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Introducing Exponents and Primitive Roots

Let a and m be relatively prime integers, with m > 1.

Consider all the positive powers of a:

a, a2, a3, . . . .

We know, from the Euler-Fermat Theorem, that

aϕ(m) ≡ 1 (mod m).

However, there may be an earlier power af , such that

af ≡ 1 (mod m).
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Exponents and Primitive Roots

Definition

The smallest positive integer f such that

af ≡ 1 (mod m)

is called the exponent of a modulo m, and is denoted by writing

f = expm(a).

If expm(a) = ϕ(m), then a is called a primitive root mod m.

The Euler-Fermat Theorem tells us that

expm(a) ≤ ϕ(m).
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Properties of Exponents

Theorem

Given m ≥ 1, (a,m) = 1, let f = expm(a). Then we have:

(a) ak ≡ ah (mod m) if, and only if, k ≡ h (mod f ).

(b) ak ≡ 1 (mod m) if, and only if, k ≡ 0 (mod f ).

In particular f | ϕ(m).

(c) The numbers 1, a, a2, . . . , af−1 are incongruent mod m.

Parts (b) and (c) follow at once from Part (a).

So we need only prove Part (a).

Assume, first, ak ≡ ah (mod m). Then ak−h ≡ 1 (mod m).

Write k − h = qf + r , where 0 ≤ r < f .

Then 1 ≡ aqf+r ≡ ar (mod m). So r = 0 and k ≡ h (mod f ).

Conversely, assume k ≡ h (mod f ). Then k − h = qf .

So ak−h ≡ 1 (mod m). Hence, ak ≡ ah (mod m).
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Primitive Roots and Reduced Residue Systems

Theorem

Let (a,m) = 1. Then a is a primitive root mod m if and only if the
numbers

a, a2, . . . , aϕ(m)

form a reduced residue system mod m.

Suppose a is a primitive root. Then the numbers in the list are
incongruent mod m, by Part (c) of the preceding theorem.

But there are ϕ(m) such numbers.

So they form a reduced residue system mod m.

Conversely, suppose the numbers in the list form a reduced residue
system. Then aϕ(m) ≡ 1 (mod m). But no smaller power is
congruent to 1. So a is a primitive root.
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Remark

We saw that the reduced residue classes mod m form a group.

Suppose m has a primitive root a.

Then the theorem shows that this group is the cyclic group generated
by the residue class â.
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Moduli with Primitive Roots

Suppose m has a primitive root.

Then each reduced residue system mod m can be expressed as a
geometric progression.

Unfortunately, not all moduli have primitive roots.

In the next few sections we will prove that primitive roots exist only
for the following moduli:

m = 1, 2, 4, pα and 2pα,

where p is an odd prime and α ≥ 1.

The first three cases are easily settled.

The case m = 1 is trivial.
For m = 2 the number 1 is a primitive root.
For m = 4, we have ϕ(4) = 2 and 32 ≡ 1 (mod 4).
So 3 is a primitive root.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 10 / 71



Primitive Roots The Nonexistence of Primitive Roots mod 2α for α ≥ 3
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Nonexistence of Primitive Roots mod 2α, α ≥ 3

Theorem

Let x be an odd integer. If α ≥ 3, we have

xϕ(2
α)/2 ≡ 1 (mod 2α).

So there are no primitive roots mod 2α.

If α = 3, the claimed congruence is

x2 ≡ 1 (mod 8), for x odd.

This is verified by testing x = 1, 3, 5, 7.

Alternatively, we note that

(2k + 1)2 = 4k2 + 4k + 1 = 4k(k + 1) + 1.

Then observe that k(k + 1) is even.
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Nonexistence of Primitive Roots mod 2α, α ≥ 3 (Cont’d)

Now we prove the theorem by induction on α.

We assume the conclusion holds for α.

We prove that it also holds for α+ 1.

The induction hypothesis is that

xϕ(2
α)/2 = 1 + 2αt,

where t is an integer.

Squaring both sides and taking into account 2α > α+ 1,

xϕ(2
α) = 1 + 2α+1t + 22αt2 ≡ 1 (mod 2α+1).

Note that
ϕ(2α) = 2α−1 = ϕ(2α+1)/2.

