Introduction to Analytic Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Finite Abelian Groups and Their Characters

- Definitions
- Examples of Groups and Subgroups
- Elementary Properties of Groups
- Construction of Subgroups
- Characters of Finite Abelian Groups
- The Character Group
- The Orthogonality Relations for Characters
- Dirichlet Characters
- Sums Involving Dirichlet Characters
- The Nonvanishing of $L(1, \chi)$ for Real Nonprincipal χ

Subsection 1

Definitions

Group Axioms

Definition (Postulates for a Group)

A group G is a nonempty set of elements together with a binary operation, which we denote by \cdot, such that the following postulates are satisfied:
(a) Closure For every a and b in $G, a \cdot b$ is also in G.
(b) Associativity For every a, b, c in G, we have $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
(c) Existence of Identity There is a unique element e in G, called the identity, such that $a \cdot e=e \cdot a=a$, for every a in G.
(d) Existence of Inverses For every a in G, there is a unique element b in G such that $a \cdot b=b \cdot a=e$. This b is denoted by a^{-1} and is called the inverse of a.

- We usually omit the dot and write $a b$ for $a \cdot b$.

Abelian and Finite Groups and Subgroups

Definition

A group G is called abelian if every pair of elements commute, i.e., if

$$
a b=b a, \quad \text { for all } a \text { and } b \text { in } G .
$$

Definition

A group G is called finite if G is a finite set. In this case the number of elements in G is called the order of G and is denoted by $|G|$.

Definition

A nonempty subset G^{\prime} of a group G which is itself a group, under the same operation, is called a subgroup of G.

Subsection 2

Examples of Groups and Subgroups

Examples

- Trivial Subgroups Every group G has at least two subgroups, G itself and the set $\{e\}$ consisting of the identity element alone.
- Integers under Addition The set of all integers is an abelian group with + as the operation and 0 as the identity. The inverse of n is $-n$.
- Complex Numbers under Multiplication The set of all non-zero complex numbers is an abelian group with ordinary multiplication of complex numbers as the operation and 1 as the identity. The inverse of z is the reciprocal $\frac{1}{z}$.
The set of all complex numbers of absolute value 1 is a subgroup.
- The n-th Roots of Unity An example of a finite group is the set $\left\{1, \varepsilon, \varepsilon^{2}, \ldots, \varepsilon^{n-1}\right\}$, where $\varepsilon=e^{2 \pi i / n}$ and the operation is ordinary multiplication of complex numbers. This group, of order n, is called the group of n-th roots of unity.
It is a subgroup of both groups in the preceding example.

Subsection 3

Elementary Properties of Groups

Cancelation Laws

- Unless otherwise stated, G is an arbitrary group, not required to be abelian nor finite.

Theorem (Cancelation Laws)

For all elements a, b, c in G,

$$
a c=b c \quad \text { or } c a=c b \text { implies } a=b
$$

- In the first case multiply each member on the right by c^{-1} and use associativity:

$$
\begin{aligned}
a c=b c & \Rightarrow(a c) c^{-1}=(b c) c^{-1} \\
& \Rightarrow a\left(c c^{-1}\right)=b\left(c c^{-1}\right) \\
& \Rightarrow a e=b e \\
& \Rightarrow a=b
\end{aligned}
$$

In the second case multiply on the left by c^{-1}.

Properties of Inverses

Theorem (Properties of Inverses)

In any group G we have:
(a) $e^{-1}=e$;
(b) For every a in $G,\left(a^{-1}\right)^{-1}=a$;
(c) For all a and b in $G,(a b)^{-1}=b^{-1} a^{-1}$;
(d) For all a and b in G the equation $a x=b$ has the unique solution $x=a^{-1} b$; the equation $y a=b$ has the unique solution $y=b a^{-1}$.
(a) We have $e e=e e^{-1}$. Cancel e to obtain $e=e^{-1}$.
(b) Since $a a^{-1}=e$ and inverses are unique, a is the inverse of a^{-1}.
(c) By associativity, $(a b)\left(b^{-1} a^{-1}\right)=a\left(b b^{-1}\right) a^{-1}=a e a^{-1}=a a^{-1}=e$. So $b^{-1} a^{-1}$ is the inverse of $a b$.
(d) By associativity, $a\left(a^{-1} b\right)=\left(a a^{-1}\right) b=b$ and $\left(b a^{-1}\right) a=b\left(a^{-1} a\right)=b$.

The solutions are unique because of the cancelation laws.

Powers of an Element

Definition (Powers of an Element)

If $a \in G$, we define a^{n} for any integer n by the following relations:

$$
a^{0}=e, \quad a^{n}=a a^{n-1}, \quad a^{-n}=\left(a^{-1}\right)^{n}, \quad \text { for } n>0 .
$$

Theorem

If $a \in G$, any two powers of a commute, and for all integers m and n we have

$$
a^{m} a^{n}=a^{m+n}=a^{n} a^{m} \quad \text { and } \quad\left(a^{m}\right)^{n}=a^{n m}=\left(a^{n}\right)^{m}
$$

Moreover, if a and b commute, we have $a^{n} b^{n}=(a b)^{n}$.

- These laws of exponents can be proved by induction.

