Introduction to Analytic Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Averages of Arithmetical Functions

- Introduction
- The Big Oh Notation. Asymptotic Equality of Functions
- Euler's Summation Formula
- Some Elementary Asymptotic Formulas
- The Average Order of $d(n)$
- The Average Order of the Divisor Functions $\sigma_{\alpha}(n)$
- The Average Order of $\varphi(n)$
- Distribution of Lattice Points Visible from the Origin
- The Average Order of $\mu(n)$ and of $\Lambda(n)$
- The Partial Sums of a Dirichlet Product
- Applications to $\mu(n)$ and $\Lambda(n)$
- Another Identity for the Partial Sums of a Dirichlet Product

Subsection 1

Introduction

Asymptotic Behavior of Arithmetical Functions

- We study the behavior of arithmetical functions $f(n)$ for large values of n.
Example: Consider the function

$$
d(n)=\text { the number of divisors of } n .
$$

It takes on the value 2 infinitely often (when n is prime).
It also takes on arbitrarily large values when n has a large number of divisors.

Thus, the values of $d(n)$ fluctuate considerably as n increases.

- Many arithmetical functions fluctuate in this manner.
- So it is often difficult to determine their behavior for large n.

Introducing Averages

- The flactuation of many arithmetical functions makes it difficult to determine their behavior for large n.
- Sometimes it is more fruitful to study the arithmetic mean

$$
\widetilde{f}(n)=\frac{1}{n} \sum_{k=1}^{n} f(k)
$$

- Averages smooth out fluctuations, so it is reasonable to expect that the mean values $\widetilde{f}(n)$ might behave more regularly than $f(n)$.
Example: We will show that the average $\widetilde{d}(n)$ grows like $\log n$ for large n,

$$
\lim _{n \rightarrow \infty} \frac{\widetilde{d}(n)}{\log n}=1
$$

This is described by saying that
"the average order of $d(n)$ is $\log n$ ".

Partial Sums

- To study the average of an arbitrary function f we need a knowledge of its partial sums

$$
\sum_{k=1}^{n} f(k)
$$

- Sometimes it is convenient to replace the upper index n by an arbitrary positive real number x and to consider instead sums of the form

$$
\sum_{k \leq x} f(k)
$$

- In the last sum, it is understood that the index k varies from 1 to $[x]$, the greatest integer $\leq x$.
- If $0<x<1$ the sum is empty and we assign it the value 0 .
- Our goal is to determine the behavior of this sum as a function of x, especially for large x.

Example: The Divisor Function Revisited

- For the divisor function we will prove a result obtained by Dirichlet in 1849, namely

$$
\sum_{k \leq x} d(k)=x \log x+(2 C-1) x+O(\sqrt{x}), x \geq 1
$$

- In this sum, C is Euler's constant, defined by the equation

$$
C=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log n\right) .
$$

- The symbol $O(\sqrt{x})$ represents an unspecified function of x which grows no faster than some constant times \sqrt{x}.
- This is an example of the "big oh" notation.

Subsection 2

The Big Oh Notation. Asymptotic Equality of Functions

The Big Oh Notation

Definition

If $g(x)>0$, for all $x \geq a$, we write

$$
f(x)=O(g(x)) \quad(\text { read: " } f(x) \text { is big oh of } g(x) \text { ") }
$$

to mean that the quotient $\frac{f(x)}{g(x)}$ is bounded for $x \geq a$. That is, there exists a constant $M>0$, such that

$$
|f(x)| \leq M g(x), \quad \text { for all } x \geq a
$$

Big Oh in Equations

- An equation of the form

$$
f(x)=h(x)+O(g(x))
$$

means that

$$
f(x)-h(x)=O(g(x))
$$

Note: $f(t)=O(g(t))$, for $t \geq a$, implies

$$
\int_{a}^{x} f(t) d t=O\left(\int_{a}^{x} g(t) d t\right), \quad \text { for } x \geq a
$$

Asymptotic Behavior of Functions

Definition

We say that $f(x)$ is asymptotic to $g(x)$ as $x \rightarrow \infty$, and we write

$$
f(x) \sim g(x) \text { as } x \rightarrow \infty
$$

if

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1
$$

Example

Consider again the equation

$$
\sum_{k \leq x} d(k)=x \log x+(2 C-1) x+O(\sqrt{x})
$$

- It implies that

$$
\sum_{k \leq x} d(k) \sim x \log x \text { as } x \rightarrow \infty
$$

- In the first equation the term $x \log x$ is called the asymptotic value of the sum.
- The other two terms represent the error made by approximating the sum by its asymptotic value.

The Error Terms

- Consider again

$$
\sum_{k \leq x} d(k)=x \log x+(2 C-1) x+O(\sqrt{x})
$$

- If we denote the error by $E(x)$, then

$$
E(x)=(2 C-1) x+O(\sqrt{x})
$$

- This could also be written

$$
E(x)=O(x)
$$

- Even though this equation is correct, it does not convey the more precise information in the displayed equation above, which tells us that the asymptotic value of $E(x)$ is $(2 C-1) x$.

Subsection 3

Euler's Summation Formula

Euler's Summation Formula

- Sometimes the asymptotic value of a partial sum can be obtained by comparing it with an integral.
- A summation formula of Euler gives an exact expression for the error made in such an approximation.

Theorem (Euler's Summation Formula)

If f has a continuous derivative f^{\prime} on the interval $[y, x]$, where $0<y<x$, then

$$
\begin{aligned}
\sum_{y<n \leq x} f(n)=\int_{y}^{x} f(t) d t & +\int_{y}^{x}(t-[t]) f^{\prime}(t) d t \\
& +f(x)([x]-x)-f(y)([y]-y)
\end{aligned}
$$

Euler's Summation Formula (Cont'd)

- Let $m=[y], k=[x]$.