So the proof is complete.
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Exponents of Powers

Lemma

Given (a,m) = 1, let f = expm(a). Then

expm(a
k) =

expm(a)

(k , f )
.

In particular, expm(a
k) = expm(a) if, and only if, (k , f ) = 1.

expm(a
k) is the smallest x > 0, such that axk ≡ 1 (mod m).

This is also the smallest x > 0 such that kx ≡ 0 (mod f ).

The latter is equivalent to x ≡ 0 (mod f
d
), where d = (k , f ).

The smallest positive solution of this congruence is f
d
.

So expm(a
k) = f

d
.
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Primitive Roots Modulo a Prime

Theorem

Let p be an odd prime. Let d be any positive divisor of p − 1. Then in
every reduced residue system mod p there are exactly ϕ(d) numbers a,
such that

expp(a) = d .

In particular, when d = ϕ(p) = p− 1, there are exactly ϕ(p − 1) primitive
roots mod p.

The numbers 1, 2, . . . , p − 1 are distributed into disjoint sets A(d),
each set corresponding to a divisor d of p − 1, where

A(d) = {x : 1 ≤ x ≤ p − 1 and expp(x) = d}.

Let f (d) be the number of elements in A(d).

Then f (d) ≥ 0, for each d .

Our goal is to prove that f (d) = ϕ(d).
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Primitive Roots Modulo a Prime (Cont’d)

Note that:

The sets A(d) are disjoint;
Each x = 1, 2, . . . , p − 1 falls into some A(d).

So
∑

d|p−1 f (d) = p − 1.

But we also have
∑

d|p−1 ϕ(d) = p − 1.

So ∑

d|p−1

{ϕ(d)− f (d)} = 0.

To show that each term is zero, it suffices to show f (d) ≤ ϕ(d).

We do this by showing that either f (d) = 0 or f (d) = ϕ(d).

Equivalently, we show f (d) 6= 0 implies f (d) = ϕ(d).
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Primitive Roots Modulo a Prime (Cont’d)

Suppose that f (d) 6= 0. Then A(d) is nonempty.

So a ∈ A(d), for some a. Therefore, expp(a) = d .

Hence ad ≡ 1 (mod p).

But every power of a satisfies the same congruence.

So the d numbers a, a2, . . . , ad are solutions of the congruence

xd − 1 ≡ 0 (mod p).

These solutions are incongruent mod p since d = expp(a).

But the congruence has at most d solutions, since p is prime.

So the d powers must be all its solutions.

Hence, each number in A(d) must be of the form ak , for some
k = 1, 2, . . . , d .

By a previous lemma, expp(a
k) = d if, and only if, (k , d) = 1.

In other words, among the d powers there are ϕ(d) which have
exponent d modulo p. So f (d) = ϕ(d) if f (d) 6= 0.
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Primitive Roots and Quadratic Residues

Theorem

Let g be a primitive root mod p, where p is an odd prime. Then the even
powers

g2, g4, . . . , gp−1

are the quadratic residues mod p, and the odd powers

g , g3, . . . , gp−2

are the quadratic nonresidues mod p.

Suppose n is even, say n = 2m. Then gn = (gm)2.

So gn ≡ (gm)2 (mod p). Hence gnRp.

But there are p−1
2 distinct even powers g2, . . . , gp−1 modulo p and

the same number of quadratic residues mod p.

Therefore, the even powers are the quadratic residues and the odd
powers are the nonresidues.
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The Existence of Primitive Roots mod p
α
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Primitive Roots mod p
α

We turn to the case m = pα, where p is an odd prime and α ≥ 2.

In seeking primitive roots mod pα it is natural to consider as
candidates the primitive roots mod p.

Let g be a primitive root mod p.

We ask whether g might also be a primitive root mod p2.

Now gp−1 (mod p).

Moreover, ϕ(p2) = p(p − 1) > p − 1.

So g will not be a primitive root mod p2 if gp−1 ≡ 1 (mod p2).

Therefore, the relation gp−1 6≡ 1 (mod p2) is a necessary condition
for a primitive root g mod p to also be a primitive root mod p2.

