Introduction to Analytic Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

1

The Fundamental Theorem of Arithmetic

- Induction and Well-Ordering
- Divisibility
- Greatest Common Divisor
- Prime Numbers
- The Fundamental Theorem of Arithmetic
- The Series of Reciprocals of the Primes
- The Euclidean Algorithm
- The Greatest Common Divisor of More than Two Numbers

Subsection 1

Induction and Well-Ordering

The Principle of Induction

• Many of our proofs make use of the following property of integers.

The Principle of Induction

If Q is a set of integers such that:

- (a) $1 \in Q$;
- (b) $n \in Q$ implies $n + 1 \in Q$,

then

- (c) all integers ≥ 1 belong to Q.
 - There are alternate formulations of this principle.
 - In Statement (a), the integer 1 can be replaced by any integer k, provided that the inequality ≥ 1 is replaced by ≥ k in (c).
 - (b) can be replaced by $1, 2, 3, \ldots, n \in Q$ implies $(n + 1) \in Q$.

The Well-Ordering Principle

• We also assume familiarity with the following principle, which is logically equivalent to the principle of induction.

The Well-Ordering Principle

If A is a nonempty set of positive integers, then A contains a smallest member.

- This principle has also equivalent formulations:
 - "positive integers" can be replaced by "integers $\geq k$ for some k".

Subsection 2

Divisibility

Divisibility

• Small latin letters *a*, *b*, *c*, *d*, *n*, etc., denote integers, positive, negative, or zero.

Definition of Divisibility

We say d divides n and we write $d \mid n$ whenever n = cd, for some c. We also say that n is a **multiple** of d, that d is a **divisor** of n, or that d is a **factor** of n.

If d does not divide n, we write $d \nmid n$.

Properties of Divisibility

Theorem

Divisibility has the following properties:

- (a) *n* | *n*; (Reflexive Property)
- (b) $d \mid n$ and $n \mid m$ implies $d \mid m$; (**Transitive Property**)
- (c) $d \mid n$ and $d \mid m$ implies $d \mid (an + bm)$; (Linearity Property)
- (d) *d* | *n* implies *ad* | *an*; (Multiplication Property)
- (e) $ad \mid an$ and $a \neq 0$ implies $d \mid n$; (Cancelation Law)
- (f) $1 \mid n$; (1 divides every integer)
- (g) $n \mid 0$; (every integer divides zero)
- (h) $0 \mid n$ implies n = 0; (zero divides only zero)
- (i) $d \mid n$ and $n \neq 0$ implies $|d| \leq |n|$; (Comparison Property)
- (j) $d \mid n$ and $n \mid d$ implies |d| = |n|;

(k)
$$d \mid n$$
 and $d \neq 0$ implies $(n/d) \mid n$

Proof of the Properties of Divisibility ((a)-(d))

(a) *n* | *n*.

Since $n = 1 \cdot n$, we get $n \mid n$.

(b) $d \mid n$ and $n \mid m$ implies $d \mid m$.

 $d \mid n$ implies there exists c_1 , such that $n = c_1 d$. $n \mid m$ implies there exists c_2 , such that $m = c_2 n$. Thus, we obtain $m = c_2 n = (c_2 c_1)d$. Hence $d \mid m$.

(c) $d \mid n$ and $d \mid m$ implies $d \mid (an + bm)$.

 $d \mid n$ implies there exists c_1 such that $n = c_1 d$. $d \mid m$ implies there exists c_2 such that $m = c_2 d$. Now we get $an + bm = ac_1 d + bc_2 d = (ac_1 + bc_2)d$. Thus, $d \mid (an + bm)$.

(d) $d \mid n$ implies $ad \mid an$.

 $d \mid n$ implies there exists c such that n = cd. Thus, an = cad. So $ad \mid an$.

Proof of the Properties of Divisibility ((e)-(i))

```
(e) ad | an and a \neq 0 implies d \mid n.
     ad | an implies there exists c such that an = cad. Since a \neq 0, we get
     n = cd. Thus, d \mid n.
(f) 1 \mid n.
     Since n = n \cdot 1, we get 1 \mid n.
(g) n \mid 0.
     Since 0 = 0 \cdot n we get n \mid 0.
(h) 0 \mid n implies n = 0.
     Since 0 \mid n there exists c such that n = c \cdot 0 = 0.
(i) d \mid n and n \neq 0 implies |d| \leq |n|.
     d \mid n \text{ and } n \neq 0 imply that there exists c \neq 0, such that n = cd.
     Therefore, |n| = |cd| = |c||d| > |d|.
```

Proof of the Properties of Divisibility ((j)-(k))

Subsection 3

Greatest Common Divisor

Existence of Greatest Common Divisor

- If *d* divides two integers *a* and *b*, then *d* is called a **common divisor** of *a* and *b*.
- Thus, 1 is a common divisor of every pair of integers a and b.