For integers n and $n-1$ in $[y, x]$ we have

$$
\begin{aligned}
\int_{n-1}^{n}[t] f^{\prime}(t) d t & =\int_{n-1}^{n}(n-1) f^{\prime}(t) d t \\
& =(n-1)\{f(n)-f(n-1)\} \\
& =\{n f(n)-(n-1) f(n-1)\}-f(n) .
\end{aligned}
$$

Summing from $n=m+1$ to $n=k$ we find

$$
\begin{aligned}
\int_{m}^{k}[t] f^{\prime}(t) d t= & \sum_{n=m+1}^{k}\{n f(n)-(n-1) f(n-1)\} \\
& -\sum_{y<n \leq x} f(n) \\
= & k f(k)-m f(m)-\sum_{y<n \leq x} f(n) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\sum_{y<n \leq x} f(n) & =-\int_{m}^{k}[t] f^{\prime}(t) d t+k f(k)-m f(m) \\
& =-\int_{y}^{x}[t] f^{\prime}(t) d t+k f(x)-m f(y) .
\end{aligned}
$$

Euler's Summation Formula (Cont'd)

- We got

$$
\sum_{y<n \leq x} f(n)=-\int_{y}^{x}[t] f^{\prime}(t) d t+k f(x)-m f(y)
$$

Integration by parts gives

$$
\int_{y}^{x} f(t) d t=x f(x)-y f(y)-\int_{y}^{x} t f^{\prime}(t) d t
$$

Thus, we get

$$
\begin{aligned}
\sum_{y<n \leq x} f(n)= & -\int_{y}^{x}[t] f^{\prime}(t) d t+k f(x)-m f(y) \\
= & -\int_{y}^{x} t f^{\prime}(t) d t+\int_{y}^{x}(t-[t]) f^{\prime}(t) d t \\
\quad & \quad+k f(x)-m f(y) \\
= & \int_{y}^{x} f(t) d t+\int_{y}^{x}(t-[t]) f^{\prime}(t) d t \\
& \quad+(k-x) f(x)-(m-y) f(y) .
\end{aligned}
$$

Subsection 4

Some Elementary Asymptotic Formulas

Euler's Constant and Riemann Zeta Function

- Recall Euler's constant

$$
C=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log n\right)
$$

- $\zeta(s)$ denotes the Riemann zeta function which is defined by the equation

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad \text { if } s>1
$$

and by the equation

$$
\zeta(s)=\lim _{x \rightarrow \infty}\left(\sum_{n \leq x} \frac{1}{n^{s}}-\frac{x^{1-s}}{1-s}\right), \quad \text { if } 0<s<1
$$

Asymptotic Formulas

Theorem

If $x \geq 1$, we have:
(a) $\sum_{n \leq x} \frac{1}{n}=\log x+C+O\left(\frac{1}{x}\right)$;
(b) $\sum_{n \leq x} \frac{1}{n^{s}}=\frac{x^{1-s}}{1-s}+\zeta(s)+O\left(x^{-s}\right)$, if $s>0, s \neq 1$;
(c) $\sum_{n>x} \frac{1}{n^{s}}=O\left(x^{1-s}\right)$, if $s>1$;
(d) $\sum_{n \leq x} n^{\alpha}=\frac{x^{\alpha+1}}{\alpha+1}+O\left(x^{\alpha}\right)$, if $\alpha \geq 0$.
(a) Take $f(t)=\frac{1}{t}$ in Euler's summation formula to obtain

$$
\begin{aligned}
\sum_{n \leq x} \frac{1}{n} & =\int_{1}^{x} \frac{d t}{t}-\int_{1}^{x} \frac{t-[t]}{t^{2}} d t+1-\frac{x-[x]}{x} \\
& =\log x-\int_{1}^{x} \frac{t-[t]}{t^{2}} d t+1+O\left(\frac{1}{x}\right) \\
& =\log x+1-\int_{1}^{\infty} \frac{t-[t]}{t^{2}} d t+\int_{x}^{\infty} \frac{t-[t]}{t^{2}} d t+O\left(\frac{1}{x}\right)
\end{aligned}
$$

Asymptotic Formulas (Part (a) Cont'd)

- We obtained

$$
\sum_{n \leq x} \frac{1}{n}=\log x+1-\int_{1}^{\infty} \frac{t-[t]}{t^{2}} d t+\int_{x}^{\infty} \frac{t-[t]}{t^{2}} d t+O\left(\frac{1}{x}\right)
$$

The improper integral $\int_{1}^{\infty}(t-[t]) t^{-2} d t$ exists since it is dominated by $\int_{1}^{\infty} t^{-2} d t$. Also,

$$
0 \leq \int_{x}^{\infty} \frac{t-[t]}{t^{2}} d t \leq \int_{x}^{\infty} \frac{1}{t^{2}} d t=\frac{1}{x}
$$

Asymptotic Formulas (Part (a) Cont'd)

- We have:

$$
\begin{aligned}
& \text { - } \sum_{n \leq x} \frac{1}{n}=\log x+1-\int_{1}^{\infty} \frac{t-[t]}{t^{2}} d t+\int_{x}^{\infty} \frac{t-[t]}{t^{2}} d t+O\left(\frac{1}{x}\right) \\
& \text { - } 0 \leq \int_{x}^{\infty} \frac{t-[t]}{t^{2}} d t \leq \int_{x}^{\infty} \frac{1}{t^{2}} d t=\frac{1}{x}
\end{aligned}
$$

So we get

$$
\sum_{n \leq x} \frac{1}{n}=\log x+1-\int_{1}^{\infty} \frac{t-[t]}{t^{2}} d t+O\left(\frac{1}{x}\right)
$$

This proves (a) with $C=1-\int_{1}^{\infty} \frac{t-[t]}{t^{2}} d t$.
Letting $x \rightarrow \infty$ in (a) we find that

$$
\lim _{x \rightarrow \infty}\left(\sum_{n \leq x} \frac{1}{n}-\log x\right)=1-\int_{1}^{\infty} \frac{t-[t]}{t^{2}} d t
$$

So C is also equal to Euler's constant.

