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Quadratic Residues and the Quadratic Reciprocity Law Quadratic Residues

Quadratic Residues and Nonresidues

We will be concerned with quadratic congruences of the form

x2 ≡ n (mod p),

where p is an odd prime and n 6≡ 0 (mod p).

Since the modulus is prime we know that such a congruence has at
most two solutions.

Moreover, if x is a solution so is −x .

Hence the number of solutions is either 0 or 2.

Definition

If the congruence has a solution, we say that n is a quadratic residue

mod p and we write nRp.
If x2 ≡ n (mod p) has no solution we say that n is a quadratic

nonresidue mod p and we write nRp.
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Basic Problems

Two basic problems dominate the theory of quadratic residues.

1. Given a prime p, determine which n are quadratic residues mod p and
which are quadratic nonresidues mod p.

2. Given n, determine those primes p for which n is a quadratic residue
mod p and those for which n is a quadratic nonresidue mod p.
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Quadratic Residues and the Quadratic Reciprocity Law Quadratic Residues

Example

To find the quadratic residues modulo 11 we square the numbers
1, 2, . . . , 10 and reduce mod 11.

We obtain

12 ≡ 1, 22 ≡ 4, 32 ≡ 9, 42 ≡ 5, 52 ≡ 3 (mod 11).

It suffices to square only the first half of the numbers since

62 ≡ (−5)2 ≡ 3, 72 ≡ (−4)2 ≡ 5, . . . , 102 ≡ (−1)2 ≡ 1 (mod 11).

Consequently, the quadratic residues mod 11 are 1, 3, 4, 5, 9.

The quadratic nonresidues mod 11 are 2, 6, 7, 8, 10.
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Quadratic Residues and the Quadratic Reciprocity Law Quadratic Residues

Quadratic Residues Modulo a Prime

Theorem

Let p be an odd prime. Then every reduced residue system mod p

contains exactly p−1
2 quadratic residues and exactly p−1

2 quadratic
nonresidues mod p. The quadratic residues belong to the residue classes
containing the numbers

12, 22, 32, . . . ,

(

p − 1

2

)2

.

First we note that the given numbers are distinct mod p.

If x2 ≡ y2 (mod p), with 1 ≤ x ≤ p−1
2 and 1 ≤ y ≤ p−1

2 , then

(x − y)(x + y) ≡ 0 (mod p).

But 1 < x + y < p. So x − y ≡ 0 (mod p). Hence x = y .

Since (p − k)2 ≡ k2 (mod p), every quadratic residue is congruent
mod p to exactly one of the numbers in the list.
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Quadratic Residues and the Quadratic Reciprocity Law Quadratic Residues

Example

The following brief table of quadratic residues R and nonresidues R
was obtained with the help of the preceding theorem.

p = 3 p = 5 p = 7 p = 11 p = 13

R 1 1, 4 1, 2, 4 1, 3, 4, 5, 9 1, 3, 4, 9, 10, 12

R 2 2, 3 3, 5, 6 2, 6, 7, 8, 10 2, 5, 6, 7, 8, 11
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Subsection 2

Legendre’s Symbol and Its Properties
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Legendre’s Symbol

Definition

Let p be an odd prime. If n 6≡ 0 (mod p), we define Legendre’s symbol

(n|p) as follows:

(n|p) =

{

+1, if nRp

−1, if nRp

If n ≡ 0 (mod p), we define (n|p) = 0.

Example:

(1|p) = 1;
(m2|p) = 1;
(7|11) = −1;
(22|11) = 0.

It is clear that (m|p) = (n|p) whenever m ≡ n (mod p).

So (n|p) is a periodic function of n with period p.
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Quadratic Residues and the Quadratic Reciprocity Law Legendre’s Symbol and Its Properties

Consequence of Little Fermat Theorem

The Little Fermat Theorem tells us that

np−1 ≡ 1 (mod p), if p ∤ n.

Note that
np−1 − 1 = (n

p−1
2 − 1)(n

p−1
2 + 1).

It follows that
n

p−1
2 ≡ ±1 (mod p).
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Euler’s Criterion

Theorem (Euler’s Criterion)

Let p be an odd prime. Then, for all n we have

(n|p) ≡ n
p−1
2 (mod p).

