Introduction to Analytic Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Arithmetical Functions and Dirichlet Multiplication

- Introduction
- The Möbius Function $\mu(n)$
- The Euler Totient Function $\varphi(n)$
- A Relation Connecting μ and φ
- A Product Formula for $\varphi(n)$
- The Dirichlet Product of Arithmetical Functions
- Dirichlet Inverses and the Möbius Inversion Formula
- The Mangoldt Function $\Lambda(n)$

Subsection 1

Introduction

Introduction

- Number theory often considers sequences of real or complex numbers.
- Such sequences are called arithmetical functions.

Definition

An arithmetical function or a number-theoretic function is a real- or complex-valued function defined on the positive integers.

- We introduce several arithmetical functions which play an important role in:
- The study of divisibility properties of integers;
- The distribution of primes.
- Dirichlet multiplication clarifies some relations between various arithmetical functions.

Subsection 2

The Möbius Function $\mu(n)$

The Möbius Function

Definition

The Möbius function μ is defined as follows:

- $\mu(1)=1$;
- If $n>1$, write $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$. Then:
- $\mu(n)=(-1)^{k}$, if $a_{1}=a_{2}=\cdots=a_{k}=1$;
- $\mu(n)=0$, otherwise.

Note that $\mu(n)=0$ if and only if n has a square factor >1.

- A short table of values of $\mu(n)$:

n	1	2	3	4	5	6	7	8	9	10
$\mu(n)$	1	-1	-1	0	-1	1	-1	0	0	1

The Divisor Sum of the Möbius Function

- We consider the sum $\sum_{d \mid n} \mu(d)$, over the positive divisors of n.
- $[x]$ denotes the greatest integer $\leq x$.

Theorem

If $n \geq 1$, we have

$$
\sum_{d \mid n} \mu(d)=\left[\frac{1}{n}\right]= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { if } n>1\end{cases}
$$

- The formula is clearly true if $n=1$.

Assume, then, that $n>1$ and write $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$.
In $\sum_{d \mid n} \mu(d)$ the only nonzero terms come from $d=1$ and from those divisors of n which are products of distinct primes.

The Divisor Sum of the Möbius Function (Cont'd)

- Thus,

$$
\begin{aligned}
\sum_{d \mid n} \mu(d)= & \mu(1)+\mu\left(p_{1}\right)+\cdots+\mu\left(p_{k}\right) \\
& +\mu\left(p_{1} p_{2}\right)+\cdots+\mu\left(p_{k-1} p_{k}\right) \\
& +\cdots+\mu\left(p_{1} p_{2} \cdots p_{k}\right) \\
= & 1+\binom{k}{1}(-1)+\binom{k}{2}(-1)^{2}+\cdots+\binom{k}{k}(-1)^{k} \\
= & (1-1)^{k} \\
= & 0
\end{aligned}
$$

Subsection 3

The Euler Totient Function $\varphi(n)$

The Euler Totient Function

Definition

If $n>1$, the Euler totient $\varphi(n)$ is defined to be the number of positive integers not exceeding n which are relatively prime to n. Thus,

$$
\varphi(n)=\sum_{k=1}^{n} 1
$$

where the ' indicates that the sum is extended over those k relatively prime to n.

- A short table of values of $\varphi(n)$:

$$
\begin{array}{c|rrrrrrrrrr}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline \varphi(n) & 1 & 1 & 2 & 2 & 4 & 2 & 6 & 4 & 6 & 4
\end{array}
$$

The Divisor Sum of the Totient Function

- There is a simple formula for $\sum_{d \mid n} \varphi(d)$.

Theorem

If $n \geq 1$, we have

$$
\sum_{d \mid n} \varphi(d)=n
$$

- Let S denote the set $\{1,2, \ldots, n\}$.

We distribute the integers of S into disjoint sets.
For each divisor d of n, let

$$
A(d)=\{k:(k, n)=d, 1 \leq k \leq n\} .
$$

$A(d)$ contains those elements of S which have the god d with n.
The sets $A(d)$ form a disjoint collection whose union is S.
So, if $f(d)$ denotes the number of integers in $A(d), \sum_{d \mid n} f(d)=n$.

The Divisor Sum of the Totient Function (Cont'd)

- We obtained $\sum_{d \mid n} f(d)=n$.

