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Subsection 1

Chebyshev’s functions ψ(x) and ϑ(x)
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Chebyshev’s ψ-Function

Definition

For x > 0 we define Chebyshev’s ψ-function by the formula

ψ(x) =
∑

n≤x

Λ(n).

Recall Λ(n) = 0, unless n is a prime power.

So we get

ψ(x) =
∑

n≤x

Λ(n) =

∞
∑

m=1
pm≤x

Λ(pm) =

∞
∑

m=1

∑

p≤x1/m

log p.
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Chebyshev’s ψ-Function

We got

ψ(x) =

∞
∑

m=1

∑

p≤x1/m

log p.

The sum on m is actually a finite sum.

Suppose m > log2 x . Then m > log x
log 2 .

So 1
m
log x < log 2. Hence, x1/m < 2.

It follows that, in this case, the sum on p is empty.

So
ψ(x) =

∑

m≤log2 x

∑

p≤x1/m

log p.
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Chebyshev’s ϑ-Function

Definition

If x > 0 we define Chebyshev’s ϑ-function by the equation

ϑ(x) =
∑

p≤x

log p,

where p runs over all primes ≤ x .

The last formula for ψ(x) can now be restated as follows:

ψ(x) =
∑

m≤log2 x

∑

p≤x1/m

log p =
∑

m≤log2 x

ϑ(x1/m).
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Relation Between ψ(x)
x

and ϑ(x)
x

Theorem

For x > 0, we have

0 ≤ ψ(x)

x
− ϑ(x)

x
≤ (log x)2

2
√
x log 2

.

Note: This inequality implies that

lim
x→∞

(

ψ(x)

x
− ϑ(x)

x

)

= 0.

In other words, if one of ψ(x)
x

or ϑ(x)
x

tends to a limit then so does the
other, and the two limits are equal.
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Proof of the Theorem

We saw
ψ(x) =

∑

m≤log2 x

ϑ(x1/m).

Therefore,
0 ≤ ψ(x)− ϑ(x) =

∑

2≤m≤log2 x

ϑ(x1/m).

From the definition of ϑ(x) we have the trivial inequality

ϑ(x) =
∑

p≤x

log p ≤
∑

p≤x

log x ≤ x log x .
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Proof of the Theorem

We have

0 ≤ ψ(x)− ϑ(x) =
∑

2≤m≤log2 x
ϑ(x1/m);

ϑ(x) ≤ x log x .

Combining, we get

0 ≤ ψ(x)− ϑ(x)

≤ ∑

2≤m≤log2 x
x1/m log (x1/m)

≤ (log2 x)
√
x log

√
x

= log x
log 2 ·

√
x
2 log x

=
√
x(log x)2

2 log 2 .

Now divide by x to obtain the conclusion.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 9 / 91



Elementary Theorems on the Distribution of Primes Relations connecting ϑ(x) and π(x)

Subsection 2

Relations connecting ϑ(x) and π(x)
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Abel’s Identity

Both functions π(x) and ϑ(x) are step functions with jumps at the
primes:

π(x) has a jump 1 at each prime p;
ϑ(x) has a jump of log p at each prime p.

Sums involving step functions of this type can be expressed as
integrals by means of the following theorem.

Theorem (Abel’s Identity)

For any arithmetical function a(n), let A(x) =
∑

n≤x a(n), where A(x) = 0
if x < 1. Assume f has a continuous derivative on the interval [y , x ],
where 0 < y < x . Then we have

∑

y<n≤x

a(n)f (n) = A(x)f (x)− A(y)f (y)−
∫ x

y

A(t)f ′(t)dt.
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Proof of Abel’s Identity

Let k = [x ] and m = [y ], so that A(x) = A(k) and A(y) = A(m).
Then

∑

y<n≤x a(n)f (n) =
∑k

n=m+1 a(n)f (n)

=
∑k

n=m+1{A(n)− A(n − 1)}f (n)
=

∑k
n=m+1 A(n)f (n)−

∑k−1
n=m A(n)f (n + 1)

=
∑k−1

n=m+1 A(n){f (n)− f (n + 1)}+ A(k)f (k)− A(m)f (m + 1)

= −
∑k−1

n=m+1 A(n)
∫ n+1
n

f ′(t)dt + A(k)f (k)− A(m)f (m + 1)

= −∑k−1
n=m+1

∫ n+1
n

A(t)f ′(t)dt + A(k)f (k)− A(m)f (m + 1)

= −
∫ k

m+1 A(t)f
′(t)dt + A(x)f (x)−

∫ x

k
A(t)f ′(t)dt

− A(y)f (y)−
∫ m+1
y

A(t)f ′(t)dt

= A(x)f (x)− A(y)f (y)−
∫ x

y
A(t)f ′(t)dt.
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Alternate Proof of Abel’s Identity

A shorter proof of Abel’s Identity is available to readers familiar with
Riemann-Stieltjes integration.

A(x) is a step function with jump a(n) at each integer n.

So the sum in
∑

y<n≤x a(n)f (n) can be expressed as a
Riemann-Stieltjes integral

∑

y<n≤x

a(n)f (n) =

∫ x

y

f (t)dA(t).

Integration by parts gives us

∑

y<n≤x a(n)f (n) = f (x)A(x) − f (y)A(y)−
∫ x

y
A(t)df (t)

= f (x)A(x) − f (y)A(y)−
∫ x

y
A(t)f ′(t)dt.
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A Special Case

We have A(t) = 0 if t < 1.

So, when y < 1, Abel’s Identity takes the form

∑

y<n≤x

a(n)f (n) = A(x)f (x)−
∫ x

1
A(t)f ′(t)dt.
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Euler’s Summation Formula

Suppose a(n) = 1, for all n ≥ 1.

Then A(x) = [x ].

Thus, we get

∑

y<n≤x

f (n) = f (x)[x ] − f (y)[y ]−
∫ x

y

[t]f ′(t)dt.

