Introduction to Analytic Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) More on Dirichlet Multiplication

- Multiplicative Functions
- Multiplicative Functions and Dirichlet Multiplication
- The Inverse of a Completely Multiplicative Function
- Liouville's Function $\lambda(n)$
- The Divisor Functions $\sigma_{\alpha}(n)$
- Generalized Convolutions
- Formal Power Series
- The Bell Series of an Arithmetical Function
- Bell Series and Dirichlet Multiplication
- Derivatives of Arithmetical Functions
- The Selberg Identity

Subsection 1

Multiplicative Functions

Multiplicative Functions

- Recall that the set of all arithmetical functions f with $f(1) \neq 0$ forms an abelian group under Dirichlet multiplication.
- An important subgroup consists of the multiplicative functions.

Definition

An arithmetical function f is called multiplicative if f is not identically zero and if, whenever $(m, n)=1$,

$$
f(m n)=f(m) f(n)
$$

A multiplicative function f is called completely multiplicative if we also have

$$
f(m n)=f(m) f(n), \quad \text { for all } m, n
$$

Examples

Example: Let

$$
f_{\alpha}(n)=n^{\alpha},
$$

where α is a fixed real or complex number.
This function is completely multiplicative.
In particular, the unit function $u=f_{0}$ is completely multiplicative.
We denote the function f_{α} by N^{α} and call it the power function.
Example: The identity function

$$
I(n)=\left[\frac{1}{n}\right]
$$

is completely multiplicative.

Examples

Example: The Möbius function is multiplicative but not completely multiplicative.
This is easily seen from the definition of $\mu(n)$.
Consider two relatively prime integers m and n.

- Suppose either m or n has a prime-square factor. Then so does $m n$. So both $\mu(m n)$ and $\mu(m) \mu(n)$ are zero.
- Suppose neither has a square factor. Write $m=p_{1} \cdots p_{s}$ and $n=q_{1} \cdots q_{t}$, where the p_{i} and q_{i} are distinct primes. Then we have $\mu(m)=(-1)^{s}, \mu(n)=(-1)^{t}$ and $\mu(m n)=(-1)^{s+t}=\mu(m) \mu(n)$.
This shows that μ is multiplicative.
It is not completely multiplicative since $\mu(4)=0$ but $\mu(2) \mu(2)=1$.
Example: The Euler totient $\varphi(n)$ is multiplicative.
This is Part (c) of a previous theorem.
It is not completely multiplicative as $\varphi(4)=2$ but $\varphi(2) \varphi(2)=1$.

More Examples

Example: The ordinary product $f g$ of two arithmetical functions f and g is defined by the usual formula

$$
(f g)(n)=f(n) g(n)
$$

Similarly, the quotient f / g is defined by the formula

$$
\left(\frac{f}{g}\right)(n)=\frac{f(n)}{g(n)}, \text { whenever } g(n) \neq 0
$$

- If f and g are multiplicative, so are $f g$ and $\frac{f}{g}$.
- If f and g are completely multiplicative, so are $f g$ and $\frac{f}{g}$.

Multiplicative Functions: Value at 1

Theorem

If f is multiplicative then $f(1)=1$.

- We have $(n, 1)=1$, for all n.

Hence,

$$
f(n)=f(1) f(n)
$$

By hypothesis, f is not identically zero.
So we have $f(n) \neq 0$, for some n.
This implies that $f(1)=1$.
Note: Since $\Lambda(1)=0$, the Mangoldt function is not multiplicative.

Characterization of Multiplicativity

Theorem

Given f with $f(1)=1$. Then:
(a) f is multiplicative if, and only if,

$$
f\left(p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}\right)=f\left(p_{1}^{a_{1}}\right) \cdots f\left(p_{r}^{a_{r}}\right)
$$

for all primes p_{i} and all integers $a_{i} \geq 1$.
(b) If f is multiplicative, then f is completely multiplicative if, and only if, for all primes p and all integers $a \geq 1$,

$$
f\left(p^{a}\right)=f(p)^{a} .
$$

- The proof follows easily from the definitions.

Subsection 2

Multiplicative Functions and Dirichlet Multiplication

Dirichlet Product of Multiplicative Functions

Theorem

If f and g are multiplicative, so is their Dirichlet product $f * g$.

- Suppose $h=f * g$.

