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© Some Elementary Theorems on the Distribution of Prime Numbers
@ Chebyshev's functions ¥(x) and J(x)
@ Relations connecting ¥(x) and 7(x)
@ Some Equivalent Forms of the Prime Number Theorem
@ Inequalities for m(n) and p,
@ Shapiro’'s Tauberian Theorem
@ Applications of Shapiro’s Theorem
© An Asymptotic Formula for the Partial Sums 3 (1/p)
@ The Partial Sums of the Mobius Function
o Selberg's Asymptotic Formula
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Subsection 1

Chebyshev's functions v(x) and 9(x)
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Chebyshev's 1-Function

Definition

For x > 0 we define Chebyshev’s 1)-function by the formula

Y(x) =Y A(n).

n<x

@ Recall A(n) =0, unless n is a prime power.

So we get

()= An)= > AT =D Y logp.
m=1

n<x 2 m=1 p<x1/m
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Chebyshev's 1-Function

o We got
Px)=Y_ > logp.
m=1 p<xl/m

The sum on m is actually a finite sum.

log x
log2 -

Suppose m > log, x. Then m >

1 1
So ;- logx < log2. Hence, x /58 = 9,

It follows that, in this case, the sum on p is empty.

So
P(x)= > > logp.

m<log, x p<x1/m
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Chebyshev's 9J-Function

Definition
If x > 0 we define Chebyshev’s J-function by the equation

9(x) = _logp,

pP<x

where p runs over all primes < x.

@ The last formula for ¥)(x) can now be restated as follows:

P)= Y > logp= Y 9(xm).

m<log, x p<x1/m m<log, x
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Relation Between @ and 2

X

Theorem
For x > 0, we have

v ) _ (ogx)?
X x 7 2y/xlog2’

Note: This inequality implies that

lim (M— M) = 0.

X—00 X X

In other words, if one of @ or @ tends to a limit then so does the
other, and the two limits are equal.
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Proof of the Theorem

o We saw

W)= 3 90T,

m<log, x

Therefore,

0<y(x) —d(x)= > 9.

2<m<log, x

From the definition of J(x) we have the trivial inequality

I(x) = Zlogp < Zlogx < xlog x.

p<x p<x
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Proof of the Theorem

@ We have

0 0 <9(x) —d(x) = Zzgmg|ogzx19(xl/m);
o ¥(x) < xlogx.

Combining, we get

0

IN

h(x) = 9(x)
Z2§m§|og2 X Xl/m |Og (Xl/m)

(logy x)v/x log /x

log x
log 2

VX(log x)?
2log2

IN A

. g log x

Now divide by x to obtain the conclusion.
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Subsection 2

Relations connecting ¥(x) and 7(x)
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Abel’s Identity

@ Both functions 7(x) and ¥(x) are step functions with jumps at the
primes:

o 7(x) has a jump 1 at each prime p;
o ¥(x) has a jump of log p at each prime p.
@ Sums involving step functions of this type can be expressed as
integrals by means of the following theorem.

Theorem (Abel’s Identity)

For any arithmetical function a(n), let A(x) = >_ -, a(n), where A(x) =0
if x < 1. Assume f has a continuous derivative on the interval [y, x],
where 0 < y < x. Then we have

3 an)(n) = AKIFE) - AWFLY) - [ A (0t

y<n<x
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Proof of Abel’s Identity

o Let k =[x] and m = [y], so that A(x) = A(k) and A(y) = A(m).
Then
Yy enex aA(mf(n) = k1 a(n)f(n)
= Yk mea{A(n) = A(n — 1)} (n)
= ke A(n)f(n) = Sk A(n)f(n+1)
= Skt A(){F(n) — f(n+ 1)} + A(K)f (k) — A(m)f(m +1)
= — S mi Aln) [T E(t)dt + A(K)F(K) — A(m)f(m + 1)
=—25L4"“MnW)w+MMM) A(m)f(m +1)

= — [X L A)F(t)dt + ARX)F(x) — [ A(t)F (t)dt
—Mﬁﬁw f“*()mnw
= A(X)f(x) — — [ A()f (t)dt.
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Alternate Proof of Abel's Identity

o A shorter proof of Abel's Identity is available to readers familiar with
Riemann-Stieltjes integration.

A(x) is a step function with jump a(n) at each integer n.

So the sumin > _ ., a(n)f(n) can be expressed as a
Riemann-Stieltjes integral

S a(n)f(n) = /X F(£)dA().
y<n<x Y
Integration by parts gives us
Sycncxa(mf(n) = f(x)A(x) — f(y)Aly) — [ A(t)df(t)
= f(x)Ax) — f(y)Aly) — [, A(t)f'(t)dt.
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A Special Case

o We have A(t) =0if t < 1.
@ So, when y < 1, Abel's Identity takes the form

S a(n)f(n) = AX)F(x) /1 " A()F(t)dt.

y<n<x
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Euler's Summation Formula

@ Suppose a(n) =1, for all n > 1.
e Then A(x) = [x].

