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Convex Sets Basic Properties of Convex Sets

Subsection 1

Basic Properties of Convex Sets
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Convex Sets Basic Properties of Convex Sets

Convex Sets in Space

A set in space is convex if whenever it contains two points, it also
contains the line segment joining them.

Elementary geometry abounds in convex sets:

ellipses;
triangles;
parallelograms;
balls;
halfspaces;
cubes.

Examples of non-convex sets are:

an annulus;
a crescent;
the vertex set of a cube.
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Convex Sets Basic Properties of Convex Sets

Convex Sets in Space: Illustration
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Convex Sets Basic Properties of Convex Sets

Convex Sets in Rn

Let x and y be distinct points of Rn.

Then the subset
{λx +µy :λ,µ≥ 0,λ+µ= 1}

of the line through x and y is called the line segment joining x and y .

The set A in Rn is said to be convex if whenever it contains two
points, it also contains the line segment joining them.

Expressed algebraically, A is convex if λx +µy ∈A whenever x ,y ∈A
and λ,µ≥ 0 with λ+µ= 1.

Equivalently, A is convex if λA+µA⊆A whenever λ,µ≥ 0 with
λ+µ= 1.
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Convex Sets Basic Properties of Convex Sets

First Examples

The condition for a set to be convex is less restrictive than for it to be
a flat.

So every flat is a convex set.

In particular, the following are convex:

the empty set;
singletons;
lines;
hyperplanes;
R

n itself.
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Convex Sets Basic Properties of Convex Sets

Balls are Convex

We show that the closed ball B [a;r ] in Rn is convex.

Let x ,y ∈B [a;r ].

Let λ,µ≥ 0 with λ+µ= 1.

Then ‖x −a‖< r , ‖y −a‖ < r .

So
‖λx +µy −a‖ = ‖λ(x −a)+µ(y −a)‖

≤ λ‖x −a‖+µ‖y −a‖
≤ λr +µr = r .

Thus λx +µy ∈B [a;r ].

This proves that B [a;r ] is convex.

A similar argument shows that the open ball B(a;r) is convex.
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Convex Sets Basic Properties of Convex Sets

Halfspaces are Convex

We show that the closed halfspace A in Rn defined by the inequality
u ·x ≤ u0 is convex.

Let x ,y ∈A and let λ,µ≥ 0 with λ+µ= 1.

Then u ·x ≤ u0, u ·y ≤ u0.

So
u · (λx +µy)=λu ·x +µu ·y ≤λu0+µu0 = u0.

Thus λx +µy ∈A.

This proves that A is convex.

A similar argument shows that open halfspaces are convex.
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Convex Sets Basic Properties of Convex Sets

Closure Under Intersections

Theorem

The intersection of an arbitrary family of convex sets in Rn is convex.

Let (Ai : i ∈ I ) be a family of convex sets in Rn.

If a,b ∈⋂

(Ai : i ∈ I ) and λ,µ≥ 0 with λ+µ= 1, then a,b ∈Ai .

As Ai is convex, λa+µb ∈A, for each i ∈ I .
Thus λa+µb ∈⋂

(Ai : i ∈ I ).
This shows that the intersection is convex.

George Voutsadakis (LSSU) Convexity July 2023 10 / 173



Convex Sets Basic Properties of Convex Sets

Closure Under Restricted Linear Combinations

Theorem

Let a1, . . . ,am be points of a convex set A in Rn. Let λ1, . . . ,λm ≥ 0 with
λ1+·· ·+λm = 1. Then λ1a1+·· ·+λmam ∈A.

We argue by induction on m.

When m= 1 the assertion is trivial.

Suppose that the assertion holds when m is some positive integer k .

Let
x =λ1a1+·· ·+λk+1ak+1,

where a1, . . . ,ak+1 ∈A and λ1, . . . ,λk+1 ≥ 0 with λ1+·· ·+λk+1 = 1. At
least one λi must be less than 1, say λk+1 < 1. Write
y = λ1

λ a1+·· ·+ λk

λ ak , where λ=λ1+·· ·+λk = 1−λk+1 > 0. By the
induction hypothesis, y ∈A. Since A is convex and contains both y

and ak+1, the equation x =λy +λk+1ak+1 shows that x ∈A. This
completes the proof by induction.
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Convex Sets Basic Properties of Convex Sets

Convex Combinations

A point x is said to be a convex combination of points a1, . . . ,am in
R

n if there exist scalars λ1, . . . ,λm ≥ 0 with λ1+·· ·+λm = 1 such that

x =λ1a1+·· ·+λmam.

