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The Fundamental Theorem of Arithmetic Induction and Well-Ordering

The Principle of Induction

Many of our proofs make use of the following property of integers.

The Principle of Induction

If Q is a set of integers such that:

(a) 1 ∈ Q;

(b) n ∈ Q implies n + 1 ∈ Q,

then

(c) all integers ≥ 1 belong to Q.

There are alternate formulations of this principle.

In Statement (a), the integer 1 can be replaced by any integer k ,
provided that the inequality ≥ 1 is replaced by ≥ k in (c).
(b) can be replaced by 1, 2, 3, . . . , n ∈ Q implies (n + 1) ∈ Q.
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The Fundamental Theorem of Arithmetic Induction and Well-Ordering

The Well-Ordering Principle

We also assume familiarity with the following principle, which is
logically equivalent to the principle of induction.

The Well-Ordering Principle

If A is a nonempty set of positive integers, then A contains a smallest
member.

This principle has also equivalent formulations:

“positive integers” can be replaced by “integers ≥ k for some k”.
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The Fundamental Theorem of Arithmetic Divisibility

Subsection 2

Divisibility
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The Fundamental Theorem of Arithmetic Divisibility

Divisibility

Small latin letters a, b, c , d , n, etc., denote integers, positive,
negative, or zero.

Definition of Divisibility

We say d divides n and we write d | n whenever n = cd , for some c .
We also say that n is a multiple of d , that d is a divisor of n, or that d is
a factor of n.
If d does not divide n, we write d ∤ n.
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The Fundamental Theorem of Arithmetic Divisibility

Properties of Divisibility

Theorem

Divisibility has the following properties:

(a) n | n; (Reflexive Property)

(b) d | n and n | m implies d | m; (Transitive Property)

(c) d | n and d | m implies d | (an+ bm); (Linearity Property)

(d) d | n implies ad | an; (Multiplication Property)

(e) ad | an and a 6= 0 implies d | n; (Cancelation Law)

(f) 1 | n; (1 divides every integer)

(g) n | 0; (every integer divides zero)

(h) 0 | n implies n = 0; (zero divides only zero)

(i) d | n and n 6= 0 implies |d | ≤ |n|; (Comparison Property)

(j) d | n and n | d implies |d | = |n|;

(k) d | n and d 6= 0 implies (n/d) | n.
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The Fundamental Theorem of Arithmetic Divisibility

Proof of the Properties of Divisibility ((a)-(d))

(a) n | n.

Since n = 1 · n, we get n | n.

(b) d | n and n | m implies d | m.

d | n implies there exists c1, such that n = c1d . n | m implies there
exists c2, such that m = c2n. Thus, we obtain m = c2n = (c2c1)d .
Hence d | m.

(c) d | n and d | m implies d | (an+ bm).

d | n implies there exists c1 such that n = c1d . d | m implies there
exists c2 such that m = c2d . Now we get
an+ bm = ac1d + bc2d = (ac1 + bc2)d . Thus, d | (an + bm).

(d) d | n implies ad | an.

d | n implies there exists c such that n = cd . Thus, an = cad . So
ad | an.
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The Fundamental Theorem of Arithmetic Divisibility

Proof of the Properties of Divisibility ((e)-(i))

(e) ad | an and a 6= 0 implies d | n.

ad | an implies there exists c such that an = cad . Since a 6= 0, we get
n = cd . Thus, d | n.

(f) 1 | n.

Since n = n · 1, we get 1 | n.

(g) n | 0.

Since 0 = 0 · n we get n | 0.

(h) 0 | n implies n = 0.

Since 0 | n there exists c such that n = c · 0 = 0.

(i) d | n and n 6= 0 implies |d | ≤ |n|.

d | n and n 6= 0 imply that there exists c 6= 0, such that n = cd .
Therefore, |n| = |cd | = |c ||d | ≥ |d |.
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The Fundamental Theorem of Arithmetic Divisibility

Proof of the Properties of Divisibility ((j)-(k))

(j) d | n and n | d implies |d | = |n|.

If n = 0, then d = 0 and |d | = |n|.

So suppose that n 6= 0. d | n implies there exists c1 such that
n = c1d . n | d implies there exists c2 such that d = c2n. So we get
n = c1d = c1c2n. Since n 6= 0, c1c2 = 1. Since c1, c2 are integers, we
must have |c1| = |c2| = 1. Now we obtain |d | = |c2n| = |c2||n| = |n|.