Asymptotic Formulas (Part (b))

(b) We use a similar argument with $f(x)=x^{-s}$, where $s>0, s \neq 1$.

Euler's summation formula gives us

$$
\begin{aligned}
\sum_{n \leq x} \frac{1}{n^{s}} & =\int_{1}^{x} \frac{d t}{t^{s}}-s \int_{1}^{x} \frac{t-[t]}{t^{s+1}} d t+1-\frac{x-[x]}{x^{s}} \\
& =\frac{x^{1-s}}{1-s}-\frac{1}{1-s}+1-s \int_{1}^{\infty} \frac{t-[t]}{t^{s+1}} d t+O\left(x^{-s}\right)
\end{aligned}
$$

Therefore,

$$
\sum_{n \leq x} \frac{1}{n^{s}}=\frac{x^{1-s}}{1-s}+C(s)+O\left(x^{-s}\right)
$$

where

$$
C(s)=1-\frac{1}{1-s}-s \int_{1}^{\infty} \frac{t-[t]}{t^{s+1}} d t
$$

Asymptotic Formulas (Part (b) Cont'd)

- We have

$$
\sum_{n \leq x} \frac{1}{n^{s}}=\frac{x^{1-s}}{1-s}+C(s)+O\left(x^{-s}\right)
$$

where $C(s)=1-\frac{1}{1-s}-s \int_{1}^{\infty} \frac{t-[t]}{t^{s+1}} d t$.

- Suppose $s>1$.

The left member of the equation approaches $\zeta(s)$ as $x \rightarrow \infty$.
The terms x^{1-s} and x^{-s} both approach 0 .
Hence, $C(s)=\zeta(s)$, if $s>1$.

- Suppose $0<s<1$.

Then $x^{-s} \rightarrow 0$.
The equation shows that

$$
\lim _{n \rightarrow \infty}\left(\sum_{n \leq x} \frac{1}{n^{s}}-\frac{x^{1-s}}{1-s}\right)=C(s)
$$

Therefore, $C(s)$ is also equal to $\zeta(s)$.

Asymptotic Formulas (Part (c)-(d))

(c) We use (b) with $s>1$ to obtain

$$
\sum_{n>x} \frac{1}{n^{s}}=\zeta(s)-\sum_{n \leq x} \frac{1}{n^{s}}=\frac{x^{1-s}}{s-1}+O\left(x^{-s}\right)^{x^{-s} \leqq x^{1-s}} O\left(x^{1-s}\right) .
$$

(d) Using Euler's summation formula, with $f(t)=t^{\alpha}$, we obtain

$$
\begin{aligned}
\sum_{n \leq x} n^{\alpha} & =\int_{1}^{x} t^{\alpha} d t+\alpha \int_{1}^{x} t^{\alpha-1}(t-[t]) d t+1-(x-[x]) x^{\alpha} \\
& =\frac{x^{\alpha+1}}{\alpha+1}-\frac{1}{\alpha+1}+O\left(\alpha \int_{1}^{x} t^{\alpha-1} d t\right)+O\left(x^{\alpha}\right) \\
& =\frac{x^{\alpha+1}}{\alpha+1}+O\left(x^{\alpha}\right)
\end{aligned}
$$

Subsection 5

The Average Order of $d(n)$

The Average Order of $d(n)$

Theorem

For all $x \geq 1$, we have

$$
\sum_{n \leq x} d(n)=x \log x+(2 C-1) x+O(\sqrt{x})
$$

where C is Euler's constant.

- By definition, $d(n)=\sum_{d \mid n} 1$. So $\sum_{n \leq x} d(n)=\sum_{n \leq x} \sum_{d \mid n} 1$. This is a double sum extended over n and d.
Since $d \mid n$, we can write $n=q d$ and extend the sum over all pairs of positive integers q, d, with $q d \leq x$. Thus,

$$
\sum_{n \leq x} d(n)=\sum_{\substack{q, d \\ q d<x}} 1
$$

The Average Order of $d(n)$ (Cont'd)

- We wrote

$$
\sum_{n \leq x} d(n)=\sum_{\substack{q, d \\ q d \leq x}} 1
$$

The sum extends over lattice points in the $q d$-plane that lie on hyperbolas $q d=n$, with $n \leq x$.

So it counts the number of lattice points which lie on these hyperbolas corresponding to $n=1,2, \ldots,[x]$.

The Average Order of $d(n)$ (Cont'd)

- For each fixed $d \leq x$, we can:
- Count first those lattice points on the horizontal line segment $1 \leq q \leq \frac{x}{d} ;$
- Then sum over all $d \leq x$.

Thus we get

$$
\sum_{n \leq x} d(n)=\sum_{d \leq x} \sum_{q \leq x / d} 1
$$

We use Part (d) of the preceding theorem with $\alpha=0$ to obtain

$$
\sum_{q \leq x / d} 1=\frac{x}{d}+O(1)
$$

The Average Order of $d(n)$ (Cont'd)

- Now we use this along with Part (a) of the preceding theorem to find

$$
\begin{aligned}
\sum_{n \leq x} d(n) & =\sum_{d \leq x}\left\{\frac{x}{d}+O(1)\right\} \\
& =x \sum_{d \leq x} \frac{1}{d}+O(x) \\
& =x\left\{\log x+C+O\left(\frac{1}{x}\right)\right\}+O(x) \\
& =x \log x+O(x)
\end{aligned}
$$

This is a weak version of the theorem which implies

$$
\sum_{n \leq x} d(n) \sim x \log x, \quad \text { as } x \rightarrow \infty
$$

So it gives $\log n$ as the average order of $d(n)$.