The preceding theorem can thus be expressed as:

Every convex combination of points of a convex set in Rn belongs to
that set.
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Convex Sets Basic Properties of Convex Sets

Convexity, Vector Addition and Scalar Multiplication

Theorem

Let A, B be convex sets in Rn and let α be a scalar. Then A+B and αA

are convex.

Let λ,µ≥ 0 with λ+µ= 1. Since A,B are convex,

λ(A+B)+µ(A+B)= (λA+µA)+ (λB +µB)⊆A+B ;
λ(αA)+µ(αA)=α(λA+µA)⊆αA.

This shows that A+B and αA are convex.

Corollary

Let A1, . . . ,Am be convex sets in Rn and let λ1, . . . ,λm be scalars. Then
λ1A1+·· ·+λmAm is convex.
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Convex Sets Basic Properties of Convex Sets

A Distributivity Property

Theorem

Let A be a convex set in Rn and let λ1, . . . ,λm ≥ 0. Then

(λ1+·· ·+λm)A=λ1A+·· ·+λmA.

The result is trivial when each λi is zero.

Suppose that λ=λ1+·· ·+λm > 0.

With the help of a previous theorem, we can deduce that

(λ1+·· ·+λm)A ⊆ λ1A+·· ·+λmA

= λ(λ1

λ
A+·· ·+ λm

λ
A)

⊆ λA

= (λ1+·· ·+λm)A.

Thus (λ1+·· ·+λm)A=λ1A+·· ·+λmA.
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Convex Sets Basic Properties of Convex Sets

A Cancelation Property

Theorem

Let A,B ,C be sets in Rn. Suppose that A is non-empty and bounded, that
C is closed and convex, and that A+B ⊆A+C . Then B ⊆C .

Let a0 ∈A. If b ∈B , then a0+b ∈A+B ⊆A+C . So there exist a1 ∈A,
c1 ∈C , such that a0+b = a1+c1. Similarly, there exist a2, . . . ,ai ∈A
and c2, . . . ,c i ∈C with a1+b = a2+c2, . . ., ai−1+b = ai +c i . We add
the i equations above together to deduce that

a0+ ib= ai +c1+·· ·+c i .

Since C is convex, the point x i = 1
i
(c1+·· ·+c i) lies in C . Since A is

bounded,

‖b−x i‖ = ‖1
i
(ai +c1+·· ·+c i −a0)− 1

i
(c1+·· ·+c i )‖

= 1
i
‖ai −a0‖→ 0 as i →∞.

Thus x i → b as i →∞. But C is closed. So b ∈C . Hence, B ⊆C .
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Convex Sets Basic Properties of Convex Sets

A Cancelation Property (Cont’d)

Corollary

Let A,B ,C be sets in Rn. Suppose that A is non-empty and bounded, that
B and C are closed and convex, and that A+B =A+C . Then B =C .
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Convex Sets Basic Properties of Convex Sets

Affine Transformations and Convex Sets

Theorem

Let f :Rn →Rm be an affine transformation. Then f (A) is convex for each
convex set A in Rn, and f −1(B) is convex for each convex set B in Rm.

Let A be a convex set in Rn. Let λ,µ≥ 0 with λ+µ= 1. If
x ,y ∈ f (A), then x = f (a), y = f (b) for some a,b ∈A. Since A is
convex, λa+µb ∈A. Since f is affine,

λx +µy =λf (a)+µf (b)= f (λa+µb).

Thus λx +µy ∈ f (A). This shows that f (A) is convex.

Let B be a convex set in Rm. Let λ,µ≥ 0 with λ+µ= 1. If
x ,y ∈ f −1(B), then f (x), f (y) ∈B . Since B is convex,
λf (x)+µf (y) ∈B . Since f is affine, f (λx +µy)=λf (x)+µf (y) ∈B .

Thus λx +µy ∈ f −1(B). This shows that f −1(B) is convex.
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Subsection 2

The Convex Hull

George Voutsadakis (LSSU) Convexity July 2023 18 / 173



Convex Sets The Convex Hull

The Convex Hull

The convex hull convA of a set A in Rn is the intersection of all
convex sets in Rn containing A.

The definition of convA, together with a previous theorem, shows that
convA is a convex set containing A.

Moreover, if C is any convex set in Rn containing A, then convA⊆C .

Thus we may refer to convA as the smallest convex set in Rn

containing A.

Clearly, A is convex if and only if A= convA.

Moreover conv(convA)= convA.

Also convA⊆ convB whenever A⊆B .
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Convex Sets The Convex Hull

Examples

In space:

The convex hull of two distinct points is the line segment joining them;
The convex hull of three non-collinear points is the triangle which they
determine;
The convex hull of four non-coplanar points is the tetrahedron which
they determine.

