Introduction to Analytic Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Dirichlet's Theorem on Primes in Arithmetic Progressions

- Introduction
- Dirichlet's Theorem for Primes of the Form $4 n-1$ and $4 n+1$
- The Plan of the Proof of Dirichlet's Theorem
- Proof of Lemma 1
- Proof of Lemma 2
- Proof of Lemma 3
- Proof of Lemma 5
- Proof of Lemma 4
- Distribution of Primes in Arithmetic Progressions

Subsection 1

Introduction

Introducing Dirichlet's Theorem

- The arithmetic progression of odd numbers $1,3,5, \ldots, 2 n+1, \ldots$ contains infinitely many primes.
- It is natural to ask whether other arithmetic progressions have this property.
- An arithmetic progression with first term h and common difference k consists of all numbers of the form $k n+h, n=0,1,2, \ldots$.
- A necessary condition for the existence of infinitely many primes in the arithmetic progression is that $(h, k)=1$.
Suppose h and k have a common factor $d>1$.
Then each term of the progression is divisible by d.
So there can be no more than one prime in the progression.
- Dirichlet proved that the condition is also sufficient.

If $(h, k)=1$ the arithmetic progression $k n+h$ contains infinitely many primes.

Subsection 2

Dirichlet's Theorem for Primes of the Form $4 n-1$ and $4 n+1$

Dirichlet's Theorem for Primes of the Form 4n-1

Theorem

There are infinitely many primes of the form $4 n-1$.

- Assume there are only a finite number of such primes.

Let p be the largest, and set $N=2^{2} \cdot 3 \cdot 5 \cdots p-1$.
The product $3 \cdot 5 \cdots p$ contains all the odd primes $\leq p$ as factors.
Since N is of the form $4 n-1$, it cannot be prime because $N>p$.
No prime $\leq p$ divides N.
So all the prime factors of N must exceed p.
But all of the prime factors of N cannot be of the form $4 n+1$ because the product of two such numbers is again of the same form.
Hence, some prime factor of N must be of the form $4 n-1$.
This is a contradiction.

Dirichlet's Theorem for Primes of the Form $4 n+1$

Theorem

There are infinitely many primes of the form $4 n+1$.

- Let N be any integer >1.

We show that there is a prime $p>N$, such that $p \equiv 1(\bmod 4)$. Let

$$
m=(N!)^{2}+1
$$

Then m is odd, $m>1$.
Let p be the smallest prime factor of m.
As none of the numbers $2,3, \ldots, N$ divides $m, p>N$.
Also, we have

$$
(N!)^{2} \equiv-1 \quad(\bmod p)
$$

Dirichlet's Theorem for Primes $4 n+1$ (Cont'd)

- Raise both members to the $\frac{p-1}{2}$ power,

$$
(N!)^{p-1} \equiv(-1)^{\frac{p-1}{2}} \quad(\bmod p) .
$$

By the Euler-Fermat Theorem, $(N!)^{p-1} \equiv 1(\bmod p)$.
This gives

$$
(-1)^{\frac{p-1}{2}} \equiv 1 \quad(\bmod p)
$$

Now the difference $(-1)^{\frac{p-1}{2}}-1$ is either 0 or -2 .
It cannot be -2 , because it is divisible by p. So it must be 0 .
That is,

$$
(-1)^{\frac{p-1}{2}}=1 .
$$

This means that $\frac{p-1}{2}$ is even. So $p \equiv 1(\bmod 4)$.
So, for each $N>1$, there is a prime $p>N$, such that $p \equiv 1(\bmod 4)$.
Therefore, there are infinitely many primes of the form $4 n+1$.

Subsection 3

The Plan of the Proof of Dirichlet's Theorem

The End Theorem

- Dirichlet's Theorem follows from an asymptotic formula.

Theorem

If $k>0$ and $(h, k)=1$, we have, for all $x>1$,

$$
\sum_{\substack{p \leq x \\ p \equiv h \\(\bmod k)}} \frac{\log p}{p}=\frac{1}{\varphi(k)} \log x+O(1)
$$

where the sum is extended over those primes $p \leq x$ which are congruent to $h \bmod k$.

