{p}\right) \\
= & \partial\left(1 \cdot \tau^{p}\right)-\varphi_{p-1} \psi_{p-1} \partial\left(1 \cdot \tau^{p}\right) \\
& -\left(\partial\left(1 \cdot \tau^{p}\right)-\varphi_{p-1} \psi_{p-1} \partial\left(1 \cdot \tau^{p}\right)-D_{p-2} \partial \partial\left(1 \cdot \tau^{p}\right)\right)=0 .
\end{aligned}
$$

This means that $z$ is a cycle on $K^{(1)}$.
An argument analogous to that used previously shows that $z$ is the boundary of a $(p+1)$-chain $c_{p+1}$ on $K^{(1)}$.
We then define

$$
D_{p}\left(1 \cdot \tau^{p}\right)=c_{p+1}
$$

Finally, we extend by linearity.
This completes the definition of the deformation operator $\mathscr{D}$. It also shows that $K$ and $K^{(1)}$ are chain equivalent.

## Homology Groups of $H_{p}(K)$ and $H_{p}\left(K^{(n)}\right.$

## Theorem

The homology groups $H_{p}(K)$ and $H_{p}\left(K^{(n)}\right)$ are isomorphic for all integers $p \geq 0, n \geq 1$, and each complex $K$.

- The inductive definition of $K^{(n)}$ and the preceding theorem show that $K$ and $K^{(n)}$ are chain equivalent for $n \geq 1$.
By a previous theorem,

$$
H_{p}(K) \cong H_{p}\left(K^{(n)}\right), \quad p \geq 0
$$

## Uniqueness of the Induced Homomorphisms

- Let $|K|$ and $|L|$ be polyhedra with triangulations $K$ and $L$, respectively. and $f:|K| \rightarrow|L|$ a continuous map.
Claim: The induced homomorphisms $f_{p}^{*}: H_{P}(K) \rightarrow H_{p}(L)$ are uniquely determined by $f$.
By the Simplicial Approximation Theorem, there are:
- A barycentric subdivision $K^{(k)}$ of $K$;
- A simplicial mapping $g$ from $K^{(k)}$ to $L$,
such that, as functions from $|K|$ to $|L|, f$ and $g$ are homotopic.
The theorem allows some freedom in the choices of $g$ and the degree $k$ of the barycentric subdivision.
$k$ must be large enough so that $K^{(k)}$ is star related to $L$ relative to $f$. The simplicial map $g$ is given, for a vertex $u$ of $K^{(k)}$, by setting $g(u)$ to be any vertex of $L$, satisfying $f(\operatorname{ost}(w)) \subseteq \operatorname{ost}(g(u))$.


## Uniqueness of the Induced Homomorphisms (Cont'd)

Claim: The sequence of homomorphisms is independent of the admissible choices for $g$.
We show that any admissible change in the value of $g$ at one vertex does not alter the induced homomorphisms $g_{p}^{*}: H_{p}\left(K^{(k)}\right) \rightarrow H_{p}(L)$.
Then note that any simplicial map satisfying the requirements of the theorem defining $g_{p}^{*}$ can be obtained from any other one by a finite sequence of such changes at single vertices.
Let $g, h$ be two simplicial maps from $K^{(k)}$ into $L$ which:

- Have identical values at each vertex of $K^{(k)}$ except for one vertex $v$;
- For this vertex, ost $(g(v))$ and $\operatorname{ost}(h(v))$ both contain $f(\operatorname{ost}(v))$.

We show that the chain mappings $\left\{g_{p}: C_{p}\left(K^{(k)}\right) \rightarrow C_{p}(L)\right\}$ and $\left\{h_{p}: C_{p}\left(K^{(k)}\right) \rightarrow C_{p}(L)\right\}$ are chain homotopic.
Then, by the preceding theorem, the induced homomorphisms $g_{p}^{*}$ and $h_{p}^{*}$ from $H_{p}\left(K^{(k)}\right)$ to $H_{p}(L)$ are identical for each value of $p$.

## Uniqueness of the Induced Homomorphisms $(p=0)$

- For our deformation operator $\mathscr{D}=\left\{D_{p}: C_{p}\left(K^{(m)}\right) \rightarrow C_{p+1}(L)\right\}_{-1}^{\infty}$, we must have $D_{-1}=0$.
For any vertex $u$ of $K^{(k)}$, define

$$
\begin{aligned}
& D_{0}(1 \cdot\langle u\rangle)=0, \quad u \neq v ; \\
& D_{0}(1 \cdot\langle v\rangle)=1 \cdot\langle h(v) g(v)\rangle .
\end{aligned}
$$

Extend $D_{0}$ by linearity to a homomorphism from $C_{0}\left(K^{(k)}\right)$ to $C_{1}(L)$. Note that

$$
\begin{aligned}
\partial D_{0}(1 \cdot\langle v\rangle)+D_{-1} \partial(1 \cdot\langle v\rangle) & =\partial(1 \cdot\langle h(v) g(v)\rangle) \\
& =1 \cdot\langle g(v)\rangle-1 \cdot\langle h(v)\rangle \\
& =g_{0}(1 \cdot\langle v\rangle)-h_{0}(1 \cdot\langle v\rangle) .
\end{aligned}
$$

If $u$ is a vertex of $K^{(k)}$ different from $v$, then

$$
g_{0}(1 \cdot\langle u\rangle)=h_{0}(1 \cdot\langle u\rangle), \quad D_{0}(1 \cdot\langle u\rangle)=0
$$

So the desired relation $\partial D_{p}+D_{p-1} \partial=g_{p}-h_{p}$ holds for $p=0$.

## Uniqueness of the Induced Homomorphisms ( $p \geq 1$ )

- Let $1 \cdot \sigma^{p}$ be an elementary $p$-chain in $C_{p}\left(K^{(k)}\right)$.
- Suppose $v$ is not a vertex of $\sigma^{p}$.

Then we define $D_{p}\left(1 \cdot \sigma^{p}\right)=0$ in $C_{p+1}(L)$.

- Suppose $v$ is a vertex of $\sigma^{p}$.

Then $\sigma^{p}=v \sigma^{p-1}$, for some ( $p-1$ )-simplex $\sigma^{p-1}$.
Let $\tau$ be the ( $p-1$ )-simplex in $L$ on which $g$ and $h$ map $\sigma^{p-1}$.
Define

$$
D_{p}\left(1 \cdot \sigma^{p}\right)=1 \cdot h(v) g(v) \tau
$$

As usual, $D_{p}$ is extended linearly to a homomorphism from $C_{p}\left(K^{(k)}\right)$ to $C_{p+1}(L)$.

## Uniqueness of the Induced Homomorphisms ( $p \geq 1$ Cont'd)

- Then for the case in which $v$ is a vertex of $\sigma^{p}$,

$$
\begin{aligned}
& \partial D_{p}\left(1 \cdot \sigma^{p}\right)+D_{p-1} \partial\left(1 \cdot \sigma^{p}\right) \\
& =\partial(1 \cdot h(v) g(v) \tau)+D_{p-1} \partial\left(1 \cdot v \sigma^{p-1}\right) \\
& =1 \cdot g(v) \tau-h(v) \partial(1 \cdot g(v) \tau)+D_{p-1}\left(1 \cdot \sigma^{p-1}-v \partial\left(1 \cdot \sigma^{p-1}\right)\right) \\
& =1 \cdot g(v) \tau-h(v)[1 \cdot \tau-g(v) \partial(1 \cdot \tau)]-D_{p-1}\left(v \partial\left(1 \cdot \sigma^{p-1}\right)\right) \\
& =1 \cdot g(v) \tau-1 \cdot h(v) \tau+h(v) g(v) \partial(1 \cdot \tau)-h(v) g(v) \partial(1 \cdot \tau) \\
& =g_{p}\left(1 \cdot v \sigma^{p-1}\right)-h_{p}\left(1 \cdot v \sigma^{p-1}\right) \\
& =g_{p}\left(1 \cdot \sigma^{p}\right)-h_{p}\left(1 \cdot \sigma^{p}\right)
\end{aligned}
$$

Thus, $\partial D_{p}+D_{p-1} \partial=g_{p}-h_{p}, p \geq 0$.
The chain mappings induced by $g$ and $h$ must be chain homotopic.
By the preceding theorem, $g_{p}^{*}=h_{p}^{*}$.
So $f_{p}^{*}$ is independent of the allowable choices of the simplicial map $g$.