Choose relatively prime integers m and n.
Then

$$
h(m n)=\sum_{c \mid m n} f(c) g\left(\frac{m n}{c}\right) .
$$

Every divisor c of $m n$ can be expressed in the form $c=a b$, where:

- a \quad;
- $b \mid n$.

Moreover:

- $(a, b)=1$;
- $\left(\frac{m}{a}, \frac{n}{b}\right)=1$;
- There is a one-to-one correspondence between the set of products $a b$ and the divisors c of $m n$.

Dirichlet Product of Multiplicative Functions

- Now we have

$$
\begin{aligned}
h(m n) & =\sum_{\substack{a|m \\
b| n}} f(a b) g\left(\frac{m n}{a b}\right) \\
& =\sum_{\substack{a|m \\
b| n}} f(a) f(b) g\left(\frac{m}{a}\right) g\left(\frac{n}{b}\right) \\
& =\sum_{a \mid m} f(a) g\left(\frac{m}{a}\right) \sum_{b \mid n} f(b) g\left(\frac{n}{b}\right) \\
& =h(m) h(n) .
\end{aligned}
$$

Warning: The Dirichlet product of two completely multiplicative functions need not be completely multiplicative.

A Partial Converse

Theorem

If both g and $f * g$ are multiplicative, then f is also multiplicative.

- By way of contraposition, assume that f is not multiplicative. We deduce that $f * g$ is also not multiplicative.
Let $h=f * g$.
By our assumption, there exist positive integers m and n, with $(m, n)=1$, such that

$$
f(m n) \neq f(m) f(n) .
$$

We choose such a pair m and n for which the product $m n$ is as small as possible.

- Assume, first, that $m n=1$. Then $f(1) \neq f(1) f(1)$. So $f(1) \neq 1$. Now $h(1)=f(1) g(1)=f(1) \neq 1$.
So h is not multiplicative.

A Partial Converse (Cont'd)

- If $m n>1$, then we have $f(a b)=f(a) f(b)$, for all positive integers a and b with $(a, b)=1$ and $a b<m n$.
Now we argue as in the proof of the preceding theorem.
In the sum defining $h(m n)$ we separate the term corresponding to
$a=m, b=n$.

$$
\begin{aligned}
h(m n) & =\sum_{\substack{a|m, b| n \\
a b<m n}} f(a b) g\left(\frac{m n}{a b}\right)+f(m n) g(1) \\
& =\sum_{\substack{a|m, b| n \\
a b<m n}} f(a) f(b) g\left(\frac{m}{a}\right) g\left(\frac{n}{b}\right)+f(m n) \\
& =\sum_{a \mid m} f(a) g\left(\frac{m}{a}\right) \sum_{b \mid n} f(b) g\left(\frac{n}{b}\right)-f(m) f(n)+f(m n) \\
& =h(m) h(n)-f(m) f(n)+f(m n) .
\end{aligned}
$$

Since $f(m n) \neq f(m) f(n)$, this shows that $h(m n) \neq h(m) h(n)$.
So h is not multiplicative.

Dirichlet Inverse of Multiplicative Functions

Theorem

If g is multiplicative, so is g^{-1}, its Dirichlet inverse.

- We have $g * g^{-1}=I$.

Moreover, we know that:

- g is multiplicative, by hypothesis;
- I is multiplicative, by a previous example.

So, by the preceding theorem, g^{-1} is also multiplicative.
Note: The theorems of this section show that the set of multiplicative functions is a subgroup of the group of all arithmetical functions f with $f(1) \neq 0$.

Subsection 3

The Inverse of a Completely Multiplicative Function

Completely Multiplicative Functions

Theorem

Let f be multiplicative. Then f is completely multiplicative if, and only if,

$$
f^{-1}(n)=\mu(n) f(n), \quad \text { for all } n \geq 1
$$

- Let $g(n)=\mu(n) f(n)$.

Suppose f is completely multiplicative.
We take into account that $f(1)=1$ and $I(n)=0$, for $n>1$.
Then, we have

$$
\begin{aligned}
(g * f)(n) & =\sum_{d \mid n} \mu(d) f(d) f\left(\frac{n}{d}\right) \\
& =f(n) \sum_{d \mid n} \mu(d) \\
& =f(n) I(n) \\
& =I(n) .
\end{aligned}
$$

Hence, $g=f^{-1}$.

