Introduction to Analytic Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Periodic Arithmetical Functions and Gauss Sums

- Functions Periodic Modulo k
- Existence of Fourier Series for Periodic Arithmetical Functions
- Ramanujan's Sum and Generalizations
- Multiplicative Properties of the Sums $s_{k}(n)$
- Gauss Sums Associated with Dirichlet Characters
- Dirichlet Characters with Nonvanishing Gauss Sums
- Induced Moduli and Primitive Characters
- Further Properties of Induced Moduli
- The Conductor of a Character
- Primitive Characters and Separable Gauss Sums
- The Finite Fourier Series of the Dirichlet Characters
- Pólya's Inequality for the Partial Sums of Primitive Characters

Subsection 1

Functions Periodic Modulo k

Functions Periodic Modulo k

- Let k be a positive integer.
- An arithmetical function f is said to be periodic with period k (or periodic modulo k) if

$$
f(n+k)=f(n), \text { for all integers } n
$$

- If k is a period so is $m k$, for any integer $m>0$.
- The smallest positive period of f is called the fundamental period. Example: The Dirichlet characters mod k are periodic $\bmod k$. Consider the greatest common divisor (n, k), as a function of n. Periodicity enters through the relation

$$
(n+k, k)=(n, k) .
$$

Finite Fourier Series

- Another example is the exponential function

$$
f(n)=e^{2 \pi i m n / k}
$$

where m and k are fixed integers.

- The number $e^{2 \pi i m / k}$ is a k-th root of unity.
- $f(n)$ is its n-th power.
- Any finite linear combination of such functions, say

$$
\sum_{m} c(m) e^{2 \pi i m n / k}
$$

is also periodic mod k, for every choice of coefficients $c(m)$.

The Geometric Sum

- We shall show that every arithmetical function which is periodic mod k can be expressed in the form $\sum_{m} c(m) e^{2 \pi i m n / k}$.
- Such sums are called finite Fourier series.

Theorem

For fixed $k \geq 1$, let

$$
g(n)=\sum_{m=0}^{k-1} e^{2 n i m n / k}
$$

Then

$$
g(n)= \begin{cases}0, & \text { if } k \nmid n, \\ k, & \text { if } k \mid n .\end{cases}
$$

The Geometric Sum (Cont'd)

- By hypothesis, $g(n)$ is the sum of terms in a geometric progression,

$$
g(n)=\sum_{m=0}^{k-1} x^{m}, \quad x=e^{2 \pi i n / k}
$$

So we have

$$
g(n)= \begin{cases}\frac{x^{k}-1}{x-1}, & \text { if } x \neq 1 \\ k, & \text { if } x=1\end{cases}
$$

If $k \mid n$, then $x=1$. So $g(n)=k$.
If $k \nmid n$, then $x \neq 1$. But $x^{k}=1$. Hence, $g(n)=0$.

Subsection 2

Existence of Fourier Series for Periodic Arithmetical Functions

Lagrange's Interpolation Theorem

Theorem (Lagrange's Interpolation Theorem)

Let $z_{0}, z_{1}, \ldots, z_{k-1}$ be k distinct complex numbers, and let w_{0}, w_{1}, \ldots, w_{k-1} be k complex numbers which need not be distinct. Then there is a unique polynomial $P(z)$ of degree $\leq k-1$, such that

$$
P\left(z_{m}\right)=w_{m}, \quad \text { for } m=0,1,2, \ldots, k-1
$$

- The required polynomial $P(z)$, called the Lagrange interpolation polynomial, can be constructed explicitly as follows.
Let

$$
A(z)=\left(z-z_{0}\right)\left(z-z_{1}\right) \cdots\left(z-z_{k-1}\right)
$$

Let

$$
A_{m}(z)=\frac{A(z)}{z-z_{m}}
$$

Lagrange's Interpolation Theorem (Cont'd)

- $A_{m}(z)=\frac{A(z)}{z-z_{m}}$ is a polynomial of degree $k-1$.

Moreover,

$$
A_{m}\left(z_{m}\right) \neq 0, \quad A_{m}\left(z_{j}\right)=0, \text { for all } j \neq m
$$

Hence,

$$
\frac{A_{m}(z)}{A_{m}\left(z_{m}\right)}
$$

is a polynomial of degree $k-1$ which:

- Vanishes at each z_{j}, for $j \neq m$;
- Has the value 1 at z_{m}.

Lagrange's Interpolation Theorem (Cont'd)

- Consider the linear combination

$$
P(z)=\sum_{m=0}^{k-1} w_{m} \frac{A_{m}(z)}{A_{m}\left(z_{m}\right)} .
$$

It is a polynomial of degree $\leq k-1$, with

$$
P\left(z_{j}\right)=w_{j}, \quad \text { for each } j .
$$

Suppose there is another such polynomial $Q(z)$.
The difference $P(z)-Q(z)$ vanishes at k distinct points.
But $P(z)-Q(z)$ has degree $\leq k-1$.
So $P(z)-Q(z)=0$.
Hence, $P(z)=Q(z)$.

Existence of Fourier Series

Theorem

Given k complex numbers $w_{0}, w_{1}, \ldots, w_{k-1}$, there exist k uniquely determined complex numbers $a_{0}, a_{1}, \ldots, a_{k-1}$, such that

$$
w_{m}=\sum_{n=0}^{k-1} a_{n} e^{2 \pi i m n / k}, \quad m=0,1,2, \ldots, k-1
$$

Moreover, the coefficients a_{n} are given by the formula

$$
a_{n}=\frac{1}{k} \sum_{m=0}^{k-1} w_{m} e^{-2 \pi i m n / k}, \quad m=0,1,2, \ldots, k-1
$$

Existence of Fourier Series (Cont'd)

- Let $z_{m}=e^{2 \pi i m / k}$.

