Introduction to Analytic Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Some Elementary Theorems on the Distribution of Prime Numbers

- Chebyshev's functions $\psi(x)$ and $\vartheta(x)$
- Relations connecting $\vartheta(x)$ and $\pi(x)$
- Some Equivalent Forms of the Prime Number Theorem
- Inequalities for $\pi(n)$ and p_{n}
- Shapiro's Tauberian Theorem
- Applications of Shapiro's Theorem
- An Asymptotic Formula for the Partial Sums $\sum_{p \leq x}(1 / p)$
- The Partial Sums of the Möbius Function
- Selberg's Asymptotic Formula

Subsection 1

Chebyshev's functions $\psi(x)$ and $\vartheta(x)$

Chebyshev's ψ-Function

Definition

For $x>0$ we define Chebyshev's ψ-function by the formula

$$
\psi(x)=\sum_{n \leq x} \Lambda(n)
$$

- Recall $\Lambda(n)=0$, unless n is a prime power.

So we get

$$
\psi(x)=\sum_{n \leq x} \Lambda(n)=\sum_{\substack{m=1 \\ p^{m} \leq x}}^{\infty} \Lambda\left(p^{m}\right)=\sum_{m=1}^{\infty} \sum_{p \leq x^{1 / m}} \log p
$$

Chebyshev's ψ-Function

- We got

$$
\psi(x)=\sum_{m=1}^{\infty} \sum_{p \leq x^{1 / m}} \log p
$$

The sum on m is actually a finite sum.
Suppose $m>\log _{2} x$. Then $m>\frac{\log x}{\log 2}$.
So $\frac{1}{m} \log x<\log 2$. Hence, $x^{1 / m}<2$.
It follows that, in this case, the sum on p is empty.
So

$$
\psi(x)=\sum_{m \leq \log _{2} x} \sum_{p \leq x^{1 / m}} \log p .
$$

Chebyshev's ϑ-Function

Definition

If $x>0$ we define Chebyshev's ϑ-function by the equation

$$
\vartheta(x)=\sum_{p \leq x} \log p
$$

where p runs over all primes $\leq x$.

- The last formula for $\psi(x)$ can now be restated as follows:

$$
\psi(x)=\sum_{m \leq \log _{2} x} \sum_{p \leq x^{1 / m}} \log p=\sum_{m \leq \log _{2} x} \vartheta\left(x^{1 / m}\right)
$$

Relation Between $\frac{v(x)}{x}$ and $\frac{v(x)}{x}$

Theorem

For $x>0$, we have

$$
0 \leq \frac{\psi(x)}{x}-\frac{\vartheta(x)}{x} \leq \frac{(\log x)^{2}}{2 \sqrt{x} \log 2}
$$

Note: This inequality implies that

$$
\lim _{x \rightarrow \infty}\left(\frac{\psi(x)}{x}-\frac{\vartheta(x)}{x}\right)=0
$$

In other words, if one of $\frac{\psi(x)}{x}$ or $\frac{\vartheta(x)}{x}$ tends to a limit then so does the other, and the two limits are equal.

Proof of the Theorem

- We saw

$$
\psi(x)=\sum_{m \leq \log _{2} x} \vartheta\left(x^{1 / m}\right)
$$

Therefore,

$$
0 \leq \psi(x)-\vartheta(x)=\sum_{2 \leq m \leq \log _{2} x} \vartheta\left(x^{1 / m}\right)
$$

From the definition of $\vartheta(x)$ we have the trivial inequality

$$
\vartheta(x)=\sum_{p \leq x} \log p \leq \sum_{p \leq x} \log x \leq x \log x .
$$

Proof of the Theorem

- We have
- $0 \leq \psi(x)-\vartheta(x)=\sum_{2 \leq m \leq \log _{2} x} \vartheta\left(x^{1 / m}\right) ;$
- $\vartheta(x) \leq x \log x$.

Combining, we get

$$
\begin{aligned}
0 & \leq \psi(x)-\vartheta(x) \\
& \leq \sum_{2 \leq m \leq \log _{2} x} x^{1 / m} \log \left(x^{1 / m}\right) \\
& \leq\left(\log _{2} x\right) \sqrt{x} \log \sqrt{x} \\
& =\frac{\log x}{\log 2} \cdot \frac{\sqrt{x}}{2} \log x \\
& =\frac{\sqrt{x}(\log x)^{2}}{2 \log 2} .
\end{aligned}
$$

Now divide by x to obtain the conclusion.

Subsection 2

Relations connecting $\vartheta(x)$ and $\pi(x)$

Abel's Identity

- Both functions $\pi(x)$ and $\vartheta(x)$ are step functions with jumps at the primes:
- $\pi(x)$ has a jump 1 at each prime p;
- $\vartheta(x)$ has a jump of $\log p$ at each prime p.
- Sums involving step functions of this type can be expressed as integrals by means of the following theorem.

Theorem (Abel's Identity)

For any arithmetical function $a(n)$, let $A(x)=\sum_{n \leq x} a(n)$, where $A(x)=0$ if $x<1$. Assume f has a continuous derivative on the interval $[y, x]$, where $0<y<x$. Then we have

$$
\sum_{y<n \leq x} a(n) f(n)=A(x) f(x)-A(y) f(y)-\int_{y}^{x} A(t) f^{\prime}(t) d t
$$

Proof of Abel's Identity

- Let $k=[x]$ and $m=[y]$, so that $A(x)=A(k)$ and $A(y)=A(m)$. Then

$$
\begin{aligned}
& \sum_{y<n \leq x} a(n) f(n)=\sum_{n=m+1}^{k} a(n) f(n) \\
& =\sum_{n=m+1}^{k}\{A(n)-A(n-1)\} f(n) \\
& =\sum_{n=m+1}^{k} A(n) f(n)-\sum_{n=m}^{k-1} A(n) f(n+1) \\
& =\sum_{n=m+1}^{k-1} A(n)\{f(n)-f(n+1)\}+A(k) f(k)-A(m) f(m+1) \\
& =-\sum_{n=m+1}^{k-1} A(n) \int_{n}^{n+1} f^{\prime}(t) d t+A(k) f(k)-A(m) f(m+1) \\
& =-\sum_{n=m+1}^{k-1} \int_{n}^{n+1} A(t) f^{\prime}(t) d t+A(k) f(k)-A(m) f(m+1) \\
& =-\int_{m+1}^{k} A(t) f^{\prime}(t) d t+A(x) f(x)-\int_{k}^{x} A(t) f^{\prime}(t) d t \\
& \quad \quad-A(y) f(y)-\int_{y}^{m+1} A(t) f^{\prime}(t) d t \\
& =A(x) f(x)-A(y) f(y)-\int_{y}^{x} A(t) f^{\prime}(t) d t .
\end{aligned}
$$

Alternate Proof of Abel's Identity

- A shorter proof of Abel's Identity is available to readers familiar with Riemann-Stieltjes integration.
$A(x)$ is a step function with jump $a(n)$ at each integer n.
So the sum in $\sum_{y<n \leq x} a(n) f(n)$ can be expressed as a Riemann-Stieltjes integral

$$
\sum_{y<n \leq x} a(n) f(n)=\int_{y}^{x} f(t) d A(t)
$$

Integration by parts gives us

$$
\begin{aligned}
\sum_{y<n \leq x} a(n) f(n) & =f(x) A(x)-f(y) A(y)-\int_{y}^{x} A(t) d f(t) \\
& =f(x) A(x)-f(y) A(y)-\int_{y}^{x} A(t) f^{\prime}(t) d t
\end{aligned}
$$

A Special Case

- We have $A(t)=0$ if $t<1$.
- So, when $y<1$, Abel's Identity takes the form

$$
\sum_{y<n \leq x} a(n) f(n)=A(x) f(x)-\int_{1}^{x} A(t) f^{\prime}(t) d t
$$

Euler's Summation Formula

- Suppose $a(n)=1$, for all $n \geq 1$.
- Then $A(x)=[x]$.
- Thus, we get

$$
\sum_{y<n \leq x} f(n)=f(x)[x]-f(y)[y]-\int_{y}^{x}[t] f^{\prime}(t) d t
$$

- Integration by parts gives

$$
\int_{y}^{x} t f^{\prime}(t) d t=x f(x)-y f(y)-\int_{y}^{x} f(t) d t .
$$

Euler's Summation Formula (Cont'd)

- Now we obtain Euler's summation formula.