Completely Multiplicative Functions (Converse)

- Conversely, assume

$$
f^{-1}(n)=\mu(n) f(n) .
$$

We must show that $f\left(p^{a}\right)=f(p)^{a}$ for prime powers.
The equation $f^{-1}(n)=\mu(n) f(n)$ implies, for all $n>1$,

$$
\sum_{d \mid n} \mu(d) f(d) f\left(\frac{n}{d}\right)=0
$$

Hence, taking $n=p^{a}$, we have

$$
\mu(1) f(1) f\left(p^{a}\right)+\mu(p) f(p) f\left(p^{a-1}\right)=0
$$

So

$$
f\left(p^{a}\right)=f(p) f\left(p^{a-1}\right)
$$

This implies $f\left(p^{a}\right)=f(p)^{a}$.

Example: The Inverse of Euler's φ Function

- Recall that $\varphi=\mu * N$.

Taking inverses, we get $\varphi^{-1}=\mu^{-1} * N^{-1}$.
We know that N is completely multiplicative.
By the theorem,

$$
N^{-1}=\mu N
$$

So

$$
\varphi^{-1}=\mu^{-1} * \mu N=u * \mu N
$$

Thus,

$$
\varphi^{-1}(n)=\sum_{d \mid n} d \mu(d) .
$$

A Formula for $\sum_{d \mid n} \mu(d) f(d)$ for Multiplicative f

Theorem

If f is multiplicative we have

$$
\sum_{d \mid n} \mu(d) f(d)=\prod_{p \mid n}(1-f(p))
$$

- Let $g(n)=\sum_{d \mid n} \mu(d) f(d)$. Then g is multiplicative.

To determine $g(n)$ it suffices to compute $g\left(p^{a}\right)$.

$$
g\left(p^{a}\right)=\sum_{d \mid p^{a}} \mu(d) f(d)=\mu(1) f(1)+\mu(p) f(p)=1-f(p) .
$$

Hence,

$$
g(n)=\prod_{p \mid n} g\left(p^{a}\right)=\prod_{p \mid n}(1-f(p)) .
$$

A Formula for φ^{-1}

Corollary

For every n,

$$
\varphi^{-1}(n)=\prod_{p \mid n}(1-p) .
$$

- By the preceding example, for all n,

$$
\varphi^{-1}(n)=\sum_{d \mid n} d \mu(d)
$$

By the theorem, for f is multiplicative,

$$
\sum_{d \mid n} \mu(d) f(d)=\prod_{p \mid n}(1-f(p))
$$

So, taking $f=N$, we obtain

$$
\varphi^{-1}(n)=\prod_{p \mid n}(1-p)
$$

Subsection 4

Liouville's Function $\lambda(n)$

Liouville's Function

Definition

We define $\lambda(1)=1$, and if $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$, we define

$$
\lambda(n)=(-1)^{a_{1}+\cdots+a_{k}} .
$$

- The definition shows that λ is completely multiplicative.

Theorem (Divisor Sum of λ)

For every $n \geq 1$, we have

$$
\sum_{d \mid n} \lambda(d)= \begin{cases}1, & \text { if } n \text { is a square } \\ 0, & \text { otherwise }\end{cases}
$$

Also, $\lambda^{-1}(n)=|\mu(n)|$, for all n.

Divisor Sum of λ

- Let $g(n)=\sum_{d \mid n} \lambda(d)$.

Then g is multiplicative.
To determine $g(n)$ we need only compute $g\left(p^{a}\right)$ for prime powers. We have

$$
\begin{aligned}
g\left(p^{a}\right) & =\sum_{d \mid p^{a}} \lambda(d) \\
& =1+\lambda(p)+\lambda\left(p^{2}\right)+\cdots+\lambda\left(p^{a}\right) \\
& =1-1+1-\cdots+(-1)^{a} \\
& = \begin{cases}0, & \text { if } a \text { is odd } \\
1, & \text { if } a \text { is even }\end{cases}
\end{aligned}
$$

Divisor Sum of λ (Cont'd)