## Independence from the Degree of Subdivision

- The homomorphism $f_{p}^{*}: H_{p}(K) \rightarrow H_{p}(L)$ is actually the composition

$$
H_{p}(K) \xrightarrow{\mu_{P}^{*}} H_{p}\left(K^{(k)}\right) \xrightarrow{g_{p}^{*}} H_{p}(L),
$$

where $\mu_{p}^{*}$ is the isomorphism induced by chain derivation.

- Consider a barycentric subdivision $K^{(r)}$ of higher degree.
- Let $\psi_{p}^{*}: H_{p}(K) \rightarrow H_{p}\left(K^{(r)}\right)$ be the isomorphism induced by chain derivation.
- Let $j_{p}^{*}: H_{p}\left(K^{(r)}\right) \rightarrow H_{p}(L)$ be the homomorphism induced by an admissible simplicial map.
- It can be shown that

$$
g_{p}^{*} \mu_{p}^{*}=j_{p}^{*} \psi_{p}^{*}
$$

- Hence $f_{p}^{*}$ is also independent of the allowable choices for the degree of the barycentric subdivision $K^{(k)}$.


## Subsection 2

## The Lefschetz Fixed Point Theorem

## Fixed Simplexes and Weights

- In this section we assume that rational numbers rather than integers are used as the coefficient group for chains.
- Thus, the $p$-th chain group $C_{p}(K)$ of a complex $K$ is considered a vector space over the field of rational numbers.


## Definition

Let $K$ be a complex with $\left\{\sigma_{i}^{p}\right\}$ its set of $p$-simplexes. Let $\varphi=\left\{\varphi_{p}\right\}$ be a chain mapping on $K$. For a $p$-simplex $\sigma_{i}^{p}$ of $K$,

$$
\varphi_{p}\left(1 \cdot \sigma_{i}^{p}\right)=\sum_{\sigma_{j}^{p} \in K} a_{i j}^{p} \sigma_{j}^{p},
$$

for some rational numbers $a_{i j}^{p}$ one for each $p$-simplex $\sigma_{j}^{p}$ of $K$. Then $\sigma_{i}^{p}$ is a fixed simplex of $\varphi$ provided that $a_{i i}^{p}$, the coefficient of $\sigma_{i}^{p}$ in the expansion of $\varphi_{p}\left(1 \cdot \sigma_{i}^{p}\right)$, is not zero. The number $(-1)^{p} a_{i i}^{p}$ is called the weight of the fixed simplex $\sigma_{i}^{p}$.

## The Lefschetz Number

## Definition (Cont'd)

Let $A_{p}=\left(a_{i j}^{p}\right)$ be the matrix whose entry in row $i$ and column $j$ is $a_{i j}^{p}$. The trace of a square matrix is the sum of its diagonal elements.
We have

$$
\operatorname{trace} A_{p}=\sum a_{i i}^{p}
$$

Moreover, the number

$$
\lambda(\varphi)=\sum_{p}(-1)^{p} \operatorname{trace}\left(A_{p}\right)
$$

is the sum of the weights of all the fixed simplexes of $\varphi$. The number $\lambda(\varphi)$ is called the Lefschetz number of $\varphi$. (Note that, if $\lambda(\varphi) \neq 0$, then $\varphi$ must have at least one fixed simplex in some dimension $p$.)

## Remarks

- The matrix $A_{p}=\left(a_{i j}^{p}\right)$ is the matrix of $\varphi_{p}$ as a linear transformation from the vector space $C_{p}(K)$ into itself relative to the basis of elementary $p$-chains $\left\{1 \cdot \sigma_{i}^{p}\right\}$.
- The trace of the matrix of a linear transformation is not affected by a change of basis.
- So the Lefschetz number $\lambda(\varphi)$ is independent of the choice of basis for $C_{p}(K)$.


## Lefschetz Number and Euler Characteristic

- Let $K$ be a complex.

Let $\varphi_{p}: C_{p}(K) \rightarrow C_{p}(K)$ be the identity map on $C_{p}(K), p \geq 0$. Then

$$
a_{i i}^{p}=1, \quad a_{i j}^{p}=0, \text { for } i \neq j .
$$

Thus, each simplex is a fixed simplex. Let:

- $\alpha_{p}$ be the number of simplexes of dimension $p$;
- $\chi(K)$ the Euler characteristic of $K$.

Then we have:

$$
\lambda(\varphi)=\sum(-1)^{p} \text { trace } A_{p}=\sum(-1)^{p} \alpha_{p}=\chi(K) .
$$

Thus, the Lefschetz number is a generalization of the Euler characteristic.

## Lefschetz Number and Induced Homomorphisms

## Theorem

Let $\varphi=\left\{\varphi_{p}\right\}$ be a chain mapping on a complex $K$. The Lefschetz number $\lambda(\varphi)$ is completely determined by the induced homomorphisms $\varphi_{p}^{*}: H_{p}(K) \rightarrow H_{p}(K)$ on the homology groups.

- The proof is similar to the proof of the Euler-Poincaré Theorem. The same notation is adopted here.
- $\left\{z_{p}^{i}\right\} \cup\left\{b_{p}^{i}\right\}$ is a basis for the cycle vector space $Z_{p}$;
- $\left\{b_{p}^{i}\right\}$ is a basis for the boundary space $B_{p}$;
- $\left\{d_{p}^{i}\right\}$ is a basis for $D_{p}$;
- $b_{p}^{i}=\partial d_{p+1}^{i}$;
- $n$ is the dimension of $K$.

Note that $\left\{b_{p}^{i}\right\} \cup\left\{z_{p}^{i}\right\} \cup\left\{d_{p}^{i}\right\}$ is a basis for $C_{p}$.

## Lefschetz Number and Induced Homomorphisms (Cont'd)

- The linear transformation $\varphi_{p}$ takes $B_{p}$ into $B_{p}$.

So, for any $b_{p}^{i}$,

$$
\varphi_{p}\left(b_{p}^{i}\right)=\sum_{j} a_{i j}^{p} b_{p}^{j}, \quad 0 \leq p \leq n-1,
$$

for some rational coefficients $a_{i j}^{p}$.
For any $z_{p}^{i}, 0 \leq p \leq n, \varphi_{p}\left(z_{p}^{i}\right)$ must be a cycle.
So there are coefficients $a_{i j}^{\prime p}$ and $e_{i j}^{p}$, such that

$$
\varphi_{p}\left(z_{p}^{i}\right)=\sum_{j} a_{i j}^{\prime p} b_{p}^{j}+\sum_{j} e_{i j}^{p} z_{p}^{j} .
$$

For any $d_{p}^{i}, 1 \leq p \leq n$, there are coefficients $a_{i j}^{\prime \prime p}, e_{i j}^{\prime p}$ and $g_{i j}^{p}$, such that

$$
\varphi_{p}\left(d_{p}^{i}\right)=\sum_{j} a_{i j}^{\prime \prime p} b_{p}^{j}+\sum_{j} e_{i j}^{\prime p} z_{p}^{j}+\sum_{j} g_{i j}^{p} d_{p}^{j} .
$$

## Lefschetz Number and Induced Homomorphisms (Cont'd)

- Then

$$
\lambda(\varphi)=\sum_{i=0}^{n}(-1)^{p}\left(\operatorname{trace} A_{p}+\operatorname{trace} E_{p}+\operatorname{trace} G_{p}\right)
$$

where $A_{p}=\left(a_{i j}^{p}\right), E_{p}=\left(e_{i j}^{p}\right), G_{p}=\left(g_{i j}^{p}\right)$, and $A_{n}=G_{0}$ is the zero matrix.
Now

$$
\partial \varphi_{p+1}\left(d_{p+1}^{i}\right)=\varphi_{p} \partial\left(d_{p+1}^{i}\right)=\varphi_{p}\left(b_{p}^{i}\right)=\sum a_{i j}^{p} b_{p}^{j} .
$$

Also,

$$
\begin{aligned}
\partial \varphi_{p+1}\left(d_{p+1}^{i}\right) & =\partial\left(\sum a_{i j}^{\prime \prime p+1} b_{p+1}^{j}+\sum e_{i j}^{\prime p+1} z_{p+1}^{j}+\sum g_{i j}^{p+1} d_{p+1}^{j}\right) \\
& =\sum g_{i j}^{p+1} \partial\left(d_{p+1}^{j}\right) \\
& =\sum g_{i j}^{p+1} b_{p}^{j} .
\end{aligned}
$$

Then $a_{i j}^{p}=g_{i j}^{p+1}, A_{p}=G_{p+1}, 0 \leq p \leq n-1$.