$$
\begin{aligned}
\sum_{y<n \leq x} f(n)= & f(x)[x]-f(y)[y]-\int_{y}^{x}[t] f^{\prime}(t) d t \\
= & f(x)[x]-f(y)[y]+\int_{y}^{x}(t-[t]) f^{\prime}(t) d t \\
& -\int_{y}^{x} t f^{\prime}(t) d t \\
= & f(x)[x]-f(y)[y]+\int_{y}^{x}(t-[t]) f^{\prime}(t) d t \\
& -\left(x f(x)-y f(y)-\int_{y}^{x} f(t) d t\right) \\
= & \int_{y}^{x} f(t) d t+\int_{y}^{x}(t-[t]) f^{\prime}(t) d t \\
& +f(x)([x]-x)-f(y)([y]-y)
\end{aligned}
$$

An Integral Formula for $\vartheta(x)$

Theorem

For $x \geq 2$,

$$
\vartheta(x)=\pi(x) \log x-\int_{2}^{x} \frac{\pi(t)}{t} d t
$$

- Let $a(n)$ denote the characteristic function of the primes,

$$
a(n)=\left\{\begin{array}{ll}
1, & \text { if } n \text { is a prime } \\
0, & \text { otherwise }
\end{array} .\right.
$$

Then we have

$$
\begin{aligned}
\pi(x) & =\sum_{p \leq x} 1=\sum_{1<n \leq x} a(n) \\
\vartheta(x) & =\sum_{p \leq x} \log p=\sum_{1<n \leq x} a(n) \log n
\end{aligned}
$$

An Integral Formula for $\vartheta(x)$ (Cont'd)

- We obtained

$$
\begin{aligned}
& \vartheta(x)=\sum_{1<n \leq x} a(n) \log n ; \\
& \pi(x)=\sum_{1<n \leq x} a(n)
\end{aligned}
$$

Taking $f(x)=\log x$ in Abel's Identity with $y=1$, we obtain

$$
\sum_{1<n \leq x} a(n) \log n=\pi(x) \log x-\int_{1}^{x} \frac{\pi(t)}{t} d t
$$

So we have

$$
\begin{array}{rlrl}
\vartheta(x) & = & \sum_{1<n \leq x} a(n) \log n \\
& = & \pi(x) \log x-\int_{1}^{x} \frac{\pi(t)}{t} d t \\
\pi(t) & =0, t<2 & & \pi(x) \log x-\int_{2}^{x} \frac{\pi(t)}{t} d t .
\end{array}
$$

An Integral Formula for $\pi(x)$

Theorem

For $x \geq 2$,

$$
\pi(x)=\frac{\vartheta(x)}{\log x}-\int_{2}^{x} \frac{\vartheta(t)}{t \log ^{2} t} d t
$$

- Let

$$
a(n)= \begin{cases}1, & \text { if } n \text { is a prime } \\ 0, & \text { otherwise }\end{cases}
$$

Define

$$
b(n)=a(n) \log n .
$$

Write

$$
\begin{aligned}
& \pi(x)=\sum_{3 / 2<n \leq x} a(n)=\sum_{3 / 2<n \leq x} b(n) \frac{1}{\log n} \\
& \vartheta(x)=\sum_{n \leq x} b(n)
\end{aligned}
$$

An Integral Formula for $\pi(x)$ (Cont'd)

- We have:
- $\pi(x)=\sum_{3 / 2<n \leq x} b(n) \frac{1}{\log n} ;$
- $\vartheta(x)=\sum_{n \leq x} b(n)$.

Take $f(x)=\frac{1}{\log x}$ in Abel's Identity with $y=\frac{3}{2}$.

$$
\begin{aligned}
& \pi(x)= \\
& \vartheta(t)=\underline{0, t<2} \\
&= \frac{\vartheta(3 / 2)}{\log x}-\int_{3 / 2}^{x} \frac{\vartheta(t)}{\log 3 / 2} d t \\
& \frac{\vartheta(x)}{\log x}-\int_{2}^{x} \frac{\vartheta(t)}{t \log ^{2} t} d t
\end{aligned}
$$

Subsection 3

Some Equivalent Forms of the Prime Number Theorem

Equivalent Forms of the Prime Number Theorem

Theorem

The following relations are logically equivalent:

$$
\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1, \quad \lim _{x \rightarrow \infty} \frac{\vartheta(x)}{x}=1, \quad \lim _{x \rightarrow \infty} \frac{\psi(x)}{x}=1
$$

- By the preceding theorem,

$$
\frac{\vartheta(x)}{x}=\frac{\pi(x) \log x}{x}-\frac{1}{x} \int_{2}^{x} \frac{\pi(t)}{t} d t, \quad \frac{\pi(x) \log x}{x}=\frac{\vartheta(x)}{x}+\frac{\log x}{x} \int_{2}^{x} \frac{\vartheta(t) d t}{t \log ^{2} t} .
$$

To see that the first limit implies the second it suffices to see that it implies

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \int_{2}^{x} \frac{\pi(t)}{t} d t=0
$$

Equivalent Forms of the Prime Number Theorem (Cont'd)

- Suppose $\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1$.

This implies

$$
\frac{\pi(t)}{t}=O\left(\frac{1}{\log t}\right), \quad \text { for } t \geq 2
$$

So we get

$$
\frac{1}{x} \int_{2}^{x} \frac{\pi(t)}{t} d t=O\left(\frac{1}{x} \int_{2}^{x} \frac{d t}{\log t}\right)
$$

Now

$$
\begin{aligned}
\int_{2}^{x} \frac{d t}{\log t} & =\int_{2}^{\sqrt{x}} \frac{d t}{\log t}+\int_{\sqrt{x}}^{x} \frac{d t}{\log t} \\
& \leq \frac{\sqrt{x}}{\log 2}+\frac{x-\sqrt{x}}{\log \sqrt{x}}
\end{aligned}
$$

So $\frac{1}{x} \int_{2}^{x} \frac{d t}{\log t} \rightarrow 0$, as $x \rightarrow \infty$.

Equivalent Forms of the Prime Number Theorem (Cont'd)

- Suppose $\lim _{x \rightarrow \infty} \frac{\vartheta(x)}{x}=1$.

We must show that this implies $\lim _{x \rightarrow \infty} \frac{\log x}{x} \int_{2}^{x} \frac{\vartheta(t) d t}{t \log ^{2} t}=0$.
It does imply $\vartheta(t)=O(t)$.
So

$$
\frac{\log x}{x} \int_{2}^{x} \frac{\vartheta(t) d t}{t \log ^{2} t}=O\left(\frac{\log x}{x} \int_{2}^{x} \frac{d t}{\log ^{2} t}\right) .
$$

Now

$$
\int_{2}^{x} \frac{d t}{\log ^{2} t}=\int_{2}^{\sqrt{x}} \frac{d t}{\log ^{2} t}+\int_{\sqrt{x}}^{x} \frac{d t}{\log ^{2} t} \leq \frac{\sqrt{x}}{\log ^{2} 2}+\frac{x-\sqrt{x}}{\log ^{2} \sqrt{x}}
$$

Hence,

$$
\frac{\log x}{x} \int_{2}^{x} \frac{d t}{\log ^{2} t} \rightarrow 0, \text { as } x \rightarrow \infty
$$

This proves that the first and second limits are equivalent.
By a previous theorem, the second and third limits are equivalent.

Prime Number Theorem and Asymptotic Value of p_{n}

Theorem

Let p_{n} denote the n-th prime. Then the following asymptotic relations are logically equivalent:

$$
\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1, \quad \lim _{x \rightarrow \infty} \frac{\pi(x) \log \pi(x)}{x}=1, \quad \lim _{n \rightarrow \infty} \frac{p_{n}}{n \log n}=1
$$

- We show $1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 1$.

Proof ($1 \rightarrow 2$)

- Assume $\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1$.

Taking logarithms we obtain

$$
\lim _{x \rightarrow \infty}[\log \pi(x)+\log \log x-\log x]=0
$$

Equivalently,

$$
\lim _{x \rightarrow \infty}\left[\log x\left(\frac{\log \pi(x)}{\log x}+\frac{\log \log x}{\log x}-1\right)\right]=0
$$

But $\log x \rightarrow \infty$ as $x \rightarrow \infty$.
It follows that

$$
\lim _{x \rightarrow \infty}\left(\frac{\log \pi(x)}{\log x}+\frac{\log \log x}{\log x}-1\right)=0
$$

This yields $\lim _{x \rightarrow \infty} \frac{\log \pi(x)}{\log x}=1$.
This gives $\lim _{x \rightarrow \infty} \frac{\pi(x) \log \pi(x)}{x}=1$.