- Now, if $n=\prod_{i=1}^{k} p_{i}^{a_{i}}$, we have

$$
g(n)=\prod_{i=1}^{k} g\left(p_{i}^{a_{i}}\right)
$$

- If any exponent a_{i} is odd then $g\left(p_{i}^{a_{i}}\right)=0$. So $g(n)=0$.
- If all the exponents a_{i} are even, then $g\left(p_{i}^{a_{i}}\right)=1$, for all i. So $g(n)=1$.
This shows that $g(n)=1$ if n is a square, and $g(n)=0$ otherwise.
Finally, by a previous theorem,

$$
\lambda^{-1}(n)=\mu(n) \lambda(n)=\left\{\begin{array}{ll}
(-1)^{2 k}, & \text { if } n=p_{1} \cdots p_{k} \\
0, & \text { othewise }
\end{array}=\mu^{2}(n)=|\mu(n)| .\right.
$$

Subsection 5

The Divisor Functions $\sigma_{\alpha}(n)$

Divisor Functions

Definition

For real or complex α and any integer $n \geq 1$, we define

$$
\sigma_{\alpha}(n)=\sum_{d \mid n} d^{\alpha}
$$

the sum of the α-th powers of the divisors of n.

- The functions σ_{α} are called divisor functions.
- They are multiplicative because

$$
\sigma_{\alpha}=u * N^{\alpha}
$$

the Dirichlet product of two multiplicative functions.

- If $\alpha=0, \sigma_{0}(n)$ is the number of divisors of n, denoted by $d(n)$.
- If $\alpha=1, \sigma_{1}(n)$ is the sum of the divisors of n, denoted by $\sigma(n)$.

Computing $\sigma_{\alpha}(n)$

- Since σ_{α} is multiplicative, we have

$$
\sigma_{\alpha}\left(p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}\right)=\sigma_{\alpha}\left(p_{1}^{a_{1}}\right) \cdots \sigma_{\alpha}\left(p_{k}^{a_{k}}\right)
$$

- To compute $\sigma_{\alpha}\left(p^{a}\right)$ we note that the divisors of a prime power p^{a} are $1, p, p^{2}, \ldots, p^{a}$.
- Hence,

$$
\begin{aligned}
\sigma_{\alpha}\left(p^{a}\right) & =1^{\alpha}+p^{\alpha}+p^{2 \alpha}+\cdots+p^{a \alpha} \\
& = \begin{cases}\frac{p^{a(\alpha+1)}-1}{p^{\alpha}-1}, & \text { if } \alpha \neq 0 \\
a+1, & \text { if } \alpha=0\end{cases}
\end{aligned}
$$

Dirichlet Inverse of σ_{α}

- The Dirichlet inverse of σ_{α} can also be expressed as a linear combination of the α-th powers of the divisors of n.

Theorem

For $n \geq 1$, we have

$$
\sigma_{\alpha}^{-1}(n)=\sum_{d \mid n} d^{\alpha} \mu(d) \mu\left(\frac{n}{d}\right)
$$

- We have the following:
- $\left(N^{\alpha}\right)^{-1}=\mu N^{\alpha}$, since N^{α} is completely multiplicative;
- $u^{-1}=\mu$.

Therefore, taking into account $\sigma_{\alpha}=N^{\alpha} * u$, we get

$$
\sigma_{\alpha}^{-1}=\left(N^{\alpha}\right)^{-1} * u^{-1}=\left(\mu N^{\alpha}\right) * \mu
$$

Subsection 6

Generalized Convolutions

Generalized Convolutions

- F denotes a real or complex-valued function defined on the positive real axis $(0,+\infty)$, such that $F(x)=0$, for $0<x<1$.
- Sums of the type $\sum_{n \leq x} \alpha(n) F\left(\frac{x}{n}\right)$ arise frequently in number theory, where α is any arithmetical function.
- The function defined on $(0,+\infty)$ by

$$
G(x)=\sum_{n \leq x} \alpha(n) F\left(\frac{x}{n}\right)
$$

also vanishes for $0<x<1$.

- We denote this function G by $\alpha \circ F$:

$$
(\alpha \circ F)(x)=\sum_{n \leq x} \alpha(n) F\left(\frac{x}{n}\right)
$$

Generalized Convolutions

- We defined

$$
(\alpha \circ F)(x)=\sum_{n \leq x} \alpha(n) F\left(\frac{x}{n}\right) .
$$

- If $F(x)=0$, for all nonintegral x, the restriction of F to the integers is an arithmetical function and we find that for all integers $m \geq 1$,

$$
(\alpha \circ F)(m)=(a * F)(m)
$$

- So the operation o can be regarded as a generalization of the Dirichlet convolution *.
- The operation \circ is, in general, neither commutative nor associative.

