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Convex Sets Basic Properties of Convex Sets

Subsection 1

Basic Properties of Convex Sets
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o A set in space is convex if whenever it contains two points, it also
contains the line segment joining them.

o Elementary geometry abounds in convex sets:

ellipses;

triangles;

parallelograms;

balls;

halfspaces;

cubes.

¢ ¢ ¢ ¢ ¢ ¢

o Examples of non-convex sets are:

@ an annulus;
@ a crescent;
o the vertex set of a cube.
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o Let x and y be distinct points of R".
o Then the subset
Ax+py Au=0A+u=1}
of the line through x and y is called the line segment joining x and y.

o The set Ain R" is said to be convex if whenever it contains two
points, it also contains the line segment joining them.

o Expressed algebraically, A is convex if Ax+ uy € A whenever x,y € A
and A, u=0 with A+pu=1.

o Equivalently, A is convex if AA+ uA< A whenever A, u=0 with
A+pu=1.
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Convex Sets Basic Properties of Convex Sets

First Examples

o The condition for a set to be convex is less restrictive than for it to be
a flat.

o So every flat is a convex set.

o In particular, the following are convex:
the empty set;

singletons;

lines;

hyperplanes;

R" itself.

©

¢ ¢ ¢ ¢
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We show that the closed ball Bla;r] in R" is convex.
Let x,y € Bla; r].

Let A, =0 with A+p=1.

Then |[x—all<r, |y—-all <r.

So

¢ © ¢ ¢ ¢

IAx +py - al IA(x —a)+u(y —a)ll
Alx—all+uly —all

Ar+pur=r.

IANIN I

©

Thus Ax +py € Bla; r].

©

This proves that Bla; r] is convex.

©

A similar argument shows that the open ball B(a;r) is convex.
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We show that the closed halfspace A in R"” defined by the inequality
u-x < ug is convex.

©

o Let x,yeAandlet A,u=0 with A+pu=1.
o Then u-x<ug, u-y < ug.
o So
u-(Ax+py)=Au-x+pu-y < Aug+ pug = Up.
o Thus Ax+puy € A.

©

This proves that A is convex.

©

A similar argument shows that open halfspaces are convex.
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Convex Sets Basic Properties of Convex Sets

Closure Under Intersections

The intersection of an arbitrary family of convex sets in R" is convex.

o Let (A;:i€l) be a family of convex sets in R".
If a,beN(A;j:i€l)and A,u=0 with A+p=1, then a,be A;.
As A; is convex, Aa+pube A, for each i€ l.
Thus Aa+pubeN(Ai:iel).
This shows that the intersection is convex.
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Convex Sets

— e

Let a1,...,am be points of a convex set A in R". Let A1,...,A, =0 with
A +-+Am=1. Then Aja;+ -+ Anam€A.

o We argue by induction on m.
o When m =1 the assertion is trivial.
o Suppose that the assertion holds when m is some positive integer k.
o Let
x=MAay+- -+ Akr18k+1,

where ay,...,as1€Aand Aq,..., A1 =0 with A+ + 1,1 =1. At
least one A; must be less than 1, say A,,1 <1. Write

y= %a1+---+%ak, where A=Ay +--+ A, =111 >0. By the
induction hypothesis, y € A. Since A is convex and contains both y
and ay, 1, the equation x = Ay + Ax 1841 shows that xe A. This
completes the proof by induction.
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o A point x is said to be a convex combination of points ay,...,a, in
RR" if there exist scalars A1,...,A» =0 with A1 +---+ A, =1 such that

x=MAMai+--+Amam.

o The preceding theorem can thus be expressed as:

Every convex combination of points of a convex set in R" belongs to
that set.
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Let A, B be convex sets in R” and let a@ be a scalar. Then A+ B and aA
are convex.

o Let A, =0 with A+pu=1. Since A, B are convex,

AMA+B)+u(A+B)=(AA+pA)+(AB+uB) < A+ B;
MaA) +u(aA) = a(AA+ pA) < aA.

This shows that A+ B and aA are convex.

Corollary

Let Ay,...,A; be convex sets in R" and let Aq,...,A,, be scalars. Then
AMAL+---+ AmAmn is convex.
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Let A be a convex set in R” and let A4,...,A4,, =0. Then

A1+ +Am)A=11A+ -+ AnA.

o The result is trivial when each A; is zero.
Suppose that A=2A;+---+ 1, >0.
With the help of a previous theorem, we can deduce that

A+ +Am)A < MA+--+1,A
= A(’l—/{A+---+’lT’"A)
c 1A
= (Ai+-+Am)A

Thus (A1 4+ Am)A=A1A+ -+ A A.



Convex Sets
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Let A, B, C be sets in R". Suppose that A is non-empty and bounded, that
C is closed and convex, and that A+ B€ A+ C. Then B< C.

o LetageA. If be B, then ag+be A+ BZ A+ C. So there exist a; € A,
c1 € C, such that ag+ b=a; + c1. Similarly, there exist ay,...,a; € A
and cy,...,c;e Cwithaij+b=a>+c», ..., aj_1 +b=a;+c;. We add
the / equations above together to deduce that

ao+ib:a,-+c1+---+c,-.
Since C is convex, the point x; = %(cl +---+cj) liesin C. Since A is
bounded,

Ib-xill = l}(ai+ci+-+ci—a)-F(cr+ - +ci)l

%Ila,-—aoll—>0 as | — oo.

Thus x; — b as i — oo. But C is closed. So be C. Hence, Bc C.
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Convex Sets Basic Properties of Convex Sets

A Cancelation Property (Cont'd)

Corollary

Let A, B, C be sets in R"”. Suppose that A is non-empty and bounded, that
B and C are closed and convex, and that A+ B= A+ C. Then B=C.
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Let f:R" — R™ be an affine transformation. Then f(A) is convex for each
convex set A in R”, and f~1(B) is convex for each convex set B in R™.

o Let A be a convex set in R". Let A,u=0 with A+pu=1. If
x,y € f(A), then x =f(a), y = f(b) for some a,be A. Since A is
convex, Aa+ube A. Since f is affine,

Ax +py = Af(a)+puf(b)=f(Aa+ub).

Thus Ax +py € f(A). This shows that f(A) is convex.

Let B be a convex set in R™. Let A, u=0 with A+pu=1. If

x,y € f~1(B), then f(x),f(y) € B. Since B is convex,

Af(x)+uf(y) e B. Since f is affine, f(Ax+puy)=Af(x)+puf(y)eB.
Thus Ax +puy € f~1(B). This shows that f~1(B) is convex.
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Convex Sets [FheConvex Hull

Subsection 2

The Convex Hull
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o The convex hull convA of a set A in R" is the intersection of all
convex sets in R” containing A.

o The definition of convA, together with a previous theorem, shows that
convA is a convex set containing A.

o Moreover, if C is any convex set in R" containing A, then convAc C.

o Thus we may refer to convA as the smallest convex set in R"
containing A.

o Clearly, A is convex if and only if A=convA.
o Moreover conv(convA) = convA.

o Also convA c convB whenever Ac B.
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o In space:

o The convex hull of two distinct points is the line segment joining them;
o The convex hull of three non-collinear points is the triangle which they
determine;
o The convex hull of four non-coplanar points is the tetrahedron which
they determine.
o In R? the convex hull of m points symmetrically placed on the
circumference of a circle, where m= 3, is a regular m-sided polygon.
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o The convex hull of the set A={xecR":| x| =1} is the closed unit ball
={xeR":|x| <1}

o The ball U is convex and contains A, so convAc U.
o We now show that U < convA.

Let xe U. If x=0and y € A, then x= %y+ %(—y). Since convA is
convex and contains y and —y, this shows that x € convA. If x #0,
then 0 < ||x]l = 1. The equation

(1+2”x”) Ix +(1_2”x”)||_77|

shows that x € convA, since convA is convex and contains
||x|| Thus U < convA.

o We now have U =convA.

X7 and
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Convex Sets
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Let A be a set in R". Then convA is the set of all convex combinations of

points of A.

o Denote by B the set of all convex combinations of points of A.
That B < convA follows from a previous theorem and the inclusion
Ac convA.

We next show that B is convex. If x,y € B, then

x=Mai+ - +Amam, y=pibi+---+pupbp,

for some ay,...,am, b1,...,bpe Aand Ay,...,Am, p1,..., 1p =20 with
A+ +Am=1and p1+---+pp=1.
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o Let L, u=0 with A+pu=1. Then
Ax+py =A@y +---+AAmam + ppiby + -+ pupbp

and
AAL + -+ Ay + g + - + pdp
=AM+ + Am) + p(pa + -+ pp)
=A+p=1.

Thus Ax + py € B, so B is convex. Since B is convex and B2 A, it
follows that B2 convA. Hence B = convA.

Corollary

Let a1,...,@am €R". Then

conviay,...am} = Mar+---+Anam:A1,...,An=0,
M+ +An=1}L
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o The preceding theorem shows that each point of the convex hull of a
set in R" is a convex combination of points of that set.

o The theorem makes no reference to the number of points in the
combination.

o Carathéodory's Theorem, which is proved next, states that each point
of the convex hull of an r-dimensional set can be expressed as a
convex combination of r+1 or fewer points of the set.

o Thus a point in the convex hull of a set in R3 is either a point of the
set or belongs to a line segment, a triangle, or a tetrahedron with
vertices in the set.
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Convex Sets

___________________ ComoxSeis ]
Theorem (Carathéodory’s Theorem)

Let a € convA, where A is an r-dimensional set in R". Then a can be
expressed as a convex combination of r+1 or fewer points of A.

o The preceding theorem shows the existence of points ajy,...,a, of A
and scalars A1,...,A; =0 with A +---+A,,, =1 such that

a=Mai+---+Amanm.

We assume that this representation of a is so chosen that a cannot be
expressed as a convex combination of fewer than m points of A.

It follows that no two of the points as,...,an, are equal and that
A1,y Am > 0. We prove the theorem by showing that m<r+1.

We use a contradiction argument.
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o Suppose that m>r+1. Then, since A is r-dimensional, the set
{ai,...,an} must be affinely dependent. So there exist scalars
U1,-.-, m, not all zero, such that

O=war+-+umam M1+--+um=0.

Let ¢ >0 be such that the scalars Ay + uit,...,Am +umt are
nonnegative with at least one of them zero. Such a t exists since the
A's are all positive and at least one of the u's is negative. The
equation

a=M+ut)ar+--+Am+mt)am,

when its terms with zero coefficients are omitted, exhibits a as a
convex combination of fewer than m points of A. This contradiction
to the minimality of m shows that m<r+1.
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Convex Sets

S o sl
Theorem (Radon’s Theorem)

Let a1,...,am € R"” (m=n+2). Then the set {1,...,m} can be partitioned
into two subsets / and J such that convi{a;:i € I} meets conv{a;:j€ J}.

o We consider the non-trivial case when the aq,...,a,, are distinct.

