Introduction to Analytic Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Finite Abelian Groups and Their Characters

- Definitions
- Examples of Groups and Subgroups
- Elementary Properties of Groups
- Construction of Subgroups
- Characters of Finite Abelian Groups
- The Character Group
- The Orthogonality Relations for Characters
- Dirichlet Characters
- Sums Involving Dirichlet Characters
- The Nonvanishing of $L(1,\chi)$ for Real Nonprincipal χ

Subsection 1

Definitions

Group Axioms

Definition (Postulates for a Group)

A **group** G is a nonempty set of elements together with a binary operation, which we denote by \cdot , such that the following postulates are satisfied:

- (a) **Closure** For every *a* and *b* in *G*, $a \cdot b$ is also in *G*.
- (b) Associativity For every a, b, c in G, we have $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- (c) **Existence of Identity** There is a unique element e in G, called the **identity**, such that $a \cdot e = e \cdot a = a$, for every a in G.
- (d) Existence of Inverses For every a in G, there is a unique element b in G such that a · b = b · a = e. This b is denoted by a⁻¹ and is called the inverse of a.
 - We usually omit the dot and write ab for $a \cdot b$.

Abelian and Finite Groups and Subgroups

Definition

A group G is called **abelian** if every pair of elements commute, i.e., if

$$ab = ba$$
, for all a and b in G .

Definition

A group G is called **finite** if G is a finite set. In this case the number of elements in G is called the **order** of G and is denoted by |G|.

Definition

A nonempty subset G' of a group G which is itself a group, under the same operation, is called a **subgroup** of G.

Subsection 2

Examples of Groups and Subgroups

Examples

- **Trivial Subgroups** Every group *G* has at least two subgroups, *G* itself and the set {*e*} consisting of the identity element alone.
- Integers under Addition The set of all integers is an abelian group with + as the operation and 0 as the identity. The inverse of n is -n.
- **Complex Numbers under Multiplication** The set of all non-zero complex numbers is an abelian group with ordinary multiplication of complex numbers as the operation and 1 as the identity. The inverse of z is the reciprocal $\frac{1}{z}$.

The set of all complex numbers of absolute value 1 is a subgroup.

- The *n*-th Roots of Unity An example of a finite group is the set $\{1, \varepsilon, \varepsilon^2, \ldots, \varepsilon^{n-1}\}$, where $\varepsilon = e^{2\pi i/n}$ and the operation is ordinary multiplication of complex numbers. This group, of order *n*, is called the group of *n*-th roots of unity.
 - It is a subgroup of both groups in the preceding example.

Subsection 3

Elementary Properties of Groups

Cancelation Laws

• Unless otherwise stated, G is an arbitrary group, not required to be abelian nor finite.

Theorem (Cancelation Laws)

For all elements a, b, c in G,

$$ac = bc$$
 or $ca = cb$ implies $a = b$.

• In the first case multiply each member on the right by c^{-1} and use associativity:

$$egin{aligned} \mathsf{ac} = \mathsf{bc} & \Rightarrow & (\mathsf{ac})\mathsf{c}^{-1} = (\mathsf{bc})\mathsf{c}^{-1} \ & \Rightarrow & \mathsf{a}(\mathsf{cc}^{-1}) = \mathsf{b}(\mathsf{cc}^{-1}) \ & \Rightarrow & \mathsf{ae} = \mathsf{be} \ & \Rightarrow & \mathsf{a} = \mathsf{b}. \end{aligned}$$

In the second case multiply on the left by c^{-1} .

Properties of Inverses

Theorem (Properties of Inverses)

In any group G we have:

- (a) $e^{-1} = e;$
- (b) For every *a* in *G*, $(a^{-1})^{-1} = a$;
- (c) For all *a* and *b* in *G*, $(ab)^{-1} = b^{-1}a^{-1}$;
- (d) For all *a* and *b* in *G* the equation ax = b has the unique solution $x = a^{-1}b$; the equation ya = b has the unique solution $y = ba^{-1}$.
- (a) We have $ee = ee^{-1}$. Cancel e to obtain $e = e^{-1}$.
- (b) Since $aa^{-1} = e$ and inverses are unique, *a* is the inverse of a^{-1} .
- (c) By associativity, $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aea^{-1} = aa^{-1} = e$. So $b^{-1}a^{-1}$ is the inverse of ab.
- (d) By associativity, $a(a^{-1}b) = (aa^{-1})b = b$ and $(ba^{-1})a = b(a^{-1}a) = b$. The solutions are unique because of the cancelation laws.

Powers of an Element

Definition (Powers of an Element)

If $a \in G$, we define a^n for any integer n by the following relations:

$$a^0 = e$$
, $a^n = aa^{n-1}$, $a^{-n} = (a^{-1})^n$, for $n > 0$.