## Lefschetz Number and Induced Homomorphisms (Cont'd)

- The sum $\lambda(\varphi)=\sum_{i=0}^{n}(-1)^{p}\left(\operatorname{trace} A_{p}+\operatorname{trace} E_{p}+\operatorname{trace} G_{p}\right)$ telescopes to give

$$
\lambda(\varphi)=\sum_{i=0}^{n}(-1)^{p} \text { trace } E_{p}
$$

This means that the Lefschetz number $\lambda(\varphi)$ is completely determined by the action of the maps $\varphi_{p}$ on the generating cycles $z_{p}^{i}$ of $H_{p}(K)$.
But the homology classes $\left[z_{p}^{i}\right.$ ] generate $H_{p}(K)$,

$$
\left.\varphi_{p}^{*}\left[z_{p}^{i}\right]\right)=\sum_{j} e_{i j}^{p}\left[z_{p}^{j}\right] .
$$

So the coefficients $e_{i j}^{p}$ are determined by the $\varphi_{p}^{*}: H_{p}(K) \rightarrow H_{p}(K)$. Thus, the induced homomorphisms completely determine the $e_{i j}^{p}$. And the $e_{i j}^{p}$, in turn, completely determine $\lambda(\varphi)$.

## The Lefschetz Number of a Continuous Mapping

- We have defined the Lefschetz number for chain mappings.
- The definition is now extended to continuous mappings.


## Definition

Let $K$ be a complex and $f:|K| \rightarrow|K|$ a continuous function.
Let $K^{(s)}$ be a barycentric subdivision of $K$.
Let $g$ a simplicial map from $K^{(s)}$ to $K$ which is a simplicial approximation of $f$. Then $g$ induces a chain mapping

$$
\left\{g_{p}: C_{p}\left(K^{(s)}\right) \rightarrow C_{p}(K)\right\}
$$

Let $\mu=\left\{\mu_{p}: C_{p}(K) \rightarrow C_{p}\left(K^{(s)}\right)\right\}$ be the $s$-th chain derivation on $K$. The Lefschetz number $\lambda(f)$ of $f$ is the Lefschetz number of the composite chain mapping $\left\{g_{p} \mu_{p}: C_{p}(K) \rightarrow C_{p}(K)\right\}$.

## Remarks

- It appears that the Lefschetz number $\lambda(f)$ of a continuous $f:|K| \rightarrow|K|$ is influenced by the possible choices for $g$ and $s$.
- However, recall that $\lambda(f)$ is completely determined by the induced homomorphisms

$$
f_{p}^{*}=g_{p}^{*} \mu_{p}^{*}: H_{p}(K) \rightarrow H_{p}(K) .
$$

- Moreover, $f_{p}^{*}$ is independent of the allowable choices for $g$ and $s$.
- So $\lambda(f)$ is independent of the choices for $g$ and $s$.


## The Lefschetz Fixed Point Theorem

## Theorem (The Lefschetz Fixed Point Theorem)

Let $K$ be a complex and $f:|K| \rightarrow|K|$ a continuous map. If the Lefschetz number $\lambda(f)$ is not 0 , then $f$ has a fixed point.

- Suppose to the contrary that $F$ has no fixed point.

Since $|K|$ is compact, there is a number $\epsilon>0$, such that if $x \in|K|$, then the distance $\|f(x)-x\| \geq \epsilon$.
By replacing $K$ with a suitable barycentric subdivision if necessary, we may assume that mesh $K<\frac{\epsilon}{3}$.
By the proof of the Simplicial Approximation Theorem, there are:

- A positive integer s;
- A simplicial map $g$ from $K^{(s)}$ to $K$, homotopic to $f$,
such that, for $x$ in $|K|, f(x)$ and $g(x)$ lie in a common simplex of $K$.
Then $\|f(x)-g(x)\|<\frac{\epsilon}{3}$, for all $x \in|K|$.


## The Lefschetz Fixed Point Theorem (Cont'd)

- Suppose that some simplex $\sigma$ of $K$ contains a point $x$, such that $g(x)$ is also in $\sigma$. Then

$$
\|f(x)-x\| \leq\|f(x)-g(x)\|+\|g(x)-x\|<\frac{2 \epsilon}{3}
$$

This contradicts the fact that $\|f(x)-x\|>\epsilon$.
Thus, $\sigma$ and $g(\sigma)$ are disjoint for all $\sigma$ in $K$.
Let $\mu=\left\{\mu_{p}: C_{p}(K) \rightarrow C_{p}\left(K^{(s)}\right)\right\}$ be the $s$-th chain derivation.
Let $\left\{g_{p}: C_{p}\left(K^{(s)}\right) \rightarrow C_{p}(K)\right\}$ be the chain mapping induced by $g$.

## The Lefschetz Fixed Point Theorem (Cont'd)

- Suppose $\sigma^{p}$ is a $p$-simplex of $K$.

Then $\mu_{p}\left(1 \cdot \sigma^{p}\right)$ is a chain on $K^{(s)}$ all of whose simplexes with nonzero coefficient are contained in $\sigma^{p}$.
Now $\sigma^{p}$ and $g\left(\sigma^{p}\right)$ are disjoint.
So $g_{p} \mu_{p}\left(1 \cdot \sigma^{p}\right)$ is a $p$-chain on $K$ none of whose simplexes with nonzero coefficient intersects $\sigma$.
Thus, $g_{p} \mu_{p}$ has no fixed simplex.
So the Lefschetz number of the chain mapping $\left\{g_{p} \mu_{p}\right\}$ is zero.
But this is the Lefschetz number of $f$.
This contradicts the hypothesis $\lambda(f) \neq 0$.

## The Brouwer Fixed Point Theorem

## Corollary (The Brouwer Fixed Point Theorem)

If $\sigma^{n}$ is an $n$-simplex, $n$ a positive integer, and $f: \sigma^{n} \rightarrow \sigma^{n}$ a continuous map, then $f$ has a fixed point.

- Let $K=\mathrm{Cl}\left(\sigma^{n}\right)$. Then $H_{0}(K) \cong \mathbb{Z}$ and $H_{p}(K)=\{0\}$, for $p>0$. Let $v$ be a vertex of $\sigma^{n}$ so that the homology class $[1 \cdot\langle v\rangle]$ may be considered a generator of $H_{0}(K)$. Then

$$
f_{0}^{*}([1 \cdot\langle v\rangle])=[1 \cdot\langle v\rangle] .
$$

Moreover, the coefficient matrix $E_{0}$ (previous theorem) has trace 1.
Each matrix $E_{p}$, for $p>0$, has only zero entries.
Hence,

$$
\lambda(f)=\sum(-1)^{p} \operatorname{trace} E_{p}=1 .
$$

Thus, $\lambda(f) \neq 0$. So $f$ must have a fixed point.

## Continuous Maps from $S^{n}$ to $S^{n}$

## Corollary

Every continuous map from $S^{n}$ to $S^{n}, n>1$, whose degree is not 1 or -1 has a fixed point.

- We know $H_{0}\left(S^{n}\right) \cong H_{n}\left(S^{n}\right) \cong \mathbb{Z}$ and $H_{p}\left(S^{n}\right)=\{0\}$, otherwise.

Let $[1 \cdot\langle v\rangle]$ and $\left[z_{n}\right]$ be generators of $H_{0}\left(S^{n}\right)$ and $H_{n}\left(S^{n}\right)$, respectively. For $d$ the degree of $f$,

$$
\begin{aligned}
f_{0}^{*}([1 \cdot\langle v\rangle]) & =[1 \cdot\langle v\rangle] ; \\
f_{n}^{*}\left(\left[z_{n}\right]\right) & =d\left[z_{n}\right] .
\end{aligned}
$$

Then $\lambda(f)=1+(-1)^{n} d$.
So, if $d \neq \pm 1, \lambda(f) \neq 0$.