It follows from a previous corollary that there exist scalars Aq,...,Am,
not all zero, such that A1a1+---+A,am=0and A1 +---+A,,=0.
Some of the A's will be positive, others negative. Let [ ={i: 1;=>0}

and J={j:1;<0}. Then
YielAia; _ Yies(=A))a;
Yicr Ai Yies(=4))
Thus x is a convex combination of points of both {a;: i€ [} and
{aj:je J}. Hence xeconvia;:i€l}nconvia;: e J}.
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o Radon's theorem yields information about the possible configurations
of four points in R2.

o It shows that:

o Either one of the four points belongs to the (possibly degenerate)
triangle determined by the remaining three;
o Or the four points are the vertices of a convex quadrilateral.

d d

conv{a) meets conv{b,c,d} conv{a,c} meets conv{b,d}
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Convex Sets
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In R" the convex hull of an open set is open and the convex hull of a
compact set is compact.

o Let A be an open set in R". If aeconvA, then a=A1a;+ -+ Amam
for some ay,...,am€A and A4,...,A4,, =0 with A3 +---+ 1, =1. Since
A is open, there exist rq,...,rm >0 such that B(a;;n) S A,...,
B(am;rm) < A. Let r=min{r,...,rm}, so r>0. We show that
B(a;r)cconvA. Let xe B(a;r). Then [ x—al <r. For i=1,...,m,
the point x; =a;+x—a lies in B(a;;r). Hence also in B(a;;r;) and A.
Now we get

x = a+x—-a=MNai+ - +Apam+Ai+--+Ap)(x-a)
= M(ar+x—-a)+-+An(@am+x—a)=A1x1+ -+ AmXpm.

So x € convA. Thus B(a;r) < convA and each point of convA is an
interior point of convA. l.e., convA is open.
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o Now let A be a compact set in R". If x1,...,Xk,... is a sequence in
convA, then, by Carathéodory’'s Theorem, x, can be expressed in the
form xy = Agoaig+ -+ Akpaxny, for some ayg,...,ax, € A and
Ak0y-or Akn =0 with Agg+---+ A, =1. It may be necessary to include
some extra a's with zero coefficients to bring the number of a's in the
expression for x, up to n+1. Each sequence ayj,...,ay;,...
(j=0,...,n) belongs to the compact set A. Each real sequence
Ajyos Akjr... (J=0,...,n) belongs to the compact interval [0,1].
Since there is only a finite number, namely 2n+2, of these sequences,
we can, by repeatedly forming convergent subsequences of sequences
whose members lie in a compact set, find a subsequence iy,...,i,... of
1,...,k,..., points ag,...,a, of A and scalars Ag,...,A, =0 with
Adg+-++A,=1, such that agj— a; and /1/(_,' —>/1j (k — 00, j=0,...,n).
Thus the subsequence xj,...,xj,... converges to the point
Agag + -+ Apa, of convA. This shows that convA is compact.
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Convex Sets [FheConvex Hull

Finite Sets and Closed Sets

Corollary

The convex hull of a finite set in R” is compact.

o The theorem makes no reference to the convex hull of a closed set.
o Except in R!, the convex hull of a closed set need not be closed.

“xampler In R™ the union of a line and a point not on it is a closed
set.

But its convex hull is not closed.
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o Since a set in R" is bounded if and only if it lies in some ball, and
balls are convex, it follows that the convex hull of a bounded set in R"
is bounded.

o The diameter of a nonempty bounded set A in R" is the nonnegative
real number
sup{lla- bl :a,be A}
o In R? the diameter of a triangle is the length of a longest side.
The diameter of a rectangle is the length of a diagonal.
o In R" the balls B(a;r) and Bla; r] both have diameter 2r.

o The theorem below relates the diameters of a bounded set and its
convex hull.
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Let A be a nonempty bounded set in R”. Then A and convA have the
same diameter.

o Suppose that A has diameter s. Let x,y € convA. Then
x=Mai+ - +Amam, y=pibi+---+upbp,
for some ay,...,am, b1,...,bpe Aand Ay,...,Am, p1,..., p =20 with
A+ +Am=1, p1+--+p,=1 Thus x:ZI’.;'lZf:l)L,-uja,- and
y=2§212§’:1)t,-yjbj. Hence, using the Triangle Inequality,

IX7, X5 Ainj(ai = by)l
X7 Aikjllai - byl
X X Aigs =s.

Hence the diameter of convA does not exceed s. Since A< convA, the
diameter of convA is at least s. Thus convA has diameter s.
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o We now prove a result concerning the location of the roots of the
derivative of a complex polynomial.

o In a natural way we can identify the Euclidean space R? with the
complex plane by identifying each point (x,y) of R? with the complex
number x + iy and vice versa.

o This identification allows us to refer to the convex hull of a set of
complex numbers or to a convex combination of complex numbers.

. Consider a complex polynomial P(z) =az?+bz+c.

Then P has roots —2tVb2-4ac ”2b;_4"’c, and its derivative P’ has root —%.
Hence the root of P’ lies midway between the roots of P.

So the root of P’ is in the convex hull of the roots of P.
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Theorem (Gauss-Lucas Theorem)

The roots of the derivative of a non-constant complex polynomial belong
to the convex hull of the set of roots of the polynomial itself.

o Let P be the complex polynomial defined for complex z by the
equation
P(z)=apz"+---+ a1z + ao,

where n=>1 and ag, a1,...,a, are complex numbers with a, #0. Then
P(z)=an(z—2z1) - (z—zp),

where z1,...,z, are the roots of P, each being repeated according to

its multiplicity. A routine verification shows that, for z # z,..., z,,

P(z) 1 1 z-7 Z-Z,

= = +...+—.
P(z) z-=z z—zp |z—z)? |z — zp|?
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o Suppose now that z is a root of P’. We establish the theorem by
exhibiting z as a convex combination of z,...,z,. This can be done
trivially if z is one of z,...,z,. So assume that this is not the case.
Putting P'(z) =0 in the preceding equation, we find easily that

L |2 Z] +-

_lz==z

Z
|ZZ|2 n

1 1
|z—z1/? ot |z—2z,|?

This expresses z as a convex combination of zi,...,z,.

Corollary

Suppose that the roots of a non-constant complex polynomial lie in some
given convex set. Then the roots of its derivative lie in the same convex set.

o A simple application of the corollary:
If all the roots of a non-constant complex polynomial have positive
imaginary parts, then the same is also true of the roots of its derivative.

George Voutsadakis (LSSU) Convexity



Convex Sets |[SInteriors'and Closures

Subsection 3

Interiors and Closures
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The relative interior of a non-empty convex set in R"” is non-empty.

o Let A be a non-empty r-dimensional convex set in R". Then A
contains points ag,...,a, which form an affine basis for the r-flat affA,
and the barycentric coordinates Ag,...,A, of a point x of affA relative
to ao,...,a, are continuous functions of x, a fact which follows easily
from a previous theorem. Let a=—1-(ag+::-+a,). Then a lies in A
and its barycentric coordinates Ag,...,A, are positive, each being ﬁ

By the continuity of the barycentric coordinates, for each i =0,...,r,

there exists s; >0, such that A; >0 whenever x lies in B(a;s;) naffA.

Let s be the minimum of sp,...,s,. So s>0. Then if x lies in

B(a;s)naffA, all its barycentric coordinates Ay,..., A, are positive.

So, since A is convex, x lies in A. Thus, the relative interior of A

contains the point a.
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Corollary

A convex set in R" has an empty interior if and only if it lies in some hyper
plane of R".

o Since a hyperplane in R" has an empty interior, so does each of its
subsets.

A convex set in R" which does not lie in any hyperplane of R" must
be n-dimensional. Therefore its interior coincides with its relative
interior. This relative interior is non-empty by the theorem.
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Convex Sets |[SInteriors'and Closures

Line Segment Between Relative Interior and Set

Let A be a convex set in R". Let a€riA and be A. Then, for 0<A <1,

Aa+(1-A)beriA.

o Since a€riA, there is an r >0 such that B(a;r)naffAc A.
Let c=21a+(1-2A)b, where 0<A=<1.
We show that B(c;Ar)naffAc A.
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o Let xe B(c;Ar)naffA. Let
1 1 1 1
y—a+1(x—c)—a+1(x—/1a—(1—/1)b)—Xx+(1—1)b.

Then y € affA and [ly —all = %le—cll <r. Thus, ye B(a;r)naffAc A.
The equation x = Ay + (1 —1)b, together with the convexity of A,
shows that x € A. Hence, B(c;Ar)naffAc A. So ceriA.

George Voutsadakis (LSSU) Convexity



Convex Sets

— e

Let A be a convex set in R"”. Let a€riA and beclA. Then
Aa+(1-A)beriAfor 0<A=<1.

o Since a€riA, there is an r> 0 such that B(a;r)naffAc A. Let
c=Aa+(1-A)b, where 0<A<1. Since beclA, there exists d € A
satisfying (1—-A)lIld — bl < Ar. Let

e = a
= 1
)

LA(b-d)=*(Aa+(1-A)b—(1-1)d)
c+(A-1)d)=tc+(1-1)d.
Then ecaffA and |le—a| = %IIb—dII <r. Thus e lies in

B(a;r)naffA. Hence, it lies in riA. The equation c=1e+(1-21)d,
together with the lemma, shows that c € riA.
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Let A be a convex set in R”. Then riA, intA and clA are convex.

o Ifa,beriAand 0<A <1, then Aa+(1-A)beriA, either trivially, if
A =0, or by the preceding theorem, otherwise. Thus riA is convex.

That intA is convex follows from the fact that either intA is empty or
coincides with riA.

If a,beclA, then there are sequences aj,...,ay,... and by,...,by,... of
points of A such that ay — a, by — b as k—oo. Let 0=sA<1. Then
Aag +(1—2A)by € A for each k, since A is convex. Now

Aag+(1—A)bx — Aa+(1—A)b as k — oo.
This shows that Aa+(1-A)beclA. Thus clA is convex.
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o The preceding theorem shows that, for any set A in R", the set
cl(convA) is a closed convex set containing A.

o If B is any closed convex set in R" containing A, then
B =cl(convB) 2 cl(convA).

o So cl(convA) is the smallest closed convex set containing A.

o It is called the closed convex hull of A.
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o The next result asserts that a point ag of a convex set A is a relative
interior point of A if and only if every line segment lying in A, and

having ag as an endpoint, can be extended some distance beyond ag
without leaving A.

Let ag be a point of a convex set A in R". Then ag € riA if and only if, for
each a€ A, there exists p> 1 such that (1-p)a+ uag € A.

o Clearly, if ag eriA, then the condition of the theorem is satisfied.

Conversely, suppose that ag satisfies this condition. Let a€riA. Then
there is u>1 such that the point x = (1—pu)a+ pag lies in A. Hence
ag=Aa+(1-21)x, where 0< A= 1_1_11 <1. But aeriA and x€ A, so
ag € riA by a previous lemma.
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Let A=conv{ay,...,an}, where ay,...,a, € R". Then

rA={Aa1+--+Amam:A1,..0; Am>0,A1+---+ A, =1}

o Suppose first that ag=Aia1 +--- + Amam, where A4,...,A,, >0 and
A1 ++-++Apm=1, and that a€ A. Then ag€ A, and
a=pa;+---+Umanm for some py,...,m=0 with gy +---+pum=1.
Choose u>1 such that

pAr+(1=p)p1 =0,..., pdm+ (1 —p)ptm = 0.