The numbers $z_{0}, z_{1}, \ldots, z_{k-1}$ are distinct.
So there is a unique Lagrange polynomial

$$
P(z)=\sum_{m=0}^{k-1} a_{n} z^{n}
$$

such that

$$
P\left(z_{m}\right)=w_{m}, \quad \text { for each } m=0,1,2, \ldots, k-1
$$

This shows that there are uniquely determined numbers a_{n} satisfying the first equation.

Existence of Fourier Series (Coefficients)

- Take $w_{m}=\sum_{n=0}^{k-1} a_{n} e^{2 \pi i m n / k}$.

Multiply by $e^{-2 \pi i m r / k}$, where m, r are nonnegative integers $\leq k$.
Sum on m to get

$$
\sum_{m=0}^{k-1} w_{m} e^{-2 \pi i m r / k}=\sum_{n=0}^{k-1} a_{n} \sum_{m=0}^{k-1} e^{2 \pi i(n-r) m / k}
$$

By a previous theorem, the sum on m is 0 unless $k \mid(n-r)$.
But $|n-r| \leq k-1$. So $k \mid(n-r)$ if, and only if, $n=r$.
So the only nonvanishing term on the right occurs when $n=r$,

$$
\sum_{m=0}^{k-1} w_{m} e^{-2 \pi i m r / k}=k a_{r}
$$

Arithmetical Functions and Fourier Series

Theorem

Let f be an arithmetical function which is periodic mod k. Then there is a uniquely determined arithmetical function g, also periodic mod k, such that

$$
f(m)=\sum_{m=0}^{k-1} g(n) e^{2 \pi i m n / k}
$$

In fact, g is given by the formula

$$
g(n)=\frac{1}{k} \sum_{m=0}^{k-1} f(m) e^{-2 \pi i m n / k}
$$

Arithmetical Functions and Fourier Series (Cont'd)

- Let

$$
w_{m}=f(m)=\sum_{m=0}^{k-1} g(n) e^{2 \pi i m n / k}, \quad \text { for } m=0,1,2, \ldots, k-1
$$

Apply the preceding theorem to determine the numbers

$$
a_{0}, a_{1}, \ldots, a_{k-1}
$$

Define the function g by the relations

$$
g(m)=a_{m}, \quad \text { for } m=0,1,2, \ldots, k-1 .
$$

Extend the definition of $g(m)$ to all integers m by periodicity mod k. Then f is related to g by the equations in the theorem.

Terminology

- Since both f and g are periodic mod k, we can rewrite the sums in the last theorem

$$
f(m)=\sum_{n \bmod k} g(n) e^{2 \pi i m n / k}
$$

and

$$
g(n)=\frac{1}{k} \sum_{m} f(m) e^{-2 \pi i m n / k}
$$

- In each case the summation can be extended over any complete residue system modulo k.
- The first sum is called the finite Fourier expansion of f.
- The numbers $g(n)$ are called the Fourier coefficients of f.

Subsection 3

Ramanujan's Sum and Generalizations

Ramanujan's Sum

- Let n be a fixed positive integer.
- The sum of the n-th powers of the primitive k-th roots of unity is

$$
c_{k}(n)=\sum_{\substack{m o d \\(m, k)=1}} e^{2 \pi i m n / k}
$$

- It is known as Ramanujan's sum.
- Ramanujan showed that $c_{k}(n)$ is always an integer by proving the relation

$$
c_{k}(n)=\sum_{d \mid(n, k)} d \mu\left(\frac{k}{d}\right)
$$

- This formula suggests that we study general sums of the form

$$
s_{k}(n)=\sum_{d \mid(n, k)} f(d) g\left(\frac{k}{d}\right)
$$

Generalized Ramanujan's Sum and Periodicity

- We study general sums of the form

$$
s_{k}(n)=\sum_{d \mid(n, k)} f(d) g\left(\frac{k}{d}\right)
$$

- These resemble the sums for the Dirichlet convolution $f * g$ except that we sum over a subset of the divisors of k, namely those d which also divide n.
- Since n occurs only in the gcd (n, k), we have

$$
s_{k}(n+k)=s_{k}(n)
$$

- So $s_{k}(n)$ is a periodic function of n, with period k.
- Hence this sum has a finite Fourier expansion.

Fourier Expansion of Ramanujan's Sum

Theorem

Let

$$
s_{k}(n)=\sum_{d \mid(n, k)} f(d) g\left(\frac{k}{d}\right)
$$

Then $s_{k}(n)$ has the finite Fourier expansion

$$
s_{k}(n)=\sum_{m \bmod k} a_{k}(m) e^{2 \pi i m n / k}
$$

where

$$
a_{k}(m)=\sum_{d \mid(m, k)} g(d) f\left(\frac{k}{d}\right) \frac{d}{k} .
$$

Fourier Expansion of Ramanujan's Sum (Cont'd)

- By the preceding theorem, the coefficients $a_{k}(m)$ are given by

$$
a_{k}(m)=\frac{1}{k} \sum_{n \bmod k} s_{k}(n) e^{-2 \pi i n m / k}=\frac{1}{k} \sum_{n=1}^{k} \sum_{\substack{d|n \\ d| k}} f(d) g\left(\frac{k}{d}\right) e^{-2 \pi i n m / k}
$$

Now we write $n=c d$.
Note that for each fixed d, c runs from 1 to $\frac{k}{d}$.
So we get

$$
a_{k}(m)=\frac{1}{k} \sum_{d \mid k} f(d) g\left(\frac{k}{d}\right) \sum_{c=1}^{k / d} e^{-2 \pi i c d m / k} .
$$

