Introduction to Analytic Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Primitive Roots

- The Exponent of a Number mod m. Primitive roots
- Primitive Roots and Reduced Residue Systems
- The Nonexistence of Primitive Roots mod 2^{α} for $\alpha \geq 3$
- The Existence of Primitive Roots mod p for Odd Primes p
- Primitive Roots and Quadratic Residues
- The Existence of Primitive Roots mod p^{α}
- The Existence of Primitive Roots mod $2 p^{\alpha}$
- The Nonexistence of Primitive Roots in the Remaining Cases
- The Number of Primitive Roots mod m
- The Index Calculus
- Primitive Roots and Dirichlet Characters
- Real-Valued Dirichlet Characters mod p^{α}
- Primitive Dirichlet Characters mod p^{α}

Subsection 1

The Exponent of a Number mod m. Primitive roots

Introducing Exponents and Primitive Roots

- Let a and m be relatively prime integers, with $m>1$.
- Consider all the positive powers of a :

$$
a, a^{2}, a^{3}, \ldots
$$

- We know, from the Euler-Fermat Theorem, that

$$
a^{\varphi(m)} \equiv 1 \quad(\bmod m)
$$

- However, there may be an earlier power a^{f}, such that

$$
a^{f} \equiv 1 \quad(\bmod m)
$$

Exponents and Primitive Roots

Definition

The smallest positive integer f such that

$$
a^{f} \equiv 1 \quad(\bmod m)
$$

is called the exponent of a modulo m, and is denoted by writing

$$
f=\exp _{m}(a)
$$

If $\exp _{m}(a)=\varphi(m)$, then a is called a primitive root mod m.

- The Euler-Fermat Theorem tells us that

$$
\exp _{m}(a) \leq \varphi(m)
$$

Properties of Exponents

Theorem

Given $m \geq 1,(a, m)=1$, let $f=\exp _{m}(a)$. Then we have:
(a) $a^{k} \equiv a^{h}(\bmod m)$ if, and only if, $k \equiv h(\bmod f)$.
(b) $a^{k} \equiv 1(\bmod m)$ if, and only if, $k \equiv 0(\bmod f)$.

In particular $f \mid \varphi(m)$.
(c) The numbers $1, a, a^{2}, \ldots, a^{f-1}$ are incongruent mod m.

- Parts (b) and (c) follow at once from Part (a).

So we need only prove Part (a).
Assume, first, $a^{k} \equiv a^{h}(\bmod m)$. Then $a^{k-h} \equiv 1(\bmod m)$.
Write $k-h=q f+r$, where $0 \leq r<f$.
Then $1 \equiv a^{q f+r} \equiv a^{r}(\bmod m)$. So $r=0$ and $k \equiv h(\bmod f)$.
Conversely, assume $k \equiv h(\bmod f)$. Then $k-h=q f$.
So $a^{k-h} \equiv 1(\bmod m)$. Hence, $a^{k} \equiv a^{h}(\bmod m)$.

Subsection 2

Primitive Roots and Reduced Residue Systems

Primitive Roots and Reduced Residue Systems

Theorem

Let $(a, m)=1$. Then a is a primitive root $\bmod m$ if and only if the numbers

$$
a, a^{2}, \ldots, a^{\varphi(m)}
$$

form a reduced residue system mod m.

- Suppose a is a primitive root. Then the numbers in the list are incongruent mod m, by Part (c) of the preceding theorem.
But there are $\varphi(m)$ such numbers.
So they form a reduced residue system mod m.
Conversely, suppose the numbers in the list form a reduced residue system. Then $a^{\varphi(m)} \equiv 1(\bmod m)$. But no smaller power is congruent to 1 . So a is a primitive root.

Remark

- We saw that the reduced residue classes mod m form a group.
- Suppose m has a primitive root a.
- Then the theorem shows that this group is the cyclic group generated by the residue class \widehat{a}.

Moduli with Primitive Roots

- Suppose m has a primitive root.
- Then each reduced residue system mod m can be expressed as a geometric progression.
- Unfortunately, not all moduli have primitive roots.
- In the next few sections we will prove that primitive roots exist only for the following moduli:

$$
m=1,2,4, p^{\alpha} \text { and } 2 p^{\alpha}
$$

where p is an odd prime and $\alpha \geq 1$.

- The first three cases are easily settled.
- The case $m=1$ is trivial.
- For $m=2$ the number 1 is a primitive root.
- For $m=4$, we have $\varphi(4)=2$ and $3^{2} \equiv 1(\bmod 4)$. So 3 is a primitive root.

Subsection 3

The Nonexistence of Primitive Roots mod 2^{α} for $\alpha \geq 3$

Nonexistence of Primitive Roots mod $2^{\alpha}, \alpha \geq 3$

Theorem

Let x be an odd integer. If $\alpha \geq 3$, we have

$$
x^{\varphi\left(2^{\alpha}\right) / 2} \equiv 1 \quad\left(\bmod 2^{\alpha}\right)
$$

So there are no primitive roots $\bmod 2^{\alpha}$.

- If $\alpha=3$, the claimed congruence is

$$
x^{2} \equiv 1 \quad(\bmod 8), \quad \text { for } x \text { odd }
$$

This is verified by testing $x=1,3,5,7$.
Alternatively, we note that

$$
(2 k+1)^{2}=4 k^{2}+4 k+1=4 k(k+1)+1
$$

Then observe that $k(k+1)$ is even.

Nonexistence of Primitive Roots mod $2^{\alpha}, \alpha \geq 3$ (Cont'd)

- Now we prove the theorem by induction on α.

We assume the conclusion holds for α.
We prove that it also holds for $\alpha+1$.
The induction hypothesis is that

$$
x^{\varphi\left(2^{\alpha}\right) / 2}=1+2^{\alpha} t
$$

where t is an integer.
Squaring both sides and taking into account $2 \alpha>\alpha+1$,

$$
x^{\varphi\left(2^{\alpha}\right)}=1+2^{\alpha+1} t+2^{2 \alpha} t^{2} \equiv 1 \quad\left(\bmod 2^{\alpha+1}\right)
$$

Note that

$$
\varphi\left(2^{\alpha}\right)=2^{\alpha-1}=\varphi\left(2^{\alpha+1}\right) / 2
$$

So the proof is complete.