## The Degree of the Antipodal Map

## Corollary

If $f: S^{n} \rightarrow S^{n}$ is the antipodal map, then the degree of $f$ is $(-1)^{n+1}$.

- The map $f$ has no fixed point. Hence, $\lambda(f)=0$.
It follows that, for $d$ is the degree of $f$,

$$
0=1+(-1)^{n} d
$$

This gives

$$
d=(-1)^{n+1}
$$

## Subsection 3

## Relative Homology Groups

## Relative Homology Groups and Homology Sequence

- Suppose that $K$ is a complex and $L$ is a complex contained in $K$.
- It often happens that one knows the homology groups of either $K$ of $L$ and needs to know the homology groups of the other.
- The groups $H_{p}(K)$ and $H_{p}(L)$ can be compared using the "relative homology groups" $H_{p}(K / L)$ to which this section is devoted.
- The intuitive idea is to "remove" all chains on $L$ by considering quotient groups.
- The groups $H_{p}(K), H_{p}(L)$, and $H_{p}(K / L)$ form a sequence of groups and homomorphisms called the "homology sequence".
- Using this sequence, one can often compute any one of the groups $H_{p}(K), H_{p}(L)$, or $H_{p}(K / L)$ provided that enough information is known about the others.


## Subcomplexes

## Definition

A subcomplex of a complex $K$ is a complex $L$ with the property that each simplex of $L$ is a simplex of $K$.

- Note that not every subset of a complex is a subcomplex.
- It is required that the subset be a complex in its own right.
- The $p$-skeleton of a complex is one type of subcomplex.
- The empty set $\varnothing$ is a subcomplex of each complex $K$.
- The relative homology groups $H_{p}(K / L)$ will reduce to $H_{p}(K)$ when $L=\varnothing$.


## Relative Chain Groups

## Definition

Let $K$ be a complex with subcomplex $L$. By assigning value 0 to each simplex of the complement $K \backslash L$, each chain on $L$ can be considered a chain on $K$. In this way, we can consider $C_{p}(L)$ as a subgroup of $C_{p}(K), p \geq 0$. The relative $p$-dimensional chain group of $K$ modulo $L$, or relative $p$-chain group (with integer coefficients), is the quotient group

$$
C_{p}(K / L)=C_{p}(K) / C_{p}(L)
$$

Thus, each member of $C_{p}(K / L)$ is a coset $c_{p}+C_{p}(L)$, where $c_{p} \in C_{p}(K)$.

## The Relative Boundary Operators

## Definition

For $p \geq 1$, the relative boundary operator $\partial: C_{p}(K / L) \rightarrow C_{p-1}(K / L)$ is defined by

$$
\partial\left(c_{p}+C_{p}(L)\right)=\partial c_{p}+C_{p-1}(L), \quad\left(c_{p}+C_{p}(L)\right) \in C_{p}(K / L)
$$

where $\partial c_{p}$ denotes the usual boundary of the $p$-chain $c_{p}$. It can be shown that the relative boundary operator is a homomorphism.

## Groups of Relative Cycles and Relative Boundaries

## Definition (Cont'd)

The group of relative $p$-dimensional cycles on $K$ modulo $L$, denoted by $Z_{p}(K / L)$, is the kernel of the relative boundary operator

$$
\partial: C_{p}(K / L) \rightarrow C_{p-1}(K / L), \quad p \geq 1
$$

We define $Z_{0}(K / L)$ to be the chain group $C_{0}(K / L)$.
For $p \geq 0$, the group of relative $p$-dimensional boundaries on $K$ modulo $L$, denoted by $B_{p}(K / L)$, is the image $\partial\left(C_{p+1}(K / L)\right)$ of $C_{p+1}(K / L)$ under the relative boundary homomorphism.

## Relative Simplicial Homology Groups

## Definition

The relative $p$-dimensional simplicial homology group of $K$ modulo $L$ is the quotient group

$$
H_{p}(K / L)=\frac{Z_{p}(K / L)}{B_{p}(K / L)}, \quad p \geq 0 .
$$

- The definition of $H_{p}(K / L)$ makes sense, since $B_{p}(K / L) \subseteq Z_{p}(K / L)$.
- The members of $H_{p}(K / L)$ are denoted

$$
\left[z_{p}+C_{p}(L)\right]
$$

where $z_{p}+C_{p}(L)$ is a relative $p$-cycle.

- $\partial z_{p}$ must be a ( $p-1$ )-chain on $L$, but $z_{p}$ may not be an actual cycle;
- However, if $z_{p}$ is a cycle, then $z_{p}+C_{p}(L)$ is certainly a relative cycle.


## Example

- Let $K$ be the 1 -skeleton of a 2 -simplex $\left\langle v_{0} v_{1} v_{2}\right\rangle$.

Let $L$ be the subcomplex determined by the vertex $v_{0}$. We determine $H_{0}(K / L)$ and $H_{1}(K / L)$.
Consider, first, the case $p=0$.
We have

$$
\begin{aligned}
C_{0}(K)=Z_{0}(K) & \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \\
C_{0}(L)=Z_{0}(L) & \cong \mathbb{Z} .
\end{aligned}
$$

Moreover, by definition,

$$
C_{0}(K / L)=Z_{0}(K / L) \cong \mathbb{Z} \oplus \mathbb{Z} .
$$

The members of $Z_{0}(K / L)$ are chains of the form

$$
z=g_{1} \cdot\left\langle v_{1}\right\rangle+g_{2} \cdot\left\langle v_{2}\right\rangle+C_{0}(L), \quad g_{1}, g_{2} \in \mathbb{Z}
$$

where $C_{0}(L)=\left\{g \cdot\left\langle v_{0}\right\rangle: g\right.$ is an integer $\}$.

## Example (Cont'd)

- Now we have

$$
\partial\left(g_{1} \cdot\left\langle v_{0} v_{1}\right\rangle+g_{2} \cdot\left\langle v_{0} v_{2}\right\rangle\right)=g_{1} \cdot\left\langle v_{1}\right\rangle+g_{2} \cdot\left\langle v_{2}\right\rangle+\left(-g_{1}-g_{2}\right) \cdot\left\langle v_{0}\right\rangle
$$

So

$$
\partial\left(g_{1} \cdot\left\langle v_{0} v_{1}\right\rangle+g_{2} \cdot\left\langle v_{0} v_{2}\right\rangle+C_{1}(L)\right)=g_{1} \cdot\left\langle v_{1}\right\rangle+g_{2} \cdot\left\langle v_{2}\right\rangle+C_{0}(L)
$$

Thus, every relative 0 -cycle is a relative 0 -boundary.
This means that $Z_{0}(K / L)=B_{0}(K / L)$.
Therefore,

$$
H_{0}(K / L)=\{0\} .
$$

## Example (Cont'd)

- Next, consider the case $p=1$.

Consider a relative 1-chain

$$
w=h_{1} \cdot\left\langle v_{0} v_{1}\right\rangle+h_{2} \cdot\left\langle v_{1} v_{2}\right\rangle+h_{3} \cdot\left\langle v_{0} v_{2}\right\rangle+C_{1}(L)
$$

Since $C_{1}(L)=\{0\}$, 1-chains and relative 1-chains can be identified.
We have

$$
\partial w=\left(h_{1}-h_{2}\right) \cdot\left\langle v_{1}\right\rangle+\left(h_{2}+h_{3}\right) \cdot\left\langle v_{2}\right\rangle+C_{0}(L) .
$$

Thus, $w$ is a relative 1-cycle if and only if $h_{1}=h_{2}=-h_{3}$. It follows that $Z_{1}(K / L) \cong \mathbb{Z}$.
Since $K$ has no 2-simplexes, then $B_{1}(K / L)=\{0\}$ and $H_{1}(K / L) \cong \mathbb{Z}$. Since there are no simplexes of dimension 2 or higher,

$$
H_{p}(K / L)=\{0\}, \quad p \geq 2 .
$$

## Example

- Let $K$ denote the closure of a 2 -simplex $\sigma^{2}=\left\langle v_{0} v_{1} v_{2}\right\rangle$. Let $L$ be its 1 -skeleton.
$K$ and $L$ have precisely the same 0 -simplexes and 1 -simplexes. It follows that

$$
\begin{array}{lll}
C_{0}(K)=C_{0}(L), & C_{0}(K / L)=\{0\}, & H_{0}(K / L)=\{0\} ; \\
C_{1}(K)=C_{1}(L), & C_{1}(K / L)=\{0\}, & H_{1}(K / L)=\{0\} .
\end{array}
$$

$L$ has no simplexes of dimension two or higher.
So it might seem that $H_{p}(K)$ and $H_{p}(K / L)$ are isomorphic for $p \geq 2$.
This is true for $p \geq 3$ but not for $p=2$.