Then (1-pu)a+page A. So ag € riA by the preceding theorem.

George Voutsadakis (LSSU) Convexity



o Suppose next that ag €riA, and that a* = L(ay+---+ap). Then
a* € A. By the preceding theorem, there exist u>1 and a€ A such
that a=(1-p)a* +pag, say a=piay +---+ tmam, where
U1, m =0 with pug +---+pm,m =1. The equation

p-1 p-1
it Hmt =
ag=————aj+-+———apn,
H 2

now expresses ag in the form Ajay +---+ Apam,, where Aq,...,1, >0
with A1 +---+ A, =1.
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Let A be a convex set in R”. Then riA=ri(clA) and clA =cl(riA).

o We assume, throughout, that A is non-empty with a € riA.

The inclusion riA cri(clA) follows from the inclusion A< clA and the
fact that the affine hulls of A and clA coincide. To establish the
inclusion ri(clA) criA, suppose that beri(clA). By a previous
theorem, there exist u>1 and c € clA such that ¢ =(1-pu)a+pub.
Hence b=(1-1)a+ Ac, where 0 <A = % <1. That beriA follows

from a previous theorem. Thus, ri(clA) criA.

The inclusion cl(riA) = clA is clear. To establish the inclusion
clAccl(riA), suppose that beclA. A previous theorem shows that
Aa+(1-2A)beriA for 0<A<1. Hence, becl(riA). Thus,
clAccl(riA).
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Corollary

Let A be a convex set in R”. Then intA =int(clA) and, when intA is
nonempty, clA =cl(intA).

o If intA is non-empty, then riA =intA and ri(clA) = int(clA), and the
corollary follows from the theorem.
If intA is empty, then A, and hence clA, lie in a hyperplane of R".
Hence, both intA and int(clA) are empty.

Corollary

Let A be a convex set in R”. Then rebdA =rebd(clA) and bdA = bd(clA).

o By the theorem and its first corollary,
rebd(clA) cl(clA)\ri(clA) = clA\riA = rebdA;
bd(clA) cl(clA)\int(clA) = clA\intA = bdA.
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Convex Sets Separation and Support

Subsection 4

Separation and Support
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Theorem
In R" let A be a nonempty closed convex set and let x be a point. Then
there exists a unique point ag of A such that [x —ag| =inf{|x-2z| : z€ A}.
Moreover, (x—ag)-(a—ap) <0, for each a in A.

o By a previous theorem, there exists ag € A
such that | x—ag| = inf{|lx—z| : z€ A}. Let
acAand 0<A=<1. The convexity of A
shows (1-21)ag +AacA.

The choice of ag shows that
Ix—((1-2A)ag+Aa)ll =ll(x—ao)+A(ao—a)ll = lx—apll.

We deduce, using a previous theorem that (x —ap)-(a—ag) <0.
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o Suppose that a; € A also satisfies the equation
Ix—aill =inf{lx—2z|:z€A}

Then, by what we have just proved, (x —ap)- (a1 —ap) <0. Because of
the symmetry between ag and a;, we have (x—aj)-(ap—a;) <0.
Adding these last two inequalities together, we deduce that

lay —aoll® = (a1 — ag)- (a1 — ag) <O.

This proves that ag = a;.

o The theorem shows how each non-empty closed convex set A in R”
gives rise to a mapping f :R” — A defined by f(x) = ag, where ag is
the nearest point of A to a point x of R".

This mapping is called the projection operator of A.
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Corollary

Let A be a non-empty closed convex set in R"”. Then the projection
operator f:R" — A of A satisfies the Lipschitz condition
If(x)-f(y)l<lx—yl for all x,y € R". So it is continuous.

o Let x,y e R". Write u=x—-1f(x), v=y—f(y). Then, by the theorem,
u-(f(y)-f(x))<0and v-(f(x)—f(y)) <0. So, we get
(u—v)-(f(x)—~(y))=0. Thus,

Ix=ylI> = (u=v)+(f(x)=f(y))I
= Ju-vi?+2(u-v)-(f(x)-f(y))+IIf(x)-f(y)I?
= |If(x)-f(y)I>

So [If(x)=f(y)l <lx-yl.
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o Geometrically, the following corollary states that, if f(x) is the nearest
point of a non-empty closed convex set A in R” to a point x of R”
not belonging to A,

then it is also the nearest point of A to any point on the halfline
starting at f(x) and passing through x.
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Corollary

Let A be a non-empty closed convex set in R"” with projection operator f.
Then, for all xe R" and 1 =0,

f(f(x)+A(x—1f(x)))="f(x).

o Write y = f(x)+ A(x—f(x)), where xe R", 1=0. By the theorem,
(x=f(x))-(f(y)-f(x)) =0 and (y - f(y))-(f(x)-f(y)) <0.
From these inequalities, we deduce that

0 (fy)=f(x))-(f(y) - f(x))
(Fly)+Alx = f(x))-y)-(f(y) - f(x))
gf(}')—y)'(f( y)—f(x)) + Alx = f(x))-(f(y) - f(x))

Hence, If(y)—f(x)lI? =0. Therefore, f(y)=f(x).

I 1A

IA I
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Theorem

Let a be a relative boundary point of a non-empty closed convex set A in

R" with projection operator f. Then there exists x € (aff A)\A such that
f(x)=a.

o Since a€rebdA, there exists, for each positive integer m, a point y,,
of (affA)\A satisfying Ily,, —all < L. Write a, = f(y,,) and

Ym—4m

Xm=am-+ .
”ym_am”
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o Then X, —aml =1 and, by the preceding corollary, f(xp,) = am.

A previous corollary shows that

1
lam—al=1f(y,)—-f(a)l<ly,—al < =

So a;,, — a as m— oo. We have
1
”Xmlls||Xm_am||+||am_a||+||a”S]-"'E‘f'”a”-

So the sequence x1,x»,... is bounded. Thus x1,x5,... contains a
convergent subsequence. Assume, without loss of generality, that
X1,X2,... itself converges to some point x of R". Since x1,x>,...
belong to affA, we can deduce that x € affA. The continuity of f
shows that f(x,) — f(x) as m— oo, i.e., @y, — f(x) as m — co. But
a, — a as m—oo. Hence, f(x)=a. Clearly [x—al =1. So x¢ A.
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Corollary

Let A be a non-empty closed convex set in R" with projection operator f
and let B be a bounded set in R” such that Ac B. Then f(bdB) =bdA.

o We show that bdA < f(bdB), the opposite inclusion being obvious.
Let ae bdA. Then there exists x € R"\A such that f(x)=a. This can
be proved by substituting bdA for rebdA, and R” for affA, in the
proof of the theorem. As B is bounded, there is some u >0 such that,
for A=pu, a+A(x—a)gB. But ae B. So a+ Ag(x—a) € bdB for
some Ag = 0. The preceding corollary shows that f(a+Ap(x—a)) = a.
Hence, bdA < f(bdB).
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o Let A and B be sets, and let H be a hyperplane in R".

o Then H is said to separate A and B if A lies in one of the closed
halfspaces determined by H and B lies in the other.

o H is said to separate A and B properly if it separates them, but not
both A and B lie in H.

o If A and B lie in opposite open halfspaces determined by H, then H is
said to separate A and B strictly.

o It follows from the convexity of halfspaces that, if a hyperplane
separates two sets, then it also separates their convex hulls.

For this reason, we consider only the separation of convex sets.
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o It is not always possible to separate two convex sets by a hyperplane.
For example, there is no line separating the set {0} and the closed unit
disc {(x,y) :x2+y?<1}in R2

o Any two sets that can be strictly separated can be properly separated,
unless they are both empty.

o The convex sets {(x,y):x<0} and {(x,y): x>0,y = %} in R?2 cannot
be strictly separated, but they are properly separated by the y-axis.

o A hyperplane in R" separates any two of its subsets, but does not
separate them properly.
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Let A and B be disjoint non-empty convex sets in R" with A closed and B
compact. Then A and B can be strictly separated by a hyperplane in R".

o The geometry of the proof is as follows.
Let @ and b be nearest points of A and
B. Then the hyperplane through the
midpoint of the line segment joining a
and b with normal vector a— b strictly
separates A and B.

@-b)-z = 4dlall2lInli%
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o Let ae A, be B be such that a is the nearest point of Ato b, and b is
the nearest point of B to a. This is possible by a previous theorem.
Since A and B are disjoint, a#b. Let x€ A, ye B. Then, by a
previous theorem, (b—a)-(x—a) <0 and (a—b)-(y—b)<0. Thus,

(a-b)-x (a—b)-a

%(nan?— 1612 +lla— bi?)

?(||a||2— Ibl12)

s(llall? = 1bl1> - lla - bl|?)

(a—b)-b

(a-b)-y.

v 1 v v Il v

Write c=a—b and ¢y = 1(llall> - [|b]|?). Then we have shown that
the hyperplane ¢z = ¢ strictly separates A and B.
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Corollary

In R" let A be a closed convex set and let b be a point not lying in A.
Then A and {b} can be strictly separated by a hyperplane in R".

Corollary

Each closed convex set A in R" is the intersection of all the closed
halfspaces in R" containing A.

o Denote by B the intersection of all the closed haifspaces in R"
containing A. Then B is a closed convex set containing A. If bg A,
then the corollary above shows that there exists some closed halfspace
in R"™ which contains A but not b. Hence b¢ B. Thus B< A, and
A=B.
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Lemma

In R" let A be a non-empty convex set not containing the origin. Then
there exists a hyperplane in R which separates the origin and A, and does
not contain A.

o Suppose first that 0 ¢ clA. Then the lemma follows from a previous
corollary applied to the closed convex set clA. Suppose next that
OeclA. Then 0erebdA. By a previous corollary, rebdA = rebd(clA).
So 0 €rebd(clA). A previous theorem asserts the existence of a point
x of (aff(clA))\clA whose nearest point in clA is 0. By a previous
theorem, clAc{zeR":x-z<0}. This shows that the hyperplane
H={zeR":x-z=0} separates 0 and A.

We cannot have A< H: This would imply that x € aff(clA) < H. But,
this is impossible since x-x >0. Thus, H separates {0} and A, and
does not contain A.
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Each pair of disjoint non-empty convex sets A and B in R" can be properly
separated by a hyperplane in R".

o The non-empty convex set A— B does not contain the origin.
By the lemma, there exists a hyperplane in R" which separates {0}
and A- B, and that does not contain A—B. Thus, there exist ce R"
with ¢ #0 and ¢g € R such that

0=c-0=s¢ and c-(a-b)=cy, foracA beB.

Also, for some ag € A, bg € B, we have c-(ag—bg) > co=0.
For every a€e A, be B,

c-azc-b+c=c-b.
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o Thus there is a scalar d satisfying the inequalities
inf{c-a:ae Al=d=sup{c-b:be B}.

For any a’ € A, b’ € B, we have c-a’>d =c-b’. So the hyperplane H
with equation ¢-z = d separates A and B.

H cannot contain both A and B, for this would imply that
c-(ag—bp) =0, which contradicts the inequality above. Thus H
separates A and B properly.
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Corollary

Each pair of non-empty convex sets A and B in R" whose relative interiors
are disjoint can be properly separated by a hyperplane in R".

