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Averages of Arithmetical Functions Introduction

Asymptotic Behavior of Arithmetical Functions

We study the behavior of arithmetical functions f (n) for large values
of n.

Example: Consider the function

d(n) = the number of divisors of n.

It takes on the value 2 infinitely often (when n is prime).

It also takes on arbitrarily large values when n has a large number of
divisors.

Thus, the values of d(n) fluctuate considerably as n increases.

Many arithmetical functions fluctuate in this manner.

So it is often difficult to determine their behavior for large n.
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Averages of Arithmetical Functions Introduction

Introducing Averages

The flactuation of many arithmetical functions makes it difficult to
determine their behavior for large n.

Sometimes it is more fruitful to study the arithmetic mean

f̃ (n) =
1

n

n∑

k=1

f (k).

Averages smooth out fluctuations, so it is reasonable to expect that
the mean values f̃ (n) might behave more regularly than f (n).

Example: We will show that the average d̃(n) grows like log n for
large n,

lim
n→∞

d̃(n)

log n
= 1.

This is described by saying that

“the average order of d(n) is log n”.
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Partial Sums

To study the average of an arbitrary function f we need a knowledge
of its partial sums

n∑

k=1

f (k).

Sometimes it is convenient to replace the upper index n by an
arbitrary positive real number x and to consider instead sums of the
form ∑

k≤x

f (k).

In the last sum, it is understood that the index k varies from 1 to [x ],
the greatest integer ≤ x .

If 0 < x < 1 the sum is empty and we assign it the value 0.

Our goal is to determine the behavior of this sum as a function of x ,
especially for large x .
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Averages of Arithmetical Functions Introduction

Example: The Divisor Function Revisited

For the divisor function we will prove a result obtained by Dirichlet in
1849, namely

∑

k≤x

d(k) = x log x + (2C − 1)x + O(
√
x), x ≥ 1.

In this sum, C is Euler’s constant, defined by the equation

C = lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
.

The symbol O(
√
x) represents an unspecified function of x which

grows no faster than some constant times
√
x .

This is an example of the “big oh” notation.
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Subsection 2

The Big Oh Notation. Asymptotic Equality of Functions
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Averages of Arithmetical Functions The Big Oh Notation. Asymptotic Equality of Functions

The Big Oh Notation

Definition

If g(x) > 0, for all x ≥ a, we write

f (x) = O(g(x)) (read: “f (x) is big oh of g(x)”)

to mean that the quotient f (x)
g(x) is bounded for x ≥ a.

That is, there exists a constant M > 0, such that

|f (x)| ≤ Mg(x), for all x ≥ a.
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Averages of Arithmetical Functions The Big Oh Notation. Asymptotic Equality of Functions

Big Oh in Equations

An equation of the form

f (x) = h(x) + O(g(x))

means that
f (x)− h(x) = O(g(x)).

Note: f (t) = O(g(t)), for t ≥ a, implies

∫ x

a

f (t)dt = O

(∫ x

a

g(t)dt

)
, for x ≥ a.
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Asymptotic Behavior of Functions

Definition

We say that f (x) is asymptotic to g(x) as x → ∞, and we write

f (x) ∼ g(x) as x → ∞

if

lim
x→∞

f (x)

g(x)
= 1.
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Example

Consider again the equation

∑

k≤x

d(k) = x log x + (2C − 1)x + O(
√
x).

It implies that ∑

k≤x

d(k) ∼ x log x as x → ∞.

In the first equation the term x log x is called the asymptotic value

of the sum.

The other two terms represent the error made by approximating the
sum by its asymptotic value.
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The Error Terms

Consider again

∑

k≤x

d(k) = x log x + (2C − 1)x + O(
√
x).

If we denote the error by E (x), then

E (x) = (2C − 1)x + O(
√
x).

This could also be written

E (x) = O(x).

Even though this equation is correct, it does not convey the more
precise information in the displayed equation above, which tells us
that the asymptotic value of E (x) is (2C − 1)x .
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Averages of Arithmetical Functions Euler’s Summation Formula

Euler’s Summation Formula

Sometimes the asymptotic value of a partial sum can be obtained by
comparing it with an integral.

A summation formula of Euler gives an exact expression for the error
made in such an approximation.