Integration by parts gives

∫ x

y

tf ′(t)dt = xf (x)− yf (y)−
∫ x

y

f (t)dt.
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Euler’s Summation Formula (Cont’d)

Now we obtain Euler’s summation formula.
∑

y<n≤x f (n) = f (x)[x ] − f (y)[y ]−
∫ x

y
[t]f ′(t)dt

= f (x)[x ] − f (y)[y ] +
∫ x

y
(t − [t])f ′(t)dt

−
∫ x

y
tf ′(t)dt

= f (x)[x ] − f (y)[y ] +
∫ x

y
(t − [t])f ′(t)dt

− (xf (x)− yf (y)−
∫ x

y
f (t)dt)

=
∫ x

y
f (t)dt +

∫ x

y
(t − [t])f ′(t)dt

+ f (x)([x ] − x)− f (y)([y ]− y).
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An Integral Formula for ϑ(x)

Theorem

For x ≥ 2,

ϑ(x) = π(x) log x −
∫ x

2

π(t)

t
dt.

Let a(n) denote the characteristic function of the primes,

a(n) =

{

1, if n is a prime
0, otherwise

.

Then we have

π(x) =
∑

p≤x 1 =
∑

1<n≤x a(n);

ϑ(x) =
∑

p≤x log p =
∑

1<n≤x a(n) log n.
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An Integral Formula for ϑ(x) (Cont’d)

We obtained

ϑ(x) =
∑

1<n≤x a(n) log n;
π(x) =

∑

1<n≤x a(n).

Taking f (x) = log x in Abel’s Identity with y = 1, we obtain

∑

1<n≤x

a(n) log n = π(x) log x −
∫ x

1

π(t)

t
dt.

So we have

ϑ(x) =
∑

1<n≤x a(n) log n

= π(x) log x −
∫ x

1
π(t)
t
dt

π(t) = 0, t < 2
= π(x) log x −

∫ x

2
π(t)
t
dt.
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An Integral Formula for π(x)

Theorem

For x ≥ 2,

π(x) =
ϑ(x)

log x
−

∫ x

2

ϑ(t)

t log2 t
dt.

Let

a(n) =

{

1, if n is a prime
0, otherwise

.

Define
b(n) = a(n) log n.

Write

π(x) =
∑

3/2<n≤x a(n) =
∑

3/2<n≤x b(n)
1

log n ;

ϑ(x) =
∑

n≤x b(n).
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An Integral Formula for π(x) (Cont’d)

We have:

π(x) =
∑

3/2<n≤x b(n)
1

log n ;

ϑ(x) =
∑

n≤x b(n).

Take f (x) = 1
log x in Abel’s Identity with y = 3

2 .

π(x) = ϑ(x)
log x − ϑ(3/2)

log 3/2 +
∫ x

3/2
ϑ(t)

t log2 t
dt

ϑ(t) = 0, t < 2
= ϑ(x)

log x −
∫ x

2
ϑ(t)

t log2 t
dt.
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Subsection 3

Some Equivalent Forms of the Prime Number Theorem
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Equivalent Forms of the Prime Number Theorem

Theorem

The following relations are logically equivalent:

lim
x→∞

π(x) log x

x
= 1, lim

x→∞
ϑ(x)

x
= 1, lim

x→∞
ψ(x)

x
= 1.

By the preceding theorem,

ϑ(x)

x
=

π(x) log x

x
−

1

x

∫ x

2

π(t)

t
dt,

π(x) log x

x
=

ϑ(x)

x
+

log x

x

∫ x

2

ϑ(t)dt

t log2 t
.

To see that the first limit implies the second it suffices to see that it
implies

lim
x→∞

1

x

∫ x

2

π(t)

t
dt = 0.
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Equivalent Forms of the Prime Number Theorem (Cont’d)

Suppose limx→∞
π(x) log x

x
= 1.

This implies
π(t)

t
= O

(

1

log t

)

, for t ≥ 2.

So we get
1

x

∫ x

2

π(t)

t
dt = O

(

1

x

∫ x

2

dt

log t

)

.

Now
∫ x

2
dt
log t =

∫

√
x

2
dt
log t +

∫ x√
x

dt
log t

≤
√
x

log 2 +
x−√

x

log
√
x
.

So 1
x

∫ x

2
dt
log t → 0, as x → ∞.
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Equivalent Forms of the Prime Number Theorem (Cont’d)

Suppose limx→∞
ϑ(x)
x

= 1.

We must show that this implies limx→∞
log x
x

∫ x

2
ϑ(t)dt

t log2 t
= 0.

It does imply ϑ(t) = O(t).

So
log x

x

∫ x

2

ϑ(t)dt

t log2 t
= O

(

log x

x

∫ x

2

dt

log2 t

)

.

Now
∫ x

2

dt

log2 t
=

∫

√
x

2

dt

log2 t
+

∫ x

√
x

dt

log2 t
≤

√
x

log2 2
+

x −√
x

log2
√
x
.

Hence,
log x

x

∫ x

2

dt

log2 t
→ 0, as x → ∞.

This proves that the first and second limits are equivalent.

By a previous theorem, the second and third limits are equivalent.
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Prime Number Theorem and Asymptotic Value of pn

Theorem

Let pn denote the n-th prime. Then the following asymptotic relations are
logically equivalent:

lim
x→∞

π(x) log x

x
= 1, lim

x→∞
π(x) log π(x)

x
= 1, lim

n→∞
pn

n log n
= 1.

We show 1 → 2 → 3 → 2 → 1.
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Proof (1→2)

Assume limx→∞
π(x) log x

x
= 1.

Taking logarithms we obtain

lim
x→∞

[log π(x) + log log x − log x ] = 0.

Equivalently,

lim
x→∞

[

log x

(

log π(x)

log x
+

log log x

log x
− 1

)]

= 0.

But log x → ∞ as x → ∞.

It follows that

lim
x→∞

(

log π(x)

log x
+

log log x

log x
− 1

)

= 0.

This yields limx→∞
log π(x)
log x = 1.