@ The non-empty convex sets riA and riB are disjoint. So, by the
theorem, there exists a hyperplane H in R" which properly separates
them. Since closed halfspaces are closed, H also properly separates
cl(riA) = clA and cl(riB) = cIB. Hence, it also properly separates A and
B.
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o In R" a hyperplane H is called a support hyperplane to a set A if H
meets clA and A lies in one of the closed halfspaces determined by H.

o Such a hyperplane H is said to support A at those points where H
meets clA.

o A hyperplane H cannot support a set A at an interior point of A,
because every ball with center in H meets both the open halfspaces
determined by H.

o A hyperplane in R" is a trivial support hyperplane to each of its
non-empty subsets.

o A support hyperplane to a set in R" is said to be a non-trivial
support hyperplane to the set if it does not contain the set itself.
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Theorem

Through each boundary point of a convex set A in R" there passes a
support hyperplane to A, and through each relative boundary point of A
there passes a non-trivial support hyperplane to A.

o Suppose first that a is a boundary point of A, but not a relative
boundary point of A. Then A cannot be n-dimensional. So it lies in
some hyperplane H of R". Clearly H is a support hyperplane to A
passing through a.
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o Suppose next that a is a relative boundary point of A.

The preceding theorem shows the existence of a hyperplane H which
properly separates {a} and riA.

H cannot contain riA, for this would imply that H also contains
cl(riA) = clA, and hence a.

By the definition of separation, {a} and riA, and thus {a} and
cl(riA) = clA, belong to opposite closed halfspaces determined by H.

Since a€clA, we must have a€ H. Thus H is a non-trivial support
hyperplane to A passing through a.
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o Let H be a support hyperplane to a closed ball B[a;r] in R" at some
point c.

o Since H does not meet the interior of the ball, every point of H must
be a distance of at least r from a.

o Hence ¢ must be a nearest point of H to a.

o By the uniqueness of nearest points of convex sets, H can meet the
ball only in the point c.

o A previous theorem shows that (h—c)-(a—c) <0 for all hin H.

o We cannot have (h—c)-(a—c) <0 for some hin H.
This would imply that the point h' =2c — h of H satisfies

(h'-c)-(a-c)=(2c-h-c)-(a-c)=(c-h)-(a-c)>0.

But this is impossible.
o Thus H must be the hyperplane with equation (x—c)-(a—c)=0.
o So H is the unique support hyperplane to Bla;r]| at c.
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o We conclude this section by establishing a formula for the distance
between a point a and a hyperplane H with equation ¢-x= ¢y in R”.

o Denote by ag the point defined by the equation
Co—C-a

dp=a-+
lell?

o Then ag lies in H, and for any x in H, we have
2 2 2 2
la—x|-=1l(a—ao)+(ao—x)I=lla—aol+llao— x|~

This shows that ag is the unique nearest point of H to a, and that the

(shortest) distance between a and H is ||la— agll = %.

o When c is a unit vector and a is the origin, this distance becomes |c|.

o The (shortest) distance between parallel hyperplanes ¢-x = ¢y and
c-x=dyis ﬁ’;ﬁ"' which becomes |dy — ¢yl when ¢ is a unit vector.
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Subsection 5

Unbounded Convex Sets
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o Let A be the closed unbounded convex set in ’

R? that is defined by the equation

o Then there are halflines starting at a which are contained in A.

1
A={(X,y):y2;,x>0}

and let a€ A.

o If we denote by Aa the union of all these halflines, then Ag is a closed
convex set that is a union of halflines starting at a.

o Such a set Az is called a closed convex cone with apex a.

o In fact, Ag =a+ P, where P is the non-negative quadrant
{(x,y):x=0,y =0} of R2.
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o Ag=a+P, where P={(x,y):x=0,y=0}.

o The important observation here is that P is determined by the set A
alone, being independent of the initial choice of the point a in A.

o We refer to P as the recession cone of A.

o Roughly speaking, the recession cone of a convex set indicates in
which directions the set recedes to infinity.
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o A halfline L* in R" is a set of the form {xg+ Ay : A =0}, where
xo,y €R" and y #0.

o The reason for this is that the line joining the points xg and xg +y is
the set

{(1-V)xo+A(xo+y): AeR}={xo+ Ay : LeR}.

o A halfline L] of the form {Ay : 1 =0}, where yeR" and y #0, is
called a ray.

o The equation L* =xq+L; expresses L™ as a translate of the ray L].

o Since xq is the only point of L™ whose removal from L* leaves a
convex set, and Ly = L* —xq, it follows that xo and Lj are uniquely
determined by L*.

o L™ is the halfline with direction Lj and initial point xo.
o The word direction will be used as a synonym for ray.
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Theorem

Let A be a closed unbounded convex set in R"”. Then A contains a halfline.
Moreover, if A contains some halfline with direction L, then it contains
every halfline with direction Lj whose initial point is in A.

o Since A is unbounded, it contains a sequence aj,...,ag,... of non-zero
vectors such that ||a|| — oo as k —oco. Let Ay = ||a_1k||' Then the
sequence Ajay,...,Agayg,... lies in the compact set {x: || x| =1}. So it
contains some subsequence converging to a point a with |a] =1. We
may suppose that the sequence itself converges to a. Let L™ be the
direction {1a: A =0}. Then we show that ag+L* < A for every ag in A.
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o Let age A and let A =0. Since A, — 0 as k — co, we must have, for
all but a finite number of k's, 0<AA, <1 and
(1 —Alk)ao +/1/1kak €A. Clearly,

(1—/1/1/()30-%11;(8;( — dag +Aa, as k — oo.

So ag+Aac A, since A is closed. Thus the halfline ag+L" is
contained in A.

Suppose next that A contains the halfline by + L], where L[ is the
direction {Ab: A =0} for some b#0. We show that every halfline

co+ L}, where cg € A, is contained in A. Let £=0. Then, for all 1> p,

(1—%)co+%(bo+/1b)eA.

Letting A — oo in this last relation and using the fact that A is closed,
we deduce that cg+ube A. Thus co+ L} € A.
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Corollary

Let A be an unbounded convex set in R"”. Then riA contains a halfline.
Moreover, if clA contains some halfline with direction Lj, then riA contains
every halfline with direction Lj whose initial point is in riA.

o We apply the theorem to the closed unbounded convex set clA.
Suppose that clA contains the halfline bg+ L{, where L] is the
direction {Ab: 1=0}. Let ageriA and let u=0. Then ag+2ub € clA.
So ag+ub = %ao + %(ao +2ub) €riA, by a previous theorem. Thus
ap+ L criA.
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o A nonempty set A in R" is called a cone if 1a € A whenever a€ A and
A=0.
o Examples of cones are:

o subspaces;
o rays;
o the nonnegative orthant

{(x1,-.-,xn) :x1 20,...,xp = 0}

of R™.
o All cones contain the origin and are, with the exception of the trivial
cone {0}, unbounded.

o Cones need not be convex.

The set {(x,y):xy =0} is a non-convex cone in R?.
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Let A be a non-empty set in R". Then A is a convex cone if and only if
Aa+ube A whenever a,be A and A,u=0.

o Let A be a convex cone. Suppose that a,be A and A,u=0. If
A+u=0, then A=pu=0 and trivially Aa+ube A. If A+u>0, then

U
—_— beA,
A+ua+A+y €
since A is convex. Hence
A
Aa+/,tb:(l+/,t) ma'F A,Tlul,tb EA,

since A is a cone. Thus, in all cases, Aa+ube A.
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o Suppose next that 1a+ ube A whenever a,be A and A,u=0.
Clearly A is convex.

To show that A is a cone, let a€ A and A =0. Then, by our
hypothesis, la=Aa+0¢€A.

Corollary

Let A be a non-empty set in R". Then A is a convex cone if and only if
a+be A and lac A whenever a,be A and 1=0.
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o It is a routine matter to show that the intersection of any family of
convex cones in R is a convex cone.

o Hence coneA, defined as the intersection of all convex cones
containing a set A in R”, is a convex cone.

It is called the convex cone generated by A.
Clearly coneA is the smallest convex cone containing A.
We note that cone® = {0}.

We now characterize coneA, in the case when A is non-empty, as the
set of all nonnegative linear combinations of points of A,

¢ © ¢ ¢

i.e., points of the form
)Llal qpocoqp /lmam,

where ay,...,an€A and A4,..., A4, =0.
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Let A be a nonempty set in R". Then coneA is the set of all non-negative
linear combinations of points of A.

o Denote by B the set of all nonnegative linear combinations of points
of A. Let x€ B. Then

x=A1ay+---+Anam, for some ay,...,am€A and Aq,..., A, =0.
Then x € coneA by repeated use of the corollary to coneA. Hence

B c coneA. The corollary shows that B is a convex cone. Clearly
Ac B. So coneAc B. Thus, B =coneA.
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A nonempty convex set A in R" is said to recede in a direction L,
or to have a direction of recession Lj, if every halfline with initial
point in A and direction L liesin A, i.e., if A+Lj S A.

o The union of all directions of recession of A, together with the zero
vector, is called the recession cone of A.

o A previous theorem shows that a nonempty closed convex set in R” is
bounded if and only if its recession cone consists of the zero vector
alone.

o The recession cone of a non-empty flat is the unique subspace which is
parallel to it.

o The set {(x,y): x>0,y >0}u{(0,0)} is its own recession cone.

It is an example of a set whose recession cone is not closed.
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Theorem

Let A be a non-empty convex set in R"”. Then the recession cone of A
consists of all those points x such that A+ x < A. Moreover, the recession
cone of A is a convex cone, which is closed when A is closed.

o If x belongs to the recession cone of A, then trivially A+ x c A.
Conversely, if A+ x < A, then

A+2x=(A+x)+x<cA+xcA.
By repeated application of this argument, A+ mx < A for each positive

integer m. But A is convex. So A+ Ax c A, for all A=0. Hence x lies
in the recession cone of A.
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o Denote by C the recession cone of A. Let x,y € C and A, =0. Then

A+Ax+puy =(A+Ax)+uy < A+puy <A

So Ax+puy € C. Hence C is a convex cone by a previous theorem.