Now we have:

- $(k, n)=d$ if and only if $(k / d, n / d)=1$;
- $0<k \leq n$ if and only if $0<k / d \leq n / d$.

Let $q=k / d$.
Then there is a one-to-one correspondence between the elements in $A(d)$ and those integers q satisfying $0<q \leq n / d,(q, n / d)=1$.
The number of such q is $\varphi(n / d)$.
Hence $f(d)=\varphi(n / d)$.
Now we get

$$
\sum_{d \mid n} \varphi(n / d)=n
$$

But, when d runs through all divisors of n, so does n / d. So the last equation is equivalent to $\sum_{d \mid n} \varphi(d)=n$.

Subsection 4

A Relation Connecting μ and φ

A Relation Connecting μ and φ

Theorem

If $n \geq 1$, we have

$$
\varphi(n)=\sum_{d \mid n} \mu(d) \frac{n}{d}
$$

- The sum $\varphi(n)=\sum_{k=1}^{n}$ ' 1 can be rewritten in the form $\varphi(n)=\sum_{k=1}^{n}\left[\frac{1}{(n, k)}\right]$, where k runs through all integers $\leq n$. Now we use $\sum_{d \mid n} \mu(d)=\left[\frac{1}{n}\right]$, with n replaced by (n, k).

$$
\varphi(n)=\sum_{k=1}^{n} \sum_{d \mid(n, k)} \mu(d)=\sum_{k=1}^{n} \sum_{\substack{d|n \\ d| k}} \mu(d)
$$

A Relation Connecting μ and φ (Cont'd)

- We obtained

$$
\varphi(n)=\sum_{k=1}^{n} \sum_{d \mid(n, k)} \mu(d)=\sum_{k=1}^{n} \sum_{\substack{d|n \\ d| k}} \mu(d)
$$

For a fixed divisor d of n, we must sum over all those k in the range $1 \leq k \leq n$ which are multiples of d.
Write $k=q d$.
Then $1 \leq k \leq n$ if and only if $1 \leq q \leq n / d$.
Hence the last sum for $\varphi(n)$ can be written as

$$
\varphi(n)=\sum_{d \mid n} \sum_{q=1}^{n / d} \mu(d)=\sum_{d \mid n} \mu(d) \sum_{q=1}^{n / d} 1=\sum_{d \mid n} \mu(d) \frac{n}{d} .
$$

Subsection 5

A Product Formula for $\varphi(n)$

A Product Formula for $\varphi(n)$

Theorem (Product Formula for $\varphi(n)$)

For $n \geq 1$, we have

$$
\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right) .
$$

- For $n=1$ the product is empty since no primes divide 1 .

Then it is understood that the product is to be assigned the value 1. Let $n>1$ and p_{1}, \ldots, p_{r} be the distinct prime divisors of n.
The product can be written as

$$
\begin{aligned}
& \prod_{p \mid n}\left(1-\frac{1}{p}\right)=\prod_{i=1}^{r}\left(1-\frac{1}{p_{r}}\right) \\
& \quad=1-\sum \frac{1}{p_{i}}+\sum \frac{1}{p_{i} p_{j}}-\sum \frac{1}{p_{i} p_{j} p_{k}}+\cdots+\frac{(-1)^{r}}{p_{1} p_{2} \cdots p_{r}} .
\end{aligned}
$$

A Product Formula for $\varphi(n)$ (Cont'd)

- We have
$\prod_{p \mid n}\left(1-\frac{1}{p}\right)=1-\sum \frac{1}{p_{i}}+\sum \frac{1}{p_{i} p_{j}}-\sum \frac{1}{p_{i} p_{j} p_{k}}+\cdots+\frac{(-1)^{r}}{p_{1} p_{2} \cdots p_{r}}$.
On the right, in a term such as $\sum \frac{1}{p_{i} p_{j} p_{k}}$ it is understood that we consider all possible products $p_{i} p_{j} p_{k}$ of distinct prime factors of n taken three at a time.
Note that each term on the right is of the form $\pm \frac{1}{d}$, where d is a divisor of n which is either 1 or a product of distinct primes.
The numerator ± 1 is exactly $\mu(d)$.
We have $\mu(d)=0$ if d is divisible by the square of any p_{i}.
So the sum is exactly the same as $\sum_{d \mid n} \frac{\mu(d)}{d}$. Thus,

$$
n \prod_{p \mid n}\left(1-\frac{1}{p}\right)=n \sum_{d \mid n} \frac{\mu(d)}{d}=\sum_{d \mid n} \mu(d) \frac{n}{d}=\varphi(n)
$$