Theorem (Euler’s Summation Formula)

If f has a continuous derivative f ′ on the interval [y , x ], where 0 < y < x ,
then

∑

y<n≤x

f (n) =
∫ x

y
f (t)dt +

∫ x

y
(t − [t])f ′(t)dt

+ f (x)([x ] − x)− f (y)([y ] − y).
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Averages of Arithmetical Functions Euler’s Summation Formula

Euler’s Summation Formula (Cont’d)

Let m = [y ], k = [x ].

For integers n and n − 1 in [y , x ] we have
∫ n

n−1 [t]f
′(t)dt =

∫ n

n−1 (n − 1)f ′(t)dt

= (n − 1){f (n)− f (n − 1)}
= {nf (n)− (n − 1)f (n − 1)} − f (n).

Summing from n = m + 1 to n = k we find
∫ k

m
[t]f ′(t)dt =

∑k
n=m+1{nf (n)− (n − 1)f (n − 1)}

−∑
y<n≤x f (n)

= kf (k)−mf (m)−
∑

y<n≤x f (n).

Hence,
∑

y<n≤x f (n) = −
∫ k

m
[t]f ′(t)dt + kf (k)−mf (m)

= −
∫ x

y
[t]f ′(t)dt + kf (x) −mf (y).
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Averages of Arithmetical Functions Euler’s Summation Formula

Euler’s Summation Formula (Cont’d)

We got

∑

y<n≤x

f (n) = −
∫ x

y

[t]f ′(t)dt + kf (x)−mf (y).

Integration by parts gives
∫ x

y

f (t)dt = xf (x)− yf (y)−
∫ x

y

tf ′(t)dt.

Thus, we get
∑

y<n≤x f (n) = −
∫ x

y
[t]f ′(t)dt + kf (x)−mf (y)

= −
∫ x

y
tf ′(t)dt +

∫ x

y
(t − [t])f ′(t)dt

+ kf (x)−mf (y)

=
∫ x

y
f (t)dt +

∫ x

y
(t − [t])f ′(t)dt

+ (k − x)f (x)− (m − y)f (y).
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Averages of Arithmetical Functions Some Elementary Asymptotic Formulas

Euler’s Constant and Riemann Zeta Function

Recall Euler’s constant

C = lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
.

ζ(s) denotes the Riemann zeta function which is defined by the
equation

ζ(s) =

∞∑

n=1

1

ns
, if s > 1,

and by the equation

ζ(s) = lim
x→∞



∑

n≤x

1

ns
− x1−s

1− s


, if 0 < s < 1.
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Asymptotic Formulas

Theorem

If x ≥ 1, we have:

(a)
∑

n≤x
1
n
= log x + C + O( 1

x
);

(b)
∑

n≤x
1
ns

= x1−s

1−s
+ ζ(s) + O(x−s), if s > 0, s 6= 1;

(c)
∑

n>x
1
ns

= O(x1−s), if s > 1;

(d)
∑

n≤x n
α = xα+1

α+1 + O(xα), if α ≥ 0.

(a) Take f (t) = 1
t
in Euler’s summation formula to obtain

∑
n≤x

1
n

=
∫ x

1
dt
t
−

∫ x

1
t−[t]
t2

dt + 1− x−[x ]
x

= log x −
∫ x

1
t−[t]
t2

dt + 1 + O( 1
x
)

= log x + 1−
∫∞
1

t−[t]
t2

dt +
∫∞
x

t−[t]
t2

dt + O( 1
x
).
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Averages of Arithmetical Functions Some Elementary Asymptotic Formulas

Asymptotic Formulas (Part (a) Cont’d)

We obtained

∑

n≤x

1

n
= log x + 1−

∫ ∞

1

t − [t]

t2
dt +

∫ ∞

x

t − [t]

t2
dt + O

(
1

x

)
.

The improper integral
∫∞
1 (t − [t])t−2dt exists since it is dominated

by
∫∞
1 t−2dt. Also,

0 ≤
∫ ∞

x

t − [t]

t2
dt ≤

∫ ∞

x

1

t2
dt =

1

x
.
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Asymptotic Formulas (Part (a) Cont’d)

We have:∑
n≤x

1
n
= log x + 1−

∫∞

1
t−[t]
t2

dt +
∫∞

x

t−[t]
t2

dt + O
(
1
x

)
;

0 ≤
∫∞

x

t−[t]
t2

dt ≤
∫∞

x
1
t2
dt = 1

x
.