Remarkably, this condition is also sufficient for g to be a primitive
root mod p2 and, more generally, mod pα, for all powers a ≥ 2.
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Existence of Primitive Roots mod p
α

Theorem

Let p be an odd prime. Then we have:

(a) If g is a primitive root mod p, then g is also a primitive root mod pα,
for all α ≥ 1 if, and only if,

gp−1 6≡ 1 (mod p2).

(b) There is at least one primitive root g mod p which satisfies

gp−1 6≡ 1 (mod p2).

Hence, there exists at least one primitive root mod pα, if α ≥ 2.
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Existence of Primitive Roots mod p
α (Part (b))

(b) Let g be a primitive root mod p.

If gp−1 6≡ 1 (mod p2), there is nothing to prove.

If gp−1 ≡ 1 (mod p2), we can show that g1 = g + p, which is another
primitive root modulo p, satisfies the condition g

p−1
1 6≡ 1 (mod p2).

In fact, we have

g
p−1
1 = (g + p)p−1

= gp−1 + (p − 1)gp−2p + tp2

≡ gp−1 + (p2 − p)gp−2 (mod p2)

≡ 1− pgp−2 (mod p2).

But we cannot have pgp−2 ≡ 0 (mod p2) for this would imply
gp−2 ≡ 0 (mod p), contradicting the primitivity of g mod p.

Hence, gp−1
1 6≡ 1 (mod p2).
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Existence of Primitive Roots mod p
α (Part (a))

(a) Let g be a primitive root modulo p.

If g is a primitive root mod pα, for all α ≥ 1, then, in particular, it is
a primitive root mod p2.

As we have already shown, this implies the condition.

Conversely, let g is a primitive root mod p, such that

gp−1 6≡ 1 (mod p2).

We must show that g is also a primitive root mod pα, for all α ≥ 2.

Let t be the exponent of g modulo pα.

We wish to show that t = ϕ(pα).

Now g t ≡ 1 (mod pα). Hence, g t ≡ 1 (mod p).

So ϕ(p) | t. We can write t = qϕ(p).
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Existence of Primitive Roots mod p
α (Part (a) Cont’d)

Now t | ϕ(pα). So qϕ(p) | ϕ(pα).

But ϕ(pα) = pα−1(p − 1). Hence, q(p − 1) | pα−1(p − 1).

This means q | pα−1. Therefore, q = pβ, where β ≤ α− 1.

We conclude t = pβ(p − 1).

Claim: β = α− 1, whence t = ϕ(pα).

Suppose, on the contrary, that β < α− 1. Then β ≤ α− 2.

We have
t = pβ(p − 1) | pα−2(p − 1) = ϕ(pα−1).

Thus, ϕ(pα−1) is a multiple of t.

This implies gϕ(pα−1) ≡ 1 (mod pα).

Now we make use of the following Lemma which shows that this
congruence is a contradiction.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 26 / 71



Primitive Roots The Existence of Primitive Roots mod pα

Existence of Primitive Roots mod p
α (Lemma)

Lemma

Let g be a primitive root modulo p such that

gp−1 6≡ 1 (mod p2).

Then for every α ≥ 2, we have

gϕ(pα−1) 6≡ 1 (mod pα).

We use induction on α.

For α = 2, the conclusion is immediate.

Suppose that the conclusion holds for α.

By the Euler-Fermat Theorem, gϕ(pα−1) ≡ 1 (mod pα−1).

So gϕ(pα−1) = 1 + kpα−1, where p ∤ k because of the hypothesis.
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Existence of Primitive Roots mod p
α (Lemma Cont’d)

We obtained gϕ(pα−1) = 1 + kpα−1, where p ∤ k .

Raise both sides to the p-th power,

gϕ(pα) = (1 + kpα−1)p = 1 + kpα + k2
p(p − 1)

2
p2(α−1) + rp3(α−1).

We have, since α ≥ 2:

2α− 1 ≥ α+ 1;
3α− 3 ≥ α+ 1.

Hence, the last equation gives us the congruence

gϕ(pα) ≡ 1 + kpα (mod pα+1).

Since p ∤ k ,
gϕ(pα) 6≡ 1 (mod pα+1).

So the conclusion holds for α+ 1.
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The Existence of Primitive Roots mod 2pα

Theorem

If p is an odd prime and α ≥ 1, there exist odd primitive roots g modulo
pα. Each such g is also a primitive root modulo 2pα.