Properties of the Euler Totient Function

Theorem

Euler's totient has the following properties:
(a) $\varphi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}$ for prime p and $a \geq 1$.
(b) $\varphi(m n)=\varphi(m) \varphi(n) \frac{d}{\varphi(d)}$, where $d=(m, n)$.
(c) $\varphi(m n)=\varphi(m) \varphi(n)$, if $(m, n)=1$.
(d) $a \mid b$ implies $\varphi(a) \mid \varphi(b)$.
(e) $\varphi(n)$ is even for $n \geq 3$. Moreover, if n has r distinct odd prime factors, then $2^{r} \mid \varphi(n)$.
(a) This follows by taking $n=p^{\alpha}$ in the product formula.
(b) Write $\frac{\varphi(n)}{n}=\prod_{p \mid n}\left(1-\frac{1}{p}\right)$.

Each prime divisor of $m n$ is either a prime divisor of m or of n.
Moreover, those primes which divide both m and n also divide (m, n).

Properties of the Euler Totient Function (Cont'd)

Hence

$$
\frac{\varphi(m n)}{m n}=\prod_{p \mid m n}\left(1-\frac{1}{p}\right)=\frac{\prod_{p \mid m}\left(1-\frac{1}{p}\right) \prod_{p \mid n}\left(1-\frac{1}{p}\right)}{\prod_{p \mid(m, n)}\left(1-\frac{1}{p}\right)}=\frac{\frac{\varphi(m)}{m} \frac{\varphi(n)}{n}}{\frac{\varphi(d)}{d}} .
$$

(c) This is a special case of (b).
(d) Since $a \mid b$, we have $b=a c$, where $1 \leq c \leq b$.

- If $c=b$, then $a=1$. Part (d) is trivially satisfied.
- Assume $c<b$. From (b) we have $\varphi(b)=\varphi(a c)=\varphi(a) \varphi(c) \frac{d}{\varphi(d)}$, where $d=(a, c)$. Now the result follows by induction on b.
- For $b=1$ it holds trivially.
- Suppose that (d) holds for all integers $<b$. Then it holds for c. So $\varphi(d) \mid \varphi(c)$, since $d \mid c$. Hence, the right side of the equation is a multiple of $\varphi(a)$. So $\varphi(a) \mid \varphi(b)$.

Properties of the Euler Totient Function (Cont'd)

(e) If $n=2^{\alpha}, \alpha \geq 2$, Part (a) shows that $\varphi(n)$ is even.

Suppose n has at least one odd prime factor.
Then we write

$$
\varphi(n)=n \prod_{p \mid n} \frac{p-1}{p}=\frac{n}{\prod_{p \mid n} p} \prod_{p \mid n}(p-1)=c(n) \prod_{p \mid n}(p-1),
$$

where $c(n)$ is an integer.
The product multiplying $c(n)$ is even.
So $\varphi(n)$ is even.
Moreover, each odd prime p contributes a factor 2 to this product. So $2^{r} \mid \varphi(n)$, if n has r distinct odd prime factors.

Subsection 6

The Dirichlet Product of Arithmetical Functions

Introducing the Dirichlet Product

- We proved that

$$
\varphi(n)=\sum_{d \mid n} \mu(d) \frac{n}{d}
$$

- The sum on the right is of a type that occurs frequently in number theory.
- These sums have the form

$$
\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)
$$

where f and g are arithmetical functions.

- It is fruitful to treat these sums as a new kind of multiplication of arithmetical functions.

The Dirichlet Product of Arithmetical Functions

Definition

If f and g are two arithmetical functions we define their Dirichlet product (or Dirichlet convolution) to be the arithmetical function h defined by the equation

$$
h(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)
$$

Notation: We write $f * g$ for h and $(f * g)(n)$ for $h(n)$.

- The symbol N will be used for the arithmetical function for which

$$
N(n)=n, \text { for all } n
$$

- In this notation, $\varphi=\mu * N$.