So we get

∑

n≤x

1

n
= log x + 1−

∫ ∞

1

t − [t]

t2
dt + O

(
1

x

)
.

This proves (a) with C = 1−
∫∞
1

t−[t]
t2

dt.

Letting x → ∞ in (a) we find that

lim
x→∞



∑

n≤x

1

n
− log x


 = 1−

∫ ∞

1

t − [t]

t2
dt.

So C is also equal to Euler’s constant.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 22 / 73
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Asymptotic Formulas (Part (b))

(b) We use a similar argument with f (x) = x−s , where s > 0, s 6= 1.

Euler’s summation formula gives us

∑
n≤x

1
ns

=
∫ x

1
dt
ts

− s
∫ x

1
t−[t]
ts+1 dt + 1− x−[x ]

x s

= x1−s

1−s
− 1

1−s
+ 1− s

∫∞
1

t−[t]
ts+1 dt + O(x−s).

Therefore,
∑

n≤x

1

ns
=

x1−s

1− s
+ C (s) +O(x−s),

where

C (s) = 1− 1

1− s
− s

∫ ∞

1

t − [t]

ts+1
dt.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 23 / 73



Averages of Arithmetical Functions Some Elementary Asymptotic Formulas

Asymptotic Formulas (Part (b) Cont’d)

We have ∑

n≤x

1

ns
=

x1−s

1− s
+ C (s) +O(x−s),

where C (s) = 1− 1
1−s

− s
∫∞
1

t−[t]
ts+1 dt.

Suppose s > 1.
The left member of the equation approaches ζ(s) as x → ∞.
The terms x1−s and x−s both approach 0.
Hence, C (s) = ζ(s), if s > 1.
Suppose 0 < s < 1.
Then x−s → 0.
The equation shows that

lim
n→∞



∑

n≤x

1

ns
− x1−s

1− s


 = C (s).

Therefore, C (s) is also equal to ζ(s).
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Averages of Arithmetical Functions Some Elementary Asymptotic Formulas

Asymptotic Formulas (Part (c)-(d))

(c) We use (b) with s > 1 to obtain

∑

n>x

1

ns
= ζ(s)−

∑

n≤x

1

ns
=

x1−s

s − 1
+ O(x−s)

x−s ≤ x1−s

= O(x1−s).

(d) Using Euler’s summation formula, with f (t) = tα, we obtain

∑
n≤x n

α =
∫ x

1 tαdt + α
∫ x

1 tα−1(t − [t])dt + 1− (x − [x ])xα

= xα+1

α+1 − 1
α+1 + O(α

∫ x

1 tα−1dt) + O(xα)

= xα+1

α+1 + O(xα).
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Averages of Arithmetical Functions The Average Order of d(n)

The Average Order of d(n)

Theorem

For all x ≥ 1, we have

∑

n≤x

d(n) = x log x + (2C − 1)x + O(
√
x),

where C is Euler’s constant.

By definition, d(n) =
∑

d|n 1. So
∑

n≤x d(n) =
∑

n≤x

∑
d|n 1.

This is a double sum extended over n and d .

Since d | n, we can write n = qd and extend the sum over all pairs of
positive integers q, d , with qd ≤ x . Thus,

∑

n≤x

d(n) =
∑

q,d
qd≤x

1.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 27 / 73



Averages of Arithmetical Functions The Average Order of d(n)

The Average Order of d(n) (Cont’d)

We wrote ∑

n≤x

d(n) =
∑

q,d
qd≤x

1.

The sum extends over lattice points in the qd -plane that lie on
hyperbolas qd = n, with n ≤ x .

So it counts the number of lattice points which lie on these
hyperbolas corresponding to n = 1, 2, . . . , [x ].
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The Average Order of d(n) (Cont’d)

For each fixed d ≤ x , we can:

Count first those lattice points on the horizontal line segment
1 ≤ q ≤ x

d
;

Then sum over all d ≤ x .

Thus we get ∑

n≤x

d(n) =
∑

d≤x

∑

q≤x/d

1.