Subsection 4

The Existence of Primitive Roots mod p for Odd Primes p

Exponents of Powers

Lemma

Given $(a, m)=1$, let $f=\exp _{m}(a)$. Then

$$
\exp _{m}\left(a^{k}\right)=\frac{\exp _{m}(a)}{(k, f)}
$$

In particular, $\exp _{m}\left(a^{k}\right)=\exp _{m}(a)$ if, and only if, $(k, f)=1$.

- $\exp _{m}\left(a^{k}\right)$ is the smallest $x>0$, such that $a^{x k} \equiv 1(\bmod m)$. This is also the smallest $x>0$ such that $k x \equiv 0(\bmod f)$. The latter is equivalent to $x \equiv 0\left(\bmod \frac{f}{d}\right)$, where $d=(k, f)$.
The smallest positive solution of this congruence is $\frac{f}{d}$.
So $\exp _{m}\left(a^{k}\right)=\frac{f}{d}$.

Primitive Roots Modulo a Prime

Theorem

Let p be an odd prime. Let d be any positive divisor of $p-1$. Then in every reduced residue system mod p there are exactly $\varphi(d)$ numbers a, such that

$$
\exp _{p}(a)=d
$$

In particular, when $d=\varphi(p)=p-1$, there are exactly $\varphi(p-1)$ primitive roots $\bmod p$.

- The numbers $1,2, \ldots, p-1$ are distributed into disjoint sets $A(d)$, each set corresponding to a divisor d of $p-1$, where

$$
A(d)=\left\{x: 1 \leq x \leq p-1 \text { and } \exp _{p}(x)=d\right\}
$$

Let $f(d)$ be the number of elements in $A(d)$.
Then $f(d) \geq 0$, for each d.
Our goal is to prove that $f(d)=\varphi(d)$.

Primitive Roots Modulo a Prime (Cont'd)

- Note that:
- The sets $A(d)$ are disjoint;
- Each $x=1,2, \ldots, p-1$ falls into some $A(d)$.

So $\sum_{d \mid p-1} f(d)=p-1$.
But we also have $\sum_{d \mid p-1} \varphi(d)=p-1$.
So

$$
\sum_{d \mid p-1}\{\varphi(d)-f(d)\}=0
$$

To show that each term is zero, it suffices to show $f(d) \leq \varphi(d)$.
We do this by showing that either $f(d)=0$ or $f(d)=\varphi(d)$.
Equivalently, we show $f(d) \neq 0$ implies $f(d)=\varphi(d)$.

Primitive Roots Modulo a Prime (Cont'd)

- Suppose that $f(d) \neq 0$. Then $A(d)$ is nonempty.

So $a \in A(d)$, for some a. Therefore, $\exp _{p}(a)=d$.
Hence $a^{d} \equiv 1(\bmod p)$.
But every power of a satisfies the same congruence.
So the d numbers a, a^{2}, \ldots, a^{d} are solutions of the congruence

$$
x^{d}-1 \equiv 0 \quad(\bmod p)
$$

These solutions are incongruent $\bmod p$ since $d=\exp _{p}(a)$. But the congruence has at most d solutions, since p is prime. So the d powers must be all its solutions. Hence, each number in $A(d)$ must be of the form a^{k}, for some $k=1,2, \ldots, d$.
By a previous lemma, $\exp _{p}\left(a^{k}\right)=d$ if, and only if, $(k, d)=1$. In other words, among the d powers there are $\varphi(d)$ which have exponent d modulo p. So $f(d)=\varphi(d)$ if $f(d) \neq 0$.

Subsection 5

Primitive Roots and Quadratic Residues

Primitive Roots and Quadratic Residues

Theorem

Let g be a primitive root $\bmod p$, where p is an odd prime. Then the even powers

$$
g^{2}, g^{4}, \ldots, g^{p-1}
$$

are the quadratic residues $\bmod p$, and the odd powers

$$
g, g^{3}, \ldots, g^{p-2}
$$

are the quadratic nonresidues $\bmod p$.

- Suppose n is even, say $n=2 m$. Then $g^{n}=\left(g^{m}\right)^{2}$.

So $g^{n} \equiv\left(g^{m}\right)^{2}(\bmod p)$. Hence $g^{n} R p$. But there are $\frac{p-1}{2}$ distinct even powers g^{2}, \ldots, g^{p-1} modulo p and the same number of quadratic residues $\bmod p$.
Therefore, the even powers are the quadratic residues and the odd powers are the nonresidues.

Subsection 6

The Existence of Primitive Roots $\bmod p^{\alpha}$

Primitive Roots mod p^{α}

- We turn to the case $m=p^{\alpha}$, where p is an odd prime and $\alpha \geq 2$.
- In seeking primitive roots mod p^{α} it is natural to consider as candidates the primitive roots $\bmod p$.
- Let g be a primitive root $\bmod p$.
- We ask whether g might also be a primitive root $\bmod p^{2}$.
- Now $g^{p-1}(\bmod p)$.
- Moreover, $\varphi\left(p^{2}\right)=p(p-1)>p-1$.
- So g will not be a primitive root $\bmod p^{2}$ if $g^{p-1} \equiv 1\left(\bmod p^{2}\right)$.
- Therefore, the relation $g^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$ is a necessary condition for a primitive root $g \bmod p$ to also be a primitive root $\bmod p^{2}$.
- Remarkably, this condition is also sufficient for g to be a primitive root $\bmod p^{2}$ and, more generally, $\bmod p^{\alpha}$, for all powers $a \geq 2$.