(k) d | n and d 6= 0 implies (n/d) | n.

d | n implies there exists c , such that n = cd . Since d 6= 0, we get
c = n

d
, an integer. Therefore, n = dc = d · n

d
. Thus, n

d
| n.

Note: If d | n, then n/d is called the divisor conjugate to d .
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The Fundamental Theorem of Arithmetic Greatest Common Divisor

Subsection 3

Greatest Common Divisor
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The Fundamental Theorem of Arithmetic Greatest Common Divisor

Existence of Greatest Common Divisor

If d divides two integers a and b, then d is called a common divisor

of a and b.

Thus, 1 is a common divisor of every pair of integers a and b.

Theorem

Given any two integers a and b, there is a common divisor d of a and b of
the form

d = ax + by ,

where x and y are integers. Moreover, every common divisor of a and b

divides this d .

First we assume that a ≥ 0 and b ≥ 0.

We use induction on n, where n = a+ b.

If n = 0, then a = b = 0.

Then we can take d = 0, with x = y = 0.
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The Fundamental Theorem of Arithmetic Greatest Common Divisor

Existence of Greatest Common Divisor (Cont’d)

Assume that the theorem has been proved for 0, 1, 2, . . . , n − 1.

By symmetry, we can assume a ≥ b.

If b = 0 take d = a, x = 1, y = 0.

If b ≥ 1, apply the theorem to a − b and b.

Now (a − b) + b = a = n − b ≤ n − 1.

So the induction assumption is applicable.

Thus, there is a common divisor d of a− b and b of the form

d = (a − b)x + by .

This d also divides (a − b) + b = a.

So d is a common divisor of a and b.

Moreover, d = ax + (y − x)b, a linear combination of a and b.
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The Fundamental Theorem of Arithmetic Greatest Common Divisor

Existence of Greatest Common Divisor (Cont’d)

Finally, we need to show that every common divisor divides d .

But a common divisor divides a and b.

Hence, by linearity, it divides d .

If a < 0 or b < 0, we apply the result just proved to |a| and |b|.

Then there is a common divisor d of |a| and |b| of the form

d = |a|x + |b|y .

If a < 0, |a|x = − ax = a(−x).

Similarly, if b < 0, |b|y = b(−y).

Hence d is again a linear combination of a and b.
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The Fundamental Theorem of Arithmetic Greatest Common Divisor

Uniqueness of the Greatest Common Divisor

Theorem

Given integers a and b, there is one and only one number d with the
following properties:

(a) d ≥ 0 (d is nonnegative);

(b) d | a and d | b (d is a common divisor of a and b);

(c) e | a and e | b implies e | d (every common divisor divides d).

By the preceding theorem, there is at least one d satisfying
Conditions (b) and (c). Also, −d satisfies these conditions.

But if d ′ satisfies (b) and (c), then d | d ′ and d ′ | d . So |d | = |d ′|.
Hence there is exactly one d ≥ 0 satisfying (b) and (c).

In the theorem, d = 0 if, and only if, a = b = 0.

Otherwise d ≥ 1.
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The Fundamental Theorem of Arithmetic Greatest Common Divisor

The Greatest Common Divisor

Definition

The number d of the preceding theorem is called the greatest common

divisor (gcd) of a and b. It is denoted by (a, b).
If (a, b) = 1 then a and b are said to be relatively prime.

Theorem

The gcd has the following properties:

(a) (a, b) = (b, a) (commutative law)

(b) (a, (b, c)) = ((a, b), c) (associative law)

(c) (ac , bc) = |c |(a, b) (distributive law)

(d) (a, 1) = (1, a) = 1, (a, 0) = (0, a) = |a|.

(a) By definition, (a, b) | a and (a, b) | b.

So, we get (a, b) | (b, a). By symmetry, (b, a) | (a, b).

Since they are both nonegative, (a, b) = (b, a).
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The Fundamental Theorem of Arithmetic Greatest Common Divisor

The Greatest Common Divisor (Cont’d)

(b) By definition (a, (b, c)) | a and (a, (b, c)) | (b, c). Since (b, c) | b and
(b, c) | c , we get (a, (b, c)) | a, (a, (b, c)) | b and (a, (b, c)) | c . Thus,
(a, (b, c)) | (a, b) and (a, (b, c)) | c . We conclude
(a, (b, c)) | ((a, b), c). By symmetry, ((a, b), c) | (a, (b, c)). Since
both are nonnegative, it follows that ((a, b), c) = (a, (b, c)).

(c) There exist x , y , such that (a, b) = ax + by . So
c(a, b) = c(ax + by) = x(ca) + y(cb). From this equation, we get:

c(a, b) | (ca, cb), since c(a, b) | ca and c(a, b) | cb.
(ca, cb) | c(a, b).