Theorem

If $a \in G$, any two powers of a commute, and for all integers m and n we have

$$a^ma^n=a^{m+n}=a^na^m$$
 and $(a^m)^n=a^{nm}=(a^n)^m.$

Moreover, if a and b commute, we have $a^n b^n = (ab)^n$.

• These laws of exponents can be proved by induction.

The Subgroup Criterion

Theorem (Subgroup Criterion)

If G' is a nonempty subset of a group G, then G' is a subgroup if, and only if, G' satisfies group postulates (a) and (d):

- (a) **Closure** If $a, b \in G'$, then $ab \in G'$.
- (d) **Existence of Inverse** if $a \in G'$, then $a^{-1} \in G'$.
 - Every subgroup G' certainly has these properties. Conversely, if G' satisfies (a) and (d) it is easy to show that G' also satisfies postulates (b) and (c).
 - (b) Associativity holds in G' because it holds for all elements in G.
 - (c) Existence of identities holds in G'.
 Since G' is nonempty, there exists an element a in G'.
 By (d), a⁻¹ ∈ G'. By (a), e = aa⁻¹ ∈ G'.

Subsection 4

Construction of Subgroups

Cyclic Subgroups

- A subgroup of a given group *G* can always be constructed stating from a specific element of *G*.
- Choose any element *a* in *G*.
- Form the set of all its powers

$$a^n$$
, $n = 0, \pm 1, \pm 2, \dots$

- This set clearly satisfies postulates (a) and (d), closure under the operation and under inverses.
- So it is a subgroup of G.
- It is called the **cyclic subgroup generated** by *a*, denoted by $\langle a \rangle$.
- Note that $\langle a \rangle$ is abelian, even if G is not.

The Order of an Element

- Let G be a group.
- Let *a* be an element of *G*.
- Suppose $a^n = e$, for some positive integer *n*.
- Then there will be a smallest n > 0 with this property.
- The subgroup $\langle a \rangle$ is a finite group of order *n*,

$$\langle a \rangle = \{a, a^2, \dots, a^{n-1}, a^n = e\}.$$

The integer n is also called the order of the element a.
 Example: A cyclic subgroup of order n is the group of n-th roots of unity.

Order of Elements in a Finite Group

• Every element of a finite group has finite order.

Theorem

If G is finite and $a \in G$, then there is a positive integer n such that $a^n = e$.

• Let g = |G|.

At least two of the following g + 1 elements of G must be equal,

$$e, a, a^2, \ldots, a^g$$
.

Suppose that $a^r = a^s$, where $0 \le s < r \le g$.

Then we have

$$e=a^r(a^s)^{-1}=a^{r-s}.$$

This proves the theorem with n = r - s.

Indicator of an Element in a Subgroup

Claim: If G' is a subgroup of a finite group G, then for any element a in G, there is an integer n, such that $a^n \in G'$.

If a is already in G' we simply take n = 1.

If $a \notin G'$, we can take *n* to be the order of *a*, since $a^n = e \in G'$.

- However, there may be a smaller positive power of a which lies in G'.
- By the well-ordering principle there is a smallest positive integer *n*, such that

$$a^n \in G'$$
.

• We call this integer the **indicator of** *a* **in** *G*'.

Augmenting a Subgroup

Theorem

Let G' be a subgroup of a finite abelian group G, where $G' \neq G$. Choose an element a in G, $a \notin G'$, and let h be the indicator of a in G'. Then the set of products

$$G'' = \{xa^k : x \in G' \text{ and } k = 0, 1, 2, \dots, h-1\}$$

is a subgroup of G which contains G'. Moreover, the order of G'' is h times that of G',

$$|G''|=h|G'|.$$

• To show G'' is a subgroup we use the subgroup criterion.

Augmenting a Subgroup (Cont'd)

• First we test closure.

Choose two elements in G''.

They have the form xa^k and ya^j , where $x, y \in G'$ and $0 \le k, j < h$. Since G is abelian, their product is $(xy)a^{k+j}$. Now k + j = qh + r, where $0 \le r < h$. Hence,

$$a^{k+j} = a^{qh+r} = a^{qh}a^r = za^r,$$

where $z = a^{qh} = (a^h)^q \in G'$, since $a^h \in G'$. Therefore,

$$(xy)a^{k+j}=(xyz)a^r=wa^r,$$

where $w \in G'$ and $0 \leq r < h$.

This proves that G'' satisfies the closure postulate.