This gives limx→∞
π(x) log π(x)

x
= 1.
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Proof (2→3→2)

2→3 Suppose limx→∞
π(x) log π(x)

x
= 1.

Assume x = pn. Then π(x) = n. So π(x) log π(x) = n log n.

So 2 implies limn→∞
n log n
pn

= 1.

3→2 Suppose limn→∞
n log n
pn

= 1.

Given x , define n by the inequalities

pn ≤ x < pn+1.

Then n = π(x). Dividing by n log n, we get

pn

n log n
≤ x

n log n
<

pn+1

n log n
=

pn+1

(n + 1) log (n + 1)
· (n + 1) log (n + 1)

n log n
.

Now let n → ∞ and use the hypothesis to get

lim
n→∞

x

n log n
= 1.

Equivalently, limx→∞
x

π(x) log π(x) = 1.
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Proof (2→1)

2→1 Suppose limx→∞
π(x) log π(x)

x
= 1.

Taking logarithms, we obtain

lim
x→∞

(log π(x) + log log π(x) − log(x)) = 0.

Equivalently,

lim
x→∞

[

log π(x)

(

1 +
log log π(x)

log π(x)
− log x

log π(x)

)]

= 0.

But log π(x) → ∞. It follows that

lim
x→∞

(

1 +
log log π(x)

log π(x)
− log x

log π(x)

)

= 0.

Equivalently,

lim
x→∞

log x

log π(x)
= 1.

This gives limx→∞
π(x) log x

x
= 1.
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Subsection 4

Inequalities for π(n) and pn
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An Estimate for
(

2n
n

)

Lemma

For every integer n ≥ 0, we have

2n ≤
(

2n

n

)

< 4n.

The left inequality is by induction.

For n = 0, it holds that 1 ≤ 0!
0!0! .

Suppose the inequality holds for some k ≥ 0.
We have

2k+1 = 2 · 2k ≤ 2 (2k)!
k!k! = 2 (2k)!(k+1)(k+1)

k!k!(k+1)(k+1)

≤ (2k)!(2k+1)(2k+2)
(k+1)!(k+1)! = (2(k+1))!

(k+1)!(k+1)! .

The right follows from 4n = (1 + 1)2n =
∑2n

k=0

(2n
k

)

>
(2n
n

)

.
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Inequalities for π(n)

Theorem

For every integer n ≥ 2, we have

1

6

n

log n
< π(n) < 6

n

log n
.

Taking logarithms in 2n ≤
(2n
n

)

< 4n, we get

n log 2 ≤ log (2n)!− 2 log n! < 4 log 4.

A previous theorem implies that

log n! =
∑

p≤n

α(p) log p,

where the sum is extended over primes and α(p) is given by

α(p) =
∑[ log n

log p
]

m=1 [
n
pm

].
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Inequalities for π(n) (Cont’d)

Hence, we get

log (2n)!− 2 log n! =
∑

p≤2n

[ log 2n
log p

]
∑

m=1

{[

2n

pm

]

− 2

[

n

pm

]}

log p.

Now note that [2x ]− 2[x ] is either 0 or 1.

So the inequality n log 2 ≤ log (2n)!− 2 log n! implies

n log 2 ≤
∑

p≤2n







[ log 2n
log p

]
∑

m=1

1






log p ≤

∑

p≤2n

log 2n = π(2n) log 2n.

Taking into account log 2 > 1
2 , this gives

π(2n) ≥ n log 2

log 2n
=

2n

log 2n

log 2

2
>

1

4

2n

log 2n
.
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Inequalities for π(n) (Cont’d)

For odd integers, we have

π(2n + 1) ≥ π(2n)

> 1
4

2n
log 2n

> 1
4

2n
2n+1

2n+1
log (2n+1)

≥ 1
6

2n+1
log (2n+1) ,

since 2n
2n+1 ≥ 2

3 .

This, together with π(2n) > 1
4

2n
log 2n , gives

π(n) >
1

6

n

log n
, for all n ≥ 2.
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Inequalities for π(n) (Cont’d)

Consider again

log (2n)!− 2 log n! =
∑

p≤2n

[ log 2n
log p

]
∑

m=1

{[

2n

pm

]

− 2

[

n

pm

]}

log p.

Extract the term corresponding to m = 1.

The remaining terms are nonnegative, whence

log (2n)!− 2 log n! ≥
∑

p≤2n

{[

2n

p

]

− 2

[

n

p

]}

log p.

For those primes p, with n < p ≤ 2n, we have
[

2n
p

]

− 2
[

n
p

]

= 1.

So
log (2n)!− 2 log n! ≥

∑

n<p≤2n

log p = ϑ(2n)− ϑ(n).
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Inequalities for π(n) (Cont’d)

It follows that

log (2n)!− 2 log n! < n log 4 implies ϑ(2n)− ϑ(n) < n log 4.

If n = 2r ,
ϑ(2r+1)− ϑ(2r ) < 2r log 4 = 2r+1 log 2.

Summing on r = 0, 1, . . . , k , we find

ϑ(2k+1) < 2k+2 log 2.

Now we choose k so that 2k ≤ n < 2k+1.

We obtain

ϑ(n) ≤ ϑ(2k+1) < 2k+2 log 2 ≤ 4n log 2.
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Inequalities for π(n) (Conclusion)

If 0 < α < 1, we have

(π(n)− π(nα)) log nα <
∑

nα<p≤n

log p ≤ ϑ(n) < 4n log 2.

Hence
π(n) < 4n log 2

α log n + π(nα)

< 4n log 2
α log n + nα

= n
log n (

4 log 2
α + log n

n1−α
).

If c > 0 and x ≥ 1, f (x) = x−c log x attains its maximum at
x = e1/c . So, for n ≥ 1, n−c log n ≤ (e1/c )−c log (e1/c ) ≤ 1

ce
.

Taking α = 2
3 in the last inequality for π(n), we find

π(n) <
n

log n

(

6 log 2 +
3

e

)

< 6
n

log n
.
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Inequalities for pn

Theorem

For n ≥ 1, the n-th prime pn satisfies the inequalities

1

6
n log n < pn < 12

(

n log n + n log
12

e

)

.

