Introduction to Analytic Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Some Elementary Theorems on the Distribution of Prime Numbers

- Chebyshev's functions $\psi(x)$ and $\vartheta(x)$
- Relations connecting $\vartheta(x)$ and $\pi(x)$
- Some Equivalent Forms of the Prime Number Theorem
- Inequalities for $\pi(n)$ and p_n
- Shapiro's Tauberian Theorem
- Applications of Shapiro's Theorem
- An Asymptotic Formula for the Partial Sums $\sum_{p \le x} (1/p)$
- The Partial Sums of the Möbius Function
- Selberg's Asymptotic Formula

Subsection 1

Chebyshev's functions $\psi(x)$ and $\vartheta(x)$

Chebyshev's functions $\psi(x)$ and $\vartheta(x)$

Chebyshev's ψ -Function

Definition

For x > 0 we define **Chebyshev's** ψ -function by the formula

$$\psi(x)=\sum_{n\leq x}\Lambda(n).$$

Recall Λ(n) = 0, unless n is a prime power.
 So we get

$$\psi(x) = \sum_{n \leq x} \Lambda(n) = \sum_{\substack{m=1 \\ p^m \leq x}}^{\infty} \Lambda(p^m) = \sum_{m=1}^{\infty} \sum_{p \leq x^{1/m}} \log p.$$

Chebyshev's ψ -Function

We got

$$\psi(x) = \sum_{m=1}^{\infty} \sum_{p \le x^{1/m}} \log p.$$

The sum on *m* is actually a finite sum. Suppose $m > \log_2 x$. Then $m > \frac{\log x}{\log 2}$. So $\frac{1}{m} \log x < \log 2$. Hence, $x^{1/m} < 2$. It follows that, in this case, the sum on *p* is empty. So

$$\psi(x) = \sum_{m \le \log_2 x} \sum_{p \le x^{1/m}} \log p.$$

Chebyshev's ϑ -Function

Definition

If x > 0 we define **Chebyshev's** ϑ -function by the equation

$$\vartheta(x) = \sum_{p \le x} \log p,$$

where *p* runs over all primes $\leq x$.

• The last formula for $\psi(x)$ can now be restated as follows:

$$\psi(x) = \sum_{m \leq \log_2 x} \sum_{p \leq x^{1/m}} \log p = \sum_{m \leq \log_2 x} \vartheta(x^{1/m}).$$

Elementary Theorems on the Distribution of Primes

Chebyshev's functions $\psi(x)$ and $\vartheta(x)$

Relation Between
$$rac{\psi(x)}{x}$$
 and $rac{\vartheta(x)}{x}$

Theorem

For x > 0, we have

$$0 \leq rac{\psi(x)}{x} - rac{\vartheta(x)}{x} \leq rac{(\log x)^2}{2\sqrt{x}\log 2}$$

Note: This inequality implies that

$$\lim_{x\to\infty}\left(\frac{\psi(x)}{x}-\frac{\vartheta(x)}{x}\right)=0.$$

In other words, if one of $\frac{\psi(x)}{x}$ or $\frac{\vartheta(x)}{x}$ tends to a limit then so does the other, and the two limits are equal.

Chebyshev's functions $\psi(x)$ and $\vartheta(x)$

Proof of the Theorem

We saw

$$\psi(x) = \sum_{m \le \log_2 x} \vartheta(x^{1/m}).$$

Therefore,

$$0 \leq \psi(x) - \vartheta(x) = \sum_{2 \leq m \leq \log_2 x} \vartheta(x^{1/m}).$$

From the definition of $\vartheta(x)$ we have the trivial inequality

$$\vartheta(x) = \sum_{p \le x} \log p \le \sum_{p \le x} \log x \le x \log x.$$

Proof of the Theorem

We have

- $0 \leq \psi(x) \vartheta(x) = \sum_{2 \leq m \leq \log_2 x} \vartheta(x^{1/m});$
- $\vartheta(x) \leq x \log x$.

Combining, we get

$$\begin{array}{rcl} 0 & \leq & \psi(x) - \vartheta(x) \\ & \leq & \sum_{2 \leq m \leq \log_2 x} x^{1/m} \log \left(x^{1/m} \right) \\ & \leq & (\log_2 x) \sqrt{x} \log \sqrt{x} \\ & = & \frac{\log x}{\log 2} \cdot \frac{\sqrt{x}}{2} \log x \\ & = & \frac{\sqrt{x} (\log x)^2}{2 \log 2}. \end{array}$$

Now divide by x to obtain the conclusion.

Subsection 2

Relations connecting $\vartheta(x)$ and $\pi(x)$

Abel's Identity

- Both functions $\pi(x)$ and $\vartheta(x)$ are step functions with jumps at the primes:
 - $\pi(x)$ has a jump 1 at each prime p;
 - $\vartheta(x)$ has a jump of log p at each prime p.
- Sums involving step functions of this type can be expressed as integrals by means of the following theorem.

Theorem (Abel's Identity)

For any arithmetical function a(n), let $A(x) = \sum_{n \le x} a(n)$, where A(x) = 0 if x < 1. Assume f has a continuous derivative on the interval [y, x], where 0 < y < x. Then we have

$$\sum_{y < n \leq x} a(n)f(n) = A(x)f(x) - A(y)f(y) - \int_y^x A(t)f'(t)dt.$$

Proof of Abel's Identity

• Let k = [x] and m = [y], so that A(x) = A(k) and A(y) = A(m). Then

$$\begin{split} \sum_{y < n \le x} a(n)f(n) &= \sum_{n=m+1}^{k} a(n)f(n) \\ &= \sum_{n=m+1}^{k} \{A(n) - A(n-1)\}f(n) \\ &= \sum_{n=m+1}^{k} A(n)f(n) - \sum_{n=m}^{k-1} A(n)f(n+1) \\ &= \sum_{n=m+1}^{k-1} A(n)\{f(n) - f(n+1)\} + A(k)f(k) - A(m)f(m+1) \\ &= -\sum_{n=m+1}^{k-1} A(n) \int_{n}^{n+1} f'(t)dt + A(k)f(k) - A(m)f(m+1) \\ &= -\sum_{n=m+1}^{k-1} \int_{n}^{n+1} A(t)f'(t)dt + A(k)f(k) - A(m)f(m+1) \\ &= -\int_{m=m+1}^{k} A(t)f'(t)dt + A(x)f(x) - \int_{k}^{x} A(t)f'(t)dt \\ &\quad -A(y)f(y) - \int_{y}^{m+1} A(t)f'(t)dt. \end{split}$$

Alternate Proof of Abel's Identity

• A shorter proof of Abel's Identity is available to readers familiar with Riemann-Stieltjes integration.

A(x) is a step function with jump a(n) at each integer n.

So the sum in $\sum_{y < n \le x} a(n)f(n)$ can be expressed as a Riemann-Stieltjes integral

$$\sum_{y < n \leq x} a(n)f(n) = \int_{y}^{x} f(t)dA(t).$$

Integration by parts gives us

$$\sum_{y < n \le x} a(n)f(n) = f(x)A(x) - f(y)A(y) - \int_y^x A(t)df(t)$$

= $f(x)A(x) - f(y)A(y) - \int_y^x A(t)f'(t)dt.$

A Special Case

- We have A(t) = 0 if t < 1.
- So, when y < 1, Abel's Identity takes the form

$$\sum_{y < n \le x} a(n)f(n) = A(x)f(x) - \int_1^x A(t)f'(t)dt.$$

Euler's Summation Formula

- Suppose a(n) = 1, for all $n \ge 1$.
- Then A(x) = [x].
- Thus, we get

$$\sum_{y < n \le x} f(n) = f(x)[x] - f(y)[y] - \int_{y}^{x} [t]f'(t)dt.$$

Integration by parts gives

$$\int_{y}^{x} tf'(t)dt = xf(x) - yf(y) - \int_{y}^{x} f(t)dt.$$

Euler's Summation Formula (Cont'd)