Augmenting a Subgroup (Cont'd)

- Next we show that the inverse of each element in G" is also in G".
 Choose an arbitrary element in G", say xa^k.
 - If k = 0, then the inverse is x^{-1} which is in G''.
 - If 0 < k < h, the inverse is the element

$$(xa^{k})^{-1} = x^{-1}(a^{h})^{-1}a^{h}a^{-k} = (x^{-1}(a^{h})^{-1})a^{h-k}.$$

This is again in G'', since $a^h \in G'$ and 0 < h - k < h. This shows that G'' is indeed a subgroup of G. Clearly G'' contains G'.

Augmenting a Subgroup (Cont'd)

• Next we determine the order of G''.

Let
$$m = |G'|$$
.

Let x run through the m elements of G'.

- Let k run through the h integers $0, 1, 2, \ldots, h-1$.
- Then we obtain *mh* products xa^k .

If we show that all these are distinct, then G'' has order mh. Consider two of these products, say xa^k and ya^j . Assume that

$$xa^k = ya^j, \quad 0 \le j \le k < h.$$

Then $a^{k-j} = x^{-1}y$ and $0 \le k - j < h$. Since $x^{-1}y \in G'$, we must have a^{k-j} in G'. So k = j. Hence x = y.

Subsection 5

Characters of Finite Abelian Groups

Characters of Groups

Definition

Let G be an arbitrary group. A complex-valued function f defined on G is called a **character** of G if f has the multiplicative property

f(ab) = f(a)f(b),

for all a, b in G, and if $f(c) \neq 0$, for some c in G.

A Property of Characters

Theorem

If f is a character of a finite group G with identity element e, then

$$f(e)=1.$$

Moreover, each function value f(a) is a root of unity. In fact, if $a^n = e$, then

$$f(a)^n=1.$$

Choose c in G, such that f(c) ≠ 0.
 Since ce = c, we have f(c)f(e) = f(c). So f(e) = 1.
 Now suppose aⁿ = e.
 Then

Then

$$f(a)^n = f(a^n) = f(e) = 1.$$

Existence of Characters

- Every group G has at least one character.
 The function which is identically 1 on G is a character.
 This is called the principal character.
- The next theorem tells us that there are further characters if G is abelian and has finite order > 1.

Theorem

A finite abelian group G of order n has exactly n distinct characters.

 In a previous theorem we saw how to construct, from a given subgroup G' ≠ G, a new subgroup G" containing G' and at least one more element a not in G'.

Let $\langle G'; a \rangle = \{xa^k : x \in G', 0 \le k < h\}$ be the subgroup G'' thus constructed, where h is the indicator of a in G'.

Proof of the Theorem (Setup)

Now we apply this construction repeatedly, starting with the subgroup {e} which we denote by G₁.
If G₁ ≠ G, let a₁ be an element of G other than e.
Define G₂ = ⟨G₁; a₁⟩.
If G₂ ≠ G, let a₂ be an element of G which is not in G₂.
Define G₃ = ⟨G₂; a₂⟩.

Continue the process to obtain a finite set of elements a_1, a_2, \ldots, a_t and a corresponding set of subgroups $G_1, G_2, \ldots, G_{t+1}$, such that $G_{r+1} = \langle G_r; a_r \rangle$, with $G_1 \subset G_2 \subset \cdots \subset G_{t+1} = G$.

By hypothesis, the given group G is finite.

Moreover, each G_{r+1} contains more elements than its predecessor G_r . So the process must terminate in a finite number of steps.

We fix such a chain of subgroups.

We prove the theorem by induction, showing that if it is true for G_r , it must also be true for G_{r+1} .

Proof of the Theorem (Sketch of Induction)

• It is clear that there is only one character for G_1 .

This is the function which is identically 1.

Now assume that:

- G_r has order m;
- There are exactly m distinct characters for G_r .

Consider $G_{r+1} = \langle G_r; a_r \rangle$ and let *h* be the indicator of a_r in G_r .

This is the smallest positive integer such that $a_r^h \in G_r$.

We shall show that:

- There are exactly *h* different ways to extend each character of *G_r* to obtain a character of *G_{r+1}*;
- Each character of G_{r+1} is the extension of some character of G_r .

This will prove that G_{r+1} has exactly *mh* characters.

Since *mh* is also the order of G_{r+1} this will complete the induction.

