Introduction to Analytic Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

1

Arithmetical Functions and Dirichlet Multiplication

- Introduction
- The Möbius Function $\mu(n)$
- The Euler Totient Function $\varphi(n)$
- A Relation Connecting μ and φ
- A Product Formula for $\varphi(n)$
- The Dirichlet Product of Arithmetical Functions
- Dirichlet Inverses and the Möbius Inversion Formula
- The Mangoldt Function $\Lambda(n)$

Introduction

Introduction

- Number theory often considers sequences of real or complex numbers.
- Such sequences are called arithmetical functions.

Definition

An **arithmetical function** or a **number-theoretic function** is a real- or complex-valued function defined on the positive integers.

- We introduce several arithmetical functions which play an important role in:
 - The study of divisibility properties of integers;
 - The distribution of primes.
- Dirichlet multiplication clarifies some relations between various arithmetical functions.

The Möbius Function $\mu(n)$

The Möbius Function

Definition

The **Möbius function** μ is defined as follows:

Note that $\mu(n) = 0$ if and only if n has a square factor > 1.

• A short table of values of $\mu(n)$:

The Divisor Sum of the Möbius Function

- We consider the sum $\sum_{d|n} \mu(d)$, over the positive divisors of n.
- [x] denotes the greatest integer $\leq x$.

Theorem

If $n \ge 1$, we have

$$\sum_{d|n} \mu(d) = \begin{bmatrix} \frac{1}{n} \end{bmatrix} = \begin{cases} 1, & \text{if } n = 1 \\ 0, & \text{if } n > 1 \end{cases}$$

• The formula is clearly true if n = 1.

Assume, then, that n > 1 and write $n = p_1^{a_1} \cdots p_k^{a_k}$.

In $\sum_{d|n} \mu(d)$ the only nonzero terms come from d = 1 and from those divisors of n which are products of distinct primes.

The Divisor Sum of the Möbius Function (Cont'd)

Thus,

$$\begin{split} \sum_{d|n} \mu(d) &= \mu(1) + \mu(p_1) + \dots + \mu(p_k) \\ &+ \mu(p_1 p_2) + \dots + \mu(p_{k-1} p_k) \\ &+ \dots + \mu(p_1 p_2 \dots p_k) \end{split}$$
$$&= 1 + \binom{k}{1}(-1) + \binom{k}{2}(-1)^2 + \dots + \binom{k}{k}(-1)^k \\ &= (1-1)^k \\ &= 0. \end{split}$$

The Euler Totient Function $\varphi(n)$

The Euler Totient Function

Definition

If n > 1, the **Euler totient** $\varphi(n)$ is defined to be the number of positive integers not exceeding *n* which are relatively prime to *n*. Thus,

$$\varphi(n)=\sum_{k=1}^{n}{}'1,$$

where the ' indicates that the sum is extended over those k relatively prime to n.

• A short table of values of $\varphi(n)$:

The Divisor Sum of the Totient Function

• There is a simple formula for $\sum_{d|n} \varphi(d)$.

Theorem
If
$$n \ge 1$$
, we have $\sum_{d \mid n} \varphi(d) = n.$

Let S denote the set {1, 2, ..., n}.
We distribute the integers of S into disjoint sets.
For each divisor d of n, let

$$A(d) = \{k : (k, n) = d, 1 \le k \le n\}.$$

A(d) contains those elements of S which have the gcd d with n. The sets A(d) form a disjoint collection whose union is S. So, if f(d) denotes the number of integers in A(d), $\sum_{d|n} f(d) = n$.

The Divisor Sum of the Totient Function (Cont'd)

• We obtained $\sum_{d|n} f(d) = n$.

Now we have:

- (k, n) = d if and only if (k/d, n/d) = 1;
- $0 < k \le n$ if and only if $0 < k/d \le n/d$.

Let q = k/d.