• Now we obtain Euler's summation formula.

$$\begin{split} \sum_{y < n \le x} f(n) &= f(x)[x] - f(y)[y] - \int_y^x [t]f'(t)dt \\ &= f(x)[x] - f(y)[y] + \int_y^x (t - [t])f'(t)dt \\ &- \int_y^x tf'(t)dt \\ &= f(x)[x] - f(y)[y] + \int_y^x (t - [t])f'(t)dt \\ &- (xf(x) - yf(y) - \int_y^x f(t)dt) \\ &= \int_y^x f(t)dt + \int_y^x (t - [t])f'(t)dt \\ &+ f(x)([x] - x) - f(y)([y] - y). \end{split}$$

Relations connecting $\vartheta(x)$ and $\pi(x)$

An Integral Formula for $\vartheta(x)$

Theorem

For $x \ge 2$,

$$\vartheta(x) = \pi(x) \log x - \int_2^x \frac{\pi(t)}{t} dt.$$

• Let a(n) denote the characteristic function of the primes,

$$a(n) = \begin{cases} 1, & \text{if } n \text{ is a prime} \\ 0, & \text{otherwise} \end{cases}$$

Then we have

$$\pi(x) = \sum_{p \le x} 1 = \sum_{1 < n \le x} a(n);$$

$$\vartheta(x) = \sum_{p \le x} \log p = \sum_{1 < n \le x} a(n) \log n.$$

٠

An Integral Formula for $\vartheta(x)$ (Cont'd)

• We obtained

•
$$\vartheta(x) = \sum_{1 < n \le x} a(n) \log n;$$

• $\pi(x) = \sum_{1 < n \le x} a(n).$

Taking $f(x) = \log x$ in Abel's Identity with y = 1, we obtain

$$\sum_{1 < n \le x} a(n) \log n = \pi(x) \log x - \int_1^x \frac{\pi(t)}{t} dt.$$

So we have

$$\vartheta(x) = \sum_{1 < n \le x} a(n) \log n$$

= $\pi(x) \log x - \int_1^x \frac{\pi(t)}{t} dt$
 $\pi(t) = 0, t < 2$ $\pi(x) \log x - \int_2^x \frac{\pi(t)}{t} dt.$

Relations connecting $\vartheta(x)$ and $\pi(x)$

.

An Integral Formula for $\pi(x)$

Theorem

For $x \ge 2$,

$$\pi(x) = \frac{\vartheta(x)}{\log x} - \int_2^x \frac{\vartheta(t)}{t \log^2 t} dt.$$

Let

$$a(n) = \begin{cases} 1, & \text{if } n \text{ is a prime} \\ 0, & \text{otherwise} \end{cases}$$

Define

$$b(n) = a(n) \log n.$$

Write

$$\begin{aligned} \pi(x) &= \sum_{3/2 < n \le x} a(n) = \sum_{3/2 < n \le x} b(n) \frac{1}{\log n}; \\ \vartheta(x) &= \sum_{n \le x} b(n). \end{aligned}$$

An Integral Formula for $\pi(x)$ (Cont'd)

• We have: • $\pi(x) = \sum_{3/2 < n \le x} b(n) \frac{1}{\log n}$; • $\vartheta(x) = \sum_{n \le x} b(n)$. Take $f(x) = \frac{1}{\log x}$ in Abel's Identity with $y = \frac{3}{2}$. $\pi(x) = \frac{\vartheta(x)}{\log x} - \frac{\vartheta(3/2)}{\log 3/2} + \int_{3/2}^{x} \frac{\vartheta(t)}{t \log^2 t} dt$ $\frac{\vartheta(t) = 0, t < 2}{=} \frac{\vartheta(x)}{\log x} - \int_{2}^{x} \frac{\vartheta(t)}{t \log^2 t} dt$.

Subsection 3

Some Equivalent Forms of the Prime Number Theorem

Equivalent Forms of the Prime Number Theorem

Theorem

The following relations are logically equivalent:

$$\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1, \quad \lim_{x \to \infty} \frac{\vartheta(x)}{x} = 1, \quad \lim_{x \to \infty} \frac{\psi(x)}{x} = 1.$$

• By the preceding theorem,

$$\frac{\vartheta(x)}{x} = \frac{\pi(x)\log x}{x} - \frac{1}{x}\int_2^x \frac{\pi(t)}{t}dt, \quad \frac{\pi(x)\log x}{x} = \frac{\vartheta(x)}{x} + \frac{\log x}{x}\int_2^x \frac{\vartheta(t)dt}{t\log^2 t}.$$

To see that the first limit implies the second it suffices to see that it implies

$$\lim_{x\to\infty}\frac{1}{x}\int_2^x\frac{\pi(t)}{t}dt=0.$$

Equivalent Forms of the Prime Number Theorem (Cont'd)

• Suppose
$$\lim_{x\to\infty} \frac{\pi(x)\log x}{x} = 1$$
.
This implies
 $\frac{\pi(t)}{t} = O\left(\frac{1}{\log t}\right)$, for $t \ge 2$.

So we get

$$\frac{1}{x}\int_{2}^{x}\frac{\pi(t)}{t}dt=O\left(\frac{1}{x}\int_{2}^{x}\frac{dt}{\log t}\right).$$

Now

$$\int_{2}^{x} \frac{dt}{\log t} = \int_{2}^{\sqrt{x}} \frac{dt}{\log t} + \int_{\sqrt{x}}^{x} \frac{dt}{\log t}$$
$$\leq \frac{\sqrt{x}}{\log 2} + \frac{x - \sqrt{x}}{\log \sqrt{x}}.$$

So
$$\frac{1}{x} \int_2^x \frac{dt}{\log t} \to 0$$
, as $x \to \infty$.

Equivalent Forms of the Prime Number Theorem (Cont'd)

• Suppose
$$\lim_{x\to\infty} \frac{\vartheta(x)}{x} = 1$$
.
We must show that this implies $\lim_{x\to\infty} \frac{\log x}{x} \int_2^x \frac{\vartheta(t)dt}{t\log^2 t} = 0$.
It does imply $\vartheta(t) = O(t)$.
So
 $\frac{\log x}{x} \int_2^x \frac{\vartheta(t)dt}{t\log^2 t} = O\left(\frac{\log x}{x} \int_2^x \frac{dt}{\log^2 t}\right)$.

Now

$$\int_{2}^{x} \frac{dt}{\log^{2} t} = \int_{2}^{\sqrt{x}} \frac{dt}{\log^{2} t} + \int_{\sqrt{x}}^{x} \frac{dt}{\log^{2} t} \le \frac{\sqrt{x}}{\log^{2} 2} + \frac{x - \sqrt{x}}{\log^{2} \sqrt{x}}.$$

Hence,

$$\frac{\log x}{x} \int_2^x \frac{dt}{\log^2 t} \to 0, \text{ as } x \to \infty.$$

This proves that the first and second limits are equivalent. By a previous theorem, the second and third limits are equivalent.

George Voutsadakis (LSSU)

Analytic Number Theory

May 2024

Prime Number Theorem and Asymptotic Value of p_n

Theorem

Let p_n denote the *n*-th prime. Then the following asymptotic relations are logically equivalent:

$$\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1, \quad \lim_{x \to \infty} \frac{\pi(x) \log \pi(x)}{x} = 1, \quad \lim_{n \to \infty} \frac{p_n}{n \log n} = 1.$$

• We show $1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 1$.

Proof $(1 \rightarrow 2)$

• Assume $\lim_{x\to\infty} \frac{\pi(x)\log x}{x} = 1$. Taking logarithms we obtain

$$\lim_{x\to\infty} \left[\log \pi(x) + \log\log x - \log x\right] = 0.$$

Equivalently,

$$\lim_{x \to \infty} \left[\log x \left(\frac{\log \pi(x)}{\log x} + \frac{\log \log x}{\log x} - 1 \right) \right] = 0.$$

But
$$\log x \to \infty$$
 as $x \to \infty$.
It follows that

$$\lim_{x \to \infty} \left(\frac{\log \pi(x)}{\log x} + \frac{\log \log x}{\log x} - 1 \right) = 0.$$

This yields
$$\lim_{x\to\infty} \frac{\log \pi(x)}{\log x} = 1$$
.
This gives $\lim_{x\to\infty} \frac{\pi(x)\log \pi(x)}{x} = 1$.