Thus, |(ca, cb)| = |c(a, b)|. Equivalently, (ca, cb) = |c |(a, b).

(d) Since 1 | 1 and 1 | a, we get 1 | (1, a). But (a, 1) | 1. Since both are
nonnegative, (a, 1) = 1.

We have |a| | a and |a| | 0. Thus, |a| | (a, 0). But (a, 0) | a | |a|. Thus,
(a, 0) = |a|.
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The Fundamental Theorem of Arithmetic Greatest Common Divisor

Euclid’s Lemma

Theorem (Euclid’s Lemma)

If a | bc and (a, b) = 1, then a | c .

Since (a, b) = 1 we can write

1 = ax + by .

Therefore,
c = acx + bcy .

But a | acx and a | bcy .

So a | c .
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The Fundamental Theorem of Arithmetic Prime Numbers
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Prime Numbers
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The Fundamental Theorem of Arithmetic Prime Numbers

Prime Numbers

Definition

An integer n is called prime if n > 1 and if the only positive divisors of n
are 1 and n.
If n > 1 and if n is not prime, then n is called composite.

Examples: The prime numbers less than 100 are

2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97.

Notation: Prime numbers are usually denoted by p, p′, pi , q, q
′, qi .
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The Fundamental Theorem of Arithmetic Prime Numbers

Prime Number Decomposition

Theorem

Every integer n > 1 is either a prime number or a product of prime
numbers.

We use induction on n.

The theorem is clearly true for n = 2.

Assume it is true for every integer < n.

Then if n is not prime, it has a positive divisor d 6= 1, d 6= n.

Hence n = cd , where c 6= n.

But both c and d are < n and > 1.

So each of c , d is a product of prime numbers.

It follows that n is also a product of prime numbers.
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The Fundamental Theorem of Arithmetic Prime Numbers

Euclid’s Theorem on the Infinity of Primes

Theorem (Euclid)

There are infinitely many prime numbers.

Euclid’s Proof: Suppose there are only a finite number, say
p1, p2, . . . , pn. Let

N = 1 + p1p2 · · · pn.

Since N > 1 either N is prime or N is a product of primes.

Of course N is not prime since it exceeds each pi .

Moreover, no pi divides N.

If pi | N, then pi divides the difference N − p1p2 · · · pn = 1.

This contradicts the prime decomposition theorem.
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The Fundamental Theorem of Arithmetic Prime Numbers

Non-Divisibility and Divisibility by a Prime

Theorem

If a prime p does not divide a, then (p, a) = 1.

Let d = (p, a). Then d | p. So d = 1 or d = p. But d | a. So d 6= p,
because p ∤ a. Hence d = 1.

Theorem

If a prime p divides ab, then p | a or p | b. More generally, if a prime p

divides a product a1 · · · an, then p divides at least one of the factors.

Assume p | ab and that p ∤ a. We shall prove that p | b. By the
preceding theorem, (p, a) = 1. So, by Euclid’s Lemma, p | b.

To prove the more general statement we use induction on n, the
number of factors.
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The Fundamental Theorem of Arithmetic The Fundamental Theorem of Arithmetic
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The Fundamental Theorem of Arithmetic
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The Fundamental Theorem of Arithmetic The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic

Theorem (Fundamental Theorem of Arithmetic)

Every integer n > 1 can be represented as a product of prime factors in
only one way, apart from the order of the factors.

We use induction on n.

The theorem is true for n = 2.

Assume, then, that it is true for all integers greater than 1 and less
than n. We shall prove it is also true for n.

If n is prime there is nothing more to prove.

Assume n is composite and has two factorizations, say

n = p1p2 · · · ps = q1q2 · · · qt .

We wish to show that s = t and that each p equals some q.

Since p1 divides q1q2 · · · qt , it must divide at least one factor.

Relabel q1, q2, . . . , qt , so that p1 | q1.

Then p1 = q1, since both p1 and q1 are primes.
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The Fundamental Theorem of Arithmetic The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic (Cont’d)

In p1p2 · · · ps = q1q2 · · · qt we may cancel p1 on both sides to obtain

n

p1
= p2 · · · ps = q2 · · · qt .

If s > 1 or t > 1, then 1 < n
p1

< n.

The induction hypothesis tells us that the two factorizations of n
p1

must be identical, apart from the order of the factors.