Associative Property Relating \circ and $*$

Theorem (Associative Property Relating \circ and $*$)

For any arithmetical functions α and β we have

$$
\alpha \circ(\beta \circ F)=(\alpha * \beta) \circ F
$$

- For $x>0$, we have

$$
\begin{aligned}
\{\alpha \circ(\beta \circ F)\}(x) & =\sum_{n \leq x} \alpha(n) \sum_{m \leq x / n} \beta(m) F\left(\frac{x}{m n}\right) \\
& =\sum_{m n \leq x} \alpha(n) \beta(m) F\left(\frac{x}{m n}\right) \\
& =\sum_{k \leq x}\left(\sum_{n \mid k} \alpha(n) \beta\left(\frac{k}{n}\right)\right) F\left(\frac{x}{k}\right) \\
& =\sum_{k \leq x}(\alpha * \beta)(k) F\left(\frac{x}{k}\right) \\
& =\{(\alpha * \beta) \circ F\}(x) .
\end{aligned}
$$

Generalized Inversion Formula

- Note that the identity function $I(n)=\left[\frac{1}{n}\right]$ for Dirichlet convolution is also a left identity for \circ, i.e., $(I \circ F)(x)=\sum_{n \leq x}\left[\frac{1}{n}\right] F\left(\frac{x}{n}\right)=F(x)$.

Theorem (Generalized Inversion Formula)

If α has a Dirichlet inverse α^{-1}, then the equation

$$
G(x)=\sum_{n \leq x} \alpha(n) F\left(\frac{x}{n}\right) \quad \text { implies } \quad F(x)=\sum_{n \leq x} \alpha^{-1}(n) G\left(\frac{x}{n}\right)
$$

and conversely.

- Suppose $G=\alpha \circ F$. Then, we have

$$
\alpha^{-1} \circ G=\alpha^{-1} \circ(\alpha \circ F)=\left(\alpha^{-1} * \alpha\right) \circ F=I \circ F=F
$$

Thus, we get the left-to-right implication.
The converse is similarly proved.

Generalized Möbius Inversion Formula

- The following special case is of particular importance.

Theorem (Generalized Möbius Inversion Formula)

If α is completely multiplicative we have

$$
G(x)=\sum_{n \leq x} \alpha(n) F\left(\frac{x}{n}\right) \quad \text { if and only if } \quad F(x)=\sum_{n \leq x} \mu(n) \alpha(n) G\left(\frac{x}{n}\right) .
$$

- Under the hypothesis, $\alpha^{-1}(n)=\mu(n) \alpha(n)$.

Subsection 7

Formal Power Series

Power Series

- In calculus an infinite series of the form

$$
\sum_{n=0}^{\infty} a(n) x^{n}=a(0)+a(1) x+a(2) x^{2}+\cdots+a(n) x^{n}+\cdots
$$

is called a power series in x.

- Both x and the coefficients $a(n)$ are real or complex numbers.
- To each power series there corresponds a radius of convergence $r \geq 0$ (r can be $+\infty$), such that:
- The series converges absolutely if $|x|<r$;
- The series diverges if $|x|>r$.

Introducing Formal Power Series

- In this section we consider power series from a different point of view.
- We call them formal power series to distinguish them from the ordinary power series of calculus.
- In the theory of formal power series:
- x is never assigned a numerical value;
- Questions of convergence or divergence are not of interest.

Formal Power Series

- The object of interest is the sequence of coefficients

$$
(a(0), a(1), \ldots, a(n), \ldots)
$$

- All that we do with formal power series could also be done by treating the sequence of coefficients as though it were an infinite-dimensional vector with components $a(0), a(1), \ldots$
- For our purposes it is more convenient to display the terms as coefficients of the power series

$$
\sum_{n=0}^{\infty} a(n) x^{n}=a(0)+a(1) x+a(2) x^{2}+\cdots+a(n) x^{n}+\cdots
$$

rather than as components of a vector.

- The symbol x^{n} is simply a device for locating the position of the n-th coefficient $a(n)$.
- The coefficient $a(0)$ is called the constant coefficient of the series.