Fourier Expansion of Ramanujan's Sum (Cont'd)

- We have

$$
a_{k}(m)=\frac{1}{k} \sum_{d \mid k} f(d) g\left(\frac{k}{d}\right) \sum_{c=1}^{k / d} e^{-2 \pi i c d m / k}
$$

Now we replace d by $\frac{k}{d}$ in the sum on the right to get

$$
a_{k}(m)=\frac{1}{k} \sum_{d \mid k} f\left(\frac{k}{d}\right) g(d) \sum_{c=1}^{d} e^{-2 \pi i c m / d} .
$$

By a previous theorem, the sum on c is 0 unless $d \mid m$ in which case the sum has the value d.
Hence, we get

$$
a_{k}(m)=\frac{1}{k} \sum_{\substack{d|k \\ d| m}} f\left(\frac{k}{d}\right) g(d) d
$$

Ramanujan's Formula

Theorem

We have

$$
c_{k}(n)=\sum_{d \mid(n, k)} d \mu\left(\frac{k}{d}\right)
$$

- By the preceding theorem, $s_{k}(n)=\sum_{d \mid(n, k)} f(d) g\left(\frac{k}{d}\right)$ has the finite Fourier expansion

$$
s_{k}(n)=\sum_{m \bmod k} a_{k}(m) e^{2 \pi i m n / k}
$$

where $a_{k}(m)=\sum_{d \mid(m, k)} g(d) f\left(\frac{k}{d}\right) \frac{d}{k}$.

Ramanujan's Formula (Cont'd)

- Take $f(k)=k$ and $g(k)=\mu(k)$.

We find

$$
\sum_{d \mid(n, k)} d \mu\left(\frac{k}{d}\right)=\sum_{m}^{\bmod k} a_{k}(m) e^{2 \pi i m n / k}
$$

where

$$
a_{m}(k)=\sum_{d \mid(m, k)} \mu(d)=\left[\frac{1}{(m, k)}\right]= \begin{cases}1, & \text { if }(m, k)=1 \\ 0, & \text { if }(m, k)>1\end{cases}
$$

Hence

$$
\sum_{d \mid(n, k)} d \mu\left(\frac{k}{d}\right)=\sum_{\substack{m \\(m, k)=1}} e^{2 \pi i m n / k}=c_{k}(n)
$$

Subsection 4

Multiplicative Properties of the Sums $s_{k}(n)$

Multiplicative Properties of the Sums $s_{k}(n)$

Theorem

Let

$$
s_{k}(n)=\sum_{d \mid(n, k)} f(d) g\left(\frac{k}{d}\right)
$$

where f and g are multiplicative. Then we have

$$
s_{m k}(a b)=s_{m}(a) s_{k}(b), \text { whenever }(a, k)=(b, m)=1
$$

In particular, we have

$$
s_{m}(a b)=s_{m}(a), \text { if }(b, m)=1
$$

and

$$
s_{m k}(a)=s_{m}(a) g(k), \text { if }(a, k)=1
$$

Multiplicative Properties of the Sums $s_{k}(n)$ (Cont'd)

- Suppose $(a, k)=(b, m)=1$.

These imply

$$
(m k, a b)=(a, m)(k, b)
$$

with (a, m) and (b, k) relatively prime.
Therefore,

$$
s_{m k}(a b)=\sum_{d \mid(m k, a b)} f(d) g\left(\frac{m k}{d}\right)=\sum_{d \mid(a, m)(b, k)} f(d) g\left(\frac{m k}{d}\right) .
$$

Writing $d=d_{1} d_{2}$ in the last sum, we obtain

$$
\begin{aligned}
s_{m k}(a b) & =\sum_{d_{1} \mid(a, m)} \sum_{d_{2} \mid(b, k)} f\left(d_{1} d_{2}\right) g\left(\frac{m k}{d_{1} d_{2}}\right) \\
& =\sum_{d_{1} \mid(a, m)} f\left(d_{1}\right) g\left(\frac{m}{d_{1}}\right) \sum_{d_{2} \mid(b, k)} f\left(d_{2}\right) g\left(\frac{k}{d_{2}}\right) \\
& =s_{m}(a) s_{k}(b) .
\end{aligned}
$$

Multiplicative Properties of the Sums $s_{k}(n)$ (Cont'd)

- We proved that

$$
s_{m k}(a b)=s_{m}(a) s_{k}(b), \text { whenever }(a, k)=(b, m)=1
$$

Now we have $s_{1}(b)=f(1) g(1)=1$.
So taking $k=1$ in the sum, we get

$$
s_{m}(a b)=s_{m}(a) s_{1}(b)=s_{m}(a)
$$

Similarly, $s_{k}(1)=f(1) g(k)=g(k)$.
So taking $b=1$ in the sum, we find

$$
s_{m k}(a)=s_{m}(a) s_{k}(1)=s_{m}(a) g(k)
$$

Example

- We proved that Ramanujan's sum is

$$
c_{k}(n)=\sum_{d \mid(n, k)} d \mu\left(\frac{k}{d}\right)
$$

- So applying the theorem, we get the following multiplicative properties

$$
\begin{aligned}
c_{m k}(a b) & =c_{m}(a) c_{k}(b), & & \text { whenever }(a, k)=(b, m)=1 ; \\
c_{m}(a, b) & =c_{m}(a), & & \text { whenever }(b, m)=1 \\
c_{m k}(a) & =c_{m}(a) \mu(k), & & \text { whenever }(a, k)=1 .
\end{aligned}
$$

Sums $s_{k}(n)$ and Dirichlet Convolution

Theorem

Let f be completely multiplicative, and let $g(k)=\mu(k) h(k)$, where h is multiplicative. Assume that $f(p) \neq 0$ and $f(p) \neq h(p)$, for all primes p. Let

$$
s_{k}(n)=\sum_{d \mid(n, k)} f(d) g\left(\frac{k}{d}\right)
$$

Then we have

$$
s_{k}(n)=\frac{F(k) g(N)}{F(N)}
$$

where $F=f * g$ and $N=\frac{k}{(n, k)}$.