George Voutsadakis (LSSU)

Proof $(2 \rightarrow 3 \rightarrow 2)$

2-3 Suppose
$$\lim_{x\to\infty} \frac{\pi(x)\log \pi(x)}{x} = 1$$
.
Assume $x = p_n$. Then $\pi(x) = n$. So $\pi(x)\log \pi(x) = n\log n$.
So 2 implies $\lim_{n\to\infty} \frac{n\log n}{p_n} = 1$.
3-2 Suppose $\lim_{n\to\infty} \frac{n\log n}{p_n} = 1$.
Given x , define n by the inequalities
 $p_n \le x < p_{n+1}$.
Then $n = \pi(x)$. Dividing by $n\log n$, we get
 $\frac{p_n}{n\log n} \le \frac{x}{n\log n} < \frac{p_{n+1}}{n\log n} = \frac{p_{n+1}}{(n+1)\log(n+1)} \cdot \frac{(n+1)\log(n+1)}{n\log n}$

Now let $n \to \infty$ and use the hypothesis to get

$$\lim_{n \to \infty} \frac{x}{n \log n} = 1.$$

Equivalently, $\lim_{x \to \infty} \frac{x}{\pi(x) \log \pi(x)} = 1.$

1

Proof $(2 \rightarrow 1)$

2→1 Suppose $\lim_{x\to\infty} \frac{\pi(x)\log \pi(x)}{x} = 1$. Taking logarithms, we obtain

$$\lim_{x\to\infty} \left(\log \pi(x) + \log\log \pi(x) - \log(x)\right) = 0.$$

Equivalently,

$$\lim_{x \to \infty} \left[\log \pi(x) \left(1 + \frac{\log \log \pi(x)}{\log \pi(x)} - \frac{\log x}{\log \pi(x)} \right) \right] = 0.$$

But $\log \pi(x) \to \infty$. It follows that

$$\lim_{x\to\infty}\left(1+\frac{\log\log\pi(x)}{\log\pi(x)}-\frac{\log x}{\log\pi(x)}\right)=0.$$

Equivalently,

$$\lim_{x\to\infty}\frac{\log x}{\log \pi(x)}=1.$$

This gives $\lim_{x\to\infty} \frac{\pi(x)\log x}{x} = 1.$

Subsection 4

Inequalities for $\pi(n)$ and p_n

An Estimate for $\binom{2n}{n}$

Lemma

For every integer $n \ge 0$, we have

$$2^n \leq \binom{2n}{n} < 4^n.$$

• The left inequality is by induction.

- For n = 0, it holds that $1 \le \frac{0!}{0!0!}$.
- Suppose the inequality holds for some $k \ge 0$.
- We have

$$2^{k+1} = 2 \cdot 2^k \leq 2\frac{(2k)!}{k!k!} = 2\frac{(2k)!(k+1)(k+1)}{k!k!(k+1)(k+1)} \\ \leq \frac{(2k)!(2k+1)(2k+2)}{(k+1)!(k+1)!} = \frac{(2(k+1))!}{(k+1)!(k+1)!}.$$

The right follows from $4^n = (1+1)^{2n} = \sum_{k=0}^{2n} {2n \choose k} > {2n \choose n}$.

Inequalities for $\pi(n)$

Theorem

For every integer $n \ge 2$, we have

$$\frac{1}{6}\frac{n}{\log n} < \pi(n) < 6\frac{n}{\log n}.$$

• Taking logarithms in $2^n \le \binom{2n}{n} < 4^n$, we get $n \log 2 \le \log (2n)! - 2 \log n! < 4 \log 4.$

A previous theorem implies that

$$\log n! = \sum_{p \le n} \alpha(p) \log p,$$

where the sum is extended over primes and $\alpha(p)$ is given by $\alpha(p) = \sum_{m=1}^{\left\lfloor \frac{\log n}{\log p} \right\rfloor} \left\lfloor \frac{n}{p^m} \right\rfloor.$

George Voutsadakis (LSSU)

Hence, we get

$$\log (2n)! - 2\log n! = \sum_{p \le 2n} \sum_{m=1}^{\left\lceil \frac{\log 2n}{\log p} \right\rceil} \left\{ \left\lceil \frac{2n}{p^m} \right\rceil - 2\left\lceil \frac{n}{p^m} \right\rceil \right\} \log p.$$

Now note that [2x] - 2[x] is either 0 or 1. So the inequality $n \log 2 \le \log (2n)! - 2 \log n!$ implies

$$n\log 2 \leq \sum_{p\leq 2n} \left(\sum_{m=1}^{\lfloor \log p \rfloor} 1\right) \log p \leq \sum_{p\leq 2n} \log 2n = \pi(2n)\log 2n.$$

Taking into account $\log 2 > \frac{1}{2}$, this gives

$$\pi(2n) \geq \frac{n\log 2}{\log 2n} = \frac{2n}{\log 2n} \frac{\log 2}{2} > \frac{1}{4} \frac{2n}{\log 2n}.$$

• For odd integers, we have

$$\begin{aligned} \pi(2n+1) &\geq \pi(2n) \\ &> \frac{1}{4} \frac{2n}{\log 2n} \\ &> \frac{1}{4} \frac{2n}{2n+1} \frac{2n+1}{\log (2n+1)} \\ &\geq \frac{1}{6} \frac{2n+1}{\log (2n+1)}, \end{aligned}$$

since $\frac{2n}{2n+1} \ge \frac{2}{3}$. This, together with $\pi(2n) > \frac{1}{4} \frac{2n}{\log 2n}$, gives

$$\pi(n) > rac{1}{6} rac{n}{\log n}, \quad ext{for all } n \geq 2.$$

Consider again

$$\log (2n)! - 2 \log n! = \sum_{p \le 2n} \sum_{m=1}^{\left[\frac{\log 2n}{\log p}\right]} \left\{ \left[\frac{2n}{p^m}\right] - 2\left[\frac{n}{p^m}\right] \right\} \log p.$$

Extract the term corresponding to m = 1.

The remaining terms are nonnegative, whence

$$\log (2n)! - 2 \log n! \ge \sum_{p \le 2n} \left\{ \left[\frac{2n}{p} \right] - 2 \left[\frac{n}{p} \right] \right\} \log p.$$

For those primes p, with $n , we have <math>\left[\frac{2n}{p}\right] - 2\left[\frac{n}{p}\right] = 1$. So

$$\log (2n)! - 2 \log n! \ge \sum_{n$$

It follows that

$$\log (2n)! - 2 \log n! < n \log 4 \quad \text{implies} \quad \vartheta(2n) - \vartheta(n) < n \log 4.$$

If $n = 2^r$,
$$\vartheta(2^{r+1}) - \vartheta(2^r) < 2^r \log 4 = 2^{r+1} \log 2.$$

Summing on $r = 0, 1, \ldots, k$, we find

$$\vartheta(2^{k+1}) < 2^{k+2} \log 2.$$

Now we choose k so that $2^k \le n < 2^{k+1}$. We obtain

$$\vartheta(n) \leq \vartheta(2^{k+1}) < 2^{k+2} \log 2 \leq 4n \log 2.$$

Inequalities for $\pi(n)$ (Conclusion)

• If $0 < \alpha < 1$, we have $(\pi(n) - \pi(n^{\alpha})) \log n^{\alpha} < \sum_{n^{\alpha} < p \le n} \log p \le \vartheta(n) < 4n \log 2.$