Algebra on Formal Power Series

- We operate on formal power series algebraically as though they were convergent power series.
- Suppose $A(x)$ and $B(x)$ are two formal power series, say

$$
A(x)=\sum_{n=0}^{\infty} a(n) x^{n} \quad \text { and } \quad B(x)=\sum_{n=0}^{\infty} b(n) x^{n}
$$

- Then we define:

Equality: $A(x)=B(x)$ means that $a(n)=b(n)$, for all $n \geq 0$.
Sum: $A(x)+B(x)=\sum_{n=0}^{\infty}(a(n)+b(n)) x^{n}$.
Product: $A(x) B(x)=\sum_{n=0}^{\infty} c(n) x^{n}$, where

$$
c(n)=\sum_{k=0}^{n} a(k) b(n-k) .
$$

The sequence $\{c(n)\}$ is called the Cauchy product of the sequences $\{a(n)\}$ and $\{b(n)\}$.

The Ring of Formal Power Series

- The reader can easily verify that the sum and product operations satisfy the commutative and associative laws, and that multiplication is distributive with respect to addition.
- Thus, formal power series form a ring.
- This ring has a zero element for addition, denoted by 0 ,

$$
0=\sum_{n=0}^{\infty} a(n) x^{n}, \text { where } a(n)=0, \text { for all } n \geq 0
$$

- The ring also has an identity element for multiplication, denoted by 1 ,

$$
1=\sum_{n=0}^{\infty} a(n) x^{n}, \text { where } a(0)=1 \text { and } a(n)=0, \text { for } n \geq 1
$$

- A formal power series is called a formal polynomial if all its coefficients are 0 from some point on.

Inverse of a Formal Power Series

Claim: For each formal power series $A(x)=\sum_{n=0}^{\infty} a(n) x^{n}$, with constant coefficient $a(0) \neq 0$, there is a uniquely determined formal power series $B(x)=\sum_{n=0}^{\infty} b(n) x^{n}$, such that $A(x) B(x)=1$.
Its coefficients can be determined by solving the infinite system of equations:

$$
\begin{aligned}
& a(0) b(0)=1 ; \\
& a(0) b(1)+a(1) b(0)=0 ; \\
& a(0) b(2)+a(1) b(1)+a(2) b(0)=0 ;
\end{aligned}
$$

We may solve in succession for $b(0), b(1), b(2), \ldots$

- The series $B(x)$ is called the inverse of $A(x)$ and is denoted by $A(x)^{-1}$ or by $\frac{1}{A(x)}$.

The Geometric Series

- The special series

$$
A(x)=1+\sum_{n=1}^{\infty} a^{n} x^{n}
$$

is called a geometric series.

- Here a is an arbitrary real or complex number.
- Its inverse is the formal polynomial

$$
B(x)=1-a x
$$

- In other words, we have

$$
\frac{1}{1-a x}=1+\sum_{n=1}^{\infty} a^{n} x^{n}
$$

Subsection 8

The Bell Series of an Arithmetical Function

Bell Series

Definition

Given an arithmetical function f and a prime p, we denote by $f_{p}(x)$ the formal power series

$$
f_{p}(x)=\sum_{n=0}^{\infty} f\left(p^{n}\right) x^{n}
$$

and call this the Bell series of f modulo p.

- Bell series are especially useful when f is multiplicative, as we show next.

Uniqueness Theorem Involving Bell Series

Theorem (Uniqueness Theorem)

Let f and g be multiplicative functions. Then $f=g$ if and only if

$$
f_{p}(x)=g_{p}(x), \quad \text { for all primes } p
$$

- Suppose, first, that $f=g$.

Then $f\left(p^{n}\right)=g\left(p^{n}\right)$, for all p and all $n \geq 0$.
So $f_{p}(x)=g_{p}(x)$.
Conversely, suppose $f_{p}(x)=g_{p}(x)$, for all p.
Then $f\left(p^{n}\right)=g\left(p^{n}\right)$, for all $n \geq 0$.
Since f and g are multiplicative and agree at all prime powers, they agree at all positive integers. So $f=g$.

Bell Series of μ and of φ

- Möbius Function μ : We have:
- $\mu(p)=-1$;
- $\mu\left(p^{n}\right)=0$, for $n \geq 2$.

