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Further Developments in Homology Chain Derivation
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Further Developments in Homology Chain Derivation

Extension of a p-Simplex

Let σp = 〈v0 . . .vp〉 be a p-simplex.

Let v be a vertex, such that {v ,v0, . . . ,vp} is geometrically independent.

The symbol vσp denotes the (p+1)-simplex

vσp
= 〈vv0 . . .vp〉.

Let c =
∑

gi ·σ
p

i
be a p-chain.

Then vc denotes the (p+1)-chain

vc =
∑

gi ·vσ
p

i
.
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Further Developments in Homology Chain Derivation

Boundary of the Extension

Lemma

Let c be a p-chain on a complex K and v a vertex for which the
(p+1)-chain vc is defined. Then

∂(vc)= c −v∂c .

We perform the calculation for a p-simplex σp = 〈v0 . . .vp〉 and a
geometrically independent vertex v .

∂(vσp) = ∂(〈vv0 . . .vp〉)

= 〈v0 . . . ,vp〉−〈vv1 . . .vp〉+ · · ·+ (−1)p+1〈vv0 . . .vp−1〉

= σp −v(〈v1 . . .vp〉− · · ·+ (−1)p〈v0 . . .vp−1〉)

= σp −v∂σp .
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Further Developments in Homology Chain Derivation

First Chain Derivations

Definition

Let K be a complex. A chain mapping

ϕ= {ϕp :Cp(K )→Cp(K
(1))}

is defined inductively as follows:

Each 0-simplex σ0 of K is a 0-simplex of the barycentric subdivision
K (1). So we may consider C0(K ) as a subgroup of C0(K

(1)). Define

ϕ0 :C0(K )→C0(K
(1))

to be the inclusion map:

ϕ0(c)= c , c ∈C0(K ).
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Further Developments in Homology Chain Derivation

First Chain Derivations (Cont’d)

Definition (Cont’d)

For an elementary p-chain 1·σp on K , define

ϕp(1 ·σ
p)=

.
σ
p
ϕp−1∂(1 ·σ

p),

where
.
σ
p

denotes the barycenter of σp.
Extend ϕp by linearity to a homomorphism

ϕp :Cp(K )→Cp(K
(1));

ϕp(
∑

gi ·σ
p

i
)=

∑

ϕp(gi ·σ
p

i
),

∑

gi ·σ
p

i
∈Cp(K ).

The sequence ϕ= {ϕp} of homomorphisms defined in this way is
called the first chain derivation on K .
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Further Developments in Homology Chain Derivation

n-th Chain Derivations

Definition

For n > 1, the n-th chain derivation on k is the composition

Cp(K )
ϕ
(n−1)
p

✲ Cp(K
(n−1))

ϕp
✲ Cp(K

(n))

of ϕ(n−1), the (n−1)st chain derivation on K , with the first chain
derivation of the (n−1)st barycentric subdivision K (n−1).
Thus, the nth chain derivation on K is a chain mapping

ϕ(n)
= {ϕ

(n)
p :Cp(K )→Cp(K

(n))}.
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Further Developments in Homology Chain Derivation

Example

Consider the complex K =Cl(σ2), the closure of a 2-simplex

σ2
=+〈v0v1v2〉.

It is shown below with its barycentric subdivision K (1).

We examine the first chain derivation of this complex.
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Further Developments in Homology Chain Derivation

Example (Cont’d)

Let v3,v4,v5 and v6 be the barycenters of 〈v0v1〉, 〈v0v2〉, 〈v1v2〉, and
〈v0v1v2〉, respectively.

Then ϕ0 :C0(K )→C0(K
(1)) is the inclusion map.

For ϕ1, we have

ϕ1(1 · 〈v0v1〉) = v3ϕ0∂(1 · 〈v0v1〉)

= v3(1 · 〈v1〉−1 · 〈v0〉)

= 1 · 〈v3v1〉−1 · 〈v3v0〉;
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Further Developments in Homology Chain Derivation

Example (Cont’d)

ϕ1(1 · 〈v0v2〉) = v4ϕ0∂(1 · 〈v0v2〉)= v4(1 · 〈v2〉−1 · 〈v0〉)

= 1 · 〈v4v2〉−1 · 〈v4v0〉;

ϕ1(1 · 〈v1v2〉) = v5ϕ0∂(1 · 〈v1v2〉)= v5(1 · 〈v2〉−1 · 〈v1〉)

= 1 · 〈v5v2〉−1 · 〈v5v1〉;

ϕ2(1 · 〈v0v1v2〉) = v6ϕ1∂(1 · 〈v0v1v2〉)

= v6ϕ1(1 · 〈v1v2〉−1 · 〈v0v2〉+1 · 〈v0v1〉)

= 1 · 〈v6v5v2〉−1 · 〈v6v5v1〉−1 · 〈v6v4v2〉

+1 · 〈v6v4v0〉+1 · 〈v6v3v1〉−1 · 〈v6v3v0〉.
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Further Developments in Homology Chain Derivation

Chain Derivations are Chain Mappings

Theorem

Each chain derivation is a chain mapping.

The composition of chain mappings is a chain mapping.

So we show that the first chain derivation is a chain mapping.

Let ϕ= {ϕp :Cp(K )→Cp(K
(1))} be a chain derivation.

It must be shown that the following is commutative for p ≥ 1.

Cp(K )
ϕp

✲ Cp(K
(1))

Cp−1(K )

∂
❄

ϕp−1

✲ Cp−1(K
(1))

∂
❄

Thus, we must show that, for each elementary p-chain 1 ·σp,

∂ϕp(1 ·σ
p)=ϕp−1∂(1 ·σ

p).
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Further Developments in Homology Chain Derivation

Chain Derivations are Chain Mappings (Cont’d)

For p = 1, we have

C1(K )
ϕ1
✲ C1(K

(1))

C0(K )

∂
❄

ϕ0

✲ C0(K
(1))

∂
❄

∂ϕ1(1 ·σ
1)

ϕ1
= ∂(

.
σ

1
ϕ0∂(1 ·σ

1))
Lemma
= ϕ0∂(1 ·σ

1)−
.
σ

1
∂ϕ0∂(1 ·σ

1)
ϕ0
= ϕ0∂(1 ·σ

1)−
.
σ

1
∂∂(1 ·σ1)

∂∂=0
= ϕ0∂(1 ·σ

1).

George Voutsadakis (LSSU) Algebraic Topology May 2024 13 / 102



Further Developments in Homology Chain Derivation

Chain Derivations are Chain Mappings (Cont’d)

Thus ∂ϕ1 =ϕ0∂. So the desired conclusion holds for p = 1.

Proceeding inductively, let 1 ·σp be an elementary p-chain on K .

Then

Cp(K )
ϕp

✲ Cp(K
(1))

Cp−1(K )

∂
❄

ϕp−1

✲ Cp−1(K
(1))

∂
❄

∂ϕp(1 ·σ
p)

ϕp
= ∂(

.
σ
p
ϕp−1∂(1 ·σ

p))
Lemma
= ϕp−1∂(1 ·σ

p)−
.
σ
p
∂ϕp−1∂(1 ·σ

p)
ϕp−1
= ϕp−1∂(1 ·σ

p)−
.
σ
p
ϕp−2∂∂(1 ·σ

p)
∂∂=0
= ϕp−1∂(1 ·σ

p).

Thus, ∂ϕp =ϕp−1∂, for elementary p-chains, and, hence, for all
p-chains.
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Further Developments in Homology Chain Derivation

Left Invertibility of Chain Derivations

Theorem

Let K be a complex with first chain derivation ϕ= {ϕp}. There is a chain
mapping

ψ= {ψp :Cp(K
(1))→Cp(K )},

such that ψpϕp is the identity map on Cp(K ), for each p ≥ 0.

Such a chain mapping ψ is called a left inverse for ϕ.

Let f be any simplicial map from K (1) to K satisfying:
If

.
σ is a vertex of K (1), then f (

.
σ) is a vertex of the simplex σ of which

.
σ is the barycenter.