@ Thus, we get
S f(n) = FO)IX — F()Iy] — / “1F (£)t.

o Integration by parts gives

X

/ "t (t)dt = xF(x) — yF(y) — / F()dt.
y

y
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Euler's Summation Formula (Cont'd)

@ Now we obtain Euler's summation formula.

Yy<nsx f(n) = Fx)Ix] = f(y )[y]—fx[t]f’(t)dt
= (b~ FOI + J) (¢ = )P (1)t
— [ tf'(t)dt
= X = F + f) (¢ = [EDF (D)at
— (xf(x) = yf(y) — f f(t )dt)
= f f(t) dt+f (t —[t)f'(t)dt
+ F(x)(Ix] - X) — )yl —y).
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An Integral Formula for 9(x)

For x > 2,

I(x) = 7(x) log x — /X @dt.

2

o Let a(n) denote the characteristic function of the primes,

| 1, if nis a prime
) = { 0, otherwise

Then we have

7T(X) = Zpgx 1= Zl<n§x a(n);
I(x) = Zpgx log p = angx a(n) log n.
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An Integral Formula for ¥(x) (Cont'd)

@ We obtained

o ¥(x) = ZK"SX a(n) log n;
o m(x) = X 1cn<xa(n).

Taking f(x) = log x in Abel's Identity with y = 1, we obtain
Z a(n)logn = 7(x)logx — /X itt)dt.
1<n<x 1
So we have
I(x) = Zl<n§x a(n)logn
= m(x)log x — [} Ktt)dt

e m(x)log x — [5 ltt)dt.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 18 /91



Elementary Theorems on the Distribution of Primes | Relations connecting ¥(x) and 7 (x)

An Integral Formula for 7(x)

For x > 2,
0 *(t
w() = o) 7 gy
og X 2 tlogt
o Let
| 1, if nis a prime
i) = { 0, otherwise
Define
b(n) = a(n) log n.
Write

TI'(X) = Z3/2<n§x a(n) = Z3/2<n§x b(n) Ioén;
() = p<x b(n).
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An Integral Formula for 7(x) (Cont’d)

o We have:
o m(x) =3 3/0cn<x b(")$;
° ’19(X) = Zn<x (n)

Take f(x) = Iogx in Abel’s Identity with y = 3
9 9(3/2 (¢
m(x) = Io(gX))< - |o$;é/% + f3/2 t|o(g)tdt
A)=0rt<2  Y(x)  prx _I(t)
- log x 2 tlog?t

George Voutsadakis (LSSU) Analytic Number Theory May 2024



Elementary Theorems on the Distribution of Primes Some Equivalent Forms of the Prime Number Theorem

Subsection 3

Some Equivalent Forms of the Prime Number Theorem
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Equivalent Forms of the Prime Number Theorem

The following relations are logically equivalent:

. . Y(x .
lim =1, lim Q =1, Ilm — =
X—00 X xX—00 X x—00 X

m(x) log x

o By the preceding theorem,
@:ﬂ(x)logx_l/’(@dt W(X)Iogx_@_‘_k)ﬁ/’( J(t)dt
2 2

X X X ’

t X X X tlog?t’

To see that the first limit implies the second it suffices to see that it

implies
lim 1/ MdtzO.
2 t

X—00 X
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Some Equivalent Forms of the Prime Number Theorem

Equivalent Forms of the Prime Number Theorem (Cont'd)

@ Suppose limy_ o0 m(x)logx _ 1.

X
This implies
M=O<i), for t > 2.
t log t
So we get
1 X X
[ ot f )
X Jo t x Jo logt
Now v
X d X d
f2 Iogtt 2 Iogtt+f\/_ logt
Vx| x=y/X
< log 2 + Iog\/;('
So % Jo 1 -0, as x — oo.

George Voutsadakis (LSSU)

Analytic Number Theory

May 2024

23 /91



Elementary Theorems on the Distribution of Primes Some Equivalent Forms of the Prime Number Theorem

Equivalent Forms of the Prime Number Theorem (Cont'd)

@ Suppose limy_ @ =1.

We must show that this implies limy_,
It does imply J(t) = O(t).

logx [ ¥(t)dt logx [* dt
—=0(— — Il
X Jp tlog®t X Jo log°t
Now

X VX 2 —
/ dt / dt n / dt < VX x—4/x
2 2

= ol 5
log? t X log?t ~ log®2  log?\/x

Iogx fX I t)dt _
2 tlog?t

log? t B

Hence,

logx [* dt
X Jo Iog2 t
This proves that the first and second limits are equivalent.