The Average Order of $d(n)$ (Cont'd)

- To prove the more precise formula we return to

$$
\sum_{n \leq x} d(n)=\sum_{\substack{q, d \\ q d \leq x}} 1
$$

It counts the number of lattice points in a hyperbolic region.
We take advantage of the symmetry of the region about the line $q=d$.
The total number of points equals twice the number below the line $q=d$ plus the number on the bisecting segment.

$$
\sum_{n \leq x} d(n)=2 \sum_{d \leq \sqrt{x}}\left\{\left[\frac{x}{d}\right]-d\right\}+[\sqrt{x}]
$$

The Average Order of $d(n)$ (Cont'd)

- We obtained

$$
\sum_{n \leq x} d(n)=2 \sum_{d \leq \sqrt{x}}\left\{\left[\frac{x}{d}\right]-d\right\}+[\sqrt{x}]
$$

Now we use the relation $[y]=y+0(1)$ and Parts (a) and (d) of the preceding theorem to obtain

$$
\begin{aligned}
\sum_{n \leq x} d(n) & =2 \sum_{d \leq \sqrt{x}}\left\{\frac{x}{d}-d+O(1)\right\}+O(\sqrt{x}) \\
& =2 x \sum_{d \leq \sqrt{x}} \frac{1}{d}-2 \sum_{d \leq \sqrt{x}} d+O(\sqrt{x}) \\
= & 2 x\left\{\log \sqrt{x}+C+O\left(\frac{1}{\sqrt{x}}\right)\right\} \\
& \quad-2\left\{\frac{x}{2}+O(\sqrt{x})\right\}+O(\sqrt{x}) \\
& =x \log x+(2 C-1) x+O(\sqrt{x}) .
\end{aligned}
$$

Subsection 6

The Average Order of the Divisor Functions $\sigma_{\alpha}(n)$

The Average Order of $\sigma_{1}(n)$

- The case $\alpha=0$ was considered in the preceding theorem.

Theorem

For all $x \geq 1$, we have

$$
\sum_{n \leq x} \sigma_{1}(x)=\frac{1}{2} \zeta(2) x^{2}+O(x \log x)
$$

Note: It can be shown that $\zeta(2)=\frac{\pi^{2}}{6}$.
Therefore, the average order of $\sigma_{1}(n)$ is $\frac{\pi^{2} n}{12}$.

The Average Order of $\sigma_{1}(n)$ (Cont'd)

- We have

$$
\begin{aligned}
\sum_{n \leq x} \sigma_{1}(x) & =\sum_{n \leq x} \sum_{q \mid n} q \\
& =\sum_{q, d} q \\
& =\sum_{d d \leq x} \sum_{q \leq x / d} q \\
& \stackrel{(d)}{=} \sum_{d \leq x}\left\{\frac{1}{2}\left(\frac{x}{d}\right)^{2}+O\left(\frac{x}{d}\right)\right\} \\
& =\frac{x^{2}}{2} \sum_{d \leq x} \frac{1}{d^{2}}+O\left(x \sum_{d \leq x} \frac{1}{d}\right) \\
& \stackrel{(b)}{=} \frac{x^{2}}{2}\left\{-\frac{1}{x}+\zeta(2)+O\left(\frac{1}{x^{2}}\right)\right\}+O(x \log x) \\
& =\frac{1}{2} \zeta(2) x^{2}+O(x \log x)
\end{aligned}
$$

The Average Order of $\sigma_{\alpha}(n), 0<\alpha \neq 1$

Theorem

If $x \geq 1$ and $\alpha>0, \alpha \neq 1$, we have

$$
\sum_{n \leq x} \sigma_{\alpha}(n)=\frac{\zeta(\alpha+1)}{\alpha+1} x^{\alpha+1}+O\left(x^{\beta}\right)
$$

where $\beta=\max \{1, \alpha\}$.

- We have

$$
\begin{aligned}
\sum_{n \leq x} \sigma_{\alpha}(n) & =\sum_{n \leq x} \sum_{q \mid n} q^{\alpha} \\
& =\sum_{d \leq x} \sum_{q \leq x / d} q^{\alpha} \\
& \stackrel{(d)}{=} \sum_{d \leq x}\left\{\frac{1}{\alpha+1}\left(\frac{x}{d}\right)^{\alpha+1}+O\left(\frac{x^{\alpha}}{d^{\alpha}}\right)\right\}
\end{aligned}
$$

The Average Order of $\sigma_{\alpha}(n), 0<\alpha \neq 1$ (Cont'd)

- Contining

$$
\begin{aligned}
\sum_{n \leq x} \sigma_{\alpha}(n) & =\sum_{d \leq x}\left\{\frac{1}{\alpha+1}\left(\frac{x}{d}\right)^{\alpha+1}+O\left(\frac{x^{\alpha}}{d^{\alpha}}\right)\right\} \\
& =\frac{x^{\alpha+1}}{\alpha+1} \sum_{d \leq x} \frac{1}{d^{\alpha+1}}+O\left(x^{\alpha} \sum_{d \leq x} \frac{1}{d^{\alpha}}\right) \\
& \stackrel{(b)}{=} \frac{x^{\alpha+1}}{\alpha+1}\left\{\frac{x^{-\alpha}}{-\alpha}+\zeta(\alpha+1)+O\left(x^{-\alpha-1}\right)\right\} \\
& \quad O\left(x^{\alpha}\left\{\frac{x^{-\alpha-1}}{1-\alpha}+\zeta(\alpha)+O\left(x^{-\alpha}\right)\right\}\right) \\
& =\frac{\zeta(\alpha+1)}{\alpha+1} x^{\alpha+1}+O(x)+O(1)+O\left(x^{\alpha}\right) \\
& =\frac{\zeta(\alpha+1)}{\alpha+1} x^{\alpha+1}+O\left(x^{\max \{1, \alpha\}}\right) \\
& =\frac{\zeta(\alpha+1)}{\alpha+1} x^{\alpha+1}+O\left(x^{\beta}\right)
\end{aligned}
$$

The Average Order of $\sigma_{\alpha}(n), \alpha<0$

- For negative α we write $\alpha=-\beta$, where $\beta>0$.