Sums $s_{k}(n)$ and Dirichlet Convolution (Cont'd)

- First we note that

$$
\begin{aligned}
F(k) & =\sum_{d \mid k} f(d) \mu\left(\frac{k}{d}\right) h\left(\frac{k}{d}\right) \\
& =\sum_{d \mid k} f\left(\frac{k}{d}\right) \mu(d) h(d) \\
& =f(k) \sum_{d \mid k} \mu(d) \frac{h(d)}{f(d)} \\
& =f(k) \prod_{p \mid k}\left(1-\frac{h(p)}{f(p)}\right),
\end{aligned}
$$

where the last equation follows from the fact that, if a function f is multiplicative, then $\sum_{d \mid n} \mu(d) f(d)=\prod_{p \mid n}(1-f(p))$.
Next, we write $a=(n, k)$, so that $k=a N$.
Then we have

$$
\begin{aligned}
s_{k}(n) & =\sum_{d \mid a} f(d) \mu\left(\frac{k}{d}\right) h\left(\frac{k}{d}\right) \\
& =\sum_{d \mid a} f(d) \mu\left(\frac{a N}{d}\right) h\left(\frac{a N}{d}\right) \\
& =\sum_{d \mid a} f\left(\frac{a}{d}\right) \mu(N d) h(N d)
\end{aligned}
$$

Sums $s_{k}(n)$ and Dirichlet Convolution

- We wrote $a=(n, k)$, so that $k=a N$, and we have:

$$
\begin{aligned}
& \text { - } \mu(N d)=\mu(N) \mu(d) \text { if }(N, d)=1 \\
& \text { - } \mu(N d)=0, \text { if }(N, d)>1
\end{aligned}
$$

So the last equation gives us

$$
\begin{aligned}
s_{k}(n) & =\mu(N) h(N) \sum_{\substack{d \mid a \\
(N, d)=1}} f\left(\frac{a}{d}\right) \mu(d) h(d) \\
& =f(a) \mu(N) h(N) \sum_{(N, d)=1}^{d \mid a} \mu(d) \frac{h(d)}{f(d)} \\
& =f(a) \mu(N) h(N) \prod_{\substack{p \mid a \\
p \nmid N}}\left(1-\frac{h(p)}{f(p)}\right) \\
& =f(a) \mu(N) h(N) \frac{\prod_{p \mid a N}\left(1-\frac{h(p)}{f(p)}\right)}{\prod_{p \mid N}\left(1-\frac{h(p)}{f(p)}\right)} \\
& =f(a) \mu(N) h(N) \frac{F(k)}{f(k)} \frac{f(N)}{F(N)} \quad(g=\mu h, F=f * g) \\
& =\frac{F(k) \mu(N) h(N)}{F(N)}=\frac{F(k) g(N)}{F(N)} .
\end{aligned}
$$

Example

- Ramanujan's sum is

$$
c_{k}(n)=\sum_{d \mid(n, k)} d \mu\left(\frac{k}{d}\right)
$$

- By the theorem,

$$
s_{k}(n)=\sum_{d \mid(n, k)} f(d) g\left(\frac{k}{d}\right)
$$

- Set:
- f the identity, which is completely multiplicative;
- $g=\mu$, which is multiplicative.
- Recall that $\varphi(k)=\sum_{d \mid k} d \mu\left(\frac{k}{d}\right)$.
- Therefore, we have

$$
c_{k}(n)=\frac{\varphi(k) \mu(N)}{\varphi(N)}=\frac{\varphi(k) \mu\left(\frac{k}{(n, k)}\right)}{\varphi\left(\frac{k}{(n, k)}\right)}
$$

Subsection 5

Gauss Sums Associated with Dirichlet Characters

Gauss Sums Associated with Dirichlet Characters

Definition

For any Dirichlet character $\chi \bmod k$ the sum

$$
G(n, \chi)=\sum_{m=1}^{k} \chi(m) e^{2 \pi i m n / k}
$$

is called the Gauss sum associated with χ.

Gauss Sums and Ramanujan's Sum

- Let $\chi=\chi_{1}$ be the principal character $\bmod k$.
- We then have

$$
\chi_{1}(m)= \begin{cases}1, & \text { if }(m, k)=1 \\ 0, & \text { otherwise }\end{cases}
$$

- In this case the Gauss sum

$$
G(n, \chi)=\sum_{m=1}^{k} \chi(m) e^{2 \pi i m n / k}
$$

reduces to Ramanujan's sum,

$$
G\left(n, \chi_{1}\right)=\sum_{\substack{m=1 \\(m, k)=1}}^{k} e^{2 \pi i m n / k}=c_{k}(n)
$$

- Thus, the Gauss sums $G(n, \chi)$ can be regarded as generalizations of Ramanujan's sum.