Therefore,
s = t

and the factorizations of n are also identical, apart from order.
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The Fundamental Theorem of Arithmetic The Fundamental Theorem of Arithmetic

Factorization Into Prime Powers

In the factorization of an integer n, a particular prime p may occur
more than once.

Suppose the distinct prime factors of n are p1, . . . , pr .

Suppose that pi occurs as a factor ai times.

Then we can write
n = p

a1
1 · · · parr

or, more briefly,

n =

r
∏

i=1

p
ai
i .

This is called the factorization of n into prime powers.

We can also express 1 in this form by taking each exponent ai to be 0.
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The Fundamental Theorem of Arithmetic The Fundamental Theorem of Arithmetic

Prime Factorization and Set of Divisors

Theorem

If n =
∏r

i=1 p
ai
i , the set of positive divisors of n is the set of numbers of

the form
∏r

i=1 p
ci
i , where 0 ≤ ci ≤ ai , for i = 1, 2, . . . , r .

The proof of the nontrivial direction is similar to that of the
Fundamental Theorem.

Suppose we label the primes in increasing order p1 = 2, p2 = 3,
p3 = 5, . . ., pn = the n-th prime.

Then every positive integer n (including 1) can be expressed in the
form n =

∏

∞

i=1 p
ai
i , where now each exponent ai ≥ 0.

The positive divisors of n are all numbers of the form
∏

∞

i=1 p
ci
i , where

0 ≤ ci ≤ ai .

The products are, of course, finite.
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The Fundamental Theorem of Arithmetic The Fundamental Theorem of Arithmetic

Prime Factorization and GCDs

Theorem

If two positive integers a and b have the factorizations

a =
∞
∏

i=1

p
ai
i , b =

∞
∏

i=1

p
bi
i ,

then their gcd has the factorization (a, b) =
∏n

i=1 p
ci
i , where each

ci = min {ai , bi}, the smaller of ai and bi .

Let d =
∏

∞

i=1 p
ci
i . Since ci ≤ ai and ci ≤ bi , we have d | a and d | b.

So d is a common divisor of a and b.

Let e be any common divisor of a and b. Write e =
∏

∞

i=1 p
ei
i .

Then ei ≤ ai and ei ≤ bi . So ei ≤ ci . Hence, e | d .

So d is the gcd of a and b.
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The Fundamental Theorem of Arithmetic The Series of Reciprocals of the Primes

Subsection 6
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The Fundamental Theorem of Arithmetic The Series of Reciprocals of the Primes

Series of Reciprocals of Primes

Theorem

The infinite series
∑

∞

n=1
1
pn

diverges.

We assume the series converges and obtain a contradiction.

If the series converges, there is a k , such that
∑

∞

m=k+1
1
pm

< 1
2 .

Let Q = p1 · · · pk .

Consider the numbers 1 + nQ, for n = 1, 2, . . ..

None of these is divisible by any of the primes p1, . . . , pk .

So all the prime factors of 1 + nQ are among pk+1, pk+2, . . ..

Therefore, for each r ≥ 1, we have

r
∑

n=1

1

1 + nQ
≤

∞
∑

t=1

(

∞
∑

m=k+1

1

pm

)t

,

since the sum on the right includes among its terms all the terms on
the left.
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The Fundamental Theorem of Arithmetic The Series of Reciprocals of the Primes

Series of Reciprocals of Primes (Cont’d)

We got
r
∑

n=1

1

1 + nQ
≤

∞
∑

t=1

(

∞
∑

m=k+1

1

pm

)t

.

The right-hand side of this inequality is dominated by the convergent
geometric series

∑

∞

t=1(
1
2 )

t .

Therefore the series
∑

∞

n=1
1

1+nQ
has bounded partial sums.

It follows that
∞
∑

n=1

1

1 + nQ

converges.

But this is a contradiction because, by the Integral Test or by the
Limit Comparison Test, this series diverges.
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The Fundamental Theorem of Arithmetic The Series of Reciprocals of the Primes

Remarks on the Series of Reciprocals of Primes

The divergence of the series

∑ 1

pn

was first proved by Euler.

Euler noted that it implies Euclid’s Theorem on the existence of
infinitely many primes.

Later, we will obtain an asymptotic formula which shows that the
partial sums

∑n
k=1

1
pk

tend to infinity like log (log n).
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The Fundamental Theorem of Arithmetic The Euclidean Algorithm

Subsection 7

The Euclidean Algorithm
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The Fundamental Theorem of Arithmetic The Euclidean Algorithm

The Division Algorithm

Theorem (The Division Algorithm)

Given integers a and b, with b > 0, there exists a unique pair of integers q
and r , such that

a = bq + r , with 0 ≤ r < b.