— 0, as x — oo.

By a previous theorem, the second and third limits are equivalent.
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Prime Number Theorem and Asymptotic Value of p,

Theorem

Let p, denote the n-th prime. Then the following asymptotic relations are
logically equivalent:

jim TO)loex L mO)loe )y P

X—$00 X X—$00 X n—oo nlogn

e Weshowl -2 —+3—>2—1.
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Proof (1—2)

(x)logx _
7rxXogx -1

Taking logarithms we obtain

@ Assume limy_

lim [log m(x) + loglog x — log x] = 0.
X—>00

Equivalently,

o [Iogx (Iogw(x) | loglogx 1)} o

X—»00 |OgX Iogx

But log x — 0o as x — o0.
It follows that

im (IogTr(x) n loglog x 1) _o.

x—oo0 \  log x log x
This yields lim,_,o, %67 = 1
This gives limy_ M =1.
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Proof (2—3—2)

23 Suppose limy_,o M =1.
Assume x = p,. Then 7(x) = n. So 7(x) log w(x) = nlog n.
So 2 implies lim o 2982 = 1.

32 Suppose lim,_, s &ng" =1.

Given x, define n by the inequalities
Pn < X < Ppt1-
Then n = 7(x). Dividing by nlog n, we get

Pn_ X Pnt1 _ Pni1 (n+1)log(n+1)
nlogn ~ nlogn ~nlogn (n+1)log(n+1) nlogn

Now let n — oo and use the hypothesis to get

_ X
lim =1
n—oo nlogn

1.

Equivalently, limy_~ W -
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Proof (2—1)

. |
21 Suppose limy_o0 M =1

Taking logarithms, we obtain

I|_>nc1>o (log m(x) + log log 7(x) — log(x)) = 0.

X

Equivalently,

i e o+ )]

But log w(x) — oco. It follows that

im <1+ log log 7(x) log x ) _o.

X—00 logm(x)  logm(x)
Equivalently, . log x
lim —— =
x—o0 log m(x)
This gives limy_, m(x)logx _ .

X
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Subsection 4

Inequalities for 7w(n) and p,
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An Estimate for (2n”)

Lemma

For every integer n > 0, we have

2" < (2n) < 4",
n

@ The left inequality is by induction.
o For n =0, it holds that 1 < %.

o Suppose the inequality holds for some k > 0.

o We have
2k)! 26)!(k+1)(k+1
drt=2.2k < 2% = 2(k!k)!((k+1))((k+1))
< (N'QkDEK+2) _ _(2(k+1))!
= (k+1)1(k+1)! = (k+1)I(k+1)!"
The right follows from 4" = (1 +1)>" = 337, (%) > (37).
May 2024 30/91
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Inequalities for m(n)

For every integer n > 2, we have

1 n n
g—logn < 7T(n) < 6|

ogn’

o Taking logarithms in 2" < (°") < 4", we get
nlog?2 <'log(2n)! — 2log n! < 4log 4.

A previous theorem implies that
log n! =" a(p) log p,
p<n

where the sum is extended over primes and «(p) is given by
Iogn]

a(p) = 2224 ]
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Inequalities for 7(n) (Cont'd)

@ Hence, we get

log 2n
[(Toep ]

log (2n)! — 2log n! = ZZ{[ ] [pim]}mgp.

p<2n m=1

Now note that [2x] — 2[x] is either 0 or 1.
So the inequality nlog2 < log (2n)! — 2log n! implies

(a2
nlog?2 < Z Z 1]logp < Z log 2n = w(2n) log 2n.
p<2n m=1 p<2n

Taking into account log2 > % this gives

(2)>n|og2_ 2n Iog2>1 2n
T = Y0g2n ~ log2n 2~ 4log2n’
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Inequalities for 7(n) (Cont'd)

o For odd integers, we have

x2n+1) > w(2n)

1 2n

> 4 log2n

> 1 2n 2n+1
4 2n+1 log (2n+1)
> 1_2n+1

= 6log(2n+1)°’

since 5275 > 3.
This, together with 7(2n) > 7 2%, gives

2n >2

1
m(n) > 6%, for all n > 2.
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Inequalities for 7(n) (Cont'd)

o Consider again

log 2n
[(Toep ]

log (2n)! — 2log n! = ZZ{[ ] [pim]}mgp.

p<2n m=1

Extract the term corresponding to m = 1.
The remaining terms are nonnegative, whence

log (2n)! — 2log ! > Y {[%”] 2 [g]}logp.

p<2n

For those primes p, with n < p < 2n, we have {2—;} -2 [—] =1.

So
log (2n)! — 2log n! > Z log p = ¥(2n) — ¥(n).
n<p<2n
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Inequalities for 7(n) (Cont'd)

o |t follows that
log (2n)! —2log n! < nlog4 implies ¥(2n) —I(n) < nlog4.