Proof $(2 \rightarrow 3 \rightarrow 2)$

$2 \rightarrow 3$ Suppose $\lim _{x \rightarrow \infty} \frac{\pi(x) \log \pi(x)}{x}=1$.
Assume $x=p_{n}$. Then $\pi(x)=n$. So $\pi(x) \log \pi(x)=n \log n$.
So 2 implies $\lim _{n \rightarrow \infty} \frac{n \log n}{p_{n}}=1$.
$3 \rightarrow 2$ Suppose $\lim _{n \rightarrow \infty} \frac{n \log n}{p_{n}}=1$.
Given x, define n by the inequalities

$$
p_{n} \leq x<p_{n+1} .
$$

Then $n=\pi(x)$. Dividing by $n \log n$, we get
$\frac{p_{n}}{n \log n} \leq \frac{x}{n \log n}<\frac{p_{n+1}}{n \log n}=\frac{p_{n+1}}{(n+1) \log (n+1)} \cdot \frac{(n+1) \log (n+1)}{n \log n}$.
Now let $n \rightarrow \infty$ and use the hypothesis to get

$$
\lim _{n \rightarrow \infty} \frac{x}{n \log n}=1
$$

Equivalently, $\lim _{x \rightarrow \infty} \frac{x}{\pi(x) \log \pi(x)}=1$.

Proof $(2 \rightarrow 1)$

$2 \rightarrow 1$ Suppose $\lim _{x \rightarrow \infty} \frac{\pi(x) \log \pi(x)}{x}=1$.
Taking logarithms, we obtain

$$
\lim _{x \rightarrow \infty}(\log \pi(x)+\log \log \pi(x)-\log (x))=0
$$

Equivalently,

$$
\lim _{x \rightarrow \infty}\left[\log \pi(x)\left(1+\frac{\log \log \pi(x)}{\log \pi(x)}-\frac{\log x}{\log \pi(x)}\right)\right]=0
$$

But $\log \pi(x) \rightarrow \infty$. It follows that

$$
\lim _{x \rightarrow \infty}\left(1+\frac{\log \log \pi(x)}{\log \pi(x)}-\frac{\log x}{\log \pi(x)}\right)=0
$$

Equivalently,

$$
\lim _{x \rightarrow \infty} \frac{\log x}{\log \pi(x)}=1
$$

This gives $\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1$.

Subsection 4

Inequalities for $\pi(n)$ and p_{n}

An Estimate for $\binom{2 n}{n}$

Lemma

For every integer $n \geq 0$, we have

$$
2^{n} \leq\binom{ 2 n}{n}<4^{n}
$$

- The left inequality is by induction.
- For $n=0$, it holds that $1 \leq \frac{0!}{0!0!}$.
- Suppose the inequality holds for some $k \geq 0$.
- We have

$$
\begin{aligned}
2^{k+1}=2 \cdot 2^{k} & \leq 2 \frac{(2 k)!}{k!k!}=2 \frac{(2 k)!(k+1)(k+1)}{k!k!(k+1)(k+1)} \\
& \leq \frac{(2 k)!(2 k+1)(2 k+2)}{(k+1)!(k+1)!}=\frac{(2(k+1))!}{(k+1)!(k+1)!}
\end{aligned}
$$

The right follows from $4^{n}=(1+1)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k}>\binom{2 n}{n}$.

Inequalities for $\pi(n)$

Theorem

For every integer $n \geq 2$, we have

$$
\frac{1}{6} \frac{n}{\log n}<\pi(n)<6 \frac{n}{\log n}
$$

- Taking logarithms in $2^{n} \leq\binom{ 2 n}{n}<4^{n}$, we get

$$
n \log 2 \leq \log (2 n)!-2 \log n!<4 \log 4 .
$$

A previous theorem implies that

$$
\log n!=\sum_{p \leq n} \alpha(p) \log p
$$

where the sum is extended over primes and $\alpha(p)$ is given by $\alpha(p)=\sum_{m=1}^{\left[\frac{\log n}{\log p}\right]}\left[\frac{n}{p^{m}}\right]$.

Inequalities for $\pi(n)$ (Cont'd)

- Hence, we get

$$
\log (2 n)!-2 \log n!=\sum_{p \leq 2 n} \sum_{m=1}^{\left[\frac{\log 2 n}{\log p}\right]}\left\{\left[\frac{2 n}{p^{m}}\right]-2\left[\frac{n}{p^{m}}\right]\right\} \log p
$$

Now note that $[2 x]-2[x]$ is either 0 or 1 .
So the inequality $n \log 2 \leq \log (2 n)!-2 \log n!$ implies

$$
n \log 2 \leq \sum_{p \leq 2 n}\left(\sum_{m=1}^{\left[\frac{\log 2 n}{\log p}\right]} 1\right) \log p \leq \sum_{p \leq 2 n} \log 2 n=\pi(2 n) \log 2 n
$$

Taking into account $\log 2>\frac{1}{2}$, this gives

$$
\pi(2 n) \geq \frac{n \log 2}{\log 2 n}=\frac{2 n}{\log 2 n} \frac{\log 2}{2}>\frac{1}{4} \frac{2 n}{\log 2 n}
$$

Inequalities for $\pi(n)$ (Cont'd)

- For odd integers, we have

$$
\begin{aligned}
\pi(2 n+1) & \geq \pi(2 n) \\
& >\frac{1}{4} \frac{2 n}{\log 2 n} \\
& >\frac{1}{4} \frac{2 n}{2 n+1} \frac{2 n+1}{\log (2 n+1)} \\
& \geq \frac{1}{6} \frac{2 n+1}{\log (2 n+1)}
\end{aligned}
$$

since $\frac{2 n}{2 n+1} \geq \frac{2}{3}$.
This, together with $\pi(2 n)>\frac{1}{4} \frac{2 n}{\log 2 n}$, gives

$$
\pi(n)>\frac{1}{6} \frac{n}{\log n}, \quad \text { for all } n \geq 2
$$

Inequalities for $\pi(n)$ (Cont'd)

- Consider again

$$
\log (2 n)!-2 \log n!=\sum_{p \leq 2 n} \sum_{m=1}^{\left[\frac{\log 2 n}{\log p}\right]}\left\{\left[\frac{2 n}{p^{m}}\right]-2\left[\frac{n}{p^{m}}\right]\right\} \log p
$$

Extract the term corresponding to $m=1$.
The remaining terms are nonnegative, whence

$$
\log (2 n)!-2 \log n!\geq \sum_{p \leq 2 n}\left\{\left[\frac{2 n}{p}\right]-2\left[\frac{n}{p}\right]\right\} \log p
$$

For those primes p, with $n<p \leq 2 n$, we have $\left[\frac{2 n}{p}\right]-2\left[\frac{n}{p}\right]=1$.
So

$$
\log (2 n)!-2 \log n!\geq \sum_{n<p \leq 2 n} \log p=\vartheta(2 n)-\vartheta(n)
$$

Inequalities for $\pi(n)$ (Cont'd)

- It follows that

$$
\log (2 n)!-2 \log n!<n \log 4 \quad \text { implies } \quad \vartheta(2 n)-\vartheta(n)<n \log 4
$$

If $n=2^{r}$,

$$
\vartheta\left(2^{r+1}\right)-\vartheta\left(2^{r}\right)<2^{r} \log 4=2^{r+1} \log 2 .
$$

Summing on $r=0,1, \ldots, k$, we find

$$
\vartheta\left(2^{k+1}\right)<2^{k+2} \log 2
$$

Now we choose k so that $2^{k} \leq n<2^{k+1}$.
We obtain

$$
\vartheta(n) \leq \vartheta\left(2^{k+1}\right)<2^{k+2} \log 2 \leq 4 n \log 2
$$

Inequalities for $\pi(n)$ (Conclusion)

- If $0<\alpha<1$, we have

$$
\left(\pi(n)-\pi\left(n^{\alpha}\right)\right) \log n^{\alpha}<\sum_{n^{\alpha}<p \leq n} \log p \leq \vartheta(n)<4 n \log 2
$$

Hence

$$
\begin{aligned}
\pi(n) & <\frac{4 n \log 2}{\alpha \log n}+\pi\left(n^{\alpha}\right) \\
& <\frac{4 n \log 2}{\alpha \log n}+n^{\alpha} \\
& =\frac{n}{\log n}\left(\frac{4 \log 2}{\alpha}+\frac{\log n}{n^{1-\alpha}}\right) .
\end{aligned}
$$

If $c>0$ and $x \geq 1, f(x)=x^{-c} \log x$ attains its maximum at $x=e^{1 / c}$. So, for $n \geq 1, n^{-c} \log n \leq\left(e^{1 / c}\right)^{-c} \log \left(e^{1 / c}\right) \leq \frac{1}{c e}$.
Taking $\alpha=\frac{2}{3}$ in the last inequality for $\pi(n)$, we find

$$
\pi(n)<\frac{n}{\log n}\left(6 \log 2+\frac{3}{e}\right)<6 \frac{n}{\log n} .
$$

Inequalities for p_{n}

Theorem

For $n \geq 1$, the n-th prime p_{n} satisfies the inequalities

$$
\frac{1}{6} n \log n<p_{n}<12\left(n \log n+n \log \frac{12}{e}\right) .
$$

- Consider $\frac{1}{6} \frac{n}{\log n}<\pi(n)<6 \frac{n}{\log n}$.