If n ≡ 0 (mod p),

(n|p) = 0 ≡ n
p−1
2 (mod p).

If (n|p) = 1, then there is an x , such that x2 ≡ n (mod p).

Hence, we get

n
p−1
2 ≡ (x2)

p−1
2 = xp−1 ≡ 1 = (n|p) (mod p).
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Euler’s Criterion (Cont’d)

If (n|p) = −1, consider the polynomial

f (x) = x
p−1
2 − 1.

f (x) has degree p−1
2 .

So the congruence f (x) ≡ 0 (mod p) has at most p−1
2 solutions.

But the p−1
2 quadratic residues mod p are solutions.

So the nonresidues are not.

Hence, if (n|p) = −1,

n
p−1
2 6≡ 1 (mod p).

But n
p−1
2 = ±1 (mod p).

So
n

p−1
2 ≡ −1 ≡ (n|p) (mod p).
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Multiplicativity of Legendre’s Symbol

Theorem

Legendre’s symbol (n|p) is a completely multiplicative function of n.

If p | m or p | n, then p | mn.

So (mn|p) = 0 and either (m|p) = 0 or (n|p) = 0.

Therefore, if p | m or p | n, then (mn|p) = (m|p)(n|p).

If p ∤ m and p ∤ n, then p ∤ mn.

Moreover, we have

(mn|p) ≡ (mn)
p−1
2 = m

p−1
2 n

p−1
2 ≡ (m|p)(n|p) (mod p).

But each of (mn|p), (m|p) and (n|p) is 1 or −1.

So the difference (mn|p)− (m|p)(n|p) is either 0, 2, or −2.

Since this difference is divisible by p, it must be 0.
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Quadratic Character

(n|p) is a completely multiplicative function of n.

Moreover, it is periodic with period p and vanishes when p | n.

It follows that
(n|p) = χ(n),

where χ is one of the Dirichlet characters modulo p.

The Legendre symbol is called the quadratic character mod p.
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Subsection 3

Evaluation of (−1|p) and (2|p)
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Quadratic Residues and the Quadratic Reciprocity Law Evaluation of (−1|p) and (2|p)

Evaluation of (−1|p)

Theorem

For every odd prime p, we have

(−1|p) = (−1)
p−1
2 =

{

1, if p ≡ 1 (mod 4)
−1, if p ≡ 3 (mod 4)

By Euler’s Criterion we have (−1|p) ≡ (−1)
p−1
2 (mod p).

But each member of this congruence is 1 or −1.

So the two members are equal.
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Quadratic Residues and the Quadratic Reciprocity Law Evaluation of (−1|p) and (2|p)

Evaluation of (2|p)

Theorem

For every odd prime p, we have

(2|p) = (−1)
p2−1

8 =

{

1, if p ≡ ±1 (mod 8)
−1, if p ≡ ±3 (mod 8)

Consider the following p−1
2 congruences:

p − 1 ≡ 1(−1)1 (mod p)
2 ≡ 2(−1)2 (mod p)

p − 3 ≡ 3(−1)3 (mod p)
4 ≡ 4(−1)4 (mod p)

...

r ≡ p−1
2 (−1)

p−1
2 (mod p),

where r is either p − p−1
2 or p−1

2 .
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Quadratic Residues and the Quadratic Reciprocity Law Evaluation of (−1|p) and (2|p)

Evaluation of (2|p) (Cont’d)

Multiply these together and note that each integer on the left is even:

2 · 4 · 6 · · · (p − 1) =

(

p − 1

2

)

!(−1)1+2+···+ p−1
2 (mod p).

This gives us

2
p−1
2

(

p − 1

2

)

! ≡

(

p − 1

2

)

!(−1)
p2−1

8 (mod p).

Since (p−1
2 )! 6≡ 0 (mod p), this implies

2
p−1
2 ≡ (−1)

p2−1
8 (mod p).

By Euler’s Criterion we have 2
p−1
2 ≡ (2|p) (mod p).

Since each member is 1 or −1, the two members are equal.
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Subsection 4

Gauss’ Lemma
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Quadratic Residues and the Quadratic Reciprocity Law Gauss’ Lemma

Gauss’ Lemma

Theorem (Gauss’ Lemma)

Assume n 6≡ 0 (mod p) and consider the least positive residues mod p of
the following p−1

2 multiples of n:

n, 2n, 3n, . . . ,
p − 1

2
n.