Hence

$$\pi(n) < \frac{4n\log 2}{\alpha \log n} + \pi(n^{\alpha})$$

$$< \frac{4n\log 2}{\alpha \log n} + n^{\alpha}$$

$$= \frac{n}{\log n} \left(\frac{4\log 2}{\alpha} + \frac{\log n}{n^{1-\alpha}}\right)$$

If c > 0 and $x \ge 1$, $f(x) = x^{-c} \log x$ attains its maximum at $x = e^{1/c}$. So, for $n \ge 1$, $n^{-c} \log n \le (e^{1/c})^{-c} \log (e^{1/c}) \le \frac{1}{ce}$. Taking $\alpha = \frac{2}{3}$ in the last inequality for $\pi(n)$, we find

$$\pi(n) < \frac{n}{\log n} \left(6\log 2 + \frac{3}{e} \right) < 6 \frac{n}{\log n}.$$
Inequalities for p_n

Theorem

For $n \ge 1$, the *n*-th prime p_n satisfies the inequalities

$$\frac{1}{6}n\log n < p_n < 12\left(n\log n + n\log\frac{12}{e}\right)$$

• Consider
$$\frac{1}{6} \frac{n}{\log n} < \pi(n) < 6 \frac{n}{\log n}$$
.
Take $k = p_n$. Then $k \ge 2$ and $n = \pi(k)$.
Thus, we have

$$n = \pi(k) < 6 \frac{k}{\log k} = 6 \frac{p_n}{\log p_n}.$$

It follows that

$$p_n > \frac{1}{6}n\log p_n > \frac{1}{6}n\log n.$$

Inequalities for p_n (Cont'd)

• For the upper bound, by the preceding theorem,

$$n = \pi(k) > \frac{1}{6} \frac{k}{\log k} = \frac{1}{6} \frac{p_n}{\log p_n}.$$

So $p_n < 6n \log p_n$. But, for $x \ge 1$, $\log x \le \frac{2}{e}\sqrt{x}$. So we have $\log p_n \le \frac{2}{e}\sqrt{p_n}$. It follows that $p_n < 6n\frac{2}{e}\sqrt{p_n}$. I.e., $\sqrt{p_n} < \frac{12}{e}n$. Therefore,

$$\frac{1}{2}\log p_n < \log n + \log \frac{12}{e}$$

Used in $p_n < 6n \log p_n$, this gives

$$p_n < 6n\left(2\log n + 2\log\frac{12}{e}\right)$$

Note: The upper bound shows once more that the series $\sum_{n=1}^{\infty} \frac{1}{p_n}$ diverges, by comparison with $\sum_{n=2}^{\infty} \frac{1}{n \log n}$.

Subsection 5

Shapiro's Tauberian Theorem

Tauberian Theorems

• We have seen that the prime number theorem is equivalent to the asymptotic formula

$$rac{1}{x}\sum_{n\leq x} \Lambda(n)\sim 1, \, ext{ as } x
ightarrow\infty.$$

• We have also derived a related asymptotic formula,

$$\sum_{n \le x} \Lambda(n) \left[\frac{x}{n}\right] = x \log x - x + O(\log x).$$

• Both sums above are weighted averages of the function $\Lambda(n)$.

- Each term $\Lambda(n)$ is multiplied by a weight factor $\frac{1}{x}$ in the first and by $\left[\frac{x}{n}\right]$ in the second.
- Theorems relating different weighted averages of the same function are called **Tauberian theorems**.

George Voutsadakis (LSSU)

Analytic Number Theory

Shapiro's Tauberian Theorem

- Shapiro's Tauberian Theorem relates, for nonnegative *a*(*n*):
 - Sums of the form $\sum_{n \le x} a(n)$;
 - Sums of the form $\sum_{n \le x}^{-} a(n)[\frac{x}{n}]$

Theorem

Let $\{a(n)\}\$ be a nonnegative sequence such that

$$\sum_{n \le x} a(n) \left[\frac{x}{n} \right] = x \log x + O(x), \text{ for all } x \ge 1.$$

(a) For $x \ge 1$, we have

$$\sum_{n \le x} \frac{a(n)}{n} = \log x + O(1).$$

(I.e., dropping the square brackets leads to a correct result.)

George Voutsadakis (LSSU)

Analytic Number Theory

Shapiro's Tauberian Theorem (Cont'd)

Theorem (Cont'd)

(b) There is a constant B > 0, such that

$$\sum_{n\leq x} a(n) \leq Bx, ext{ for all } x\geq 1.$$

(c) There is a constant A > 0 and an $x_0 > 0$, such that

$$\sum_{n\leq x}a(n)\geq Ax, \text{ for all } x\geq x_0.$$

Shapiro's Tauberian Theorem (Part (b))

• Let
$$S(x) = \sum_{n \le x} a(n)$$
 and $T(x) = \sum_{n \le x} a(n) [\frac{x}{n}]$.
Claim: $S(x) - S(\frac{x}{2}) \le T(x) - 2T(\frac{x}{2})$.
Write

$$T(x) - 2T(\frac{x}{2}) = \sum_{n \le x} [\frac{x}{n}] a(n) - 2\sum_{n \le x/2} [\frac{x}{2n}] a(n)$$

= $\sum_{n \le x/2} ([\frac{x}{n}] - 2[\frac{x}{2n}]) a(n) + \sum_{x/2 < n \le x} [\frac{x}{n}] a(n).$

But [2y] - 2[y] is either 0 or 1. So the first sum is nonnegative, giving

$$T(x) - 2T(\frac{x}{2}) \geq \sum_{x/2 < n \le x} [\frac{x}{n}] a(n)$$

=
$$\sum_{x/2 < n \le x} a(n)$$

=
$$S(x) - S(\frac{x}{2}).$$

Shapiro's Tauberian Theorem (Part (b) Cont'd)

• By the hypothesis,

$$T(x) - 2T(\frac{x}{2}) = x \log x + O(x) - 2(\frac{x}{2} \log \frac{x}{2} + O(x))$$

= $O(x).$

Hence, by the claim,

$$S(x)-S\left(\frac{x}{2}\right)=O(x).$$

This means that there is some constant K > 0, such that

$$S(x) - S\left(\frac{x}{2}\right) \le Kx$$
, for all $x \ge 1$.

Shapiro's Tauberian Theorem (Part (b) Cont'd)

• We showed that, if $S(x) = \sum_{n \le x} a(n)$, there is some constant K > 0, such that

$$S(x) - S\left(\frac{x}{2}\right) \le Kx$$
, for all $x \ge 1$.

Replace x successively by $\frac{x}{2}, \frac{x}{4}, \ldots$ to get

$$\begin{array}{rcl} S(\frac{x}{2}) - S(\frac{x}{4}) & \leq & K\frac{x}{2}, \\ S(\frac{x}{4}) - S(\frac{x}{8}) & \leq & K\frac{x}{4}, \\ & \vdots \end{array}$$

Note that, if $2^n > x$, then $S(\frac{x}{2^n}) = 0$. Adding these inequalities we get

$$S(x) \leq Kx\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right) = 2Kx.$$

This proves (b) with B = 2K.

Shapiro's Tauberian Theorem (Part (a))

Write
$$[\frac{x}{n}] = \frac{x}{n} + O(1)$$
.
Then

$$T(x) = \sum_{n \le x} [\frac{x}{n}] a(n)$$

$$= \sum_{n \le x} (\frac{x}{n} + O(1)) a(n)$$

$$= x \sum_{n \le x} \frac{a(n)}{n} + O(\sum_{n \le x} a(n))$$

$$\stackrel{\text{Part}(b)}{=} x \sum_{n \le x} \frac{a(n)}{n} + O(x).$$

Hence

۲

$$\sum_{n\leq x} \frac{a(n)}{n} = \frac{1}{x}T(x) + O(1) \stackrel{\text{hyp.}}{=} \log x + O(1).$$

Shapiro's Tauberian Theorem (Part (c))

• Let
$$A(x) = \sum_{n \le x} \frac{a(n)}{n}$$
.
Then, by Part (a),
 $A(x) = \log x + R(x)$,

where R(x) is the error term, with R(x) = O(1).