Theorem

Given any two integers a and b, there is a common divisor d of a and b of the form

$$d = ax + by$$
,

where x and y are integers. Moreover, every common divisor of a and b divides this d.

First we assume that a ≥ 0 and b ≥ 0.
We use induction on n, where n = a + b.
If n = 0, then a = b = 0.
Then we can take d = 0, with x = y = 0.

Existence of Greatest Common Divisor (Cont'd)

• Assume that the theorem has been proved for 0, 1, 2, ..., n-1. By symmetry, we can assume $a \ge b$. If b = 0 take d = a, x = 1, y = 0. If $b \ge 1$, apply the theorem to a - b and b. Now $(a - b) + b = a = n - b \le n - 1$. So the induction assumption is applicable. Thus, there is a common divisor d of a - b and b of the form d = (a - b)x + by

$$d=(a-b)x+by.$$

This *d* also divides (a - b) + b = a. So *d* is a common divisor of *a* and *b*. Moreover, d = ax + (y - x)b, a linear combination of *a* and *b*.

Existence of Greatest Common Divisor (Cont'd)

Finally, we need to show that every common divisor divides d. But a common divisor divides a and b. Hence, by linearity, it divides d. If a < 0 or b < 0, we apply the result just proved to |a| and |b|. Then there is a common divisor d of |a| and |b| of the form

$$d = |a|x + |b|y.$$

If a < 0, |a|x = -ax = a(-x). Similarly, if b < 0, |b|y = b(-y). Hence *d* is again a linear combination of *a* and *b*.

Uniqueness of the Greatest Common Divisor

Theorem

Given integers a and b, there is one and only one number d with the following properties:

- (a) $d \ge 0$ (d is nonnegative);
- (b) $d \mid a$ and $d \mid b$ (d is a common divisor of a and b);
- (c) $e \mid a$ and $e \mid b$ implies $e \mid d$ (every common divisor divides d).
 - By the preceding theorem, there is at least one d satisfying Conditions (b) and (c). Also, -d satisfies these conditions.
 But if d' satisfies (b) and (c), then d | d' and d' | d. So |d| = |d'|.
 Hence there is exactly one d ≥ 0 satisfying (b) and (c).
 - In the theorem, d = 0 if, and only if, a = b = 0.
 Otherwise d ≥ 1.

The Greatest Common Divisor

Definition

The number d of the preceding theorem is called the **greatest common divisor** (gcd) of a and b. It is denoted by (a, b). If (a, b) = 1 then a and b are said to be **relatively prime**.

Theorem

The gcd has the following properties:

- (a) (a, b) = (b, a) (commutative law)
- (b) (a, (b, c)) = ((a, b), c) (associative law)
- (c) (ac, bc) = |c|(a, b) (distributive law)
- (d) (a,1) = (1,a) = 1, (a,0) = (0,a) = |a|.

(a) By definition,
$$(a, b) | a$$
 and $(a, b) | b$.
So, we get $(a, b) | (b, a)$. By symmetry, $(b, a) | (a, b)$.
Since they are both nonegative, $(a, b) = (b, a)$.

George Voutsadakis (LSSU)

The Greatest Common Divisor (Cont'd)

- (b) By definition (a, (b, c)) | a and (a, (b, c)) | (b, c). Since (b, c) | b and (b, c) | c, we get (a, (b, c)) | a, (a, (b, c)) | b and (a, (b, c)) | c. Thus, (a, (b, c)) | (a, b) and (a, (b, c)) | c. We conclude (a, (b, c)) | ((a, b), c). By symmetry, ((a, b), c) | (a, (b, c)). Since both are nonnegative, it follows that ((a, b), c) = (a, (b, c)).
- (c) There exist x, y, such that (a, b) = ax + by. So c(a, b) = c(ax + by) = x(ca) + y(cb). From this equation, we get:
 c(a, b) | (ca, cb), since c(a, b) | ca and c(a, b) | cb.
 (ca, cb) | c(a, b).

Thus, |(ca, cb)| = |c(a, b)|. Equivalently, (ca, cb) = |c|(a, b).