If g is a primitive root modulo pα, so is g + pα. But one of g or
g + pα is odd. So odd primitive roots mod pα always exist.

Let g be an odd primitive root mod pα.

Let f be the exponent of g mod 2pα.

We wish to show that f = ϕ(2pα).

We have f | ϕ(2pα), and ϕ(2pα) = ϕ(2)ϕ(pα) = ϕ(pα).
So f | ϕ(pα).
We also have g f ≡ 1 (mod 2pα). So g f ≡ 1 (mod pα).
Hence, ϕ(pα) | f , since g is a primitive root mod pα.

Therefore, f = ϕ(pα) = ϕ(2pα). So g is primitive mod 2pα.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 30 / 71



Primitive Roots The Nonexistence of Primitive Roots in the Remaining Cases
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Nonexistence of Primitive Roots

Theorem

Let m ≥ 1 be not of the form m = 1, 2, 4, pα or 2pα, where p is an odd
prime. Then for any a, with (a,m) = 1, we have

aϕ(m)/2 ≡ 1 (mod m).

So there are no primitive roots mod m.

We have seen that there are no primitive roots mod 2α if α ≥ 3.

Therefore, we can assume

m = 2αpα1
1 · · · pαs

s ,

where the pi are odd primes, s ≥ 1, and α ≥ 0.

By hypothesis, m is not of the form 1, 2, 4, pα or 2pα.

So α ≥ 2, if s = 1, and s ≥ 2, if α = 0 or 1.

Note that ϕ(m) = ϕ(2α)ϕ(pα1
1 ) · · ·ϕ(pαs

s ).
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Nonexistence of Primitive Roots (Cont’d)

Now let a be any integer relatively prime to m.

We wish to prove that aϕ(m)/2 ≡ 1 (mod m).

Let g be a primitive root mod pα1
1 .

Choose k so that
a ≡ gk (mod pα1

1 ).

Then we have

aϕ(m)/2 ≡ gkϕ(m)/2 (mod pα1
1 )

≡ gkϕ(2α)ϕ(p
α1
1 )···ϕ(pαs

s )/2 (mod pα1
1 )

≡ g tϕ(p
α1
1 ) (mod pα1

1 ),

where
t = kϕ(2α)ϕ(pα2

2 ) · · ·ϕ(pαs
s )/2.
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Nonexistence of Primitive Roots (Cont’d)

Claim: t = kϕ(2α)ϕ(pα2
2 ) · · ·ϕ(pαs

s )/2 is an integer.

If α ≥ 2, the factor ϕ(2α) is even. Hence t is an integer.

If α = 0 or 1, then s ≥ 2 and the factor ϕ(pα2
2 ) is even.

So t is an integer in this case as well.

Hence we get
aϕ(m)/2 ≡ 1 (mod pα1

1 ).

In the same way we find, for all i = 1, 2, . . . , s,

aϕ(m)/2 ≡ 1 (mod p
αi

i ).
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Nonexistence of Primitive Roots (Conclusion)

Claim: We also have aϕ(m)/2 ≡ 1 (mod 2)

Suppose α ≥ 3. The condition (a,m) = 1 requires a to be odd.

By a previous theorem, aϕ(2
α)/2 ≡ (mod 2α).

But ϕ(2α) | ϕ(m). Hence, aϕ(m)/2 ≡ 1 (mod 2α), for α ≥ 3.

Suppose α ≤ 2. Then aϕ(2
α) ≡ 1 (mod 2α).

But s ≥ 1. Hence,

ϕ(m) = ϕ(2α)ϕ(pα1
1 ) · · ·ϕ(pαs

s ) = 2rϕ(2α), r an integer.

It follows that ϕ(2α) | ϕ(m)/2.

We conclude that aϕ(m)/2 ≡ 1 (mod 2α), for all α.

Multiplying all these congruences, we get aϕ(m)/2 ≡ 1 (mod m).

So a cannot be a primitive root mod m.
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Number of Primitive Roots

Theorem

If m has a primitive root g , then m has exactly ϕ(ϕ(m)) incongruent
primitive roots and they are given by the numbers in the set

S = {gn : 1 ≤ n ≤ ϕ(m) and (n, ϕ(m)) = 1}.