- Since $\log x \rightarrow \infty$ as $x \rightarrow \infty$, this relation implies that there are infinitely many primes $p \equiv h(\bmod k)$.
- So, there are infinitely many primes in $n k+h, n=0,1,2, \ldots$.

Remarks

- Consider again the sum

$$
\sum_{\substack{p \leq x \\ p \equiv h \\(\bmod k)}} \frac{\log p}{p}=\frac{1}{\varphi(k)} \log x+O(1)
$$

extended over those primes $p \leq x$ which are congruent to $h \bmod k$.

- The principal term on the right of the equation is independent of h.
- Therefore, the theorem not only implies Dirichlet's Theorem but also shows that the primes in each of the $\varphi(k)$ reduced residue classes $\bmod k$ make the same contribution to the principal term in

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+O(1)
$$

Notation

- The positive integer k represents a fixed modulus.
- h is a fixed integer relatively prime to k.
- The $\varphi(k)$ Dirichlet characters mod k are denoted by $\chi_{1}, \chi_{2}, \ldots, \chi_{\varphi(k)}$, with χ_{1} denoting the principal character.
- For $\chi \neq \chi_{1}$, we write $L(1, \chi)$ and $L^{\prime}(1, \chi)$

$$
L(1, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n}, \quad L^{\prime}(1, \chi)=-\sum_{n=1}^{\infty} \frac{\chi(n) \log n}{n}
$$

- The convergence of each of these series was shown in the previous set.
- Moreover, we proved that $L(1, \chi) \neq 0$, if χ is real-valued.
- The symbol p denotes a prime, and $\sum_{p \leq x}$ denotes a sum extended over all primes $p \leq x$.

Lemma 1

Lemma 1

For $x>1$, we have

$$
\sum_{\substack{p \leq x \\ p \equiv h(\bmod k)}} \frac{\log p}{p}=\frac{1}{\varphi(k)} \log x+\frac{1}{\varphi(k)} \sum_{r=2}^{\varphi(k)} \bar{\chi}_{r}(h) \sum_{p \leq x} \frac{\chi_{r}(p) \log p}{p}+O(1) .
$$

- It is clear that Lemma 1 will imply the theorem if we show that

$$
\sum_{p \leq x} \frac{\chi(p) \log p}{p}=O(1)
$$

for each $\chi \neq \chi_{1}$.

Lemma 2

- The next lemma expresses $\sum_{p \leq x} \frac{\chi(p) \log p}{p}$ in a form which is not extended over primes.

Lemma 2

For $x>1$ and $\chi \neq \chi_{1}$, we have

$$
\sum_{p \leq x} \frac{\chi(p) \log p}{p}=-L^{\prime}(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}+O(1)
$$

- So Lemma 2 will imply $\sum_{p \leq x} \frac{\chi(p) \log p}{p}=O(1)$, for each $\chi \neq \chi_{1}$, if we show that

$$
\sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}=O(1)
$$

Lemma 3

- $\sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}=O(1)$ will be deduced from the following lemma.

Lemma 3

For $x>1$ and $\chi \neq \chi_{1}$, we have

$$
L(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}=O(1)
$$

- If $L(1, \chi) \neq 0$, we cancel $L(1, \chi)$ to obtain $\sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}=O(1)$.
- Ultimately, we must show $L(1, \chi) \neq 0$, for all $\chi \neq \chi_{1}$.
- This was proved for real $\chi \neq \chi_{1}$ in a previous theorem.
- So it remains to prove that $L(1, \chi) \neq 0$, for all $\chi \neq \chi_{1}$ which take complex as well as real values.