Theorem

If $\beta>0$, let $\delta=\max \{0,1-\beta\}$. Then if $x>1$, we have

$$
\sum_{n \leq x} \sigma_{-\beta}(n)= \begin{cases}\zeta(\beta+1) x+O\left(x^{\delta}\right), & \text { if } \beta \neq 1 \\ \zeta(2) x+O(\log x), & \text { if } \beta=1\end{cases}
$$

The Average Order of $\sigma_{\alpha}(n), \alpha<0$ (Cont'd)

- We have

$$
\begin{aligned}
\sum_{n \leq x} \sigma_{-\beta}(n) & =\sum_{n \leq x} \sum_{d \mid n} \frac{1}{d^{\beta}} \\
& =\sum_{d \leq x} \frac{1}{d^{\beta}} \sum_{q \leq x / d} 1 \\
& \stackrel{(d)}{=} \sum_{d \leq x} \frac{1}{d^{\beta}}\left\{\frac{x}{d}+O(1)\right\} \\
& =x \sum_{d \leq x} \frac{1}{d^{\beta+1}}+O\left(\sum_{d \leq x} \frac{1}{d^{\beta}}\right)
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
x \sum_{d \leq x} \frac{1}{d^{\beta+1}} & \stackrel{(b)}{=} \frac{x^{1-\beta}}{-\beta}+\zeta(\beta+1) x+O\left(x^{-\beta}\right) \\
& =\zeta(\beta+1) x+O\left(x^{1-\beta}\right)
\end{aligned}
$$

Finally,

$$
O\left(\sum_{d \leq x} \frac{1}{d^{\beta}}\right)= \begin{cases}O(\log x), & \text { if } \beta=1 \\ O\left(x^{\delta}\right), & \text { if } \beta \neq 1\end{cases}
$$

Subsection 7

The Average Order of $\varphi(n)$

Asymptotic Formula for $\sum_{n \leq x} \frac{\mu(n)}{n^{2}}$

- The asymptotic formula for the partial sums of Euler's totient involves the sum of the series $\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{2}}$.
- This series converges absolutely since it is dominated by $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
- We will prove later that

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{2}}=\frac{1}{\zeta(2)}=\frac{6}{\pi^{2}}
$$

- Assuming this result for the time being we have

$$
\begin{aligned}
\sum_{n \leq x} \frac{\mu(n)}{n^{2}} & =\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{2}}-\sum_{n>x} \frac{\mu(n)}{n^{2}} \\
& =\frac{6}{\pi^{2}}+O\left(\sum_{n>x} \frac{1}{n^{2}}\right) \\
& \stackrel{(c)}{=} \frac{6}{\pi^{2}}+O\left(\frac{1}{x}\right) .
\end{aligned}
$$

The Average Order of $\varphi(n)$

Theorem

For $x>1$, we have

$$
\sum_{n \leq x} \varphi(n)=\frac{3}{\pi^{2}} x^{2}+O(x \log x)
$$

So the average order of $\varphi(n)$ is $\frac{3 n}{\pi^{2}}$.

- We start with

$$
\varphi(n)=\sum_{d \mid n} \mu(d) \frac{n}{d}
$$

The Average Order of $\varphi(n)$ (Cont'd)

- We obtain

$$
\begin{aligned}
\sum_{n \leq x} \varphi(n) & =\sum_{n \leq x} \sum_{d \mid n} \mu(d) \frac{n}{d} \\
& =\sum_{q, d} \mu(d) q \\
& =\sum_{d \leq x} \mu(d) \sum_{q \leq x / d} q \\
& \stackrel{(d)}{=} \sum_{d \leq x} \mu(d)\left\{\frac{1}{2}\left(\frac{x}{d}\right)^{2}+O\left(\frac{x}{d}\right)\right\} \\
& =\frac{1}{2} x^{2} \sum_{d \leq x} \frac{\mu(d)}{d^{2}}+O\left(x \sum_{d \leq x} \frac{1}{d}\right) \\
& \stackrel{(a)}{=} \frac{1}{2} x^{2}\left\{\frac{6}{\pi^{2}}+O\left(\frac{1}{x}\right)\right\}+O(x \log x) \\
& =\frac{3}{\pi^{2}} x^{2}+O(x \log x) .
\end{aligned}
$$

Subsection 8

Distribution of Lattice Points Visible from the Origin

Mutual Visibility of Lattice Points

Definition

Two lattice points P and Q are said to be mutually visible if the line segment which joins them contains no lattice points other than the endpoints P and Q.

Characterization of Mutual Visibility of Lattice Points

Theorem

Two lattice points (a, b) and (m, n) are mutually visible if, and only if, $a-m$ and $b-n$ are relatively prime.

- It is clear that (a, b) and (m, n) are mutually visible if and only if $(a-m, b-n)$ is visible from the origin.
Hence, it suffices to prove the theorem when $(m, n)=(0,0)$.
Assume (a, b) is visible from the origin.
Let $d=(a, b)$. We wish to prove that $d=1$.
Suppose $d>1$.
Then $a=d a^{\prime}$ and $b=d b^{\prime}$.
The lattice point $\left(a^{\prime}, b^{\prime}\right)$ is on the segment joining $(0,0)$ to (a, b).
This contradiction proves that $d=1$.

Mutual Visibility of Lattice Points (Cont'd)

- Conversely, assume $(a, b)=1$.