If m denotes the number of these residues which exceed p
2 , then

(n|p) = (−1)m.
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Quadratic Residues and the Quadratic Reciprocity Law Gauss’ Lemma

Gauss’ Lemma (Cont’d)

The numbers in the list are incongruent mod p.

Consider their least positive residues.

Distribute them into two disjoint sets A and B , according as the
residues are <

p
2 or > p

2 .

A = {a1, a2, . . . , ak} where each ai ≡ tn (mod p), for some t ≤ p−1
2

and 0 < ai <
p
2 ;

B = {b1, b2, . . . , bm}, where each bi ≡ sn (mod p), for some s ≤ p−1
2

and p
2 < bi < p.

Note that m + k = p−1
2 , since A and B are disjoint.

The number m of elements in B is pertinent in this theorem.

Form a new set C of m elements by subtracting each bi from p,

C = {c1, c2, . . . , cm}, ci = p − bi .

Now 0 < ci <
p
2 .

So the elements of C lie in the same interval as the elements of A.
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Quadratic Residues and the Quadratic Reciprocity Law Gauss’ Lemma

Gauss’ Lemma (Cont’d)

Claim: The sets A and C are disjoint.

Assume that ci = aj , for some pair i and j .

Then p − bj = aj .

Thus, aj + bi ≡ 0 (mod p).

Therefore, for some s and t, with 1 < t < p
2 , 1 < s < p

2 ,

tn+ sn = (t + s)n ≡ 0 (mod p).

But this is impossible since p ∤ n and 0 < s + t < p.

Now A ∪ C contains m + k = p−1
2 integers in the interval [1, p−1

2 ].

Hence,

A ∪ C = {a1, a2, . . . , ak , c1, c2, . . . , cm} =

{

1, 2, . . . ,
p − 1

2

}

.
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Quadratic Residues and the Quadratic Reciprocity Law Gauss’ Lemma

Gauss’ Lemma (Conclusion)

Form the product of all the elements in A ∪ C to obtain

a1a2 · · · akc1c2 · · · cm =

(

p − 1

2

)

!.

Since ci = p − bi , this gives us

(p−1
2 )! = a1a2 · · · ak(p − b1)(p − b2) · · · (p − bm)

≡ (−1)ma1a2 · · · akb1b2 · · · bm (mod p)

≡ (−1)mn(2n)(3n) · · · (p−1
2 n) (mod p)

≡ (−1)mn
p−1
2 (p−1

2 )! (mod p).

Canceling the factorial we obtain n
p−1
2 ≡ (−1)m (mod p).

Euler’s Criterion shows that (−1)m ≡ (n|p) (mod p).

Hence, (−1)m = (n|p).
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Quadratic Residues and the Quadratic Reciprocity Law Gauss’ Lemma

Determining the Parity of m

Theorem

Let m be the number defined in Gauss’ Lemma. Then

m ≡

p−1
2

∑

t=1

[

tn

p

]

+ (n − 1)
p2 − 1

8
(mod 2).

In particular, if n is odd, we have

m ≡

p−1
2

∑

t=1

[

tn

p

]

(mod 2).
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Quadratic Residues and the Quadratic Reciprocity Law Gauss’ Lemma

Determining the Parity of m

Recall that m is the number of least positive residues of the numbers
n, 2n, 3n, . . . , p−1

2 n which exceed p
2 .

Take a typical number, say tn, divide it by p and examine the size of
the remainder.

We have
tn

p
=

[

tn

p

]

+

{

tn

p

}

, 0 <

{

tn

p

}

< 1.

So

tn = p

[

tn

p

]

+ p

{

tn

p

}

= p

[

tn

p

]

+ rt ,

say, where 0 < rt < p.

So rt = tn− p[ tn
p
] is the least positive residue of tn modulo p.
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Quadratic Residues and the Quadratic Reciprocity Law Gauss’ Lemma

Determining the Parity of m (Cont’d)

Referring again to A and B in the proof of Gauss’ Lemma:

{r1, r2, . . . , r p−1
2
} = {a1, a2, . . . , ak , b1, . . . , bm};

{1, 2, . . . , p−1
2 } = {a1, a2, . . . , ak , c1, . . . , cm}, where ci = p − bi .