Let ψ= {ψp} be the chain mapping induced by f .

Suppose that τp is a p-simplex of K (1).
Then ψp(1 ·τ

p)= η ·σp , where:
η is 0, 1 or −1;
σp is the p-simplex of K which produces τp in its barycentric
subdivision.
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Further Developments in Homology Chain Derivation

Left Invertibility of Chain Derivations (Cont’d)

Clearly ψ0ϕ0 is the identity map on C0(K ).

Suppose that ψp−1ϕp−1 :Cp−1(K )→Cp−1(K ) is the identity.

Consider ψpϕp :Cp(K )→Cp(K ).

Suppose 1 ·σp is an elementary p-chain on K .

Then
ψpϕp(1 ·σ

p)=ψp(
.
σϕp−1∂(1 ·σ

p))=m ·σp
,

for some integer m. But

∂(m ·σp) = ∂ψpϕp(1 ·σ
p)=ψp−1∂ϕp(1 ·σ

p)

= ψp−1ϕp−1∂(1 ·σ
p)= ∂(1 ·σp).

So we get m∂(1 ·σp)= ∂(m ·σp)= ∂(1 ·σp).

Hence, m= 1. Thus, ψpϕp(1 ·σ
p)= 1 ·σp .

So ψpϕp is the identity on Cp(K ).
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Further Developments in Homology Chain Derivation

Example

Consider the chain derivation ϕ= {ϕp}20 of the preceding example.

We may define the simplicial map f from K (1) to K , the closure of the
2-simplex 〈v0v1v2〉, in any manner consistent with having f (vi) a
vertex of the simplex of which vi is the barycenter.

Thus we must have

f (v0)= v0, f (v1)= v1, f (v2)= v2.

One possible definition for f on the remaining vertices is
f (v3)= f (v4)= v0, f (v5)= v1, f (v6)= v2.
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Further Developments in Homology Chain Derivation

Example (Cont’d)

Let f (v3)= f (v4)= v0, f (v5)= v1, f (v6)= v2.

Let ψ= {ψp} be the chain mapping induced by f as in the proof of the
preceding theorem:

ψ0(1 · 〈v0〉)=ψ0(1 · 〈v3〉)=ψ0(1 · 〈v4〉)= 1 · 〈v0〉;

ψ0(1 · 〈v1〉)=ψ0(1 · 〈v5〉)= 1 · 〈v1〉;

ψ0(1 · 〈v2〉)=ψ0(1 · 〈v6〉)= 1 · 〈v2〉;

ψ1(1 · 〈v0v4〉)= 0; ψ1(1 · 〈v0v6〉)= 1 · 〈v6v2〉; etc.

ψ2(1 · 〈v3v1v6〉)= 1 · 〈v0v1v2〉; ψ2(1 · 〈v0v4v6〉)= 0; etc.
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Further Developments in Homology Chain Derivation

Example (Cont’d)

Consider, for example,

ψ1ϕ1(1 · 〈v0v1〉) = ψ1(1 · 〈v3v1〉−1 · 〈v3v0〉)

= 1 · 〈v0v1〉−0

= 1 · 〈v0v1〉.

We compute ψ2ϕ2(1 · 〈v0v1v2〉), where ϕ2(1 · 〈v0v1v2〉) is expressed as
in the preceding example,

ϕ2(1 · 〈v0v1v2〉) = 1 · 〈v6v5v2〉−1 · 〈v6v5v1〉−1 · 〈v6v4v2〉

+1 · 〈v6v4v0〉+1 · 〈v6v3v1〉−1 · 〈v6v3v0〉.

But f collapses all 2-simplexes except 〈v6v3v1〉.

So we get

ψ2ϕ2(1 · 〈v0v1v2〉)=ψ2(1 · 〈v6v3v1〉)= 1 · 〈v2v0v1〉 = 1 · 〈v0v1v2〉.
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Further Developments in Homology Chain Derivation

Chain Homotopic Mappings and Chain Homotopies

Definition

A pair ϕ= {ϕp}∞0 and µ= {µp}∞0 of chain mappings from a complex K to a
complex L

Cp(K )
ϕp

✲

µp

✲ Cp(L)

are chain homotopic means that there is a sequence D = {Dp}∞
−1

of
homomorphisms Dp :Cp(K )→Cp+1(L), such that

Cp(K )
Dp
✲ Cp+1(L)

∂
✲ Cp(L) Cp(K )

∂
✲ Cp−1(L)

Dp−1
✲ Cp(L)

∂Dp+Dp−1∂=ϕp −µp , D−1 = 0.

The sequence D is called a deformation operator or a chain homotopy.
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Further Developments in Homology Chain Derivation

Homomorphisms Induced by Chain Homotopies

Theorem

If ϕ and µ are chain homotopic chain mappings from complex K to
complex L, then the induced homomorphisms ϕ∗

p and µ∗
p from Hp(K ) to

Hp(L) are equal, p ≥ 0.

Suppose ϕ and µ are chain homotopic.

By definition, there is a deformation operator D = {Dp}∞
−1, such that

∂Dp+Dp−1∂=ϕp −µp , D−1 = 0.

For [zp] ∈Hp(K ),

ϕ∗
p([zp])−µ∗

p([zp]) = [ϕp(zp)−µp(zp)]

= [∂Dp(zp)+Dp−1(∂zp)]= 0,

since ∂zp = 0, for any cycle, and ∂Dp(zp) is a boundary.

Thus, ϕ∗
p =µ∗

p, for each value of p.
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Further Developments in Homology Chain Derivation

Chain Equivalent Complexes

Definition

Complexes K and L are chain equivalent means that there are chain
mappings

ϕ= {ϕp} :K → L;
ψ= {ψp} : L→K ,

such that the composite chain mappings

ψϕ= {ψpϕp} and ϕψ= {ϕpψp}

are chain homotopic to the identity chain mappings on K and L,
respectively.

Chain homotopy is an equivalence relation for chain mappings.

Chain equivalence is an equivalence relation for complexes.

George Voutsadakis (LSSU) Algebraic Topology May 2024 22 / 102



Further Developments in Homology Chain Derivation

Chain Equivalent Complexes and Homology Groups

Theorem

Chain equivalent complexes K and L have isomorphic homology groups in
corresponding dimensions.

Suppose K and L are chain equivalent complexes.

Let ϕ and ψ be the witnessing chain mappings.

By the preceding theorem,

ψ∗
pϕ

∗
p :Hp(K )→Hp(K ),

ϕ∗
pψ

∗
p :Hp(L)→Hp(L)

are the identity maps.

So ϕ∗
p is an isomorphism for each value of p.

George Voutsadakis (LSSU) Algebraic Topology May 2024 23 / 102



Further Developments in Homology Chain Derivation

Homology Groups of Complex and Barycentric Subdivision

We aim to prove that the homology groups of a complex K are
isomorphic to those of its barycentric subdivision K (1).

By the preceding theorem, it is sufficient to show that K and K (1) are
chain equivalent.

For this we need chain mappings ϕ from K to K (1) and ψ from K (1)

to K for which ψϕ and ϕψ are chain homotopic to the appropriate
identity chain maps.

We have ϕ, the first chain derivation of K .

We have ψ, the left inverse provided by a previous theorem.

We know that ψϕ is the identity chain map on K .

So it remains to show that ϕψ is chain homotopic to the identity
chain map on K (1).
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Further Developments in Homology Chain Derivation

Chain Equivalence of Complex and Barycentric Subdivision

Theorem

A complex K and its first barycentric subdivision are chain equivalent.

We show that ϕψ is chain homotopic to the identity on K (1).

This requires a deformation operator

D =

{

Dp :Cp(K
(1))→Cp+1(K

(1))
}

,

such that D−1 = 0 and, for each elementary p-chain 1 ·τp on K (1),

1 ·τp −ϕpψp(1 ·τ
p)= ∂Dp(1 ·τ

p)+Dp−1∂(1 ·τ
p).
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Further Developments in Homology Chain Derivation

Chain Equivalence (Cont’d)

We must have D−1 = 0.