Let $\left(a^{\prime}, b^{\prime}\right)$ be a lattice point on the segment joining $(0,0)$ to (a, b).
Then $a^{\prime}=t a$ and $b^{\prime}=t b$, where $0<t<1$.
Hence, t is rational.
So $t=\frac{r}{s}$, where r, s are positive integers with $(r, s)=1$.
Thus,

$$
s a^{\prime}=a r \quad \text { and } \quad s b^{\prime}=b r .
$$

So $s|a r, s| b r$.
But $(s, r)=1$, so $s|a, s| b$.
Hence $s=1$, since $(a, b)=1$.
This contradicts the inequality $0<t<1$.
Therefore, the lattice point (a, b) is visible from the origin.

Density of Lattice Points Visible from Origin

- There are infinitely many lattice points visible from the origin.
- It is natural to ask how they are distributed in the plane.
- Consider a large square region in the $x y$-plane defined by the inequalities $|x| \leq r$ and $|y| \leq r$.
- $N(r)$ denotes the number of lattice points in this square;
- $N^{\prime}(r)$ denote the number which are visible from the origin.
- The quotient $\frac{N^{\prime}(r)}{N(r)}$ measures the fraction of those lattice points in the square which are visible from the origin.
- The next theorem shows that this fraction tends to a limit as $r \rightarrow \infty$.
- We call this limit the density of the lattice points visible from the origin.

The Density Theorem

Theorem

The set of lattice points visible from the origin has density $\frac{6}{\pi^{2}}$.

- We shall prove that $\lim _{r \rightarrow \infty} \frac{N^{\prime}(r)}{N(r)}=\frac{6}{\pi^{2}}$. The eight lattice points nearest the origin are all visible from the origin.
By symmetry, $N^{\prime}(r)$ is equal to 8 , plus 8 times the number of visible points in the region $\{(x, y): 2 \leq x \leq r, 1 \leq y \leq x\}$.

This number is

$$
N^{\prime}(r)=8+8 \sum_{2 \leq n \leq r} \sum_{\substack{1 \leq m<n \\(m, n)=1}} 1=8 \sum_{1 \leq n \leq r} \varphi(n) .
$$

The Density Theorem (Cont'd)

- We have $N^{\prime}(r)=8 \sum_{1 \leq n \leq r} \varphi(n)$.

Using a previous theorem,

$$
N^{\prime}(r)=8\left(\frac{3}{\pi^{2}} r^{2}+O(r \log r)\right)=\frac{24}{\pi^{2}} r^{2}+O(r \log r)
$$

But the total number of lattice points in the square is

$$
N(r)=(2[r]+1)^{2}=(2 r+O(1))^{2}=4 r^{2}+O(r)
$$

So

$$
\frac{N^{\prime}(r)}{N(r)}=\frac{\frac{24}{\pi^{2}} r^{2}+O(r \log r)}{4 r^{2}+O(r)}=\frac{\frac{6}{\pi^{2}}+O\left(\frac{\log r}{r}\right)}{1+O\left(\frac{1}{r}\right)}
$$

Hence, as $r \rightarrow \infty$, we find $\frac{N^{\prime}(r)}{N(r)} \rightarrow \frac{6}{\pi^{2}}$.

A Probabilistic View of the Density Theorem

- We found

$$
\lim _{r \rightarrow \infty} \frac{N^{\prime}(r)}{N(r)}=\frac{6}{\pi^{2}} .
$$

- This result is sometimes described by saying that a lattice point chosen at random has probability $\frac{6}{\pi^{2}}$ of being visible from the origin.
- Altenatively, if two integers a and b are chosen at random, the probability that they are relatively prime is $\frac{6}{\pi^{2}}$.

Subsection 9

The Average Order of $\mu(n)$ and of $\Lambda(n)$

On the Average Order of $\mu(n)$ and of $\Lambda(n)$

- The average orders of $\mu(n)$ and $\Lambda(n)$ are considerably more difficult to determine than those of $\varphi(n)$ and the divisor functions.
- It is known that:
- $\mu(n)$ has average order 0 , i.e.,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \mu(n)=0
$$

- $\Lambda(n)$ has average order 1, i.e.,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \Lambda(n)=1
$$

Average Order of $\mu(n)$ and of $\Lambda(n)$ (Cont'd)

- In the next chapter we will prove that both

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \mu(n)=0
$$

and

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \Lambda(n)=1
$$

are equivalent to the Prime Number Theorem,

$$
\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1
$$

where $\pi(x)$ is the number of primes $\leq x$.

Subsection 10

The Partial Sums of a Dirichlet Product

Partial Sums of a Dirichlet Product

Theorem

Suppose $h=f * g$ and let $H(x)=\sum_{n \leq x} h(n), F(x)=\sum_{n \leq x} f(n)$ and $G(x)=\sum_{n \leq x} g(n)$. Then we have

$$
H(x)=\sum_{n \leq x} f(n) G\left(\frac{x}{n}\right)=\sum_{n \leq x} g(n) F\left(\frac{x}{n}\right) .
$$

- We make use of the associative law relating the operations \circ and $*$. Let

$$
U(x)= \begin{cases}0, & \text { if } 0<x<1 \\ 1, & \text { if } x \geq 1\end{cases}
$$

Then $F=f \circ U, G=g \circ U$. So we have

$$
\begin{aligned}
& f \circ G=f \circ(g \circ U)=(f * g) \circ U=H, \\
& g \circ F=g \circ(f \circ U)=(g * f) \circ U=H .
\end{aligned}
$$

Consequence

Theorem

If $F(x)=\sum_{n \leq x} f(n)$, we have

$$
\sum_{n \leq x} \sum_{d \mid n} f(d)=\sum_{n \leq x} f(n)\left[\frac{x}{n}\right]=\sum_{n \leq x} F\left(\frac{x}{n}\right)
$$

- Take g, such that $g(n)=1$, for all n,

Then

$$
G(x)=[x] .
$$

By the theorem,

$$
H(x)=\sum_{n \leq x} f(n) G\left(\frac{x}{n}\right)=\sum_{n \leq x} g(n) F\left(\frac{x}{n}\right) .
$$

This yields the conclusion.