A Factorization Property

Theorem

If χ is any Dirichlet character mod k, then

$$
G(n, \chi)=\bar{\chi}(n) G(1, \chi), \text { whenever }(n, k)=1
$$

- When $(n, k)=1$ the numbers $n r$ run through a complete residue system mod k with r. Also, $|\chi(n)|^{2}=\chi(n) \bar{\chi}(n)=1$. So

$$
\chi(r)=\bar{\chi}(n) \chi(n) \chi(r)=\bar{\chi}(n) \chi(n r) .
$$

Therefore, the sum defining $G(n, \chi)$ can be written as follows:

$$
\begin{aligned}
G(n, \chi) & =\sum_{r \bmod k} \chi(r) e^{2 \pi i n r / k} \\
& =\bar{\chi}(n) \sum_{r} \bmod k \chi(n r) e^{2 \pi i n r / k} \\
& =\bar{\chi}(n) \sum_{m} \bmod k \chi(m) e^{2 \pi i m / k} \\
& =\bar{\chi}(n) G(1, \chi) .
\end{aligned}
$$

Separable Gauss Sums

Definition

The Gauss sum $G(n, \chi)$ is said to be separable if

$$
G(n, \chi)=\bar{\chi}(n) G(1, \chi)
$$

- By the preceding theorem, $G(n, \chi)$ is separable whenever n is relatively prime to the modulus k.
- A characterization of separability for those integers n not relatively prime to k is given in the next slide.

Characterization of Separable Gauss Sums

Theorem

If χ is a character mod k the Gauss sum $G(n, \chi)$ is separable for every n if, and only if

$$
G(n, \chi)=0 \quad \text { whenever }(n, k)>1
$$

- Separability always holds if $(n, k)=1$.

If $(n, k)>1$ we have $\bar{\chi}(n)=0$.
So the equation holds if and only if $G(n, \chi)=0$.

Consequence of Separability

Theorem

If $G(n, \chi)$ is separable for every n, then

$$
|G(1, \chi)|^{2}=k
$$

- We have

$$
\begin{aligned}
|G(1, \chi)|^{2} & =G(1, \chi) \overline{G(1, \chi)} \\
& =G(1, \chi) \sum_{m=1}^{k} \bar{\chi}(m) e^{-2 \pi i m / k} \\
& =\sum_{m=1}^{k} G(m, \chi) e^{-2 \pi i m / k} \\
& =\sum_{m=1}^{k} \sum_{r=1}^{k} \chi(r) e^{2 \pi i m r / k} e^{-2 \pi i m / k} \\
& =\sum_{r=1}^{k} \chi(r) \sum_{m=1}^{k} e^{2 \pi i m(r-1) / k} \\
& \stackrel{\text { geometric }}{=} \\
& k \chi(1) \\
& =k .
\end{aligned}
$$

Subsection 6

Dirichlet Characters with Nonvanishing Gauss Sums

Dirichlet Characters with Nonzero Gauss Sums

- The next theorem gives a necessary condition for $G(n, \chi)$ to be nonzero for $(n, k)>1$.

Theorem

Let χ be a Dirichlet character mod k. Assume that $G(n, \chi) \neq 0$, for some n satisfying $(n, k)>1$. Then there exists a divisor d of $k, d<k$, such that

$$
\chi(a)=1 \text { whenever }(a, k)=1 \text { and } a \equiv 1 \quad(\bmod d) .
$$

- For the given n, let $q=(n, k)$ and let $d=k / q$.

Then $d \mid k$ and, since $q>1$, we have $d<k$.
Choose any a satisfying $(a, k)=1$ and $a \equiv 1(\bmod d)$.
We will prove that $\chi(a)=1$.

Dirichlet Characters with Nonzero Gauss Sums (Cont'd)

- Since $(a, k)=1$, in the sum defining $G(n, \chi)$ we can replace the index of summation m by $a m$. Then we find

$$
\begin{aligned}
G(n, \chi) & =\sum_{m} \bmod k \chi(m) e^{2 \pi i n m / k} \\
& =\sum_{m} \bmod k \chi(a m) e^{2 \pi i n a m / k} \\
& =\chi(a) \sum_{m} \bmod k \chi(m) e^{2 \pi i n a m / k} .
\end{aligned}
$$

Now $a \equiv 1(\bmod d)$ and $d=\frac{k}{q}$.
So, for some integer b,

$$
a=1+\frac{b k}{q} .
$$

Dirichlet Characters with Nonzero Gauss Sums (Cont'd)

- We wrote $a=1+\frac{b k}{q}$.

Since $q \mid n$, we have

$$
\frac{a n m}{k}=\frac{n m}{k}+\frac{b k n m}{q k}=\frac{n m}{k}+\frac{b n m}{q} \equiv \frac{n m}{k} \quad(\bmod 1) .
$$

Hence,

$$
e^{2 \pi i n a m / k}=e^{2 \pi i n m / k} .
$$

So the sum for $G(n, \chi)$ becomes

$$
G(n, \chi)=\chi(a) \sum_{m} \bmod k \chi(m) e^{2 \pi i n m / k}=\chi(a) G(n, \chi)
$$

Since $G(n, \chi) \neq 0$, this implies $\chi(a)=1$, as asserted.

- The theorem points towards characters χ mod k for which there is a divisor $d<k$, satisfying $\chi(a)=1$, if $(a, k)=1$ and $a \equiv 1(\bmod d)$.

Subsection 7

Induced Moduli and Primitive Characters

Induced Moduli

Definition of Induced Modulus

Let χ be a Dirichlet character mod k and let d be any positive divisor of k. The number d is called an induced modulus for χ if we have

$$
\chi(a)=1 \text { whenever }(a, k)=1 \text { and } a \equiv 1 \quad(\bmod d)
$$

- Note d is an induced modulus if the character χ mod k acts like a character $\bmod d$ on the representatives of the residue class $\widehat{1} \bmod d$ which are relatively prime to k.
- Note also that k itself is always an induced modulus for χ.

Condition for 1 to be an Induced Modulus

Theorem

Let χ be a Dirichlet character mod k. Then 1 is an induced modulus for χ if, and only if, $\chi=\chi_{1}$.

- If $\chi=\chi_{1}$, then $\chi(a)=1$, for all a relatively prime to k.