The Subgroup Criterion

Theorem (Subgroup Criterion)

If G^{\prime} is a nonempty subset of a group G, then G^{\prime} is a subgroup if, and only if, G^{\prime} satisfies group postulates (a) and (d):
(a) Closure If $a, b \in G^{\prime}$, then $a b \in G^{\prime}$.
(d) Existence of Inverse if $a \in G^{\prime}$, then $a^{-1} \in G^{\prime}$.

- Every subgroup G^{\prime} certainly has these properties.

Conversely, if G^{\prime} satisfies (a) and (d) it is easy to show that G^{\prime} also satisfies postulates (b) and (c).
(b) Associativity holds in G^{\prime} because it holds for all elements in G.
(c) Existence of identities holds in G^{\prime}.

Since G^{\prime} is nonempty, there exists an element a in G^{\prime}.
By (d), $a^{-1} \in G^{\prime}$. By (a), $e=a a^{-1} \in G^{\prime}$.

Subsection 4

Construction of Subgroups

Cyclic Subgroups

- A subgroup of a given group G can always be constructed stating from a specific element of G.
- Choose any element a in G.
- Form the set of all its powers

$$
a^{n}, \quad n=0, \pm 1, \pm 2, \ldots
$$

- This set clearly satisfies postulates (a) and (d), closure under the operation and under inverses.
- So it is a subgroup of G.
- It is called the cyclic subgroup generated by a, denoted by $\langle a\rangle$.
- Note that $\langle a\rangle$ is abelian, even if G is not.

The Order of an Element

- Let G be a group.
- Let a be an element of G.
- Suppose $a^{n}=e$, for some positive integer n.
- Then there will be a smallest $n>0$ with this property.
- The subgroup $\langle a\rangle$ is a finite group of order n,

$$
\langle a\rangle=\left\{a, a^{2}, \ldots, a^{n-1}, a^{n}=e\right\} .
$$

- The integer n is also called the order of the element a.

Example: A cyclic subgroup of order n is the group of n-th roots of unity.

Order of Elements in a Finite Group

- Every element of a finite group has finite order.

Theorem

If G is finite and $a \in G$, then there is a positive integer n such that $a^{n}=e$.

- Let $g=|G|$.

At least two of the following $g+1$ elements of G must be equal,

$$
e, a, a^{2}, \ldots, a^{g}
$$

Suppose that $a^{r}=a^{s}$, where $0 \leq s<r \leq g$.
Then we have

$$
e=a^{r}\left(a^{s}\right)^{-1}=a^{r-s} .
$$

This proves the theorem with $n=r-s$.

Indicator of an Element in a Subgroup

Claim: If G^{\prime} is a subgroup of a finite group G, then for any element a in G, there is an integer n, such that $a^{n} \in G^{\prime}$.
If a is already in G^{\prime} we simply take $n=1$.
If $a \notin G^{\prime}$, we can take n to be the order of a, since $a^{n}=e \in G^{\prime}$.

- However, there may be a smaller positive power of a which lies in G^{\prime}.
- By the well-ordering principle there is a smallest positive integer n, such that

$$
a^{n} \in G^{\prime}
$$

- We call this integer the indicator of a in G^{\prime}.

Augmenting a Subgroup

Theorem

Let G^{\prime} be a subgroup of a finite abelian group G, where $G^{\prime} \neq G$. Choose an element a in $G, a \notin G^{\prime}$, and let h be the indicator of a in G^{\prime}. Then the set of products

$$
G^{\prime \prime}=\left\{x a^{k}: x \in G^{\prime} \text { and } k=0,1,2, \ldots, h-1\right\}
$$

is a subgroup of G which contains G^{\prime}. Moreover, the order of $G^{\prime \prime}$ is h times that of G^{\prime},

$$
\left|G^{\prime \prime}\right|=h\left|G^{\prime}\right| .
$$

- To show $G^{\prime \prime}$ is a subgroup we use the subgroup criterion.

Augmenting a Subgroup (Cont'd)

- First we test closure.

Choose two elements in $G^{\prime \prime}$.
They have the form $x a^{k}$ and $y a^{j}$, where $x, y \in G^{\prime}$ and $0 \leq k, j<h$. Since G is abelian, their product is $(x y) a^{k+j}$.
Now $k+j=q h+r$, where $0 \leq r<h$.
Hence,

$$
a^{k+j}=a^{q h+r}=a^{q h} a^{r}=z a^{r},
$$

where $z=a^{q h}=\left(a^{h}\right)^{q} \in G^{\prime}$, since $a^{h} \in G^{\prime}$.
Therefore,

$$
(x y) a^{k+j}=(x y z) a^{r}=w a^{r},
$$

where $w \in G^{\prime}$ and $0 \leq r<h$.
This proves that $G^{\prime \prime}$ satisfies the closure postulate.

Augmenting a Subgroup (Cont'd)

- Next we show that the inverse of each element in $G^{\prime \prime}$ is also in $G^{\prime \prime}$. Choose an arbitrary element in $G^{\prime \prime}$, say $x a^{k}$.
- If $k=0$, then the inverse is x^{-1} which is in $G^{\prime \prime}$.
- If $0<k<h$, the inverse is the element

$$
\left(x a^{k}\right)^{-1}=x^{-1}\left(a^{h}\right)^{-1} a^{h} a^{-k}=\left(x^{-1}\left(a^{h}\right)^{-1}\right) a^{h-k} .
$$

This is again in $G^{\prime \prime}$, since $a^{h} \in G^{\prime}$ and $0<h-k<h$.
This shows that $G^{\prime \prime}$ is indeed a subgroup of G.
Clearly $G^{\prime \prime}$ contains G^{\prime}.