We use Part (d) of the preceding theorem with α = 0 to obtain

∑

q≤x/d

1 =
x

d
+ O(1).
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The Average Order of d(n) (Cont’d)

Now we use this along with Part (a) of the preceding theorem to find

∑
n≤x d(n) =

∑
d≤x{ x

d
+ O(1)}

= x
∑

d≤x
1
d
+ O(x)

= x{log x + C + O( 1
x
)}+O(x)

= x log x +O(x).

This is a weak version of the theorem which implies

∑

n≤x

d(n) ∼ x log x , as x → ∞.

So it gives log n as the average order of d(n).
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The Average Order of d(n) (Cont’d)

To prove the more precise formula we return to
∑

n≤x

d(n) =
∑

q,d
qd≤x

1.

It counts the number of lattice points in
a hyperbolic region.

We take advantage of the symmetry of
the region about the line q = d .

The total number of points equals twice
the number below the line q = d plus the
number on the bisecting segment.

∑

n≤x

d(n) = 2
∑

d≤√
x

{[x
d

]
− d

}
+ [

√
x ].
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The Average Order of d(n) (Cont’d)

We obtained

∑

n≤x

d(n) = 2
∑

d≤√
x

{[x
d

]
− d

}
+ [

√
x ].

Now we use the relation [y ] = y + 0(1) and Parts (a) and (d) of the
preceding theorem to obtain

∑
n≤x d(n) = 2

∑
d≤√

x{ x
d
− d + O(1)} + O(

√
x)

= 2x
∑

d≤√
x

1
d
− 2

∑
d≤√

x d + O(
√
x)

= 2x
{
log

√
x + C + O

(
1√
x

)}

− 2
{
x
2 + O(

√
x)
}
+ O(

√
x)

= x log x + (2C − 1)x + O(
√
x).
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The Average Order of the Divisor Functions σα(n)
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The Average Order of σ1(n)

The case α = 0 was considered in the preceding theorem.

Theorem

For all x ≥ 1, we have

∑

n≤x

σ1(x) =
1

2
ζ(2)x2 + O(x log x).

Note: It can be shown that ζ(2) = π2

6 .

Therefore, the average order of σ1(n) is
π2n
12 .
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The Average Order of σ1(n) (Cont’d)

We have
∑

n≤x σ1(x) =
∑

n≤x

∑
q|n q

=
∑

q,d
qd≤x

q

=
∑

d≤x

∑
q≤x/d q

(d)
=

∑
d≤x{1

2 (
x
d
)2 + O( x

d
)}

= x2

2

∑
d≤x

1
d2 + O(x

∑
d≤x

1
d
)

(b)
= x2

2 {− 1
x
+ ζ(2) + O( 1

x2
)}+ O(x log x)

= 1
2ζ(2)x

2 + O(x log x).
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The Average Order of σα(n), 0 < α 6= 1

Theorem

If x ≥ 1 and α > 0, α 6= 1, we have

∑

n≤x

σα(n) =
ζ(α+ 1)

α+ 1
xα+1 + O(xβ),

where β = max {1, α}.

We have
∑

n≤x σα(n) =
∑

n≤x

∑
q|n q

α

=
∑

d≤x

∑
q≤x/d q

α

(d)
=

∑
d≤x{ 1

α+1 (
x
d
)α+1 + O( x

α

dα )}
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The Average Order of σα(n), 0 < α 6= 1 (Cont’d)

Contining

∑
n≤x σα(n) =

∑
d≤x{ 1

α+1(
x
d
)α+1 +O( x

α

dα )}
= xα+1

α+1

∑
d≤x

1
dα+1 + O(xα

∑
d≤x

1
dα )

(b)
= xα+1

α+1 {x−α

−α + ζ(α+ 1) + O(x−α−1)}
+ O(xα{x−α−1

1−α + ζ(α) + O(x−α)})
= ζ(α+1)

α+1 xα+1 + O(x) + O(1) + O(xα)

= ζ(α+1)
α+1 xα+1 + O(xmax {1,α})

= ζ(α+1)
α+1 xα+1 + O(xβ).
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The Average Order of σα(n), α < 0

For negative α we write α = −β, where β > 0.