Take $k=p_{n}$. Then $k \geq 2$ and $n=\pi(k)$.
Thus, we have

$$
n=\pi(k)<6 \frac{k}{\log k}=6 \frac{p_{n}}{\log p_{n}}
$$

It follows that

$$
p_{n}>\frac{1}{6} n \log p_{n}>\frac{1}{6} n \log n .
$$

Inequalities for p_{n} (Cont'd)

- For the upper bound, by the preceding theorem,

$$
n=\pi(k)>\frac{1}{6} \frac{k}{\log k}=\frac{1}{6} \frac{p_{n}}{\log p_{n}} .
$$

So $p_{n}<6 n \log p_{n}$.
But, for $x \geq 1, \log x \leq \frac{2}{e} \sqrt{x}$. So we have $\log p_{n} \leq \frac{2}{e} \sqrt{p_{n}}$.
It follows that $p_{n}<6 n \frac{2}{e} \sqrt{p_{n}}$. I.e., $\sqrt{p_{n}}<\frac{12}{e} n$.
Therefore,

$$
\frac{1}{2} \log p_{n}<\log n+\log \frac{12}{e}
$$

Used in $p_{n}<6 n \log p_{n}$, this gives

$$
p_{n}<6 n\left(2 \log n+2 \log \frac{12}{e}\right)
$$

Note: The upper bound shows once more that the series $\sum_{n=1}^{\infty} \frac{1}{p_{n}}$ diverges, by comparison with $\sum_{n=2}^{\infty} \frac{1}{n \log n}$.

Subsection 5

Shapiro's Tauberian Theorem

Tauberian Theorems

- We have seen that the prime number theorem is equivalent to the asymptotic formula

$$
\frac{1}{x} \sum_{n \leq x} \Lambda(n) \sim 1, \text { as } x \rightarrow \infty
$$

- We have also derived a related asymptotic formula,

$$
\sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right]=x \log x-x+O(\log x)
$$

- Both sums above are weighted averages of the function $\Lambda(n)$.
- Each term $\Lambda(n)$ is multiplied by a weight factor $\frac{1}{x}$ in the first and by [$\left.\frac{x}{n}\right]$ in the second.
- Theorems relating different weighted averages of the same function are called Tauberian theorems.

Shapiro's Tauberian Theorem

- Shapiro's Tauberian Theorem relates, for nonnegative $a(n)$:
- Sums of the form $\sum_{n \leq x} a(n)$;
- Sums of the form $\sum_{n \leq x} a(n)\left[\frac{x}{n}\right]$

Theorem

Let $\{a(n)\}$ be a nonnegative sequence such that

$$
\sum_{n \leq x} a(n)\left[\frac{x}{n}\right]=x \log x+O(x), \text { for all } x \geq 1
$$

(a) For $x \geq 1$, we have

$$
\sum_{n \leq x} \frac{a(n)}{n}=\log x+O(1)
$$

(I.e., dropping the square brackets leads to a correct result.)

Shapiro's Tauberian Theorem (Cont'd)

Theorem (Cont'd)

(b) There is a constant $B>0$, such that

$$
\sum_{n \leq x} a(n) \leq B x, \text { for all } x \geq 1
$$

(c) There is a constant $A>0$ and an $x_{0}>0$, such that

$$
\sum_{n \leq x} a(n) \geq A x, \text { for all } x \geq x_{0}
$$

Shapiro's Tauberian Theorem (Part (b))

- Let $S(x)=\sum_{n \leq x} a(n)$ and $T(x)=\sum_{n \leq x} a(n)\left[\frac{x}{n}\right]$.

Claim: $S(x)-S\left(\frac{x}{2}\right) \leq T(x)-2 T\left(\frac{x}{2}\right)$.
Write

$$
\begin{aligned}
T(x)-2 T\left(\frac{x}{2}\right) & =\sum_{n \leq x}\left[\frac{x}{n}\right] a(n)-2 \sum_{n \leq x / 2}\left[\frac{x}{2 n}\right] a(n) \\
& =\sum_{n \leq x / 2}\left(\left[\frac{x}{n}\right]-2\left[\frac{x}{2 n}\right]\right) a(n)+\sum_{x / 2<n \leq x}\left[\frac{x}{n}\right] a(n) .
\end{aligned}
$$

But [2y]-2[y] is either 0 or 1 .
So the first sum is nonnegative, giving

$$
\begin{aligned}
T(x)-2 T\left(\frac{x}{2}\right) & \geq \sum_{x / 2<n \leq x}\left[\frac{x}{n}\right] a(n) \\
& =\sum_{x / 2<n \leq x} a(n) \\
& =S(x)-S\left(\frac{x}{2}\right) .
\end{aligned}
$$

Shapiro's Tauberian Theorem (Part (b) Cont'd)

- By the hypothesis,

$$
\begin{aligned}
T(x)-2 T\left(\frac{x}{2}\right) & =x \log x+O(x)-2\left(\frac{x}{2} \log \frac{x}{2}+O(x)\right) \\
& =O(x)
\end{aligned}
$$

Hence, by the claim,

$$
S(x)-S\left(\frac{x}{2}\right)=O(x)
$$

This means that there is some constant $K>0$, such that

$$
S(x)-S\left(\frac{x}{2}\right) \leq K x, \text { for all } x \geq 1
$$

Shapiro's Tauberian Theorem (Part (b) Cont'd)

- We showed that, if $S(x)=\sum_{n \leq x} a(n)$, there is some constant $K>0$, such that

$$
S(x)-S\left(\frac{x}{2}\right) \leq K x, \text { for all } x \geq 1
$$

Replace x successively by $\frac{x}{2}, \frac{x}{4}, \ldots$ to get

$$
\begin{aligned}
& S\left(\frac{x}{2}\right)-S\left(\frac{x}{4}\right) \leq K \frac{x}{2}, \\
& S\left(\frac{x}{4}\right)-S\left(\frac{x}{8}\right) \leq K \frac{x}{4},
\end{aligned}
$$

Note that, if $2^{n}>x$, then $S\left(\frac{x}{2^{n}}\right)=0$.
Adding these inequalities we get

$$
S(x) \leq K x\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right)=2 K x .
$$

This proves (b) with $B=2 K$.

Shapiro's Tauberian Theorem (Part (a))

- Write $\left[\frac{x}{n}\right]=\frac{x}{n}+O(1)$.

Then

$$
\begin{array}{rll}
T(x) & = & \sum_{n \leq x}\left[\frac{x}{n}\right] a(n) \\
& = & \sum_{n \leq x}\left(\frac{x}{n}+O(1)\right) a(n) \\
& = & x \sum_{n \leq x} \frac{a(n)}{n}+O\left(\sum_{n \leq x} a(n)\right) \\
& \stackrel{\text { Part (b) }}{=} & x \sum_{n \leq x} \frac{a(n)}{n}+O(x) .
\end{array}
$$

Hence

$$
\sum_{n \leq x} \frac{a(n)}{n}=\frac{1}{x} T(x)+O(1) \stackrel{\text { hyp. }}{=} \log x+O(1)
$$

Shapiro's Tauberian Theorem (Part (c))

- Let $A(x)=\sum_{n \leq x} \frac{a(n)}{n}$.