Existence of Primitive Roots $\bmod p^{\alpha}$

Theorem

Let p be an odd prime. Then we have:
(a) If g is a primitive root $\bmod p$, then g is also a primitive root $\bmod p^{\alpha}$, for all $\alpha \geq 1$ if, and only if,

$$
g^{p-1} \not \equiv 1 \quad\left(\bmod p^{2}\right)
$$

(b) There is at least one primitive root $g \bmod p$ which satisfies

$$
g^{p-1} \not \equiv 1 \quad\left(\bmod p^{2}\right)
$$

Hence, there exists at least one primitive root $\bmod p^{\alpha}$, if $\alpha \geq 2$.

Existence of Primitive Roots mod p^{α} (Part (b))

(b) Let g be a primitive root $\bmod p$.

If $g^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$, there is nothing to prove.
If $g^{p-1} \equiv 1\left(\bmod p^{2}\right)$, we can show that $g_{1}=g+p$, which is another primitive root modulo p, satisfies the condition $g_{1}^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$. In fact, we have

$$
\begin{aligned}
g_{1}^{p-1} & =(g+p)^{p-1} \\
& =g^{p-1}+(p-1) g^{p-2} p+t p^{2} \\
& \equiv g^{p-1}+\left(p^{2}-p\right) g^{p-2} \quad\left(\bmod p^{2}\right) \\
& \equiv 1-p g^{p-2} \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

But we cannot have $p g^{p-2} \equiv 0\left(\bmod p^{2}\right)$ for this would imply $g^{p-2} \equiv 0(\bmod p)$, contradicting the primitivity of $g \bmod p$. Hence, $g_{1}^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$.

Existence of Primitive Roots mod p^{α} (Part (a))

(a) Let g be a primitive root modulo p.

If g is a primitive root $\bmod p^{\alpha}$, for all $\alpha \geq 1$, then, in particular, it is a primitive root $\bmod p^{2}$.
As we have already shown, this implies the condition.
Conversely, let g is a primitive root $\bmod p$, such that

$$
g^{p-1} \not \equiv 1 \quad\left(\bmod p^{2}\right) .
$$

We must show that g is also a primitive root $\bmod p^{\alpha}$, for all $\alpha \geq 2$.
Let t be the exponent of g modulo p^{α}.
We wish to show that $t=\varphi\left(p^{\alpha}\right)$.
Now $g^{t} \equiv 1\left(\bmod p^{\alpha}\right)$. Hence, $g^{t} \equiv 1(\bmod p)$.
So $\varphi(p) \mid t$. We can write $t=q \varphi(p)$.

Existence of Primitive Roots mod p^{α} (Part (a) Cont'd)

- Now $t \mid \varphi\left(p^{\alpha}\right)$. So $q \varphi(p) \mid \varphi\left(p^{\alpha}\right)$.

But $\varphi\left(p^{\alpha}\right)=p^{\alpha-1}(p-1)$. Hence, $q(p-1) \mid p^{\alpha-1}(p-1)$.
This means $q \mid p^{\alpha-1}$. Therefore, $q=p^{\beta}$, where $\beta \leq \alpha-1$.
We conclude $t=p^{\beta}(p-1)$.
Claim: $\beta=\alpha-1$, whence $t=\varphi\left(p^{\alpha}\right)$.
Suppose, on the contrary, that $\beta<\alpha-1$. Then $\beta \leq \alpha-2$.
We have

$$
t=p^{\beta}(p-1) \mid p^{\alpha-2}(p-1)=\varphi\left(p^{\alpha-1}\right)
$$

Thus, $\varphi\left(p^{\alpha-1}\right)$ is a multiple of t.
This implies $g^{\varphi\left(p^{\alpha-1}\right)} \equiv 1\left(\bmod p^{\alpha}\right)$.
Now we make use of the following Lemma which shows that this congruence is a contradiction.

Existence of Primitive Roots mod p^{α} (Lemma)

Lemma

Let g be a primitive root modulo p such that

$$
g^{p-1} \not \equiv 1 \quad\left(\bmod p^{2}\right)
$$

Then for every $\alpha \geq 2$, we have

$$
g^{\varphi\left(p^{\alpha-1}\right)} \not \equiv 1 \quad\left(\bmod p^{\alpha}\right)
$$

- We use induction on α.

For $\alpha=2$, the conclusion is immediate.
Suppose that the conclusion holds for α.
By the Euler-Fermat Theorem, $g^{\varphi\left(p^{\alpha-1}\right)} \equiv 1\left(\bmod p^{\alpha-1}\right)$.
So $g^{\varphi\left(p^{\alpha-1}\right)}=1+k p^{\alpha-1}$, where $p \nmid k$ because of the hypothesis.

Existence of Primitive Roots mod p^{α} (Lemma Cont'd)

- We obtained $g^{\varphi\left(p^{\alpha-1}\right)}=1+k p^{\alpha-1}$, where $p \nmid k$.

Raise both sides to the p-th power,

$$
g^{\varphi\left(p^{\alpha}\right)}=\left(1+k p^{\alpha-1}\right)^{p}=1+k p^{\alpha}+k^{2} \frac{p(p-1)}{2} p^{2(\alpha-1)}+r p^{3(\alpha-1)} .
$$

We have, since $\alpha \geq 2$:

- $2 \alpha-1 \geq \alpha+1$;
- $3 \alpha-3 \geq \alpha+1$.

Hence, the last equation gives us the congruence

$$
g^{\varphi\left(p^{\alpha}\right)} \equiv 1+k p^{\alpha} \quad\left(\bmod p^{\alpha+1}\right)
$$

Since $p \nmid k$,

$$
g^{\varphi\left(p^{\alpha}\right)} \not \equiv 1 \quad\left(\bmod p^{\alpha+1}\right)
$$

So the conclusion holds for $\alpha+1$.

Subsection 7

The Existence of Primitive Roots mod $2 p^{\alpha}$

The Existence of Primitive Roots mod $2 p^{\alpha}$

Theorem

If p is an odd prime and $\alpha \geq 1$, there exist odd primitive roots g modulo p^{α}. Each such g is also a primitive root modulo $2 p^{\alpha}$.