Now we compute the sums of the elements in these sets to obtain the
two equations

∑

p−1
2

t=1 rt =
∑k

i=1 ai +
∑m

j=1 bj ;

∑

p−1
2

t=1 t =
∑k

i=1 ai +
∑m

j=1 cj =
∑k

i=1 ai +mp −
∑m

j=1 bj .

In the first equation we replace rt by its definition to obtain

k
∑

i=1

ai +

m
∑

j=1

bj = n

p−1
2

∑

t=1

t − p

p−1
2

∑

t=1

[

tn

p

]

.
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Quadratic Residues and the Quadratic Reciprocity Law Gauss’ Lemma

Determining the Parity of m (Cont’d)

The second equation is

mp +

k
∑

i=1

ai −

m
∑

j=1

bj =

p−1
2

∑

y=1

t.

Adding these, we get

mp + 2
∑k

i=1 ai = (n + 1)
∑

p−1
2

t=1 t − p
∑

p−1
2

t=1[
tn
p
]

= (n + 1)p
2−1
8 − p

∑

p−1
2

t=1[
tn
p
].

Note that n + 1 ≡ n − 1 (mod 2) and p ≡ 1 (mod 2).

So reducing the preceding modulo 2,

m ≡ (n − 1)
p2 − 1

8
+

p−1
2

∑

t=1

[

tn

p

]

(mod 2).

George Voutsadakis (LSSU) Analytic Number Theory May 2024 28 / 65



Quadratic Residues and the Quadratic Reciprocity Law The Quadratic Reciprocity Law

Subsection 5

The Quadratic Reciprocity Law
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Quadratic Residues and the Quadratic Reciprocity Law The Quadratic Reciprocity Law

The Quadratic Reciprocity Law

The quadratic reciprocity law states that if p and q are distinct odd
primes, then:

(p|q) = −(q|p), if p ≡ q ≡ 3 (mod 4);
(p|q) = (q|p), in all other cases.

Theorem (Quadratic Reciprocity Law)

If p and q are distinct odd primes, then

(p|q)(q|p) = (−1)
(p−1)(q−1)

4 .

By Gauss’ Lemma and the preceding theorem, we have

(q|p) = (−1)m,

where

m ≡

p−1
2

∑

t=1

[

tq

p

]

(mod 2).
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Quadratic Residues and the Quadratic Reciprocity Law The Quadratic Reciprocity Law

The Quadratic Reciprocity Law (Cont’d)

Similarly,
(p|q) = (−1)n,

where

n ≡

q−1
2

∑

s=1

[

sp

q

]

(mod 2).

Hence
(p|q)(q|p) = (−1)m+n

.

So the conclusion follows at once from the identity

p−1
2

∑

t=1

[

tq

p

]

+

q−1
2

∑

s=1

[

sp

q

]

=
p − 1

2

q − 1

2
.
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Quadratic Residues and the Quadratic Reciprocity Law The Quadratic Reciprocity Law

The Quadratic Reciprocity Law (Cont’d)

Consider the function

f (x , y) = qx − py .

If x and y are nonzero integers, then f (x , y) is a nonzero integer.

Let:

x range over the values 1, 2, . . . , p−1
2 ;

y range over the values 1, 2, . . . , q−1
2

Then f (x , y) takes p−1
2

q−1
2 values.

No two of these p−1
2

q−1
2 values are equal.

We have
f (x , y) − f (x ′, y ′) = f (x − x ′, y − y ′) 6= 0.

We count the number of values of f (x , y) which are positive and the
number which are negative.
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Quadratic Residues and the Quadratic Reciprocity Law The Quadratic Reciprocity Law

The Quadratic Reciprocity Law (Identity)

For fixed x , we have f (x , y) > 0 if and only if y <
qx
p
, or y ≤ [qx

p
].

Hence, the total number of positive values is

p−1
2

∑

x=1

[

qx

p

]

.

Similarly, the number of negative values is

q−1
2

∑

y=1

[

py

q

]

.