## Example (Cont'd)

- It is true that $L$ has no simplexes of dimension two. However, the boundary of a 2-chain is a 1-chain.
So $L$ does affect $Z_{2}(K / L)$.
Suppose the 1 -chain has nonzero coefficients only for simplexes of $L$.
Then the 2-chain is a relative cycle.
Consider the elementary relative 2-chain $u=g \cdot\left\langle v_{0} v_{1} v_{2}\right\rangle+C_{2}(L), g \in \mathbb{Z}$. It has relative boundary

$$
\partial u=g \cdot\left\langle v_{1} v_{2}\right\rangle-g \cdot\left\langle v_{0} v_{2}\right\rangle+g \cdot\left\langle v_{0} v_{1}\right\rangle+C_{1}(L)=0,
$$

because all 1-simplexes of $K$ are in $L$.
Thus, the subcomplex $L$ produces relative 2-cycles. So $Z_{2}(K / L) \cong \mathbb{Z}$.
But $B_{2}(K / L)=\{0\}$. So $H_{2}(K / L) \cong \mathbb{Z}$.
Note that $H_{2}(K)=\{0\}$. So $H_{2}(K / L)$ is not isomorphic to $H_{2}(K)$.

## The Homology Sequence ( $i^{*}$ )

- Our next objective is to show that there is a special sequence
$\cdots \xrightarrow{\partial^{*}} H_{p}(L) \xrightarrow{i^{*}} H_{p}(K) \xrightarrow{\dot{j}^{*}} H_{p}(K / L) \xrightarrow{\partial^{*}} H_{p-1}(L) \xrightarrow{i^{*}} \cdots \xrightarrow{i^{*}} H_{0}(K) \xrightarrow{j^{*}} H_{0}(K / L)$, where $i^{*}, j^{*}$, and $\partial^{*}$ are homomorphisms.


## Definition

Let $K$ be a complex with subcomplex $L$. The inclusion map $i$ from $L$ into $K$ is simplicial and induces a homomorphism

$$
i^{*}: H_{p}(L) \rightarrow H_{p}(K), \quad p \geq 0 .
$$

The effect of this homomorphism is easily described:
If $\left[z_{p}\right] \in H_{p}(L)$ is represented by the $p$-cycle $z_{p}$ on $L$, then $z_{p}$ can be considered a $p$-cycle on $K$. Then $z_{p}$ determines a homology class $i^{*}\left(\left[z_{p}\right]\right)=\left[z_{p}\right]$ in $H_{p}(K)$.

## The Homology Sequence ( $j^{*}$ )

## Definition

Let $j: C_{p}(K) \rightarrow C_{p}(K / L)$ be the homomorphism defined by

$$
j\left(c_{p}\right)=c_{p}+C_{p}(L), \quad c_{p} \in C_{p}(K)
$$

Then $j$ induces a homomorphism

$$
j^{*}: H_{p}(K) \rightarrow H_{p}(K / L), \quad p \geq 0 .
$$

If $\left[z_{p}\right] \in H_{p}(K)$, then $z_{p}+C_{p}(L)$ is a relative $p$-cycle.
It determines a member $\left[z_{p}+C_{p}(L)\right]$ of $H_{p}(K / L)$.
The homomorphism $j^{*}$ takes $\left[z_{p}\right]$ to $\left[z_{p}+C_{p}(L)\right]$.

## The Homology Sequence ( $\partial^{*}$ )

## Definition

We finally define

$$
\partial^{*}: H_{p}(K / L) \rightarrow H_{p-1}(L) .
$$

Suppose $\left[z_{p}+C_{p}(L)\right] \in H_{p}(K / L), p \geq 1$.
Then $z_{p}+C_{p}(L)$ is a relative $p$-cycle.
This means that $\partial z_{p}$ is in $C_{p-1}(L)$.
Since $\partial \partial z_{p}=0, \partial z_{p}$ is a $(p-1)$-cycle on $L$.
So it determines a member $\left[\partial z_{p}\right]$ of $H_{p-1}(L)$.
We define

$$
\partial^{*}\left(\left[z_{p}+C_{p}(L)\right]\right)=\left[\partial z_{p}\right], \quad\left[z_{p}+C_{p}(L)\right] \in H_{p}(K / L) .
$$

## The Homology Sequence

## Definition

The homology sequence of the pair $(K, L)$ is the sequence of groups and homomorphisms
$\cdots \xrightarrow{\partial^{*}} H_{p}(L) \xrightarrow{i^{*}} H_{p}(K) \xrightarrow{\dot{j}^{*}} H_{p}(K / L) \xrightarrow{\partial^{*}} H_{p-1}(L) \xrightarrow{i^{*}} \cdots \xrightarrow{i^{*}} H_{0}(K) \xrightarrow{\dot{j}^{*}} H_{0}(K / L)$.

- We may verify that

$$
\begin{array}{llll}
i^{*}: & H_{p}(L) & \rightarrow & H_{p}(K), \\
j^{*}: & H_{p}(K) & \rightarrow & H_{p}(K / L), \\
\partial^{*}: & H_{p}(K / L) & \rightarrow & H_{p-1}(L)
\end{array}
$$

are well-defined homomorphisms.

## Exact Sequences

## Definition

A sequence

$$
\cdots \xrightarrow{h_{p+1}} G_{p} \xrightarrow{h_{p}} G_{p-1} \xrightarrow{h_{p-1}} \cdots \xrightarrow{h_{2}} G_{1} \xrightarrow{h_{1}} G_{0}
$$

of groups $G_{0}, G_{1}, \ldots$ and homomorphisms $h_{1}, h_{2}, \ldots$ is exact provided that:

- The kernel of $h_{p-1}$ equals the image $h_{p}\left(G_{p}\right)$, for $p \geq 2$;
- $h_{1}$ maps $G_{1}$ onto $G_{0}$.

Note that requiring that $h_{1}$ be onto is equivalent to requiring that $G_{0}$ be followed by the trivial group.

## Short Exact Sequences

## Theorem

Suppose that an exact sequence has a section of four groups

$$
\{0\} \xrightarrow{f} A \xrightarrow{g} B \xrightarrow{h}\{0\},
$$

where $\{0\}$ denotes the trivial group.
Then $g$ is an isomorphism from $A$ onto $B$.

- The image $f(\{0\})=\{0\}$ contains only the identity element of $A$.

Exactness then guarantees that $g$ has kernel $\{0\}$.
So $g$ is one-to-one.
The kernel of $h$ is all of $B$.
This must be the image $g(A)$.
Thus, $g$ is an isomorphism as claimed.

## Exact Sequences with Three Nontrivial Members

## Theorem

Suppose that an exact sequence has a section of five groups

$$
\{0\} \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow\{0\} .
$$

Suppose, in addition, that:

- There is a homomorphism $h: C \rightarrow B$, such that $g h$ is the identity on $C$;
- $B$ is abelian.

Then $B \cong A \oplus C$.

- We define $T: A \oplus C \rightarrow B$ by

$$
T(a, c)=f(a) \cdot h(c), \quad(a, c) \in A \oplus C .
$$

It may be verified that $T$ is the required isomorphism.

## Exact Sequences with Three Nontrivial Members (Cont'd)

- It is easily seen that:
- $A \cong \operatorname{ker}(g)$ via $f$;
- $C \cong \operatorname{im}(h)$ via $h$.

So it suffices to show that $B \cong \operatorname{ker}(g) \oplus \operatorname{im}(h)$.
Given $b \in B$, we have

$$
b=\left(b((h g)(b))^{-1}\right) \cdot(h g)(b)
$$

where $b((h g)(b))^{-1} \in \operatorname{ker}(g)$ and $(h g)(b) \in \operatorname{im}(h)$.
Finally, if $b \in \operatorname{ker}(g) \cap \operatorname{im}(h)$, then:

- $g(b)=1$;
- $h(c)=b$, for some $c \in C$.

But then $c=h(h(c))=g(b)=0$.