- If g is a primitive root modulo p^{α}, so is $g+p^{\alpha}$. But one of g or $g+p^{\alpha}$ is odd. So odd primitive roots $\bmod p^{\alpha}$ always exist.
Let g be an odd primitive root $\bmod p^{\alpha}$.
Let f be the exponent of $g \bmod 2 p^{\alpha}$.
We wish to show that $f=\varphi\left(2 p^{\alpha}\right)$.
- We have $f \mid \varphi\left(2 p^{\alpha}\right)$, and $\varphi\left(2 p^{\alpha}\right)=\varphi(2) \varphi\left(p^{\alpha}\right)=\varphi\left(p^{\alpha}\right)$. So $f \mid \varphi\left(p^{\alpha}\right)$.
- We also have $g^{f} \equiv 1\left(\bmod 2 p^{\alpha}\right)$. So $g^{f} \equiv 1\left(\bmod p^{\alpha}\right)$. Hence, $\varphi\left(p^{\alpha}\right) \mid f$, since g is a primitive root mod p^{α}.
Therefore, $f=\varphi\left(p^{\alpha}\right)=\varphi\left(2 p^{\alpha}\right)$. So g is primitive $\bmod 2 p^{\alpha}$.

Subsection 8

The Nonexistence of Primitive Roots in the Remaining Cases

Nonexistence of Primitive Roots

Theorem

Let $m \geq 1$ be not of the form $m=1,2,4, p^{\alpha}$ or $2 p^{\alpha}$, where p is an odd prime. Then for any a, with $(a, m)=1$, we have

$$
a^{\varphi(m) / 2} \equiv 1 \quad(\bmod m)
$$

So there are no primitive roots mod m.

- We have seen that there are no primitive roots $\bmod 2^{\alpha}$ if $\alpha \geq 3$.

Therefore, we can assume

$$
m=2^{\alpha} p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}
$$

where the p_{i} are odd primes, $s \geq 1$, and $\alpha \geq 0$.
By hypothesis, m is not of the form $1,2,4, p^{\alpha}$ or $2 p^{\alpha}$.
So $\alpha \geq 2$, if $s=1$, and $s \geq 2$, if $\alpha=0$ or 1 .
Note that $\varphi(m)=\varphi\left(2^{\alpha}\right) \varphi\left(p_{1}^{\alpha_{1}}\right) \cdots \varphi\left(p_{s}^{\alpha_{s}}\right)$.

Nonexistence of Primitive Roots (Cont'd)

- Now let a be any integer relatively prime to m.

We wish to prove that $a^{\varphi(m) / 2} \equiv 1(\bmod m)$.
Let g be a primitive root $\bmod p_{1}^{\alpha_{1}}$.
Choose k so that

$$
a \equiv g^{k} \quad\left(\bmod p_{1}^{\alpha_{1}}\right)
$$

Then we have

$$
\begin{aligned}
a^{\varphi(m) / 2} & \equiv g^{k \varphi(m) / 2} \quad\left(\bmod p_{1}^{\alpha_{1}}\right) \\
& \equiv g^{k \varphi\left(2^{\alpha}\right) \varphi\left(p_{1}^{\alpha_{1}}\right) \cdots \varphi\left(p_{s}^{\alpha_{s}}\right) / 2} \quad\left(\bmod p_{1}^{\alpha_{1}}\right) \\
& \equiv g^{t \varphi\left(p_{1}^{\alpha_{1}}\right)}\left(\bmod p_{1}^{\alpha_{1}}\right)
\end{aligned}
$$

where

$$
t=k \varphi\left(2^{\alpha}\right) \varphi\left(p_{2}^{\alpha_{2}}\right) \cdots \varphi\left(p_{s}^{\alpha_{s}}\right) / 2
$$

Nonexistence of Primitive Roots (Cont'd)

Claim: $t=k \varphi\left(2^{\alpha}\right) \varphi\left(p_{2}^{\alpha_{2}}\right) \cdots \varphi\left(p_{s}^{\alpha_{s}}\right) / 2$ is an integer.
If $\alpha \geq 2$, the factor $\varphi\left(2^{\alpha}\right)$ is even. Hence t is an integer.
If $\alpha=0$ or 1 , then $s \geq 2$ and the factor $\varphi\left(p_{2}^{\alpha_{2}}\right)$ is even.
So t is an integer in this case as well.
Hence we get

$$
a^{\varphi(m) / 2} \equiv 1 \quad\left(\bmod p_{1}^{\alpha_{1}}\right)
$$

In the same way we find, for all $i=1,2, \ldots, s$,

$$
a^{\varphi(m) / 2} \equiv 1 \quad\left(\bmod p_{i}^{\alpha_{i}}\right)
$$

Nonexistence of Primitive Roots (Conclusion)

Claim: We also have $a^{\varphi(m) / 2} \equiv 1(\bmod 2)$
Suppose $\alpha \geq 3$. The condition $(a, m)=1$ requires a to be odd.
By a previous theorem, $a^{\varphi\left(2^{\alpha}\right) / 2} \equiv\left(\bmod 2^{\alpha}\right)$.
But $\varphi\left(2^{\alpha}\right) \mid \varphi(m)$. Hence, $a^{\varphi(m) / 2} \equiv 1\left(\bmod 2^{\alpha}\right)$, for $\alpha \geq 3$.
Suppose $\alpha \leq 2$. Then $a^{\varphi\left(2^{\alpha}\right)} \equiv 1\left(\bmod 2^{\alpha}\right)$.
But $s \geq 1$. Hence,

$$
\varphi(m)=\varphi\left(2^{\alpha}\right) \varphi\left(p_{1}^{\alpha_{1}}\right) \cdots \varphi\left(p_{s}^{\alpha_{s}}\right)=2 r \varphi\left(2^{\alpha}\right), \quad r \text { an integer } .
$$

It follows that $\varphi\left(2^{\alpha}\right) \mid \varphi(m) / 2$.
We conclude that $a^{\varphi(m) / 2} \equiv 1\left(\bmod 2^{\alpha}\right)$, for all α.
Multiplying all these congruences, we get $a^{\varphi(m) / 2} \equiv 1(\bmod m)$.
So a cannot be a primitive root mod m.