Since g is a primitive root of m,

expm(g) = ϕ(m).

By a previous lemma,

expm(g
n) = expm(g) if and only if (n, ϕ(m)) = 1.

Therefore, each element of S is a primitive root mod m.
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Number of Primitive Roots (Cont’d)

Conversely, suppose a is a primitive root mod m.

Then

a ≡ gk (mod m), for some k = 1, 2, . . . , ϕ(m).

Hence,
expm(g

k) = expm(a) = ϕ(m).

The lemma used above implies (k , ϕ(m)) = 1.

Therefore every primitive root is a member of S .

But S contains ϕ(ϕ(m)) incongruent members mod m.

This completes the proof.
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The Index

Suppose m has a primitive root g .

The numbers
1, g , g2, . . . , gϕ(m)−1

form a reduced residue system mod m.

If (a,m) = 1, there is a unique integer k , 0 ≤ k ≤ ϕ(m)−1, such that

a ≡ gk (mod m).

This integer is called the index of a to the base g (mod m).

We write
k = indga

or simply k = inda if the base g is understood.
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Properties of Indices

Indices have properties analogous to those of logarithms.

Theorem

Let g be a primitive root mod m. If (a,m) = (b,m) = 1, we have:

(a) ind(ab) ≡ inda+ indb (mod ϕ(m)).

(b) indan ≡ ninda (mod ϕ(m)) if n ≥ 1.

(c) ind1 = 0 and indg = 1.

(d) ind(−1) = ϕ(m)/2 if m > 2.

(e) Suppose g ′ is also a primitive root mod m.

Then indga ≡ indg ′a · indgg
′ (mod ϕ(m)).

The proof is relatively easy.
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Linear Congruences and Indices

Suppose m has a primitive root.

Let (a,m) = (b,m) = 1.

The linear congruence ax ≡ b (mod m) is equivalent to

inda + indx ≡ indb (mod ϕ(m)).

So the unique solution of the former satisfies the congruence

indx ≡ indb − inda (mod ϕ(m)).
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Primitive Roots The Index Calculus

Example

Consider the linear congruence

9x ≡ 13 (mod 47).

The corresponding index relation is

indx ≡ ind13− ind9 (mod 46).

Using index tables, we find, for p = 47,

ind13 = 11,
ind9 = 40.

So
indx ≡ 11− 40 ≡ −29 ≡ 17 (mod 46).

Again from a table we find x ≡ 38 (mod 47).
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Example: Binomial Congruences and Index Tables

A congruence of the form

xn ≡ a (mod m)

is called a binomial congruence.

If m has a primitive root and if (a,m) = 1 it is equivalent to the
congruence

nindx ≡ inda (mod ϕ(m)).

The latter is linear in the unknown indx .

The linear congruence has a solution if, and only if,

inda is divisible by d = (n, ϕ(m)).

Moreover, if this holds, it has exactly d solutions.
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Example

Consider the binomial congruence

x8 ≡ a (mod 17).

The corresponding index relation is

8indx ≡ inda (mod 16).

In this example d = (8, 16) = 8.

An index table shows that 1 and 16 are the only numbers mod 17
whose index is divisible by 8.

ind1 = 0;
ind16 = 8.

Hence there are no solutions if a 6≡ 1 or a 6≡ 16 (mod 17).
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Example (Cont’d)

We look at the two cases, where a solution exists.
Suppose a = 1.
We get

8indx ≡ 0 (mod 16).

This has exactly eight solutions mod 16.
They are those x whose index is even,

x ≡ 1, 2, 4, 8, 9, 13, 15, 16 (mod 17).

These, of course, are the quadratic residues of 17.
Suppose a = 16.
We get

8indx ≡ 8 (mod 16).

This has also exactly eight solutions mod 16.
They are those x whose index is odd.
That is, they are the quadratic nonresidues of 17,

x ≡ 3, 5, 6, 7, 10, 11, 12, 14 (mod 17).
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Exponential Congruences and Index Tables

An exponential congruence is one of the form

ax ≡ b (mod m).

Suppose m has a primitive root.