So we get

$$
\mu_{p}(x)=1-x
$$

- Euler's Totient φ : We have

$$
\varphi\left(p^{n}\right)=p^{n}-p^{n-1}, \quad \text { for } n \geq 1
$$

So we get

$$
\begin{aligned}
\varphi_{p}(x) & =1+\sum_{n=1}^{\infty}\left(p^{n}-p^{n-1}\right) x^{n} \\
& =\sum_{n=0}^{\infty} p^{n} x^{n}-x \sum_{n=0}^{\infty} p^{n} x^{n} \\
& =(1-x) \sum_{n=0}^{\infty} p^{n} x^{n} \\
& =\frac{1-x}{1-p x} .
\end{aligned}
$$

Bell Series of a Completely Multiplicative Function

- If f is completely multiplicative then $f\left(p^{n}\right)=f(p)^{n}$, for all $n \geq 0$.
- So the Bell series $f_{p}(x)$ is a geometric series,

$$
f_{p}(x)=\sum_{n=0}^{\infty} f(p)^{n} x^{n}=\frac{1}{1-f(p) x}
$$

Particular Cases

- Using $f_{p}(x)=\sum_{n=0}^{\infty} f(p)^{n} x^{n}=\frac{1}{1-f(p) x}$, we get the following Bell series:
- For the identity function I,

$$
I_{p}(x)=1 ;
$$

- For the unit function u,

$$
u_{p}(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

- For the power function N^{α},

$$
N_{p}^{\alpha}(x)=1+\sum_{n=1}^{\infty} p^{\alpha n} x^{n}=\frac{1}{1-p^{\alpha} x}
$$

- For Liouville's function λ,

$$
\lambda_{p}(x)=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=\frac{1}{1+x}
$$

Subsection 9

Bell Series and Dirichlet Multiplication

Multiplication of Bell Series and Dirichlet Multiplication

- We relate multiplication of Bell series to Dirichlet multiplication.

Theorem

For any two arithmetical functions f and g, let $h=f * g$. Then, for every prime p, we have

$$
h_{p}(x)=f_{p}(x) g_{p}(x)
$$

- The divisors of p^{n} are $1, p, p^{2}, \ldots, p^{n}$.

So we have

$$
h\left(p^{n}\right)=\sum_{d \mid p^{n}} f(d) g\left(\frac{p^{n}}{d}\right)=\sum_{k=0}^{n} f\left(p^{k}\right) g\left(p^{n-k}\right)
$$

This completes the proof because the last sum is the Cauchy product of the sequences $\left\{f\left(p^{n}\right)\right\}$ and $\left\{g\left(p^{n}\right)\right\}$.

Example

- We know that

$$
\mu^{2}(n)=\lambda^{-1}(n)
$$

It follows that

$$
\mu_{p}^{2}(x) \lambda_{p}(x)=I_{p}(x)=1
$$

So the Bell series of μ^{2} modulo p is

$$
\mu_{p}^{2}(x)=\frac{1}{\lambda_{p}(x)}=1+x
$$

Example

- We know that

$$
\sigma_{\alpha}=N^{\alpha} * u .
$$

It follows that the Bell series of σ_{α} modulo p is

$$
\begin{aligned}
\left(\sigma_{\alpha}\right)_{p}(x) & =N_{p}^{\alpha}(x) u_{p}(x) \\
& =\frac{1}{1-p^{\alpha} x} \cdot \frac{1}{1-x} \\
& =\frac{1}{1-\left(1+p^{\alpha}\right) x+p^{\alpha} x^{2}} \\
& =\frac{1}{1-\sigma_{\alpha}(p) x+p^{\alpha} x^{2}}
\end{aligned}
$$

Bell Series and Identities of Arithmetical Functions

- This example illustrates how Bell series can be used to discover identities involving arithmetical functions.
- Consider the function ν defined by

$$
\nu(n)= \begin{cases}0, & \text { if } n=1 \\ k, & \text { if } n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}} .\end{cases}
$$

- Define

$$
f(n)=2^{\nu(n)}
$$

- The function f is clearly multiplicative.

Bell Series and Identities (Cont'd)

- Recall that:
- $\mu_{p}^{2}(x)=1+x$;
- $u_{p}(x)=\frac{1}{1-x}$.