If n=2r,
92 —9(27) < 2" log4 = 2" log 2.

Summing on r =0,1,..., k, we find
V(2K < 2K+20g 2.

Now we choose k so that 2K < n < 2k+1,
We obtain

I(n) < 9(251) < 2k4210g2 < 4nlog2.
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Inequalities for 7(n) (Conclusion)

o If0 <a <1, we have
(m(n) — m(n®)) log n® < Z log p < 9¥(n) < 4nlog 2.

n*<p<n
Hence nlog 2
niog o
7T(I7) < “alogn —|—7r(n )
4nlog?2 o
< alogn +n
__n (Alog2 | logn
—  logn\ « +n1*‘1)'

If c>0and x > 1, f(x) = x log x attains its maximum at
x=e¢ So, forn>1, n¢ logn < (el/c)_c log (el/c) < é
Taking o = % in the last inequality for 7(n), we find

n

3
m(n) < 1 (6|og2+—> <6
lo e

gn logn’
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Inequalities for p,

For n > 1, the n-th prime p, satisfies the inequalities

1 12
6n|ogn<p,, <12 nlogn-l—nlog: .

o Consider 1 §Togn < m(n) <6557
Take k = p,. Then k > 2 and n = w(k).

Thus, we have
k Pn

logk logpn

n=m(k) <6

It follows that

1 1
pn > gnlogp,, > gnlog n.
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Inequalities for p, (Cont'd)

o For the upper bound, by the preceding theorem,

I
n=7(k) > Giogk ~ Glogpn

So p, < 6nlog p,.
But, for x > 1, logx < %\/>_< So we have log p, < %,/p,,.

It follows that p, < 6n2,/pn. le., /Pn < 2n.
Therefore,
1
2
Used in p, < 6nlog p,, this gives

12
log pn < log n+ log -

12
pn < 6N <2|ogn+2|og:).

Note: The upper bound shows once more that the series > > L

n=1 p,
diverges, by comparison with >"7°, nlc}gn.
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Subsection 5

Shapiro's Tauberian Theorem
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Tauberian Theorems

@ We have seen that the prime number theorem is equivalent to the
asymptotic formula

1
;Z/\(n)rvl, as x — 0.

n<x

@ We have also derived a related asymptotic formula,

X
Z/\(n) [—} = xlogx — x + O(log x).
n<x n
o Both sums above are weighted averages of the function A(n).
o Each term A(n) is multiplied by a weight factor % in the first and by
[*] in the second.
@ Theorems relating different weighted averages of the same function
are called Tauberian theorems.
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Shapiro’s Tauberian Theorem

@ Shapiro’'s Tauberian Theorem relates, for nonnegative a(n):
o Sums of the form >~ _ a(n);
o Sums of the form 3= _ a(n)[%]

Let {a(n)} be a nonnegative sequence such that

Za(n) [%] = xlogx + O(x), for all x > 1.

n<x

(a) For x > 1, we have
Z @ = logx + O(1).
n<x

(l.e., dropping the square brackets leads to a correct result.)
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Shapiro’s Tauberian Theorem (Cont'd)

Theorem (Cont'd)
(b) There is a constant B > 0, such that

Za(n) < Bx, for all x > 1.

n<x

(c) There is a constant A > 0 and an xg > 0, such that

Za(n) > Ax, for all x > xp.

n<x
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Shapiro's Tauberian Theorem (Part (b))

o Let S(X) = anx a(n) and T(X) = anx a(n)[%]
Claim: S(x) — S(%) < T(x) — 2T(%).
Write
T(x)=2T(3) = Xpdflaln) =232, olz51a(n)
= LncxpelB] = 2z5Daln) + 32, pcncilFlaln).

But [2y] — 2[y] is either O or 1.
So the first sum is nonnegative, giving
T(x)=2T(3) = Xij2<n<xlnla(n)

Zx/2<n§x a(n)
— 500 S(3).
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Shapiro's Tauberian Theorem (Part (b) Cont'd)

o By the hypothesis,
T(x) —2T(3) = xlogx+ O(x)—2(3log3 + O(x))
= O(x).

Hence, by the claim,

S-S (5) = 0.

This means that there is some constant K > 0, such that

S(x)—S (g) < Kx, for all x > 1.
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Shapiro's Tauberian Theorem (Part (b) Cont'd)

© We showed that, if S(x) = >, ., a(n), there is some constant K > 0,
such that

S(x)—S (g) < Kx, for all x > 1.
Replace x successively by 3,7, ... to get

<
<

~— —

|
n 0
—~

0% & [X%
A =

BIXNIX

© 0

Note that, if 2" > x, then S(35) = 0.
Adding these inequalities we get

1 1
S(X)SKX(1+§+Z+---) = 2KXx.