To define D0, let w be a vertex of K (1).

Suppose
ψ0(1 · 〈w 〉)= 1 · 〈v 〉,

v a vertex of a simplex σ of K of which w is the barycenter.

Then
ϕ0ψ0(1 · 〈w 〉)=ϕ0(1 · 〈v 〉)= 1 · 〈v 〉.

Thus,

1 · 〈w 〉−ϕ0ψ0(1 · 〈w 〉)= 1 · 〈w 〉−1 · 〈v 〉 = ∂(1 · 〈vw 〉).

So we define
D0(1 · 〈w 〉)= 1 · 〈vw 〉.

Being defined for every elementary 0-chain, it can be extended by
linearity to a homomorphism D0 :C0(K

(1))→C1(K
(1)).
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Further Developments in Homology Chain Derivation

Chain Equivalence (Cont’d)

Suppose, now, that D0, . . . ,Dp−1 have all been defined.

Let 1 ·τp be an elementary p-chain on K (1).

Then, for every (p−1)-chain c ,

c −ϕp−1ψp−1(c)= ∂Dp−1(c)+Dp−2∂(c).

So
∂Dp−1(c)= c −ϕp−1ψp−1(c)−Dp−2∂(c).

Consider
z := 1 ·τp −ϕpψp(1 ·τ

p)−Dp−1∂(1 ·τ
p).
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Further Developments in Homology Chain Derivation

Chain Equivalence (Cont’d)

We set z := 1 ·τp −ϕpψp(1 ·τ
p)−Dp−1∂(1 ·τ

p).

We compute

∂z = ∂(1 ·τp)−∂ϕpψp(1 ·τ
p)−∂Dp−1∂(1 ·τ

p)

= ∂(1 ·τp)−ϕp−1ψp−1∂(1 ·τ
p)

− (∂(1 ·τp)−ϕp−1ψp−1∂(1 ·τ
p)−Dp−2∂∂(1 ·τ

p))= 0.

This means that z is a cycle on K (1).

An argument analogous to that used previously shows that z is the
boundary of a (p+1)-chain cp+1 on K (1).

We then define
Dp(1 ·τ

p)= cp+1.

Finally, we extend by linearity.

This completes the definition of the deformation operator D.

It also shows that K and K (1) are chain equivalent.
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Further Developments in Homology Chain Derivation

Homology Groups of Hp(K ) and Hp(K
(n)

Theorem

The homology groups Hp(K ) and Hp(K
(n)) are isomorphic for all integers

p ≥ 0, n≥ 1, and each complex K .

The inductive definition of K (n) and the preceding theorem show that
K and K (n) are chain equivalent for n ≥ 1.

By a previous theorem,

Hp(K )∼=Hp(K
(n)), p ≥ 0.
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Further Developments in Homology Chain Derivation

Uniqueness of the Induced Homomorphisms

Let |K | and |L| be polyhedra with triangulations K and L, respectively.
and f : |K |→ |L| a continuous map.

Claim: The induced homomorphisms f ∗p :HP(K )→Hp(L) are uniquely
determined by f .

By the Simplicial Approximation Theorem, there are:

A barycentric subdivision K (k) of K ;
A simplicial mapping g from K (k) to L,

such that, as functions from |K | to |L|, f and g are homotopic.

The theorem allows some freedom in the choices of g and the degree
k of the barycentric subdivision.

k must be large enough so that K (k) is star related to L relative to f .

The simplicial map g is given, for a vertex u of K (k), by setting g(u)
to be any vertex of L, satisfying f (ost(w))⊆ ost(g(u)).
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Further Developments in Homology Chain Derivation

Uniqueness of the Induced Homomorphisms (Cont’d)

Claim: The sequence of homomorphisms is independent of the
admissible choices for g .

We show that any admissible change in the value of g at one vertex
does not alter the induced homomorphisms g∗

p :Hp(K
(k))→Hp(L).

Then note that any simplicial map satisfying the requirements of the
theorem defining g∗

p can be obtained from any other one by a finite
sequence of such changes at single vertices.

Let g , h be two simplicial maps from K (k) into L which:

Have identical values at each vertex of K (k) except for one vertex v ;
For this vertex, ost(g(v)) and ost(h(v)) both contain f (ost(v)).

We show that the chain mappings {gp :Cp(K
(k))→Cp(L)} and

{hp :Cp(K
(k))→Cp(L)} are chain homotopic.

Then, by the preceding theorem, the induced homomorphisms g∗
p and

h∗p from Hp(K
(k)) to Hp(L) are identical for each value of p.

George Voutsadakis (LSSU) Algebraic Topology May 2024 31 / 102



Further Developments in Homology Chain Derivation

Uniqueness of the Induced Homomorphisms (p = 0)

For our deformation operator D = {Dp :Cp(K
(m))→Cp+1(L)}∞

−1, we
must have D−1 = 0.
For any vertex u of K (k), define

D0(1 · 〈u〉) = 0, u 6= v ;
D0(1 · 〈v 〉) = 1 · 〈h(v)g(v)〉.

Extend D0 by linearity to a homomorphism from C0(K
(k)) to C1(L).

Note that

∂D0(1 · 〈v 〉)+D−1∂(1 · 〈v 〉) = ∂(1 · 〈h(v)g(v)〉)

= 1 · 〈g(v)〉−1 · 〈h(v)〉

= g0(1 · 〈v 〉)−h0(1 · 〈v 〉).

If u is a vertex of K (k) different from v , then

g0(1 · 〈u〉)= h0(1 · 〈u〉), D0(1 · 〈u〉)= 0.

So the desired relation ∂Dp+Dp−1∂= gp −hp holds for p = 0.
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Further Developments in Homology Chain Derivation

Uniqueness of the Induced Homomorphisms (p ≥ 1)

Let 1 ·σp be an elementary p-chain in Cp(K
(k)).

Suppose v is not a vertex of σp .
Then we define Dp(1 ·σ

p)= 0 in Cp+1(L).
Suppose v is a vertex of σp .
Then σp = vσp−1, for some (p−1)-simplex σp−1.
Let τ be the (p−1)-simplex in L on which g and h map σp−1.
Define

Dp(1 ·σ
p)= 1 ·h(v)g(v)τ.

As usual, Dp is extended linearly to a homomorphism from Cp(K
(k))

to Cp+1(L).

George Voutsadakis (LSSU) Algebraic Topology May 2024 33 / 102



Further Developments in Homology Chain Derivation

Uniqueness of the Induced Homomorphisms (p ≥ 1 Cont’d)

Then for the case in which v is a vertex of σp,

∂Dp(1 ·σ
p)+Dp−1∂(1 ·σ

p)

= ∂(1 ·h(v)g(v)τ)+Dp−1∂(1 ·vσ
p−1)

= 1 ·g(v)τ−h(v)∂(1 ·g(v)τ)+Dp−1(1 ·σ
p−1−v∂(1 ·σp−1))

= 1 ·g(v)τ−h(v)[1 ·τ−g(v)∂(1 ·τ)]−Dp−1(v∂(1 ·σ
p−1))

= 1 ·g(v)τ−1 ·h(v)τ+h(v)g(v)∂(1 ·τ)−h(v)g(v)∂(1 ·τ)

= gp(1 ·vσ
p−1)−hp(1 ·vσ

p−1)

= gp(1 ·σ
p)−hp(1 ·σ

p).

Thus, ∂Dp +Dp−1∂= gp −hp, p ≥ 0.

The chain mappings induced by g and h must be chain homotopic.

By the preceding theorem, g∗
p = h∗p.

So f ∗p is independent of the allowable choices of the simplicial map g .
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Independence from the Degree of Subdivision

The homomorphism f ∗p :Hp(K )→Hp(L) is actually the composition

Hp(K )
µ∗
p

→Hp(K
(k))

g∗
p
→Hp(L),

where µ∗
p is the isomorphism induced by chain derivation.

Consider a barycentric subdivision K (r) of higher degree.

Let ψ∗
p :Hp(K )→Hp(K

(r)) be the isomorphism induced by chain
derivation.