Augmenting a Subgroup (Cont'd)

- Next we determine the order of $G^{\prime \prime}$.

Let $m=\left|G^{\prime}\right|$.
Let x run through the m elements of G^{\prime}.
Let k run through the h integers $0,1,2, \ldots, h-1$.
Then we obtain $m h$ products $x a^{k}$.
If we show that all these are distinct, then $G^{\prime \prime}$ has order $m h$.
Consider two of these products, say $x a^{k}$ and $y a^{j}$.
Assume that

$$
x a^{k}=y a^{j}, \quad 0 \leq j \leq k<h .
$$

Then $a^{k-j}=x^{-1} y$ and $0 \leq k-j<h$.
Since $x^{-1} y \in G^{\prime}$, we must have a^{k-j} in G^{\prime}.
So $k=j$. Hence $x=y$.

Subsection 5

Characters of Finite Abelian Groups

Characters of Groups

Definition

Let G be an arbitrary group. A complex-valued function f defined on G is called a character of G if f has the multiplicative property

$$
f(a b)=f(a) f(b)
$$

for all a, b in G, and if $f(c) \neq 0$, for some c in G.

A Property of Characters

Theorem

If f is a character of a finite group G with identity element e, then

$$
f(e)=1
$$

Moreover, each function value $f(a)$ is a root of unity. In fact, if $a^{n}=e$, then

$$
f(a)^{n}=1
$$

- Choose c in G, such that $f(c) \neq 0$.

Since $c e=c$, we have $f(c) f(e)=f(c)$. So $f(e)=1$.
Now suppose $a^{n}=e$.
Then

$$
f(a)^{n}=f\left(a^{n}\right)=f(e)=1
$$

Existence of Characters

- Every group G has at least one character. The function which is identically 1 on G is a character. This is called the principal character.
- The next theorem tells us that there are further characters if G is abelian and has finite order >1.

Theorem

A finite abelian group G of order n has exactly n distinct characters.

- In a previous theorem we saw how to construct, from a given subgroup $G^{\prime} \neq G$, a new subgroup $G^{\prime \prime}$ containing G^{\prime} and at least one more element a not in G^{\prime}.
Let $\left\langle G^{\prime} ; a\right\rangle=\left\{x a^{k}: x \in G^{\prime}, 0 \leq k<h\right\}$ be the subgroup $G^{\prime \prime}$ thus constructed, where h is the indicator of a in G^{\prime}.

Proof of the Theorem (Setup)

- Now we apply this construction repeatedly, starting with the subgroup $\{e\}$ which we denote by G_{1}.
If $G_{1} \neq G$, let a_{1} be an element of G other than e.
Define $G_{2}=\left\langle G_{1} ; a_{1}\right\rangle$.
If $G_{2} \neq G$, let a_{2} be an element of G which is not in G_{2}.
Define $G_{3}=\left\langle G_{2} ; a_{2}\right\rangle$.
Continue the process to obtain a finite set of elements $a_{1}, a_{2}, \ldots, a_{t}$ and a corresponding set of subgroups $G_{1}, G_{2}, \ldots, G_{t+1}$, such that $G_{r+1}=\left\langle G_{r} ; a_{r}\right\rangle$, with $G_{1} \subset G_{2} \subset \cdots \subset G_{t+1}=G$.
By hypothesis, the given group G is finite.
Moreover, each G_{r+1} contains more elements than its predecessor G_{r}.
So the process must terminate in a finite number of steps.
We fix such a chain of subgroups.
We prove the theorem by induction, showing that if it is true for G_{r}, it must also be true for G_{r+1}.

Proof of the Theorem (Sketch of Induction)

- It is clear that there is only one character for G_{1}.

This is the function which is identically 1.
Now assume that:

- G_{r} has order m;
- There are exactly m distinct characters for G_{r}.

Consider $G_{r+1}=\left\langle G_{r} ; a_{r}\right\rangle$ and let h be the indicator of a_{r} in G_{r}.
This is the smallest positive integer such that $a_{r}^{h} \in G_{r}$.
We shall show that:

- There are exactly h different ways to extend each character of G_{r} to obtain a character of G_{r+1};
- Each character of G_{r+1} is the extension of some character of G_{r}.

This will prove that G_{r+1} has exactly $m h$ characters.
Since $m h$ is also the order of G_{r+1} this will complete the induction.

Proof of the Theorem (Induction Step)

- An element in G_{r+1} has the form $x a_{r}^{k}$, where $x \in G_{r}$ and $0 \leq k<h$.