Remark on Complex Valued Characters

- We let $N(k)$ denote the number of nonprincipal characters $\chi \bmod k$, such that

$$
L(1, \chi)=0
$$

- If $L(1, \chi)=0$, then

$$
L(1, \bar{\chi})=\sum_{n=1}^{\infty} \frac{\bar{\chi}(n)}{n}=0
$$

- Moreover, if $L(1, \chi)=0, \chi \neq \bar{\chi}$, since χ is not real.
- So the characters χ for which $L(1, \chi)=0$ occur in conjugate pairs.
- It follows that $N(k)$ is even.
- Our goal is to prove that $N(k)=0$.

Lemma 4

- We deduce $N(k)=0$ from the following asymptotic formula.

Lemma 4

For $x>1$, we have

$$
\sum_{p \leq x} \frac{\log p}{p}=\frac{1-N(k)}{\varphi(k)} \log x+O(1)
$$

- If $N(k) \neq 0$, then $N(k) \geq 2$, since $N(k)$ is even.

Hence, the coefficient of $\log x$ is negative.
So the right member $\rightarrow-\infty$ as $x \rightarrow \infty$.
This is a contradiction, since all the terms on the left are positive.
Therefore, Lemma 4 implies that $N(k)=0$.

Lemma 5

- The proof of Lemma 4 will be based on the following asymptotic formula.

Lemma 5
If $\chi \neq \chi_{1}$ and $L(1, \chi)=0$, we have

$$
L^{\prime}(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}=\log x+O(1)
$$

Subsection 4

Proof of Lemma 1

Proof of Lemma 1

- We begin with the asymptotic formula mentioned earlier,

$$
\sum_{p \leq x} \frac{\log p}{p}=\log x+O(1)
$$

Extract those terms arising from primes $p \equiv h(\bmod k)$.
For the extraction use the orthogonality relation for Dirichlet characters

$$
\sum_{r=1}^{\varphi(k)} \chi_{r}(m) \bar{\chi}_{r}(n)= \begin{cases}\varphi(k), & \text { if } m \equiv n \quad(\bmod k) \\ 0, & \text { if } m \not \equiv n \quad(\bmod k)\end{cases}
$$

This is valid for $(n, k)=1$.
Take $m=p$ and $n=h$, where $(h, k)=1$,

$$
\sum_{r=1}^{\varphi(k)} \chi_{r}(p) \bar{\chi}_{r}(h)=\left\{\begin{array}{lll}
\varphi(k), & \text { if } p \equiv h & (\bmod k) \\
0, & \text { if } p \not \equiv h & (\bmod k)
\end{array}\right.
$$

Proof of Lemma 1 (Cont'd)

- Multiply both members by $\frac{\log p}{p}$ and sum over all $p \leq x$,

$$
\sum_{p \leq x} \sum_{r=1}^{\varphi(k)} \chi_{r}(p) \bar{\chi}_{r}(h) \frac{\log p}{p}=\varphi(k) \sum_{\substack{p \leq x \\ p \equiv h}} \frac{\log p}{p} .
$$

Isolate those terms involving only the principal character χ_{1},

$$
\varphi(k) \sum_{\substack{p \equiv h \\ p \equiv h(\bmod k)}} \frac{\log p}{p}=\bar{\chi}_{1}(h) \sum_{p \leq x} \frac{\chi_{1}(p) \log p}{p}+\sum_{r=2}^{\varphi(k)} \bar{\chi}_{r}(h) \sum_{p \leq x} \frac{\chi_{r}(p) \log p}{p} .
$$

Proof of Lemma 1 (Cont'd)

- We have:
- $\chi_{1}(h)=1$;
- $\chi_{1}(p)=0$, unless $(p, k)=1$, in which case $\chi_{1}(p)=1$.

Hence, the first term on the right is given by

$$
\begin{aligned}
\sum_{\substack{p \leq x \\
(p, k)=1}} \frac{\log p}{p} & =\sum_{p \leq x} \frac{\log p}{p}-\sum_{\substack{p \leq x \\
p \mid k}} \frac{\log p}{p} \\
& =\sum_{p \leq x} \frac{\log p}{p}+O(1),
\end{aligned}
$$

since there are only a finite number of primes which divide k.
So

Finally, use $\sum_{p \leq x} \frac{\log p}{p}=\log x+O(1)$ and divide by $\varphi(k)$.