Then, by Part (a),

$$
A(x)=\log x+R(x)
$$

where $R(x)$ is the error term, with $R(x)=O(1)$.
Thus, for some $M>0$, we have $|R(x)| \leq M$.
Choose α to satisfy $0<\alpha<1$ (we shall specify α more exactly in a moment) and consider the difference

$$
A(x)-A(\alpha x)=\sum_{\alpha x<n \leq x} \frac{a(n)}{n}=\sum_{n \leq x} \frac{a(n)}{n}-\sum_{n \leq \alpha x} \frac{a(n)}{n} .
$$

Shapiro's Tauberian Theorem (Part (c) Cont'd)

- If $x \geq 1$ and $\alpha x \geq 1$, we can apply the asymptotic formula for $A(x)$ to write

$$
\begin{aligned}
A(x)-A(\alpha x) & =\log x+R(x)-(\log \alpha x+R(\alpha x)) \\
& =-\log \alpha+R(x)-R(\alpha x) \\
& \geq-\log \alpha-|R(x)|-|R(\alpha x)| \\
& \geq-\log \alpha-2 M .
\end{aligned}
$$

Shapiro's Tauberian Theorem (Part (c) Cont'd)

- We got

$$
A(x)-A(\alpha x) \geq-\log \alpha-2 M
$$

Now choose α so that $-\log \alpha-2 M=1$. I.e., $\alpha=e^{-2 M-1}$.
Note that $0<\alpha<1$. For this α, if $x \geq \frac{1}{\alpha}, A(x)-A(\alpha x) \geq 1$.
But

$$
A(x)-A(\alpha x)=\sum_{\alpha x<n \leq x} \frac{a(n)}{n} \leq \frac{1}{\alpha x} \sum_{n \leq x} a(n)=\frac{S(x)}{\alpha x}
$$

Hence, if $x \geq \frac{1}{\alpha}, \frac{S(x)}{\alpha x} \geq 1$.
Therefore, if $x \geq \frac{1}{\alpha}, S(x) \geq \alpha x$.
This proves Part (c), with $A=\alpha$ and $x_{0}=\frac{1}{\alpha}$.

Subsection 6

Applications of Shapiro's Theorem

Application to $\wedge(n)$

- Recall the asymptotic formula

$$
\sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right]=x \log x-x+O(\log x)
$$

- It implies that

$$
\sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right]=x \log x+O(x)
$$

- Since $\Lambda(n) \geq 0$, we can apply Shapiro's Theorem with $a(n)=\Lambda(n)$.

Application to $\Lambda(n)($ Cont'd $)$

Theorem

For all $x \geq 1$, we have

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n}=\log x+O(1)
$$

Also, there exist positive constants c_{1} and c_{2}, such that

$$
\psi(x) \leq c_{1} x, \text { for all } x \geq 1
$$

and

$$
\psi(x) \geq c_{2} x, \text { for all sufficiently large } x
$$

- Follows directly by Shapiro's Theorem.

Application to $\Lambda_{1}(n)$

- We also showed that

$$
\sum_{p \leq x}\left[\frac{x}{p}\right] \log p=x \log x+O(x)
$$

This can be written as

$$
\sum_{n \leq x} \Lambda_{1}(n)\left[\frac{x}{n}\right]=x \log x+O(x)
$$

where

$$
\Lambda_{1}(n)= \begin{cases}\log p & \text { if } n \text { is a prime } p \\ 0, & \text { otherwise }\end{cases}
$$

- Since $\Lambda_{1}(n) \geq 0$, the hypothesis of Shapiro's Theorem is satisfied with $a(n)=\Lambda_{1}(n)$.

Application to $\Lambda_{1}(n)$ (Cont'd)

Theorem

For all $x \geq 1$, we have

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+O(1)
$$

Also, there exist positive constants c_{1} and c_{2}, such that

$$
\vartheta(x) \leq c_{1} x, \quad \text { for all } x \geq 1
$$

and

$$
\vartheta(x) \geq c_{2} x, \quad \text { for all sufficiently large } x .
$$

- This follows diectly from Shapiro's Theorem, taking into account that, by definition, $\vartheta(x)=\sum_{n \leq x} \Lambda_{1}(n)$.

Partial Sum Formulas for $\psi(x)$ and $\vartheta(x)$

- We also proved that

$$
\sum_{n \leq x} f(n)\left[\frac{x}{n}\right]=\sum_{n \leq x} F\left(\frac{x}{n}\right)
$$

for any arithmetical $f(n)$ with $F(x)=\sum_{n \leq x} f(n)$.

- Consider again the asymptotic formulas

$$
\begin{aligned}
\sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right] & =x \log x-x+O(\log x) \\
\sum_{n \leq x} \Lambda_{1}(n)\left[\frac{x}{n}\right] & =x \log x+O(x)
\end{aligned}
$$

Take, also, into account that

$$
\psi(x)=\sum_{n \leq x} \Lambda(n) \quad \text { and } \quad \vartheta(x)=\sum_{n \leq x} \Lambda_{1}(n)
$$

Partial Sum Formulas for $\psi(x)$ and $\vartheta(x)$ (Cont'd)

Theorem

For all $x \geq 1$, we have

$$
\begin{aligned}
\sum_{n \leq x} \psi\left(\frac{x}{n}\right) & =x \log x-x+O(\log x) \\
\sum_{n \leq x} \vartheta(x) & =x \log x+O(x)
\end{aligned}
$$

- By the preceding identities, we get

$$
\begin{aligned}
\sum_{n \leq x} \psi\left(\frac{x}{n}\right) & =\sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right] \\
& =x \log x-x+O(\log x) ; \\
\sum_{n \leq x} \vartheta(x) & =\sum_{n \leq x} \Lambda_{1}(n)\left[\frac{x}{n}\right] \\
& =x \log x+O(x) .
\end{aligned}
$$

Subsection 7

An Asymptotic Formula for the Partial Sums $\sum_{p \leq x}(1 / p)$

Asymptotic Formula for the Partial Sums $\sum_{p \leq x}(1 / p)$

Theorem

There is a constant A such that

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+A+O\left(\frac{1}{\log x}\right), \text { for all } x \geq 2
$$

- Let $A(x)=\sum_{p \leq x} \frac{\log p}{p}$. Let $a(n)=\left\{\begin{array}{ll}1, & \text { if } n \text { is prime } \\ 0, & \text { otherwise }\end{array}\right.$.

Then we have

$$
\sum_{p \leq x} \frac{1}{p}=\sum_{n \leq x} \frac{a(n)}{n} \quad \text { and } \quad A(x)=\sum_{n \leq x} \frac{a(n)}{n} \log n
$$

Asymptotic Formula (Cont'd)

- Abel's identity

$$
\sum_{y<n \leq x} a(n) f(n)=A(x) f(x)-A(y) f(y)-\int_{y}^{x} A(t) f^{\prime}(t) d t
$$

yields

$$
\begin{gathered}
\sum_{y<n \leq x} \frac{a(n)}{n} \log n \frac{1}{\log n}=A(x) \frac{1}{\log x}+\int_{2}^{x} A(t) \frac{1}{t \log ^{2} t} d t \\
\sum_{p \leq x} \frac{1}{p}=\frac{A(x)}{\log x}+\int_{2}^{x} A(t) \frac{1}{t \log ^{2} t} d t .
\end{gathered}
$$

From a previous theorem, we have

$$
A(x)=\log x+R(x), \quad R(x)=O(1) .
$$

Thus,

$$
\begin{aligned}
\sum_{p \leq x} \frac{1}{p} & =\frac{\log x+O(1)}{\log x}+\int_{2}^{x} \frac{\log t+R(t)}{t \log ^{2} t} d t \\
& =1+O\left(\frac{1}{\log x}\right)+\int_{2}^{x} \frac{d t}{t \log t}+\int_{2}^{x} \frac{R(t)}{t \log ^{2} t} d t
\end{aligned}
$$

Asymptotic Formula (Cont'd)

We found

$$
\sum_{p \leq x} \frac{1}{p}=1+O\left(\frac{1}{\log x}\right)+\int_{2}^{x} \frac{d t}{t \log t}+\int_{2}^{x} \frac{R(t)}{t \log ^{2} t} d t
$$

Now note the following:

- $\int_{2}^{x} \frac{d t}{t \log t}=\log \log x-\log \log 2$;
- $\int_{2}^{x} \frac{R(t)}{t \log ^{2} t} d t=\int_{2}^{\infty} \frac{R(t)}{t \log ^{2} t} d t-\int_{x}^{\infty} \frac{R(t)}{t \log ^{2} t} d t$, the existence of the improper integral being assured by the condition $R(t)=O(1)$;
- $\int_{x}^{\infty} \frac{R(t)}{t \log ^{2} t} d t=O\left(\int_{x}^{\infty} \frac{d t}{t \log ^{2} t}\right)=O\left(\frac{1}{\log x}\right)$.