Suppose now that A is closed. Let x1,...,xk,... be a sequence of
points of the recession cone C that converges to some point x of R".
Then a+ x, € A for each k and for each point a of A. But A is closed,
so a+ x € A for each point @a of A. l.e., A+x< A. Thus, xe C. This
shows that C is closed.
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o Let L be a line in R".

o Then by the direction of L is meant the unique line Ly in R", which
is parallel to L and passes through the origin.

o A line is uniquely determined by specifying one of its points and giving
its direction.
Indeed, if x lies on a line L in R", then:

o The direction Lg of L is simply the line L - x;
o L=x+Lg.
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o Let Ly be a line in R" that passes through the origin.

o Then a nonempty convex set A in R" is said to be linear in the
direction Ly, or to have a direction of linearity Lo, if every line
meeting A which has direction Lg lies in A, i.e., if A+ Ly S A.

o The union of all the directions of linearity of A, together with the zero
vector, is called the lineality space of A.

o A previous theorem shows that, if a closed convex set A contains a
line with direction Lg, then it contains every line with direction Lg
which meets A, i.e., Lo is a direction of linearity of A.
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o A non-empty closed convex set contains a line if and only if its
lineality space does not consist of the zero vector alone.

o The lineality space of a non-empty flat is the unique subspace which is
parallel to it.

o The lineality space of the unbounded circular cylinder
{(x,y,2) - x2 +y2 <1}

is the subspace {(0,0,z) : ze R}, i.e., the z-axis.
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Theorem

Let A be a non-empty convex set in R". Then the lineality space of A

consists of all those points x of R" such that A+ x=A, and is a subspace

of R".

o If x belongs to the lineality space of A, then trivially A+x < A and

A—xc A. Hence, A+x =A.
Conversely, if A+ x = A, then, as in the proof of the preceding
theorem, A+ mx = A, for each positive integer m. If m is a negative
integer, then A+ mx =(A+(—-m)x)+mx=A. Hence A+ mx = A, for
all integers m. But A is convex, so A+ Ax = A for all real . Thus x
belongs to the lineality space of A.
Let S be the lineality space of A. Let x,y €S and A,u€ R. Then
trivially A+ Ax=A and A+ uy =A. Thus

A+Ax+puy =(A+Ax)+uy =A+puy =A.

So Ax +uy € S. This shows that S is a subspace of R".



Convex Sets
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Let A be a non-empty closed convex set in R" with lineality space S. Then

A=S+(AnSY),

and the convex set An S+ contains no lines.

o Let a€e A. Then a can be expressed uniquely in the form a=b+c,
where be S and ce S*. Since be S, —b€ S. Hence, by the preceding
theorem, c=a-be A. Thus ce AnSt. So AcS+(AnS™t). The
opposite inclusion follows immediately from the preceding theorem.
Thus A=S+(AnSt).

Suppose that An S+ does contain a line. Then there exist x,y in R”

with y # 0 such that x+ Ay € AnS+ for all real A. A previous theorem
shows that y € S. Hence, for all real A, (x+Ay)-y=x-y+Alyl?>=0,
which is clearly impossible. Thus AnS+ contains no lines.
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Subsection 6

Facial Structure
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o Each face F of a three-dimensional convex polyhedron P is a convex
subset of P with the property that whenever the relative interior of a
line segment L lying in P meets F, then the endpoints of L lie in F.

o This observation motivates the definition of a face of a general convex
set.

o A face of a convex set A in R" is a convex subset B of A such that
whenever Ax + uy € B, where x,y € A and A,u>0 with A+ p =1, then
x,yeB.

o Every convex set A in R" has the faces @ and A, called improper
faces of A.

o Faces of A other than @ and A are called proper faces of A.
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o The above definition of a face is more comprehensive than the one
usually understood in elementary geometry.
. A cube has:

six two-dimensional faces;

one three-dimensional face (itself);

twelve one-dimensional faces (its edges);
eight zero-dimensional faces (its vertices);
one face of dimension —1 (the empty set).

¢ ¢ ¢ ¢ ¢

o In general, we refer to a k-dimensional face of a convex set as a
k-face.
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o Certain faces of a convex set are of particular importance and are
given special names.

o The 0-faces of a convex set are called its extreme points.
o The faces that are halflines are called its extreme half lines.

o The directions of the extreme halflines of a convex set are called its
extreme directions.

o Clearly, a point a of a convex set A in R" is an extreme point of A if
and only if whenever a=Ax + uy, where x,y € A and A,z > 0 with
A+u=1, then x=y=a.
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o Denote by A the set of those points (x,y)
in R? which satisfy the four inequalities

a4

x = 0,
-x+y+1 = 0,
x+3y-1 = 0,
3x+y-1 = 0.

o The extreme points of A are the points a=(0,1), b=(2,1) and
c=(1,0).

o The extreme directions of A are the directions D ={(0,1) : 1 =0} and
E={A,A):1=0}.

o The extreme halflines of A are the halflines a+ D and c+E.
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o Consider the case of a 2-face B of a cube A in R3.

o The set A\B, i.e., the cube A with its face B removed, is convex.
o Also B is the intersection of its affine hull aff B, i.e., the plane
containing B, with the cube A itself.

Let B be a convex subset of a convex set A in R". Then B is a face of A if
and only if A\B is convex and B = (aff B)n A. In particular, a point a of A
is an extreme point of A if and only if A\{a} is convex.

o Suppose that B is a face of A. If x,y € A\B and A, u >0 with
A+p=1, then Ax+py € A, since x,y € A and A is convex. We cannot
have Ax + uy € B, for this would imply that x,y € B. Thus
Ax +puy € A\B and A\B is convex.
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o Trivially, B< (affB)n A.
We now establish the opposite inclusion. Suppose that u € (aff B) n A.
Let beriB. Then there exist ve B and a, >0 with ¢+ =1 such
that b= au + Bv. Since u,ve A and B is a face of A, ue B. Hence,
(affB)nAc B. So B =(affB)n A.
Suppose next that A\B is convex and B = (aff B)nA. If Ax+py € B,
where x,y € A and A,u >0 with A+ p =1, then not both x and y can
lie in A\B, for the convexity of A\B would imply that Ax + uy € A\B.
Suppose that x¢ A\B. Then x€ B. So

y:l(/lx+ﬂy)—&x: (1+&)(/1x+py)—&x€afFB.
w p w p

Thus, y € (affB)nA. Hence, y € B. So x,y € B and B is a face of A.

The final assertion of the theorem follows from what we have just
proved and the fact that a singleton set is its own affine hull.
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Corollary

Each face of a closed convex set in IR" is closed.

o Let B be a face of a closed convex set A in R". Then B, being the
intersection of the closed sets aff B and A, is itself closed.

Corollary

Let A=convC, where C is a set in R". Then each extreme point of A lies
in C.

o Suppose that there is an extreme point a of A which does not lie in C.
Then A\{a} is a proper convex subset of A containing C. Hence A
properly contains convC, i.e. A. This contradiction shows that each
extreme point of A lies in C.
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Let A be a convex set in R". Then:
The intersection of any non-empty family of faces of A is a face of A;
If B is a face of A, and C is a face of B, then C is a face of A;

The intersection of A with each of its support hyperplanes is a face of
A.

Let (Aj:i€l) be a non-empty family of faces of A. Then N(A;:i€l)
is a convex subset of A. If Ax+puy eN(A;:i€l), where x,y € A and
A,u>0 with A+ pu=1, then Ax+ uy € A; for all i€ /. So, since each
A, is a face of A, we have x,y € A;, for all i€ /. Hence,
x,y€N(A;:i€l). Therefore, N(A;:i€l) is a face of A.

George Voutsadakis (LSSU) Convexity



Let B be a face of A and let C be a face of B. If Ax+uy € C, where
x,yeAand A, u>0 with A+ =1, then Ax+puy e B, since C<B.
Since B is a face of A, x,y € B. But C is a face of B, so x,y € C.
This proves that C is a face of A.

Let H={zeR":c-z=cg}, where cge R, ce R" and c #0, be a

support hyperplane to A. Suppose that ¢-a < ¢y whenever a€ A. If

Ax+uy € AnH, where x,ye A and A, >0 with A+pu=1, then
co=c-(Ax+puy)=Ac-x+uc-y < Acy+uco = .

Since A,u >0, we must have c-x=c-y =cy. Hence, x,yc AnH.
Thus, AnH is a face of A, for clearly it is a convex subset of A.
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Let B be a face of a convex set A in R". Suppose that C is a subset of A
such that riC meets B. Then C € B.

o Let ce C and be BnriC. Then there exist d € C and A, > 0 with
A+p=1 such that b= Ac+pud. Since ¢,d € A and B is a face of A,
we see that c€ B. Thus, C ¢ B.

Corollary

Let B and C be faces of a convex set A in R” such that riB and riC meet.
Then B=C.

o Since riC meets B, we have C = B. Similarly, B€ C. Thus, B=C.
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Corollary

Let B be a face of a convex set A in R", other than A itself. Then
dimB < dimA.

o We suppose that B is non-empty. Clearly, affB < affA and
dimB <dimA. If dimB =dimA, then aff B =affA and @ criB criA.
Hence A = B by the preceding corollary.

Corollary

The intersection of any family of faces of a convex set in R" can be
expressed as an intersection of n+1 or fewer members of the family.

o Suppose that the result is false. Then there exist faces Ay,...,Apyo of
some convex set A in R" such that A c Ay c---c Ao c A. Since A;
is a face of A;,1 for i=1,...,n+1, the preceding corollary shows that

—-1<dimA; <dimAy <---<dimAp2<n-1,
which is impossible.
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o Each point of a convex set belongs to at least one face of the set,
namely the set itself, and in general belongs to several different faces.

: A vertex of a three-dimensional cube belongs to one 0-face,
three 1-faces, three 2-faces, and one 3-face of the cube.

o Suppose that a is a point of a convex set A in R" and that Fj3, is the
intersection of all faces of A containing a.

o Then it follows from the preceding theorem that F3 is the smallest
face of A containing a.
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Theorem
Let a be a point of a convex set A in R" and let Fa3 be the intersection of
all faces of A containing a. Then a€riFg and the relative interiors of the
faces of A form a partition of A.

o If a¢riFa, then aerebdFg. So, by a previous theorem, there exists a
support hyperplane H of Fa passing through a but not containing Fa.
Hence, by the preceding theorem, Part (iii), Hn Fa is a face of A
containing a which is strictly contained in Fg. Since this is impossible,
acriFg. Thus each point a of A belongs to the relative interior of the
face F3 of A. The relative interiors of two different faces of A are
disjoint by a previous corollary. Hence the relative interiors of the faces
of A form a partition of A.
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Smallest Face of a Relative Boundary Point

Corollary

Let a be a relative boundary point of a convex set A in R". Then
dimFg < dimA.

o The faces A and F3 of A cannot be equal because aeriF5. Thus
Fac A. Hence dimFg <dimA by a previous corollary.
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o A closed convex set in R” which is not the convex hull of its relative
boundary is said be primitive.
o The reader should have little difficulty in discovering that the only
primitive sets in R? are:
o points;
o lines;
o halflines;
o closed halfplanes;
o R2 itself.
o Before we can extend this last result to R"”, we need to generalize the
concepts of and from R? to R".

o In R" a closed halfflat is the intersection of a flat with a closed
halfspace which meets it, but does not contain it.
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A closed convex set in R" is primitive if and only if it is either a nonempty
flat or a closed halfflat.

o We establish only the non-trivial part of the theorem, i.e., that, for
each closed convex set A in R" other than a flat or a closed halfflat,
A = conv(rebdA).

We know conv(rebdA) =€ A. Moreover, A =
(rebdA)u(riA) and rebdA < conv(rebdA). So,

we must show riA < conv(rebdA).

Let a€riA. Since A is not a flat, its relative -
boundary is not empty, say b e rebdA. A pre-
vious theorem shows that there is a non-trivial
support hyperplane H to A at b.
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o Since AnH is a proper face of A, a previous theorem shows that
a¢ H. Thus there exist up € R, u€R" such that H has equation
n-x=ug and u-a<ug, u-b=ug with A lying in the closed halfspace

H ={xeR":u-x < up}.