Then there is a one-to-one correspondence between the elements in A(d) and those integers q satisfying $0 < q \le n/d$, (q, n/d) = 1. The number of such q is $\varphi(n/d)$. Hence $f(d) = \varphi(n/d)$. Now we get

$$\sum_{d|n}\varphi(n/d)=n.$$

But, when d runs through all divisors of n, so does n/d. So the last equation is equivalent to $\sum_{d|n} \varphi(d) = n$.

A Relation Connecting μ and φ

A Relation Connecting μ and φ

Theorem

If $n \ge 1$, we have

$$\varphi(n) = \sum_{d|n} \mu(d) \frac{n}{d}.$$

• The sum $\varphi(n) = \sum_{k=1}^{n} {}'1$ can be rewritten in the form $\varphi(n) = \sum_{k=1}^{n} \left[\frac{1}{(n,k)}\right]$, where k runs through all integers $\leq n$. Now we use $\sum_{d|n} \mu(d) = \left[\frac{1}{n}\right]$, with n replaced by (n, k).

$$\varphi(n) = \sum_{k=1}^n \sum_{d \mid (n,k)} \mu(d) = \sum_{k=1}^n \sum_{\substack{d \mid n \\ d \mid k}} \mu(d).$$

A Relation Connecting μ and φ (Cont'd)

We obtained

$$\varphi(n) = \sum_{k=1}^n \sum_{d \mid (n,k)} \mu(d) = \sum_{k=1}^n \sum_{\substack{d \mid n \\ d \mid k}} \mu(d).$$

For a fixed divisor d of n, we must sum over all those k in the range $1 \le k \le n$ which are multiples of d.

Write k = qd.

Then $1 \le k \le n$ if and only if $1 \le q \le n/d$.

Hence the last sum for $\varphi(n)$ can be written as

$$\varphi(n) = \sum_{d|n} \sum_{q=1}^{n/d} \mu(d) = \sum_{d|n} \mu(d) \sum_{q=1}^{n/d} 1 = \sum_{d|n} \mu(d) \frac{n}{d}$$

A Product Formula for $\varphi(n)$

A Product Formula for $\varphi(n)$

Theorem (Product Formula for $\varphi(n)$)

For $n \ge 1$, we have

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right).$$

For n = 1 the product is empty since no primes divide 1.
 Then it is understood that the product is to be assigned the value 1.
 Let n > 1 and p₁,..., p_r be the distinct prime divisors of n.
 The product can be written as

$$\begin{split} \prod_{p|n} (1 - \frac{1}{p}) &= \prod_{i=1}^{r} (1 - \frac{1}{p_{r}}) \\ &= 1 - \sum_{p_{i}} \frac{1}{p_{i}} + \sum_{p_{i}} \frac{1}{p_{i}p_{j}} - \sum_{p_{i}} \frac{1}{p_{i}p_{j}p_{k}} + \dots + \frac{(-1)^{r}}{p_{1}p_{2}\cdots p_{r}}. \end{split}$$

A Product Formula for $\varphi(n)$ (Cont'd)

We have

$$\prod_{p|n} \left(1 - \frac{1}{p}\right) = 1 - \sum \frac{1}{p_i} + \sum \frac{1}{p_i p_j} - \sum \frac{1}{p_i p_j p_k} + \dots + \frac{(-1)^r}{p_1 p_2 \cdots p_r}.$$

On the right, in a term such as $\sum \frac{1}{p_i p_j p_k}$ it is understood that we consider all possible products $p_i p_j p_k$ of distinct prime factors of *n* taken three at a time.

Note that each term on the right is of the form $\pm \frac{1}{d}$, where *d* is a divisor of *n* which is either 1 or a product of distinct primes. The numerator ± 1 is exactly $\mu(d)$. We have $\mu(d) = 0$ if *d* is divisible by the square of any p_i .