Commutativity and Associativity

Theorem

Dirichlet multiplication is commutative and associative. That is, for any arithmetical functions f, g, k, we have

$$
\begin{gathered}
f * g=g * f \quad(\text { commutative law }) \\
(f * g) * k=f *(g * k) \quad \text { (associative law })
\end{gathered}
$$

- First we note that the definition of $f * g$ can also be expressed as follows:

$$
(f * g)(n)=\sum_{a \cdot b=n} f(a) g(b)
$$

where a and b vary over all positive integers whose product is n.
This makes the commutative property self-evident.

Commutativity and Associativity (Cont'd)

- For the associative property, we let $A=g * k$.

We consider $f * A=f *(g * k)$.

$$
\begin{aligned}
(f * A)(n) & =\sum_{a \cdot d=n} f(a) A(d) \\
& =\sum_{a \cdot d=n} f(a) \sum_{b \cdot c=d} g(b) k(c) \\
& =\sum_{a \cdot b \cdot c=n} f(a) g(b) k(c) .
\end{aligned}
$$

Similarly, let $B=f * g$ and consider $B * k$.
We are led to the same formula for $(B * k)(n)$.
Hence $f * A=B * k$.
So the Dirichlet multiplication is associative.

The Identity of the Dirichlet Multiplication

Definition

The arithmetical function / given by

$$
I(n)=\left[\frac{1}{n}\right]= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { if } n>1\end{cases}
$$

is called the identity function.

Theorem

For all f, we have $I * f=f * I=f$.

- Note that $\left[\frac{d}{n}\right]=0$, if $d<n$.

So we have

$$
(f * I)(n)=\sum_{d \mid n} f(d) I\left(\frac{n}{d}\right)=\sum_{d \mid n} f(d)\left[\frac{d}{n}\right]=f(n)
$$

Subsection 7

Dirichlet Inverses and the Möbius Inversion Formula

The Dirichlet Inverse

Theorem

If f is an arithmetical function with $f(1) \neq 0$, there is a unique arithmetical function f^{-1}, called the Dirichlet inverse of f, such that

$$
f * f^{-1}=f^{-1} * f=1
$$

Moreover, f^{-1} is given by the recursion formulas

$$
f^{-1}(n)=\frac{1}{f(1)}, \quad f^{-1}(n)=\frac{-1}{f(1)} \sum_{\substack{d \mid n \\ d<n}} f\left(\frac{n}{d}\right) f^{-1}(d), \text { for } n>1 .
$$

- Given f, we shall show that the equation $\left(f * f^{-1}\right)(n)=I(n)$ has a unique solution for the function values $f^{-1}(n)$.

The Dirichlet Inverse (Base)

- For $n=1$, we have to solve the equation

$$
\left(f * f^{-1}\right)(1)=I(1)
$$

This reduces to

$$
f(1) f^{-1}(1)=1 .
$$

By hypothesis, $f(1) \neq 0$.
So there is one and only one solution, namely

$$
f^{-1}(1)=\frac{1}{f(1)}
$$

The Dirichlet Inverse (Induction Step)

- Assume now that the function values $f^{-1}(k)$ have been uniquely determined for all $k<n$. Then we have to solve the equation $\left(f * f^{-1}\right)(n)=I(n)$. Equivalently, $\sum_{d \mid n} f\left(\frac{n}{d}\right) f^{-1}(d)=0$. This can be written as

$$
f(1) f^{-1}(n)+\sum_{\substack{d \mid n \\ d<n}} f\left(\frac{n}{d}\right) f^{-1}(d)=0 .
$$

Suppose the values $f^{-1}(d)$ are known for all divisors $d<n$.
Then, since $f(1) \neq 0$, there is a uniquely determined value for $f^{-1}(n)$:

$$
f^{-1}(n)=\frac{-1}{f(1)} \sum_{\substack{d \mid n \\ d<n}} f\left(\frac{n}{d}\right) f^{-1}(d)
$$

We have the existence and uniqueness of f^{-1} by induction.