Suppose that it is possible to extend a character f of G_{r} to G_{r+1}.
Call this extension \widetilde{f} and let us see what can be said about $\widetilde{f}\left(x a_{r}^{k}\right)$.
The multiplicative property requires $\widetilde{f}\left(x a_{r}^{k}\right)=\widetilde{f}(x) \widetilde{f}\left(a_{r}\right)^{k}$.
Since $x \in G_{r}$, we have $\widetilde{f}(x)=f(x)$.
So we get $\widetilde{f}\left(x a_{r}^{k}\right)=f(x) \widetilde{f}\left(a^{r}\right)^{k}$.
This tells us that $\widetilde{f}\left(x a_{r}^{k}\right)$ is determined as soon as $\widetilde{f}\left(a_{r}\right)$ is known.
What are the possible values for $\widetilde{f}\left(a_{r}\right)$?
Let $c=a_{r}^{h}$. Since $c \in G_{r}$ we have $\widetilde{f}(c)=f(c)$.
Since \widetilde{f} is multiplicative, we also have $\widetilde{f}(c)=\widetilde{f}\left(a_{r}\right)^{h}$. Hence, $\widetilde{f}\left(a_{r}\right)^{h}=f(c)$. So $\widetilde{f}\left(a_{r}\right)$ is one of the h-th roots of $f(c)$. Therefore, there are at most h choices for $\widetilde{f}\left(a_{r}\right)$.

Proof of the Theorem (Step Cont'd)

- These observations tell us how to define \tilde{f}. If f is a given character of G_{r}, we choose one of the h-th roots of $f(c)$, where $c=a_{r}^{h}$, and define $\widetilde{f}\left(a_{r}\right)$ to be this root.
Then we define \widetilde{f} on the rest of G_{r+1} by the equation

$$
\widetilde{f}\left(x a_{r}^{k}\right)=f(x) \widetilde{f}\left(a_{r}\right)^{k}
$$

The h choices for $\widetilde{f}\left(a_{r}\right)$ are all different.
So this gives us h different ways to define $\widetilde{f}\left(x a_{r}^{k}\right)$.
We verify that \tilde{f} satisfies the multiplicative property.

$$
\begin{aligned}
\widetilde{f}\left(x a_{r}^{k} \cdot y a_{r}^{j}\right) & =\widetilde{f}\left(x y \cdot a_{r}^{k+j}\right) \\
& =f(x y) \widetilde{f}\left(a_{r}\right)^{k+j} \\
& =f(x) f(y) \widetilde{f}\left(a_{r}\right)^{k} \widetilde{f}\left(a_{r}\right)^{j} \\
& =\widetilde{f}\left(x a_{r}^{k}\right) \widetilde{f}\left(y a_{r}^{j}\right) .
\end{aligned}
$$

So \tilde{f} is a character of G_{r+1}.

Proof of the Theorem (Conclusion)

- No two of the extensions \widetilde{f} and \widetilde{g} can be identical on G_{r+1}.

This follows because the functions f and g which they extend would then be identical on G_{r}.

Therefore, each of the m characters of G_{r} can be extended in h different ways to produce a character of G_{r+1}.
Moreover, if φ is any character of G_{r+1}, then its restriction to G_{r} is also a character of G_{r}.
So the extension process produces all the characters of G_{r+1}.

Subsection 6

The Character Group

The Characters of a Finite Abelian Group

- Let G be a finite abelian group of order n.
- The principal character of G is denoted by f_{1}.
- The other characters, denoted by

$$
f_{2}, f_{3}, \ldots, f_{n},
$$

are called nonprincipal characters.

- They have the property that

$$
f(a) \neq 1, \quad \text { for some } a \text { in } G .
$$

The Character Group

Theorem

If multiplication of characters is defined by the relation

$$
\left(f_{i} f_{j}\right)(a)=f_{i}(a) f_{j}(a)
$$

for each a in G, then the set of characters of G forms an abelian group of order n. We denote this group by \widehat{G}. The identity element of \widehat{G} is the principal character f_{1}. The inverse of f_{i} is the reciprocal $\frac{1}{f_{i}}$.

- Verification of the group postulates is straightforward.

Note on Inverses

- For each character f we have $|f(a)|=1$.
- Hence the reciprocal $\frac{1}{f(a)}$ is equal to the complex conjugate $\overline{f(a)}$.
- Thus, the function \bar{f} defined by

$$
\bar{f}(a)=\overline{f(a)}
$$

is also a character of G.

- Moreover, we have, for every a in G,

$$
\bar{f}(a)=\frac{1}{f(a)}=f\left(a^{-1}\right)
$$

Subsection 7

The Orthogonality Relations for Characters

The Matrix $A(G)$

- Let G be a finite abelian group of order n, with elements

$$
a_{1}, a_{2}, \ldots, a_{n}
$$

- Let

$$
f_{1}, f_{2}, \ldots, f_{n}
$$

be the characters of G, with f_{1} the principal character.

- We denote by $A=A(G)$ the $n \times n$ matrix $\left[a_{i j}\right]$ whose element $a_{i j}$ in the i-th row and j-th column is

$$
a_{i j}=f_{i}\left(a_{j}\right)
$$

Sums of Rows of the Matrix $A(G)$

Theorem

The sum of the entries in the i-th row of A is given by

$$
\sum_{r=1}^{n} f_{i}\left(a_{r}\right)= \begin{cases}n, & \text { if } f_{i} \text { is the principal character } \\ 0, & \text { otherwise }\end{cases}
$$

- Let S denote the sum.
- If $f_{i}=f_{1}$, each term of the sum is 1 . So $S=n$.
- If $f_{i} \neq f_{1}$, there is an element b in G for which $f(b) \neq 1$. As a_{r} runs through the elements of G so does the product $b a_{r}$. Hence

$$
S=\sum_{r=1}^{n} f_{i}\left(b a_{r}\right)=f_{i}(b) \sum_{r=1}^{n} f_{i}\left(a_{r}\right)=f_{i}(b) S .
$$

Therefore, $S\left(1-f_{i}(b)\right)=0$.
Since $f_{i}(b) \neq 1$, it follows that $S=0$.