Consider 1
6

n
log n < π(n) < 6 n

log n .

Take k = pn. Then k ≥ 2 and n = π(k).

Thus, we have

n = π(k) < 6
k

log k
= 6

pn

log pn
.

It follows that

pn >
1

6
n log pn >

1

6
n log n.
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Inequalities for pn (Cont’d)

For the upper bound, by the preceding theorem,

n = π(k) >
1

6

k

log k
=

1

6

pn

log pn
.

So pn < 6n log pn.

But, for x ≥ 1, log x ≤ 2
e

√
x . So we have log pn ≤ 2

e

√
pn.

It follows that pn < 6n 2
e

√
pn. I.e.,

√
pn <

12
e
n.

Therefore,
1

2
log pn < log n+ log

12

e
.

Used in pn < 6n log pn, this gives

pn < 6n

(

2 log n + 2 log
12

e

)

.

Note: The upper bound shows once more that the series
∑∞

n=1
1
pn

diverges, by comparison with
∑∞

n=2
1

n log n .
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Subsection 5

Shapiro’s Tauberian Theorem
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Tauberian Theorems

We have seen that the prime number theorem is equivalent to the
asymptotic formula

1

x

∑

n≤x

Λ(n) ∼ 1, as x → ∞.

We have also derived a related asymptotic formula,

∑

n≤x

Λ(n)
[x

n

]

= x log x − x + O(log x).

Both sums above are weighted averages of the function Λ(n).

Each term Λ(n) is multiplied by a weight factor 1
x
in the first and by

[ x
n
] in the second.

Theorems relating different weighted averages of the same function
are called Tauberian theorems.
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Shapiro’s Tauberian Theorem

Shapiro’s Tauberian Theorem relates, for nonnegative a(n):
Sums of the form

∑

n≤x a(n);
Sums of the form

∑

n≤x a(n)[
x
n
]

Theorem

Let {a(n)} be a nonnegative sequence such that

∑

n≤x

a(n)
[x

n

]

= x log x + O(x), for all x ≥ 1.

(a) For x ≥ 1, we have

∑

n≤x

a(n)

n
= log x + O(1).

(I.e., dropping the square brackets leads to a correct result.)
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Shapiro’s Tauberian Theorem (Cont’d)

Theorem (Cont’d)

(b) There is a constant B > 0, such that

∑

n≤x

a(n) ≤ Bx , for all x ≥ 1.

(c) There is a constant A > 0 and an x0 > 0, such that

∑

n≤x

a(n) ≥ Ax , for all x ≥ x0.
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Shapiro’s Tauberian Theorem (Part (b))

Let S(x) =
∑

n≤x a(n) and T (x) =
∑

n≤x a(n)[
x
n
].

Claim: S(x)− S(x2 ) ≤ T (x)− 2T (x2 ).

Write

T (x)− 2T (x2 ) =
∑

n≤x [
x
n
]a(n)− 2

∑

n≤x/2[
x
2n ]a(n)

=
∑

n≤x/2([
x
n
]− 2[ x

2n ])a(n) +
∑

x/2<n≤x [
x
n
]a(n).

But [2y ]− 2[y ] is either 0 or 1.

So the first sum is nonnegative, giving

T (x)− 2T (x2 ) ≥ ∑

x/2<n≤x [
x
n
]a(n)

=
∑

x/2<n≤x a(n)

= S(x)− S(x2 ).
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Shapiro’s Tauberian Theorem (Part (b) Cont’d)

By the hypothesis,

T (x)− 2T (x2 ) = x log x + O(x)− 2(x2 log
x
2 + O(x))

= O(x).

Hence, by the claim,

S(x)− S
(x

2

)

= O(x).

This means that there is some constant K > 0, such that

S(x)− S
(x

2

)

≤ Kx , for all x ≥ 1.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 44 / 91



Elementary Theorems on the Distribution of Primes Shapiro’s Tauberian Theorem

Shapiro’s Tauberian Theorem (Part (b) Cont’d)

We showed that, if S(x) =
∑

n≤x a(n), there is some constant K > 0,
such that

S(x)− S
(x

2

)

≤ Kx , for all x ≥ 1.

Replace x successively by x
2 ,

x
4 , . . . to get

S(x2 )− S(x4 ) ≤ K x
2 ,

S(x4 )− S(x8 ) ≤ K x
4 ,

...

Note that, if 2n > x , then S( x
2n ) = 0.

Adding these inequalities we get

S(x) ≤ Kx

(

1 +
1

2
+

1

4
+ · · ·

)

= 2Kx .

This proves (b) with B = 2K .

George Voutsadakis (LSSU) Analytic Number Theory May 2024 45 / 91



Elementary Theorems on the Distribution of Primes Shapiro’s Tauberian Theorem

Shapiro’s Tauberian Theorem (Part (a))

Write [ x
n
] = x

n
+ O(1).

Then
T (x) =

∑

n≤x [
x
n
]a(n)

=
∑

n≤x(
x
n
+O(1))a(n)

= x
∑

n≤x
a(n)
n

+ O(
∑

n≤x a(n))

Part (b)
= x

∑

n≤x
a(n)
n

+ O(x).

Hence
∑

n≤x

a(n)

n
=

1

x
T (x) + O(1)

hyp.
= log x + O(1).
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Shapiro’s Tauberian Theorem (Part (c))

Let A(x) =
∑

n≤x
a(n)
n

.

Then, by Part (a),
A(x) = log x + R(x),

where R(x) is the error term, with R(x) = O(1).

Thus, for some M > 0, we have |R(x)| ≤ M.