But the number of positive and negative values together is p−1
2

p−1
2 .

So this proves the identity.
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Subsection 6

Applications of the Reciprocity Law
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Quadratic Residues and the Quadratic Reciprocity Law Applications of the Reciprocity Law

Example

Determine whether 219 is a quadratic residue or nonresidue mod 383.

Our goal is to evaluate the Legendre symbol (219|383).
For this, we use:

The multiplicative property;
The Reciprocity Law;
Periodicity;
The special values (−1|p) and (2|p) calculated earlier.

Since 219 = 3 · 73, by the multiplicative property,

(219|383) = (3|383)(73|383).

By the reciprocity law and periodicity, we have

(3|383) = (383|3)(−1)
(383−1)(3−1)

4

= − (−1|3)

= − (−1)
3−1
2 = 1.
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Quadratic Residues and the Quadratic Reciprocity Law Applications of the Reciprocity Law

Example (Cont’d)

By the reciprocity law and periodicity, we also have

(73|383) = (383|73)(−1)
(383−1)(73−1)

4

= (18|73)

= (2|73)(9|73)

= (−1)
(73)2−1

8

= 1.

Hence (219|383) = (3|383)(73|383) = 1 · 1 = 1.

So 219 is a quadratic residue mod 383.
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Quadratic Residues and the Quadratic Reciprocity Law Applications of the Reciprocity Law

Example

Determine those odd primes p for which 3 is a quadratic residue and
those for which it is a nonresidue.

Again, by the reciprocity law we have

(3|p) = (p|3)(−1)
(p−1)(3−1)

4 = (−1)
p−1
2 (p|3).

To determine (p|3) we need to know the value of p mod 3.

To determine (−1)
p−1
2 we need to know the value of p−1

2 mod 2, or the
value of p mod 4.

Hence we consider p mod 12.

There are only four cases to consider, p ≡ 1, 5, 7 or 11 (mod 12).

The other cases are excluded, since p is odd.
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Quadratic Residues and the Quadratic Reciprocity Law Applications of the Reciprocity Law

Example (The Four Cases)

Case 1: p ≡ 1 (mod 12).

We have p ≡ 1 (mod 3).

So (p|3) = (1|3) = 1.

Also p ≡ 1 (mod 4).

So p−1
2 is even.

Hence (3|p) = (−1)
p−1
2 (p|3) = 1.

Case 2: p ≡ 5 (mod 12).

In this case p ≡ 2 (mod 3).

So (p|3) = (2|3) = (−1)
32−1

8 = − 1.

Again, p−1
2 is even, since p ≡ 1 (mod 4).

So (3|p) = (−1)
p−1
2 (p|3) = − 1.
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Example (The Four Cases Cont’d)

Case 3: p ≡ 7 (mod 12).

In this case p ≡ 1 (mod 3).

So (p|3) = (1|3) = 1.

Also p−1
2 is odd, since p ≡ 3 (mod 4).

Hence (3|p) = (−1)
p−1
2 (p|3) = − 1.

Case 4: p ≡ 11 (mod 12).

In this case p ≡ 2 (mod 3).

So (p|3) = (2|3) = − 1.

Again p−1
2 is odd, since p ≡ 3 (mod 4).

Hence (3|p) = (−1)
p−1
2 (p|3) = 1.

Summarizing, 3Rp if p ≡ ±1 (mod 12) and 3Rp if p ≡ ±5 (mod 12).
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Subsection 7

The Jacobi Symbol
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Quadratic Residues and the Quadratic Reciprocity Law The Jacobi Symbol

The Jacobi Symbol

Definition

Let P be a positive odd integer with prime factorization

P =
r
∏

i=1

p
ai
i .

The Jacobi symbol (n|P) is defined, for all integers n, by the equation

(n|P) =

r
∏

i=1

(n|pi)
ai ,

where (n|pi ) is the Legendre symbol.
We also define (n|1) = 1.
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Quadratic Residues and the Quadratic Reciprocity Law The Jacobi Symbol

Comments

The possible values of (n|P) are 1,−1 or 0.

Moreover, (n|P) = 0 if and only if (n,P) > 1.

Suppose the congruence x2 ≡ n (mod P) has a solution.

Then (n|pi ) = 1, for each prime pi .