Let j∗p :Hp(K
(r))→Hp(L) be the homomorphism induced by an

admissible simplicial map.

It can be shown that
g∗
p µ

∗
p = j∗pψ

∗
p .

Hence f ∗p is also independent of the allowable choices for the degree of

the barycentric subdivision K (k).
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Subsection 2

The Lefschetz Fixed Point Theorem
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Fixed Simplexes and Weights

In this section we assume that rational numbers rather than integers
are used as the coefficient group for chains.

Thus, the p-th chain group Cp(K ) of a complex K is considered a
vector space over the field of rational numbers.

Definition

Let K be a complex with {σ
p

i
} its set of p-simplexes. Let ϕ= {ϕp} be a

chain mapping on K . For a p-simplex σ
p

i
of K ,

ϕp(1 ·σ
p

i
)=

∑

σ
p

j
∈K

a
p

ij
σ
p

j
,

for some rational numbers a
p

ij
one for each p-simplex σ

p

j
of K .

Then σ
p

i
is a fixed simplex of ϕ provided that a

p

ii
, the coefficient of σ

p

i
in

the expansion of ϕp(1 ·σ
p

i
), is not zero.

The number (−1)pa
p

ii
is called the weight of the fixed simplex σ

p

i
.
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The Lefschetz Number

Definition (Cont’d)

Let Ap = (ap
ij
) be the matrix whose entry in row i and column j is a

p

ij
.

The trace of a square matrix is the sum of its diagonal elements.
We have

traceAp =
∑

a
p

ii
.

Moreover, the number

λ(ϕ)=
∑

p
(−1)ptrace(Ap)

is the sum of the weights of all the fixed simplexes of ϕ.
The number λ(ϕ) is called the Lefschetz number of ϕ.
(Note that, if λ(ϕ) 6= 0, then ϕ must have at least one fixed simplex in
some dimension p.)
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Remarks

The matrix Ap = (a
p

ij
) is the matrix of ϕp as a linear transformation

from the vector space Cp(K ) into itself relative to the basis of
elementary p-chains {1 ·σp

i
}.

The trace of the matrix of a linear transformation is not affected by a
change of basis.

So the Lefschetz number λ(ϕ) is independent of the choice of basis
for Cp(K ).
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Lefschetz Number and Euler Characteristic

Let K be a complex.

Let ϕp :Cp(K )→Cp(K ) be the identity map on Cp(K ), p ≥ 0.

Then
a
p

ii
= 1, a

p

ij
= 0, for i 6= j .

Thus, each simplex is a fixed simplex.

Let:

αp be the number of simplexes of dimension p;
χ(K ) the Euler characteristic of K .

Then we have:

λ(ϕ)=
∑

(−1)ptraceAp =
∑

(−1)pαp = χ(K ).

Thus, the Lefschetz number is a generalization of the Euler
characteristic.
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Lefschetz Number and Induced Homomorphisms

Theorem

Let ϕ= {ϕp} be a chain mapping on a complex K . The Lefschetz number
λ(ϕ) is completely determined by the induced homomorphisms
ϕ∗
p :Hp(K )→Hp(K ) on the homology groups.

The proof is similar to the proof of the Euler-Poincaré Theorem.

The same notation is adopted here.

{z ip}∪ {bip} is a basis for the cycle vector space Zp;

{bip} is a basis for the boundary space Bp ;

{d i
p} is a basis for Dp;

bip = ∂d i
p+1

;

n is the dimension of K .

Note that {bip}∪ {z ip}∪ {d i
p} is a basis for Cp.
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Lefschetz Number and Induced Homomorphisms (Cont’d)

The linear transformation ϕp takes Bp into Bp.

So, for any bip,

ϕp(b
i
p)=

∑

j

a
p

ij
b
j
p , 0≤ p ≤ n−1,

for some rational coefficients a
p

ij
.

For any z ip, 0≤ p ≤ n, ϕp(z
i
p) must be a cycle.

So there are coefficients a
′p

ij
and e

p

ij
, such that

ϕp(z
i
p)=

∑

j

a
′p

ij
b
j
p +

∑

j

e
p

ij
z
j
p.

For any d i
p, 1≤ p ≤ n, there are coefficients a

′′p

ij
, e ′p

ij
and g

p

ij
, such that

ϕp(d
i
p)=

∑

j

a
′′p

ij
b
j
p +

∑

j

e
′p

ij
z
j
p+

∑

j

g
p

ij
d
j
p.
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Lefschetz Number and Induced Homomorphisms (Cont’d)

Then

λ(ϕ)=
n
∑

i=0

(−1)p(traceAp+ traceEp + traceGp),

where Ap = (ap
ij
), Ep = (ep

ij
), Gp = (gp

ij
), and An =G0 is the zero matrix.

Now
∂ϕp+1(d

i
p+1)=ϕp∂(d

i
p+1)=ϕp(b

i
p)=

∑

a
p

ij
b
j
p.

Also,

∂ϕp+1(d
i
p+1) = ∂(

∑

a
′′p+1

ij
b
j
p+1

+
∑

e
′p+1

ij
z
j
p+1

+
∑

g
p+1

ij
d
j
p+1

)

=
∑

g
p+1

ij
∂(d

j
p+1

)

=
∑

g
p+1

ij
b
j
p .

Then a
p

ij
= g

p+1

ij
, Ap =Gp+1, 0≤ p ≤ n−1.
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Lefschetz Number and Induced Homomorphisms (Cont’d)

The sum λ(ϕ)=
∑n

i=0
(−1)p(traceAp+ traceEp + traceGp) telescopes to

give

λ(ϕ)=
n
∑

i=0

(−1)ptraceEp .

This means that the Lefschetz number λ(ϕ) is completely determined
by the action of the maps ϕp on the generating cycles z ip of Hp(K ).

But the homology classes [z ip] generate Hp(K ),

ϕ∗
p[z

i
p])=

∑

j

e
p

ij
[z jp].

So the coefficients e
p

ij
are determined by the ϕ∗

p :Hp(K )→Hp(K ).

Thus, the induced homomorphisms completely determine the e
p

ij
.

And the e
p

ij
, in turn, completely determine λ(ϕ).
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The Lefschetz Number of a Continuous Mapping

We have defined the Lefschetz number for chain mappings.

The definition is now extended to continuous mappings.

Definition

Let K be a complex and f : |K |→ |K | a continuous function.
Let K (s) be a barycentric subdivision of K .
Let g a simplicial map from K (s) to K which is a simplicial approximation
of f . Then g induces a chain mapping

{

gp :Cp(K
(s))→Cp(K )

}

.

Let µ= {µp :Cp(K )→Cp(K
(s))} be the s-th chain derivation on K .

The Lefschetz number λ(f ) of f is the Lefschetz number of the
composite chain mapping {gpµp :Cp(K )→Cp(K )}.
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Remarks

It appears that the Lefschetz number λ(f ) of a continuous
f : |K |→ |K | is influenced by the possible choices for g and s.

However, recall that λ(f ) is completely determined by the induced
homomorphisms

f ∗p = g∗
p µ

∗
p :Hp(K )→Hp(K ).

Moreover, f ∗p is independent of the allowable choices for g and s.

So λ(f ) is independent of the choices for g and s.
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The Lefschetz Fixed Point Theorem

Theorem (The Lefschetz Fixed Point Theorem)

Let K be a complex and f : |K |→ |K | a continuous map. If the Lefschetz
number λ(f ) is not 0, then f has a fixed point.

Suppose to the contrary that F has no fixed point.

Since |K | is compact, there is a number ǫ> 0, such that if x ∈ |K |,
then the distance ‖f (x)−x‖ ≥ ǫ.

By replacing K with a suitable barycentric subdivision if necessary, we
may assume that meshK <

ǫ
3
.

By the proof of the Simplicial Approximation Theorem, there are:

A positive integer s;
A simplicial map g from K (s) to K , homotopic to f ,

such that, for x in |K |, f (x) and g(x) lie in a common simplex of K .