Choose α to satisfy 0 < α < 1 (we shall specify α more exactly in a
moment) and consider the difference

A(x)− A(αx) =
∑

αx<n≤x

a(n)

n
=

∑

n≤x

a(n)

n
−

∑

n≤αx

a(n)

n
.
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Shapiro’s Tauberian Theorem (Part (c) Cont’d)

If x ≥ 1 and αx ≥ 1, we can apply the asymptotic formula for A(x)
to write

A(x)− A(αx) = log x + R(x)− (logαx + R(αx))

= − logα+ R(x)− R(αx)

≥ − logα− |R(x)| − |R(αx)|
≥ − logα− 2M.
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Shapiro’s Tauberian Theorem (Part (c) Cont’d)

We got
A(x)− A(αx) ≥ − logα− 2M.

Now choose α so that − logα− 2M = 1. I.e., α = e−2M−1.

Note that 0 < α < 1. For this α, if x ≥ 1
α , A(x)− A(αx) ≥ 1.

But

A(x)− A(αx) =
∑

αx<n≤x

a(n)

n
≤ 1

αx

∑

n≤x

a(n) =
S(x)

αx
.

Hence, if x ≥ 1
α ,

S(x)
αx ≥ 1.

Therefore, if x ≥ 1
α , S(x) ≥ αx .

This proves Part (c), with A = α and x0 =
1
α .
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Subsection 6

Applications of Shapiro’s Theorem
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Application to Λ(n)

Recall the asymptotic formula

∑

n≤x

Λ(n)
[x

n

]

= x log x − x + O(log x).

It implies that
∑

n≤x

Λ(n)
[x

n

]

= x log x +O(x).

Since Λ(n) ≥ 0, we can apply Shapiro’s Theorem with a(n) = Λ(n).
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Application to Λ(n) (Cont’d)

Theorem

For all x ≥ 1, we have

∑

n≤x

Λ(n)

n
= log x + O(1).

Also, there exist positive constants c1 and c2, such that

ψ(x) ≤ c1x , for all x ≥ 1,

and
ψ(x) ≥ c2x , for all sufficiently large x .

Follows directly by Shapiro’s Theorem.
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Application to Λ1(n)

We also showed that

∑

p≤x

[

x

p

]

log p = x log x + O(x).

This can be written as

∑

n≤x

Λ1(n)
[x

n

]

= x log x + O(x),

where

Λ1(n) =

{

log p if n is a prime p,
0, otherwise.

Since Λ1(n) ≥ 0, the hypothesis of Shapiro’s Theorem is satisfied with
a(n) = Λ1(n).
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Application to Λ1(n) (Cont’d)

Theorem

For all x ≥ 1, we have

∑

p≤x

log p

p
= log x + O(1).

Also, there exist positive constants c1 and c2, such that

ϑ(x) ≤ c1x , for all x ≥ 1,

and
ϑ(x) ≥ c2x , for all sufficiently large x .

This follows diectly from Shapiro’s Theorem, taking into account
that, by definition, ϑ(x) =

∑

n≤x Λ1(n).
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Partial Sum Formulas for ψ(x) and ϑ(x)

We also proved that

∑

n≤x

f (n)
[x

n

]

=
∑

n≤x

F
(x

n

)

,

for any arithmetical f (n) with F (x) =
∑

n≤x f (n).

Consider again the asymptotic formulas

∑

n≤x Λ(n)[
x
n
] = x log x − x + O(log x),

∑

n≤x Λ1(n)[
x
n
] = x log x + O(x).

Take, also, into account that

ψ(x) =
∑

n≤x

Λ(n) and ϑ(x) =
∑

n≤x

Λ1(n).
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Partial Sum Formulas for ψ(x) and ϑ(x) (Cont’d)

Theorem

For all x ≥ 1, we have

∑

n≤x ψ(
x
n
) = x log x − x + O(log x),

∑

n≤x ϑ(x) = x log x + O(x).

By the preceding identities, we get

∑

n≤x ψ(
x
n
) =

∑

n≤x Λ(n)
[

x
n

]

= x log x − x + O(log x);
∑

n≤x ϑ(x) =
∑

n≤x Λ1(n)
[

x
n

]

= x log x +O(x).
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Subsection 7

An Asymptotic Formula for the Partial Sums
∑

p≤x(1/p)
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p≤x (1/p)

Asymptotic Formula for the Partial Sums
∑

p≤x(1/p)

Theorem

There is a constant A such that

∑

p≤x

1

p
= log log x + A+ O

(

1

log x

)

, for all x ≥ 2.

Let A(x) =
∑

p≤x
log p
p

. Let a(n) =

{

1, if n is prime
0, otherwise

.

Then we have

∑

p≤x

1

p
=

∑

n≤x

a(n)

n
and A(x) =

∑

n≤x

a(n)

n
log n.
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Asymptotic Formula (Cont’d)

Abel’s identity
∑

y<n≤x

a(n)f (n) = A(x)f (x)− A(y)f (y)−
∫ x

y

A(t)f ′(t)dt

yields
∑

y<n≤x
a(n)
n

log n 1
log n = A(x) 1

log x +
∫ x

2 A(t) 1
t log2 t

dt

∑

p≤x
1
p
= A(x)

log x +
∫ x

2 A(t) 1
t log2 t

dt.

From a previous theorem, we have

A(x) = log x + R(x), R(x) = O(1).

Thus,
∑

p≤x
1
p

= log x+O(1)
log x +

∫ x

2
log t+R(t)

t log2 t
dt

= 1 + O( 1
log x ) +

∫ x

2
dt

t log t +
∫ x

2
R(t)

t log2 t
dt.
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∑

p≤x (1/p)

Asymptotic Formula (Cont’d)

We found

∑

p≤x

1

p
= 1 + O

(

1

log x

)

+

∫ x

2

dt

t log t
+

∫ x

2

R(t)

t log2 t
dt.

Now note the following:
∫ x

2
dt

t log t = log log x − log log 2;
∫ x

2
R(t)

t log2 t
dt =

∫∞

2
R(t)

t log2 t
dt −

∫∞

x

R(t)
t log2 t

dt, the existence of the

improper integral being assured by the condition R(t) = O(1);
∫∞

x

R(t)
t log2 t

dt = O(
∫∞

x
dt

t log2 t
) = O( 1

log x ).