## Exactness of the Homology Sequence

## Theorem

If $K$ is a complex with subcomplex $L$, then the homology sequence of $(K, L)$ is exact.

- In the homology sequence
$\cdots \xrightarrow{\partial^{*}} H_{p}(L) \xrightarrow{i^{*}} H_{p}(K) \xrightarrow{\dot{j}^{*}} H_{p}(K / L) \xrightarrow{\partial^{*}} H_{p-1}(L) \xrightarrow{i^{*}} \cdots \xrightarrow{i^{*}} H_{0}(K) \xrightarrow{j^{*}} H_{0}(K / L)$.
we must show that:
- The last homomorphism $j^{*}$ maps $H_{0}(K)$ onto $H_{0}(K / L)$;
- The kernel of each homomorphism is the image of the one that precedes it.
We first show that $j^{*}$ is onto.
Let $\left[z_{0}+C_{0}(L)\right] \in H_{0}(K / L)$. Then $z_{0}$ is a 0-chain on $K$.
Moreover, $j^{*}\left[z_{0}\right]=\left[z_{0}+C_{0}(L)\right]$. So $j^{*}$ is onto.


## Exactness of the Homology Sequence (1)

- The remainder of the proof breaks naturally into six parts:
(1) imi* $\subseteq$ kerj*;
(4) $k e r \partial^{*} \subseteq i m j^{*}$;
(2) $k e r j^{*} \subseteq i m i^{*}$;
(5) im $\partial^{*} \subseteq$ keri*;
(3) $\mathrm{imj}{ }^{*} \subseteq \mathrm{ker} \partial^{*}$;
(6) keri* $\subseteq i m \partial^{*}$.
(1) Let $i^{*}\left(\left[z_{p}\right]\right)$ be in the image of $i^{*}$, where $z_{p}$ is a $p$-cycle on $L$.

Then

$$
j^{*} i^{*}\left(\left[z_{p}\right]\right)=\left[z_{p}+C_{p}(L)\right] \stackrel{z_{p} \in C_{p}(L)}{=}\left[0+C_{p}(L)\right]=0 .
$$

Thus, $\mathrm{im} i^{*} \subseteq$ kerj ${ }^{*}$.

## Exactness of the Homology Sequence (2)

(2) Let $\left[w_{p}\right] \in H_{p}(K)$ be an element of the kernel of $j^{*}$.

That is, $j^{*}\left(\left[w_{p}\right]\right)=0$ in $H_{p}(K / L)$.
We must find an element $\left[z_{p}\right]$ in $H_{p}(L)$, such that

$$
i^{*}\left(\left[z_{p}\right]\right)=\left[w_{p}\right] .
$$

Now $j^{*}\left(w_{p}\right)=\left[w_{p}+C_{p}(L)\right]=0$.
So $w_{p}+C_{p}(L)$ is the relative boundary of a relative $(p+1)$-chain
$c_{p+1}+C_{p+1}$, i.e., $\partial c_{p+1}+C_{p}(L)=w_{p}+C_{p}(L)$.
It follows that $w_{p}-\partial c_{p+1}$ is in $C_{p}(L)$.
Both $w_{p}$ and $\partial c_{p+1}$ are cycles on $K$. So $w_{p}-\partial c_{p+1}$ is also a cycle.
So it determines a member [ $w_{p}-\partial c_{p+1}$ ] of $H_{p}(L)$.
Note that

$$
i^{*}\left(\left[w_{p}-\partial c_{p+1}\right]\right)=\left[w_{p}-\partial c_{p+1}\right]=\left[w_{p}\right]
$$

since $w_{p}$ and $w_{p}-\partial c_{p+1}$ are homologous cycles on $K$.
Thus, kerj ${ }^{*} \subseteq \mathrm{imi}^{*}$.

## Exactness of the Homology Sequence ((3) \&(4))

(3) Let $j^{*}\left(\left[z_{p}\right]\right)=\left[z_{p}+C_{p}(L)\right]$ be a member of the image of $j^{*}$, where $z_{p}$ is a $p$-cycle on $K$. Then

$$
\partial^{*} j^{*}\left(\left[z_{p}\right]\right)=\partial^{*}\left(\left[z_{p}+C_{p}(L)\right]\right)=\left[\partial z_{p}\right] \stackrel{\partial z_{p}=0}{=} 0
$$

Thus, imj* $\subseteq$ ker $\partial^{*}$.
(4) Let $\left[x_{p}+C_{p}(L)\right]$ be in ker $\partial^{*}$, where $x_{p}+C_{p}(L)$ is a relative $p$-cycle.

Then $\partial^{*}\left(\left[x_{p}+C_{p}(L)\right]\right)=\left[\partial x_{p}\right]=0$ in $H_{p-1}(L)$.
This means that $\partial x_{p}=\partial y_{p}$, for some $p$-chain $y_{p}$ on $L$.
Then $x_{p}-y_{p}$ is a $p$-cycle on $k$.
So it determines a member $\left[x_{p}-y_{p}\right.$ ] of $H_{p}(K)$. Note that

$$
j^{*}\left(\left[x_{p}-y_{p}\right]\right)=\left[x_{p}-y_{p}+C_{p}(L)\right]=\left[x_{p}+C_{p}(L)\right],
$$

since $y_{p} \in C_{p}(L)$. Thus, $\left[x_{p}+C_{p}(L)\right]$ is in the image of $j^{*}$.

- Parts (5) and (6) can be proven similarly.


## Example

- Let $K$ denote the closure of an $n$-simplex.

Let $L$ be its $(n-1)$-skeleton, $n \geq 2$.
We use the homology sequence to compute $H_{p}(K / L)$.
Since $n \geq 2, K$ and $L$ have the same 0 - and the same 1 -chains, and

$$
H_{0}(K / L)=H_{1}(K / L)=\{0\} .
$$

For $p>1$, consider the homology sequence

$$
\cdots \rightarrow H_{p}(K) \rightarrow H_{p}(K / L) \rightarrow H_{p-1}(L) \rightarrow H_{p-1}(K) \rightarrow \cdots .
$$

We know that $H_{p-1}(K)=H_{p}(K)=\{0\}$.
By the Short Exact Sequence Theorem $H_{p}(K / L) \cong H_{p-1}(L), p>1$. Also $|L|$ is homeomorphic to $S^{n-1}$. Therefore,

$$
H_{n}(K / L) \cong H_{n-1}\left(S^{n-1}\right) \cong \mathbb{Z}
$$

Moreover, $H_{p}(K / L)=\{0\}$, if $p \neq n$.

## Example

- Let $X$ be the union of two $n$-spheres tangent at a point.

Then $X$ has as triangulation $K$ the $n$-skeleton of the closure of two $(n+1)$-simplexes joined at a common vertex.
Let $L$ denote the $n$-skeleton of one of the two $(n+1)$-simplexes.
Consider the section

$$
H_{n+1}(K / L) \xrightarrow{\partial^{*}} H_{n}(L) \xrightarrow{i^{*}} H_{n}(K) \xrightarrow{j^{*}} H_{n}(K / L) \xrightarrow{\partial^{*}} H_{n-1}(L)
$$

of the homology sequence of $(K, L)$.
It satisfies the hypotheses of the 3-Member Exact Sequence Theorem.
So

$$
H_{n}(K) \cong H_{n}(K / L) \oplus H_{n}(L)
$$

We can show that $H_{n}(K / L) \cong H_{n}(L) \cong \mathbb{Z}$.
Therefore, $H_{n}(X)=H_{n}(K) \cong \mathbb{Z} \oplus \mathbb{Z}$.

## Subsection 4

## Singular Homology Theory

## Singular versus Simplicial Homology

- One method of extending homology groups to spaces other than polyhedra is singular homology theory.
- Instead of insisting that the space $X$ be built from properly joined simplexes, one considers continuous maps from standard simplexes into $X$, called "singular simplexes".
- There are natural definitions of chains, cycles and boundaries paralleling those of simplicial homology.
- The singular and simplicial theories produce isomorphic homology groups when applied to polyhedra.
- However, the singular approach applies to all topological spaces. Notation: Points of $\mathbb{R}^{n+1}$ will be written $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ with zeroth coordinate $x_{0}$, first coordinate $x_{1}$, etc., i.e., with coordinates being numbered 0 through $n$.