Hence, (n|P) = 1.

However, the converse is not true.

(n|P) can be 1 if an even number of factors −1 appears in the
defining product.
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Properties of the Jacobi Symbol

Theorem

If P and Q are odd positive integers, we have:

(a) (m|P)(n|P) = (mn|P);

(b) (n|P)(n|Q) = (n|PQ);

(c) (m|P) = (n|P), whenever m ≡ n (mod P);

(d) (a2n|P) = (n|P), whenever (a,P) = 1.

The listed properties of the Jacobi symbol can be deduced from
properties of the Legendre symbol.
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Evaluation of (−1|P) and (2|P)

Theorem

If P is an odd positive integer we have

(−1|P) = (−1)
P−1
2 and (2|P) = (−1)

P2−1
8 .

Write P = p1p2 · · · pm, where the pi ’s are not necessarily distinct.

This can also be written as

P =

m
∏

i=1

(1 + pi − 1) = 1 +

m
∑

i=1

(pi − 1) +
∑

i 6=j

(pi − 1)(pj − 1) + · · · .

Now each factor pi − 1 is even.

So each sum after the first is divisible by 4.
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Evaluation of (−1|P) and (2|P) (Cont’d)

Hence,

P ≡ 1 +

m
∑

i=1

(pi − 1) (mod 4).

Equivalently,

1

2
(P − 1) ≡

m
∑

i=1

1

2
(pi − 1) (mod 2).

Therefore,

(−1|P) =

m
∏

i=1

(−1|pi ) =

m
∏

i=1

(−1)
pi−1

2 = (−1)
P−1
2 .
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Evaluation of (−1|P) and (2|P) (Cont’d)

To prove the second equation, we write

P2 =

m
∏

i=1

(1 + p2i − 1) = 1+

m
∑

i=1

(p2i − 1) +
∑

i 6=j

(p2i − 1)(p2j − 1) + · · · .

Since pi is odd, we have p2i − 1 ≡ 0 (mod 8).

So P2 ≡ 1 +
∑m

i=1(p
2
i − 1) (mod 64).

Hence,
1

8
(P2 − 1) =

m
∑

i=1

1

8
(p2i − 1) (mod 8).

This also holds mod 2, whence

(2|P) =

m
∏

i=1

(2|pi ) =

m
∏

i=1

(−1)
p2
i
−1

8 = (−1)
P2−1

8 .
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Reciprocity Law for Jacobi Symbols

Theorem (Reciprocity Law for Jacobi Symbols)

If P and Q are positive odd integers with (P ,Q) = 1, then

(P |Q)(Q|P) = (−1)
(P−1)(Q−1)

4 .

Write P = p1 · · · pm and Q = q1 · · · qn, with pi , qi primes.

Then

(P |Q)(Q|P) =

m
∏

i=1

n
∏

j=1

(pi |qj )(qj |pi ) = (−1)r , say.
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Reciprocity Law for Jacobi Symbols (Cont’d)

By the quadratic reciprocity law,

r =

m
∑

i=1

n
∑

j=1

1

2
(pi − 1)

1

2
(qj − 1) =

m
∑

i=1

1

2
(pi − 1)

n
∑

j=1

1

2
(qj − 1).

In the proof of the preceding theorem, we showed that
m
∑

i=1

1

2
(pi − 1) ≡

1

2
(P − 1) (mod 2).

Similarly, we get
n

∑

j=1

1

2
(qj − 1) ≡

1

2
(Q − 1) (mod 2).

Therefore,

r ≡
P − 1

2

Q − 1

2
(mod 2).
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Example

We determine whether 888 is a quadratic residue or nonresidue of the
prime 1999.

We have

(888|1999) = (4|1999)(2|1999)(111|1999) = (111|1999).

We calculate (111|1999) using Legendre symbols.

Write
(111|1999) = (3|1999)(37|1999).

Apply the quadratic reciprocity law to each factor on the right.

The calculation is simpler with Jacobi symbols,

(111|1999) = − (1999|111) = − (1|111) = − 1.

Therefore, 888 is a quadratic nonresidue of 1999.
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Example

We determine whether −104 is a quadratic residue or nonresidue of
the prime 997.