But every a satisfies $a \equiv 1(\bmod 1)$.
So the number 1 is an induced modulus.
Conversely, suppose 1 is an induced modulus.
Then $\chi(a)=1$, whenever $(a, k)=1$.
Also, χ vanishes on the numbers not prime to k. It follows that $\chi=\chi_{1}$.

Primitive Characters

- For any Dirichlet character mod k, k itself is an induced modulus.
- If there are no others we call the character primitive.

Definition of Primitive Characters

A Dirichlet character $\chi \bmod k$ is said to be primitive $\bmod k$ if it has no induced modulus $d<k$.
In other words, χ is primitive mod k if, and only if, for every divisor d of $k, 0<d<k$, there exists an integer $a \equiv 1(\bmod d),(a, k)=1$, such that $\chi(a) \neq 1$.

- If $k>1$, the principal character χ_{1} is not primitive since it has 1 as an induced modulus.

Primitivity of all Characters Modulo a Prime

- If the modulus is prime, every non principal character is primitive.

Theorem

Every non principal character χ modulo a prime p is a primitive character $\bmod p$.

- The only divisors of p are 1 and p.

So these are the only candidates for induced moduli.
By the preceding theorem, if $\chi \neq \chi_{1}$, the divisor 1 is not an induced modulus.
So χ has no induced modulus $<p$.
Hence, χ is primitive.

Properties of Primitive Characters

Theorem

Let χ be a primitive Dirichlet character mod k. Then we have:
(a) $G(n, \chi)=0$, for every n with $(n, k)>1$.
(b) $G(n, \chi)$ is separable for every n.
(c) $|G(1, \chi)|^{2}=k$.
(a) Suppose $G(n, \chi) \neq 0$, for some n with $(n, k)>1$. By a previous theorem, χ has an induced modulus $d<k$. So, in this case, χ cannot be primitive.
(b) By Part (a) and the characterization of separability.
(c) By Part (b), $G(n, \chi)$ is separable, for every n.

By a previous theorem, $|G(1, \chi)|^{2}=k$.

Comments

- By Part (b) of the theorem, if χ is primitive, the Gauss sum $G(n, \chi)$ is separable.
- Later we prove the converse.
- That is, we shall show that, if $G(n, \chi)$ is separable, for every n, then χ is primitive.

Subsection 8

Further Properties of Induced Moduli

Numbers Congruent Modulo an Induced Modulus

Theorem

Let χ he a Dirichlet character mod k. Assume $d \mid k, d>0$. Then d is an induced modulus for χ if and only if

$$
\chi(a)=\chi(b) \text { whenever }(a, k)=(b, k)=1 \text { and } a \equiv b \quad(\bmod d)
$$

- Suppose the stated condition holds.

With $b=1$, we get that, for all a, such that $(a, k)=1$ and $a \equiv 1$ $(\bmod d), \chi(a)=\chi(1)=1$.
Therefore, by definition, χ is an induced modulus.
Conversely, let a, b such that $(a, k)=(b, k)=1$ and $a \equiv b(\bmod d)$.
We will show that $\chi(a)=\chi(b)$.
Since $(a, k)=1$, $a \bmod k$ has a reciprocal a^{\prime}.

Numbers Congruent Modulo an Induced Modulus (Cont'd)

- We chose a, b, with $(a, k)=(b, k)=1$ and $a \equiv b(\bmod d)$.

Also, there exists a^{\prime}, such that $a a^{\prime} \equiv 1(\bmod k)$.
Now $a a^{\prime} \equiv 1(\bmod d)$ since $d \mid k$.
Hence $\chi\left(a a^{\prime}\right)=1$, since d is an induced modulus.
But $a a^{\prime} \equiv b a^{\prime} \equiv 1(\bmod d)$ because $a \equiv b(\bmod d)$.
Hence, $\chi\left(a a^{\prime}\right)=\chi\left(b a^{\prime}\right)$.
So $\chi(a) \chi\left(a^{\prime}\right)=\chi(b) \chi\left(a^{\prime}\right)$.
But $\chi\left(a^{\prime}\right) \neq 0$, since $\chi(a) \chi\left(a^{\prime}\right)=1$.
Canceling $\chi\left(a^{\prime}\right)$, we find $\chi(a)=\chi(b)$.

- So, χ is periodic mod d on those integers relatively prime to k.
- Thus, χ acts very much like a character mod d.

Example

- The following table describes one of the characters $\chi \bmod 9$.

n	1	2	3	4	5	6	7	8	9
$\chi(n)$	1	-1	0	1	-1	0	1	-1	0

The table is periodic modulo 3 .
So 3 is an induced modulus for χ.
In fact, χ acts like the following character ψ modulo 3 :

n	1	2	3
$\psi(n)$	1	-1	0

Since $\chi(n)=\psi(n)$, for all n, we call χ an extension of ψ.

- It is clear that whenever χ is an extension of a character ψ modulo d, then d will be an induced modulus for χ.

Example

- Now we examine one of the characters χ modulo 6:

n	1	2	3	4	5	6
$\chi(n)$	1	0	0	0	-1	0

For all $n \equiv 1(\bmod 3)$ with $(n, 6)=1$ (i.e., $n=1), \chi(n)=1$.
So the number 3 is an induced modulus.
However, χ is not an extension of any character 0 modulo 3 .
The only characters modulo 3 are the characters ψ_{1} and ψ,

$$
\begin{array}{rrrr}
n & 1 & 2 & 3 \\
\hline \psi_{1}(n) & 1 & 1 & 0 \\
\psi(n) & 1 & -1 & 0
\end{array}
$$

Since $\chi(2)=0$, it cannot be an extension of either ψ or ψ_{1}.