Thus, for some M > 0, we have $|R(x)| \le M$.

Choose α to satisfy $0 < \alpha < 1$ (we shall specify α more exactly in a moment) and consider the difference

$$A(x) - A(\alpha x) = \sum_{\alpha x < n \le x} \frac{a(n)}{n} = \sum_{n \le x} \frac{a(n)}{n} - \sum_{n \le \alpha x} \frac{a(n)}{n}.$$

Shapiro's Tauberian Theorem (Part (c) Cont'd)

If x ≥ 1 and αx ≥ 1, we can apply the asymptotic formula for A(x) to write

$$A(x) - A(\alpha x) = \log x + R(x) - (\log \alpha x + R(\alpha x))$$

= $-\log \alpha + R(x) - R(\alpha x)$
 $\geq -\log \alpha - |R(x)| - |R(\alpha x)|$
 $\geq -\log \alpha - 2M.$

Shapiro's Tauberian Theorem (Part (c) Cont'd)

• We got

$$A(x) - A(\alpha x) \ge -\log \alpha - 2M.$$

Now choose α so that $-\log \alpha - 2M = 1$. I.e., $\alpha = e^{-2M-1}$. Note that $0 < \alpha < 1$. For this α , if $x \ge \frac{1}{\alpha}$, $A(x) - A(\alpha x) \ge 1$. But

$$A(x) - A(\alpha x) = \sum_{\alpha x < n \le x} \frac{a(n)}{n} \le \frac{1}{\alpha x} \sum_{n \le x} a(n) = \frac{S(x)}{\alpha x}.$$

Hence, if $x \ge \frac{1}{\alpha}$, $\frac{S(x)}{\alpha x} \ge 1$. Therefore, if $x \ge \frac{1}{\alpha}$, $S(x) \ge \alpha x$. This proves Part (c), with $A = \alpha$ and $x_0 = \frac{1}{\alpha}$.

Subsection 6

Applications of Shapiro's Theorem

Application to $\Lambda(n)$

• Recall the asymptotic formula

$$\sum_{n \le x} \Lambda(n) \left[\frac{x}{n} \right] = x \log x - x + O(\log x).$$

It implies that

$$\sum_{n \le x} \Lambda(n) \left[\frac{x}{n}\right] = x \log x + O(x).$$

• Since $\Lambda(n) \ge 0$, we can apply Shapiro's Theorem with $a(n) = \Lambda(n)$.

Application to $\Lambda(n)$ (Cont'd)

Theorem

For all $x \ge 1$, we have

$$\sum_{n\leq x}\frac{\Lambda(n)}{n}=\log x+O(1).$$

Also, there exist positive constants c_1 and c_2 , such that

$$\psi(x) \leq c_1 x$$
, for all $x \geq 1$,

and

$$\psi(x) \ge c_2 x$$
, for all sufficiently large x.

• Follows directly by Shapiro's Theorem.

George Voutsadakis (LSSU)

Application to $\Lambda_1(n)$

We also showed that

$$\sum_{p \le x} \left[\frac{x}{p} \right] \log p = x \log x + O(x).$$

This can be written as

$$\sum_{n\leq x} \Lambda_1(n) \left[\frac{x}{n}\right] = x \log x + O(x),$$

where

$$\Lambda_1(n) = \begin{cases} \log p & \text{if } n \text{ is a prime } p, \\ 0, & \text{otherwise.} \end{cases}$$

• Since $\Lambda_1(n) \ge 0$, the hypothesis of Shapiro's Theorem is satisfied with $a(n) = \Lambda_1(n)$.

Application to $\Lambda_1(n)$ (Cont'd)

Theorem

For all $x \ge 1$, we have

$$\sum_{p \le x} \frac{\log p}{p} = \log x + O(1).$$

Also, there exist positive constants c_1 and c_2 , such that

$$\vartheta(x) \leq c_1 x$$
, for all $x \geq 1$,

and

$$\vartheta(x) \ge c_2 x$$
, for all sufficiently large x .

• This follows diectly from Shapiro's Theorem, taking into account that, by definition, $\vartheta(x) = \sum_{n \leq x} \Lambda_1(n)$.

Partial Sum Formulas for $\psi(x)$ and $\vartheta(x)$

We also proved that

$$\sum_{n \le x} f(n) \left[\frac{x}{n}\right] = \sum_{n \le x} F\left(\frac{x}{n}\right),$$

for any arithmetical f(n) with $F(x) = \sum_{n \le x} f(n)$.

• Consider again the asymptotic formulas

$$\sum_{n \le x} \Lambda(n)[\frac{x}{n}] = x \log x - x + O(\log x),$$

$$\sum_{n \le x} \Lambda_1(n)[\frac{x}{n}] = x \log x + O(x).$$

Take, also, into account that

$$\psi(x) = \sum_{n \leq x} \Lambda(n)$$
 and $\vartheta(x) = \sum_{n \leq x} \Lambda_1(n).$

rimes Applications of Shapiro's Theorem

Partial Sum Formulas for $\psi(x)$ and $\vartheta(x)$ (Cont'd)

Theorem

For all $x \ge 1$, we have

$$\sum_{n \le x} \psi(\frac{x}{n}) = x \log x - x + O(\log x),$$

$$\sum_{n \le x} \vartheta(x) = x \log x + O(x).$$

• By the preceding identities, we get

$$\sum_{n \le x} \psi(\frac{x}{n}) = \sum_{n \le x} \Lambda(n) \left[\frac{x}{n}\right]$$

= $x \log x - x + O(\log x);$
$$\sum_{n \le x} \vartheta(x) = \sum_{n \le x} \Lambda_1(n) \left[\frac{x}{n}\right]$$

= $x \log x + O(x).$

Subsection 7

An Asymptotic Formula for the Partial Sums $\sum_{p \le x} (1/p)$

An Asymptotic Formula for the Partial Sums $\sum_{p \leq x} (1/p)$

Asymptotic Formula for the Partial Sums
$$\sum_{p\leq x}(1/p)$$

Theorem

There is a constant A such that

$$\sum_{p \le x} \frac{1}{p} = \log \log x + A + O\left(\frac{1}{\log x}\right), \text{ for all } x \ge 2.$$

• Let
$$A(x) = \sum_{p \le x} \frac{\log p}{p}$$
. Let $a(n) = \begin{cases} 1, & \text{if } n \text{ is prime} \\ 0, & \text{otherwise} \end{cases}$

Then we have

$$\sum_{p \le x} \frac{1}{p} = \sum_{n \le x} \frac{a(n)}{n} \quad \text{and} \quad A(x) = \sum_{n \le x} \frac{a(n)}{n} \log n.$$

.