By the hypothesis, A is not a closed halfflat, and so cannot be
(affA)n H™. Thus there exists a point ¢ of (affA)n H™ that does not
lie in A. Denote by d the point where the line segment joining a and
¢ meets rebdA. Since u-a<ug and u-c < ug, we get u-d < uy.

The existence of a non-trivial support hyperplane to A at d, J say,
shows that there exist vp € R, v € R" such that J has equation
v-x=vpand v-a<yvy, v-d =y, with A lying in the closed halfspace
{xeR":v-x < vl
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o Since u-a<ug, u-b=ug and u-d < ug, there is a point e of riA lying
on the line segment joining @ and b such that u-e > u-d. Because e
lies in riA, we must have v-e < vy. For each scalar A, denote by x,
the point a+ A(d —e) on the line L joining the points @ and a+d —e
of affA. Choose scalars A1, 1> such that

u—u-a VWw—Vv-a
A1 < <0< <.
1“ud-ue vd-ve 2
Then
u-xy, = u-(a+Ai(d-e))=u-a+Nu-(d-e)
> u-atup—u-a=up,

v-(a+Ax(d-e))=v-a+Av-(d-e)
> v-atw-—-v-a=w.

V-X),

Hence neither x;, nor x,, lies in A. Thus, there are scalars puq, u>
with A3 <py <0< po < A2 such that x,,,x,, € rebdA. Hence,

— _H2 _ M .
a= 2 Xy~ ooy Xz € CONVIX 1y, Xy} So rAC conv(rebdA).
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o By the convex hull of a family of sets in R" is meant the convex hull
of its union.

Every closed convex set in R" is the convex hull of its primitive faces.

o Let A be a closed convex set in R". We argue by induction on the
dimension of A.

The case dimA = —1 is trivial.

Suppose that dimA = m, where m> —1, and that the assertion is true
for all closed convex sets in R with dimension less than m. The
theorem is trivial when A is primitive. Suppose, then, that A is not
primitive. Denote by B the convex hull of the primitive faces of A.
Then B< A. So we need only show that Ac B.
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o Since A is not primitive, we have A =conv(rebdA). Let a € rebdA.
Then a lies in Fg, the smallest face of A containing a. By a previous
corollary, dimFg <dimA. The induction hypothesis shows that F3 is
the convex hull of its primitive faces. Since each primitive face of Fa
is a primitive face of A, F3 < B. Hence, a€ F3< B and rebdAc B. So
A=conv(rebdA)< B. Thus, A=B, i.e., Ais the convex hull of its
primitive faces.
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Corollary

Every closed convex set in R" is the convex hull of those of its faces which
are flats or closed halfflats.

o The result follows from the theorem and a previous theorem.

Corollary

Every closed convex set in IR" that contains no lines is the convex hull of
its extreme points and extreme halflines.

o The corollary follows from the theorem and the fact that points and
halflines are the only primitive sets which contain no lines.

Theorem (Krein-Milman)

Every compact convex set in R" is the convex hull of its extreme points.

o The theorem follows from the preceding theorem and the fact that
points are the only compact primitive sets.
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o The Krein-Milman theorem shows that the convex hull of the extreme
points of a compact convex set in R” is closed.

o It is not true, however, that the set of extreme points itself is
necessarily closed.

o To see this, let A and B denote the circular disc and the line segment
in R3 given by the equations

A={(x,y,0) :X2+y2 <1} and B={(1,0,z):-1<z<1}.

Let C =conv(AuB). Then C is a compact
convex set. Its set of extreme points con-
sists of (1,0,1) and (1,0, -1) together with the
points on the relative boundary of A with the
exception of (1,0,0). This set is not closed.

George Voutsadakis (LSSU) Convexity



o By a previous theorem, the intersection of a convex set in R"” with one
of its support hyperplanes is a face of the set.

o A face which arises in this way is called an exposed face of the set.

o It is technically convenient to allow the empty set and the set itself as
exposed faces of any convex set in R".

o Thus, an exposed face of a convex set in R” is either the empty set,
the set itself, or the intersection of the set with one of its support
hyperplanes.
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o Faces of a convex set are not always exposed.
: Let A be the convex hull of the union of the circular discs
U+eq, and U—eq, in R2, where

U={(x,y):x*+y?*<1} and e;=(1,0).

Then the points (1,1), (1,-1), (-1,1),
(—1,-1) are faces of A that are not
exposed.

o This example also serves to show that an
exposed face of an exposed face of a
convex set need not be an exposed face
of that convex set.

The line segment joining (—1,1) and (1,1) is an exposed face of A and
(1,1) is an exposed face of this line segment, but (1,1) is not an
exposed face of A.
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The intersection of any non-empty family of exposed faces of a convex set
in R" is an exposed face of the set.

o In view of a previous corollary, we may assume that the family of
exposed faces is finite.
Let Aq,...,An be exposed faces of a convex set A in R". We show
that A;n---NAp, is an exposed face of A, considering only the
non-trivial case when the Ay,..., A, are proper exposed faces of A,
whose intersection is non-empty, containing some point ag, say. For
each i=1,...,m, there exists u; € R" such that

Ai={acA:u;-a=u;-ag} and AcixeR":u;-x<u;-ag}.
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Closure of Exposed Faces Under Intersections (Cont'd)

o It follows easily that
Ain---nAp={acA:(u1+---+up)-a=(uy+---+up)-aop},
and that
AcixeR": (u1+--um)-x<(up+--+um)-ap}.

This shows that A;n---N A, is an exposed face of A.
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Theorem
Let A and B be convex sets in R"”. Then each exposed face of A+ B has
the form C + D, where C is an exposed face of A and D is an exposed face
of B.

o Suppose that F is a proper exposed face of A+ B. Then there exist
ag€ A, bge B, and a non-zero u in R" such that

A+B
F

{xeR":u-x<u-(ag+bp)},
{xeA+B:u-x=u-(ag+byp)}.

I N

If a€ A, then a+boe A+ B. Hence u-(a+by)<u-(ap+bg) and
u-a<u-ag. Similarly, if be B, then u-b<u-bg. Thus

C={x€eA:u-x=u-ag} and D={xe€eB:u-x=u-bg}

are, respectively, exposed faces of A and B.
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o We derived that
C={x€eA:u-x=u-ap} and D={xeB:u-x=u-bg}

are, respectively, exposed faces of A and B. Clearly C+DcF.
If feF, then f=a+b for some ac A, beB.

Now u-(a+b)=u-(ap+bg), u-a<u-ap and u-b=<u- by.
Hence, u-a=u-ag and u-b=u- bg.

Thus ae C, be D, and F=C+D.
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o The zero-dimensional exposed faces of a convex set are called its
exposed points.

o Thus a point a of a convex set A in R" is an exposed point of A if
and only if there is some support hyperplane to A meeting it in the
single point a.

o Every exposed point of a convex set in R" is one of its extreme points,
but not necessarily conversely.

o The point (1,1) of the set A of the pre-
ceding example is an extreme, but not an
exposed, point of A.
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o Let A be a non-empty compact set in R” and let b be a point of R".

o For each point x of A, denote by f(x) the distance ||x — b| of x from
b.

o Then f is a continuous real-valued function defined on a non-empty
compact set A.

So it is bounded and attains its bounds.
In particular, f attains its upper bound.
So there is a point a of A such that |x— bl < |la—b| for all x in A.

¢ © ¢ ¢

Each such point a of A is called a farthest point of A from b.
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Let a be a farthest point of a compact convex set A in R"” from some point
b of R". Then a is an exposed point of A.

o We consider the non-trivial case when a # b. Since a is a farthest
point of A from b, we have, for each point x of A,

la- b|? Ix - b|?
I(x—a)+(a-b)|?

Ix—all®>+2(x—a)-(a-b)+la-bl|>.

v

Hence 0= (x—a)-(a—b). Equality occurs in the last inequality if and
only if x =a. So the hyperplane H={zeR":(a—-b)-(z—-a) =0}
supports A at @ and HnA={a}. Thus a is an exposed point of A.
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Lemma

A compact convex set in R has an exposed point in every open halfspace
which meets it.

o Suppose that the compact convex set A in R"” meets the open
halfspace J={ze R":u-z+uy <0}, where uge R, ueR", and u #0,
say a€ AnJ. Let 1 >0 satisfy s> +2A(u-a+ up) <0, where s is the
diameter of A. Let c=a+ Au. For each point x of A\J, u-x+ug=0
and u-(a—x)<u-a+ug. Hence,

la—x+Aul?
la—x|?+2Au-(a—x)+A%||ul?

< s?+20u-a+ug)+A%|ul?

< Alul?=lc-al>.
Thus no point x of A\J is a farthest point of A from ¢. So every
farthest point of A from ¢ is an exposed point of A lying in J.
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Theorem (Straszewicz)

Every compact convex set in IR" is the closure of the convex hull of its
exposed points.

o Let B be the set of the exposed points of a compact convex set A in
R". Trivially cl(convB) < A. So we must show that A< cl(convB).

Suppose that this is not so. Then there is a point a of A which does
not belong to the closed convex set cl(convB). It follows immediately
from a previous corollary that there is an open halfspace J in R"
which contains a but is disjoint from cl(convB). By the preceding
lemma, there is a point of B lying in J, which is impossible. Thus
Accl(convB) as desired.
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o The two-dimensional set illustrated in the figure

shows that the closure requirement in Straszewicz's theorem cannot
be omitted.

George Voutsadakis (LSSU) Convexity



Convex Sets The Blaschke Selection Principle

Subsection 7

The Blaschke Selection Principle
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o Sets A and B in R" are said to be a finite distance apart if there
exists A =0 such that, for each point a of A, there is a point b of B
whose distance ||a— b|| from a does not exceed A, and vice versa.

o In this situation, we say that the distance between A and B does
not exceed A.

o The distance between sets A and B in IR" that are a finite distance
apart is defined to be the infimum of the set of all those A =0 for
which the distance between A and B does not exceed A.

o This definition does not assign a distance between the empty set and
a non-empty set or between a bounded set and an unbounded one.

o On the other hand, the definition always assigns a distance between
two non-empty bounded sets.

o For our purposes here, it will be sufficient to restrict attention to
non-empty compact sets.
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o Let Abe asetinR" and let A=0.

o Then the A-neighborhood (A); of A is the set
A+ AU, where U denotes the closed unit ball
{xeR":||x]| <1}

The figure makes it clear why the set (A), is
often referred to as the outer parallel set of
A at distance A.

o Clearly, if aeR", r>0, and 1 =0, then:

o The r-neighborhood of {a} is the closed ball BJa;r];
o The A-neighborhood of Bla;r] is the closed ball B[a;r + A].
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Let A, B be sets in R"” and let A,u=0. Then:
(A)o=Aand Ac(A)x;
(A),l o (B),l when Ac B;
(A)a is convex when A is;
((A))u = (A)aep-

o Parts (i) and (ii) are easy consequences of the definition of a
A-neighborhood.
Part (iii) follows from a previous example and theorem.
To prove Part (iv) we note, using a previous theorem, that

(A=A +pU=(A+AU)+pU=A+(A+p)U = (A)rspu.
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o The assertions that, for each point a of a set A in R”, there is a point
b of a set B in R" such that |la— bl <A, and that A< (B),, where
A =0, are equivalent.

o Thus the definition we now give of the distance between non-empty
compact sets in R" coincides with the one given earlier.

o The distance p(A, B) between non-empty compact sets A, B in R" is
defined by the equation

p(AB)=inf{A=0:Ac(B); and B< (A)a.

o The assumptions that A and B are non-empty and compact ensure
that p(A, B) is well-defined.

o The function p is known as the Hausdorff metric or Hausdorff
distance.
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o It is easily seen that the Hausdorff distance p({a},{b}) between the
singleton sets {a} and {b} in R" is la—b||, i.e., the distance between
the points a and b themselves.

o Another readily verified fact is that the Hausdorff distance is invariant
under translation in the sense that, if A and B are non-empty compact
sets in R"” and x is a point of R", then p(A,B)=p(A+x,B+x).
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o Let A and B be, respectively, the closed balls B[a; r] and B[b;s] in R".
Then p(A,B)=Ilb—al +|s—rl.
o Suppose first that r<s. We have

B-(b-a)<(B)p_ay
A+b-a+(s-r)Uc(A)

A
B

N

Ib-aj+s-r-

Hence, p(A,B)<|b-al +s—r.