(d) Since 1 | 1 and 1 | a, we get 1 | (1, a). But (a, 1) | 1. Since both are nonnegative, (a, 1) = 1.
We have |a| | a and |a| | 0. Thus, |a| | (a, 0). But (a, 0) | a | |a|. Thus,

(a,0) = |a|.

Euclid's Lemma

Theorem (Euclid's Lemma)

- If $a \mid bc$ and (a, b) = 1, then $a \mid c$.
 - Since (a, b) = 1 we can write

$$1 = ax + by$$
.

Therefore,

$$c = acx + bcy$$
.

But $a \mid acx$ and $a \mid bcy$. So $a \mid c$.

Subsection 4

Prime Numbers

Prime Numbers

Definition

An integer n is called **prime** if n > 1 and if the only positive divisors of n are 1 and n.

If n > 1 and if n is not prime, then n is called **composite**.

Examples: The prime numbers less than 100 are

 $\begin{array}{c} 2, 3, 5, 7, 11, 13, 17, 19, 23, \\ 29, 31, 37, 41, 43, 47, 53, 59, \\ 61, 67, 71, 73, 79, 83, 89, 97. \end{array}$

Notation: Prime numbers are usually denoted by p, p', p_i, q, q', q_i .

Prime Number Decomposition

Theorem

Every integer n > 1 is either a prime number or a product of prime numbers.

• We use induction on *n*.

The theorem is clearly true for n = 2.

Assume it is true for every integer < n.

Then if *n* is not prime, it has a positive divisor $d \neq 1$, $d \neq n$.

Hence n = cd, where $c \neq n$.

But both c and d are < n and > 1.

So each of c, d is a product of prime numbers.

It follows that n is also a product of prime numbers.

Euclid's Theorem on the Infinity of Primes

Theorem (Euclid)

There are infinitely many prime numbers.

Euclid's Proof: Suppose there are only a finite number, say p_1, p_2, \ldots, p_n . Let $N = 1 + p_1 p_2 \cdots p_n$.

Since N > 1 either N is prime or N is a product of primes. Of course N is not prime since it exceeds each p_i . Moreover, no p_i divides N. If $p_i \mid N$, then p_i divides the difference $N - p_1 p_2 \cdots p_n = 1$.

This contradicts the prime decomposition theorem.

Non-Divisibility and Divisibility by a Prime

Theorem

- If a prime p does not divide a, then (p, a) = 1.
 - Let d = (p, a). Then d | p. So d = 1 or d = p. But d | a. So d ≠ p, because p ∤ a. Hence d = 1.

Theorem

If a prime p divides ab, then $p \mid a$ or $p \mid b$. More generally, if a prime p divides a product $a_1 \cdots a_n$, then p divides at least one of the factors.

Assume p | ab and that p ∤ a. We shall prove that p | b. By the preceding theorem, (p, a) = 1. So, by Euclid's Lemma, p | b.

To prove the more general statement we use induction on n, the number of factors.

Subsection 5

The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic

Theorem (Fundamental Theorem of Arithmetic)

Every integer n > 1 can be represented as a product of prime factors in only one way, apart from the order of the factors.

• We use induction on *n*.

The theorem is true for n = 2.

Assume, then, that it is true for all integers greater than 1 and less than n. We shall prove it is also true for n.

- If n is prime there is nothing more to prove.
- Assume *n* is composite and has two factorizations, say

$$n = p_1 p_2 \cdots p_s = q_1 q_2 \cdots q_t.$$

We wish to show that s = t and that each p equals some q. Since p_1 divides $q_1q_2 \cdots q_t$, it must divide at least one factor. Relabel q_1, q_2, \ldots, q_t , so that $p_1 \mid q_1$. Then $p_1 = q_1$, since both p_1 and q_1 are primes.

The Fundamental Theorem of Arithmetic (Cont'd)

• In $p_1p_2\cdots p_s = q_1q_2\cdots q_t$ we may cancel p_1 on both sides to obtain

$$\frac{n}{p_1}=p_2\cdots p_s=q_2\cdots q_t.$$

If
$$s > 1$$
 or $t > 1$, then $1 < \frac{n}{p_1} < n$.

The induction hypothesis tells us that the two factorizations of $\frac{n}{p_1}$ must be identical, apart from the order of the factors.

Therefore,

$$s = t$$

and the factorizations of n are also identical, apart from order.

Factorization Into Prime Powers

- In the factorization of an integer *n*, a particular prime *p* may occur more than once.
- Suppose the distinct prime factors of n are p_1, \ldots, p_r .
- Suppose that p_i occurs as a factor a_i times.
- Then we can write

$$n=p_1^{a_1}\cdots p_r^{a_r}$$

or, more briefly,

$$n=\prod_{i=1}^r p_i^{a_i}.$$

- This is called the **factorization of** *n* **into prime powers**.
- We can also express 1 in this form by taking each exponent a_i to be 0.