So the sum is exactly the same as $\sum_{d|n} \frac{\mu(d)}{d}$. Thus,

$$n\prod_{p\mid n}\left(1-\frac{1}{p}\right)=n\sum_{d\mid n}\frac{\mu(d)}{d}=\sum_{d\mid n}\mu(d)\frac{n}{d}=\varphi(n).$$

Properties of the Euler Totient Function

Theorem

Euler's totient has the following properties:

(a)
$$\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$$
 for prime p and $a \ge 1$.

(b)
$$\varphi(mn) = \varphi(m)\varphi(n)\frac{d}{\varphi(d)}$$
, where $d = (m, n)$.

(c)
$$\varphi(mn) = \varphi(m)\varphi(n)$$
, if $(m, n) = 1$.

(d)
$$a \mid b$$
 implies $\varphi(a) \mid \varphi(b)$.

- (e) φ(n) is even for n ≥ 3. Moreover, if n has r distinct odd prime factors, then 2^r | φ(n).
- (a) This follows by taking $n = p^{\alpha}$ in the product formula.

(b) Write
$$\frac{\varphi(n)}{n} = \prod_{p|n} \left(1 - \frac{1}{p}\right)$$
.

Each prime divisor of mn is either a prime divisor of m or of n. Moreover, those primes which divide both m and n also divide (m, n).

Properties of the Euler Totient Function (Cont'd)

Hence

$$\frac{\varphi(mn)}{mn} = \prod_{p|mn} \left(1 - \frac{1}{p}\right) = \frac{\prod_{p|m} \left(1 - \frac{1}{p}\right) \prod_{p|n} \left(1 - \frac{1}{p}\right)}{\prod_{p|(m,n)} \left(1 - \frac{1}{p}\right)} = \frac{\frac{\varphi(m)}{m} \frac{\varphi(n)}{n}}{\frac{\varphi(d)}{d}}.$$

(c) This is a special case of (b).

(d) Since $a \mid b$, we have b = ac, where $1 \le c \le b$.

• If c = b, then a = 1. Part (d) is trivially satisfied.

• Assume c < b. From (b) we have $\varphi(b) = \varphi(ac) = \varphi(a)\varphi(c)\frac{d}{\varphi(d)}$,

where d = (a, c). Now the result follows by induction on b.

- For b = 1 it holds trivially.
- Suppose that (d) holds for all integers < b. Then it holds for c. So φ(d) | φ(c), since d | c. Hence, the right side of the equation is a multiple of φ(a). So φ(a) | φ(b).

Properties of the Euler Totient Function (Cont'd)

(e) If $n = 2^{\alpha}$, $\alpha \ge 2$, Part (a) shows that $\varphi(n)$ is even.

Suppose n has at least one odd prime factor.

Then we write

$$\varphi(n) = n \prod_{p|n} \frac{p-1}{p} = \frac{n}{\prod_{p|n} p} \prod_{p|n} (p-1) = c(n) \prod_{p|n} (p-1),$$

where c(n) is an integer.

The product multiplying c(n) is even.

So $\varphi(n)$ is even.

Moreover, each odd prime p contributes a factor 2 to this product.

So $2^r \mid \varphi(n)$, if *n* has *r* distinct odd prime factors.

The Dirichlet Product of Arithmetical Functions

Introducing the Dirichlet Product

We proved that

$$\varphi(n)=\sum_{d\mid n}\mu(d)\frac{n}{d}.$$

- The sum on the right is of a type that occurs frequently in number theory.
- These sums have the form

$$\sum_{d|n} f(d)g\left(\frac{n}{d}\right),$$

where f and g are arithmetical functions.

 It is fruitful to treat these sums as a new kind of multiplication of arithmetical functions.

The Dirichlet Product of Arithmetical Functions

Definition

If f and g are two arithmetical functions we define their **Dirichlet product** (or **Dirichlet convolution**) to be the arithmetical function h defined by the equation

$$h(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right).$$

Notation: We write f * g for h and (f * g)(n) for h(n).