## Unit Simplexes

## Definition

For $n \geq 0$, the unit $n$-simplex in $\mathbb{R}^{n+1}$ is the set

$$
\Delta_{n}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}: \sum x_{i}=1, x_{i} \geq 0,0 \leq i \leq n\right\} .
$$

The point $v_{i}$ with $i$-th coordinate 1 and all other coordinates 0 is called the $i$-th vertex of $\Delta_{n}$. The subset

$$
\Delta_{n}(i)=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \Delta_{n}: x_{i}=0\right\}
$$

is called the $i$-th face of $\Delta_{n}$ or the face opposite the $i$-th vertex. The map $d_{i}: \Delta_{n-1} \rightarrow \Delta_{n}$ defined by

$$
d_{i}\left(x_{0}, \ldots, x_{n-1}\right)=\left(x_{0}, \ldots, x_{i-1}, 0, x_{i}, \ldots, x_{n-1}\right)
$$

is the $i$-th inclusion map.

## Comments on the Definition

- Note that $\Delta_{n}$ is simply the simplex in $\mathbb{R}^{n+1}$ whose vertices are the points $v_{0}=(1,0, \ldots, 0), v_{1}=(0,1,0, \ldots, 0), \ldots, v_{n}=(0, \ldots, 0,1)$.
- The $i$-th inclusion map $d_{i}$ maps $\Delta_{n-1}$ onto the $i$-th face of $\Delta_{n}$.
- For the inclusion maps in the diagram

$$
\begin{aligned}
& \Delta_{n-2} \xrightarrow{d_{j}} \Delta_{n-1} \xrightarrow{d_{i}} \Delta_{n} \\
& \Delta_{n-2} \xrightarrow{d_{i-1}} \Delta_{n-1} \xrightarrow{d_{j}} \Delta_{n}, j<i,
\end{aligned}
$$

we have $d_{i} d_{j}=d_{j} d_{i-1}$.
E.g., we have

$$
\begin{aligned}
d_{5}\left(d_{2}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)\right) & =d_{5}\left(x_{0}, x_{1}, 0, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \\
& =\left(x_{0}, x_{1}, 0, x_{2}, x_{3}, 0, x_{4}, x_{5}, x_{6}, x_{7}\right) \\
& =d_{2}\left(x_{0}, x_{1}, x_{2}, x_{3}, 0, x_{4}, x_{5}, x_{6}, x_{7}\right) \\
& =d_{2}\left(d_{4}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)\right) .
\end{aligned}
$$

## Singular Simplexes

## Definition

Let $X$ be a space and $n$ a non-negative integer.
A singular $n$-simplex in $X$ is a continuous function $s^{n}: \Delta_{n} \rightarrow X$.
The set of all singular $n$-simplexes in $X$ is denoted $S_{n}(X)$.
For $n>0$ and $0 \leq i \leq n$, the composite map

$$
s_{i}^{n}=s^{n} d_{i}: \Delta_{n-1} \rightarrow X
$$

is a singular $(n-1)$-simplex called the $i$-th face of $s^{n}$.
The function from $S_{n}(X)$ to $S_{n-1}(X)$ which takes a singular $n$-simplex to its $i$-th face is called the $i$-th face operator on $S_{n}(X)$.

## Singular Simplexes (Cont'd)

## Definition (Cont'd)

The singular complex of $X$ is the set

$$
S(X)=\bigcup_{n=0}^{\infty} S_{n}(X)
$$

together with its family of face operators.
It is usually denoted by $S(X)$.

## A Property of Singular Simplexes

## Theorem

Let $s^{n}$ be a singular $n$-simplex in a space $X, n>1$. Then

$$
s_{i, j}^{n}=s_{j, i-1}^{n}, \quad 0 \leq j<i \leq n .
$$

- In the notation of the preceding definitions,

$$
\begin{aligned}
s_{i, j}^{n} & =s_{i}^{n} d_{j} \\
& =s^{n} d_{i} d_{j} \\
& =s^{n} d_{j} d_{i-1} \\
& =s_{j}^{n} d_{i-1} \\
& =s_{j, i-1}^{n}
\end{aligned}
$$

## Singular Chains

## Definition

For $p$ a nonnegative integer, a p-dimensional singular chain, or singular $p$-chain, is a function

$$
c_{p}: S_{p}(X) \rightarrow \mathbb{Z}
$$

from the set of singular $p$-simplexes of $X$ into the integers, such that

$$
c_{p}\left(s^{p}\right)=0,
$$

for all but finitely many singular $p$-simplexes.
Under the pointwise operation of addition induced by the integers, the set $C_{p}(X)$ of all singular $p$-chains on $X$ forms a group. This group is the $p$-dimensional singular chain group of $X$.

## Comments

- As in the simplicial theory, a singular p-chain can be expressed as a formal linear combination

$$
c_{p}=\sum_{i=0}^{r} g_{i} \cdot s(i)^{p}
$$

where:

- $g_{i}$ represents the value of $c_{p}$ at the singular $p$-simplex $s(i)^{p}$;
- $c_{p}$ has value zero for all $p$-simplexes not appearing in the sum.
- Since simplicial complexes have only finitely many simplexes, the "finitely nonzero" property of p-chains holds automatically in the simplicial theory.
- As in the simplicial theory, algebraic systems other than the integers can be used as the set of coefficients.


## Singular Boundary Homomorphisms

## Definition

The singular boundary homomorphism

$$
\partial: C_{p}(X) \rightarrow C_{p-1}(X)
$$

is defined for an elementary singular $p$-chain $g \cdot s^{p}, p \geq 1$, by

$$
\partial\left(g \cdot s^{p}\right)=\sum_{i=0}^{p}(-1)^{i} g \cdot s_{i}^{p} .
$$

This function is extended by linearity to a homomorphism $\partial$ from $C_{p}(X)$ into $C_{p-1}(X)$.
The boundary of each singular 0 -chain is defined to be 0 .

## Triviality of $\partial \partial$

## Theorem

If $X$ is a space and $p \geq 2$, then the composition $\partial \partial: C_{p}(X) \rightarrow C_{p-2}(X)$ in the diagram

$$
C_{p}(X) \xrightarrow{\partial} C_{p-1}(X) \xrightarrow{\partial} C_{p-2}(X)
$$

is the trivial homomorphism.

- Each p-chain is a linear combination of elementary p-chains.

So it is sufficient to prove that

$$
\partial \partial(g \cdot s)=0
$$

for each elementary p-chain $g \cdot s$.

## Triviality of $\partial \partial$ (Cont'd)

- Note that

$$
\begin{aligned}
\partial \partial(g \cdot s) & =\partial\left(\sum_{i=0}^{p}(-1)^{i} g \cdot s_{i}\right) \\
& =\sum_{i=0}^{p}(-1)^{i} \sum_{j=0}^{p-1}(-1)^{j} g \cdot s_{i, j} \\
& =\sum_{i=0}^{p} \sum_{j=0}^{p-1}(-1)^{i+j} g \cdot s_{i, j} \\
& =\sum_{0 \leq j<i \leq p}(-1)^{i+j} g \cdot s_{i, j}+\sum_{0 \leq i \leq j \leq p-1}(-1)^{i+j} g \cdot s_{i, j} \\
& =\sum_{0 \leq j<i \leq p}(-1)^{i+j} g \cdot s_{j, i-1}+\sum_{0 \leq i \leq j \leq p-1}(-1)^{i+j} g \cdot s_{i, j} .
\end{aligned}
$$

In the left sum on the preceding line, replace $i-1$ by $j$ and $j$ by $i$.
Then the two sums will cancel completely.
Thus, $\partial \partial=0$.

## Singular Cycles

## Definition

Let $X$ be a space and $p$ a positive integer.
A $p$-dimensional singular cycle on $X$, or singular $p$-cycle, is a singular $p$-chain $z_{p}$ such that

$$
\partial\left(z_{p}\right)=0 .
$$

The set of singular p-cycles is, thus, the kernel of the homomorphism

$$
\partial: C_{p}(X) \rightarrow C_{p-1}(X)
$$

and is a subgroup of $C_{p}(X)$. This subgroup is denoted $Z_{p}(X)$ and called the $p$-dimensional singular cycle group of $X$.
Since the boundary of each singular 0-chain is 0 , we define singular 0 -cycle to be synonymous with singular 0-chain.
Then the group $Z_{0}(X)$ of singular 0 -cycles is the group $C_{0}(X)$.