Subsection 11

Applications to $\mu(n)$ and $\Lambda(n)$

Sums Involving $\mu(n)$ and $\Lambda(n)$

- We take $f(n)=\mu(n)$ and $\Lambda(n)$ in the preceding theorem.

Theorem

For $x \geq 1$, we have

$$
\sum_{n \leq x} \mu(n)\left[\frac{x}{n}\right]=1 \quad \text { and } \quad \sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right]=\log [x]!
$$

- By the preceding theorem,

$$
\begin{aligned}
& \sum_{n \leq x} \mu(n)\left[\frac{x}{n}\right]=\sum_{n \leq x} \sum_{d \mid n} \mu(d)=\sum_{n \leq x}\left[\frac{1}{n}\right]=1 \\
& \sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right]=\sum_{n \leq x} \sum_{d \mid n} \Lambda(d)=\sum_{n \leq x} \log n=\log [x]!
\end{aligned}
$$

Note: The sums in the theorem can be regarded as weighted averages of the functions $\mu(n)$ and $\Lambda(n)$.

Bounded Partial Sums for $\sum \frac{\mu(n)}{n}$

Theorem

For all $x \geq 1$, we have

$$
\left|\sum_{n \leq x} \frac{\mu(n)}{n}\right| \leq 1
$$

with equality holding only if $x<2$.

- If $x<2$, there is only one term in the sum, $\mu(1)=1$.

Assume that $x \geq 2$.
For each real y, let $\{y\}=y-[y]$.
Then

$$
\begin{aligned}
1 & =\sum_{n \leq x} \mu(n)\left[\frac{x}{n}\right] \\
& =\sum_{n \leq x} \mu(n)\left(\frac{x}{n}-\left\{\frac{x}{n}\right\}\right) \\
& =x \sum_{n \leq x} \frac{\mu(n)}{n}-\sum_{n \leq x} \mu(n)\left\{\frac{x}{n}\right\} .
\end{aligned}
$$

Bounded Partial Sums for $\sum \frac{\mu(n)}{n}$ (Cont'd)

- We got

$$
x \sum_{n \leq x} \frac{\mu(n)}{n}-\sum_{n \leq x} \mu(n)\left\{\frac{x}{n}\right\}=1
$$

But $0 \leq\{y\}<1$.
So we get

$$
\begin{aligned}
x\left|\sum_{n \leq x} \frac{\mu(n)}{n}\right| & =\left|1+\sum_{n \leq x} \mu(n)\left\{\frac{x}{n}\right\}\right| \\
& \leq 1+\sum_{n \leq x}\left\{\frac{x}{n}\right\} \\
& =1+\{x\}+\sum_{2 \leq n \leq x}\left\{\frac{x}{n}\right\} \\
& <1+\{x\}+[x]-1 \\
& =x .
\end{aligned}
$$

Dividing by x, we obtain $\left|\sum_{n \leq x} \frac{\mu(n)}{n}\right|<1$.

Legendre's Identity

Theorem (Legendre's Identity)

For every $x \geq 1$, we have

$$
[x]!=\prod_{p \leq x} p^{\alpha(p)},
$$

where the product is extended over all primes $\leq x$, and

$$
\alpha(p)=\sum_{m=1}^{\infty}\left[\frac{x}{p^{m}}\right] .
$$

Note: The sum for $\alpha(p)$ is finite since $\left[\frac{x}{p^{m}}\right]=0$, for $p>x$.

Legendre's Identity (Cont'd)

- Recall that:
- $\Lambda(n)=0$ unless n is a prime power;
- $\Lambda\left(p^{m}\right)=\log p$.

So we have

$$
\begin{aligned}
\log [x]! & =\sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right] \\
& =\sum_{p \leq x} \sum_{m=1}^{\infty}\left[\frac{x}{p^{m}}\right] \log p \\
& =\sum_{p \leq x} \alpha(p) \log p,
\end{aligned}
$$

where $\alpha(p)=\sum_{m=1}^{\infty}\left[\frac{\chi}{p^{m}}\right]$.
The last sum is also the logarithm of the product $\prod_{p \leq x} p^{\alpha(p)}$.

Asymptotic Formula for $\log [x]$!

Theorem

If $x \geq 2$, we have

$$
\log [x]!=x \log x-x+O(\log x)
$$

Hence,

$$
\sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right]=x \log x-x+O(\log x)
$$

- Recall Euler's summation formula

$$
\begin{aligned}
\sum_{y<n \leq x} f(n)=\int_{y}^{x} f(t) d & +\int_{y}^{x}(t-[t]) f^{\prime}(t) d t \\
& +f(x)([x]-x)-f(y)([y]-y)
\end{aligned}
$$

Asymptotic Formula for $\log [x]!($ Cont'd)

- Taking $f(t)=\log t$, we obtain

$$
\begin{aligned}
\sum_{n \leq x} \log n & =\int_{1}^{x} \log t d t+\int_{1}^{x} \frac{t-[t]}{t} d t-(x-[x]) \log x \\
& =x \log x-x+1+\int_{1}^{x} \frac{t-[t]}{t} d t+O(\log x) .
\end{aligned}
$$

Now note that

$$
\int_{1}^{x} \frac{t-[t]}{t} d t=O\left(\int_{1}^{x} \frac{1}{t} d t\right)=O(\log x)
$$

Thus,

$$
\log [x]!=x \log x-x+O(\log x)
$$

The second equation follows from

$$
\sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right]=\log [x]!
$$

Asymptotic Formula for $\sum_{p \leq x\left[\frac{x}{p}\right] \log p}$

Theorem

For $x \geq 2$, we have

$$
\sum_{p \leq n}\left[\frac{x}{p}\right] \log p=x \log x+O(x)
$$

where the sum is extended over all primes $\leq x$.