Then ‖f (x)−g(x)‖ < ǫ
3
, for all x ∈ |K |.
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The Lefschetz Fixed Point Theorem (Cont’d)

Suppose that some simplex σ of K contains a point x , such that g(x)
is also in σ. Then

‖f (x)−x‖ ≤ ‖f (x)−g(x)‖+‖g(x)−x‖ <
2ǫ

3
.

This contradicts the fact that ‖f (x)−x‖ > ǫ.

Thus, σ and g(σ) are disjoint for all σ in K .

Let µ= {µp :Cp(K )→Cp(K
(s))} be the s-th chain derivation.

Let {gp :Cp(K
(s))→Cp(K )} be the chain mapping induced by g .
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The Lefschetz Fixed Point Theorem (Cont’d)

Suppose σp is a p-simplex of K .

Then µp(1 ·σ
p) is a chain on K (s) all of whose simplexes with nonzero

coefficient are contained in σp.

Now σp and g(σp) are disjoint.

So gpµp(1 ·σ
p) is a p-chain on K none of whose simplexes with

nonzero coefficient intersects σ.

Thus, gpµp has no fixed simplex.

So the Lefschetz number of the chain mapping {gpµp} is zero.

But this is the Lefschetz number of f .

This contradicts the hypothesis λ(f ) 6= 0.
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The Brouwer Fixed Point Theorem

Corollary (The Brouwer Fixed Point Theorem)

If σn is an n-simplex, n a positive integer, and f :σn →σn a continuous
map, then f has a fixed point.

Let K =Cl(σn). Then H0(K )∼=Z and Hp(K )= {0}, for p > 0.

Let v be a vertex of σn so that the homology class [1 · 〈v 〉] may be
considered a generator of H0(K ). Then

f ∗0 ([1 · 〈v 〉])= [1 · 〈v 〉].

Moreover, the coefficient matrix E0 (previous theorem) has trace 1.

Each matrix Ep, for p > 0, has only zero entries.

Hence,
λ(f )=

∑

(−1)ptraceEp = 1.

Thus, λ(f ) 6= 0. So f must have a fixed point.
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Continuous Maps from Sn to Sn

Corollary

Every continuous map from Sn to Sn, n> 1, whose degree is not 1 or −1
has a fixed point.

We know H0(S
n)∼=Hn(S

n)∼=Z and Hp(S
n)= {0}, otherwise.

Let [1 · 〈v 〉] and [zn] be generators of H0(S
n) and Hn(S

n), respectively.

For d the degree of f ,

f ∗0 ([1 · 〈v 〉]) = [1 · 〈v 〉];
f ∗n ([zn]) = d [zn].

Then λ(f )= 1+ (−1)nd .

So, if d 6= ±1, λ(f ) 6= 0.
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The Degree of the Antipodal Map

Corollary

If f : Sn → Sn is the antipodal map, then the degree of f is (−1)n+1.

The map f has no fixed point.

Hence, λ(f )= 0.

It follows that, for d is the degree of f ,

0= 1+ (−1)nd .

This gives
d = (−1)n+1

.
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Subsection 3

Relative Homology Groups
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Relative Homology Groups and Homology Sequence

Suppose that K is a complex and L is a complex contained in K .

It often happens that one knows the homology groups of either K of L
and needs to know the homology groups of the other.

The groups Hp(K ) and Hp(L) can be compared using the “relative
homology groups” Hp(K/L) to which this section is devoted.

The intuitive idea is to “remove” all chains on L by considering
quotient groups.

The groups Hp(K ), Hp(L), and Hp(K/L) form a sequence of groups
and homomorphisms called the “homology sequence”.

Using this sequence, one can often compute any one of the groups
Hp(K ), Hp(L), or Hp(K/L) provided that enough information is
known about the others.
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Subcomplexes

Definition

A subcomplex of a complex K is a complex L with the property that each
simplex of L is a simplex of K .

Note that not every subset of a complex is a subcomplex.

It is required that the subset be a complex in its own right.

The p-skeleton of a complex is one type of subcomplex.

The empty set ; is a subcomplex of each complex K .

The relative homology groups Hp(K/L) will reduce to Hp(K ) when
L=;.
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Relative Chain Groups

Definition

Let K be a complex with subcomplex L. By assigning value 0 to each
simplex of the complement K\L, each chain on L can be considered a chain
on K . In this way, we can consider Cp(L) as a subgroup of Cp(K ), p ≥ 0.
The relative p-dimensional chain group of K modulo L, or relative
p-chain group (with integer coefficients), is the quotient group

Cp(K/L)=Cp(K )/Cp(L).

Thus, each member of Cp(K/L) is a coset cp +Cp(L), where cp ∈Cp(K ).
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The Relative Boundary Operators

Definition

For p ≥ 1, the relative boundary operator ∂ :Cp(K/L)→Cp−1(K/L) is
defined by

∂(cp +Cp(L))= ∂cp +Cp−1(L), (cp +Cp(L)) ∈Cp(K/L),

where ∂cp denotes the usual boundary of the p-chain cp.
It can be shown that the relative boundary operator is a homomorphism.
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Groups of Relative Cycles and Relative Boundaries

Definition (Cont’d)

The group of relative p-dimensional cycles on K modulo L, denoted by
Zp(K/L), is the kernel of the relative boundary operator

∂ :Cp(K/L)→Cp−1(K/L), p ≥ 1.

We define Z0(K/L) to be the chain group C0(K/L).
For p ≥ 0, the group of relative p-dimensional boundaries on K

modulo L, denoted by Bp(K/L), is the image ∂(Cp+1(K/L)) of
Cp+1(K/L) under the relative boundary homomorphism.
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Relative Simplicial Homology Groups

Definition

The relative p-dimensional simplicial homology group of K modulo L

is the quotient group

Hp(K/L)=
Zp(K/L)

Bp(K/L)
, p ≥ 0.

The definition of Hp(K/L) makes sense, since Bp(K/L)⊆Zp(K/L).

The members of Hp(K/L) are denoted

[zp+Cp(L)],

where zp+Cp(L) is a relative p-cycle.

∂zp must be a (p−1)-chain on L, but zp may not be an actual cycle;
However, if zp is a cycle, then zp+Cp(L) is certainly a relative cycle.
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Example

Let K be the 1-skeleton of a 2-simplex 〈v0v1v2〉.

Let L be the subcomplex determined by the vertex v0.

We determine H0(K/L) and H1(K/L).

Consider, first, the case p = 0.

We have
C0(K )=Z0(K ) ∼= Z⊕Z⊕Z;

C0(L)=Z0(L) ∼= Z.

Moreover, by definition,

C0(K/L)=Z0(K/L)∼=Z⊕Z.

The members of Z0(K/L) are chains of the form

z = g1 · 〈v1〉+g2 · 〈v2〉+C0(L), g1,g2 ∈Z,

where C0(L)= {g · 〈v0〉 : g is an integer}.
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Example (Cont’d)

Now we have

∂(g1 · 〈v0v1〉+g2 · 〈v0v2〉)= g1 · 〈v1〉+g2 · 〈v2〉+ (−g1−g2) · 〈v0〉.

So

∂(g1 · 〈v0v1〉+g2 · 〈v0v2〉+C1(L))= g1 · 〈v1〉+g2 · 〈v2〉+C0(L).

Thus, every relative 0-cycle is a relative 0-boundary.

This means that Z0(K/L)=B0(K/L).

Therefore,
H0(K/L)= {0}.
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Example (Cont’d)

Next, consider the case p = 1.

Consider a relative 1-chain

w = h1 · 〈v0v1〉+h2 · 〈v1v2〉+h3 · 〈v0v2〉+C1(L).

Since C1(L)= {0}, 1-chains and relative 1-chains can be identified.

We have
∂w = (h1−h2) · 〈v1〉+ (h2+h3) · 〈v2〉+C0(L).

Thus, w is a relative 1-cycle if and only if h1 = h2 =−h3.

It follows that Z1(K/L)∼=Z.

Since K has no 2-simplexes, then B1(K/L)= {0} and H1(K/L)∼=Z.