Proof of the Theorem (Induction Step)

• An element in G_{r+1} has the form xa_r^k , where $x \in G_r$ and $0 \le k < h$. Suppose that it is possible to extend a character f of G_r to G_{r+1} . Call this extension \tilde{f} and let us see what can be said about $\tilde{f}(xa_r^k)$. The multiplicative property requires $\tilde{f}(xa_r^k) = \tilde{f}(x)\tilde{f}(a_r)^k$. Since $x \in G_r$, we have $\tilde{f}(x) = f(x)$. So we get $\widetilde{f}(xa_r^k) = f(x)\widetilde{f}(a^r)^k$. This tells us that $\tilde{f}(xa_r^k)$ is determined as soon as $\tilde{f}(a_r)$ is known. What are the possible values for $\tilde{f}(a_r)$? Let $c = a_r^h$. Since $c \in G_r$ we have $\tilde{f}(c) = f(c)$. Since \tilde{f} is multiplicative, we also have $\tilde{f}(c) = \tilde{f}(a_r)^h$. Hence, $\tilde{f}(a_r)^h = f(c)$. So $\tilde{f}(a_r)$ is one of the *h*-th roots of f(c). Therefore, there are at most h choices for $f(a_r)$.

Proof of the Theorem (Step Cont'd)

These observations tell us how to define f.
 If f is a given character of G_r, we choose one of the h-th roots of f(c), where c = a^h_r, and define f̃(a_r) to be this root.
 Then we define f̃ on the rest of G_{r+1} by the equation

$$\widetilde{f}(xa_r^k) = f(x)\widetilde{f}(a_r)^k.$$

The *h* choices for $\tilde{f}(a_r)$ are all different. So this gives us *h* different ways to define $\tilde{f}(xa_r^k)$. We verify that \tilde{f} satisfies the multiplicative property.

$$\begin{aligned} \widetilde{f}(xa_r^k \cdot ya_r^j) &= \widetilde{f}(xy \cdot a_r^{k+j}) \\ &= f(xy)\widetilde{f}(a_r)^{k+j} \\ &= f(x)f(y)\widetilde{f}(a_r)^k\widetilde{f}(a_r)^j \\ &= \widetilde{f}(xa_r^k)\widetilde{f}(ya_r^j). \end{aligned}$$

So \tilde{f} is a character of G_{r+1} .

Proof of the Theorem (Conclusion)

• No two of the extensions \tilde{f} and \tilde{g} can be identical on G_{r+1} .

This follows because the functions f and g which they extend would then be identical on G_r .

Therefore, each of the *m* characters of G_r can be extended in *h* different ways to produce a character of G_{r+1} .

Moreover, if φ is any character of G_{r+1} , then its restriction to G_r is also a character of G_r .

So the extension process produces all the characters of G_{r+1} .

Subsection 6

The Character Group

The Characters of a Finite Abelian Group

- Let G be a finite abelian group of order n.
- The principal character of G is denoted by f_1 .
- The other characters, denoted by

$$f_2, f_3, \ldots, f_n,$$

are called nonprincipal characters.

They have the property that

$$f(a) \neq 1$$
, for some *a* in *G*.

The Character Group

Theorem

If multiplication of characters is defined by the relation

 $(f_if_j)(a)=f_i(a)f_j(a),$

for each *a* in *G*, then the set of characters of *G* forms an abelian group of order *n*. We denote this group by \widehat{G} . The identity element of \widehat{G} is the principal character f_1 . The inverse of f_i is the reciprocal $\frac{1}{f_i}$.

• Verification of the group postulates is straightforward.

Note on Inverses

- For each character f we have |f(a)| = 1.
- Hence the reciprocal $\frac{1}{f(a)}$ is equal to the complex conjugate $\overline{f(a)}$.
- Thus, the function \overline{f} defined by

$$\overline{f}(a) = \overline{f(a)}$$

is also a character of G.

• Moreover, we have, for every a in G,

$$\overline{f}(a) = \frac{1}{f(a)} = f(a^{-1}).$$

Subsection 7

The Orthogonality Relations for Characters

The Matrix A(G)

• Let G be a finite abelian group of order n, with elements

$$a_1, a_2, \ldots, a_n$$
.

Let

$$f_1, f_2, ..., f_n$$

be the characters of G, with f_1 the principal character.

• We denote by A = A(G) the $n \times n$ matrix $[a_{ij}]$ whose element a_{ij} in the *i*-th row and *j*-th column is

$$a_{ij}=f_i(a_j).$$

Sums of Rows of the Matrix A(G)

Theorem

The sum of the entries in the *i*-th row of A is given by

$$\sum_{r=1}^{n} f_i(a_r) = \begin{cases} n, & \text{if } f_i \text{ is the principal character} \\ 0, & \text{otherwise} \end{cases}$$

• Let *S* denote the sum.

- If $f_i = f_1$, each term of the sum is 1. So S = n.
- If f_i ≠ f₁, there is an element b in G for which f(b) ≠ 1.
 As a_r runs through the elements of G so does the product ba_r.
 Hence

$$S = \sum_{r=1}^{n} f_i(ba_r) = f_i(b) \sum_{r=1}^{n} f_i(a_r) = f_i(b) S_i$$

Therefore, $S(1 - f_i(b)) = 0$. Since $f_i(b) \neq 1$, it follows that S = 0.