Asymptotic Formula (Cont'd)

• Abel's identity

$$\sum_{y < n \leq x} a(n)f(n) = A(x)f(x) - A(y)f(y) - \int_{y}^{x} A(t)f'(t)dt$$

yields

$$\sum_{y < n \le x} \frac{a(n)}{n} \log n \frac{1}{\log n} = A(x) \frac{1}{\log x} + \int_2^x A(t) \frac{1}{t \log^2 t} dt$$
$$\sum_{p \le x} \frac{1}{p} = \frac{A(x)}{\log x} + \int_2^x A(t) \frac{1}{t \log^2 t} dt.$$

From a previous theorem, we have

$$A(x) = \log x + R(x), \quad R(x) = O(1).$$

Thus,

$$\begin{split} \sum_{p \le x} \frac{1}{p} &= \frac{\log x + O(1)}{\log x} + \int_2^x \frac{\log t + R(t)}{t \log^2 t} dt \\ &= 1 + O(\frac{1}{\log x}) + \int_2^x \frac{dt}{t \log t} + \int_2^x \frac{R(t)}{t \log^2 t} dt. \end{split}$$

Asymptotic Formula (Cont'd)

We found

$$\sum_{p \le x} \frac{1}{p} = 1 + O\left(\frac{1}{\log x}\right) + \int_2^x \frac{dt}{t \log t} + \int_2^x \frac{R(t)}{t \log^2 t} dt.$$

Now note the following:

•
$$\int_{2}^{x} \frac{dt}{t\log t} = \log \log x - \log \log 2;$$

•
$$\int_{2}^{x} \frac{R(t)}{t\log^{2} t} dt = \int_{2}^{\infty} \frac{R(t)}{t\log^{2} t} dt - \int_{x}^{\infty} \frac{R(t)}{t\log^{2} t} dt$$
, the existence of the improper integral being assured by the condition $R(t) = O(1);$
•
$$\int_{x}^{\infty} \frac{R(t)}{t\log^{2} t} dt = O(\int_{x}^{\infty} \frac{dt}{t\log^{2} t}) = O(\frac{1}{\log x}).$$

ence,

$$\sum_{p \le x} \frac{1}{p} = \log \log x + 1 - \log \log 2 + \int_2^\infty \frac{R(t)}{t \log^2 t} dt + O\left(\frac{1}{\log x}\right).$$

This proves the theorem with $A = 1 - \log \log 2 + \int_2^\infty \frac{R(t)}{t \log^2 t} dt$.

Н

Subsection 8

The Partial Sums of the Möbius Function

Partial Sums of the Möbius Function

Definition

If $x \ge 1$, we define

$$M(x) = \sum_{n \le x} \mu(n).$$

- The exact order of magnitude of M(x) is not known.
 - Mertens' Conjecture stated that $|M(x)| < \sqrt{x}$ if x > 1.
 - However, the conjecture has been disproven.
 - A new conjecture asserts that M(x) grows as $\sqrt{x}(\log \log \log x)^{5/4}$.
- We prove that the weaker statement

$$\lim_{x\to\infty}\frac{M(x)}{x}=0$$

is equivalent to the prime number theorem.

M(x) and H(x)

Definition

If $x \ge 1$, we define

$$H(x) = \sum_{n \le x} \mu(n) \log n.$$

Theorem

We have

$$\lim_{x\to\infty}\left(\frac{M(x)}{x}-\frac{H(x)}{x\log x}\right)=0.$$

• Taking $f(t) = \log t$ in Abel's Identity, we obtain

$$H(x) = \sum_{n \leq x} \mu(n) \log n = M(x) \log x - \int_1^x \frac{M(t)}{t} dt.$$

M(x) and H(x)

• Taking x > 1, and dividing by $x \log x$, we get

$$\frac{M(x)}{x} - \frac{H(x)}{x \log x} = \frac{1}{x \log x} \int_1^x \frac{M(t)}{t} dt.$$

Therefore, to prove the theorem we must show that

$$\lim_{x \to \infty} \frac{1}{x \log x} \int_{1}^{x} \frac{M(t)}{t} dt = 0$$

Trivially, M(x) = O(x). So $f^{\times} M(x)$

$$\int_1^x \frac{M(t)}{t} dt = O\left(\int_1^x dt\right) = O(x).$$

This implies

$$\lim_{x\to\infty}\frac{1}{x\log x}\int_1^x\frac{M(t)}{t}dt=0.$$

Prime Number Theorem Implies the Limit

Theorem

The prime number theorem implies

$$\lim_{x\to\infty}\frac{M(x)}{x}=0.$$

• We use the Prime Number Theorem in the form

X

$$\psi(x) = \sum_{n \leq x} \Lambda(n) \sim x.$$

We prove that
$$\frac{H(x)}{x \log x} \to 0$$
 as $x \to \infty$.

Prime Number Theorem Implies the Limit (Claim)

• Claim: $-H(x) = -\sum_{n \le x} \mu(n) \log n = \sum_{n \le x} \mu(n) \psi(\frac{x}{n})$. We proved the following formula for $\Lambda(n)$.

$$\Lambda(n) = -\sum_{d|n} \mu(d) \log d.$$

Applying Möbius inversion, we get

$$-\mu(n)\log n = \sum_{d|n} \mu(d) \wedge \left(\frac{n}{d}\right).$$

Summing over all $n \le x$ and using the formula for the partial sums of a Dirichlet product, with f = t, $g = \Lambda$, we get

$$\sum_{n \le x} -\mu(n) \log n = \sum_{n \le x} (\mu * \Lambda)(n) = \sum_{n \le x} \mu(n) \psi\left(\frac{x}{n}\right).$$

Prime Number Theorem Implies the Limit (Cont'd)

• We know that $\psi(x) \sim x$.

Thus, given $\varepsilon > 0$ is given, there is a constant A > 0, such that

$$\left|\frac{\psi(x)}{x}-1\right|<\varepsilon, \text{ whenever } x\geq A.$$

In other words,

$$|\psi(x) - x| < \varepsilon x$$
, whenever $x \ge A$.

Choose x > A, let $y = \begin{bmatrix} x \\ A \end{bmatrix}$ and split the sum on the right of the Claim into two parts,

$$\sum_{n\leq y}\mu(n)\psi\left(\frac{x}{n}\right)+\sum_{y< n\leq x}\mu(n)\psi\left(\frac{x}{n}\right).$$

Prime Number Theorem Implies the Limit (First Sum)

• We look at $\sum_{n \leq y} \mu(n)\psi(\frac{x}{n})$, where $y = [\frac{x}{A}]$. We have $n \leq y$. So $n \leq \frac{x}{A}$. Hence, $\frac{x}{n} \geq A$. Therefore, for $n \leq y$, we have $|\psi(\frac{x}{n}) - \frac{x}{n}| < \varepsilon \frac{x}{n}$. Thus,

$$\sum_{n \le y} \mu(n)\psi(\frac{x}{n}) = \sum_{n \le y} \mu(n)(\frac{x}{n} + \psi(\frac{x}{n}) - \frac{x}{n})$$
$$= x \sum_{n \le y} \frac{\mu(n)}{n} + \sum_{n \le y} \mu(n)(\psi(\frac{x}{n}) - \frac{x}{n}).$$

It follows that

$$\begin{aligned} |\sum_{n \le y} \mu(n)\psi(\underline{x})| &\le x |\sum_{n \le y} \frac{\mu(n)}{n}| + \sum_{n \le y} |\psi(\underline{x}) - \underline{x}|| \\ &< x + \varepsilon \sum_{n \le y} \frac{x}{n} \\ &< x + \varepsilon x (1 + \log y) \\ &< x + \varepsilon x + \varepsilon x \log x. \end{aligned}$$

Prime Number Theorem Implies the Limit (Second Sum)

• We look at
$$\sum_{y < n \le x} \mu(n)\psi(\frac{x}{n})$$
, where $y = [\frac{x}{A}]$.
In this sum, $y < n \le x$ So $n \ge y + 1$.
As $y \le \frac{x}{A} < y + 1$, we get

$$\frac{x}{n} \le \frac{x}{y+1} < A.$$

But $\frac{x}{n} < A$ implies

$$\psi\left(\frac{x}{n}\right) \leq \psi(A).$$

Therefore,

$$\sum_{y < n \leq x} \mu(n)\psi\left(\frac{x}{n}\right) \leq x\psi(A).$$

Prime Number Theorem Implies the Limit (Sum)

• Now, regarding the full sum, we have, for $\varepsilon < 1$,

$$\sum_{n \le x} \mu(n)\psi(\frac{x}{n}) < (1+\varepsilon)x + \varepsilon x \log x + x\psi(A) < (2+\psi(A))x + \varepsilon x \log x.$$

So, given any $0 < \varepsilon < 1$, we have, for x > A,

$$|H(x)| < (2 + \psi(A))x + \varepsilon x \log x.$$

Equivalently,

$$\frac{|H(x)|}{x \log x} < \frac{2 + \psi(A)}{\log x} + \varepsilon.$$

Choose $B > A$ so that $x > B$ implies $\frac{2 + \psi(A)}{\log x} < \varepsilon.$
Then, for $x > B$, we have

$$\frac{|H(x)|}{x\log x} < 2\varepsilon.$$

This shows that $\frac{H(x)}{x \log x} \to 0$ as $x \to \infty$.