If (a,m) = (b,m) = 1, this is equivalent to the linear congruence

x inda ≡ indb (mod ϕ(m)).

Let d = (inda, ϕ(m)).

Then the linear congruence has a solution if, and only if,

d | indb.

In that case, there are exactly d solutions.
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Example

Consider the exponential congruence

25x ≡ 17 (mod 47).

We have:

ind25 = 2;
ind17 = 16;
d = (2, 46) = 2.

Therefore, the linear congruence is

2x ≡ 16 (mod 46).

It has two solutions, x ≡ 8 and 31 (mod 46).

These are also the solutions of the given exponential congruence.
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Subsection 11

Primitive Roots and Dirichlet Characters
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Primitive Roots and Dirichlet Characters (pα)

Primitive roots and indices can be used to construct explicitly all the
Dirichlet characters mod m.

We start with modulus pα, where p is an odd prime and α ≥ 1.

By a previous theorem, we may find g , which is:

A primitive root mod p;
A primitive root mod pβ, for all β ≥ 1.

Suppose (n, p) = 1.

Let
b(n) = indgn (mod pα).

Then b(n) is the unique integer satisfying

n ≡ gb(n) (mod pα), 0 ≤ b(n) < ϕ(pα).
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Primitive Roots and Dirichlet Characters (pα Cont’d)

For h = 0, 1, 2, . . . , ϕ(pα)− 1, define χh by the relations

χh(n) =

{
e2πihb(n)/ϕ(p

α), if p ∤ n
0, if p | n

.

Using the properties of indices, we may verify that:

χh is completely multiplicative;
χh is periodic with period pα.

So χh is a Dirichlet character mod pα.

Moreover, χ0 is the principal character.
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Primitive Roots and Dirichlet Characters (pα Cont’d)

Note that
χh(g) = e2πih/ϕ(p

α).

The characters
χ0, χ1, . . . , χϕ(pα)−1

take distinct values at g .

Therefore,
χ0, χ1, . . . , χϕ(pα)−1

are distinct characters.

But there are ϕ(pα) such functions.

So they represent all the Dirichlet characters mod pα.

The same construction works for the modulus 2α if a = 1 or a = 2,
using g = 3 as the primitive root.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 52 / 71



Primitive Roots Primitive Roots and Dirichlet Characters

Primitive Roots and Dirichlet Characters (Odd)

Suppose, now, that
m = pα1

1 · · · pαr
r ,

where the pi are distinct odd primes.

Let χi be a Dirichlet character mod p.

Then the product
χ = χ1 · · ·χr

is a Dirichlet character mod m.

We have ϕ(m) = ϕ(pα1
1 ) · · ·ϕ(pαr

r ).

So we get ϕ(m) such characters as each χi runs through the ϕ(pαi

i )
characters mod p

αi

i .

In this way, one has an explicit construction of all characters mod m,
for every odd modulus m.
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Primitive Roots and Dirichlet Characters (2α, α ≥ 3)

Theorem

Assume α ≥ 3. Then for every odd integer n, there is a uniquely
determined integer b(n), with 1 ≤ b(n) ≤ ϕ(2α)/2, such that

n ≡ (−1)(n−1)/25b(n) (mod 2α).

Let f = exp2α(5).

We have
5f ≡ 1 (mod 2α).

We will show that f = ϕ(2α)/2.

We have f | ϕ(2α) = 2α−1. So f = 2β , for some β ≤ α− 1.

By a previous theorem, 5ϕ(2
α)/2 ≡ 1 (mod 2α).

Hence, f ≤ ϕ(2α)/2 = 2α−2. Therefore, β ≤ α− 2.

We will show that β = α− 2.
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Primitive Roots and Dirichlet Characters (2α Cont’d)

Claim: β = α− 2.

Raise both sides of 5 = 1 + 22 to the f = 2β power,

5f = (1 + 22)2
β

= 1 + 2β+2 + r2β+3 = 1 + 2β+2(1 + 2r),

where r is an integer.

Hence,
5f − 1 = 2β+2t, with t is odd.

On the other hand, 2α | (5f − 1).

So α ≤ β + 2.

Equivalently, β ≥ α− 2.