In R2 the convex hull of m points symmetrically placed on the
circumference of a circle, where m≥ 3, is a regular m-sided polygon.
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Convex Sets The Convex Hull

Example

The convex hull of the set A= {x ∈Rn : ‖x‖ = 1} is the closed unit ball
U = {x ∈Rn : ‖x‖ ≤ 1}.

The ball U is convex and contains A, so convA⊆U .

We now show that U ⊆ convA.

Let x ∈U . If x = 0 and y ∈A, then x = 1
2
y + 1

2
(−y ). Since convA is

convex and contains y and −y , this shows that x ∈ convA. If x 6= 0,
then 0< ‖x‖≤ 1. The equation

x =
(

1+‖x‖
2

)

x

‖x‖
+

(

1−‖x‖
2

) −x

‖x‖

shows that x ∈ convA, since convA is convex and contains x
‖x‖ and

− x
‖x‖ . Thus U ⊆ convA.

We now have U = convA.
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Convex Sets The Convex Hull

Description of Convex Hull in Terms of Points

Theorem

Let A be a set in Rn. Then convA is the set of all convex combinations of
points of A.

Denote by B the set of all convex combinations of points of A.

That B ⊆ convA follows from a previous theorem and the inclusion
A⊆ convA.

We next show that B is convex. If x ,y ∈B , then

x =λ1a1+·· ·+λmam, y =µ1b1+·· ·+µpbp ,

for some a1, . . . ,am, b1, . . . ,bp ∈A and λ1, . . . ,λm, µ1, . . . ,µp ≥ 0 with
λ1+·· ·+λm = 1 and µ1+·· ·+µp = 1.
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Convex Sets The Convex Hull

Description of Convex Hull in Terms of Points (Cont’d)

Let λ,µ≥ 0 with λ+µ= 1. Then

λx +µy =λλ1a1+·· ·+λλmam+µµ1b1+·· ·+µµpbp

and
λλ1+·· ·+λλm+µµ1+·· ·+µµp

=λ(λ1+·· ·+λm)+µ(µ1+·· ·+µp)
=λ+µ= 1.

Thus λx +µy ∈B , so B is convex. Since B is convex and B ⊇A, it
follows that B ⊇ convA. Hence B = convA.

Corollary

Let a1, . . . ,am ∈Rn. Then

conv{a1, . . .am} = {λ1a1+·· ·+λmam :λ1, . . . ,λm ≥ 0,

λ1+·· ·+λm = 1}.
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Convex Sets The Convex Hull

On the Number of Points

The preceding theorem shows that each point of the convex hull of a
set in Rn is a convex combination of points of that set.

The theorem makes no reference to the number of points in the
combination.

Carathéodory’s Theorem, which is proved next, states that each point
of the convex hull of an r -dimensional set can be expressed as a
convex combination of r +1 or fewer points of the set.

Thus a point in the convex hull of a set in R3 is either a point of the
set or belongs to a line segment, a triangle, or a tetrahedron with
vertices in the set.
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Convex Sets The Convex Hull

Carathéodory’s Theorem

Theorem (Carathéodory’s Theorem)

Let a ∈ convA, where A is an r -dimensional set in Rn. Then a can be
expressed as a convex combination of r +1 or fewer points of A.

The preceding theorem shows the existence of points a1, . . . ,am of A
and scalars λ1, . . . ,λm ≥ 0 with λ1+·· ·+λm = 1 such that

a =λ1a1+·· ·+λmam.

We assume that this representation of a is so chosen that a cannot be
expressed as a convex combination of fewer than m points of A.

It follows that no two of the points a1, . . . ,am are equal and that
λ1, . . . ,λm > 0. We prove the theorem by showing that m≤ r +1.

We use a contradiction argument.
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Convex Sets The Convex Hull

Carathéodory’s Theorem (Cont’d)

Suppose that m> r +1. Then, since A is r -dimensional, the set
{a1, . . . ,am} must be affinely dependent. So there exist scalars
µ1, . . . ,µm, not all zero, such that

0=µ1a1+·· ·+µmam, µ1+·· ·+µm = 0.

Let t > 0 be such that the scalars λ1+µ1t , . . . ,λm+µmt are
nonnegative with at least one of them zero. Such a t exists since the
λ’s are all positive and at least one of the µ’s is negative. The
equation

a = (λ1+µ1t)a1+·· ·+ (λm+µmt)am,

when its terms with zero coefficients are omitted, exhibits a as a
convex combination of fewer than m points of A. This contradiction
to the minimality of m shows that m≤ r +1.
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Convex Sets The Convex Hull

Radon’s Theorem

Theorem (Radon’s Theorem)

Let a1, . . . ,am ∈Rn (m≥ n+2). Then the set {1, . . . ,m} can be partitioned
into two subsets I and J such that conv{ai : i ∈ I } meets conv{aj : j ∈ J}.