This proves (b) with B = 2K.
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Shapiro's Tauberian Theorem (Part (a))

o Write [X] = X + O(1).

Then
T(x) = X,<d3laln)
= X5 +0(1))a(n)
= XY 4+ O(,<, a(n))
LY X T 22+ 0(x).
Hence

Z i:) = %T(x) + 0(1) & log x + O(1).
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Shapiro's Tauberian Theorem (Part (c))

o Let A(x) = 3, 2.
Then, by Part (a),
A(x) = log x + R(x),
where R(x) is the error term, with R(x) = O(1).
Thus, for some M > 0, we have |R(x)| < M.

Choose « to satisfy 0 < a < 1 (we shall specify & more exactly in a
moment) and consider the difference

G Y
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Shapiro’s Tauberian Theorem (Part (c) Cont'd)

o If x > 1 and ax > 1, we can apply the asymptotic formula for A(x)
to write
A(x) — A(ax) = logx+ R(x) — (log ax + R(ax))
—log o + R(x) — R(ax)
—log v — [R(x)[ — [R(ax)|
—loga —2M.

A\VARLYS
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Shapiro’s Tauberian Theorem (Part (c) Cont'd)

o We got
A(x) — A(ax) > —loga — 2M.

Now choose « so that —logax —2M = 1. le., a = e 2M~1L,

Note that 0 < a < 1. For this «, if x > é A(x) — Alax) > 1.
But

ax

Ax) = Alax) = Y ()gaXZa(n)=@.

Hence, if x > 1,%21

Therefore, if x > % S(x) > ax.
This proves Part (c), with A=« and xo = 1.
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Subsection 6

Applications of Shapiro’s Theorem
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Application to A(n)

@ Recall the asymptotic formula

Z/\(n) E} = xlog x — x + O(log x).

n<x

o It implies that

3 A(n) [ﬂ = xlog x + O(x).

n<x

@ Since A(n) > 0, we can apply Shapiro’s Theorem with a(n) = A(n).
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Application to A(n) (Cont'd)

For all x > 1, we have

Z @ = logx + O(1).

Also, there exist positive constants ¢; and ¢, such that
P(x) < ax, forall x > 1,

and
¥(x) > ex, for all sufficiently large x.

o Follows directly by Shapiro's Theorem.
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Application to A;(n)

@ We also showed that

) [g] log p = x log x + O(x).

pP<x

This can be written as

Z/\l(n) [%] = xlogx + O(x),

n<x
where

_ [ logp if nisa prime p,
o)) = { 0, otherwise.

@ Since A1(n) > 0, the hypothesis of Shapiro’s Theorem is satisfied with
a(n) = A1(n).
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Application to A;(n) (Cont'd)

For all x > 1, we have

Z logp _ log x + O(1).

pP<x
Also, there exist positive constants ¢; and ¢, such that
Hx) < ax, forall x> 1,

and
Y(x) > cx, for all sufficiently large x.
o This follows diectly from Shapiro's Theorem, taking into account

that, by definition, 9(x) = >_, -, A1(n).
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Partial Sum Formulas for ¢(x) and 9J(x)

o We also proved that
X X
> o [7] =2 F ().
n<x n<x
for any arithmetical f(n) with F(x) =>_ ., f(n).
o Consider again the asymptotic formulas
Yonax N3] = xlogx — x + O(log x),
S M(nE] = xlogx + O(x).

Take, also, into account that

P(x) =) A(n) and I(x) = Au(n).

n<x n<x
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Partial Sum Formulas for ¢(x) and ¥(x) (Cont'd)

Theorem

For all x > 1, we have

anx w(%) = X|0gX — X+ O(logx),
Yonex¥(x) = xlogx+ O(x).

o By the preceding identities, we get

anx ,(b(%) = anx A(n) [%]
= xlogx — x+ O(log x);

anx 79(X) = anx /\1(/‘1) [%]
= xlogx + O(x).
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Subsection 7

An Asymptotic Formula for the Partial Sums > _ (1/p)
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Asymptotic Formula for the Partial Sums > _ (1/p)

There is a constant A such that

1 1
Z— =loglogx+ A+ O (—) , for all x > 2.
p log x

pP<x

1, if nis prime
o Let A(x) = > Ioip' Lot alin) = { 0, otherwise

Then we have

Z Z and A(x):zi:)logn.

p<x n<x n<x
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Asymptotic Formula (Cont'd)

o Abel’s identity

> a(n)f(n)=A(X)f(X)—A(y)f(y)—/XA(t)f'(t)dt

y<n<x y
yields

a(n)

Zy<n§x n |0g nloé" - A(X) Ioéx + f2X A(t)#gztdt
A(x
ZPSX% = |0(g)2 + [ A(t) L dt.

tlog? t

From a previous theorem, we have

A(x) =logx + R(x), R(x)= O(1).