Now B contains a point whose distance from a is ||b—a|| +s.
Thus, if A=0 and B<(A)y=Bla;A+r], then |[b—all+s<A+r.
Hence, p(A,B)=I|lb-al+s—r. Thus, p(A,B)=Ib—al +s-r.
le,, p(AB)=|b-al +|s—rl.

The case s <r is similar.
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Let A and B be nonempty compact sets in R” with p(A,B)=A. Then
Ac (B),l and B¢ (A),l

o Let ae A. For each €>0, A< (B)+e. Hence there is a point b, of B
for which |[a—b.|| <A +e. Soinf{|la—b|:be B} =<A.
A previous theorem shows that there exists some point by of B such
that [la—bgll < A. Thus, a€(B)) and A< (B);.

Similarly, B < (A)a.
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Let A, B, C be non-empty compact sets in R" and let 8 =0. Then:
p(A,B)=0 and p(A B)=0 if and only if A= B;
p(A,B)=p(B,A);

p(A C)<p(A B)+p(B,C);
p(convA,convB) < p(A, B);
if A and B are convex, then p(A,B)=p((A)g,(B)o)-

Trivially p(A,B)=0. Also p(A,A)=0. If p(A,B)=0, then
Ac(B)o=B and B<(A)p=A. Hence A=B.
This follows immediately from the definition of p

Let p(A,B)=a and p(B,C)=p. Then AC(B) c (C)ﬁ a=(C)asp

and C<(B)g<S((A)a)p = (A)a+p. Hence p(A,C)
+p(B, C).

George Voutsadakis (LSSU) Convexity



Let p(A B)=a. Then (convA), is convex and B < (A)q < (convA),.
Hence convB < (convA),. Similarly, convA < (convB)y. Thus,
p(convA,convB) < a = p(A,B). We note that convA and convB are
compact by a previous theorem.

Let A and B be convex. The sets (A)g and (B)g are compact by a
previous theorem. Let p(A,B)=a and p((A)g,(B)g) =B. Then

(Ao =((B)a)o=((B)o)a and (B)o<((A)a)e = ((A)o)a-
This shows that < a. Also
A+0U<(B+0U)+pU and B+OU<(A+0U)+pU,

A+0Uc(B+pU)+0U and B+0Uc(A+pU)+6U.

Hence, A< B+ pBU and B< A+ BU by a previous theorem. Thus,
a<p. Soa=_p.

George Voutsadakis (LSSU) Convexity



o The sequence Ay, ..., A;,... of non-empty compact sets in R" is said to
converge to the non-empty compact set A in R", written A; — A as
Jj— oo, if p(Aj,A)—0 as j — oco.

o Such a sequence cannot converge to more than one nonempty
compact set A.

If it also converges to a nonempty compact set B in R", then
0=p(A B)=p(AA) +p(A; B) 0,

as j —oo. Hence p(A,B)=0and A=B.
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o If the sequence Ajy,...,Aj,... converges to A and each A; is convex,
then so too is A.
Suppose that a sequence Ay,..., Aj,... of nonempty compact convex
sets in R" converges to a nonempty compact set A in R". The
preceding theorem shows that

p(A;j,convA) = p(convAj,convA) < p(A;,A) — 0

as j—oo. Thus Ay,..., Aj,... also converges to convA. Since a
sequence cannot converge to two different limits, A=convA and A is
convex.
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Theorem

Let sequences Ay, ..., Aj,... and By,..., Bj,... converge, respectively, to Ag
and By, where all the A’s and B's are nonempty compact sets in R". Let
real sequences az,...,aj,... and By,...,B;,... converge, respectively, to a
and B. Then the sequence a1 Ay +f1Bi, ..., ajA;+B;B;, ... converges to
aAp + ,380.

o For a,b,a;,bje R",

lajaj+pB;bj—aa—pbl
= ”aj(aj —a) + (aj — a)a+ﬁj(bj — b) + (,BJ —,B)b||
<lajlllaj—all +|a; - allall +16;llb; — bll +15; - Pl bll.

Write 0 = p(A;j,Ag) and ¢; = p(B;, By). Let r >0 be such that
llall, bl < r whenever a€ Ag, be By.
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o It follows easily from the above inequality that

p(ajAj +,Bij,aAo +,BB())
<l|a;l0;+|a; —alr+|B;lo;+16; — Blr.

Hence, a;A;+ B;B; — aAq + BBy.

Corollary

For i=1,...,m, let the sequence A",...,AJ’:,... converge to Al where all the

A's are nonempty compact sets in R". Let the real sequence ai,...,aj’:,...

converge to a;. Then a}A}+---+aj’."Aj'."—> alA(1)+---+amA6" as j — oo.
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o A convex body C is a compact convex set in R” that has a
nonempty interior.

o The inradius r of C is the supremum of the set of radii of closed balls
lying in C.

o The circumradius R of C is the infimum of the set of radii of closed
balls in R" containing C.

o Clearly both r and R are positive real numbers satisfying r < R.
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Convex Sets

Theorem

Let C be a convex body in R” with inradius r and circumradius R. Then C

contains a closed ball of radius r and is contained in a unique closed ball of
radius R.

o The definition of R implies that, for each, j=1,2,..., there exist
ajeR" and R; >0 such that C c B[aj; Rj] and R; < R+jl.. The
sequence Ry,...,R;),... converges to R. The sequence a,...,aj,...is
bounded. Thus there is some subsequence aj,,...,a;,... of
ai,...,aj,... that converges to some point a of R". It follows from a
previous example that Bla;; R;] — Bla; R] as j — co.

We show that C < B[a;R]: Let ce C. Since C < Bla;;R;],
llc—a;ll < R;. Letting j — oo in the last inequality, we find that
lc—all <R. Thus, ce Bla;R]. So C < B[a;R].
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___________________ ComoxSeis ]

o The proof that C contains a closed ball of radius r is similar to the
one which we have just given.

Suppose that C lies in both of the closed balls B[a; R] and B[b; R] of
radius R in R". Then, for each x in C,

|x-4(a+b)|?

IxII?2=x-a—x-b+3(lal®+2a-b+]b|?)

= L(IxII>-2x-a+al?)+1(lIxI2-2x-b+]bl?)
- 1(lal?-2a-b+b|?)

1 2,1 2 1 2
= llix-al?+iIx-bl?>-1la-b|
1
R?-Zla- bl

Hence, C<B [%(a+b);\/R2—%lla—bll2]. Since C cannot lie in a

closed ball of radius less than R, we must have a=b. Thus there is
precisely one closed ball of radius R in IR"” which contains C.
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o Let C be a convex body in R" with inradius r and circumradius R.

o Then any closed ball of radius r lying in C is called an inball of C and
its center an incenter of C.

o The unique closed ball of radius R which contains C is called the
circumball of C and its center the circumcenter of C.

o A (non-square) rectangle in R? is an example of a convex body that
does not have a unique incentre.
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o Our definitions of the terms circumradius, circumcircle and
circumcenter as applied to obtuse-angled triangles do not coincide
with those used in elementary geometry.

o For example, consider an isosceles triangle with sides 2,2,2v/3.

o In the parlance of elementary geometry, its circumradius is 2 and its
circumcenter lies exterior to the triangle.

o For us here its circumradius is v/3 and its circumcenter is the midpoint
of its longest side.

George Voutsadakis (LSSU) Convexity



o The preceding theorem asserts the existence of solutions to two
extremal problems in geometry.

o The first to find a ball of minimal radius containing a given convex
body;
o The second to find a ball of maximal radius lying in the body.

o The key step in proving the theorem was the extraction of a
convergent subsequence from a sequence of closed balls.

o It is a generalization of this idea that turns out to be useful in finding
solutions to many extremal problems.

o What is needed is a criterion for a sequence of sets to contain a
convergent subsequence.

o A sequence of sets in R" is said to be uniformly bounded if there
exists some ball in R" that contains every member of the sequence.
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Lemma
Let Ay,...,Aj,... be a uniformly bounded sequence of nonempty compact
sets in R". Let £ >0. Then there exists a subsequence £ pocnp oo of
A1,...,Aj,... such that p(A;,A; ) <e, forall jk=1,2,....

o Since there is a ball in R"” which contains every member of the given
sequence, there is a finite set E in R"” such that Ajg(E)%e, for
Jj=12,.... For each j=1,2,... denote by E; the non-empty subset
En(Aj)%E of E. It is easily verified that p(Ej, Aj) < %E. Because E is
finite, there can only be a finite number of possible different sets E;
for j=1,2,.... Hence the sequence Ey,...,Ej,... must contain some

constant subsequence, E,-l,...,E,-J.,... say. For j,k=1,2,..., we have

p(AjAi) = p(AiEp)+p(Ej Ai)
= p(A,'J.,E,'J.)-f-p(E,'k,A,'k)S%€+%E=E.
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Convex Sets

Theorem

Every uniformly bounded sequence Ay,...,Aj,... of nonempty compact sets

in R"™ contains a subsequence which converges to some nonempty compact
set Ain R".

o It follows, by repeated applications of the lemma with £ = 1,%,...,71.,...
that the sequence Ay, ..., Aj,... contains a sequence of subsequences
A11,A12,...,Agjs -
A21,A2,...,Azj,...
A, Aras o Ars e

where each subsequence after the first in the list is a subsequence of
the preceding one, and p(A, An) < % for j,k=1,2,....

The diagonal sequence Aj1,A,...,Ajj,... is a subsequence of
A1,Az,..., Aj,... with the property that p(Aj;, Axk) < Jl whenever j < k.
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o Write Bj = Ajj for j=1,2,.... We complete the proof by showing that
the subsequence By,...,B;,... of At,...,Aj,... converges to the
nonempty compact set B defined by B :ﬂ((Bk)% tk=1,2,...).