The Inverse of $A(G)$

Theorem

Let A^{*} denote the conjugate transpose of the matrix A. Then we have

$$
A A^{*}=n I,
$$

where I is the $n \times n$ identity matrix. Hence $n^{-1} A^{*}$ is the inverse of A.

- Let $B=A A^{*}$.

The entry $b_{i j}$ in the i-th row and j-th column of B is

$$
b_{i j}=\sum_{r=1}^{n} f_{i}\left(a_{r}\right) \bar{f}_{j}\left(a_{r}\right)=\sum_{i=1}^{n}\left(f_{i} \bar{f}_{j}\right)\left(a_{r}\right)=\sum_{r=1}^{n} f_{k}\left(a_{r}\right),
$$

where $f_{k}=f_{i} \bar{f}_{j}=\frac{f_{i}}{f_{j}}$.

The Inverse of $A(G)$ (Cont'd)

- For $B=A A^{*}$, we found

$$
b_{i j}=\sum_{r=1}^{n} f_{k}\left(a_{r}\right)
$$

where $f_{k}=f_{i} \bar{f}_{j}=\frac{f_{i}}{f_{j}}$.
Now we have $\frac{f_{i}}{f_{j}}=f_{1}$, if, and only if, $i=j$.
Hence, by the preceding theorem,

$$
b_{i j}= \begin{cases}n, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

In other words, $B=n /$.

Orthogonality Relations for Characters

Theorem (Orthogonality Relations for Characters)

We have

$$
\sum_{r=1}^{n} \bar{f}_{r}\left(a_{i}\right) f_{r}\left(a_{j}\right)= \begin{cases}n, & \text { if } a_{i}=a_{j} \\ 0, & \text { if } a_{i} \neq a_{j}\end{cases}
$$

- The relation $A A^{*}=n l$ implies $A^{*} A=n l$.

The element in the i-th row and j-th column of $A^{*} A$ is the sum

$$
\sum_{r=1}^{n} \bar{f}_{r}\left(a_{i}\right) f_{r}\left(a_{j}\right)
$$

Comments

- Note that

$$
\bar{f}_{r}\left(a_{i}\right)=f_{r}\left(a_{i}\right)^{-1}=f_{r}\left(a_{i}^{-1}\right) .
$$

- So the general term of the sum $\sum_{r=1}^{n} \bar{f}_{r}\left(a_{i}\right) f_{r}\left(a_{j}\right)$ is equal to

$$
f_{r}\left(a_{i}^{-1}\right) f_{r}\left(a_{j}\right)=f_{r}\left(a_{i}^{-1} a_{j}\right)
$$

- Therefore, the orthogonality relations can also be expressed as

$$
\sum_{r=1}^{n} f_{r}\left(a_{i}^{-1} a_{j}\right)= \begin{cases}n, & \text { if } a_{i}=a_{j} \\ 0, & \text { if } a_{i} \neq a_{j}\end{cases}
$$

Sums of the Characters

- Consider the sum

$$
\sum_{r=1}^{n} f_{r}\left(a_{i}^{-1} a_{j}\right)= \begin{cases}n, & \text { if } a_{i}=a_{j} \\ 0, & \text { if } a_{i} \neq a_{j}\end{cases}
$$

- Let a_{i} be the identity element e in the sum.

Theorem

The sum of the entries in the j-th column of A is given by

$$
\sum_{r=1}^{n} f_{r}\left(a_{j}\right)= \begin{cases}n, & \text { if } a_{j}=e \\ 0, & \text { otherwise }\end{cases}
$$

Subsection 8

Dirichlet Characters

Residue Classes Modulo k

- Let k be a fixed positive integer.
- Let G be the group of reduced residue classes modulo k.
- Recall that this is a set of $\varphi(k)$ integers $\left\{a_{1}, a_{2}, \ldots, a_{\varphi(k)}\right\}$ incongruent modulo k, each of which is relatively prime to k.
- For each integer a the corresponding residue class \hat{a} is the set of all integers congruent to a modulo k :

$$
\widehat{a}=\{x: x \equiv a \quad(\bmod k)\}
$$

- Multiplication of residue classes is defined by the relation

$$
\widehat{a} \cdot \widehat{b}=\widehat{a b}
$$

- So the product of two residue classes \hat{a} and \widehat{b} is the residue class of the product $a b$.

Group of Reduced Residue Classes

Theorem

With multiplication $\widehat{a} \cdot \widehat{b}=\widehat{a b}$ the set of reduced residue classes modulo k is a finite abelian group of order $\varphi(k)$. The identity is the residue class $\widehat{1}$. The inverse of \widehat{a} is the residue class b, where $a b \equiv 1(\bmod k)$.

- The closure property is automatically satisfied because of the way multiplication of residue classes was defined.
The class $\widehat{1}$ is clearly the identity element.
If $(a, k)=1$, there is a unique b, such that $a b \equiv 1(\bmod k)$.
Hence the inverse of \hat{a} is \widehat{b}.
Finally, it is clear that the group is abelian and that its order is $\varphi(k)$.