Hence, β = α− 2 and f = 2α−2 = ϕ(2α)/2.
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Primitive Roots and Dirichlet Characters (2α Cont’d)

We conclude that the numbers

5, 52, . . . , 5f

are incongruent mod 2α.

Also each is ≡ 1 (mod 4), since 5 ≡ 1 (mod 4).

Similarly, the numbers

−5,−52, . . . ,−5f

are incongruent mod 2α.

Moreover, each is ≡ 3 (mod 4), since −5 ≡ 3 (mod 4).

There are 2f = ϕ(2α) numbers in these lists combined.

Moreover, we cannot have 5a = −5b (mod 2α), because this would
imply 1 ≡ −1 (mod 4).

So the numbers represent ϕ(2α) incongruent odd numbers mod 2α.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 56 / 71



Primitive Roots Primitive Roots and Dirichlet Characters

Characters Modulo 2α, α ≥ 3

Let

f (n) =

{
(−1)(n−1)/2, if n is odd
0, if n is even

Let

g(n) =

{
e2πib(n)/2

α−2
, if n is odd

0, if n is even

where b(n) is the integer given by the preceding theorem.

Then it is easy to verify that each of f and g is a character mod 2α.

So is each product
χa,c(n) = f (n)ag(n)c ,

where a = 1, 2 and c = 1, 2, . . . , ϕ(2α)/2.

Moreover, these ϕ(2α) characters are distinct so they represent all the
characters mod 2α.
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Primitive Roots and Dirichlet Characters

Finally, suppose
m = 2αQ,

where Q is odd.

Form the products
χ = χ1χ2,

where:

χ1 runs through the ϕ(2α) characters mod 2α;
χ2 runs through the ϕ(Q) characters mod Q.

In this way, we obtain all the characters mod m.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 58 / 71



Primitive Roots Real-Valued Dirichlet Characters mod pα

Subsection 12

Real-Valued Dirichlet Characters mod p
α
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Real-Valued Dirichlet Characters mod p
α

Let χ be a real-valued Dirichlet character mod m.

If (n,m) = 1, the number χ(n) is both a root of unity and real.

It follows that χ(n) = ±1.

Theorem

For an odd prime p and α ≥ 1, consider the ϕ(pα) Dirichlet characters χh

mod pα given by

χh(n) =

{
e2πihb(n)/ϕ(p

α), if p ∤ n
0, if p | n

Then χh is real if, and only if, h = 0 or h = ϕ(pα)/2.
Hence, there are exactly two real characters mod pα.
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Real-Valued Dirichlet Characters mod p
α (Cont’d)

In general, we have

eπiz = ±1 if, and only if, z is an integer.

If p ∤ n we have
χh(n) = e2πihb(n)/ϕ(p

α).

So χh(n) = ±1 if, and only if, ϕ(pα) | 2hb(n).

If h = 0 or h = ϕ(pα)/2, this condition is satisfied for all n.
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Real-Valued Dirichlet Characters mod p
α (Cont’d)

Conversely, suppose

ϕ(pα) | 2hb(n), for all n.

Then, when b(n) = 1, we have

ϕ(pα) | 2h or ϕ(pα)/2 | h.

But 0 and ϕ(pα)/2 are the only multiples of ϕ(pα)/2 less than ϕ(pα).

It follows that h = 0 or h = ϕ(pα)/2.

Note:

The character corresponding to h = 0 is the principal character.
When α = 1, the quadratic character χ(n) = (n|p) is the only other
real character mod p.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 62 / 71



Primitive Roots Real-Valued Dirichlet Characters mod pα

Real-Valued Dirichlet Characters mod 2α

For the moduli m = 1, 2 and 4, all the Dirichlet characters are real.

Recall the definitions

f (n) =

{
(−1)(n−1)/2, n odd,
0, n even,

g(n) =

{
e2πib(n)/2

α−2

, n odd,
0, n even.