Subsection 5

Proof of Lemma 2

Proof of Lemma 2

- We express the sum

$$
p \sum_{n \leq x} \frac{\chi(n) \wedge(n)}{n}
$$

where $\Lambda(n)$ is Mangoldt's function, in two ways.
First we note that the definition of $\Lambda(n)$ gives us

$$
\sum_{n \leq x} \frac{\chi(n) \wedge(n)}{n}=\sum_{p \leq x} \sum_{\substack{a=1 \\ p^{a} \leq x}}^{\infty} \frac{\chi\left(p^{a}\right) \log p}{p^{a}}
$$

We separate the terms with $a=1$ and write

$$
\sum_{n \leq x} \frac{\chi(n) \wedge(n)}{n}=\sum_{p \leq x} \frac{\chi(p) \log p}{p}+\sum_{\substack{ \\p \leq a \\ a=2 \\ p^{a} \leq x}}^{\infty} \frac{\chi\left(p^{a}\right) \log p}{p^{a}}
$$

Proof of Lemma 2 (Cont'd)

- The sum

$$
\sum_{\substack{p \leq a \\ a=2 \\ p^{a} \leq x}}^{\infty} \frac{\chi\left(p^{a}\right) \log p}{p^{a}}
$$

is majorized by

$$
\sum_{p} \log p \sum_{a=2}^{\infty} \frac{1}{p^{a}}=\sum_{p} \frac{\log p}{p(p-1)}<\sum_{n=2}^{\infty} \frac{\log n}{n(n-1)}=O(1)
$$

So we get

$$
\sum_{p \leq x} \frac{\chi(p) \log p}{p}=\sum_{n \leq x} \frac{\chi(n) \Lambda(n)}{n}+O(1)
$$

Proof of Lemma 2 (Cont'd)

- Now we recall that

$$
\Lambda(n)=\sum_{d \mid n} \mu(d) \log \frac{n}{d}
$$

Hence,

$$
\sum_{n \leq x} \frac{\chi(n) \wedge(n)}{n}=\sum_{n \leq x} \frac{\chi(n)}{n} \sum_{d \mid n} \mu(d) \log \frac{n}{d}
$$

In the last sum we write $n=c d$ and use the multiplicative property of χ to obtain

$$
\sum_{n \leq x} \frac{\chi(n) \wedge(n)}{n}=\sum_{d \leq x} \frac{\mu(d) \chi(d)}{d} \sum_{c \leq x / d} \frac{\chi(c) \log c}{c}
$$

Proof of Lemma 2 (Cont'd)

- Since $\frac{x}{d}>1$, in the sum

$$
\sum_{c \leq x / d} \frac{\chi(c) \log c}{c}
$$

we may use a previous theorem to obtain

$$
\sum_{c \leq \frac{x}{d}} \frac{\chi(c) \log c}{c}=-L^{\prime}(1, \chi)+O\left(\frac{\log \frac{x}{d}}{\frac{x}{d}}\right) .
$$

So

$$
\sum_{n \leq x} \frac{\chi(n) \wedge(n)}{n}=-L^{\prime}(1, \chi) \sum_{d \leq x} \frac{\mu(d) \chi(d)}{d}+O\left(\sum_{d \leq x} \frac{1}{d} \frac{\log \frac{x}{d}}{\frac{x}{d}}\right) .
$$

Proof of Lemma 2 (Conclusion)

- Note

$$
\sum_{d \leq x} \log d=\log [x]!=x \log x+O(x)
$$

So the sum in the O-term above is

$$
\frac{1}{x} \sum_{d \leq x}(\log x-\log d)=\frac{1}{x}\left([x] \log x-\sum_{d \leq x} \log d\right)=O(1)
$$

Therefore, we get

$$
\sum_{n \leq x} \frac{\chi(n) \wedge(n)}{n}=-L^{\prime}(1, \chi) \sum_{d \leq x} \frac{\mu(d) \chi(d)}{d}+O(1)
$$

But we have shown that $\sum_{p \leq x} \frac{\chi(p) \log p}{p}=\sum_{n \leq x} \frac{\chi(n) \Lambda(n)}{n}+O(1)$.
So we have the conclusion.