Since 104 = 2 · 4 · 13, we have

(−104|997) = (−1|997)(2|997)(13|997)

= − (13|997)

= − (997|13)

= − (9|13)

= − 1.

Therefore −104 is a quadratic nonresidue of 997.
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Subsection 8

Applications to Diophantine Equations
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A Diophantine Equation

Theorem

The Diophantine equation
y2 = x3 + k

has no solutions if k has the form

k = (4n − 1)3 − 4m2
,

where m, n are integers, such that no prime p ≡ −1 (mod 4) divides m.

We assume a solution x , y exists.

We obtain a contradiction by considering the equation modulo 4.

Note that k ≡ −1 (mod 4).

So we have
y2 ≡ x3 − 1 (mod 4).
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A Diophantine Equation (Cont’d)

Now y2 ≡ 0 or 1 (mod 4), for every y .

So
y2 ≡ x3 − 1 (mod 4)

cannot be satisfied if x is even or if x ≡ −1 (mod 4).

Therefore, we must have x ≡ 1 (mod 4).

Let a = 4n − 1 so that k = a3 − 4m2.

Write y2 = x3 + k in the form

y2 + 4m2 = x3 + a3 = (x + a)(x2 − ax + a2).

But x ≡ 1 (mod 4) and a ≡ −1 (mod 4).

So we have

x2 − ax + a2 ≡ 1− a + a2 ≡ −1 (mod 4).

Hence, x2 − ax + a2 is odd.

By the last equation, not all its prime factors can be ≡ 1 (mod 4).
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A Diophantine Equation (Cont’d)

Therefore some prime p ≡ −1 (mod 4) divides x2 − ax + a2.

The equation

y2 + 4m2 = (x + a)(x2 − ax + a2)

shows that this also divides y2 + 4m2.

In other words,
y2 ≡ −4m2 (mod p),

for some p ≡ −1 (mod 4).

But p ∤ m by hypothesis.

So (−4m2|p) = (−1|p) = −1.

This contradicts y2 ≡ −4m2 (mod p).
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Subsection 9

Gauss Sums and the Quadratic Reciprocity Law
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Gauss Sums Modulo a Prime

We give another proof of the Quadratic Reciprocity Law.

We use the Gauss sums

G (n, χ) =
∑

r mod p

χ(r)e2πinr/p ,

where χ(r) = (r |p) is the quadratic character mod p.

Since the modulus is prime, χ is a primitive character.

So we have the Separability Property

G (n, χ) = (n|p)G (1, χ), for every n.

Also, by a previous theorem,

|G (1, χ)|2 = p.
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The Value of G (1, χ)2

Theorem

If p is an odd prime and χ(r) = (r |p), we have

G (1, χ)2 = (−1|p)p.

We have

G (1, χ)2 =

p−1
∑

r=1

p−1
∑

s=1

(r |p)(s|p)e2πi(r+s)/p
.

For each pair r , s, there is unique t mod p, such that s ≡ tr (mod p).

Moreover, (r |p)(s|p) = (r |p)(tr |p) = (r2|p)(t|p) = (t|p).

Hence,

G (1, χ)2 =
∑p−1

t=1

∑p−1
r=1 (t|p)e

2πir(1+t)/p

=
∑p−1

t=1 (t|p)
∑p−1

r=1 e
2πir(1+t)/p .
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The Value of G (1, χ)2

The last sum on r is a geometric sum given by

p−1
∑

r=1

e2πir(1+t)/p =

{

−1, if p ∤ (1 + t),
p − 1, if p | (1 + t).

Therefore,

G (1, χ)2 = −
∑p−2

t=1 (t|p) + (p − 1)(p − 1|p)

= −
∑p−2

t=1 (t|p) + p(p − 1|p)− (p − 1|p)

= −
∑p−1

t=1 (t|p) + p(−1|p)

= (−1|p)p.
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Equivalent Form of Quadratic Reciprocity

Theorem

Let p and q be distinct odd primes and let χ be the quadratic character
mod p. Then the quadratic reciprocity law

(q|p) = (−1)
(p−1)(q−1)

4 (p|q)

is equivalent to the congruence

G (1, χ)q−1 ≡ (q|p) (mod q).