Moreover, r = 0 if and only if b | a.

We say that q is the quotient and r the remainder obtained when b

is divided into a.

Let S be the set of nonnegative integers given by

S = {y : y = a− bx , x is an integer, y ≥ 0}.

This is a nonempty set of nonnegative integers.

So it has a smallest member, say a − bq. Let r = a − bq.

Then a = bq + r and r ≥ 0.
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The Fundamental Theorem of Arithmetic The Euclidean Algorithm

The Division Algorithm (Cont’d)

Claim: r < b.

Assume r ≥ b. Then 0 ≤ r − b < r .

But r − b ∈ S , since r − b = a − b(q + 1).

Hence r − b is a member of S smaller than its smallest member, r .

This contradiction shows that r < b.

Claim: The pair q, r is unique.

If there were another such pair, say q′, r ′, then bq + r = bq′ + r ′.

So b(q − q′) = r ′ − r . Hence, b | (r ′ − r).

If r ′ − r 6= 0, this implies b < |r − r ′|, a contradiction.

Therefore, r ′ = r and q′ = q.

Finally, it is clear that r = 0 if and only if b | a.

Note: The proof gives us a method for computing q and r .

Subtract from a (or add to a) enough multiples of b until the smallest
nonnegative number of the form a− bx has been obtained.
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The Fundamental Theorem of Arithmetic The Euclidean Algorithm

The Euclidean Algorithm

Theorem (The Euclidean Algorithm)

Given positive integers a and b, where b ∤ a. Let r0 = a, r1 = b, and apply
the division algorithm repeatedly to obtain a set of remainders
r2, r3, . . . , rn, rn+1 defined successively by the relations

r0 = r1q1 + r2, 0 < r2 < r1,
r1 = r2q2 + r3, 0 < r3 < r2,

...
rn−2 = rn−1qn−1 + rn, 0 < rn < rn−1,
rn−1 = rnqn + rn+1, rn+1 = 0.

Then rn, the last nonzero remainder, is (a, b), the gcd of a and b.

There is a stage at which rn+1 = 0 because the ri are decreasing and
nonnegative.
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The Fundamental Theorem of Arithmetic The Euclidean Algorithm

The Euclidean Algorithm (Cont’d)

The last relation, rn−1 = rnqn shows that rn | rn−1.

The next to last shows that rn | rn−2.

By induction we see that rn divides each ri .

In particular rn | r1 = b and rn | r0 = a.

So rn is a common divisor of a and b.

Now let d be any common divisor of a and b.

The definition of r2 shows that d | r2.

The next relation shows that d | r3.

By induction, d divides each ri .

So d | rn.

Therefore, rn is the required gcd.
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The Fundamental Theorem of Arithmetic The Greatest Common Divisor of More than Two Numbers

Subsection 8

The Greatest Common Divisor of More than Two Numbers
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The Fundamental Theorem of Arithmetic The Greatest Common Divisor of More than Two Numbers

The Greatest Common Divisor of More than Two Numbers

The greatest common divisor of three integers a, b, c is denoted by
(a, b, c) and is defined by the relation

(a, b, c) = (a, (b, c)).

By a previous theorem, we have (a, (b, c)) = ((a, b), c).

So the gcd depends only on a, b, c and not on their order.

Similarly, the gcd of n integers a1, . . . , an is defined inductively by the
relation

(a1, . . . , an) = (a1, (a2, . . . , an)).

Again, this number is independent of the order in which the ai appear.
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The Fundamental Theorem of Arithmetic The Greatest Common Divisor of More than Two Numbers

Properties of the Greatest Common Divisor

If d = (a1, . . . , an), it may be verified that:

d divides each of the ai ;
Every common divisor divides d .

Moreover, d is a linear combination of the ai .

That is, there exist integers x1, . . . , xn, such that

(a1, . . . , an) = a1x1 + · · ·+ anxn.
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The Fundamental Theorem of Arithmetic The Greatest Common Divisor of More than Two Numbers

Relatively Prime Numbers

If d = (a1, . . . , an) = 1 the numbers ai are said to be relatively

prime.

Example: 2, 3 and 10 are relatively prime.

If (ai , aj) = 1 whenever i 6= j , the numbers a1, . . . , aj are said to be
relatively prime in pairs or pairwise relative prime.

If a1, . . . , an are relatively prime in pairs, then (a1, . . . , an) = 1.

The converse is not necessarily true.

Example: (2, 3, 10) = 1, but (2, 10) = 2 6= 1.
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