Subsection 6

Proof of Lemma 3

Proof of Lemma 3

- We use the generalized Möbius Inversion Formula.

It states that, if α is completely multiplicative, then

$$
G(x)=\sum_{n \leq x} \alpha(n) F\left(\frac{x}{n}\right) \quad \text { iff } \quad F(x)=\sum_{n \leq x} \mu(n) \alpha(n) G\left(\frac{x}{n}\right)
$$

Take $\alpha(n)=\chi(n)$ and $F(x)=x$.
Then

$$
G(x)=\sum_{n \leq x} \chi(n) \frac{x}{n}=x \sum_{n \leq x} \frac{\chi(n)}{n}
$$

Moreover, by the Inversion Formula,

$$
x=\sum_{n \leq x} \mu(n) \chi(n) G\left(\frac{x}{n}\right) .
$$

Proof of Lemma 3 (Cont'd)

- Now recall that

$$
\sum_{n \leq x} \frac{\chi(n)}{n}=\sum_{n=1}^{\infty} \frac{\chi(n)}{n}+O\left(\frac{1}{x}\right)
$$

So we can write

$$
G(x)=x L(1, \chi)+O(1)
$$

Therefore,

$$
\begin{aligned}
x & =\sum_{n \leq x} \mu(n) \chi(n)\left\{\frac{x}{n} L(1, \chi)+O(1)\right\} \\
& =x L(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}+O(x)
\end{aligned}
$$

Finally, divide by x to obtain the conclusion.

Subsection 7

Proof of Lemma 5

Proof of Lemma 5

- Consider again the Generalized Möbius Inversion Formula

$$
G(x)=\sum_{n \leq x} \alpha(n) F\left(\frac{x}{n}\right) \quad \text { iff } \quad F(x)=\sum_{n \leq x} \mu(n) \alpha(n) G\left(\frac{x}{n}\right)
$$

Take $\alpha(n)=\chi(n)$ and $F(x)=x \log x$.
Then

$$
\begin{aligned}
G(x) & =\sum_{n \leq x} \chi(n) \frac{x}{n} \log \frac{x}{n} \\
& =x \log x \sum_{n \leq x} \frac{\chi(n)}{n}-x \sum_{n \leq x} \frac{\chi(n) \log n}{n} .
\end{aligned}
$$

Moreover, by the Inversion Formula,

$$
x \log x=\sum_{n \leq x} \mu(n) \chi(n) G\left(\frac{x}{n}\right) .
$$

Proof of Lemma 5 (Cont'd)

- By a previous theorem:
- $\sum_{n \leq x} \frac{\chi(n)}{n}=\sum_{n=1}^{\infty} \frac{\chi(n)}{n}+O\left(\frac{1}{x}\right) ;$
- $\sum_{n \leq x} \frac{\chi(n) \log n}{n}=\sum_{n=1}^{\infty} \frac{\chi(n) \log n}{n}+O\left(\frac{\log x}{x}\right)$.

We get

$$
\begin{aligned}
G(x) & =x \log x \sum_{n \leq x} \frac{\chi(n)}{n}-x \sum_{n \leq x} \frac{\chi(n) \log n}{n} \\
& =x \log x\left\{L(1, \chi)+O\left(\frac{1}{x}\right)\right\}+x\left\{L^{\prime}(1, \chi)+O\left(\frac{\log x}{x}\right)\right\} \\
& =x L^{\prime}(1, \chi)+O(\log x)
\end{aligned}
$$

since we are assuming that $L(1, \chi)=0$.