Hence,

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+1-\log \log 2+\int_{2}^{\infty} \frac{R(t)}{t \log ^{2} t} d t+O\left(\frac{1}{\log x}\right)
$$

This proves the theorem with $A=1-\log \log 2+\int_{2}^{\infty} \frac{R(t)}{t \log ^{2} t} d t$.

Subsection 8

The Partial Sums of the Möbius Function

Partial Sums of the Möbius Function

Definition

If $x \geq 1$, we define

$$
M(x)=\sum_{n \leq x} \mu(n)
$$

- The exact order of magnitude of $M(x)$ is not known.
- Mertens' Conjecture stated that $|M(x)|<\sqrt{x}$ if $x>1$.
- However, the conjecture has been disproven.
- A new conjecture asserts that $M(x)$ grows as $\sqrt{x}(\log \log \log x)^{5 / 4}$.
- We prove that the weaker statement

$$
\lim _{x \rightarrow \infty} \frac{M(x)}{x}=0
$$

is equivalent to the prime number theorem.

$M(x)$ and $H(x)$

Definition

If $x \geq 1$, we define

$$
H(x)=\sum_{n \leq x} \mu(n) \log n
$$

Theorem

We have

$$
\lim _{x \rightarrow \infty}\left(\frac{M(x)}{x}-\frac{H(x)}{x \log x}\right)=0
$$

- Taking $f(t)=\log t$ in Abel's Identity, we obtain

$$
H(x)=\sum_{n \leq x} \mu(n) \log n=M(x) \log x-\int_{1}^{x} \frac{M(t)}{t} d t
$$

$M(x)$ and $H(x)$

- Taking $x>1$, and dividing by $x \log x$, we get

$$
\frac{M(x)}{x}-\frac{H(x)}{x \log x}=\frac{1}{x \log x} \int_{1}^{x} \frac{M(t)}{t} d t .
$$

Therefore, to prove the theorem we must show that

$$
\lim _{x \rightarrow \infty} \frac{1}{x \log x} \int_{1}^{x} \frac{M(t)}{t} d t=0
$$

Trivially, $M(x)=O(x)$.
So

$$
\int_{1}^{x} \frac{M(t)}{t} d t=O\left(\int_{1}^{x} d t\right)=O(x)
$$

This implies

$$
\lim _{x \rightarrow \infty} \frac{1}{x \log x} \int_{1}^{x} \frac{M(t)}{t} d t=0
$$

Prime Number Theorem Implies the Limit

Theorem

The prime number theorem implies

$$
\lim _{x \rightarrow \infty} \frac{M(x)}{x}=0
$$

- We use the Prime Number Theorem in the form

$$
\psi(x)=\sum_{n \leq x} \wedge(n) \sim x
$$

We prove that $\frac{H(x)}{x \log x} \rightarrow 0$ as $x \rightarrow \infty$.

Prime Number Theorem Implies the Limit (Claim)

- Claim: $-H(x)=-\sum_{n \leq x} \mu(n) \log n=\sum_{n \leq x} \mu(n) \psi\left(\frac{x}{n}\right)$. We proved the following formula for $\Lambda(n)$.

$$
\Lambda(n)=-\sum_{d \mid n} \mu(d) \log d
$$

Applying Möbius inversion, we get

$$
-\mu(n) \log n=\sum_{d \mid n} \mu(d) \wedge\left(\frac{n}{d}\right)
$$

Summing over all $n \leq x$ and using the formula for the partial sums of a Dirichlet product, with $f=t, g=\Lambda$, we get

$$
\sum_{n \leq x}-\mu(n) \log n=\sum_{n \leq x}(\mu * \Lambda)(n)=\sum_{n \leq x} \mu(n) \psi\left(\frac{x}{n}\right)
$$

Prime Number Theorem Implies the Limit (Cont'd)

- We know that $\psi(x) \sim x$.

Thus, given $\varepsilon>0$ is given, there is a constant $A>0$, such that

$$
\left|\frac{\psi(x)}{x}-1\right|<\varepsilon, \text { whenever } x \geq A \text {. }
$$

In other words,

$$
|\psi(x)-x|<\varepsilon x, \quad \text { whenever } x \geq A
$$

Choose $x>A$, let $y=\left[\frac{x}{A}\right]$ and split the sum on the right of the Claim into two parts,

$$
\sum_{n \leq y} \mu(n) \psi\left(\frac{x}{n}\right)+\sum_{y<n \leq x} \mu(n) \psi\left(\frac{x}{n}\right)
$$

Prime Number Theorem Implies the Limit (First Sum)

- We look at $\sum_{n \leq y} \mu(n) \psi\left(\frac{x}{n}\right)$, where $y=\left[\frac{x}{A}\right]$.

We have $n \leq y$. So $n \leq \frac{x}{A}$. Hence, $\frac{x}{n} \geq A$.
Therefore, for $n \leq y$, we have $\left|\psi\left(\frac{x}{n}\right)-\frac{x}{n}\right|<\varepsilon \frac{x}{n}$.
Thus,

$$
\begin{aligned}
\sum_{n \leq y} \mu(n) \psi\left(\frac{x}{n}\right) & =\sum_{n \leq y} \mu(n)\left(\frac{x}{n}+\psi\left(\frac{x}{n}\right)-\frac{x}{n}\right) \\
& =x \sum_{n \leq y} \frac{\mu(n)}{n}+\sum_{n \leq y} \mu(n)\left(\psi\left(\frac{x}{n}\right)-\frac{x}{n}\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\sum_{n \leq y} \mu(n) \psi\left(\frac{x}{n}\right)\right| & \leq x\left|\sum_{n \leq y} \frac{\mu(n)}{n}\right|+\sum_{n \leq y}\left|\psi\left(\frac{x}{n}\right)-\frac{x}{n}\right| \\
& <x+\varepsilon \sum_{n \leq y} \frac{x}{n} \\
& <x+\varepsilon x(1+\log y) \\
& <x+\varepsilon x+\varepsilon x \log x .
\end{aligned}
$$

Prime Number Theorem Implies the Limit (Second Sum)

- We look at $\sum_{y<n \leq x} \mu(n) \psi\left(\frac{x}{n}\right)$, where $y=\left[\frac{x}{A}\right]$.

In this sum, $y<n \leq x$ So $n \geq y+1$.
As $y \leq \frac{x}{A}<y+1$, we get

$$
\frac{x}{n} \leq \frac{x}{y+1}<A .
$$

But $\frac{x}{n}<A$ implies

$$
\psi\left(\frac{x}{n}\right) \leq \psi(A)
$$

Therefore,

$$
\sum_{y<n \leq x} \mu(n) \psi\left(\frac{x}{n}\right) \leq x \psi(A)
$$

Prime Number Theorem Implies the Limit (Sum)

- Now, regarding the full sum, we have, for $\varepsilon<1$,

$$
\begin{aligned}
\sum_{n \leq x} \mu(n) \psi\left(\frac{x}{n}\right) & <(1+\varepsilon) x+\varepsilon x \log x+x \psi(A) \\
& <(2+\psi(A)) x+\varepsilon x \log x
\end{aligned}
$$

So, given any $0<\varepsilon<1$, we have, for $x>A$,

$$
|H(x)|<(2+\psi(A)) x+\varepsilon x \log x
$$

Equivalently,

$$
\frac{|H(x)|}{x \log x}<\frac{2+\psi(A)}{\log x}+\varepsilon .
$$

Choose $B>A$ so that $x>B$ implies $\frac{2+\psi(A)}{\log x}<\varepsilon$.
Then, for $x>B$, we have

$$
\frac{|H(x)|}{x \log x}<2 \varepsilon
$$

This shows that $\frac{H(x)}{x \log x} \rightarrow 0$ as $x \rightarrow \infty$.