Hence,

∑

p≤x

1

p
= log log x + 1− log log 2 +

∫ ∞

2

R(t)

t log2 t
dt + O

(

1

log x

)

.

This proves the theorem with A = 1− log log 2 +
∫∞
2

R(t)

t log2 t
dt.
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Subsection 8

The Partial Sums of the Möbius Function
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Partial Sums of the Möbius Function

Definition

If x ≥ 1, we define
M(x) =

∑

n≤x

µ(n).

The exact order of magnitude of M(x) is not known.

Mertens’ Conjecture stated that |M(x)| < √
x if x > 1.

However, the conjecture has been disproven.
A new conjecture asserts that M(x) grows as

√
x(log log log x)5/4.

We prove that the weaker statement

lim
x→∞

M(x)

x
= 0

is equivalent to the prime number theorem.
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M(x) and H(x)

Definition

If x ≥ 1, we define
H(x) =

∑

n≤x

µ(n) log n.

Theorem

We have

lim
x→∞

(

M(x)

x
− H(x)

x log x

)

= 0.

Taking f (t) = log t in Abel’s Identity, we obtain

H(x) =
∑

n≤x

µ(n) log n = M(x) log x −
∫ x

1

M(t)

t
dt.
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M(x) and H(x)

Taking x > 1, and dividing by x log x , we get

M(x)

x
− H(x)

x log x
=

1

x log x

∫ x

1

M(t)

t
dt.

Therefore, to prove the theorem we must show that

lim
x→∞

1

x log x

∫ x

1

M(t)

t
dt = 0.

Trivially, M(x) = O(x).

So
∫ x

1

M(t)

t
dt = O

(
∫ x

1
dt

)

= O(x).

This implies

lim
x→∞

1

x log x

∫ x

1

M(t)

t
dt = 0.
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Prime Number Theorem Implies the Limit

Theorem

The prime number theorem implies

lim
x→∞

M(x)

x
= 0.

We use the Prime Number Theorem in the form

ψ(x) =
∑

n≤x

Λ(n) ∼ x .

We prove that H(x)
x log x → 0 as x → ∞.
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Prime Number Theorem Implies the Limit (Claim)

Claim: −H(x) = −∑

n≤x µ(n) log n =
∑

n≤x µ(n)ψ(
x
n
).

We proved the following formula for Λ(n).

Λ(n) = −
∑

d|n
µ(d) log d .

Applying Möbius inversion, we get

−µ(n) log n =
∑

d|n
µ(d)Λ

(n

d

)

.

Summing over all n ≤ x and using the formula for the partial sums of
a Dirichlet product, with f = t, g = Λ, we get

∑

n≤x

−µ(n) log n =
∑

n≤x

(µ ∗ Λ)(n) =
∑

n≤x

µ(n)ψ
(x

n

)

.
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Prime Number Theorem Implies the Limit (Cont’d)

We know that ψ(x) ∼ x .

Thus, given ε > 0 is given, there is a constant A > 0, such that

∣

∣

∣

∣

ψ(x)

x
− 1

∣

∣

∣

∣

< ε, whenever x ≥ A.

In other words,

|ψ(x)− x | < εx , whenever x ≥ A.

Choose x > A, let y = [ x
A
] and split the sum on the right of the

Claim into two parts,

∑

n≤y

µ(n)ψ
(x

n

)

+
∑

y<n≤x

µ(n)ψ
(x

n

)

.
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Prime Number Theorem Implies the Limit (First Sum)

We look at
∑

n≤y µ(n)ψ(
x
n
), where y = [ x

A
].

We have n ≤ y . So n ≤ x
A
. Hence, x

n
≥ A.

Therefore, for n ≤ y , we have |ψ(x
n
)− x

n
| < εx

n
.

Thus,
∑

n≤y µ(n)ψ(
x
n
) =

∑

n≤y µ(n)(
x
n
+ ψ(x

n
)− x

n
)

= x
∑

n≤y
µ(n)
n

+
∑

n≤y µ(n)(ψ(
x
n
)− x

n
).

It follows that

|∑n≤y µ(n)ψ(
x
n
)| ≤ x |∑n≤y

µ(n)
n

|+∑

n≤y |ψ(xn )− x
n
|

< x + ε
∑

n≤y
x
n

< x + εx(1 + log y)

< x + εx + εx log x .
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Prime Number Theorem Implies the Limit (Second Sum)

We look at
∑

y<n≤x µ(n)ψ(
x
n
), where y = [ x

A
].

In this sum, y < n ≤ x So n ≥ y + 1.

As y ≤ x
A
< y + 1, we get

x

n
≤ x

y + 1
< A.

But x
n
< A implies

ψ
(x

n

)

≤ ψ(A).

Therefore,
∑

y<n≤x

µ(n)ψ
(x

n

)

≤ xψ(A).
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Prime Number Theorem Implies the Limit (Sum)

Now, regarding the full sum, we have, for ε < 1,
∑

n≤x µ(n)ψ(
x
n
) < (1 + ε)x + εx log x + xψ(A)

< (2 + ψ(A))x + εx log x .

So, given any 0 < ε < 1, we have, for x > A,

|H(x)| < (2 + ψ(A))x + εx log x .

Equivalently,
|H(x)|
x log x

<
2 + ψ(A)

log x
+ ε.

Choose B > A so that x > B implies 2+ψ(A)
log x < ε.

Then, for x > B , we have

|H(x)|
x log x

< 2ε.

This shows that H(x)
x log x → 0 as x → ∞.
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Little Oh Notation

Definition

The notation
f (x) = o(g(x)) as x → ∞

(read: f (x) is little oh of g(x)) means that

lim
x→∞

f (x)

g(x)
= 0.

An equation of the form

f (x) = h(x) + o(g(x)) as x → ∞

means that
f (x)− h(x) = o(g(x)) as x → ∞.
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Some Observations

The equation

lim
x→∞

M(x)

x
= 0

states that M(x) = o(x) as x → ∞.