Thus,
| +0(1 log t+R(t
Zpgx% = ogi;gx( ) + f2X oilong‘ )dt
- 1 x _d x _R(t)
= 1+O(@)+f2 tlogt+f2 tlogztdt'
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Asymptotic Formula (Cont'd)

We found

1 1 *dt * R(t

Z—=1+O<—)+/ +/ (2) dt

P log x 5 tlogt 2 tlog=t
Now note the following:

- = loglog x — log log 2;
5 tlog)tdt 5 tlo(g)tdt_fx tlo(g)tdt the existence of the
improper integral being assured by the condition R(t) = O(1);

o [ Hadedt = O ) = Ologz)

x tlog?t

2 tlog
(

logx/°
Hence,
1 < R(t 1
Z—:Ioglogx-l—l—loglogZ-l-/ (2) dt-l—O( )
P > tlog“t log x

This proves the theorem with A =1 — loglog2 + [,° R(E)_gt.

tlog? t
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Subsection 8

The Partial Sums of the Mobius Function
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Partial Sums of the Mobius Function

If x > 1, we define

M(x) = 3 u(n).

n<x

o The exact order of magnitude of M(x) is not known.

o Mertens’ Conjecture stated that |M(x)| < v/x if x > 1.
o However, the conjecture has been disproven.
o A new conjecture asserts that M(x) grows as /x(log log log x)

@ We prove that the weaker statement

lim M(x)

X—00 X

5/4.

=0

is equivalent to the prime number theorem.
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M(x) and H(x)

Definition
If x > 1, we define

H(x) = Z w(n)log n.

n<x

Theorem
We have

X x log x

fiy (M _ H) )

X—00
e Taking f(t) = logt in Abel's Identity, we obtain

H(x) = Z,u(n) log n = M(x) log x — /lx @dt.

n<x
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M(x) and H(x)

o Taking x > 1, and dividing by x log x, we get

M)  He) 1 /X M@) |,

X xlogx  xlogx t

Therefore, to prove the theorem we must show that

lim 1 /X M(t)dt:O.

X—00 X |OgX t

Trivially, M(x) = O(x).

/1 Mgt)dt 0] (/1X dt> = O(x).

lim / M(t) dt =0.

X—00 X Iogx

This implies
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Prime Number Theorem Implies the Limit

Theorem

The prime number theorem implies

lim M =0.

x—o00 X

@ We use the Prime Number Theorem in the form
$(x) = SO A(n) ~ x.
n<x

H(x)

Xlog x — 0 as x — oo.

We prove that
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Prime Number Theorem Implies the Limit (Claim)

o Claim: —H(x) = — anx w(n)logn = anx p(n)(%).
We proved the following formula for A(n).

—> u(d)logd.
d|n
Applying Mobius inversion, we get

—p(n)logn =Y u(d)A(Z).
d|n

Summing over all n < x and using the formula for the partial sums of
a Dirichlet product, with f = t, g = A\, we get

> —p(n)logn="> (uxA)(n)=>>_ u(n) ( )

n<x n<x n<x
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Prime Number Theorem Implies the Limit (Cont'd)

o We know that ¥(x) ~ x.
Thus, given € > 0 is given, there is a constant A > 0, such that

¥(x)

X

— 1‘ < &, whenever x > A.

In other words,
|th(x) — x| < ex, whenever x > A.

Choose x > A, let y = [%] and split the sum on the right of the
Claim into two parts,

Soumye (Z)+ 3wt (%)

n<ly y<n<x
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Prime Number Theorem Implies the Limit (First Sum)

o We look at 3, p(n)i(%), where y = [Z].
We have n < y. So n < %. Hence, ’—,; > A.
Therefore, for n <y, we have (%) — 5| < e7.
Thus,

Sy MB(E) = o, u(n)(X + (%) —
= XY, M 1 u(n)(®(2) - ).

It follows that

ey (D] < X Ty M2+ Ty 10(5) — %]
< x+eEd %
< x+ex(1+logy)
<  x+ex+exlogx.
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Prime Number Theorem Implies the Limit (Second Sum)

o We look at 3, ., u(n)y(%), where y = [Z].
In thissum, y <n<xSon>y+1.

Asy <2 <y+1, we get

X
y+1

< < A

S X

But = < A implies
v (2) < wlA).