The Inverse of A(G)

Theorem

Let A^* denote the conjugate transpose of the matrix A. Then we have

$$AA^* = nI$$
,

where I is the $n \times n$ identity matrix. Hence $n^{-1}A^*$ is the inverse of A.

• Let $B = AA^*$.

The entry b_{ij} in the *i*-th row and *j*-th column of B is

$$b_{ij} = \sum_{r=1}^n f_i(a_r)\overline{f}_j(a_r) = \sum_{i=1}^n (f_i\overline{f}_j)(a_r) = \sum_{r=1}^n f_k(a_r),$$

where $f_k = f_i \overline{f}_j = \frac{f_i}{f_i}$.

The Inverse of A(G) (Cont'd)

• For $B = AA^*$, we found

$$b_{ij}=\sum_{r=1}^n f_k(a_r),$$

where $f_k = f_i \overline{f}_j = \frac{f_i}{f_j}$. Now we have $\frac{f_i}{f_j} = f_1$, if, and only if, i = j. Hence, by the preceding theorem,

$$b_{ij} = \begin{cases} n, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

In other words, B = nI.

Orthogonality Relations for Characters

Theorem (Orthogonality Relations for Characters)

We have

$$\sum_{r=1}^{n} \overline{f}_r(a_i) f_r(a_j) = \begin{cases} n, & \text{if } a_i = a_j \\ 0, & \text{if } a_i \neq a_j \end{cases}$$

• The relation $AA^* = nI$ implies $A^*A = nI$.

The element in the *i*-th row and *j*-th column of A^*A is the sum

$$\sum_{r=1}^{n} \overline{f}_r(a_i) f_r(a_j).$$

٠

Comments

Note that

$$\overline{f}_r(a_i) = f_r(a_i)^{-1} = f_r(a_i^{-1}).$$

• So the general term of the sum $\sum_{r=1}^{n} \overline{f}_r(a_i) f_r(a_j)$ is equal to

$$f_r(a_i^{-1})f_r(a_j) = f_r(a_i^{-1}a_j).$$

• Therefore, the orthogonality relations can also be expressed as

$$\sum_{r=1}^{n} f_r(a_i^{-1}a_j) = \begin{cases} n, & \text{if } a_i = a_j \\ 0, & \text{if } a_i \neq a_j \end{cases}$$

.

Sums of the Characters

Consider the sum

$$\sum_{r=1}^{n} f_r(a_i^{-1}a_j) = \begin{cases} n, & \text{if } a_i = a_j \\ 0, & \text{if } a_i \neq a_j \end{cases}$$

• Let *a_i* be the identity element *e* in the sum.

Theorem

The sum of the entries in the *j*-th column of A is given by

$$\sum_{r=1}^{n} f_r(a_j) = \begin{cases} n, & \text{if } a_j = e \\ 0, & \text{otherwise} \end{cases}$$

.

Subsection 8

Dirichlet Characters

Residue Classes Modulo k

- Let k be a fixed positive integer.
- Let G be the group of reduced residue classes modulo k.
- Recall that this is a set of φ(k) integers {a₁, a₂,..., a_{φ(k)}} incongruent modulo k, each of which is relatively prime to k.
- For each integer *a* the corresponding residue class \hat{a} is the set of all integers congruent to *a* modulo *k*:

$$\widehat{a} = \{x : x \equiv a \pmod{k}\}.$$

• Multiplication of residue classes is defined by the relation

$$\widehat{a} \cdot \widehat{b} = \widehat{ab}.$$

• So the product of two residue classes \hat{a} and \hat{b} is the residue class of the product ab.

Group of Reduced Residue Classes

Theorem

With multiplication $\hat{a} \cdot \hat{b} = \widehat{ab}$ the set of reduced residue classes modulo k is a finite abelian group of order $\varphi(k)$. The identity is the residue class $\hat{1}$. The inverse of \hat{a} is the residue class \hat{b} , where $ab \equiv 1 \pmod{k}$.

• The closure property is automatically satisfied because of the way multiplication of residue classes was defined.

The class $\hat{1}$ is clearly the identity element.

If (a, k) = 1, there is a unique b, such that $ab \equiv 1 \pmod{k}$. Hence the inverse of \hat{a} is \hat{b} .

Finally, it is clear that the group is abelian and that its order is $\varphi(k)$.

Dirichlet Characters

Definition (Dirichlet Characters)

Let *G* be the group of reduced residue classes modulo *k*. Suppose *f* is a character of *G*. Define an arithmetical function $\chi = \chi_f$ as follows:

$$\chi(n) = \begin{cases} f(\widehat{n}), & \text{if } (n,k) = 1, \\ 0, & \text{if } (n,k) > 1. \end{cases}$$

The function χ is called a **Dirichlet character modulo** k.