Induced Moduli and Characters

Theorem

Let χ be a Dirichlet character modulo k. Assume $d \mid k, d>0$. Then the following two statements are equivalent:
(a) d is an induced modulus for χ.
(b) There is a character ψ modulo d, such that

$$
\chi(n)=\psi(n) \chi_{1}(n), \quad \text { for all } n,
$$

where χ_{1} is the principal character modulo k.

- Assume Condition (b) holds.

Choose n satisfying $(n, k)=1, n \equiv 1(\bmod d)$.
Then $\chi_{1}(n)=\psi(n)=1$. So $\chi(n)=1$.
Hence, d is an induced modulus.

Induced Moduli and Characters (Converse)

- Assume Condition (a) holds.

We exhibit a character ψ modulo d for which Condition (b) holds.
We define $\psi(n)$ as follows.

- If $(n, d)>1$, let $\psi(n)=0$.

In this case we also have $(n, k)>1$.
So we obtain

$$
\chi(n)=0=0 \cdot \chi_{1}(n)=\psi(n) \chi_{1}(n) .
$$

So Condition (b) holds.

Induced Moduli and Characters (Converse Cont'd)

- Suppose $(n, d)=1$.

By Dirichlet's Theorem, there exists m, such that:

- $m \equiv n(\bmod d)$;
- $(m, k)=1$.

The arithmetic progression $x d+n$ contains infinitely many primes.
We choose one that does not divide k and call this m.
Having chosen m, which is unique modulo d, define

$$
\psi(n)=\chi(m)
$$

The number $\psi(n)$ is well-defined because χ takes equal values at numbers which are congruent modulo d and relatively prime to k. We can verify that ψ is a character mod d.

- If $(n, k)=1$, then $(n, d)=1$.

So $\psi(n)=\chi(m)$, for some $m \equiv n(\bmod d)$.
Hence, by a previous theorem,

$$
\chi(n)=\chi(m)=\psi(n) \stackrel{\chi_{1}(n)=1}{=} \psi(n) \chi_{1}(n)
$$

- If $(n, k)>1$, then $\chi(n)=\chi_{1}(n)=0$. So Condition (b) holds.

Subsection 9

The Conductor of a Character

The Conductor of a Character

Definition

Let χ be a Dirichlet character mod k. The smallest induced modulus d for χ is called the conductor of χ.

Theorem

Every Dirichlet character χ mod k can be expressed as a product,

$$
\chi(n)=\psi(n) \chi_{1}(n), \text { for all } n
$$

where χ_{1} is the principal character $\bmod k$ and ψ is a primitive character modulo the conductor of ψ.

- Let d be the conductor of χ.

By the preceding theorem, χ can be expressed as a product of the given form, where ψ is a character mod d.
We prove that ψ is primitive mod d.

The Conductor of a Character (Cont'd)

- Suppose that ψ is not primitive mod d.

There is a divisor q of $d, q<d$, which is an induced modulus for ψ.
We show that q, which divides k, is also an induced modulus for χ.
This contradicts the fact that d is the smallest induced modulus for χ.
Choose $n \equiv 1(\bmod q),(n, k)=1$.
Now q is an induced modulus for ψ.
So we have

$$
\chi(n)=\psi(n) \chi_{1}(n)=\psi(n)=1 .
$$

Hence q is also an induced modulus for χ.

Subsection 10

Primitive Characters and Separable Gauss Sums

Alternate Description of Primitive Characters

Theorem

Let χ be a character mod k. Then χ is primitive $\bmod k$ if, and only if, the Gauss sum

$$
G(n, \chi)=\sum_{m \bmod k} \chi(m) e^{2 \pi i m n / k}
$$

is separable for every n.

- If χ is primitive, then $G(n, \chi)$ is separable by a previous theorem.

For the converse, by previous theorems, we must show that, if χ is not primitive mod k, then for some r satisfying $(r, k)>1$ we have $G(r, \chi) \neq 0$.
Suppose, then, that χ is not primitive mod k. This implies $k>1$. Then χ has a conductor $d<k$. Let $r=\frac{k}{d}$. Then $(r, k)>1$. We prove that $G(r, \chi) \neq 0$ for this r.

Alternate Description of Primitive Characters (Cont'd)

- By the preceding theorem, there exists a primitive character $\psi \bmod d$, such that $\chi(n)=\psi(n) \chi_{1}(n)$, for all n. Hence we can write

$$
\begin{aligned}
G(r, \chi) & =\sum_{m \bmod k} \psi(m) \chi_{1}(m) e^{2 \pi i r m / k} \\
& =\sum_{(m, k)=1}^{m} \bmod ^{2} k(m) e^{2 \pi i r m / k} \\
& =\sum_{(m, k)=1}^{m} \bmod ^{k} \psi(m) e^{2 \pi i m / d} \\
& =\frac{\varphi(k)}{\varphi(d)} \sum_{(m, d)=1}^{m o d} d(m) e^{2 \pi i m / d} .
\end{aligned}
$$

Therefore, we have

$$
G(r, \chi)=\frac{\varphi(k)}{\varphi(d)} G(1, \psi)
$$

But $|G(1, \psi)|^{2}=d$ by a previous theorem $(\psi$ primitive $\bmod d)$. Hence $G(r, \chi) \neq 0$.