Proof of Lemma 5 (Cont'd)

- Hence, we get

$$
\begin{aligned}
x \log x & =\sum_{n \leq x} \mu(n) \chi(n) G\left(\frac{x}{n}\right) \\
& =\sum_{n \leq x} \mu(n) \chi(n)\left\{\frac{x}{n} L^{\prime}(1, \chi)+O\left(\log \frac{x}{n}\right)\right\} \\
& =x L^{\prime}(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}+O\left(\sum_{n \leq x}(\log x-\log n)\right)
\end{aligned}
$$

We know the O-term is $O(x)$.
Hence we have

$$
x \log x=x L^{\prime}(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}+O(x)
$$

Finally, divide by x.

Subsection 8

Proof of Lemma 4

Proof of Lemma 4

- Lemma 1 gives
$\sum_{\substack{p \leq x \\ p \equiv h}} \frac{\log p}{p}=\frac{1}{\varphi(k)} \log x+\frac{1}{\varphi(k)} \sum_{r=2}^{\varphi(k)} \bar{\chi}_{r}(h) \sum_{p \leq x} \frac{\chi_{r}(p) \log p}{p}+O(1)$.
Setting $h=1$, we get

$$
\sum_{\substack{p \leq x \\ p \equiv 1 \\(\bmod k)}} \frac{\log p}{p}=\frac{1}{\varphi(k)} \log x+\frac{1}{\varphi(k)} \sum_{r=2}^{\varphi(k)} \sum_{p \leq x} \frac{\chi_{r}(p) \log p}{p}+O(1)
$$

Proof of Lemma 4 (Cont'd)

- Lemma 2 says, for $x>1$ and $\chi \neq \chi_{1}$,

$$
\sum_{p \leq x} \frac{\chi(p) \log p}{p}=-L^{\prime}(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}+O(1)
$$

Substitute this in on the right in the main formula

$$
\sum_{\substack{p \leq x \\ p \equiv 1 \\(\bmod k)}} \frac{\log p}{p}=\frac{1}{\varphi(k)} \log x+\frac{1}{\varphi(k)} \sum_{r=2}^{\varphi(k)} \sum_{p \leq x} \frac{\chi_{r}(p) \log p}{p}+O(1) .
$$

We get

$$
\begin{aligned}
& \sum_{p \equiv 1} \underset{p \leq x}{p(\bmod k)} \frac{\log p}{p}=\frac{1}{\varphi(k)} \log x \\
& \quad+\frac{1}{\varphi(k)} \sum_{r=2}^{\varphi(k)}\left[-L^{\prime}\left(1, \chi_{r}\right) \sum_{n \leq x} \frac{\mu(n) \chi_{r}(n)}{n}+O(1)\right]+O(1) .
\end{aligned}
$$

Proof of Lemma 4 (Cont'd)

- Now we have

$$
\begin{aligned}
& \sum_{p \equiv 1} \underset{p \leq x}{(\bmod k)} \frac{\log p}{p}=\frac{1}{\varphi(k)} \log x \\
& \quad+\frac{1}{\varphi(k)} \sum_{r=2}^{\varphi(k)}\left[-L^{\prime}\left(1, \chi_{r}\right) \sum_{n \leq x} \frac{\mu(n) \chi_{r}(n)}{n}\right]+O(1) .
\end{aligned}
$$

By Lemma 3, for $x>1$ and $\chi \neq \chi_{1}$, we have

$$
L(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}=O(1)
$$

So, if $L\left(1, \chi_{r}\right) \neq 0$, the contribution to the sum on the right is $O(1)$.

Proof of Lemma 4 (Cont'd)

- By Lemma 5, if $\chi \neq \chi_{1}$ and $L(1, \chi)=0$, we have

$$
L^{\prime}(1, \chi) \sum_{n \leq x} \frac{\mu(n) \chi(n)}{n}=\log x+O(1)
$$

So, if $L\left(1, \chi_{r}\right)=0$,

$$
-L^{\prime}\left(1, \chi_{r}\right) \sum_{n \leq x} \frac{\mu(n) \chi_{r}(n)}{n}=-\log x+O(1)
$$