Subsection 9

The Number of Primitive Roots mod m

Number of Primitive Roots

Theorem

If m has a primitive root g, then m has exactly $\varphi(\varphi(m))$ incongruent primitive roots and they are given by the numbers in the set

$$
S=\left\{g^{n}: 1 \leq n \leq \varphi(m) \text { and }(n, \varphi(m))=1\right\}
$$

- Since g is a primitive root of m,

$$
\exp _{m}(g)=\varphi(m)
$$

By a previous lemma,

$$
\exp _{m}\left(g^{n}\right)=\exp _{m}(g) \quad \text { if and only if } \quad(n, \varphi(m))=1
$$

Therefore, each element of S is a primitive root mod m.

Number of Primitive Roots (Cont'd)

- Conversely, suppose a is a primitive root mod m.

Then

$$
a \equiv g^{k} \quad(\bmod m), \quad \text { for some } k=1,2, \ldots, \varphi(m)
$$

Hence,

$$
\exp _{m}\left(g^{k}\right)=\exp _{m}(a)=\varphi(m)
$$

The lemma used above implies $(k, \varphi(m))=1$.
Therefore every primitive root is a member of S.
But S contains $\varphi(\varphi(m))$ incongruent members mod m.
This completes the proof.

Subsection 10

The Index Calculus

The Index

- Suppose m has a primitive root g.
- The numbers

$$
1, g, g^{2}, \ldots, g^{\varphi(m)-1}
$$

form a reduced residue system mod m.

- If $(a, m)=1$, there is a unique integer $k, 0 \leq k \leq \varphi(m)-1$, such that

$$
a \equiv g^{k} \quad(\bmod m)
$$

- This integer is called the index of a to the base $g(\bmod m)$.
- We write

$$
k=\operatorname{ind}_{g} a
$$

or simply $k=$ inda if the base g is understood.

Properties of Indices

- Indices have properties analogous to those of logarithms.

Theorem

Let g be a primitive root $\bmod m$. If $(a, m)=(b, m)=1$, we have:
(a) $\operatorname{ind}(a b) \equiv \operatorname{ind} a+\operatorname{ind} b(\bmod \varphi(m))$.
(b) inda $^{n} \equiv \operatorname{ninda}(\bmod \varphi(m))$ if $n \geq 1$.
(c) ind1 $=0$ and ind $g=1$.
(d) $\operatorname{ind}(-1)=\varphi(m) / 2$ if $m>2$.
(e) Suppose g^{\prime} is also a primitive root $\bmod m$.

Then ind ${ }_{g} a \equiv \operatorname{ind}_{g^{\prime}} a \cdot \operatorname{ind}_{g} g^{\prime}(\bmod \varphi(m))$.

- The proof is relatively easy.

Linear Congruences and Indices

- Suppose m has a primitive root.
- Let $(a, m)=(b, m)=1$.
- The linear congruence $a x \equiv b(\bmod m)$ is equivalent to

$$
\text { ind } a+\operatorname{ind} x \equiv \operatorname{ind} b \quad(\bmod \varphi(m))
$$

- So the unique solution of the former satisfies the congruence

$$
\operatorname{ind} x \equiv \operatorname{ind} b-\operatorname{ind} a \quad(\bmod \varphi(m)) .
$$

Example

- Consider the linear congruence

$$
9 x \equiv 13 \quad(\bmod 47)
$$

The corresponding index relation is

$$
\text { ind } x \equiv \operatorname{ind} 13-\text { ind } 9 \quad(\bmod 46)
$$

Using index tables, we find, for $p=47$,

$$
\begin{aligned}
\text { ind13 } & =11 \\
\text { ind } 9 & =40
\end{aligned}
$$

So

$$
\operatorname{ind} x \equiv 11-40 \equiv-29 \equiv 17 \quad(\bmod 46)
$$

Again from a table we find $x \equiv 38(\bmod 47)$.

Example: Binomial Congruences and Index Tables

- A congruence of the form

$$
x^{n} \equiv a \quad(\bmod m)
$$

is called a binomial congruence.

- If m has a primitive root and if $(a, m)=1$ it is equivalent to the congruence

$$
n \operatorname{ind} x \equiv \operatorname{ind} a \quad(\bmod \varphi(m))
$$

- The latter is linear in the unknown indx.
- The linear congruence has a solution if, and only if, inda is divisible by $d=(n, \varphi(m))$.
- Moreover, if this holds, it has exactly d solutions.

Example

- Consider the binomial congruence

$$
x^{8} \equiv a \quad(\bmod 17)
$$

The corresponding index relation is

$$
8 \mathrm{ind} x \equiv \operatorname{ind} a \quad(\bmod 16)
$$

In this example $d=(8,16)=8$.
An index table shows that 1 and 16 are the only numbers mod 17 whose index is divisible by 8 .

- ind1 $=0$;
- ind16 $=8$.

Hence there are no solutions if $a \not \equiv 1$ or $a \not \equiv 16(\bmod 17)$.

Example (Cont'd)

- We look at the two cases, where a solution exists.
- Suppose $a=1$.

We get

$$
8 \text { ind } x \equiv 0 \quad(\bmod 16)
$$

This has exactly eight solutions mod 16 .
They are those x whose index is even,

$$
x \equiv 1,2,4,8,9,13,15,16 \quad(\bmod 17)
$$

These, of course, are the quadratic residues of 17 .

- Suppose $a=16$.

We get

$$
8 \text { ind } x \equiv 8 \quad(\bmod 16)
$$

This has also exactly eight solutions mod 16.
They are those x whose index is odd.
That is, they are the quadratic nonresidues of 17 ,

$$
x \equiv 3,5,6,7,10,11,12,14 \quad(\bmod 17)
$$

Exponential Congruences and Index Tables

- An exponential congruence is one of the form

$$
a^{x} \equiv b \quad(\bmod m)
$$

- Suppose m has a primitive root.
- If $(a, m)=(b, m)=1$, this is equivalent to the linear congruence

$$
x \operatorname{ind} a \equiv \operatorname{ind} b \quad(\bmod \varphi(m))
$$

- Let $d=($ inda, $\varphi(m)$).
- Then the linear congruence has a solution if, and only if,

$$
d \mid \text { ind } b .
$$

- In that case, there are exactly d solutions.