Little Oh Notation

Definition

The notation

$$
f(x)=o(g(x)) \quad \text { as } x \rightarrow \infty
$$

(read: $f(x)$ is little oh of $g(x)$) means that

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0
$$

An equation of the form

$$
f(x)=h(x)+o(g(x)) \quad \text { as } x \rightarrow \infty
$$

means that

$$
f(x)-h(x)=o(g(x)) \quad \text { as } x \rightarrow \infty .
$$

Some Observations

- The equation

$$
\lim _{x \rightarrow \infty} \frac{M(x)}{x}=0
$$

states that $M(x)=o(x)$ as $x \rightarrow \infty$.

- The Prime Number Theorem, expressed in the form

$$
\psi(x) \sim x
$$

can also be written as $\psi(x)=x+o(x)$ as $x \rightarrow \infty$.

- More generally, an asymptotic relation

$$
f(x) \sim g(x) \text { as } x \rightarrow \infty
$$

is equivalent to

$$
f(x)=g(x)+o(g(x)) \text { as } x \rightarrow \infty
$$

- Finally note that $f(x)=O(1)$ implies $f(x)=o(x)$ as $x \rightarrow \infty$.

$M(x)$ and $\psi(x)$

Theorem

The relation $M(x)=o(x)$ as $x \rightarrow \infty$ implies $\psi(x) \sim x$ as $x \rightarrow \infty$.
Claim: We have

$$
\psi(x)=x-\sum_{\substack{q, d \\ q d \leq x}} \mu(d) f(q)+O(1)
$$

where:

- f is given by $f(n)=\sigma_{0}(n)-\log n-2 C$, with C Euler's constant;
- $\sigma_{0}(n)=d(n)$ is the number of divisors of n.

$M(x)$ and $\psi(x)$ (Claim Cont'd)

- We start with the identities

$$
[x]=\sum_{n \leq x} 1, \quad \psi(x)=\sum_{n \leq x} \Lambda(n), \quad 1=\sum_{n \leq x}\left[\frac{1}{n}\right]
$$

Now we take into account

$$
\sigma_{0}(n)=\sum_{d \mid n} 1, \quad \log n=\sum_{d \mid n} \Lambda(n), \quad 1=\sum_{d \mid n}\left[\frac{1}{d}\right]
$$

Applying Möbius inversion, we express each summand in the first sums as a Dirichlet product involving the Möbius function

$$
1=\sum_{d \mid n} \mu(d) \sigma_{0}\left(\frac{n}{d}\right), \quad \Lambda(n)=\sum_{d \mid n} \mu(d) \log \frac{n}{d}, \quad\left[\frac{1}{n}\right]=\sum_{d \mid n} \mu(d) .
$$

$M(x)$ and $\psi(x)$ (Claim Cont'd)

- We have

$$
1=\sum_{d \mid n} \mu(d) \sigma_{0}\left(\frac{n}{d}\right), \quad \Lambda(n)=\sum_{d \mid n} \mu(d) \log \frac{n}{d}, \quad\left[\frac{1}{n}\right]=\sum_{d \mid n} \mu(d)
$$

Then

$$
\begin{aligned}
{[x]-\psi(x)-2 C } & =\sum_{n \leq x}\left\{1-\Lambda(n)-2 C\left[\frac{1}{n}\right]\right\} \\
& =\sum_{n \leq x} \sum_{d \mid n} \mu(d)\left\{\sigma_{0}\left(\frac{n}{d}\right)-\log \frac{n}{d}-2 C\right\} \\
& =\sum_{\substack{q, d \\
q d \leq x}} \mu(d)\left\{\sigma_{0}(q)-\log q-2 C\right\} \\
& =\sum_{\substack{q, d \\
q d \leq x}} \mu(d) f(q) .
\end{aligned}
$$

For the proof of the theorem we must show

$$
\sum_{\substack{q, d \\ q d \leq x}} \mu(d) f(q)=o(x), \quad \text { as } x \rightarrow \infty
$$

$M(x)$ and $\psi(x)$ (Another Claim)

Claim: We have

$$
F(x)=\sum_{n \leq x} f(n)=O(\sqrt{x})
$$

We use Dirichlet's formula

$$
\sum_{n \leq x} \sigma_{0}(n)=x \log x+(2 C-1) x+O(\sqrt{x})
$$

together with the relation

$$
\sum_{n \leq x} \log n=\log [x]!=x \log x-x+O(\log x)
$$

$M(x)$ and $\psi(x)$ (Another Claim Cont'd)

- These give us

$$
\begin{aligned}
F(x)= & \sum_{n \leq x}\left(\sigma_{0}(n)-\log n-2 C\right) \\
= & \sum_{n \leq x} \sigma_{0}(n)-\sum_{n \leq x} \log n-2 C \sum_{n \leq x} 1 \\
= & x \log x+(2 C-1) x+O(\sqrt{x}) \\
& -(x \log x-x+O(\log x))-2 C x+O(1) \\
= & O(\sqrt{x})+O(\log x)+O(1)=O(\sqrt{x})
\end{aligned}
$$

Therefore, there is a constant $B>0$, such that

$$
|F(x)| \leq B \sqrt{x}, \quad \text { for all } x \geq 1
$$

$M(x)$ and $\psi(x)$ (Final Claim)

Claim: We have

$$
\sum_{\substack{q, d \\ q d \leq x}} \mu(d) f(q)=o(x), \quad \text { as } x \rightarrow \infty
$$

We use the generalized formula for the partial sums of Dirichlet products, where a and b are any positive numbers, with $a b=x$, and $F(x)=\sum_{n \leq x} f(n)$.

$$
\sum_{\substack{q, d \\ d q \leq x}} f(d) g(q)=\sum_{n \leq a} f(n) G\left(\frac{x}{n}\right)+\sum_{n \leq b} g(n) F\left(\frac{x}{n}\right)-F(a) g(b) .
$$

It gives

$$
\sum_{\substack{q, d \\ q d \leq x}} \mu(d) f(q)=\sum_{n \leq b} \mu(n) F\left(\frac{x}{n}\right)+\sum_{n \leq a} f(n) M\left(\frac{x}{n}\right)-F(a) M(b)
$$

$M(x)$ and $\psi(x)$ (Final Claim Cont'd)

- By the last Claim, in the first sum on the right, we get that, for some constant $A>B>0$,

$$
\left|\sum_{n \leq b} \mu(n) F\left(\frac{x}{n}\right)\right| \leq B \sum_{n \leq b} \sqrt{\frac{x}{n}} \leq A \sqrt{x b}=\frac{A x}{\sqrt{a}}
$$

Let $\varepsilon>0$ be arbitrary and choose $a>1$, such that $\frac{A}{\sqrt{a}}<\varepsilon$.
Then, for all $x \geq 1$,

$$
\left|\sum_{n \leq b} \mu(n) F\left(\frac{x}{n}\right)\right|<\varepsilon x .
$$

Note that a depends on ε and not on x.

$M(x)$ and $\psi(x)$ (Final Claim Cont'd)

- Now $M(x)=O(x)$ as $x \rightarrow \infty$.

So, for the same ε, there exists $c>0$ (depending only on ε), such that, for $x>c$,

$$
\frac{|M(x)|}{x}<\frac{\varepsilon}{K},
$$

where K is any positive number (to be specified).
The second sum satisfies

$$
\left|\sum_{n \leq a} f(n) M\left(\frac{x}{n}\right)\right| \leq \sum_{n \leq a}|f(n)| \frac{\varepsilon}{K} \frac{x}{n}=\frac{\varepsilon x}{K} \sum_{n \leq a} \frac{|f(n)|}{n},
$$

provided $\frac{x}{n}>c$, for all $n \leq a$.
Therefore, the inequality holds if $x>a c$.

$M(x)$ and $\psi(x)$ (Final Claim Cont'd)

- Now take $K=\sum_{n \leq a} \frac{|f(n)|}{n}$.

Then the inequality implies, for $x>a c$,

$$
\left|\sum_{n \leq a} f(n) M\left(\frac{x}{n}\right)\right|<\varepsilon x
$$

The last term on the right of the sum, $F(a) M(b)$, is dominated by

$$
|F(a) M(b)| \leq A \sqrt{a}|M(b)|<A \sqrt{a} b<\varepsilon \sqrt{a} \sqrt{a} b=\varepsilon a b=\varepsilon x .
$$

Now we get, for $x>a c$,

$$
\left|\sum_{\substack{q, d \\ q d \leq x}} \mu(d) f(q)\right|<3 \varepsilon x,
$$

where a and c depend only on ε.