Therefore the sum on the right is $\frac{1}{\varphi(k)}\{-N(k) \log x+O(1)\}$. Thus, the equation becomes

$$
\sum_{\substack{p \leq x \\ p \equiv 1 \\(\bmod k)}} \frac{\log p}{p}=\frac{1-N(k)}{\varphi(k)} \log x+O(1) .
$$

Subsection 9

Distribution of Primes in Arithmetic Progressions

Distribution of Primes in Arithmetic Progressions

Theorem (Dirichlet's Theorem)

If $k>0$ and $(h, k)=1$, there are infinitely many primes in the arithmetic progression $n k+h, n=0,1,2, \ldots$.

- It follows from the main theorem of the preceding section.
- If $k>0$ and $(a, k)=1$, let

$$
\pi_{a}(x)=\sum_{\substack{p \leq x \\ p \equiv a}} 1
$$

- The function $\pi_{a}(x)$ counts the number of primes $\leq x$ in the progression $n k+a, n=0,1,2, \ldots$.
- Dirichlet's Theorem shows that $\pi_{a}(x) \rightarrow \infty$ as $x \rightarrow \infty$.

Prime Number Theorem for Arithmetic Progressions

- There is also a prime number theorem for arithmetic progressions.
- It states that, if $(a, k)=1$, then, as $x \rightarrow \infty$,

$$
\pi_{a}(x) \sim \frac{\pi(x)}{\varphi(k)} \sim \frac{1}{\varphi(k)} \frac{x}{\log x}
$$

- The prime number theorem for progressions is suggested by the formula

$$
\sum_{\substack{p \leq x \\ p \equiv h \\(\bmod k)}} \frac{\log p}{p}=\frac{1}{\varphi(k)} \log x+O(1) .
$$

- Note that the principal term is independent of h.
- Thus, the primes seem to be equally distributed among the $\varphi(k)$ reduced residue classes mod k.

Prime Number Theorem for Progressions

Theorem

If the relation

$$
\pi_{a}(x) \sim \frac{\pi(x)}{\varphi(k)} \text { as } x \rightarrow \infty
$$

holds for every integer a relatively prime to k, then

$$
\pi_{a}(x) \sim \pi_{b}(x) \text { as } x \rightarrow \infty,
$$

whenever $(a, k)=(b, k)=1$.
Conversely, the latter implies the former.

- Only the "only if" needs proof.

Prime Number Theorem for Progressions (Cont'd)

- Let $A(k)$ denote the number of primes that divide k. If $x>k$, we have

$$
\begin{aligned}
\pi(x) & =\sum_{p \leq x} 1 \\
& =A(k)+\sum_{\substack{p \leq x \\
p \nmid k}} \\
& =A(k)+\sum_{\substack{(a, k)=1}}^{k} \sum_{p \equiv a}^{p \leq x}(\bmod k)
\end{aligned} 1 .
$$

Therefore,

$$
\frac{\pi(x)-A(k)}{\pi_{b}(x)}=\sum_{\substack{a=1 \\(a, k)=1}}^{k} \frac{\pi_{a}(x)}{\pi_{b}(x)}
$$

Prime Number Theorem for Progressions (Cont'd)

- We got

$$
\frac{\pi(x)-A(k)}{\pi_{b}(x)}=\sum_{\substack{a=1 \\(a, k)=1}}^{k} \frac{\pi_{a}(x)}{\pi_{b}(x)}
$$

By hypothesis, each term in the sum tends to 1 as $x \rightarrow \infty$.
So the sum tends to $\varphi(k)$.
Hence,

$$
\frac{\pi(x)}{\pi_{b}(x)}-\frac{A(k)}{\pi_{b}(x)} \rightarrow \varphi(k), \text { as } x \rightarrow \infty
$$

But, since $\pi_{b}(x) \rightarrow \infty$ as $x \rightarrow \infty, \frac{A(k)}{\pi_{b}(x)} \rightarrow 0$.
So

$$
\frac{\pi(x)}{\pi_{b}(x)} \rightarrow \varphi(k)
$$