Subsection 11

The Finite Fourier Series of the Dirichlet Characters

Fourier Series and Dirichlet Characters

- Since each Dirichlet character $\chi \bmod k$ is periodic $\bmod k$, it has a finite Fourier expansion

$$
\chi(m)=\sum_{n=1}^{k} a_{k}(n) e^{2 \pi i m n / k}
$$

A previous theorem tells us that its coefficients are given by the formula

$$
a_{k}(n)=\frac{1}{k} \sum_{m=1}^{k} \chi(m) e^{-2 \pi i m n / k}
$$

The sum on the right is a Gauss sum $G(-n, \chi)$. So we have

$$
a_{k}(n)=\frac{1}{k} G(-n, x)
$$

Fourier Expansion of Primitive Characters

Theorem

The finite Fourier expansion of a primitive Dirichlet character $\chi \bmod k$ has the form

$$
\chi(m)=\frac{\tau_{k}(\chi)}{\sqrt{k}} \sum_{m=1}^{k} \bar{\chi}(n) e^{-2 \pi i m n / k}
$$

where

$$
\tau_{k}(\chi)=\frac{G(1, \chi)}{\sqrt{k}}=\frac{1}{\sqrt{k}} \sum_{m=1}^{k} \chi(m) e^{2 \pi i m / k}
$$

The numbers $\tau_{k}(\chi)$ have absolute value 1 .

Fourier Expansion of Primitive Characters (Cont'd)

- Since χ is primitive, we have

$$
G(-n, \chi)=\chi(-n) G(1, \chi)
$$

So the general form $a_{k}(n)=\frac{1}{k} G(-n, \chi)$ yields

$$
a_{k}(n)=\frac{1}{k} \bar{\chi}(-n) G(1, \chi) .
$$

Therefore, $\chi(m)=\sum_{n=1}^{k} a_{k}(n) e^{2 \pi i m n / k}$ can be written as

$$
\begin{aligned}
\chi(m) & =\frac{G(1, \chi)}{k} \sum_{m=1}^{k} \bar{\chi}(-n) e^{2 \pi i m n / k} \\
& =\frac{G(1, \chi)}{k} \sum_{m=1}^{k} \bar{\chi}(n) e^{-2 \pi i m n / k} .
\end{aligned}
$$

A previous theorem shows that the $\tau_{k}(x)$ have absolute value 1 .

Subsection 12

Pólya's Inequality for the Partial Sums of Primitive Characters

Pólya's Inequality

Theorem (Pólya's Inequality)

If χ is any primitive character $\bmod k$, then, for all $x \geq 1$, we have

$$
\left|\sum_{m \leq x} \chi(m)\right|<\sqrt{k} \log k
$$

- Express $\chi(m)$ by its Fourier expansion, as given in the theorem

$$
\chi(m)=\frac{\tau_{k}(\chi)}{\sqrt{k}} \sum_{n=1}^{k} \bar{\chi}(n) e^{-2 \pi i m n / k}
$$

Sum over all $m \leq x$, taking into account $\chi(k)=0$, to get

$$
\sum_{m \leq x} \chi(m)=\frac{\tau_{k}(\chi)}{\sqrt{k}} \sum_{n=1}^{k-1} \bar{\chi}(n) \sum_{m \leq x} e^{-2 \pi i m n / k}
$$

Pólya's Inequality (Cont'd)

- Take absolute values and multiply by \sqrt{k} to get

$$
\sqrt{k}\left|\sum_{m \leq x} \chi(m)\right| \leq \sum_{n=1}^{k-1}\left|\sum_{m \leq x} e^{-2 \pi i m n / k}\right|=\sum_{n=1}^{k-1}|f(n)|
$$

say, where $f(n)=\sum_{m \leq x} e^{-2 \pi i m n / k}$.
Now

$$
f(k-n)=\sum_{m \leq x} e^{-2 \pi i m(k-n) / k}=\sum_{m \leq x} e^{2 \pi i m n / k}=\overline{f(n)}
$$

So $|f(k-n)|=|f(n)|$. Hence

$$
\sqrt{k}\left|\sum_{m \leq x} \chi(m)\right| \leq 2 \sum_{n \leq k / 2}|f(n)| .
$$

Pólya's Inequality (Cont'd)

- Now $f(n)$ is a geometric sum of the form

$$
f(n)=\sum_{m=1}^{r} y^{m}
$$

where $r=[x]$ and $y=e^{-2 \pi i n / k}$.
Moreover, since $1 \leq n \leq k-1, y \neq 1$.
Writing $z=e^{-\pi i n / k}$, we have $y=z^{2}$.
Moreover, $z^{2} \neq 1$, since $n \leq \frac{k}{2}$.
Hence,

$$
f(n)=y \frac{y^{r}-1}{y-1}=z^{2} \frac{z^{2 r}-1}{z^{2}-1}=z^{r+1} \frac{z^{r}-z^{-r}}{z-z^{-1}} .
$$

So we get

$$
|f(n)|=\left|\frac{z^{r}-z^{-r}}{z-z^{-1}}\right|=\left|\frac{e^{-\pi i r n / k}-e^{\pi i r n / k}}{e^{-\pi i n / k}-e^{\pi i n / k}}\right|=\frac{\left|\sin \frac{\pi r n}{k}\right|}{\left|\sin \frac{\pi n}{k}\right|} \leq \frac{1}{\sin \frac{\pi n}{k}}
$$

Pólya's Inequality (Cont'd)

- We obtained

$$
|f(n)| \leq \frac{1}{\sin \frac{\pi n}{k}}
$$

For or $0 \leq t \leq \frac{\pi}{2}$, we have the inequality

$$
\sin t \geq \frac{2 t}{\pi}
$$

Set $t=\frac{\pi n}{k}$ to get

$$
|f(n)| \leq \frac{1}{\sin \frac{\pi n}{k}} \leq \frac{1}{\frac{2}{\pi} \frac{\pi n}{k}}=\frac{k}{2 n}
$$

Hence

$$
\sqrt{k}\left|\sum_{m \leq x} \chi(m)\right| \leq 2 \sum_{n \leq k / 2}|f(n)| \leq k \sum_{n \leq k / 2} \frac{1}{n}<k \log k
$$