Little Oh Notation

Definition

The notation

$$f(x) = o(g(x))$$
 as $x \to \infty$

(read: f(x) is **little oh of** g(x)) means that

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$$

An equation of the form

$$f(x) = h(x) + o(g(x))$$
 as $x \to \infty$

means that

$$f(x) - h(x) = o(g(x))$$
 as $x \to \infty$.

Some Observations

The equation

$$\lim_{x\to\infty}\frac{M(x)}{x}=0$$

states that M(x) = o(x) as $x \to \infty$.

• The Prime Number Theorem, expressed in the form

$$\psi(\mathbf{x}) \sim \mathbf{x}$$

can also be written as $\psi(x) = x + o(x)$ as $x \to \infty$.

More generally, an asymptotic relation

$$f(x)\sim g(x)$$
 as $x
ightarrow\infty$

is equivalent to

$$f(x) = g(x) + o(g(x))$$
 as $x \to \infty$.

• Finally note that f(x) = O(1) implies f(x) = o(x) as $x \to \infty$.
M(x) and $\psi(x)$

Theorem

The relation M(x) = o(x) as $x \to \infty$ implies $\psi(x) \sim x$ as $x \to \infty$.

Claim: We have

$$\psi(x) = x - \sum_{\substack{q,d\\qd \leq x}} \mu(d)f(q) + O(1),$$

where:

- f is given by $f(n) = \sigma_0(n) \log n 2C$, with C Euler's constant;
- $\sigma_0(n) = d(n)$ is the number of divisors of n.

M(x) and $\psi(x)$ (Claim Cont'd)

We start with the identities

$$[x] = \sum_{n \le x} 1, \quad \psi(x) = \sum_{n \le x} \Lambda(n), \quad 1 = \sum_{n \le x} \left[\frac{1}{n}\right]$$

Now we take into account

$$\sigma_0(n) = \sum_{d|n} 1, \quad \log n = \sum_{d|n} \Lambda(n), \quad 1 = \sum_{d|n} \left[\frac{1}{d}\right].$$

Applying Möbius inversion, we express each summand in the first sums as a Dirichlet product involving the Möbius function

$$1 = \sum_{d|n} \mu(d) \sigma_0\left(\frac{n}{d}\right), \quad \Lambda(n) = \sum_{d|n} \mu(d) \log \frac{n}{d}, \quad \left[\frac{1}{n}\right] = \sum_{d|n} \mu(d).$$

M(x) and $\psi(x)$ (Claim Cont'd)

We have

$$1 = \sum_{d|n} \mu(d) \sigma_0\left(\frac{n}{d}\right), \quad \Lambda(n) = \sum_{d|n} \mu(d) \log \frac{n}{d}, \quad \left\lfloor \frac{1}{n} \right\rfloor = \sum_{d|n} \mu(d).$$

Then

$$[x] - \psi(x) - 2C = \sum_{\substack{n \le x}} \{1 - \Lambda(n) - 2C[\frac{1}{n}]\}$$

$$= \sum_{\substack{n \le x}} \sum_{\substack{d \mid n}} \mu(d) \{\sigma_0(\frac{n}{d}) - \log \frac{n}{d} - 2C\}$$

$$= \sum_{\substack{q,d \\ qd \le x}} \mu(d) \{\sigma_0(q) - \log q - 2C\}$$

$$= \sum_{\substack{q,d \\ qd \le x}} \mu(d) f(q).$$

For the proof of the theorem we must show

$$\sum_{\substack{q,d\ qd\leq x}} \mu(d) f(q) = o(x), \quad ext{as } x o \infty.$$

M(x) and $\psi(x)$ (Another Claim)

Claim: We have

$$F(x) = \sum_{n \le x} f(n) = O(\sqrt{x}).$$

We use Dirichlet's formula

$$\sum_{n\leq x}\sigma_0(n)=x\log x+(2C-1)x+O(\sqrt{x})$$

together with the relation

$$\sum_{n \le x} \log n = \log [x]! = x \log x - x + O(\log x).$$

M(x) and $\psi(x)$ (Another Claim Cont'd)

• These give us

$$F(x) = \sum_{n \le x} (\sigma_0(n) - \log n - 2C) \\ = \sum_{n \le x} \sigma_0(n) - \sum_{n \le x} \log n - 2C \sum_{n \le x} 1 \\ = x \log x + (2C - 1)x + O(\sqrt{x}) \\ - (x \log x - x + O(\log x)) - 2Cx + O(1) \\ = O(\sqrt{x}) + O(\log x) + O(1) = O(\sqrt{x}).$$

Therefore, there is a constant B > 0, such that

$$|F(x)| \le B\sqrt{x}$$
, for all $x \ge 1$.

M(x) and $\psi(x)$ (Final Claim)

Claim: We have

$$\sum_{\substack{q,d\ qd\leq x}} \mu(d) f(q) = o(x), \quad ext{as } x o \infty.$$

We use the generalized formula for the partial sums of Dirichlet products, where *a* and *b* are any positive numbers, with ab = x, and $F(x) = \sum_{n \le x} f(n)$.

$$\sum_{\substack{q,d\\dq \leq x}} f(d)g(q) = \sum_{n \leq a} f(n)G\left(\frac{x}{n}\right) + \sum_{n \leq b} g(n)F\left(\frac{x}{n}\right) - F(a)g(b).$$

It gives

$$\sum_{\substack{q,d\\qd\leq x}} \mu(d)f(q) = \sum_{n\leq b} \mu(n)F\left(\frac{x}{n}\right) + \sum_{n\leq a} f(n)M\left(\frac{x}{n}\right) - F(a)M(b).$$

M(x) and $\psi(x)$ (Final Claim Cont'd)

By the last Claim, in the first sum on the right, we get that, for some constant A > B > 0,

$$\left|\sum_{n\leq b}\mu(n)F\left(\frac{x}{n}\right)\right|\leq B\sum_{n\leq b}\sqrt{\frac{x}{n}}\leq A\sqrt{xb}=\frac{Ax}{\sqrt{a}}.$$

Let $\varepsilon > 0$ be arbitrary and choose a > 1, such that $\frac{A}{\sqrt{a}} < \varepsilon$. Then, for all $x \ge 1$,

$$\left|\sum_{n\leq b}\mu(n)F\left(\frac{x}{n}\right)\right|<\varepsilon x.$$

Note that *a* depends on ε and not on *x*.

George Voutsadakis (LSSU)

M(x) and $\psi(x)$ (Final Claim Cont'd)

• Now M(x) = O(x) as $x \to \infty$.

So, for the same ε , there exists c > 0 (depending only on ε), such that, for x > c,

$$\frac{|M(x)|}{x} < \frac{\varepsilon}{K},$$

where K is any positive number (to be specified).

The second sum satisfies

$$\left|\sum_{n\leq a} f(n)M\left(\frac{x}{n}\right)\right| \leq \sum_{n\leq a} |f(n)|\frac{\varepsilon}{K}\frac{x}{n} = \frac{\varepsilon x}{K}\sum_{n\leq a} \frac{|f(n)|}{n},$$

provided $\frac{x}{n} > c$, for all $n \le a$. Therefore, the inequality holds if x > ac.

M(x) and $\psi(x)$ (Final Claim Cont'd)

• Now take $K = \sum_{n \le a} \frac{|f(n)|}{n}$. Then the inequality implies, for x > ac,

$$\left|\sum_{n\leq a}f(n)M\left(\frac{x}{n}\right)\right|<\varepsilon x.$$

The last term on the right of the sum, F(a)M(b), is dominated by $|F(a)M(b)| \le A\sqrt{a}|M(b)| < A\sqrt{a}b < \varepsilon\sqrt{a}\sqrt{a}b = \varepsilon ab = \varepsilon x.$

Now we get, for x > ac,

$$\sum_{\substack{q,d\\qd\leq x}} \mu(d)f(q) \bigg| < 3\varepsilon x,$$

where *a* and *c* depend only on ε .