Therefore,

> ulmy (%) < xu(A).

y<n<x
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Prime Number Theorem Implies the Limit (Sum)

@ Now, regarding the full sum, we have, for ¢ < 1,
S bMU(E) < (14 )+ exlog x + xi(A)
< (24 9Y(A))x + exlog x.
So, given any 0 < £ < 1, we have, for x > A,
|H(x)| < (2 +¢(A))x + ex log x.
Equivalently,

HOL _ 2+(A) | _
x log x log x

Choose B > A so that x > B implies (A ¢

log x
Then, for x > B, we have
1HE _ 5,
x log x

H(x)
x log x

This shows that — 0 as x — 0.
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Little Oh Notation

The Partial Sums of the Madbius Function

The notation

f(x) =o(g(x)) asx— oo
(read: f(x) is little oh of g(x)) means that

lim GG

— =0
x—00 g(x)

An equation of the form

f(x) = h(x) + o(g(x)) asx — o0
means that

f(x) — h(x) = o(g(x)) as x — oc.
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Some Observations

@ The equation
M
jim M) _
X—>00 X

states that M(x) = o(x) as x — oc.

0

@ The Prime Number Theorem, expressed in the form

can also be written as 9)(x) = x + o(x) as x — o©.
@ More generally, an asymptotic relation

f(x) ~ g(x) as x = oo
is equivalent to
f(x) = g(x) + o(g(x)) as x — oc.

o Finally note that f(x) = O(1) implies f(x) = o(x) as x — co.
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M(x) and (x)

The relation M(x) = o(x) as x — oo implies ¥(x) ~ x as x — 0.

Claim: We have

Y(x)=x =Y u(d)f(q) + O(1),
q,d
qd<x
where:
o fis given by f(n) = oo(n) — logn — 2C, with C Euler's constant;
o oo(n) = d(n) is the number of divisors of n.
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M(x) and (x) (Claim Cont'd)

@ We start with the identities

M=1 v =X Am. 1=3 |3].

n<x n<x n<x

Now we take into account

oo(n) = Zl, logn = Z/\(n), 1= Z [3] .
d|n d|n

d|n

Applying Mobius inversion, we express each summand in the first
sums as a Dirichlet product involving the Mobius function

1= Y ud)oo (). Aw =S ui@og s, |2 =S uta).
d|n d|n d|n
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M(x) and (x) (Claim Cont'd)

o We have
1= u(d)oo (g) A(n) = Zu |0g H => u(d).
din d|n
Then

[X] —(x) —2C = 3, {1—A(n)—2C[1]}
anx Zd|n u(d){ao(ﬁ) - |Og§ —2C}

= > 9 w(d){oo(q) —log g —2C}
qd<x

= Y g4 w(d)f(q).

qd<x
For the proof of the theorem we must show
> w(d)f(q) = o(x), asx — oc.

q,d
qd<x
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M(x) and 1(x) (Another Claim)

Claim: We have

We use Dirichlet's formula

> oo(n) = xlog x + (2C — 1)x + O(v/x)

n<x

together with the relation

Zlogn = log [x]! = xlog x — x + O(log x).

n<x
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M(x) and 1(x) (Another Claim Cont'd)

o These give us

F(x) = > p<x(oo(n) —logn—2C)
= anx oo(n) — anx logn —2C anx 1
= xlogx+ (2C — 1)x + O(v/x)
— (xlogx — x + O(log x)) —2Cx + O(1)
—  O(yR) + O(logx) + O(1) = O(v/%).

Therefore, there is a constant B > 0, such that

|F(x)| < Bv/x, forall x >1.
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M(x) and 1(x) (Final Claim)

Claim: We have
> w(d)f(q) = o(x), asx — oo.

q,d
qd<x

We use the generalized formula for the partial sums of Dirichlet
products, where a and b are any positive numbers, with ab = x, and

F() = Loe f(n).
>~ f(d)g(a) = Y F(mG (2) + X g(n)F () — F(a)e(b):

q,d n<a n<b
dg<x
It gives
> uld)f(q) =D u(n)F (Z) + 3 F(m)M (2) = F(a)M(b).
qz,élx n<b n<a
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M(x) and 1(x) (Final Claim Cont'd)

@ By the last Claim, in the first sum on the right, we get that, for some
constant A > B > 0,

Ax

ZMn)F(%) < BZ\/§§A\/X_:$.

n<b n<b

Let € > 0 be arbitrary and choose a > 1, such that % <e.
Then, for all x > 1,

Zu(n)F <i> < ex.
n<b n
Note that a depends on € and not on x.
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M(x) and 1(x) (Final Claim Cont'd)

e Now M(x) = O(x) as x — oc.
So, for the same ¢, there exists ¢ > 0 (depending only on ¢), such

that, for x > c,
M)l _ =

x K’
where K is any positive number (to be specified).