The Prime Number Theorem, expressed in the form

ψ(x) ∼ x ,

can also be written as ψ(x) = x + o(x) as x → ∞.

More generally, an asymptotic relation

f (x) ∼ g(x) as x → ∞

is equivalent to

f (x) = g(x) + o(g(x)) as x → ∞.

Finally note that f (x) = O(1) implies f (x) = o(x) as x → ∞.
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M(x) and ψ(x)

Theorem

The relation M(x) = o(x) as x → ∞ implies ψ(x) ∼ x as x → ∞.

Claim: We have

ψ(x) = x −
∑

q,d
qd≤x

µ(d)f (q) + O(1),

where:

f is given by f (n) = σ0(n)− log n − 2C , with C Euler’s constant;
σ0(n) = d(n) is the number of divisors of n.
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M(x) and ψ(x) (Claim Cont’d)

We start with the identities

[x ] =
∑

n≤x

1, ψ(x) =
∑

n≤x

Λ(n), 1 =
∑

n≤x

[

1

n

]

.

Now we take into account

σ0(n) =
∑

d|n
1, log n =

∑

d|n
Λ(n), 1 =

∑

d|n

[

1

d

]

.

Applying Möbius inversion, we express each summand in the first
sums as a Dirichlet product involving the Möbius function

1 =
∑

d|n
µ(d)σ0

(n

d

)

, Λ(n) =
∑

d|n
µ(d) log

n

d
,

[

1

n

]

=
∑

d|n
µ(d).
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M(x) and ψ(x) (Claim Cont’d)

We have

1 =
∑

d|n
µ(d)σ0

(n

d

)

, Λ(n) =
∑

d|n
µ(d) log

n

d
,

[

1

n

]

=
∑

d|n
µ(d).

Then

[x ]− ψ(x)− 2C =
∑

n≤x{1− Λ(n)− 2C [ 1
n
]}

=
∑

n≤x

∑

d|n µ(d){σ0( nd )− log n
d
− 2C}

=
∑

q,d
qd≤x

µ(d){σ0(q)− log q − 2C}

=
∑

q,d
qd≤x

µ(d)f (q).

For the proof of the theorem we must show
∑

q,d
qd≤x

µ(d)f (q) = o(x), as x → ∞.
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M(x) and ψ(x) (Another Claim)

Claim: We have
F (x) =

∑

n≤x

f (n) = O(
√
x).

We use Dirichlet’s formula

∑

n≤x

σ0(n) = x log x + (2C − 1)x + O(
√
x)

together with the relation

∑

n≤x

log n = log [x ]! = x log x − x +O(log x).
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M(x) and ψ(x) (Another Claim Cont’d)

These give us

F (x) =
∑

n≤x(σ0(n)− log n − 2C )

=
∑

n≤x σ0(n)−
∑

n≤x log n − 2C
∑

n≤x 1

= x log x + (2C − 1)x + O(
√
x)

− (x log x − x + O(log x))− 2Cx + O(1)

= O(
√
x) + O(log x) + O(1) = O(

√
x).

Therefore, there is a constant B > 0, such that

|F (x)| ≤ B
√
x , for all x ≥ 1.
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M(x) and ψ(x) (Final Claim)

Claim: We have
∑

q,d
qd≤x

µ(d)f (q) = o(x), as x → ∞.

We use the generalized formula for the partial sums of Dirichlet
products, where a and b are any positive numbers, with ab = x , and
F (x) =

∑

n≤x f (n).

∑

q,d
dq≤x

f (d)g(q) =
∑

n≤a

f (n)G
(x

n

)

+
∑

n≤b

g(n)F
(x

n

)

− F (a)g(b).

It gives
∑

q,d
qd≤x

µ(d)f (q) =
∑

n≤b

µ(n)F
(x

n

)

+
∑

n≤a

f (n)M
(x

n

)

− F (a)M(b).
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M(x) and ψ(x) (Final Claim Cont’d)

By the last Claim, in the first sum on the right, we get that, for some
constant A > B > 0,

∣

∣

∣

∣

∣

∣

∑

n≤b

µ(n)F
(x

n

)

∣

∣

∣

∣

∣

∣

≤ B
∑

n≤b

√

x

n
≤ A

√
xb =

Ax√
a
.

Let ε > 0 be arbitrary and choose a > 1, such that A√
a
< ε.

Then, for all x ≥ 1,
∣

∣

∣

∣

∣

∣

∑

n≤b

µ(n)F
(x

n

)

∣

∣

∣

∣

∣

∣

< εx .

Note that a depends on ε and not on x .
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M(x) and ψ(x) (Final Claim Cont’d)

Now M(x) = O(x) as x → ∞.

So, for the same ε, there exists c > 0 (depending only on ε), such
that, for x > c ,

|M(x)|
x

<
ε

K
,

where K is any positive number (to be specified).

The second sum satisfies
∣

∣

∣

∣

∣

∣

∑

n≤a

f (n)M
(x

n

)

∣

∣

∣

∣

∣

∣

≤
∑

n≤a

|f (n)| ε
K

x

n
=
εx

K

∑

n≤a

|f (n)|
n

,

provided x
n
> c , for all n ≤ a.

Therefore, the inequality holds if x > ac .
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M(x) and ψ(x) (Final Claim Cont’d)

Now take K =
∑

n≤a
|f (n)|
n

.

Then the inequality implies, for x > ac ,
∣

∣

∣

∣

∣

∣

∑

n≤a

f (n)M
(x

n

)

∣

∣

∣

∣

∣

∣

< εx .

The last term on the right of the sum, F (a)M(b), is dominated by

|F (a)M(b)| ≤ A
√
a|M(b)| < A

√
ab < ε

√
a
√
ab = εab = εx .