The **principal character** χ_1 is the one corresponding to f_1 , i.e., that which has the properties

$$\chi_1(n) = \begin{cases} 1, & \text{if } (n,k) = 1 \\ 0, & \text{if } (n,k) > 1 \end{cases}$$

Properties of Dirichlet Characters

Theorem

There are $\varphi(k)$ distinct Dirichlet characters modulo k, each of which is completely multiplicative and periodic with period k. That is, we have:

•
$$\chi(mn) = \chi(m)\chi(n)$$
, for all m, n ;

•
$$\chi(n+k) = \chi(n)$$
, for all n .

Conversely, if χ is completely multiplicative and periodic with period k, and if $\chi(n) = 0$, if (n, k) > 1, then χ is one of the Dirichlet characters mod k.

There are φ(k) characters f for the group G of reduced residue classes modulo k. Hence, there are φ(k) characters χ_f modulo k. The multiplicative property of χ_f follows from that of f when both m and n are relatively prime to k. If one of m or n is not relatively prime to k then neither is mn. Hence, both χ(mn) and χ(m)χ(n) are zero.

Properties of Dirichlet Characters (Cont'd)

• The periodicity property is a consequence of the following facts:

•
$$a \equiv b \pmod{k}$$
 implies $(a, k) = (b, k)$;

• $\chi_f(n) = f(\widehat{n}).$

Conversely, suppose that:

- χ is completely multiplicative;
- χ is periodic with period k;
- $\chi(n) = 0$, if (n, k) > 1.

Let f be the function defined on the group G by the equation

$$f(\widehat{n}) = \chi(n), \quad \text{if } (n,k) = 1.$$

Then f is a character of G.

Consequently, χ is a Dirichlet character mod k.

Examples: k = 3 and k = 4

• When k = 1 or k = 2 then $\varphi(k) = 1$.

So the only Dirichlet character is the principal character χ_1 .

 For k ≥ 3, there are at least two Dirichlet characters since φ(k) ≥ 2. The following tables display all the Dirichlet characters for k = 3,4.

п	1	2	3	n	1	2	3	4
$\chi_1(n)$	1	1	0	$\chi_1(n)$	1	0	1	0
$\chi_2(n)$	1	-1	0	$\chi_2(n)$	1	0	-1	0

To fill these tables we use:

- $\chi(n)^{\varphi(k)} = 1$, if (n, k) = 1. So $\chi(n)$ is a $\varphi(k)$ -th root of unity.
- If χ is a character mod k so is the complex conjugate $\overline{\chi}$.

This information suffices to complete the tables for k = 3 and k = 4.

Examples: k = 5

• The following table displays all the Dirichlet characters for k = 5.

п	1	2	3	4	5
$\chi_1(n)$	1	1	1	1	0
$\chi_2(n)$	1	-1	-1	1	0
$\chi_3(n)$	1	i	-i	-1	0
$\chi_4(n)$	1	-i	i	-1	0

When k = 5 we have:

- $\varphi(5) = 4$. So $\chi(n)$ equals ± 1 or $\pm i$ when (n, 5) = 1.
- Also, $\chi(2)\chi(3) = \chi(6) = \chi(1) = 1$. So $\chi(2)$ and $\chi(3)$ are reciprocals.
- Finally, $\chi(4) = \chi(2)^2$.

This information suffices to fill the table for k = 5.

• As a check we can use the previous theorems which tell us that the sum of the entries is 0 in each row and column except for the first.

Examples: k = 6 and k = 7

• The following tables display all the Dirichlet characters mod 6 and 7, where $\omega = e^{\pi i/3}$.

Orthogonality for Characters Modulo k

Theorem

Let $\chi_1, \ldots, \chi_{\varphi(k)}$ denote the $\varphi(k)$ Dirichlet characters modulo k. Let m and n be two integers, with (n, k) = 1. Then we have

$$\sum_{r=1}^{\varphi(k)} \chi_r(m) \overline{\chi}_r(n) = \begin{cases} \varphi(k), & \text{if } m \equiv n \pmod{k} \\ 0, & \text{if } m \not\equiv n \pmod{k} \end{cases}$$

- Suppose, first, (m, k) = 1. Take $a_i = \hat{n}$ and $a_j = \hat{m}$ in the orthogonality relations $\sum_{r=1}^{\varphi(k)} \overline{\chi}_r(\hat{n})\chi_r(\hat{m}) = \begin{cases} \varphi(k), & \text{if } \hat{m} = \hat{n}, \\ 0, & \text{if } \hat{m} \neq \hat{n}. \end{cases}$ Suppose, next, that (m, k) > 1.
 - Then $\chi_r(\widehat{m}) = 0$, for all r, and $m \not\equiv n \pmod{k}$.