Dirichlet Characters

Definition (Dirichlet Characters)

Let G be the group of reduced residue classes modulo k. Suppose f is a character of G. Define an arithmetical function $\chi=\chi_{f}$ as follows:

$$
\chi(n)= \begin{cases}f(\widehat{n}), & \text { if }(n, k)=1 \\ 0, & \text { if }(n, k)>1\end{cases}
$$

The function χ is called a Dirichlet character modulo k.
The principal character χ_{1} is the one corresponding to f_{1}, i.e., that which has the properties

$$
\chi_{1}(n)= \begin{cases}1, & \text { if }(n, k)=1 \\ 0, & \text { if }(n, k)>1\end{cases}
$$

Properties of Dirichlet Characters

Theorem

There are $\varphi(k)$ distinct Dirichlet characters modulo k, each of which is completely multiplicative and periodic with period k. That is, we have:

- $\chi(m n)=\chi(m) \chi(n)$, for all m, n;
- $\chi(n+k)=\chi(n)$, for all n.

Conversely, if χ is completely multiplicative and periodic with period k, and if $\chi(n)=0$, if $(n, k)>1$, then χ is one of the Dirichlet characters $\bmod k$.

- There are $\varphi(k)$ characters f for the group G of reduced residue classes modulo k. Hence, there are $\varphi(k)$ characters χ_{f} modulo k. The multiplicative property of χ_{f} follows from that of f when both m and n are relatively prime to k.
If one of m or n is not relatively prime to k then neither is $m n$. Hence, both $\chi(m n)$ and $\chi(m) \chi(n)$ are zero.

Properties of Dirichlet Characters (Cont'd)

- The periodicity property is a consequence of the following facts:
- $a \equiv b(\bmod k)$ implies $(a, k)=(b, k)$;
- $\chi_{f}(n)=f(\widehat{n})$.

Conversely, suppose that:

- χ is completely multiplicative;
- χ is periodic with period k;
- $\chi(n)=0$, if $(n, k)>1$.

Let f be the function defined on the group G by the equation

$$
f(\widehat{n})=\chi(n), \quad \text { if }(n, k)=1
$$

Then f is a character of G.
Consequently, χ is a Dirichlet character mod k.

Examples: $k=3$ and $k=4$

- When $k=1$ or $k=2$ then $\varphi(k)=1$.

So the only Dirichlet character is the principal character χ_{1}.

- For $k \geq 3$, there are at least two Dirichlet characters since $\varphi(k) \geq 2$.

The following tables display all the Dirichlet characters for $k=3,4$.

n	1	2	3	n	1	2	3	4	
$\chi_{1}(n)$	1	1	0	$\chi_{1}(n)$	1	0	1	0	0
$\chi_{2}(n)$	1	-1	0	$\chi_{2}(n)$	1	0	-1	0	0

To fill these tables we use:

- $\chi(n)^{\varphi(k)}=1$, if $(n, k)=1$. So $\chi(n)$ is a $\varphi(k)$-th root of unity.
- If χ is a character mod k so is the complex conjugate $\bar{\chi}$.

This information suffices to complete the tables for $k=3$ and $k=4$.

Examples: $k=5$

- The following table displays all the Dirichlet characters for $k=5$.

n	1	2	3	4	5
$\chi_{1}(n)$	1	1	1	1	0
$\chi_{2}(n)$	1	-1	-1	1	0
$\chi_{3}(n)$	1	i	$-i$	-1	0
$\chi_{4}(n)$	1	$-i$	i	-1	0

When $k=5$ we have:

- $\varphi(5)=4$. So $\chi(n)$ equals ± 1 or $\pm i$ when $(n, 5)=1$.
- Also, $\chi(2) \chi(3)=\chi(6)=\chi(1)=1$. So $\chi(2)$ and $\chi(3)$ are reciprocals.
- Finally, $\chi(4)=\chi(2)^{2}$.

This information suffices to fill the table for $k=5$.

- As a check we can use the previous theorems which tell us that the sum of the entries is 0 in each row and column except for the first.

Examples: $k=6$ and $k=7$

- The following tables display all the Dirichlet characters mod 6 and 7, where $\omega=e^{\pi i / 3}$.

n	1	2	3	4	5	6
$\chi_{1}(n)$	1	0	0	0	1	0
$\chi_{2}(n)$	1	0	0	0	-1	0

n	1	2	3	4	5	6	7
$\chi_{1}(n)$	1	1	1	1	1	1	0
$\chi_{2}(n)$	1	1	-1	1	-1	-1	0
$\chi_{3}(n)$	1	ω^{2}	ω	$-\omega$	$-\omega^{2}$	-1	0
$\chi_{4}(n)$	1	ω^{2}	$-\omega$	$-\omega$	ω^{2}	1	0
$\chi_{5}(n)$	1	$-\omega$	ω^{2}	ω^{2}	$-\omega$	1	0
$\chi_{6}(n)$	1	$-\omega$	$-\omega^{2}$	ω^{2}	ω	-1	0

Orthogonality for Characters Modulo k

Theorem

Let $\chi_{1}, \ldots, \chi_{\varphi(k)}$ denote the $\varphi(k)$ Dirichlet characters modulo k. Let m and n be two integers, with $(n, k)=1$. Then we have

$$
\sum_{r=1}^{\varphi(k)} \chi_{r}(m) \bar{\chi}_{r}(n)= \begin{cases}\varphi(k), & \text { if } m \equiv n(\bmod k) \\ 0, & \text { if } m \not \equiv n \quad(\bmod k)\end{cases}
$$

- Suppose, first, $(m, k)=1$.