From G (1, χ)2 = (−1|p)p, we have

G (1, χ)q−1 = (−1|p)
q−1
2 p

q−1
2 = (−1)

(p−1)(q−1)
4 p

q−1
2 .
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Equivalent Form of Quadratic Reciprocity

By Euler’s Criterion,

p
q−1
2 ≡ (p|q) (mod q).

So we get

G (1, χ)q−1 = (−1)
(p−1)(q−1)

4 (p|q) (mod q).

Suppose the second congruence holds.

Then we obtain

(q|p) ≡ (−1)
(p−1)(q−1)

4 (p|q) (mod q).

This implies the first equation since both members are ±1.

Conversely, suppose the first equation holds.

Then we get the second congruence.
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Value of G (1, χ)q−1

Theorem

If p and q are distinct odd primes and if χ is the quadratic character mod
p, we have

G (1, χ)q−1 = (q|p)
∑

r1 mod p

· · ·
∑

rq mod p

r1+···+rq≡q (mod p)

(r1 · · · rq |p).

The Gauss sum G (n, χ) is a periodic function of n with period p.

The same is true of G (n, χ)q.

So we have a finite Fourier expansion

G (n, χ)q =
∑

m mod p

aq(m)e2πimn/p
,

where aq(m) = 1
p

∑

n mod p G (n, χ)qe−2πimn/p .
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Value of G (1, χ)q−1 (Cont’d)

From the definition of G (n, χ) we have

G (n, χ)q =
∑

r1 mod p(r1|p)e
2πinr1/p · · ·

∑

rq mod p(rq|p)e
2πinrq/p

=
∑

r1 mod p · · ·
∑

rq mod p(r1 · · · rq|p)e
2πin(r1+···+rq)/p .

Now we get

aq(m) =
1

p

∑

r1 mod p

· · ·
∑

rq mod p

(r1 · · · rq |p)
∑

n mod p

e2πin(r1+···+rq−m)/p
.

The sum on n is a geometric sum which vanishes unless
r1 + · · · + rq ≡ m (mod p), in which case the sum is equal to p.

Hence,

aq(m) =
∑

r1 mod p

· · ·
∑

rq mod p
r1+···+rq≡q (mod p)

(r1 · · · rq |p).
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Value of G (1, χ)q−1 (Conclusion)

Next, we obtain an alternate expression for aq(m).

We use the following properties:
The separability of G(n, χ);
The relation (n|p)q = (n|p), for odd q;
The equation

G(1, χ)G(−1, χ) = G(1, χ)G(1, χ) = |G(1, χ)|2 = p.

We find

aq(m) = 1
p
G (1, χ)q

∑

n mod p(n|p)e
−2πimn/p

= 1
p
G (1, χ)qG (−m, χ)

= 1
p
G (1, χ)q(m|p)G (−1, χ)

= (m|p)G (1, χ)q−1.

Taking m = q and using the previously obtained expression for aq(m)
we obtain the conclusion.
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Proof of the Quadratic Reciprocity Law

Now we take into account the two preceding theorems.

They show that to deduce the Quadratic Reciprocity Law, it suffices
to show that

∑

r1 mod p

· · ·
∑

rq mod p

(r1 · · · rq |p) ≡ 1 (mod q),

where the summation indices r1, . . . , rq are subject to the restriction
r1 + · · · + rq ≡ q (mod p).

Suppose all the indices r1, . . . , rq are congruent to each other mod p.
Then their sum is congruent to qrj , for each j = 1, 2, . . . , q.
So r1 + · · ·+ rq ≡ q (mod p) holds if, and only if, qrj ≡ q (mod p).
I.e., if, and only if rj ≡ 1 (mod p), for each j .
In this case the corresponding summand in the sum is (1|p) = 1.
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Proof of the Quadratic Reciprocity Law (Cont’d)

For all other choices of indices satisfying r1 + · · ·+ rq ≡ q (mod p),
there must be at least two incongruent indices among r1, . . . , rq.
So, every cyclic permutation of r1, . . . , rq gives a new solution of this
congruence which contributes the same summand, (r1 · · · rq |p).
Therefore each such summand appears q times and contributes 0
modulo q to the sum.

Hence, the only contribution to the sum which is nonzero modulo q is
(1|p) = 1.
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