George Voutsadakis (LSSU)

Subsection 9

Sums Involving Dirichlet Characters

Sums Involving Dirichlet Characters

Theorem

Let χ be any nonprincipal character modulo k. Let f be a nonnegative function which has a continuous negative derivative f'(x), for all $x \ge x_0$. Then, if $y \ge x \ge x_0$, we have

$$\sum_{\langle n \leq y} \chi(n) f(n) = O(f(x)).$$

If, in addition, $f(x) \to 0$ as $x \to \infty$, then the infinite series

$$\sum_{n=1}^{\infty} \chi(n) f(n)$$

converges. Moreover, we have, for $x \ge x_0$,

x

$$\sum_{n\leq x}\chi(n)f(n)=\sum_{n=1}^{\infty}\chi(n)f(n)+O(f(x)).$$

Sums Involving Dirichlet Characters (Cont'd)

• Let
$$A(x) = \sum_{n \le x} \chi(n)$$
.
By hypothesis, χ is nonprincipal.
So $A(k) = \sum_{n=1}^{k} \chi(n) = 0$.
By periodicity, $A(nk) = 0$, for $n = 2, 3, ...$
Hence, $|A(x)| < \varphi(k)$, for all x .
So we have $A(x) = O(1)$.

Sums Involving Dirichlet Characters (Cont'd)

• Now we use Abel's Identity to express $\sum_{x < n \le y} \chi(n) f(n)$ as an integral:

$$\sum_{x < n \le y} \chi(n) f(n) = f(y) A(y) - f(x) A(x) - \int_x^y A(t) f'(t) dt$$

= $O(f(y)) + O(f(x)) + O\left(\int_x^y (-f'(t)) dt\right)$
= $O(f(x)).$

If $f(x) \to 0$ as $x \to \infty$, by the preceding relation and the Cauchy Convergence Criterion, the series $\sum_{n=1}^{\infty} \chi(n)f(n)$ converges.

To prove the last relation we simply note that

$$\sum_{n=1}^{\infty} \chi(n)f(n) = \sum_{n \leq x} \chi(n)f(n) + \lim_{y \to \infty} \sum_{x < n \leq y} \chi(n)f(n).$$

Since the limit on the right is O(f(x)), this completes the proof.

Applications of the Sums

• We apply the preceding theorem successively with $f(x) = \frac{\log x}{x}$, $f(x) = \frac{\log x}{x}$, and $f(x) = \frac{1}{\sqrt{x}}$, for $x \ge 1$ to obtain:

Theorem

If x is any nonprincipal character mod k and if $x \ge 1$, we have

$$\sum_{n \le x} \frac{\chi(n)}{n} = \sum_{n=1}^{\infty} \frac{\chi(n)}{n} + O\left(\frac{1}{x}\right),$$
$$\sum_{n \le x} \frac{\chi(n) \log n}{n} = \sum_{n=1}^{\infty} \frac{\chi(n) \log n}{n} + O\left(\frac{\log x}{x}\right),$$
$$\sum_{n \le x} \frac{\chi(n)}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{\chi(n)}{\sqrt{n}} + O\left(\frac{1}{\sqrt{x}}\right).$$

Subsection 10

The Nonvanishing of $L(1,\chi)$ for Real Nonprincipal χ

Divisor Sum of Real Characters

• We denote by $L(1,\chi)$ the sum

$$L(1,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n}$$

Theorem

Let χ be any real-valued character mod k and let

$$A(n)=\sum_{d\mid n}\chi(d).$$

Then $A(n) \ge 0$, for all *n*, and $A(n) \ge 1$ if *n* is a square.

Divisor Sum of Real Characters (Cont'd)

• For prime powers we have

$$A(p^a) = \sum_{t=0}^{a} \chi(p^t) = 1 + \sum_{t=1}^{a} \chi(p)^t.$$

By hypothesis, χ is real-valued.

So the only possible values for $\chi(p)$ are 0, 1 and -1.

• If
$$\chi(p) = 0$$
 then $A(p^a) = 1$.
• If $\chi(p) = 1$ then $A(p^a) = a + 1$.
• If $\chi(p) = -1$, then $A(p^a) = \begin{cases} 0, & \text{if } a \text{ is odd} \\ 1, & \text{if } a \text{ is even} \end{cases}$

In any case, $A(p^a) \ge 1$ if a is even.

Divisor Sum of Real Characters (Cont'd)

• We showed $A(p^a) \ge 1$, if a is even.