George Voutsadakis (LSSU)

The Limit Implies the Prime Number Theorem

Theorem

Let $A(x) = \sum_{n \le x} \frac{\mu(n)}{n}$. A(x) = o(1), as $x \to \infty$, implies the prime number theorem. In other words, the prime number theorem is a consequence of the statement that the series $\sum_{n=1}^{\infty} \frac{\mu(n)}{n}$ converges and has sum 0.

• Using Abel's identity, we get

$$M(x) = \sum_{n \leq x} \mu(n) = \sum_{n \leq x} \frac{\mu(n)}{n} n = x A(x) - \int_1^x A(t) dt.$$

So

$$\frac{M(x)}{x} = A(x) - \frac{1}{x} \int_{1}^{x} A(t) dt.$$

To complete the proof, we show $\lim_{x\to\infty} \frac{1}{x} \int_1^x A(t) dt = 0$.

The Limit Implies the Prime Number Theorem (Cont'd)

• We show $\lim_{x\to\infty} \frac{1}{x} \int_1^x A(t) dt = 0$. If $\varepsilon > 0$ is given, there exists a c (depending only on ε) such that

$$|A(x)| < \varepsilon$$
, for $x \ge c$.

Since $|A(x)| \le 1$, for all $x \ge 1$, we have

$$\left|\frac{1}{x}\int_{1}^{x}A(t)dt\right| \leq \left|\frac{1}{x}\int_{1}^{c}A(t)dt\right| + \left|\frac{1}{x}\int_{c}^{x}A(t)dt\right| \leq \frac{c-1}{x} + \frac{\varepsilon(x-c)}{x}.$$

Letting $x \to \infty$, we find

$$\lim \sup_{x\to\infty} \left|\frac{1}{x}\int_1^x A(t)dt\right| \leq \varepsilon.$$

Since ε is arbitrary we get $\lim_{x\to\infty} \frac{1}{x} \int_1^x A(t) dt = 0$.

Subsection 9

Selberg's Asymptotic Formula

An Inversion Formula

Theorem

Let F be a real- or complex-valued function defined on $(0,\infty)$, and let

$$G(x) = \log x \sum_{n \le x} F\left(\frac{x}{n}\right).$$

Then

$$F(x)\log x + \sum_{n \le x} F\left(\frac{x}{n}\right) \Lambda(n) = \sum_{d \le x} \mu(d) G\left(\frac{x}{d}\right)$$

An Inversion Formula (Cont'd)

• First we write $F(x) \log x$ as a sum,

$$F(x)\log x = \sum_{n \le x} \left[\frac{1}{n}\right] F\left(\frac{x}{n}\right) \log \frac{x}{n} = \sum_{n \le x} F\left(\frac{x}{n}\right) \log \frac{x}{n} \sum_{d|n} \mu(d).$$

Recall that

$$\Lambda(n) = \sum_{d|n} \mu(d) \log \frac{n}{d}.$$

Now we get

$$\sum_{n \le x} F\left(\frac{x}{n}\right) \Lambda(n) = \sum_{n \le x} F\left(\frac{x}{n}\right) \sum_{d \mid n} \mu(d) \log \frac{n}{d}.$$

An Inversion Formula (Cont'd)

• We got

$$F(x)\log x = \sum_{n \le x} F(\frac{x}{n})\log \frac{x}{n} \sum_{d|n} \mu(d)$$
$$\sum_{n \le x} F(\frac{x}{n}) \Lambda(n) = \sum_{n \le x} F(\frac{x}{n}) \sum_{d|n} \mu(d)\log \frac{n}{d}.$$

Adding the two equations we find

$$F(x) \log x + \sum_{n \le x} F(\frac{x}{n}) \Lambda(n)$$

= $\sum_{n \le x} F(\frac{x}{n}) \sum_{d|n} \mu(d) \{\log \frac{x}{n} + \log \frac{n}{d}\}$
= $\sum_{n \le x} \sum_{d|n} F(\frac{x}{n}) \mu(d) \log \frac{x}{d}.$

In the last sum we write n = qd to obtain

$$\sum_{n \le x} \sum_{d|n} F(\frac{x}{n}) \mu(d) \log \frac{x}{d} = \sum_{d \le x} \mu(d) \log \frac{x}{d} \sum_{q \le x/d} F(\frac{x}{qd})$$
$$= \sum_{d \le x} \mu(d) G(\frac{x}{d}).$$

Selberg's Asymptotic Formula

Theorem (Selberg's Asymptotic Formula)

For x > 0 we have

$$\psi(x)\log x + \sum_{n \le x} \Lambda(n)\psi\left(\frac{x}{n}\right) = 2x\log x + O(x).$$

• We shall first apply the previous theorem to the function $F_1(x) = \psi(x)$, taking into account that, by a previous theorem,

$$\sum_{n\leq x}\psi\left(\frac{x}{n}\right)=x\log x-x+O(\log x).$$

$$G_1(x) = \log x \sum_{n \le x} \psi(\frac{x}{n})$$

= $x \log^2 x - x \log x + O(\log^2 x).$

Selberg's Asymptotic Formula (Cont'd)

• We will then apply the previous theorem to the function $F_2(x) = x - C - 1$, where C is Euler's constant.

$$\begin{array}{lll} G_2(x) &=& \log x \sum_{n \leq x} F_2(\frac{x}{n}) \\ &=& \log x \sum_{n \leq x} (\frac{x}{n} - C - 1) \\ &=& x \log x \sum_{n \leq x} \frac{1}{n} - (C + 1) \log x \sum_{n \leq x} 1 \\ &=& x \log x (\log x + C + O(\frac{1}{x})) - (C + 1) \log x (x + O(1)) \\ &=& x \log^2 x - x \log x + O(\log x). \end{array}$$

Comparing the formulas for $G_1(x)$ and $G_2(x)$, we see that

$$G_1(x) - G_2(x) = O(\log^2 x).$$

We shall only use the weaker estimate $G_1(x) - G_2(x) = O(\sqrt{x})$.

Selberg's Asymptotic Formula (Cont'd)

• Apply the preceding theorem to each of F_1 and F_2 and subtract the two relations so obtained.

The difference of the two right members is

$$\sum_{d \le x} \mu(d) \{ G_1(\frac{x}{d}) - G_2(\frac{x}{d}) \} = O(\sum_{d \le x} \sqrt{\frac{x}{d}})$$
$$= O(\sqrt{x} \sum_{d \le x} \frac{1}{\sqrt{d}})$$
$$= O(x).$$

Therefore the difference of the two left members is also O(x).

$$\{\psi(x) - (x - C - 1)\} \log x + \sum_{n \le x} \left\{\psi\left(\frac{x}{n}\right) - \left(\frac{x}{n} - C - 1\right)\right\} \Lambda(n) = O(x).$$

Selberg's Asymptotic Formula (Cont'd)

We got

$$\{\psi(x) - (x - C - 1)\} \log x + \sum_{n \le x} \left\{\psi\left(\frac{x}{n}\right) - \left(\frac{x}{n} - C - 1\right)\right\} \Lambda(n) = O(x).$$

Rearranging terms, we find that

$$\psi(x) \log x + \sum_{n \le x} \psi(\frac{x}{n}) \Lambda(n)$$

= $(x - C - 1) \log x + \sum_{n \le x} (\frac{x}{n} - C - 1) \Lambda(n) + O(x).$

By a previous theorem,

$$\sum_{n\leq x}\frac{\Lambda(n)}{n}=\log x+O(1).$$

Now we conclude that

$$\psi(x)\log x + \sum_{n\leq x}\psi\left(\frac{x}{n}\right)\Lambda(n) = 2x\log x + O(x).$$