Now we get, for x > ac ,
∣

∣

∣

∣

∣

∣

∣

∣

∑

q,d
qd≤x

µ(d)f (q)

∣

∣

∣

∣

∣

∣

∣

∣

< 3εx ,

where a and c depend only on ε.
George Voutsadakis (LSSU) Analytic Number Theory May 2024 81 / 91



Elementary Theorems on the Distribution of Primes The Partial Sums of the Möbius Function

The Limit Implies the Prime Number Theorem

Theorem

Let A(x) =
∑

n≤x
µ(n)
n

.
A(x) = o(1), as x → ∞, implies the prime number theorem.
In other words, the prime number theorem is a consequence of the
statement that the series

∑∞
n=1

µ(n)
n

converges and has sum 0.

Using Abel’s identity, we get

M(x) =
∑

n≤x

µ(n) =
∑

n≤x

µ(n)

n
n = xA(x)−

∫ x

1
A(t)dt.

So
M(x)

x
= A(x)− 1

x

∫ x

1
A(t)dt.

To complete the proof, we show limx→∞
1
x

∫ x

1 A(t)dt = 0.
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The Limit Implies the Prime Number Theorem (Cont’d)

We show limx→∞
1
x

∫ x

1 A(t)dt = 0.

If ε > 0 is given, there exists a c (depending only on ε) such that

|A(x)| < ε, for x ≥ c .

Since |A(x)| ≤ 1, for all x ≥ 1, we have

∣

∣

∣

∣

1

x

∫ x

1
A(t)dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

x

∫ c

1
A(t)dt

∣

∣

∣

∣

+

∣

∣

∣

∣

1

x

∫ x

c

A(t)dt

∣

∣

∣

∣

≤ c − 1

x
+
ε(x − c)

x
.

Letting x → ∞, we find

lim sup
x→∞

∣

∣

∣

∣

1

x

∫ x

1
A(t)dt

∣

∣

∣

∣

≤ ε.

Since ε is arbitrary we get limx→∞
1
x

∫ x

1 A(t)dt = 0.
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Subsection 9

Selberg’s Asymptotic Formula
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An Inversion Formula

Theorem

Let F be a real- or complex-valued function defined on (0,∞), and let

G (x) = log x
∑

n≤x

F
(x

n

)

.

Then
F (x) log x +

∑

n≤x

F
(x

n

)

Λ(n) =
∑

d≤x

µ(d)G
( x

d

)

.
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An Inversion Formula (Cont’d)

First we write F (x) log x as a sum,

F (x) log x =
∑

n≤x

[

1

n

]

F
(x

n

)

log
x

n
=

∑

n≤x

F
(x

n

)

log
x

n

∑

d|n
µ(d).

Recall that
Λ(n) =

∑

d|n
µ(d) log

n

d
.

Now we get

∑

n≤x

F
(x

n

)

Λ(n) =
∑

n≤x

F
(x

n

)

∑

d|n
µ(d) log

n

d
.
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An Inversion Formula (Cont’d)

We got

F (x) log x =
∑

n≤x F (
x
n
) log x

n

∑

d|n µ(d)
∑

n≤x F (
x
n
)Λ(n) =

∑

n≤x F (
x
n
)
∑

d|n µ(d) log
n
d
.

Adding the two equations we find

F (x) log x +
∑

n≤x F (
x
n
)Λ(n)

=
∑

n≤x F (
x
n
)
∑

d|n µ(d){log x
n
+ log n

d
}

=
∑

n≤x

∑

d|n F (
x
n
)µ(d) log x

d
.

In the last sum we write n = qd to obtain

∑

n≤x

∑

d|n F (
x
n
)µ(d) log x

d
=

∑

d≤x µ(d) log
x
d

∑

q≤x/d F (
x
qd
)

=
∑

d≤x µ(d)G ( x
d
).
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Selberg’s Asymptotic Formula

Theorem (Selberg’s Asymptotic Formula)

For x > 0 we have

ψ(x) log x +
∑

n≤x

Λ(n)ψ
(x

n

)

= 2x log x + O(x).

We shall first apply the previous theorem to the function
F1(x) = ψ(x), taking into account that, by a previous theorem,

∑

n≤x

ψ
(x

n

)

= x log x − x + O(log x).

G1(x) = log x
∑

n≤x ψ(
x
n
)

= x log2 x − x log x + O(log2 x).
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Selberg’s Asymptotic Formula (Cont’d)

We will then apply the previous theorem to the function
F2(x) = x − C − 1, where C is Euler’s constant.

G2(x) = log x
∑

n≤x F2(
x
n
)

= log x
∑

n≤x(
x
n
− C − 1)

= x log x
∑

n≤x
1
n
− (C + 1) log x

∑

n≤x 1

= x log x(log x + C + O( 1
x
))− (C + 1) log x(x + O(1))

= x log2 x − x log x + O(log x).

Comparing the formulas for G1(x) and G2(x), we see that

G1(x) − G2(x) = O(log2 x).

We shall only use the weaker estimate G1(x)− G2(x) = O(
√
x).
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Selberg’s Asymptotic Formula (Cont’d)

Apply the preceding theorem to each of F1 and F2 and subtract the
two relations so obtained.

The difference of the two right members is

∑

d≤x µ(d){G1(
x
d
)− G2(

x
d
)} = O(

∑

d≤x

√

x
d
)

= O(
√
x
∑

d≤x
1√
d
)

= O(x).

Therefore the difference of the two left members is also O(x).

{ψ(x)− (x −C − 1)} log x +
∑

n≤x

{

ψ
(x

n

)

−
(x

n
− C − 1

)}

Λ(n) = O(x).
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Selberg’s Asymptotic Formula (Cont’d)

We got

{ψ(x)− (x −C − 1)} log x +
∑

n≤x

{

ψ
(x

n

)

−
(x

n
− C − 1

)}

Λ(n) = O(x).

Rearranging terms, we find that

ψ(x) log x +
∑

n≤x ψ(
x
n
)Λ(n)

= (x − C − 1) log x +
∑

n≤x (
x
n
− C − 1)Λ(n) +O(x).

By a previous theorem,

∑

n≤x

Λ(n)

n
= log x + O(1).

Now we conclude that

ψ(x) log x +
∑

n≤x

ψ
(x

n

)

Λ(n) = 2x log x + O(x).
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