The Limit Implies the Prime Number Theorem

Theorem

Let $A(x)=\sum_{n \leq x} \frac{\mu(n)}{n}$.
$A(x)=o(1)$, as $x \rightarrow \infty$, implies the prime number theorem.
In other words, the prime number theorem is a consequence of the statement that the series $\sum_{n=1}^{\infty} \frac{\mu(n)}{n}$ converges and has sum 0 .

- Using Abel's identity, we get

$$
M(x)=\sum_{n \leq x} \mu(n)=\sum_{n \leq x} \frac{\mu(n)}{n} n=x A(x)-\int_{1}^{x} A(t) d t
$$

So

$$
\frac{M(x)}{x}=A(x)-\frac{1}{x} \int_{1}^{x} A(t) d t
$$

To complete the proof, we show $\lim _{x \rightarrow \infty} \frac{1}{x} \int_{1}^{x} A(t) d t=0$.

The Limit Implies the Prime Number Theorem (Cont'd)

- We show $\lim _{x \rightarrow \infty} \frac{1}{x} \int_{1}^{x} A(t) d t=0$.

If $\varepsilon>0$ is given, there exists a c (depending only on ε) such that

$$
|A(x)|<\varepsilon, \quad \text { for } x \geq c
$$

Since $|A(x)| \leq 1$, for all $x \geq 1$, we have

$$
\left|\frac{1}{x} \int_{1}^{x} A(t) d t\right| \leq\left|\frac{1}{x} \int_{1}^{c} A(t) d t\right|+\left|\frac{1}{x} \int_{c}^{x} A(t) d t\right| \leq \frac{c-1}{x}+\frac{\varepsilon(x-c)}{x} .
$$

Letting $x \rightarrow \infty$, we find

$$
\lim _{x \rightarrow \infty} \sup _{x \rightarrow}\left|\frac{1}{x} \int_{1}^{x} A(t) d t\right| \leq \varepsilon
$$

Since ε is arbitrary we get $\lim _{x \rightarrow \infty} \frac{1}{x} \int_{1}^{x} A(t) d t=0$.

Subsection 9

Selberg's Asymptotic Formula

An Inversion Formula

Theorem

Let F be a real- or complex-valued function defined on $(0, \infty)$, and let

$$
G(x)=\log x \sum_{n \leq x} F\left(\frac{x}{n}\right)
$$

Then

$$
F(x) \log x+\sum_{n \leq x} F\left(\frac{x}{n}\right) \wedge(n)=\sum_{d \leq x} \mu(d) G\left(\frac{x}{d}\right) .
$$

An Inversion Formula (Cont'd)

- First we write $F(x) \log x$ as a sum,

$$
F(x) \log x=\sum_{n \leq x}\left[\frac{1}{n}\right] F\left(\frac{x}{n}\right) \log \frac{x}{n}=\sum_{n \leq x} F\left(\frac{x}{n}\right) \log \frac{x}{n} \sum_{d \mid n} \mu(d) .
$$

Recall that

$$
\Lambda(n)=\sum_{d \mid n} \mu(d) \log \frac{n}{d}
$$

Now we get

$$
\sum_{n \leq x} F\left(\frac{x}{n}\right) \Lambda(n)=\sum_{n \leq x} F\left(\frac{x}{n}\right) \sum_{d \mid n} \mu(d) \log \frac{n}{d}
$$

An Inversion Formula (Cont'd)

- We got

$$
\begin{aligned}
F(x) \log x & =\sum_{n \leq x} F\left(\frac{x}{n}\right) \log \frac{x}{n} \sum_{d \mid n} \mu(d) \\
\sum_{n \leq x} F\left(\frac{x}{n}\right) \Lambda(n) & =\sum_{n \leq x} F\left(\frac{x}{n}\right) \sum_{d \mid n} \mu(d) \log \frac{n}{d} .
\end{aligned}
$$

Adding the two equations we find

$$
\begin{aligned}
& F(x) \log x+\sum_{n \leq x} F\left(\frac{x}{n}\right) \wedge(n) \\
& =\sum_{n \leq x} F\left(\frac{x}{n}\right) \sum_{d \mid n} \mu(d)\left\{\log \frac{x}{n}+\log \frac{n}{d}\right\} \\
& =\sum_{n \leq x} \sum_{d \mid n} F\left(\frac{x}{n}\right) \mu(d) \log \frac{x}{d} .
\end{aligned}
$$

In the last sum we write $n=q d$ to obtain

$$
\begin{aligned}
\sum_{n \leq x} \sum_{d \mid n} F\left(\frac{x}{n}\right) \mu(d) \log \frac{x}{d} & =\sum_{d \leq x} \mu(d) \log \frac{x}{d} \sum_{q \leq x / d} F\left(\frac{x}{q d}\right) \\
& =\sum_{d \leq x} \mu(d) G\left(\frac{x}{d}\right)
\end{aligned}
$$

Selberg's Asymptotic Formula

Theorem (Selberg's Asymptotic Formula)

For $x>0$ we have

$$
\psi(x) \log x+\sum_{n \leq x} \Lambda(n) \psi\left(\frac{x}{n}\right)=2 x \log x+O(x)
$$

- We shall first apply the previous theorem to the function $F_{1}(x)=\psi(x)$, taking into account that, by a previous theorem,

$$
\begin{aligned}
& \sum_{n \leq x} \psi\left(\frac{x}{n}\right)=x \log x-x+O(\log x) \\
& \begin{aligned}
G_{1}(x) & =\log x \sum_{n \leq x} \psi\left(\frac{x}{n}\right) \\
& =x \log ^{2} x-x \log x+O\left(\log ^{2} x\right)
\end{aligned}
\end{aligned}
$$

Selberg's Asymptotic Formula (Cont'd)

- We will then apply the previous theorem to the function $F_{2}(x)=x-C-1$, where C is Euler's constant.

$$
\begin{aligned}
G_{2}(x) & =\log x \sum_{n \leq x} F_{2}\left(\frac{x}{n}\right) \\
& =\log x \sum_{n \leq x}\left(\frac{x}{n}-C-1\right) \\
& =x \log x \sum_{n \leq x} \frac{1}{n}-(C+1) \log x \sum_{n \leq x} 1 \\
& =x \log x\left(\log x+C+O\left(\frac{1}{x}\right)\right)-(C+1) \log x(x+O(1)) \\
& =x \log ^{2} x-x \log x+O(\log x)
\end{aligned}
$$

Comparing the formulas for $G_{1}(x)$ and $G_{2}(x)$, we see that

$$
G_{1}(x)-G_{2}(x)=O\left(\log ^{2} x\right)
$$

We shall only use the weaker estimate $G_{1}(x)-G_{2}(x)=O(\sqrt{x})$.

Selberg's Asymptotic Formula (Cont'd)

- Apply the preceding theorem to each of F_{1} and F_{2} and subtract the two relations so obtained.
The difference of the two right members is

$$
\begin{aligned}
\sum_{d \leq x} \mu(d)\left\{G_{1}\left(\frac{x}{d}\right)-G_{2}\left(\frac{x}{d}\right)\right\} & =O\left(\sum_{d \leq x} \sqrt{\frac{x}{d}}\right) \\
& =O\left(\sqrt{x} \sum_{d \leq x} \frac{1}{\sqrt{d}}\right) \\
& =O(x) .
\end{aligned}
$$

Therefore the difference of the two left members is also $O(x)$.

$$
\{\psi(x)-(x-C-1)\} \log x+\sum_{n \leq x}\left\{\psi\left(\frac{x}{n}\right)-\left(\frac{x}{n}-C-1\right)\right\} \Lambda(n)=O(x)
$$

Selberg's Asymptotic Formula (Cont'd)

- We got

$$
\{\psi(x)-(x-C-1)\} \log x+\sum_{n \leq x}\left\{\psi\left(\frac{x}{n}\right)-\left(\frac{x}{n}-C-1\right)\right\} \wedge(n)=O(x)
$$

Rearranging terms, we find that

$$
\begin{aligned}
& \psi(x) \log x+\sum_{n \leq x} \psi\left(\frac{x}{n}\right) \wedge(n) \\
& \quad=(x-C-1) \log x+\sum_{n \leq x}\left(\frac{x}{n}-C-1\right) \wedge(n)+O(x)
\end{aligned}
$$

By a previous theorem,

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n}=\log x+O(1)
$$

Now we conclude that

$$
\psi(x) \log x+\sum_{n \leq x} \psi\left(\frac{x}{n}\right) \Lambda(n)=2 x \log x+O(x)
$$