Theorem

If β > 0, let δ = max {0, 1 − β}. Then if x > 1, we have

∑

n≤x

σ−β(n) =

{
ζ(β + 1)x + O(xδ), if β 6= 1
ζ(2)x + O(log x), if β = 1

.
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The Average Order of σα(n), α < 0 (Cont’d)

We have
∑

n≤x σ−β(n) =
∑

n≤x

∑
d|n

1
dβ

=
∑

d≤x
1
dβ

∑
q≤x/d 1

(d)
=

∑
d≤x

1
dβ { x

d
+ O(1)}

= x
∑

d≤x
1

dβ+1 + O(
∑

d≤x
1
dβ ).

Moreover,

x
∑

d≤x
1

dβ+1

(b)
= x1−β

−β + ζ(β + 1)x + O(x−β)

= ζ(β + 1)x + O(x1−β).

Finally,

O



∑

d≤x

1

dβ


 =

{
O(log x), if β = 1,
O(xδ), if β 6= 1.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 39 / 73



Averages of Arithmetical Functions The Average Order of ϕ(n)

Subsection 7

The Average Order of ϕ(n)
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Asymptotic Formula for
∑

n≤x
µ(n)
n2

The asymptotic formula for the partial sums of Euler’s totient involves
the sum of the series

∑∞
n=1

µ(n)
n2

.

This series converges absolutely since it is dominated by
∑∞

n=1
1
n2
.

We will prove later that

∞∑

n=1

µ(n)

n2
=

1

ζ(2)
=

6

π2
.

Assuming this result for the time being we have

∑
n≤x

µ(n)
n2

=
∑∞

n=1
µ(n)
n2

−∑
n>x

µ(n)
n2

= 6
π2 + O(

∑
n>x

1
n2
)

(c)
= 6

π2 + O( 1
x
).
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The Average Order of ϕ(n)

Theorem

For x > 1, we have

∑

n≤x

ϕ(n) =
3

π2
x2 +O(x log x).

So the average order of ϕ(n) is 3n
π2 .

We start with
ϕ(n) =

∑

d|n
µ(d)

n

d
.
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The Average Order of ϕ(n) (Cont’d)

We obtain
∑

n≤x ϕ(n) =
∑

n≤x

∑
d|n µ(d)

n
d

=
∑

q,d
qd≤x

µ(d)q

=
∑

d≤x µ(d)
∑

q≤x/d q

(d)
=

∑
d≤x µ(d){1

2(
x
d
)2 + O( x

d
)}

= 1
2x

2
∑

d≤x
µ(d)
d2 + O(x

∑
d≤x

1
d
)

(a)
= 1

2x
2{ 6

π2 + O( 1
x
)}+ O(x log x)

= 3
π2 x

2 + O(x log x).
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Mutual Visibility of Lattice Points

Definition

Two lattice points P and Q are said to be mutually visible if the line
segment which joins them contains no lattice points other than the
endpoints P and Q.
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Characterization of Mutual Visibility of Lattice Points

Theorem

Two lattice points (a, b) and (m, n) are mutually visible if, and only if,
a −m and b − n are relatively prime.

It is clear that (a, b) and (m, n) are mutually visible if and only if
(a −m, b − n) is visible from the origin.

Hence, it suffices to prove the theorem when (m, n) = (0, 0).

Assume (a, b) is visible from the origin.

Let d = (a, b). We wish to prove that d = 1.

Suppose d > 1.

Then a = da′ and b = db′.

The lattice point (a′, b′) is on the segment joining (0, 0) to (a, b).

This contradiction proves that d = 1.
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Mutual Visibility of Lattice Points (Cont’d)

Conversely, assume (a, b) = 1.

Let (a′, b′) be a lattice point on the segment joining (0, 0) to (a, b).

Then a′ = ta and b′ = tb, where 0 < t < 1.

Hence, t is rational.

So t = r
s
, where r , s are positive integers with (r , s) = 1.

Thus,
sa′ = ar and sb′ = br .

So s | ar , s | br .
But (s, r) = 1, so s | a, s | b.
Hence s = 1, since (a, b) = 1.

This contradicts the inequality 0 < t < 1.

Therefore, the lattice point (a, b) is visible from the origin.
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Density of Lattice Points Visible from Origin

There are infinitely many lattice points visible from the origin.