Let j be a positive integer and let b € B;. For i=1,2,..., choose
bi,i€ B such that || bj.; — bl = ThIS is possible because

p(Bj, Bj+i) < = . The sequence bj+1,bj+2, lies in the compact set
(B1)1- So it contams a subsequence converging to some point b of
R". Since B, < (Bk)1 whenever j+i =k, all but a finite number of

terms of the sequence bj+1,bj+2, lie in the compact set (Bk)z for
k=1,2,.... Hence be (Bk)% and be B. But b is an arbitrary point of
B; and cIearIy Ib-bjll < l. So Bj<(B)1. Trivially BC(B) Thus,
p(B;,B) < andB—»BaSJ—>oo

1.
J
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Theorem (Blaschke Selection Principle)

Every uniformly bounded sequence of non-empty compact convex sets in
R"™ contains a subsequence which converges to some non-empty compact
convex set in R".

o The principle is a consequence of the theorem and the fact that a
convergent sequence of convex sets must converge to a convex limit.
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o A typical extremal problem of elementary geometry is to maximize or
minimize a real-valued function f defined on some family & of
nonempty compact sets in R".

o It is important to have a concept of continuity for such functions
f:%—R.

o The function f is said to be continuous on & if f(A;) — f(A) as
J — 0o, whenever A; — A as j — oo, where all the sets under
consideration belong to &.
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o We show that the diameter function D, which associates with each
nonempty compact set A in R" its diameter D(A), is continuous on
the family & of all nonempty compact sets in R".

o It is easily verified that D((A)a) = D(A)+2A, where Ae % and 1=0.
o Suppose now that A, B €& and that p(A,B)=A.
o Then

D(A) = D((B)y)=D(B)+24 and D(B)= D((A)1)=D(A)+2A.

©

Hence |[D(A)-D(B)|<2A=2p(A,B).

The continuity of D is now clear.

©
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o We now indicate how the Blaschke selection principle can be used to
show that in the family % of all compact convex sets in R? with
diameter 1, there exist sets having maximal area.

o For each set A in &, denote by f(A) the area of A.

o This area function will be defined formally later and it will be shown to
be continuous on the family of all non-empty compact convex sets in

R2.
o Let a be the supremum of the set of areas of members of &.
o For each positive integer j, there is a member A; of F such that
1
f(AJ) >a— 7
o We may suppose, by translating the A;’s if necessary, that they are
uniformly bounded.
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o The Blaschke selection principle guarantees the existence of a
subsequence A,-l,...,A,-J.,... of Ay,...,Aj,... which converges to some
non-empty compact convex set Ag in R?.

o The continuity of the diameter function shows that Ay has diameter 1.

o So Ag lies in &.

o For each j,

1 1
azf(Aj)>a-~-za--.
lj J

o Letting j — oo in these inequalities, we deduce, using the continuity of
f, that 7(Ap) = a.

o Thus Ag is a member of & having maximal possible area.

George Voutsadakis (LSSU) Convexity



Convex Sets [SDuality

Subsection 8

Duality
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o For each nonzero vector u in R", theset H- ={xeR":u-x<1}is a
closed halfspace in IR" containing the origin as an interior point.

o Conversely, for each closed halfspace H™ in R" containing the origin
as an interior point, there is a unique non-zero vector u in R" such
that H- ={xeR":u-x<1}.

o Thus there is a bijection between the set of nonzero vectors in R” and
the set of closed halfspaces in R” containing the origin as an interior
point.

o We define, for each point u of R”, a set u* in R" by the equation

u'={xeR":u-x<1}.

o We note that 0* = R".
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Define the polar dual A* of a set A in R” to be the intersection of all
the sets a*, for ac A, i.e.,

©

A*=(\(a":acA)={xeR":a-x<1, for all ac A}.

o For each set A in R”, its polar dual A* is defined as an intersection of
closed convex sets containing the origin.

So A* is itself a closed convex set containing the origin.
The polar duals ¢* and {0}* are both IR".
The polar dual of R" is {0}.

©

©

©
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o It is instructive to examine the sets u* for nonzero vectors u in R".

o By definition, u* is the closed halfspace which is bounded by the
hyperplane H={x e R": u-x =1} and contains the origin.

o This hyperplane H has u as one of its normal vectors and passes

through the point ||u||2

o The distance of from the origin is ||_111|| which:

||U||2
o exceeds 1 if ||u]| is less than 1;
o equals 1 if ||u] equals 1;

o is less than 1 if ||u|| exceeds 1.
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Vector and Its Dual Illustrated

o The relative positions of u and u* for the cases ||u|l <1, |u| =1 and
lull > 1 are illustrated in the figure:

u¥

wlulf2
u*

lul <1 lul =1 lul >1
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Let A, B be sets in R", U the closed unit ball centered on the origin of R”
and A a nonzero scalar. Then:

Ac B implies that B* < A*;
(AuB)* =A*n B~

(1A) - 4%

U*=U.

Suppose that A< B. Then
B*={xeR":b-x<1,beBjc{xeR":a-x<1l,ac A} = A*.

We have x € (AuB)* if and only if both a-x<1, for a€ A, and
b-x<1, for be B, if and only if xe A*nB*. So (AuB)*=A*nB*.
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We have
xe(AA)* iff da-x<1, for ae A,
iff a-(Ax)<1, for ae A,
iff AxeA*
iff xelA”.
Thus (AA)* = 1 A%,

Suppose, first, that xe€ U. Then, for all ue U, u-x < |ullllx| <1.
Hence x € U* and U c U*.

Conversely, let x € U* with x #0. Then
This shows that x€ U. Thus U* c U.

eU. So x=|x| <1.

||X|| ||X||
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o We find the polar dual A* of the n-cube A defined by the equation
A={(a1,...,ap) la1l=1,...,la,l < 1}.

o Suppose (x1,...,xn) € A*. Define (a1,...,an) € Aby a; =1, if x;=0,
and a; =-1, if x;<0. Then
Ixp|+ -+ |xpl = @1x1 + -+ anxp = (a1,...,an) - (x1,...,xn) < L.

o Conversely, suppose (x1,...,xp) satisfies |xi|+---+|xp| < 1. Then, for
any point (a,...,an) €A,

aiXy +---+anXp
lallxq| + -+ +anl|Xn
[x1]+---+ x5 < 1.

(31,...,3,,)-(X1,...,Xn)

IA 1A

Thus, (x1,...,xp) € A*.
o So A* is the set, known as a regular n-crosspolytope, defined by the
equation A* ={(x1,...,xn) 1 Ix1|+ -+ |xpl < 1}.
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o We now find A** the polar dual of the polar dual A* of the n-cube A.

o For each point (uy,...,up) of A**, define a point (xi,0,...,0) of A* by
the conditions that x; =1 if u; =0, and x; = -1 if u; <0. Then

(Xl,O,...,O)-(ul,UQ,...,Un)= |U1| <1.

Similarly, |ual < 1,...,lupl < 1. Hence, (uy,...,up) €A and A** C A.

o The inclusion A< A**, which holds for every set A in R", follows
immediately from the definition of the polar dual.

o Hence A** = A.
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o This last example suggests that we examine the double-polar dual
A** of an arbitrary set A in R" and see how it is related to A.

o The polar dual of any set in R" is always a closed convex set
containing the origin.

@ So a necessary condition for the equality of the sets A and A** is that
A is a closed convex set containing the origin.

o We aim to show that this condition is also sufficient, and establish the
exact relationship between A** and A.
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Let A be a set in R”. Then A** =cl(conv(Au{0})). In particular, if A'is
closed, convex and contains the origin, then A** = A.

o ForallaeA, xe A*, we have a-x<1. Hence ac A**. So Ac A**,
But A** is a closed convex set containing 0 and A. Therefore,
cl(conv(AuU{0})) c A**.

For the reverse inclusion, suppose z is a point of R"” not lying in
cl(conv(Au{0})). By a previous corollary, there exists a hyperplane
strictly separating {z} and cl(conv(AuU{0})). Thus, since such a
hyperplane cannot pass through the origin, there exists u in R" such
that u-z>1 and u-a<1, for all ain A. This shows that ue A* and
zg A**. Hence, A** ccl(conv(Au{0})).

George Voutsadakis (LSSU) Convexity
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Theorem

Let A be a closed convex set in R” containing the origin. Then A is
bounded if and only if the origin is an interior point of A*, and A* is
bounded if and only if the origin is an interior point of A.

o We use two previous theorems.

Suppose first that A is bounded. Then, for some r >0, A< rU. Hence,
%Ug A*. So the origin is an interior point of A*.

By applying the last result to the set A*, we deduce that, if A* is
bounded, then the origin is an interior point of A** = A.

Suppose next that the origin is an interior point of A. Then, for some
s>0, sU<A. Hence, A*c %U. So A* is bounded.

By applying the last result to A*, we deduce that, if the origin is an
interior point of A*, then A** = A is bounded.
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Corollary

Let & be the family of all compact convex sets in R"” which contain the
origin as an interior point. Then the mapping 0 : # — % defined for Ae &
by the equation 6(A) = A* is a bijection.

o Let A, BeZ. The theorem shows that 6(A) € Z.
0 is injective, for A* = B* implies A** = B**, i.e., A=B.

It is surjective, since (A*) = A.
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o Suppose that A is a compact convex set in R" that contains the origin
as an interior point.

o Let B be an exposed face of A.

o Then, for each point b in B, the set {x€ A*: b-x =1} is an exposed
face (possibly empty) of A*.

o Thus the set ¢(B), defined by the equation
@(B)={xeA*:b-x=1, for be B},
being an intersection of exposed faces of A*, is itself an exposed face

of A*.

o In this way we have constructed a mapping ¢ from the set of exposed
faces of A to the set of exposed faces of A*.

o We call ¢ the polar face mapping of A.



Convex Sets

Theorem

Let A be a compact convex set in R" which contains the origin as an

interior point. Then the polar face mapping ¢ of A is an inclusion-reversing
bijection.

o That ¢ is inclusion reversing follows immediately from its definition.

Let 9 be the polar face mapping of A*. We show that, for each
exposed face B of A, w(¢(B))=B. This is clear when B is either @

or A. We assume that B is a proper exposed face of A. Thus there is
u in R" such that

B={acA:u-a=1} and wu-a<l, for acA.

This shows that ue A* and ue ¢(B).
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o Let vey(p(B)). Then ve A** =A and u-v=1. Hence v e B and
v(p(B))<B.
Conversely, let be B. Then be A=(A*)* and b-w =1, for all
w e @(B). Hence, bey(¢p(B)) and B<y(¢(B)).
Thus, y(¢(B)) =B.

We have just shown that the composite mapping o is the identity
mapping on the set of exposed faces of A.

By interchanging the roles of A and A* in the discussion above, we
can deduce that o is the identity mapping on the set of exposed
faces of A*.

It now follows easily that ¢ is a bijection.
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o Let A be the square convia,b,c,d} in R?, where a=(1,1),
b=(-1,1), c=(-1,-1), d=(1,-1).

o We saw that the polar dual A* of A is the square conviw, x,y, z},
where w=(1,0), x=(0,1), y=(-1,0), w=(0,-1).

George Voutsadakis (LSSU) Convexity



A A¥*
o The polar face mapping ¢ of A is indicated below, where the faces of
A and A*are represented by their extreme points.

%) a b c d ab bc c,d da A
¢ | | | | | | | | | |
o}

A* w,x xy y,z zw Xx y z w
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