• The symbol N will be used for the arithmetical function for which

$$N(n) = n$$
, for all n .

• In this notation, $\varphi = \mu * N$.

Commutativity and Associativity

Theorem

Dirichlet multiplication is commutative and associative. That is, for any arithmetical functions f, g, k, we have

f * g = g * f (commutative law); (f * g) * k = f * (g * k) (associative law).

• First we note that the definition of f * g can also be expressed as follows:

$$(f * g)(n) = \sum_{a \cdot b = n} f(a)g(b),$$

where a and b vary over all positive integers whose product is n. This makes the commutative property self-evident.

Commutativity and Associativity (Cont'd)

For the associative property, we let A = g * k.
We consider f * A = f * (g * k).

$$(f * A)(n) = \sum_{a \cdot d = n} f(a)A(d)$$

= $\sum_{a \cdot d = n} f(a) \sum_{b \cdot c = d} g(b)k(c)$
= $\sum_{a \cdot b \cdot c = n} f(a)g(b)k(c).$

Similarly, let B = f * g and consider B * k. We are led to the same formula for (B * k)(n). Hence f * A = B * k.

So the Dirichlet multiplication is associative.

The Identity of the Dirichlet Multiplication

Definition

The arithmetical function I given by

$$I(n) = \begin{bmatrix} \frac{1}{n} \end{bmatrix} = \begin{cases} 1, & \text{if } n = 1 \\ 0, & \text{if } n > 1 \end{cases}$$

is called the identity function.

Theorem

For all f, we have I * f = f * I = f.

• Note that
$$\left[\frac{d}{n}\right] = 0$$
, if $d < n$.
So we have

$$(f*I)(n) = \sum_{d|n} f(d)I\left(\frac{n}{d}\right) = \sum_{d|n} f(d)\left[\frac{d}{n}\right] = f(n).$$

Dirichlet Inverses and the Möbius Inversion Formula

The Dirichlet Inverse

Theorem

If f is an arithmetical function with $f(1) \neq 0$, there is a unique arithmetical function f^{-1} , called the **Dirichlet inverse** of f, such that

$$f * f^{-1} = f^{-1} * f = 1.$$

Moreover, f^{-1} is given by the recursion formulas

$$f^{-1}(n) = rac{1}{f(1)}, \quad f^{-1}(n) = rac{-1}{f(1)} \sum_{\substack{d \mid n \\ d < n}} f\left(rac{n}{d}
ight) f^{-1}(d), ext{ for } n > 1.$$

• Given f, we shall show that the equation $(f * f^{-1})(n) = I(n)$ has a unique solution for the function values $f^{-1}(n)$.

The Dirichlet Inverse (Base)

• For n = 1, we have to solve the equation

$$(f * f^{-1})(1) = I(1).$$

This reduces to

$$f(1)f^{-1}(1) = 1.$$

By hypothesis, $f(1) \neq 0$.

So there is one and only one solution, namely

$$f^{-1}(1) = \frac{1}{f(1)}$$

The Dirichlet Inverse (Induction Step)

• Assume now that the function values $f^{-1}(k)$ have been uniquely determined for all k < n. Then we have to solve the equation $(f * f^{-1})(n) = I(n)$. Equivalently, $\sum_{d|n} f(\frac{n}{d})f^{-1}(d) = 0$. This can be written as

$$f(1)f^{-1}(n) + \sum_{\substack{d|n \ d < n}} f\left(\frac{n}{d}\right) f^{-1}(d) = 0.$$

Suppose the values $f^{-1}(d)$ are known for all divisors d < n. Then, since $f(1) \neq 0$, there is a uniquely determined value for $f^{-1}(n)$:

$$f^{-1}(n) = rac{-1}{f(1)} \sum_{\substack{d \mid n \ d < n}} f\left(rac{n}{d}
ight) f^{-1}(d).$$

We have the existence and uniqueness of f^{-1} by induction.