Since there are no simplexes of dimension 2 or higher,

Hp(K/L)= {0}, p ≥ 2.
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Example

Let K denote the closure of a 2-simplex σ2 = 〈v0v1v2〉.

Let L be its 1-skeleton.

K and L have precisely the same 0-simplexes and 1-simplexes.

It follows that

C0(K )=C0(L), C0(K/L)= {0}, H0(K/L)= {0};
C1(K )=C1(L), C1(K/L)= {0}, H1(K/L)= {0}.

L has no simplexes of dimension two or higher.

So it might seem that Hp(K ) and Hp(K/L) are isomorphic for p ≥ 2.

This is true for p ≥ 3 but not for p = 2.
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Example (Cont’d)

It is true that L has no simplexes of dimension two.

However, the boundary of a 2-chain is a 1-chain.

So L does affect Z2(K/L).

Suppose the 1-chain has nonzero coefficients only for simplexes of L.

Then the 2-chain is a relative cycle.

Consider the elementary relative 2-chain u = g · 〈v0v1v2〉+C2(L), g ∈Z.

It has relative boundary

∂u = g · 〈v1v2〉−g · 〈v0v2〉+g · 〈v0v1〉+C1(L)= 0,

because all 1-simplexes of K are in L.

Thus, the subcomplex L produces relative 2-cycles. So Z2(K/L)∼=Z.

But B2(K/L)= {0}. So H2(K/L)∼=Z.

Note that H2(K )= {0}. So H2(K/L) is not isomorphic to H2(K ).
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The Homology Sequence (i∗)

Our next objective is to show that there is a special sequence

· · ·
∂∗
→Hp(L)

i∗
→Hp(K )

j∗

→Hp(K/L)
∂∗
→Hp−1(L)

i∗
→ ···

i∗
→H0(K )

j∗

→H0(K/L),

where i∗, j∗, and ∂∗ are homomorphisms.

Definition

Let K be a complex with subcomplex L. The inclusion map i from L into
K is simplicial and induces a homomorphism

i∗ :Hp(L)→Hp(K ), p ≥ 0.

The effect of this homomorphism is easily described:

If [zp] ∈Hp(L) is represented by the p-cycle zp on L, then zp can be
considered a p-cycle on K . Then zp determines a homology class
i∗([zp])= [zp] in Hp(K ).
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The Homology Sequence (j∗)

Definition

Let j :Cp(K )→Cp(K/L) be the homomorphism defined by

j(cp)= cp +Cp(L), cp ∈Cp(K ).

Then j induces a homomorphism

j∗ :Hp(K )→Hp(K/L), p ≥ 0.

If [zp] ∈Hp(K ), then zp+Cp(L) is a relative p-cycle.

It determines a member [zp +Cp(L)] of Hp(K/L).

The homomorphism j∗ takes [zp] to [zp+Cp(L)].

George Voutsadakis (LSSU) Algebraic Topology May 2024 66 / 102



Further Developments in Homology Relative Homology Groups

The Homology Sequence (∂∗)

Definition

We finally define
∂∗ :Hp(K/L)→Hp−1(L).

Suppose [zp+Cp(L)] ∈Hp(K/L), p ≥ 1.

Then zp +Cp(L) is a relative p-cycle.

This means that ∂zp is in Cp−1(L).

Since ∂∂zp = 0, ∂zp is a (p−1)-cycle on L.

So it determines a member [∂zp] of Hp−1(L).

We define

∂∗([zp +Cp(L)])= [∂zp], [zp +Cp(L)] ∈Hp(K/L).
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The Homology Sequence

Definition

The homology sequence of the pair (K ,L) is the sequence of groups and
homomorphisms

· · ·
∂∗
→Hp(L)

i∗
→Hp(K )

j∗

→Hp(K/L)
∂∗
→Hp−1(L)

i∗
→···

i∗
→H0(K )

j∗

→H0(K/L).

We may verify that

i∗ : Hp(L) → Hp(K ),

j∗ : Hp(K ) → Hp(K/L),

∂∗ : Hp(K/L) → Hp−1(L)

are well-defined homomorphisms.
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Exact Sequences

Definition

A sequence

· · ·
hp+1

✲ Gp

hp
✲ Gp−1

hp−1
✲ · · ·

h2
✲ G1

h1
✲ G0

of groups G0,G1, . . . and homomorphisms h1,h2, . . . is exact provided that:

The kernel of hp−1 equals the image hp(Gp), for p ≥ 2;

h1 maps G1 onto G0.

Note that requiring that h1 be onto is equivalent to requiring that G0 be
followed by the trivial group.
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Short Exact Sequences

Theorem

Suppose that an exact sequence has a section of four groups

{0}
f
→A

g
→B

h
→ {0},

where {0} denotes the trivial group.
Then g is an isomorphism from A onto B .

The image f ({0})= {0} contains only the identity element of A.

Exactness then guarantees that g has kernel {0}.

So g is one-to-one.

The kernel of h is all of B .

This must be the image g(A).

Thus, g is an isomorphism as claimed.
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Exact Sequences with Three Nontrivial Members

Theorem

Suppose that an exact sequence has a section of five groups

{0} →A
f
→B

g
→C → {0}.

Suppose, in addition, that:

There is a homomorphism h :C →B , such that gh is the identity on C ;

B is abelian.

Then B ∼=A⊕C .

We define T :A⊕C →B by

T (a,c)= f (a) ·h(c), (a,c) ∈A⊕C .

It may be verified that T is the required isomorphism.
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Exact Sequences with Three Nontrivial Members (Cont’d)

It is easily seen that:

A∼= ker(g) via f ;
C ∼= im(h) via h.

So it suffices to show that B ∼= ker(g)⊕ im(h).

Given b ∈B , we have

b = (b((hg)(b))−1) · (hg)(b),

where b((hg)(b))−1 ∈ ker(g) and (hg)(b) ∈ im(h).

Finally, if b ∈ ker(g)∩ im(h), then:

g(b)= 1;
h(c)= b, for some c ∈C .

But then c = h(h(c))= g(b)= 0.
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Exactness of the Homology Sequence

Theorem

If K is a complex with subcomplex L, then the homology sequence of
(K ,L) is exact.

In the homology sequence

· · ·
∂∗
→Hp(L)

i∗
→Hp(K )

j∗

→Hp(K/L)
∂∗
→Hp−1(L)

i∗
→ ···

i∗
→H0(K )

j∗

→H0(K/L).

we must show that:

The last homomorphism j∗ maps H0(K ) onto H0(K/L);
The kernel of each homomorphism is the image of the one that
precedes it.

We first show that j∗ is onto.

Let [z0+C0(L)] ∈H0(K/L). Then z0 is a 0-chain on K .

Moreover, j∗[z0]= [z0+C0(L)]. So j∗ is onto.
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Exactness of the Homology Sequence (1)

The remainder of the proof breaks naturally into six parts:

(1) imi∗ ⊆ kerj∗;

(2) kerj∗ ⊆ imi∗;

(3) imj∗ ⊆ ker∂∗;

(4) ker∂∗ ⊆ imj∗;

(5) im∂∗ ⊆ keri∗;

(6) keri∗ ⊆ im∂∗.

(1) Let i∗([zp]) be in the image of i∗, where zp is a p-cycle on L.

Then
j∗i∗([zp])= [zp+Cp(L)]

zp ∈Cp(L)
= [0+Cp(L)]= 0.

Thus, imi∗ ⊆ kerj∗.
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Exactness of the Homology Sequence (2)

(2) Let [wp] ∈Hp(K ) be an element of the kernel of j∗.

That is, j∗([wp])= 0 in Hp(K/L).

We must find an element [zp] in Hp(L), such that

i∗([zp])= [wp].

Now j∗(wp)= [wp +Cp(L)]= 0.

So wp +Cp(L) is the relative boundary of a relative (p+1)-chain
cp+1+Cp+1, i.e., ∂cp+1+Cp(L)=wp +Cp(L).

It follows that wp −∂cp+1 is in Cp(L).