It is natural to ask how they are distributed in the plane.

Consider a large square region in the xy -plane defined by the
inequalities |x | ≤ r and |y | ≤ r .

N(r) denotes the number of lattice points in this square;
N ′(r) denote the number which are visible from the origin.

The quotient N′(r)
N(r) measures the fraction of those lattice points in the

square which are visible from the origin.

The next theorem shows that this fraction tends to a limit as r → ∞.

We call this limit the density of the lattice points visible from the
origin.
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The Density Theorem

Theorem

The set of lattice points visible from the origin has density 6
π2 .

We shall prove that limr→∞
N′(r)
N(r) = 6

π2 .

The eight lattice points nearest the origin
are all visible from the origin.

By symmetry, N ′(r) is equal to 8, plus 8
times the number of visible points in the
region {(x , y) : 2 ≤ x ≤ r , 1 ≤ y ≤ x}.

This number is

N ′(r) = 8 + 8
∑

2≤n≤r

∑

1≤m<n
(m,n)=1

1 = 8
∑

1≤n≤r

ϕ(n).
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The Density Theorem (Cont’d)

We have N ′(r) = 8
∑

1≤n≤r ϕ(n).

Using a previous theorem,

N ′(r) = 8

(
3

π2
r2 + O(r log r)

)
=

24

π2
r2 + O(r log r).

But the total number of lattice points in the square is

N(r) = (2[r ] + 1)2 = (2r + O(1))2 = 4r2 + O(r).

So
N ′(r)
N(r)

=
24
π2 r

2 + O(r log r)

4r2 + O(r)
=

6
π2 + O( log r

r
)

1 + O(1
r
)

.

Hence, as r → ∞, we find N′(r)
N(r) → 6

π2 .
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A Probabilistic View of the Density Theorem

We found

lim
r→∞

N ′(r)
N(r)

=
6

π2
.

This result is sometimes described by saying that a lattice point
chosen at random has probability 6

π2 of being visible from the origin.

Altenatively, if two integers a and b are chosen at random, the
probability that they are relatively prime is 6

π2 .
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On the Average Order of µ(n) and of Λ(n)

The average orders of µ(n) and Λ(n) are considerably more difficult
to determine than those of ϕ(n) and the divisor functions.

It is known that:

µ(n) has average order 0, i.e.,

lim
x→∞

1

x

∑

n≤x

µ(n) = 0;

Λ(n) has average order 1, i.e.,

lim
x→∞

1

x

∑

n≤x

Λ(n) = 1.
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Average Order of µ(n) and of Λ(n) (Cont’d)

In the next chapter we will prove that both

lim
x→∞

1

x

∑

n≤x

µ(n) = 0

and

lim
x→∞

1

x

∑

n≤x

Λ(n) = 1

are equivalent to the Prime Number Theorem,

lim
x→∞

π(x) log x

x
= 1,

where π(x) is the number of primes ≤ x .
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Partial Sums of a Dirichlet Product

Theorem

Suppose h = f ∗ g and let H(x) =
∑

n≤x h(n), F (x) =
∑

n≤x f (n) and
G (x) =

∑
n≤x g(n). Then we have

H(x) =
∑

n≤x

f (n)G
(x
n

)
=

∑

n≤x

g(n)F
(x
n

)
.

We make use of the associative law relating the operations ◦ and ∗.
Let

U(x) =

{
0, if 0 < x < 1
1, if x ≥ 1

.

Then F = f ◦ U, G = g ◦ U. So we have

f ◦ G = f ◦ (g ◦ U) = (f ∗ g) ◦ U = H,

g ◦ F = g ◦ (f ◦ U) = (g ∗ f ) ◦ U = H.
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Consequence

Theorem

If F (x) =
∑

n≤x f (n), we have

∑

n≤x

∑

d|n
f (d) =

∑

n≤x

f (n)
[x
n

]
=

∑

n≤x

F
(x
n

)
.

Take g , such that g(n) = 1, for all n,

Then
G (x) = [x ].

By the theorem,

H(x) =
∑

n≤x

f (n)G
(x
n

)
=

∑

n≤x

g(n)F
(x
n

)
.