Prime Factorization and Set of Divisors

Theorem

If $n = \prod_{i=1}^{r} p_i^{a_i}$, the set of positive divisors of n is the set of numbers of the form $\prod_{i=1}^{r} p_i^{c_i}$, where $0 \le c_i \le a_i$, for i = 1, 2, ..., r.

- The proof of the nontrivial direction is similar to that of the Fundamental Theorem.
- Suppose we label the primes in increasing order $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, ..., $p_n =$ the *n*-th prime.
- Then every positive integer n (including 1) can be expressed in the form $n = \prod_{i=1}^{\infty} p_i^{a_i}$, where now each exponent $a_i \ge 0$.
- The positive divisors of *n* are all numbers of the form $\prod_{i=1}^{\infty} p_i^{c_i}$, where $0 \le c_i \le a_i$.
- The products are, of course, finite.

Prime Factorization and GCDs

Theorem

If two positive integers a and b have the factorizations

$$\mathbf{a} = \prod_{i=1}^{\infty} p_i^{\mathbf{a}_i}, \quad b = \prod_{i=1}^{\infty} p_i^{b_i},$$

then their gcd has the factorization $(a, b) = \prod_{i=1}^{n} p_i^{c_i}$, where each $c_i = \min \{a_i, b_i\}$, the smaller of a_i and b_i .

Let d = ∏_{i=1}[∞] p_i^{c_i}. Since c_i ≤ a_i and c_i ≤ b_i, we have d | a and d | b. So d is a common divisor of a and b.
Let e be any common divisor of a and b. Write e = ∏_{i=1}[∞] p_i^{e_i}.
Then e_i ≤ a_i and e_i ≤ b_i. So e_i ≤ c_i. Hence, e | d.
So d is the gcd of a and b.

Subsection 6

The Series of Reciprocals of the Primes

Series of Reciprocals of Primes

Theorem

The infinite series $\sum_{n=1}^{\infty} \frac{1}{p_n}$ diverges.

• We assume the series converges and obtain a contradiction. If the series converges, there is a k, such that $\sum_{m=k+1}^{\infty} \frac{1}{p_m} < \frac{1}{2}$. Let $Q = p_1 \cdots p_k$. Consider the numbers 1 + nQ, for $n = 1, 2, \ldots$. None of these is divisible by any of the primes p_1, \ldots, p_k . So all the prime factors of 1 + nQ are among p_{k+1}, p_{k+2}, \ldots . Therefore, for each $r \ge 1$, we have

$$\sum_{n=1}^r \frac{1}{1+nQ} \leq \sum_{t=1}^\infty \left(\sum_{m=k+1}^\infty \frac{1}{p_m}\right)^t,$$

since the sum on the right includes among its terms all the terms on the left.

George Voutsadakis (LSSU)

Series of Reciprocals of Primes (Cont'd)

• We got

$$\sum_{n=1}^{r} \frac{1}{1+nQ} \leq \sum_{t=1}^{\infty} \left(\sum_{m=k+1}^{\infty} \frac{1}{p_m} \right)^t$$

The right-hand side of this inequality is dominated by the convergent geometric series $\sum_{t=1}^{\infty} (\frac{1}{2})^t$. Therefore the series $\sum_{t=1}^{\infty} (\frac{1}{2})^t$.

Therefore the series $\sum_{n=1}^{\infty} \frac{1}{1+nQ}$ has bounded partial sums.

It follows that

$$\sum_{n=1}^{\infty} \frac{1}{1+nQ}$$

converges.

But this is a contradiction because, by the Integral Test or by the Limit Comparison Test, this series diverges.

Remarks on the Series of Reciprocals of Primes

• The divergence of the series

$$\sum \frac{1}{p_n}$$

was first proved by Euler.

- Euler noted that it implies Euclid's Theorem on the existence of infinitely many primes.
- Later, we will obtain an asymptotic formula which shows that the partial sums $\sum_{k=1}^{n} \frac{1}{p_k}$ tend to infinity like log (log n).

Subsection 7

The Euclidean Algorithm

The Division Algorithm

Theorem (The Division Algorithm)

Given integers a and b, with b > 0, there exists a unique pair of integers q and r, such that

a = bq + r, with $0 \le r < b$.

Moreover, r = 0 if and only if $b \mid a$.