Example

- Consider the exponential congruence

$$
25^{x} \equiv 17 \quad(\bmod 47)
$$

We have:

- ind $25=2$;
- ind17 = 16;
- $d=(2,46)=2$.

Therefore, the linear congruence is

$$
2 x \equiv 16 \quad(\bmod 46)
$$

It has two solutions, $x \equiv 8$ and $31(\bmod 46)$.
These are also the solutions of the given exponential congruence.

Subsection 11

Primitive Roots and Dirichlet Characters

Primitive Roots and Dirichlet Characters (p^{α})

- Primitive roots and indices can be used to construct explicitly all the Dirichlet characters mod m.
- We start with modulus p^{α}, where p is an odd prime and $\alpha \geq 1$.
- By a previous theorem, we may find g, which is:
- A primitive root $\bmod p$;
- A primitive root $\bmod p^{\beta}$, for all $\beta \geq 1$.
- Suppose $(n, p)=1$.
- Let

$$
b(n)=\operatorname{ind}_{g} n \quad\left(\bmod p^{\alpha}\right) .
$$

- Then $b(n)$ is the unique integer satisfying

$$
n \equiv g^{b(n)} \quad\left(\bmod p^{\alpha}\right), \quad 0 \leq b(n)<\varphi\left(p^{\alpha}\right)
$$

Primitive Roots and Dirichlet Characters (p^{α} Cont'd)

- For $h=0,1,2, \ldots, \varphi\left(p^{\alpha}\right)-1$, define χ_{h} by the relations

$$
\chi_{h}(n)=\left\{\begin{array}{ll}
e^{2 \pi i h b(n) / \varphi\left(p^{\alpha}\right)}, & \text { if } p \nmid n \\
0, & \text { if } p \mid n
\end{array} .\right.
$$

- Using the properties of indices, we may verify that:
- χ_{h} is completely multiplicative;
- χ_{h} is periodic with period p^{α}.
- So χ_{h} is a Dirichlet character $\bmod p^{\alpha}$.
- Moreover, χ_{0} is the principal character.

Primitive Roots and Dirichlet Characters (p^{α} Cont'd)

- Note that

$$
\chi_{h}(g)=e^{2 \pi i h / \varphi\left(p^{\alpha}\right)}
$$

- The characters

$$
\chi_{0}, \chi_{1}, \ldots, \chi_{\varphi\left(p^{\alpha}\right)-1}
$$

take distinct values at g.

- Therefore,

$$
\chi_{0}, \chi_{1}, \ldots, \chi_{\varphi\left(p^{\alpha}\right)-1}
$$

are distinct characters.

- But there are $\varphi\left(p^{\alpha}\right)$ such functions.
- So they represent all the Dirichlet characters mod p^{α}.
- The same construction works for the modulus 2^{α} if $a=1$ or $a=2$, using $g=3$ as the primitive root.

Primitive Roots and Dirichlet Characters (Odd)

- Suppose, now, that

$$
m=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}
$$

where the p_{i} are distinct odd primes.

- Let χ_{i} be a Dirichlet character mod p.
- Then the product

$$
\chi=\chi_{1} \cdots \chi_{r}
$$

is a Dirichlet character mod m.

- We have $\varphi(m)=\varphi\left(p_{1}^{\alpha_{1}}\right) \cdots \varphi\left(p_{r}^{\alpha_{r}}\right)$.
- So we get $\varphi(m)$ such characters as each χ_{i} runs through the $\varphi\left(p_{i}^{\alpha_{i}}\right)$ characters $\bmod p_{i}^{\alpha_{i}}$.
- In this way, one has an explicit construction of all characters mod m, for every odd modulus m.

Primitive Roots and Dirichlet Characters $\left(2^{\alpha}, \alpha \geq 3\right)$

Theorem

Assume $\alpha \geq 3$. Then for every odd integer n, there is a uniquely determined integer $b(n)$, with $1 \leq b(n) \leq \varphi\left(2^{\alpha}\right) / 2$, such that

$$
n \equiv(-1)^{(n-1) / 2} 5^{b(n)} \quad\left(\bmod 2^{\alpha}\right)
$$

- Let $f=\exp _{2^{\alpha}}(5)$.

We have

$$
5^{f} \equiv 1 \quad\left(\bmod 2^{\alpha}\right)
$$

We will show that $f=\varphi\left(2^{\alpha}\right) / 2$.
We have $f \mid \varphi\left(2^{\alpha}\right)=2^{\alpha-1}$. So $f=2^{\beta}$, for some $\beta \leq \alpha-1$.
By a previous theorem, $5^{\varphi\left(2^{\alpha}\right) / 2} \equiv 1\left(\bmod 2^{\alpha}\right)$. Hence, $f \leq \varphi\left(2^{\alpha}\right) / 2=2^{\alpha-2}$. Therefore, $\beta \leq \alpha-2$.
We will show that $\beta=\alpha-2$.

Primitive Roots and Dirichlet Characters (2^{α} Cont'd)

Claim: $\beta=\alpha-2$.
Raise both sides of $5=1+2^{2}$ to the $f=2^{\beta}$ power,

$$
5^{f}=\left(1+2^{2}\right)^{2^{\beta}}=1+2^{\beta+2}+r 2^{\beta+3}=1+2^{\beta+2}(1+2 r)
$$

where r is an integer.
Hence,

$$
5^{f}-1=2^{\beta+2} t, \quad \text { with } t \text { is odd. }
$$

On the other hand, $2^{\alpha} \mid\left(5^{f}-1\right)$.
So $\alpha \leq \beta+2$.
Equivalently, $\beta \geq \alpha-2$.
Hence, $\beta=\alpha-2$ and $f=2^{\alpha-2}=\varphi\left(2^{\alpha}\right) / 2$.