Now if $n = p_1^{a_1} \cdots p_r^{a_r}$, by multiplicativity,

$$A(n) = A(p_1^{a_1}) \cdots A(p_r^{a_r}).$$

Each factor $A(p_i^{a_i}) \ge 0$. Hence $A(n) \ge 0$. If *n* is a square then each exponent a_i is even. So each factor $A(p_i^{a_i}) \ge 1$. Hence $A(n) \ge 1$. This proves the theorem.

Value of $L(1, \chi)$

Theorem

For any real-valued nonprincipal character $x \mod k$, let

$$A(n) = \sum_{d|n} \chi(d)$$
 and $B(x) = \sum_{n \leq x} \frac{A(n)}{\sqrt{n}}.$

Then we have:

(a)
$$B(x) \to \infty$$
 as $x \to \infty$.
(b) $B(x) = 2\sqrt{x}L(1, \chi) + O(1)$, for all $x \ge 1$.
Therefore, $L(1, \chi) \neq 0$.

Value of $L(1, \chi)$ (Parts (a) and (b))

(a) Use the preceding theorem to write

$$B(x) \ge \sum_{\substack{n \le x \\ n = m^2}} \frac{1}{\sqrt{n}} = \sum_{m \le \sqrt{x}} \frac{1}{m}$$

The last sum tends to ∞ as $x \to \infty$ since the series $\sum \frac{1}{m}$ diverges. (b) We write

$$B(x) = \sum_{n \leq x} \frac{1}{\sqrt{n}} \sum_{d \mid n} \chi(d) = \sum_{\substack{q, d \\ qd \leq x}} \frac{\chi(d)}{\sqrt{dq}}.$$

Value of $L(1, \chi)$ (Part (b) Cont'd)

• Use generalized partial sums of Dirichlet products,

$$\sum_{\substack{q,d\\qd\leq x}} f(d)g(q) = \sum_{n\leq a} f(n)G\left(\frac{x}{n}\right) + \sum_{n\leq b} g(n)F\left(\frac{x}{n}\right) - F(a)G(b),$$

where
$$ab = x$$
, $F(x) = \sum_{n \le x} f(n)$ and $G(x) = \sum_{n \le x} g(n)$.
Take $a = b = \sqrt{x}$ and let:
• $f(n) = \frac{\chi(n)}{\sqrt{n}}$;
• $g(n) = \frac{1}{\sqrt{n}}$.
We obtain

$$B(x) = \sum_{\substack{q,d \\ qd \le x}} \frac{\chi(d)}{\sqrt{qd}}$$

= $\sum_{n \le \sqrt{x}} \frac{\chi(n)}{\sqrt{n}} G(\frac{x}{n}) + \sum_{n \le \sqrt{x}} \frac{1}{\sqrt{n}} F(\frac{x}{n}) - F(\sqrt{x}) G(\sqrt{x}).$

Value of $L(1, \chi)$ (Part (b) Cont'd)

We know that

S

•
$$G(x) = \sum_{n \le x} \frac{1}{\sqrt{n}} = 2\sqrt{x} + A + O(\frac{1}{\sqrt{x}})$$
, where A is a constant;
• $F(x) = \sum_{n \le x} \frac{\chi(n)}{\sqrt{n}} = B + O(\frac{1}{\sqrt{x}})$, where $B = \sum_{n=1}^{\infty} \frac{\chi(n)}{\sqrt{n}}$.
since $F(\sqrt{x})G(\sqrt{x}) = 2Bx^{1/4} + O(1)$, we now get

$$B(x) = \sum_{n \le \sqrt{x}} \frac{\chi(n)}{\sqrt{n}} \{ 2\sqrt{\frac{x}{n}} + A + O(\sqrt{\frac{n}{x}}) \} \\ + \sum_{n \le \sqrt{x}} \frac{1}{\sqrt{n}} \{ B + O(\sqrt{\frac{n}{x}}) \} - 2Bx^{1/4} + O(1) \\ = 2\sqrt{x} \sum_{n \le \sqrt{x}} \frac{\chi(n)}{n} + A \sum_{n \le \sqrt{x}} \frac{\chi(n)}{\sqrt{n}} + O(\frac{1}{\sqrt{x}} \sum_{n \le \sqrt{x}} |\chi(n)|) \\ + B \sum_{n \le \sqrt{x}} \frac{1}{\sqrt{n}} + O(\frac{1}{\sqrt{x}} \sum_{n \le \sqrt{x}} 1) - 2Bx^{1/4} + O(1) \\ = 2\sqrt{x}L(1,\chi) + O(1).$$

Parts (a) and (b) together imply that $L(1, \chi) \neq 0$.