The Bell series of f modulo p is

$$
f_{p}(x)=1+\sum_{n=1}^{\infty} 2^{\nu\left(p^{n}\right)} x^{n}=1+\sum_{n=1}^{\infty} 2 x^{n}=1+\frac{2 x}{1-x}=\frac{1+x}{1-x}
$$

Hence

$$
f_{p}(x)=\mu_{p}^{2}(x) u_{p}(x)
$$

This implies $f=\mu^{2} * u$.
Equivalently,

$$
2^{\nu(n)}=\sum_{d \mid n} \mu^{2}(d)
$$

Subsection 10

Derivatives of Arithmetical Functions

Derivatives of Arithmetical Functions

Definition

For any arithmetical function f, we define its derivative f^{\prime} to be the arithmetical function given by the equation

$$
f^{\prime}(n)=f(n) \log n, \text { for } n \geq 1
$$

Examples

Example: We have, for all n,

$$
I(n) \log n=0
$$

So we get

$$
I^{\prime}=0
$$

Example: We have, for all $n, u(n)=1$.
So we get

$$
u^{\prime}(n)=\log n
$$

- Recall that, for the Mangoldt function Λ, we have

$$
\sum_{d \mid n} \Lambda(d)=\log n
$$

This can be written as

$$
\Lambda * u=u^{\prime} .
$$

Properties of Derivatives

- This concept of derivative shares many of the properties of the ordinary derivative discussed in elementary calculus.

Theorem

If f and g are arithmetical functions we have:
(a) $(f+g)^{\prime}=f^{\prime}+g^{\prime}$.
(b) $(f * g)^{\prime}=f^{\prime} * g+f * g^{\prime}$.
(c) $\left(f^{-1}\right)^{\prime}=-f^{\prime} *(f * f)^{-1}$, provided that $f(1) \neq 0$.
(a) We have, for all n,

$$
\begin{aligned}
(f+g)^{\prime}(n) & =(f+g)(n) \log n \\
& =f(n) \log n+g(n) \log n \\
& =f^{\prime}(n)+g^{\prime}(n) \\
& =\left(f^{\prime}+g^{\prime}\right)(n) .
\end{aligned}
$$

Properties of Derivatives (Cont'd)

(b) We use the identity $\log n=\log d+\log \left(\frac{n}{d}\right)$ to write

$$
\begin{aligned}
(f * g)^{\prime}(n) & =\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right) \log n \\
& =\sum_{d \mid n} f(d) \log d g\left(\frac{n}{d}\right)+\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right) \log \left(\frac{n}{d}\right) \\
& =\left(f^{\prime} * g\right)(n)+\left(f * g^{\prime}\right)(n) .
\end{aligned}
$$

(c) We apply part (b) to the formula $I^{\prime}=0$, remembering that $I=f * f^{\prime}$. This gives us

$$
0=I^{\prime}=\left(f * f^{-1}\right)^{\prime}=f^{\prime} * f^{-1}+f *\left(f^{-1}\right)^{\prime}
$$

So $f *\left(f^{-1}\right)^{\prime}=-f^{\prime} * f^{-1}$.
Multiplication by f^{-1} now gives us

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime} & =-\left(f^{\prime} * f^{-1}\right) * f^{-1} \\
& =-f^{\prime} *\left(f^{-1} * f^{-1}\right) \\
& =-f^{\prime} *(f * f)^{-1}
\end{aligned}
$$

Subsection 11

The Selberg Identity

The Selberg Identity

- We quickly derive a formula of Selberg which is sometimes used as the starting point of an elementary proof of the prime number theorem.

Theorem (The Selberg Identity)

For $n \geq 1$, we have

$$
\Lambda(n) \log n+\sum_{d \mid n} \Lambda(d) \wedge\left(\frac{n}{d}\right)=\sum_{d \mid n} \mu(d) \log ^{2}\left(\frac{n}{d}\right)
$$

- We saw that $\Lambda * u=u^{\prime}$.

Differentiation yields $\Lambda^{\prime} * u+\Lambda * u^{\prime}=u^{\prime \prime}$.
Since $u^{\prime}=\Lambda * u$,

$$
\Lambda^{\prime} * u+\Lambda *(\Lambda * u)=u^{\prime \prime}
$$

Now we multiply both sides by $\mu=u^{-1}$ to obtain

$$
\Lambda^{\prime}+\Lambda * \Lambda=u^{\prime \prime} * \mu
$$