Take $a_{i}=\widehat{n}$ and $a_{j}=\widehat{m}$ in the orthogonality relations

$$
\sum_{r=1}^{\varphi(k)} \bar{\chi}_{r}(\widehat{n}) \chi_{r}(\widehat{m})= \begin{cases}\varphi(k), & \text { if } \widehat{m}=\widehat{n} \\ 0, & \text { if } \widehat{m} \neq \widehat{n}\end{cases}
$$

Suppose, next, that $(m, k)>1$.
Then $\chi_{r}(\widehat{m})=0$, for all r, and $m \not \equiv n(\bmod k)$.

Subsection 9

Sums Involving Dirichlet Characters

Sums Involving Dirichlet Characters

Theorem

Let χ be any nonprincipal character modulo k. Let f be a nonnegative function which has a continuous negative derivative $f^{\prime}(x)$, for all $x \geq x_{0}$. Then, if $y \geq x \geq x_{0}$, we have

$$
\sum_{x<n \leq y} \chi(n) f(n)=O(f(x))
$$

If, in addition, $f(x) \rightarrow 0$ as $x \rightarrow \infty$, then the infinite series

$$
\sum_{n=1}^{\infty} \chi(n) f(n)
$$

converges. Moreover, we have, for $x \geq x_{0}$,

$$
\sum_{n \leq x} \chi(n) f(n)=\sum_{n=1}^{\infty} \chi(n) f(n)+O(f(x))
$$

Sums Involving Dirichlet Characters (Cont'd)

- Let $A(x)=\sum_{n \leq x} \chi(n)$.

By hypothesis, χ is nonprincipal.
So $A(k)=\sum_{n=1}^{k} \chi(n)=0$.
By periodicity, $A(n k)=0$, for $n=2,3, \ldots$.
Hence, $|A(x)|<\varphi(k)$, for all x.
So we have $A(x)=O(1)$.

Sums Involving Dirichlet Characters (Cont'd)

- Now we use Abel's Identity to express $\sum_{x<n \leq y} \chi(n) f(n)$ as an integral:

$$
\begin{aligned}
\sum_{x<n \leq y} \chi(n) f(n) & =f(y) A(y)-f(x) A(x)-\int_{x}^{y} A(t) f^{\prime}(t) d t \\
& =O(f(y))+O(f(x))+O\left(\int_{x}^{y}\left(-f^{\prime}(t)\right) d t\right) \\
& =O(f(x))
\end{aligned}
$$

If $f(x) \rightarrow 0$ as $x \rightarrow \infty$, by the preceding relation and the Cauchy Convergence Criterion, the series $\sum_{n=1}^{\infty} \chi(n) f(n)$ converges.
To prove the last relation we simply note that

$$
\sum_{n=1}^{\infty} \chi(n) f(n)=\sum_{n \leq x} \chi(n) f(n)+\lim _{y \rightarrow \infty} \sum_{x<n \leq y} \chi(n) f(n)
$$

Since the limit on the right is $O(f(x))$, this completes the proof.

Applications of the Sums

- We apply the preceding theorem successively with $f(x)=\frac{1}{x}$, $f(x)=\frac{\log x}{x}$, and $f(x)=\frac{1}{\sqrt{x}}$, for $x \geq 1$ to obtain:

Theorem

If x is any nonprincipal character mod k and if $x \geq 1$, we have

$$
\begin{aligned}
\sum_{n \leq x} \frac{\chi(n)}{n} & =\sum_{n=1}^{\infty} \frac{\chi(n)}{n}+O\left(\frac{1}{x}\right) \\
\sum_{n \leq x} \frac{\chi(n) \log n}{n} & =\sum_{n=1}^{\infty} \frac{\chi(n) \log n}{n}+O\left(\frac{\log x}{x}\right) \\
\sum_{n \leq x} \frac{\chi(n)}{\sqrt{n}} & =\sum_{n=1}^{\infty} \frac{\chi(n)}{\sqrt{n}}+O\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Subsection 10

The Nonvanishing of $L(1, \chi)$ for Real Nonprincipal χ

Divisor Sum of Real Characters

- We denote by $L(1, \chi)$ the sum

$$
L(1, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n}
$$

Theorem

Let χ be any real-valued character mod k and let

$$
A(n)=\sum_{d \mid n} \chi(d)
$$

Then $A(n) \geq 0$, for all n, and $A(n) \geq 1$ if n is a square.

Divisor Sum of Real Characters (Cont'd)

- For prime powers we have

$$
A\left(p^{a}\right)=\sum_{t=0}^{a} \chi\left(p^{t}\right)=1+\sum_{t=1}^{a} \chi(p)^{t}
$$

By hypothesis, χ is real-valued.
So the only possible values for $\chi(p)$ are 0,1 and -1 .

- If $\chi(p)=0$ then $A\left(p^{a}\right)=1$.
- If $\chi(p)=1$ then $A\left(p^{a}\right)=a+1$.
- If $\chi(p)=-1$, then $A\left(p^{a}\right)= \begin{cases}0, & \text { if } a \text { is odd } \\ 1, & \text { if } a \text { is even }\end{cases}$

In any case, $A\left(p^{a}\right) \geq 1$ if a is even.