Both wp and ∂cp+1 are cycles on K . So wp−∂cp+1 is also a cycle.

So it determines a member [wp −∂cp+1] of Hp(L).

Note that
i∗([wp −∂cp+1])= [wp −∂cp+1]= [wp ],

since wp and wp −∂cp+1 are homologous cycles on K .

Thus, kerj∗ ⊆ imi∗.
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Exactness of the Homology Sequence ((3)&(4))

(3) Let j∗([zp])= [zp+Cp(L)] be a member of the image of j∗, where zp is
a p-cycle on K . Then

∂∗j∗([zp])= ∂∗([zp +Cp(L)])= [∂zp]
∂zp = 0
= 0.

Thus, imj∗ ⊆ ker∂∗.

(4) Let [xp +Cp(L)] be in ker∂∗, where xp +Cp(L) is a relative p-cycle.

Then ∂∗([xp +Cp(L)])= [∂xp]= 0 in Hp−1(L).

This means that ∂xp = ∂yp, for some p-chain yp on L.

Then xp −yp is a p-cycle on k .

So it determines a member [xp −yp] of Hp(K ). Note that

j∗([xp −yp])= [xp −yp +Cp(L)]= [xp +Cp(L)],

since yp ∈Cp(L). Thus, [xp +Cp(L)] is in the image of j∗.

Parts (5) and (6) can be proven similarly.
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Example

Let K denote the closure of an n-simplex.

Let L be its (n−1)-skeleton, n≥ 2.

We use the homology sequence to compute Hp(K/L).

Since n≥ 2, K and L have the same 0- and the same 1-chains, and

H0(K/L)=H1(K/L)= {0}.

For p > 1, consider the homology sequence

· · ·→Hp(K )→Hp(K/L)→Hp−1(L)→Hp−1(K )→··· .

We know that Hp−1(K )=Hp(K )= {0}.

By the Short Exact Sequence Theorem Hp(K/L)∼=Hp−1(L), p > 1.

Also |L| is homeomorphic to Sn−1. Therefore,

Hn(K/L)∼=Hn−1(S
n−1)∼=Z.

Moreover, Hp(K/L)= {0}, if p 6= n.
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Example

Let X be the union of two n-spheres tangent at a point.

Then X has as triangulation K the n-skeleton of the closure of two
(n+1)-simplexes joined at a common vertex.

Let L denote the n-skeleton of one of the two (n+1)-simplexes.

Consider the section

Hn+1(K/L)
∂∗
→Hn(L)

i∗
→Hn(K )

j∗

→Hn(K/L)
∂∗
→Hn−1(L)

of the homology sequence of (K ,L).

It satisfies the hypotheses of the 3-Member Exact Sequence Theorem.

So
Hn(K )∼=Hn(K/L)⊕Hn(L).

We can show that Hn(K/L)∼=Hn(L)∼=Z.

Therefore, Hn(X )=Hn(K )∼=Z⊕Z.
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Subsection 4

Singular Homology Theory
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Singular versus Simplicial Homology

One method of extending homology groups to spaces other than
polyhedra is singular homology theory.

Instead of insisting that the space X be built from properly joined
simplexes, one considers continuous maps from standard simplexes
into X , called “singular simplexes”.

There are natural definitions of chains, cycles and boundaries
paralleling those of simplicial homology.

The singular and simplicial theories produce isomorphic homology
groups when applied to polyhedra.

However, the singular approach applies to all topological spaces.

Notation: Points of Rn+1 will be written (x0,x1, . . . ,xn) with zeroth
coordinate x0, first coordinate x1, etc., i.e., with coordinates being
numbered 0 through n.
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Unit Simplexes

Definition

For n ≥ 0, the unit n-simplex in R
n+1 is the set

∆n =
{

(x0,x1, . . . ,xn) ∈R
n+1 :

∑

xi = 1, xi ≥ 0, 0≤ i ≤ n
}

.

The point vi with i -th coordinate 1 and all other coordinates 0 is called
the i -th vertex of ∆n. The subset

∆n(i)= {(x0,x1, . . . ,xn) ∈∆n : xi = 0}

is called the i -th face of ∆n or the face opposite the i -th vertex.
The map di :∆n−1 →∆n defined by

di(x0, . . . ,xn−1)= (x0, . . . ,xi−1,0,xi , . . . ,xn−1)

is the i -th inclusion map.
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Comments on the Definition

Note that ∆n is simply the simplex in R
n+1 whose vertices are the

points v0 = (1,0, . . . ,0), v1 = (0,1,0, . . . ,0), . . ., vn = (0, . . . ,0,1).

The i -th inclusion map di maps ∆n−1 onto the i -th face of ∆n.

For the inclusion maps in the diagram

∆n−2

dj
✲ ∆n−1

di
✲ ∆n

∆n−2

di−1
✲ ∆n−1

dj
✲ ∆n, j < i ,

we have didj = djdi−1.

E.g., we have

d5(d2(x0,x1,x2,x3,x4,x5,x6,x7)) = d5(x0,x1,0,x2,x3,x4,x5,x6,x7)

= (x0,x1,0,x2,x3,0,x4,x5,x6,x7)

= d2(x0,x1,x2,x3,0,x4,x5,x6,x7)

= d2(d4(x0,x1,x2,x3,x4,x5,x6,x7)).
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Singular Simplexes

Definition

Let X be a space and n a non-negative integer.
A singular n-simplex in X is a continuous function sn :∆n →X .
The set of all singular n-simplexes in X is denoted Sn(X ).
For n > 0 and 0≤ i ≤ n, the composite map

sni = sndi :∆n−1 →X

is a singular (n−1)-simplex called the i -th face of sn.
The function from Sn(X ) to Sn−1(X ) which takes a singular n-simplex to
its i -th face is called the i -th face operator on Sn(X ).
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Singular Simplexes (Cont’d)

Definition (Cont’d)

The singular complex of X is the set

S(X )=
∞
⋃

n=0

Sn(X )

together with its family of face operators.
It is usually denoted by S(X ).

George Voutsadakis (LSSU) Algebraic Topology May 2024 84 / 102



Further Developments in Homology Singular Homology Theory

A Property of Singular Simplexes

Theorem

Let sn be a singular n-simplex in a space X , n> 1. Then

sni ,j = snj ,i−1, 0≤ j < i ≤ n.

In the notation of the preceding definitions,

sn
i ,j

= sn
i
dj

= sndidj

= sndjdi−1

= sn
j
di−1

= sn
j ,i−1

.

George Voutsadakis (LSSU) Algebraic Topology May 2024 85 / 102



Further Developments in Homology Singular Homology Theory

Singular Chains

Definition

For p a nonnegative integer, a p-dimensional singular chain, or singular
p-chain, is a function

cp : Sp(X )→Z

from the set of singular p-simplexes of X into the integers, such that

cp(s
p)= 0,

for all but finitely many singular p-simplexes.
Under the pointwise operation of addition induced by the integers, the set
Cp(X ) of all singular p-chains on X forms a group.
This group is the p-dimensional singular chain group of X .
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Comments

As in the simplicial theory, a singular p-chain can be expressed as a
formal linear combination

cp =
r

∑

i=0

gi · s(i)
p

,

where:

gi represents the value of cp at the singular p-simplex s(i)p ;
cp has value zero for all p-simplexes not appearing in the sum.

Since simplicial complexes have only finitely many simplexes, the
“finitely nonzero” property of p-chains holds automatically in the
simplicial theory.

As in the simplicial theory, algebraic systems other than the integers
can be used as the set of coefficients.
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Singular Boundary Homomorphisms

Definition

The singular boundary homomorphism

∂ :Cp(X )→Cp−1(X )

is defined for an elementary singular p-chain g · sp, p ≥ 1, by

∂(g · sp)=
p
∑

i=0

(−1)ig · s
p

i
.

This function is extended by linearity to a homomorphism ∂ from Cp(X )
into Cp−1(X ).
The boundary of each singular 0-chain is defined to be 0.
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Triviality of ∂∂

Theorem

If X is a space and p ≥ 2, then the composition ∂∂ :Cp(X )→Cp−2(X ) in
the diagram

Cp(X )
∂
✲ Cp−1(X )

∂
✲ Cp−2(X )

is the trivial homomorphism.