- We say that q is the **quotient** and r the **remainder** obtained when b is divided into a.
- Let S be the set of nonnegative integers given by

$$S = \{y : y = a - bx, x \text{ is an integer}, y \ge 0\}.$$

This is a nonempty set of nonnegative integers.

So it has a smallest member, say a - bq. Let r = a - bq. Then a = bq + r and $r \ge 0$.

The Division Algorithm (Cont'd)

Claim: r < b.

Assume
$$r \ge b$$
. Then $0 \le r - b < r$.

But
$$r - b \in S$$
, since $r - b = a - b(q + 1)$.

Hence r - b is a member of S smaller than its smallest member, r. This contradiction shows that r < b.

Claim: The pair q, r is unique.

If there were another such pair, say q', r', then bq + r = bq' + r'. So b(q - q') = r' - r. Hence, $b \mid (r' - r)$. If $r' - r \neq 0$, this implies b < |r - r'|, a contradiction. Therefore, r' = r and q' = q. Finally, it is clear that r = 0 if and only if $b \mid a$.

Note: The proof gives us a method for computing q and r. Subtract from a (or add to a) enough multiples of b until the smallest nonnegative number of the form a - bx has been obtained.

George Voutsadakis (LSSU)

The Euclidean Algorithm

Theorem (The Euclidean Algorithm)

Given positive integers *a* and *b*, where $b \nmid a$. Let $r_0 = a$, $r_1 = b$, and apply the division algorithm repeatedly to obtain a set of remainders $r_2, r_3, \ldots, r_n, r_{n+1}$ defined successively by the relations

r_0	=	$r_1q_1 + r_2$,	$0 < r_2 < r_1,$
r_1	=	$r_2q_2+r_3,$	$0 < r_3 < r_2,$
	÷		
<i>r</i> _{n-2}	=	$r_{n-1}q_{n-1}+r_n,$	$0 < r_n < r_{n-1},$
r_{n-1}	=	$r_n q_n + r_{n+1}$	$r_{n+1} = 0.$

Then r_n , the last nonzero remainder, is (a, b), the gcd of a and b.

• There is a stage at which $r_{n+1} = 0$ because the r_i are decreasing and nonnegative.

George Voutsadakis (LSSU)

The Euclidean Algorithm (Cont'd)

```
• The last relation, r_{n-1} = r_n q_n shows that r_n \mid r_{n-1}.
  The next to last shows that r_n \mid r_{n-2}.
  By induction we see that r_n divides each r_i.
  In particular r_n \mid r_1 = b and r_n \mid r_0 = a.
  So r_n is a common divisor of a and b.
  Now let d be any common divisor of a and b.
  The definition of r_2 shows that d \mid r_2.
  The next relation shows that d \mid r_3.
  By induction, d divides each r_i.
  So d \mid r_n.
  Therefore, r_n is the required gcd.
```

Subsection 8

The Greatest Common Divisor of More than Two Numbers

The Greatest Common Divisor of More than Two Numbers

• The greatest common divisor of three integers *a*, *b*, *c* is denoted by (*a*, *b*, *c*) and is defined by the relation

$$(a,b,c)=(a,(b,c)).$$

- By a previous theorem, we have (a, (b, c)) = ((a, b), c).
- So the gcd depends only on *a*, *b*, *c* and not on their order.
- Similarly, the gcd of *n* integers a_1, \ldots, a_n is defined inductively by the relation

$$(a_1,\ldots,a_n)=(a_1,(a_2,\ldots,a_n)).$$

• Again, this number is independent of the order in which the *a_i* appear.

Properties of the Greatest Common Divisor

- If $d = (a_1, \ldots, a_n)$, it may be verified that:
 - *d* divides each of the *a_i*;
 - Every common divisor divides *d*.
- Moreover, d is a linear combination of the a_i.
- That is, there exist integers x_1, \ldots, x_n , such that

$$(a_1,\ldots,a_n)=a_1x_1+\cdots+a_nx_n.$$

Relatively Prime Numbers

If d = (a₁,..., a_n) = 1 the numbers a_i are said to be relatively prime.

Example: 2, 3 and 10 are relatively prime.

- If (a_i, a_j) = 1 whenever i ≠ j, the numbers a₁,..., a_j are said to be relatively prime in pairs or pairwise relative prime.
- If a_1, \ldots, a_n are relatively prime in pairs, then $(a_1, \ldots, a_n) = 1$.
- The converse is not necessarily true.

Example: (2, 3, 10) = 1, but $(2, 10) = 2 \neq 1$.