## Singular Boundaries

## Definition

If $p \geq 0$, a singular $p$-chain $b_{p}$ is a $p$-dimensional singular boundary, or singular $p$-boundary, if there is a singular $(p+1)$-chain $c_{p+1}$ such that

$$
\partial\left(c_{p+1}\right)=b_{p}
$$

The set $B_{p}(X)$ of singular $p$-boundaries is the image $\partial\left(C_{p+1}(X)\right)$ and is a subgroup of $C_{p}(X)$. This subgroup is called the $p$-dimensional singular boundary group of $X$.
Now $\partial \partial: C_{p}(X) \rightarrow C_{p-2}(X)$ is the trivial homomorphism. Hence, $B_{p}(X)$ is a subgroup of $Z_{p}(X), p \geq 0$.
The quotient group

$$
H_{p}(X)=Z_{p}(X) / B_{p}(X)
$$

is the $p$-dimensional singular homology group of $X$.

## Singular Homology and Orientation

- Many similarities in the definitions of the simplicial and singular homology groups should be obvious.
- Note, however, that no mention of orientation was made in the singular case.
- This was taken care of implicitly in the definition of the boundary operator

$$
\partial\left(g \cdot s^{n}\right)=\sum_{i=0}^{n}(-1)^{i} g \cdot s_{i}^{n} .
$$

- The definition in effect requires that the standard $n$-simplex $\Delta_{n}$ be assigned the orientation induced by the ordering $v_{0}<v_{1}<\cdots<v_{n}$.
- This orientation is then preserved in each singular $n$-simplex.


## Induced Homomorphisms

## Definition

Let $X$ and $Y$ be spaces and $f: X \rightarrow Y$ a continuous map.
If $s \in S_{p}(X)$, the composition $f s$ belongs to $S_{p}(Y)$. Hence $f$ induces a homomorphism $f_{p}: C_{p}(X) \rightarrow C_{p}(Y)$ defined by

$$
f_{p}\left(\sum_{i=0}^{r} g_{i} \cdot s(i)^{p}\right)=\sum_{i=0}^{r} g_{i} \cdot f_{s}(i)^{p}, \quad \sum_{i=0}^{r} g_{i} \cdot s(i)^{p} \in C_{p}(X)
$$

One easily observes that the diagram is commutative. So $f_{p}$ maps $Z_{p}(X)$ into $Z_{p}(Y)$ and $B_{p}(X)$ into $B_{p}(Y)$. Thus $f$ induces for each $p$ a homo$C_{p}(X) \xrightarrow{f_{p}} C_{p}(Y)$ morphism $f_{p}^{*}: H_{p}(X) \rightarrow H_{p}(Y)$ defined by

$$
C_{p-1}(X) \underset{f_{p-1}}{\longrightarrow} C_{p-1}(Y)
$$

$$
f_{p}^{*}\left(z_{p}+B_{p}(X)\right)=f_{p}\left(z_{p}\right)+B_{p}(Y), \quad\left(z_{p}+B_{p}(X)\right) \in H_{p}(X)
$$

The sequence $\left\{f_{p}^{*}\right\}$ is the sequence of homomorphisms induced by $f$.

## Advantages of Singular Homology

- Singular homology has two advantages over simplicial homology.
(1) The singular theory applies to all topological spaces, not just polyhedra.
(2) The induced homomorphisms are defined more easily in the singular theory.
- In the simplicial theory a continuous map between two polyhedra must be replaced by a simplicial approximation in order to define the induced homomorphisms.
This presents problems of uniqueness which are completely avoided by the singular approach.
- Singular and simplicial homology groups are isomorphic for polyhedra.


## Subsection 5

## Axioms for Homology Theory

## (Abstract) Homology Theory: The Data

- Eilenberg and Steenrod defined the term "homology theory".
- The definition applies to various categories of:
- Pairs $(X, A)$, where $X$ is a space with subspace $A$;
- Continuous functions on such pairs.
- A homology theory consists of three functions $H, *$ and $\partial$, having the following properties:
(1) $H$ assigns to each pair $(X, A)$ under consideration and each integer $p$ an abelian group $H_{p}(X, A)$. This group is the $p$-dimensional relative homology group of $X$ modulo $A$.
If $A=\varnothing$, then

$$
H_{p}(X, \varnothing)=H_{p}(X)
$$

is the $p$-dimensional homology group of $X$.

## (Abstract) Homology Theory: The Data (Cont'd)

(2) Let $(X, A)$ and $(Y, B)$ be pairs and $f: X \rightarrow Y$, with $f(A) \subseteq B$, an admissible map. Then the function $*$ determines, for each integer $p$, a homomorphism

$$
f_{p}^{*}: H_{p}(X, A) \rightarrow H_{p}(Y, B)
$$

called the homomorphism induced by $f$ in dimension $p$.
(3) The function $\partial$ assigns, to each pair $(X, A)$ and each integer $p$, a homomorphism

$$
\partial: H_{p}(X, A) \rightarrow H_{p-1}(A),
$$

called the boundary operator on $H_{p}(X, A)$.

## Homology Theory: The Eilenberg-Steenrod Axioms

The functions $H, *$, and $\partial$ are required to satisfy the following Eilenberg-Steenrod Axioms:

I (The Identity Axiom) If $i:(X, A) \rightarrow(X, A)$ is the identity map, then the induced homomorphism

$$
i_{p}^{*}: H_{p}(X, A) \rightarrow H_{p}(X, A)
$$

is the identity isomorphism for each integer $p$.
II (The Composition Axiom) If $f:(X, A) \rightarrow(Y, B)$ and $g:(Y, B) \rightarrow(Z, C)$ are admissible maps, then

$$
(g f)_{p}^{*}=g_{p}^{*} f_{p}^{*}: H_{p}(X, A) \rightarrow H_{p}(Z, C)
$$

for each integer $p$.

## The Eilenberg-Steenrod Axioms (Cont'd)

## III (The Commutativity Axiom)

If $f:(X, A) \rightarrow(Y, B)$ is an admissible map $H_{p}(X, A) \xrightarrow{f_{p}^{*}} H_{p}(Y, B)$ and $g: A \rightarrow B$ is the restriction of $f$, then the diagram on the right is commutative for each integer $p$.

$$
\begin{aligned}
& \partial \downarrow \\
& H_{p-1}(A) \underset{g_{p}^{*}}{\longrightarrow} H_{p-1}(B)
\end{aligned}
$$

(The Exactness Axiom) If $i: A \rightarrow X$ and $j:(X, \varnothing) \rightarrow(X, A)$ are inclusion maps, then the homology sequence

$$
\cdots \rightarrow H_{p}(A) \xrightarrow{i^{*}} H_{p}(X) \xrightarrow{j^{*}} H_{p}(X, A) \xrightarrow{\partial} H_{p-1}(A) \rightarrow \cdots
$$

is exact.

## The Eilenberg-Steenrod Axioms (Cont'd)

$\checkmark$ (The Homotopy Axiom) If the maps $f, g:(X, A) \rightarrow(Y, B)$ are homotopic, then the induced homomorphisms $f_{p}^{*}$ and $g_{p}^{*}$ are equal for each integer $p$.
VI (The Excision Axiom) If $U$ is an open subset of $X$, with $\bar{U} \subseteq A$, then the inclusion map e: $(X \backslash U, A \backslash U) \rightarrow(X, A)$ induces an isomorphism

$$
e_{p}^{*}: H_{p}(X \backslash U, A \backslash U) \rightarrow H_{p}(X, A),
$$

for each integer $p$. (The map $e$ is called the excision of $U$.)
VII (The Dimension Axiom) If $X$ is a space with only one point, then $H_{p}(X)=\{0\}$, for each nonzero value of $p$.

## Simplicial and Singular Homologies as Homologies

- Simplicial homology theory as presented in this book applies to the category of pairs $(X, A)$, where $X$ and $A$ have triangulations $K$ and $L$ for which $L$ is a subcomplex of $K$.
- The singular homology theory applies to all pairs $(X, A)$, where $X$ is a topological space with subspace $A$.
- A survey of homology theory from the axiomatic point of view is given in the classic book Foundations of Algebraic Topology by Eilenberg and Steenrod.