Each p-chain is a linear combination of elementary p-chains.

So it is sufficient to prove that

∂∂(g · s)= 0,

for each elementary p-chain g · s.
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Triviality of ∂∂ (Cont’d)

Note that

∂∂(g · s) = ∂(
∑p

i=0
(−1)ig · si )

=
∑p

i=0
(−1)i

∑p−1

j=0
(−1)jg · si ,j

=
∑p

i=0

∑p−1

j=0
(−1)i+jg · si ,j

=
∑

0≤j<i≤p(−1)i+jg · si ,j +
∑

0≤i≤j≤p−1(−1)i+jg · si ,j

=
∑

0≤j<i≤p(−1)i+jg · sj ,i−1+
∑

0≤i≤j≤p−1(−1)i+jg · si ,j .

In the left sum on the preceding line, replace i −1 by j and j by i .

Then the two sums will cancel completely.

Thus, ∂∂= 0.
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Singular Cycles

Definition

Let X be a space and p a positive integer.
A p-dimensional singular cycle on X , or singular p-cycle, is a singular
p-chain zp such that

∂(zp)= 0.

The set of singular p-cycles is, thus, the kernel of the homomorphism

∂ :Cp(X )→Cp−1(X )

and is a subgroup of Cp(X ). This subgroup is denoted Zp(X ) and called
the p-dimensional singular cycle group of X .
Since the boundary of each singular 0-chain is 0, we define singular
0-cycle to be synonymous with singular 0-chain.
Then the group Z0(X ) of singular 0-cycles is the group C0(X ).
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Singular Boundaries

Definition

If p ≥ 0, a singular p-chain bp is a p-dimensional singular boundary, or
singular p-boundary, if there is a singular (p+1)-chain cp+1 such that

∂(cp+1)= bp .

The set Bp(X ) of singular p-boundaries is the image ∂(Cp+1(X )) and is a
subgroup of Cp(X ). This subgroup is called the p-dimensional singular
boundary group of X .
Now ∂∂ :Cp(X )→Cp−2(X ) is the trivial homomorphism.
Hence, Bp(X ) is a subgroup of Zp(X ), p ≥ 0.
The quotient group

Hp(X )=Zp(X )/Bp(X )

is the p-dimensional singular homology group of X .
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Singular Homology and Orientation

Many similarities in the definitions of the simplicial and singular
homology groups should be obvious.

Note, however, that no mention of orientation was made in the
singular case.

This was taken care of implicitly in the definition of the boundary
operator

∂(g · sn)=
n
∑

i=0

(−1)ig · sni .

The definition in effect requires that the standard n-simplex ∆n be
assigned the orientation induced by the ordering v0 < v1 < ·· · < vn.

This orientation is then preserved in each singular n-simplex.
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Induced Homomorphisms

Definition

Let X and Y be spaces and f :X →Y a continuous map.
If s ∈ Sp(X ), the composition fs belongs to Sp(Y ).
Hence f induces a homomorphism fp :Cp(X )→Cp(Y ) defined by

fp

(

r
∑

i=0

gi · s(i)
p

)

=

r
∑

i=0

gi · fs(i)
p

,

r
∑

i=0

gi · s(i)
p
∈Cp(X ).

One easily observes that the diagram is commu-
tative. So fp maps Zp(X ) into Zp(Y ) and Bp(X )
into Bp(Y ). Thus f induces for each p a homo-
morphism f ∗p :Hp(X )→Hp(Y ) defined by

Cp(X )
fp
✲ Cp(Y )

Cp−1(X )

∂
❄

fp−1

✲ Cp−1(Y )

∂
❄

f ∗p (zp +Bp(X ))= fp(zp)+Bp(Y ), (zp +Bp(X )) ∈Hp(X ).

The sequence {f ∗p } is the sequence of homomorphisms induced by f .
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Advantages of Singular Homology

Singular homology has two advantages over simplicial homology.

(1) The singular theory applies to all topological spaces, not just polyhedra.
(2) The induced homomorphisms are defined more easily in the singular

theory.

In the simplicial theory a continuous map between two polyhedra must

be replaced by a simplicial approximation in order to define the induced

homomorphisms.

This presents problems of uniqueness which are completely avoided by

the singular approach.

Singular and simplicial homology groups are isomorphic for polyhedra.
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Subsection 5

Axioms for Homology Theory
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(Abstract) Homology Theory: The Data

Eilenberg and Steenrod defined the term “homology theory”.

The definition applies to various categories of:

Pairs (X ,A), where X is a space with subspace A;
Continuous functions on such pairs.

A homology theory consists of three functions H, ∗ and ∂, having
the following properties:

(1) H assigns to each pair (X ,A) under consideration and each integer p
an abelian group Hp(X ,A). This group is the p-dimensional relative

homology group of X modulo A.
If A=;, then

Hp(X ,;)=Hp(X )

is the p-dimensional homology group of X .
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(Abstract) Homology Theory: The Data (Cont’d)

(2) Let (X ,A) and (Y ,B) be pairs and f :X →Y , with f (A)⊆B, an
admissible map. Then the function ∗ determines, for each integer p, a
homomorphism

f ∗p :Hp(X ,A)→Hp(Y ,B)

called the homomorphism induced by f in dimension p.
(3) The function ∂ assigns, to each pair (X ,A) and each integer p, a

homomorphism
∂ :Hp(X ,A)→Hp−1(A),

called the boundary operator on Hp(X ,A).
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Homology Theory: The Eilenberg-Steenrod Axioms

The functions H, ∗, and ∂ are required to satisfy the following
Eilenberg-Steenrod Axioms:

I (The Identity Axiom) If i : (X ,A)→ (X ,A) is the identity map, then
the induced homomorphism

i∗p :Hp(X ,A)→Hp(X ,A)

is the identity isomorphism for each integer p.

II (The Composition Axiom) If f : (X ,A)→ (Y ,B) and
g : (Y ,B)→ (Z ,C ) are admissible maps, then

(gf )∗p = g∗
p f

∗
p :Hp(X ,A)→Hp(Z ,C )

for each integer p.
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The Eilenberg-Steenrod Axioms (Cont’d)

III (The Commutativity Axiom)

If f : (X ,A)→ (Y ,B) is an admissible map
and g : A→ B is the restriction of f , then
the diagram on the right is commutative
for each integer p.

Hp(X ,A)
f ∗p
✲ Hp(Y ,B)

Hp−1(A)

∂
❄

g∗
p

✲ Hp−1(B)

∂
❄

IV (The Exactness Axiom) If i :A→X and j : (X ,;)→ (X ,A) are
inclusion maps, then the homology sequence

· · ·→Hp(A)
i∗
→Hp(X )

j∗

→Hp(X ,A)
∂
→Hp−1(A)→···

is exact.
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The Eilenberg-Steenrod Axioms (Cont’d)

V (The Homotopy Axiom) If the maps f ,g : (X ,A)→ (Y ,B) are
homotopic, then the induced homomorphisms f ∗p and g∗

p are equal for
each integer p.

VI (The Excision Axiom) If U is an open subset of X , with U ⊆A, then
the inclusion map e : (X \U ,A\U)→ (X ,A) induces an isomorphism

e∗p :Hp(X \U ,A\U)→Hp(X ,A),

for each integer p. (The map e is called the excision of U .)

VII (The Dimension Axiom) If X is a space with only one point, then
Hp(X )= {0}, for each nonzero value of p.
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Simplicial and Singular Homologies as Homologies

Simplicial homology theory as presented in this book applies to the
category of pairs (X ,A), where X and A have triangulations K and L

for which L is a subcomplex of K .

The singular homology theory applies to all pairs (X ,A), where X is a
topological space with subspace A.

A survey of homology theory from the axiomatic point of view is given
in the classic book Foundations of Algebraic Topology by Eilenberg
and Steenrod.
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