Primitive Roots and Dirichlet Characters (2^{α} Cont'd)

- We conclude that the numbers

$$
5,5^{2}, \ldots, 5^{f}
$$

are incongruent mod 2^{α}.
Also each is $\equiv 1(\bmod 4)$, since $5 \equiv 1(\bmod 4)$.
Similarly, the numbers

$$
-5,-5^{2}, \ldots,-5^{f}
$$

are incongruent mod 2^{α}.
Moreover, each is $\equiv 3(\bmod 4)$, since $-5 \equiv 3(\bmod 4)$.
There are $2 f=\varphi\left(2^{\alpha}\right)$ numbers in these lists combined.
Moreover, we cannot have $5^{a}=-5^{b}\left(\bmod 2^{\alpha}\right)$, because this would imply $1 \equiv-1(\bmod 4)$.
So the numbers represent $\varphi\left(2^{\alpha}\right)$ incongruent odd numbers mod 2^{α}.

Characters Modulo $2^{\alpha}, \alpha \geq 3$

- Let

$$
f(n)= \begin{cases}(-1)^{(n-1) / 2}, & \text { if } n \text { is odd } \\ 0, & \text { if } n \text { is even }\end{cases}
$$

Let

$$
g(n)= \begin{cases}e^{2 \pi i b(n) / 2^{\alpha-2}}, & \text { if } n \text { is odd } \\ 0, & \text { if } n \text { is even }\end{cases}
$$

where $b(n)$ is the integer given by the preceding theorem.
Then it is easy to verify that each of f and g is a character $\bmod 2^{\alpha}$.
So is each product

$$
\chi_{a, c}(n)=f(n)^{a} g(n)^{c},
$$

where $a=1,2$ and $c=1,2, \ldots, \varphi\left(2^{\alpha}\right) / 2$.
Moreover, these $\varphi\left(2^{\alpha}\right)$ characters are distinct so they represent all the characters mod 2^{α}.

Primitive Roots and Dirichlet Characters

- Finally, suppose

$$
m=2^{\alpha} Q
$$

where Q is odd.

- Form the products

$$
\chi=\chi_{1} \chi_{2},
$$

where:

- χ_{1} runs through the $\varphi\left(2^{\alpha}\right)$ characters $\bmod 2^{\alpha}$;
- χ_{2} runs through the $\varphi(Q)$ characters $\bmod Q$.
- In this way, we obtain all the characters mod m.

Subsection 12

Real-Valued Dirichlet Characters mod p^{α}

Real-Valued Dirichlet Characters mod p^{α}

- Let χ be a real-valued Dirichlet character mod m.
- If $(n, m)=1$, the number $\chi(n)$ is both a root of unity and real.
- It follows that $\chi(n)= \pm 1$.

Theorem

For an odd prime p and $\alpha \geq 1$, consider the $\varphi\left(p^{\alpha}\right)$ Dirichlet characters χ_{h} $\bmod p^{\alpha}$ given by

$$
\chi_{h}(n)= \begin{cases}e^{2 \pi i h b(n) / \varphi\left(p^{\alpha}\right)}, & \text { if } p \nmid n \\ 0, & \text { if } p \mid n\end{cases}
$$

Then χ_{h} is real if, and only if, $h=0$ or $h=\varphi\left(p^{\alpha}\right) / 2$. Hence, there are exactly two real characters mod p^{α}.

Real-Valued Dirichlet Characters mod p^{α} (Cont'd)

- In general, we have

$$
e^{\pi i z}= \pm 1 \quad \text { if, and only if, } \quad z \text { is an integer. }
$$

If $p \nmid n$ we have

$$
\chi_{h}(n)=e^{2 \pi i h b(n) / \varphi\left(p^{\alpha}\right)} .
$$

So $\chi_{h}(n)= \pm 1$ if, and only if, $\varphi\left(p^{\alpha}\right) \mid 2 h b(n)$.
If $h=0$ or $h=\varphi\left(p^{\alpha}\right) / 2$, this condition is satisfied for all n.

Real-Valued Dirichlet Characters mod p^{α} (Cont'd)

- Conversely, suppose

$$
\varphi\left(p^{\alpha}\right) \mid 2 h b(n), \quad \text { for all } n .
$$

Then, when $b(n)=1$, we have

$$
\varphi\left(p^{\alpha}\right) \mid 2 h \text { or } \varphi\left(p^{\alpha}\right) / 2 \mid h .
$$

But 0 and $\varphi\left(p^{\alpha}\right) / 2$ are the only multiples of $\varphi\left(p^{\alpha}\right) / 2$ less than $\varphi\left(p^{\alpha}\right)$. It follows that $h=0$ or $h=\varphi\left(p^{\alpha}\right) / 2$.
Note:

- The character corresponding to $h=0$ is the principal character.
- When $\alpha=1$, the quadratic character $\chi(n)=(n \mid p)$ is the only other real character $\bmod p$.

Real-Valued Dirichlet Characters mod 2^{α}

- For the moduli $m=1,2$ and 4 , all the Dirichlet characters are real.
- Recall the definitions

$$
f(n)=\left\{\begin{array}{ll}
(-1)^{(n-1) / 2}, & n \text { odd }, \\
0, & n \text { even },
\end{array} \quad g(n)= \begin{cases}e^{2 \pi i b(n) / 2^{\alpha-2}}, & n \text { odd } \\
0, & n \text { even }\end{cases}\right.
$$

Theorem

If $\alpha \geq 3$, consider the $\varphi\left(2^{\alpha}\right)$ Dirichlet characters $\chi_{a, c} \bmod 2^{\alpha}$ given by

$$
\chi_{a, c}(n)=f(n)^{a} g(n)^{c},
$$

where $a=1,2$ and $c=1,2, \ldots, \varphi\left(2^{\alpha}\right) / 2$.
Then $\chi_{a, c}$ is real if and only if, $c=\varphi\left(2^{\alpha}\right) / 2$ or $c=\varphi\left(2^{\alpha}\right) / 4$.
Hence, there are exactly four real characters $\bmod 2^{\alpha}$ if $\alpha \geq 3$.