This yields the conclusion.
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Sums Involving µ(n) and Λ(n)

We take f (n) = µ(n) and Λ(n) in the preceding theorem.

Theorem

For x ≥ 1, we have

∑

n≤x

µ(n)
[x
n

]
= 1 and

∑

n≤x

Λ(n)
[x
n

]
= log [x ]!.

By the preceding theorem,

∑
n≤x µ(n)[

x
n
] =

∑
n≤x

∑
d|n µ(d) =

∑
n≤x [

1
n
] = 1;

∑
n≤x Λ(n)[

x
n
] =

∑
n≤x

∑
d|n Λ(d) =

∑
n≤x log n = log [x ]!.

Note: The sums in the theorem can be regarded as weighted averages
of the functions µ(n) and Λ(n).
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Bounded Partial Sums for
∑ µ(n)

n

Theorem

For all x ≥ 1, we have ∣∣∣∣∣∣

∑

n≤x

µ(n)

n

∣∣∣∣∣∣
≤ 1,

with equality holding only if x < 2.

If x < 2, there is only one term in the sum, µ(1) = 1.

Assume that x ≥ 2.

For each real y , let {y} = y − [y ].

Then
1 =

∑
n≤x µ(n)[

x
n
]

=
∑

n≤x µ(n)(
x
n
− {x

n
})

= x
∑

n≤x
µ(n)
n

−∑
n≤x µ(n){x

n
}.
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Bounded Partial Sums for
∑ µ(n)

n
(Cont’d)

We got

x
∑

n≤x

µ(n)

n
−

∑

n≤x

µ(n)
{x

n

}
= 1.

But 0 ≤ {y} < 1.

So we get

x |
∑

n≤x
µ(n)
n

| = |1 +
∑

n≤x µ(n){x
n
}|

≤ 1 +
∑

n≤x{x
n
}

= 1 + {x}+∑
2≤n≤x{x

n
}

< 1 + {x}+ [x ]− 1

= x .

Dividing by x , we obtain |∑n≤x
µ(n)
n

| < 1.
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Legendre’s Identity

Theorem (Legendre’s Identity)

For every x ≥ 1, we have

[x ]! =
∏

p≤x

pα(p),

where the product is extended over all primes ≤ x , and

α(p) =

∞∑

m=1

[
x

pm

]
.

Note: The sum for α(p) is finite since [ x
pm

] = 0, for p > x .
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Legendre’s Identity (Cont’d)

Recall that:

Λ(n) = 0 unless n is a prime power;
Λ(pm) = log p.

So we have

log [x ]! =
∑

n≤x Λ(n)[
x
n
]

=
∑

p≤x

∑∞
m=1[

x
pm

] log p

=
∑

p≤x α(p) log p,

where α(p) =
∑∞

m=1[
x
pm

].

The last sum is also the logarithm of the product
∏

p≤x p
α(p).
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Asymptotic Formula for log [x ]!

Theorem

If x ≥ 2, we have

log [x ]! = x log x − x + O(log x).

Hence, ∑

n≤x

Λ(n)
[x
n

]
= x log x − x + O(log x).

Recall Euler’s summation formula
∑

y<n≤x

f (n) =
∫ x

y
f (t)dt +

∫ x

y
(t − [t])f ′(t)dt

+ f (x)([x ] − x)− f (y)([y ]− y).
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Asymptotic Formula for log [x ]! (Cont’d)

Taking f (t) = log t, we obtain

∑
n≤x log n =

∫ x

1 log tdt +
∫ x

1
t−[t]
t

dt − (x − [x ]) log x

= x log x − x + 1 +
∫ x

1
t−[t]
t

dt + O(log x).

Now note that
∫ x

1

t − [t]

t
dt = O

(∫ x

1

1

t
dt

)
= O(log x).

Thus,
log [x ]! = x log x − x + O(log x).

The second equation follows from
∑

n≤x

Λ(n)
[x
n

]
= log [x ]!.
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Asymptotic Formula for
∑

p≤x [
x
p
] log p

Theorem

For x ≥ 2, we have

∑

p≤n

[
x

p

]
log p = x log x + O(x),

where the sum is extended over all primes ≤ x .

Recall Λ(n) = 0, unless n is a prime power.