The Group Structure of Arithmetic Functions

- Consider the set of all arithmetical functions f, with $f(1) \neq 0$.
- It is closed under $*$, since, if $f(1) \neq 0$ and $g(1) \neq 0$, then

$$
(f * g)(1)=f(1) g(1) \neq 0
$$

- Moreover, we have seen that $*$ on this set satisfies:
- The commutative law;
- The associative law;
- The existence of an identity I;
- The existence of an inverse.
- We conclude that the set forms an abelian group with respect to the operation $*$.
- It can be shown that if $f(1) \neq 0$ and $g(1) \neq 0$,

$$
(f * g)^{-1}=f^{-1} * g^{-1}
$$

The Unit Function u

Definition

We define the unit function u to be the arithmetical function such that

$$
u(n)=1, \quad \text { for all } n
$$

- We saw that

$$
\sum_{d \mid n} \mu(d)=I(n)
$$

- In the notation of Dirichlet multiplication this becomes

$$
\mu * u=I
$$

- Thus u and μ are Dirichlet inverses of each other,

$$
u=\mu^{-1} \quad \text { and } \quad \mu=u^{-1}
$$

The Möbius Inversion Formula

Theorem (Möbius Inversion Formula)

The equation

$$
f(n)=\sum_{d \mid n} g(d)
$$

implies

$$
g(n)=\sum_{d \mid n} f(d) \mu\left(\frac{n}{d}\right)
$$

and conversely.

- The first equation states that $f=g * u$.

Multiplication by μ gives

$$
f * \mu=(g * u) * \mu=g *(u * \mu)=g * I=g .
$$

Conversely, multiplication of $f * \mu=g$ by u gives the first equation.

Example

- We saw that

$$
n=\sum_{d \mid n} \varphi(d) .
$$

We also saw that

$$
\varphi(n)=\sum_{d \mid n} d \mu\left(\frac{n}{d}\right)
$$

Subsection 8

The Mangoldt Function $\Lambda(n)$

The Mangoldt Function

- Mangoldt's function Λ plays a central role in the distribution of primes.

Definition

For every integer $n \geq 1$, we define

$$
\Lambda(n)= \begin{cases}\log p, & \text { if } n=p^{m}, \text { for some prime } p \text { and some } m \geq 1 \\ 0, & \text { otherwise }\end{cases}
$$

- Here is a short table of values of $\Lambda(n)$:

n	1	2	3	4	5	6	7	8	9	10
$A(n)$	0	$\log 2$	$\log 3$	$\log 2$	$\log 5$	0	$\log 7$	$\log 2$	$\log 3$	0

Mangoldt Function and Fundamental Theorem

Theorem

If $n \geq 1$, we have

$$
\log n=\sum_{d \mid n} \Lambda(d)
$$

- The theorem is true if $n=1$, since both members are 0 . Therefore, assume that $n>1$ and write $n=\prod_{k=1}^{r} p_{k}^{a_{k}}$. Taking logarithms we have $\log n=\sum_{k=1}^{r} a_{k} \log p_{k}$.
In the sum on the right the only nonzero terms come from those divisors d of the form p_{k}^{m}, for $m=1,2, \ldots, a_{k}$ and $k=1,2, \ldots, r$. Hence,

$$
\sum_{d \mid n} \Lambda(d)=\sum_{k=1}^{r} \sum_{m=1}^{a_{k}} \Lambda\left(p_{k}^{m}\right)=\sum_{k=1}^{r} \sum_{m=1}^{a_{k}} \log p_{k}=\sum_{k=1}^{r} a_{k} \log p_{k}=\log n
$$

Sum Formula for $\Lambda(n)$

- We use Möbius inversion to express $\Lambda(n)$ in terms of the logarithm.

Theorem

If $n \geq 1$, we have

$$
\Lambda(n)=\sum_{d \mid n} \mu(d) \log \frac{n}{d}=-\sum_{d \mid n} \mu(d) \log d
$$

- Inverting $\log n=\sum_{d \mid n} \Lambda(d)$ by the Möbius inversion formula we obtain

$$
\begin{aligned}
\Lambda(n) & =\sum_{d \mid n} \mu(d) \log \frac{n}{d} \\
& =\log n \sum_{d \mid n} \mu(d)-\sum_{d \mid n} \mu(d) \log d \\
& =I(n) \log n-\sum_{d \mid n} \mu(d) \log d .
\end{aligned}
$$

But $I(n) \log n=0$, for all n. This completes the proof.