The second sum satisfies

> f(mm (%) <Z\fn)\—— —Z|f(n”)|,

n<a

provided 7 > c, for all n < a.
Therefore, the inequality holds if x > ac.
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M(x) and 1(x) (Final Claim Cont'd)

o Now take K = anam'

n
Then the inequality implies, for x > ac,

3 f(n)M (%) < ex.

n<a
The last term on the right of the sum, F(a)M(b), is dominated by
|F(a)M(b)| < AVa|M(b)| < AVab < ev/ay/ab = cab = ex.

Now we get, for x > ac,

> u(d)f(q)| < 3ex,
q,d
qd<x

where a and ¢ depend only on ¢.
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The Limit Implies the Prime Number Theorem

Theorem

_ (n)
Let A(x) =2 < 5
A(x) = o(1), as x — oo, implies the prime number theorem.
In other words, the prime number theorem is a consequence of the
statement that the series 2 ) converges and has sum 0.

@ Using Abel's identity, we get

Qn:x - |
Y um =Y A(x) /1A(t)dt

n<x n<x

M(x)

X

= AGx) -~ /1 " A(t)dt.

To complete the proof, we show limy_, % f1X A(t)dt = 0.
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The Limit Implies the Prime Number Theorem (Cont'd)

o We show limy_,c + [ A(t)dt = 0.

If e > 0 is given, there exists a ¢ (depending only on &) such that
|A(x)| <&, forx>c.

Since |A(x)| <1, for all x > 1, we have

E/IXA(t)dt < E/ch(t)dH L[ A

Letting x — oo, we find

lim sup
X—r00

1/ A(t)dt‘ <e.
1

X

Since ¢ is arbitrary we get limy_ oo % flx A(t)dt = 0.
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Subsection 9

Selberg's Asymptotic Formula
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An Inversion Formula

Let F be a real- or complex-valued function defined on (0, c0), and let

= IongF (%) .

n<x

Then

Iogx—l—ZF( ) =" u(d) ( )

n<x d<x
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An Inversion Formula (Cont'd)

o First we write F(x)log x as a sum,

F(x)logx = 3 H F (%) Iog)—; -YF (%) log % 3 u(d).
n<x n<x d|n
Recall th
ecall that Ao - %M(d) o g

Now we get

ZF(%)/\(n ZF( )Z“ Iog

n<x n<x
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An Inversion Formula (Cont'd)

o We got
F(x)logx = Yo F(£)log Y4, u(d)
anx F(%)A(n) = anx F()—;) Zd|n ,lL(d) IOg g
Adding the two equations we find
F(x)log x + anx F(%)A(n)
= Don<x F(5) 2Zajn #(d){log § + log G}
= anx Zd|n F(%)M(d) log §

In the last sum we write n = gd to obtain

Don<x din FGIuld)log 5 = >, pu(d)log % > o<y /a F(25)
= Dg<x i(d)G(%).
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Selberg's Asymptotic Formula

Theorem (Selberg's Asymptotic Formula)

For x > 0 we have

(x) log x + Z/\(n)w (%) = 2xlog x + O(x).

n<x

o We shall first apply the previous theorem to the function
F1(x) = 9(x), taking into account that, by a previous theorem,

> v (%) = xlogx — x + Olog x).

n<x

Gi(x) = logx> < ¥(3)
= xlog?x — xlogx + O(log? x).
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Selberg’'s Asymptotic Formula (Cont'd)

@ We will then apply the previous theorem to the function
F2(x) = x — C — 1, where C is Euler's constant.

Go(x) = logx . Fa(3)
= logx) o (5 —C—1)
= onngnSX%—(C-l—l)logxzngxl
= xlogx(logx + C+ O(%)) — (C + 1) log x(x + O(1))
= xlog?x — xlogx + O(log x).

Comparing the formulas for G;(x) and Gy(x), we see that
Gi(x) — Go(x) = O(1og? x).
We shall only use the weaker estimate Gi(x) — Ga(x) = O(v/x).
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Selberg’'s Asymptotic Formula (Cont'd)

@ Apply the preceding theorem to each of F; and F, and subtract the
two relations so obtained.

The difference of the two right members is

Yacx (d){Gi(F) - G(5)} = 04k VF)
= O(\/)_(ngx ﬁ)
= O(x).

Therefore the difference of the two left members is also O(x).

() - (x— C=1)}ogx+ > {v (%) ~ (2 -c-1)}Am) = o).

n
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Selberg’'s Asymptotic Formula (Cont'd)

o We got
X X
($(x) = (x— C—1)} |ogx+; {v (E> - <E - Cc—1)}A(n) = 0(x).
Rearranging terms, we find that
w(x) |ng —+ anx w(%)/\(”)
=(x—C—1)logx + >, (5 — C—1)A(n) + O(x).
By a previous theorem,
Z Aln) = logx + O(1).
n<x n
Now we conclude that

|ogx+2¢< )/\(n = 2xlog x + O(x).

n<x
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