Theorem

If α ≥ 3, consider the ϕ(2α) Dirichlet characters χa,c mod 2α given by

χa,c(n) = f (n)ag(n)c ,

where a = 1, 2 and c = 1, 2, . . . , ϕ(2α)/2.
Then χa,c is real if and only if, c = ϕ(2α)/2 or c = ϕ(2α)/4.
Hence, there are exactly four real characters mod 2α if α ≥ 3.
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Real-Valued Dirichlet Characters mod 2α (Cont’d)

If α ≥ 3 and n is odd we have

χa,c(n) = f (n)ag(n)c ,

where:

f (n) = ±1;

g(n)c = e2πicb(n)/2
α−2

, with 1 ≤ c ≤ 2α−2.

This is ±1 if, and only if, 2α−2 | 2cb(n) or 2α−3 | cb(n).

But ϕ(2α) = 2α−1. So, if c = ϕ(2α)/2 = 2α−2 or
c = ϕ(2α)/4 = 2α−3, the condition is satisfied.

Conversely, suppose 2α−3 | cb(n), for all n.

Then b(n) = 1 requires 2α−3 | c .

So c = 2α−3 or 2α−2, since 1 ≤ c ≤ 2α−2.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 64 / 71



Primitive Roots Primitive Dirichlet Characters mod pα

Subsection 13

Primitive Dirichlet Characters mod p
α
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Review on Primitive Characters

We proved that every nonprincipal character χ mod p is primitive if p
is prime.

Now we determine all the primitive Dirichlet characters mod pα.

Recall that an induced modulus mod k is a divisor d of k , such that

χ(n) = 1 whenever (n, k) = 1 and n ≡ 1 (mod d).

χ is primitive mod k if, and only if, χ has no induced modulus d < k .

Suppose k = pα and χ is imprimitive mod pα.

Then one of the divisors 1, p, . . . , pα−1 is an induced modulus.

Hence pα−1 is an induced modulus.

Therefore, χ is primitive mod pα if, and only if, pα−1 is not an
induced modulus for χ.
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Primitive Dirichlet Characters mod p
α

Theorem

For an odd prime p and α ≥ 2, consider the ϕ(pα) Dirichlet characters
mod pα,

χh(n) =

{
e2πihb(n)/ϕ(p

α ), if p ∤ n
0, if p | n

.

Then χh is primitive mod pα if, and only if, p ∤ h.

We will show that pα−1 is an induced modulus if, and only if, p | h.

If p ∤ n, we have
χh(n) = e2πihb(n)/ϕ(p

α),

where n ≡ gb(n) (mod pα) and g is a primitive root mod pβ, for all
β ≥ 1. Therefore, gb(n) ≡ n (mod pα−1).
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Primitive Dirichlet Characters mod p
α (Cont’d)

If n ≡ 1 (mod pα−1), then gb(n) ≡ 1 (mod pα−1).

Since g is a primitive root of pα−1, ϕ(pα−1) | b(n).

So, for some integer t,

b(n) = tϕ(pα−1) = tϕ(pα)/p.

Therefore, χh(n) = e2πiht/p .

Suppose p | h. Then χh(n) = 1.
Hence χh is imprimitive mod pα.
Suppose p ∤ h. Take n = 1 + pα−1.
Then n ≡ 1 (mod pα−1) but n 6≡ 1 (mod pα).
So 0 < b(n) < ϕ(pα).
Therefore, p ∤ t, p ∤ ht and χh(n) 6= 1.
This shows that χh is primitive, if p ∤ h.
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Remarks

When m = 1 or 2, there is only one character χ mod m, the principal
character.

If m = 4, there are two characters mod 4:

The principal character;
The primitive character f given by

f (n) =

{
(−1)(n−1)/2, if n is odd,
0, if n is even.
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Primitive Dirichlet Characters mod 2α

Theorem

If a ≥ 3, consider the ϕ(2α) Dirichlet characters χa,c mod 2a given by

χa,c(n) = f (n)ag(n)c .

Then χa,c is primitive mod 2α if, and only if, c is odd.

The proof is similar to that of the preceding theorem.
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Primitive Dirichlet Characters for Composite Modulus

To determine the primitive characters for a composite modulus k we
write

k = pα1
1 · · · pαr

r .

Then every character χ mod k can be factored in the form

χ = χ1 · · ·χr ,

where each χi is a character mod p
αi

i .

Moreover, it turns out that χ is primitive mod k if, and only if, each
χi is primitive mod p

αi

i .

Therefore, we have a complete description of all primitive characters
mod k .
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