Divisor Sum of Real Characters (Cont'd)

- We showed $A\left(p^{a}\right) \geq 1$, if a is even.

Now if $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$, by multiplicativity,

$$
A(n)=A\left(p_{1}^{a_{1}}\right) \cdots A\left(p_{r}^{a_{r}}\right) .
$$

Each factor $A\left(p_{i}^{\mathrm{a}_{i}}\right) \geq 0$.
Hence $A(n) \geq 0$.
If n is a square then each exponent a_{j} is even.
So each factor $A\left(p_{i}^{a_{i}}\right) \geq 1$.
Hence $A(n) \geq 1$.
This proves the theorem.

Value of $L(1, \chi)$

Theorem

For any real-valued nonprincipal character $x \bmod k$, let

$$
A(n)=\sum_{d \mid n} \chi(d) \quad \text { and } \quad B(x)=\sum_{n \leq x} \frac{A(n)}{\sqrt{n}}
$$

Then we have:
(a) $B(x) \rightarrow \infty$ as $x \rightarrow \infty$.
(b) $B(x)=2 \sqrt{x} L(1, \chi)+O(1)$, for all $x \geq 1$.

Therefore, $L(1, \chi) \neq 0$.

Value of $L(1, \chi)$ (Parts (a) and (b))

(a) Use the preceding theorem to write

$$
B(x) \geq \sum_{\substack{n \leq x \\ n=m^{2}}} \frac{1}{\sqrt{n}}=\sum_{m \leq \sqrt{x}} \frac{1}{m} .
$$

The last sum tends to ∞ as $x \rightarrow \infty$ since the series $\sum \frac{1}{m}$ diverges.
(b) We write

$$
B(x)=\sum_{n \leq x} \frac{1}{\sqrt{n}} \sum_{d \mid n} \chi(d)=\sum_{\substack{q, d \\ q d \leq x}} \frac{\chi(d)}{\sqrt{d q}}
$$

Value of $L(1, \chi)$ (Part (b) Cont'd)

- Use generalized partial sums of Dirichlet products,

$$
\sum_{\substack{q, d \\ q d \leq x}} f(d) g(q)=\sum_{n \leq a} f(n) G\left(\frac{x}{n}\right)+\sum_{n \leq b} g(n) F\left(\frac{x}{n}\right)-F(a) G(b),
$$

where $a b=x, F(x)=\sum_{n \leq x} f(n)$ and $G(x)=\sum_{n \leq x} g(n)$.
Take $a=b=\sqrt{x}$ and let:

$$
\begin{aligned}
& \text { - } f(n)=\frac{\chi(n)}{\sqrt{n}} \\
& \text { - } g(n)=\frac{1}{\sqrt{n}} .
\end{aligned}
$$

We obtain

$$
\begin{aligned}
B(x) & =\sum_{q, d} \frac{\chi(d)}{\sqrt{q d}} \\
& =\sum_{n \leq \sqrt{x}} \frac{\chi(n)}{\sqrt{n}} G\left(\frac{x}{n}\right)+\sum_{n \leq \sqrt{x}} \frac{1}{\sqrt{n}} F\left(\frac{x}{n}\right)-F(\sqrt{x}) G(\sqrt{x}) .
\end{aligned}
$$

Value of $L(1, \chi)$ (Part (b) Cont'd)

- We know that
- $G(x)=\sum_{n \leq x} \frac{1}{\sqrt{n}}=2 \sqrt{x}+A+O\left(\frac{1}{\sqrt{x}}\right)$, where A is a constant;
- $F(x)=\sum_{n \leq x} \frac{\chi(n)}{\sqrt{n}}=B+O\left(\frac{1}{\sqrt{x}}\right)$, where $B=\sum_{n=1}^{\infty} \frac{\chi(n)}{\sqrt{n}}$.

Since $F(\sqrt{x}) G(\sqrt{x})=2 B x^{1 / 4}+O(1)$, we now get

$$
\begin{aligned}
B(x)= & \sum_{n \leq \sqrt{x}} \frac{\chi(n)}{\sqrt{n}}\left\{2 \sqrt{\frac{x}{n}}+A+O\left(\sqrt{\frac{n}{x}}\right)\right\} \\
& \quad+\sum_{n \leq \sqrt{x}} \frac{1}{\sqrt{n}}\left\{B+O\left(\sqrt{\frac{n}{x}}\right)\right\}-2 B x^{1 / 4}+O(1) \\
= & 2 \sqrt{x} \sum_{n \leq \sqrt{x}} \frac{\chi(n)}{n}+A \sum_{n \leq \sqrt{x}} \frac{\chi(n)}{\sqrt{n}}+O\left(\frac{1}{\sqrt{x}} \sum_{n \leq \sqrt{x}}|\chi(n)|\right) \\
& +B \sum_{n \leq \sqrt{x}} \frac{1}{\sqrt{n}}+O\left(\frac{1}{\sqrt{x}} \sum_{n \leq \sqrt{x}} 1\right)-2 B x^{1 / 4}+O(1) \\
= & 2 \sqrt{x} L(1, \chi)+O(1) .
\end{aligned}
$$

Parts (a) and (b) together imply that $L(1, \chi) \neq 0$.