Consequently, we have

∑

n≤x

[x
n

]
Λ(n) =

∑

p

∞∑

m=1
pm≤x

[
x

pm

]
Λ(pm).
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Asymptotic Formula for
∑

p≤x [
x
p
] log p (Cont’d)

We obtained

∑

n≤x

[x
n

]
Λ(n) =

∑

p

∞∑

m=1
pm≤x

[
x

pm

]
Λ(pm).

Now pm ≤ x implies p ≤ x .

Moreover, if p > x , [ x
pm

] = 0.

So we can write the last sum as

∑

p≤x

∞∑

m=1

[
x

pm

]
log p =

∑

p≤x

[
x

p

]
log p +

∑

p≤x

∞∑

m=2

[
x

pm

]
log p.
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Asymptotic Formula for
∑

p≤x [
x
p
] log p

Claim:
∑

p≤x

∑∞
m=2[

x
pm

] log p = O(x).

We have
∑

p≤x log p
∑∞

m=2[
x
pm

] ≤ ∑
p≤x log p

∑∞
m=2

x
pm

= x
∑

p≤x log p
∑∞

m=2(
1
p
)m

= x
∑

p≤x log p · 1
p2

· 1
1− 1

p

= x
∑

p≤x
log p

p(p−1)

≤ x
∑∞

n=2
log n

n(n−1) = O(x).

Hence we have shown that
∑

n≤x [
x
n
]Λ(n) =

∑
p≤x [

x
p
] log p + O(x).

Combined with
∑

n≤x Λ(n)[
x
n
] = x log x − x + O(log x), it proves the

theorem.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 68 / 73



Averages of Arithmetical Functions Another Identity for the Partial Sums of a Dirichlet Product

Subsection 12

Another Identity for the Partial Sums of a Dirichlet Product

George Voutsadakis (LSSU) Analytic Number Theory May 2024 69 / 73



Averages of Arithmetical Functions Another Identity for the Partial Sums of a Dirichlet Product

Partial Sums

We generalize the formula for the partial sums of Dirichlet products.

As before, we write

F (x) =
∑

n≤x

f (n), G (x) =
∑

n≤x

g(n), H(x) =
∑

n≤x

(f ∗ g)(n).

So
H(x) =

∑

n≤x

∑

d|n
f (d)g

(n
d

)
=

∑

q,d
qd≤x

f (d)g(q).
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The Generalized Partial Sums Theorem

Theorem

If a and b are positive real numbers, such that ab = x , then

∑

q,d
qd≤x

f (d)g(q) =
∑

n≤a

f (n)G
(x
n

)
+

∑

n≤b

g(n)F
(x
n

)
− F (a)G (b).

The sum H(x) on the left is extended
over the lattice points in the hyperbolic
region shown in the figure.

We split the sum into two parts:

One over the lattice points in A ∪ B;
The other over those in B ∪ C .

The lattice points in B are covered
twice.
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The Generalized Partial Sums Theorem (Cont’d)

Consequently, we have:

∑

q,d
qd≤x

f (d)g(q) =
∑

d≤a

∑

q≤ x
d

f (d)g(q) +
∑

q≤b

∑

d≤ x
q

f (d)g(q)

−
∑

d≤a

∑

q≤b

f (d)g(q)

=
∑

n≤a

f (n)
∑

q≤ x
n

g(q) +
∑

n≤b

g(n)
∑

d≤ x
n

f (d)

−
∑

d≤a

f (d)
∑

q≤b

g(q)

=
∑

n≤a

f (n)G (x
n
) +

∑

n≤b

g(n)F (x
n
)− F (a)G (b).
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Remark

Consider
∑

q,d
qd≤x

f (d)g(q) =
∑

n≤a

f (n)G
(x
n

)
+

∑

n≤b

g(n)F
(x
n

)
− F (a)G (b).

Take a = 1.
Then

H(x) = f (1)G(x) +
∑

n≤x g(n)F (
x
n
)− F (1)G(x)

=
∑

n≤x g(n)F (
x
n
).

Take b = 1.
Then

H(x) =
∑

n≤x f (n)G( x
n
) + g(1)F (x)− F (x)G(1)

=
∑

n≤x f (n)G( x
n
).

These are the special cases proved previously.
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