Real-Valued Dirichlet Characters mod 2^{α} (Cont'd)

- If $\alpha \geq 3$ and n is odd we have

$$
\chi_{a, c}(n)=f(n)^{a} g(n)^{c},
$$

where:

- $f(n)= \pm 1$;
- $g(n)^{c}=e^{2 \pi i c b(n) / 2^{\alpha-2}}$, with $1 \leq c \leq 2^{\alpha-2}$.

This is ± 1 if, and only if, $2^{\alpha-2} \mid 2 c b(n)$ or $2^{\alpha-3} \mid c b(n)$.
But $\varphi\left(2^{\alpha}\right)=2^{\alpha-1}$. So, if $c=\varphi\left(2^{\alpha}\right) / 2=2^{\alpha-2}$ or $c=\varphi\left(2^{\alpha}\right) / 4=2^{\alpha-3}$, the condition is satisfied.
Conversely, suppose $2^{\alpha-3} \mid c b(n)$, for all n.
Then $b(n)=1$ requires $2^{\alpha-3} \mid c$.
So $c=2^{\alpha-3}$ or $2^{\alpha-2}$, since $1 \leq c \leq 2^{\alpha-2}$.

Subsection 13

Primitive Dirichlet Characters mod p^{α}

Review on Primitive Characters

- We proved that every nonprincipal character $\chi \bmod p$ is primitive if p is prime.
- Now we determine all the primitive Dirichlet characters mod p^{α}.
- Recall that an induced modulus mod k is a divisor d of k, such that

$$
\chi(n)=1 \text { whenever }(n, k)=1 \text { and } n \equiv 1 \quad(\bmod d) .
$$

- χ is primitive $\bmod k$ if, and only if, χ has no induced modulus $d<k$.
- Suppose $k=p^{\alpha}$ and χ is imprimitive $\bmod p^{\alpha}$.

Then one of the divisors $1, p, \ldots, p^{\alpha-1}$ is an induced modulus. Hence $p^{\alpha-1}$ is an induced modulus.

- Therefore, χ is primitive $\bmod p^{\alpha}$ if, and only if, $p^{\alpha-1}$ is not an induced modulus for χ.

Primitive Dirichlet Characters mod p^{α}

Theorem

For an odd prime p and $\alpha \geq 2$, consider the $\varphi\left(p^{\alpha}\right)$ Dirichlet characters $\bmod p^{\alpha}$,

$$
\chi_{h}(n)=\left\{\begin{array}{ll}
e^{2 \pi i h b(n) / \varphi\left(p^{\alpha}\right)}, & \text { if } p \nmid n \\
0, & \text { if } p \mid n
\end{array} .\right.
$$

Then χ_{h} is primitive $\bmod p^{\alpha}$ if, and only if, $p \nmid h$.

- We will show that $p^{\alpha-1}$ is an induced modulus if, and only if, $p \mid h$. If $p \nmid n$, we have

$$
\chi_{h}(n)=e^{2 \pi i h b(n) / \varphi\left(p^{\alpha}\right)},
$$

where $n \equiv g^{b(n)}\left(\bmod p^{\alpha}\right)$ and g is a primitive root $\bmod p^{\beta}$, for all $\beta \geq 1$. Therefore, $g^{b(n)} \equiv n\left(\bmod p^{\alpha-1}\right)$.

Primitive Dirichlet Characters mod p^{α} (Cont'd)

- If $n \equiv 1\left(\bmod p^{\alpha-1}\right)$, then $g^{b(n)} \equiv 1\left(\bmod p^{\alpha-1}\right)$.

Since g is a primitive root of $p^{\alpha-1}, \varphi\left(p^{\alpha-1}\right) \mid b(n)$.
So, for some integer t,

$$
b(n)=t \varphi\left(p^{\alpha-1}\right)=t \varphi\left(p^{\alpha}\right) / p .
$$

Therefore, $\chi_{h}(n)=e^{2 \pi i h t / p}$.

- Suppose $p \mid h$. Then $\chi_{h}(n)=1$. Hence χ_{h} is imprimitive mod p^{α}.
- Suppose $p \nmid h$. Take $n=1+p^{\alpha-1}$.

Then $n \equiv 1\left(\bmod p^{\alpha-1}\right)$ but $n \not \equiv 1\left(\bmod p^{\alpha}\right)$.
So $0<b(n)<\varphi\left(p^{\alpha}\right)$.
Therefore, $p \nmid t, p \nmid h t$ and $\chi_{h}(n) \neq 1$.
This shows that χ_{h} is primitive, if $p \nmid h$.

Remarks

- When $m=1$ or 2 , there is only one character $\chi \bmod m$, the principal character.
- If $m=4$, there are two characters mod 4:
- The principal character;
- The primitive character f given by

$$
f(n)= \begin{cases}(-1)^{(n-1) / 2}, & \text { if } n \text { is odd } \\ 0, & \text { if } n \text { is even } .\end{cases}
$$

Primitive Dirichlet Characters mod 2^{α}

Theorem

If $a \geq 3$, consider the $\varphi\left(2^{\alpha}\right)$ Dirichlet characters $\chi_{a, c} \bmod 2^{a}$ given by

$$
\chi_{a, c}(n)=f(n)^{a} g(n)^{c} .
$$

Then $\chi_{a, c}$ is primitive $\bmod 2^{\alpha}$ if, and only if, c is odd.

- The proof is similar to that of the preceding theorem.

Primitive Dirichlet Characters for Composite Modulus

- To determine the primitive characters for a composite modulus k we write

$$
k=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}} .
$$

- Then every character χ mod k can be factored in the form

$$
\chi=\chi_{1} \cdots \chi_{r}
$$

where each χ_{i} is a character $\bmod p_{i}^{\alpha_{i}}$.

- Moreover, it turns out that χ is primitive mod k if, and only if, each χ_{i} is primitive $\bmod p_{i}^{\alpha_{i}}$.
- Therefore, we have a complete description of all primitive characters $\bmod k$.