- Recall $\Lambda(n)=0$, unless n is a prime power.

Consequently, we have

$$
\sum_{n \leq x}\left[\frac{x}{n}\right] \Lambda(n)=\sum_{p} \sum_{\substack{m=1 \\ p^{m} \leq x}}^{\infty}\left[\frac{x}{p^{m}}\right] \Lambda\left(p^{m}\right)
$$

Asymptotic Formula for $\sum_{p \leq x}\left[\frac{x}{p}\right] \log p$ (Cont'd)

- We obtained

$$
\sum_{n \leq x}\left[\frac{x}{n}\right] \Lambda(n)=\sum_{p} \sum_{\substack{m=1 \\ p^{m} \leq x}}^{\infty}\left[\frac{x}{p^{m}}\right] \Lambda\left(p^{m}\right)
$$

Now $p^{m} \leq x$ implies $p \leq x$.
Moreover, if $p>x,\left[\frac{x}{p^{m}}\right]=0$.
So we can write the last sum as

$$
\sum_{p \leq x} \sum_{m=1}^{\infty}\left[\frac{x}{p^{m}}\right] \log p=\sum_{p \leq x}\left[\frac{x}{p}\right] \log p+\sum_{p \leq x} \sum_{m=2}^{\infty}\left[\frac{x}{p^{m}}\right] \log p
$$

Asymptotic Formula for $\sum_{p \leq x}\left[\frac{x}{p}\right] \log p$

- Claim: $\sum_{p \leq x} \sum_{m=2}^{\infty}\left[\frac{x}{p^{m}}\right] \log p=O(x)$.

We have

$$
\begin{aligned}
\sum_{p \leq x} \log p \sum_{m=2}^{\infty}\left[\frac{x}{p^{m}}\right] & \leq \sum_{p \leq x} \log p \sum_{m=2}^{\infty} \frac{x}{p^{m}} \\
& =x \sum_{p \leq x} \log p \sum_{m=2}^{\infty}\left(\frac{1}{p}\right)^{m} \\
& =x \sum_{p \leq x} \log p \cdot \frac{1}{p^{2}} \cdot \frac{1}{1-\frac{1}{p}} \\
& =x \sum_{p \leq x} \frac{\log p}{p(p-1)} \\
& \leq x \sum_{n=2}^{\infty} \frac{\log n}{n(n-1)}=O(x)
\end{aligned}
$$

Hence we have shown that $\sum_{n \leq x}\left[\frac{x}{n}\right] \Lambda(n)=\sum_{p \leq x}\left[\frac{x}{p}\right] \log p+O(x)$.
Combined with $\sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right]=x \log x-x+O(\log x)$, it proves the theorem.

Subsection 12

Another Identity for the Partial Sums of a Dirichlet Product

Partial Sums

- We generalize the formula for the partial sums of Dirichlet products.
- As before, we write

$$
F(x)=\sum_{n \leq x} f(n), \quad G(x)=\sum_{n \leq x} g(n), \quad H(x)=\sum_{n \leq x}(f * g)(n)
$$

- So

$$
H(x)=\sum_{n \leq x} \sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)=\sum_{\substack{q, d \\ q d \leq x}} f(d) g(q)
$$

The Generalized Partial Sums Theorem

Theorem

If a and b are positive real numbers, such that $a b=x$, then

$$
\sum_{\substack{q, d \\ q d \leq x}} f(d) g(q)=\sum_{n \leq a} f(n) G\left(\frac{x}{n}\right)+\sum_{n \leq b} g(n) F\left(\frac{x}{n}\right)-F(a) G(b) .
$$

- The sum $H(x)$ on the left is extended over the lattice points in the hyperbolic region shown in the figure.
We split the sum into two parts:
- One over the lattice points in $A \cup B$;
- The other over those in $B \cup C$.

The lattice points in B are covered
 twice.

The Generalized Partial Sums Theorem (Cont'd)

- Consequently, we have:

$$
\begin{aligned}
\sum_{\substack{q, d \\
q d \leq x}} f(d) g(q)= & \sum_{d \leq a q \leq \frac{x}{d}} \sum_{d \leq} f(d) g(q)+\sum_{q \leq b d \leq \frac{x}{q}} \sum_{d \leq a q \leq b} f(d) g(q) \\
& -\sum_{n} \sum_{n \leq a} f(d) g(q) \\
= & \sum_{n \leq)^{2}} f(n) \sum_{q \leq \frac{x}{n}} g(q)+\sum_{n \leq b} g(n) \sum_{d \leq \frac{x}{n}} f(d) \\
= & \sum_{n \leq a} f(n) G\left(\frac{x}{n}\right)+\sum_{n \leq b} g(q)
\end{aligned}
$$

Remark

- Consider

$$
\sum_{\substack{q, d \\ q d \leq x}} f(d) g(q)=\sum_{n \leq a} f(n) G\left(\frac{x}{n}\right)+\sum_{n \leq b} g(n) F\left(\frac{x}{n}\right)-F(a) G(b) .
$$

- Take $a=1$.

Then

$$
\begin{aligned}
H(x) & =f(1) G(x)+\sum_{n \leq x} g(n) F\left(\frac{x}{n}\right)-F(1) G(x) \\
& =\sum_{n \leq x} g(n) F\left(\frac{x}{n}\right) .
\end{aligned}
$$

- Take $b=1$.

Then

$$
\begin{aligned}
H(x) & =\sum_{n \leq x} f(n) G\left(\frac{x}{n}\right)+g(1) F(x)-F(x) G(1) \\
& =\sum_{n \leq x} f(n) G\left(\frac{x}{n}\right) .
\end{aligned}
$$

- These are the special cases proved previously.