The Group Structure of Arithmetic Functions

- Consider the set of all arithmetical functions f, with $f(1) \neq 0$.
- It is closed under *, since, if $f(1) \neq 0$ and $g(1) \neq 0$, then

$$(f * g)(1) = f(1)g(1) \neq 0.$$

- Moreover, we have seen that * on this set satisfies:
 - The commutative law;
 - The associative law;
 - The existence of an identity *I*;
 - The existence of an inverse.
- We conclude that the set forms an abelian group with respect to the operation *.
- It can be shown that if $f(1) \neq 0$ and $g(1) \neq 0$,

$$(f * g)^{-1} = f^{-1} * g^{-1}.$$

The Unit Function u

Definition

We define the **unit function** u to be the arithmetical function such that

$$u(n) = 1$$
, for all n .

We saw that

$$\sum_{d|n} \mu(d) = I(n).$$

In the notation of Dirichlet multiplication this becomes

$$\mu * u = I.$$

• Thus u and μ are Dirichlet inverses of each other,

$$u = \mu^{-1}$$
 and $\mu = u^{-1}$.

The Möbius Inversion Formula

Theorem (Möbius Inversion Formula)

The equation

$$f(n) = \sum_{d|n} g(d)$$

implies

$$g(n) = \sum_{d|n} f(d) \mu\left(\frac{n}{d}\right)$$

and conversely.

The first equation states that f = g * u.
 Multiplication by μ gives

$$f * \mu = (g * u) * \mu = g * (u * \mu) = g * I = g.$$

Conversely, multiplication of $f * \mu = g$ by u gives the first equation.

Example

• We saw that

$$n=\sum_{d\mid n}\varphi(d).$$

We also saw that

$$\varphi(n) = \sum_{d|n} d\mu\left(\frac{n}{d}\right).$$

The Mangoldt Function $\Lambda(n)$

The Mangoldt Function

• Mangoldt's function Λ plays a central role in the distribution of primes.

Definition

For every integer $n \ge 1$, we define

$$\Lambda(n) = \begin{cases} \log p, & \text{if } n = p^m, \text{ for some prime } p \text{ and some } m \geq 1, \\ 0, & \text{otherwise} \end{cases}$$

• Here is a short table of values of $\Lambda(n)$:

Mangoldt Function and Fundamental Theorem

Theorem

If $n \ge 1$, we have

$$\log n = \sum_{d|n} \Lambda(d).$$

The theorem is true if n = 1, since both members are 0. Therefore, assume that n > 1 and write n = ∏^r_{k=1} p^{a_k}. Taking logarithms we have log n = ∑^r_{k=1} a_k log p_k. In the sum on the right the only nonzero terms come from those divisors d of the form p^m_k, for m = 1, 2, ..., a_k and k = 1, 2, ..., r. Hence,

$$\sum_{d|n} \Lambda(d) = \sum_{k=1}^{r} \sum_{m=1}^{a_k} \Lambda(p_k^m) = \sum_{k=1}^{r} \sum_{m=1}^{a_k} \log p_k = \sum_{k=1}^{r} a_k \log p_k = \log n.$$

38 / 39

Sum Formula for $\Lambda(n)$

• We use Möbius inversion to express $\Lambda(n)$ in terms of the logarithm.

Theorem

If $n \ge 1$, we have

$$\Lambda(n) = \sum_{d|n} \mu(d) \log \frac{n}{d} = -\sum_{d|n} \mu(d) \log d.$$

• Inverting $\log n = \sum_{d|n} \Lambda(d)$ by the Möbius inversion formula we obtain

$$\Lambda(n) = \sum_{d|n} \mu(d) \log \frac{n}{d}$$

= $\log n \sum_{d|n} \mu(d) - \sum_{d|n} \mu(d) \log d$
= $I(n) \log n - \sum_{d|n} \mu(d) \log d.$

But $I(n) \log n = 0$, for all *n*. This completes the proof.