We consider the non-trivial case when the a1, . . . ,am are distinct.

It follows from a previous corollary that there exist scalars λ1, . . . ,λm,
not all zero, such that λ1a1+·· ·+λmam =0 and λ1+·· ·+λm = 0.
Some of the λ’s will be positive, others negative. Let I = {i :λi ≥ 0}

and J = {j :λj < 0}. Then

∑

i∈I λiai
∑

i∈I λi
=

∑

j∈J(−λj )aj
∑

j∈J(−λj)
= x say.

Thus x is a convex combination of points of both {ai : i ∈ I } and
{aj : j ∈ J}. Hence x ∈ conv{ai : i ∈ I }∩conv{aj : j ∈ J}.
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Convex Sets The Convex Hull

Four Points in R2

Radon’s theorem yields information about the possible configurations
of four points in R2.

It shows that:

Either one of the four points belongs to the (possibly degenerate)
triangle determined by the remaining three;
Or the four points are the vertices of a convex quadrilateral.
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Convex Sets The Convex Hull

Convex Hull of Open or Compact Sets

Theorem

In Rn the convex hull of an open set is open and the convex hull of a
compact set is compact.

Let A be an open set in Rn. If a ∈ convA, then a =λ1a1+·· ·+λmam
for some a1, . . . ,am ∈A and λ1, . . . ,λm ≥ 0 with λ1+·· ·+λm = 1. Since
A is open, there exist r1, . . . ,rm > 0 such that B(a1;r1)⊆A, . . .,
B(am;rm)⊆A. Let r =min{r1, . . . ,rm}, so r > 0. We show that
B(a;r)⊆ convA. Let x ∈B(a;r). Then ‖x −a‖< r . For i = 1, . . . ,m,
the point x i = ai +x −a lies in B(ai ;r). Hence also in B(ai ;ri ) and A.
Now we get

x = a+x −a =λ1a1+·· ·+λmam+ (λ1+·· ·+λm)(x −a)
= λ1(a1+x −a)+·· ·+λm(am+x −a)=λ1x1+·· ·+λmxm.

So x ∈ convA. Thus B(a;r)⊆ convA and each point of convA is an
interior point of convA. I.e., convA is open.
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Convex Sets The Convex Hull

Convex Hull of Open or Compact Sets (Cont’d)

Now let A be a compact set in Rn. If x1, . . . ,xk , . . . is a sequence in
convA, then, by Carathéodory’s Theorem, xk can be expressed in the
form xk =λk0ak0+·· ·+λknakn, for some ak0, . . . ,akn ∈A and
λk0, . . . ,λkn ≥ 0 with λk0+·· ·+λkn = 1. It may be necessary to include
some extra a’s with zero coefficients to bring the number of a’s in the
expression for xk up to n+1. Each sequence a1j , . . . ,akj , . . .

(j = 0, . . . ,n) belongs to the compact set A. Each real sequence
λ1j , . . . ,λkj , . . . (j = 0, . . . ,n) belongs to the compact interval [0,1].
Since there is only a finite number, namely 2n+2, of these sequences,
we can, by repeatedly forming convergent subsequences of sequences
whose members lie in a compact set, find a subsequence i1, . . . , ik , . . . of
1, . . . ,k , . . ., points a0, . . . ,an of A and scalars λ0, . . . ,λn ≥ 0 with
λ0+·· ·+λn = 1, such that akj → aj and λkj →λj (k →∞, j = 0, . . . ,n).
Thus the subsequence x i1 , . . . ,x ik , . . . converges to the point
λ0a0+·· ·+λnan of convA. This shows that convA is compact.
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Convex Sets The Convex Hull

Finite Sets and Closed Sets

Corollary

The convex hull of a finite set in Rn is compact.

The theorem makes no reference to the convex hull of a closed set.

Except in R1, the convex hull of a closed set need not be closed.

Example: In Rn the union of a line and a point not on it is a closed
set.

But its convex hull is not closed.
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Convex Sets The Convex Hull

Diameter of Bounded Sets

Since a set in Rn is bounded if and only if it lies in some ball, and
balls are convex, it follows that the convex hull of a bounded set in Rn

is bounded.

The diameter of a nonempty bounded set A in Rn is the nonnegative
real number

sup {‖a−b‖ : a,b ∈A}.

In R2 the diameter of a triangle is the length of a longest side.

The diameter of a rectangle is the length of a diagonal.

In Rn the balls B(a;r) and B [a;r ] both have diameter 2r .

The theorem below relates the diameters of a bounded set and its
convex hull.
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Convex Sets The Convex Hull

Diameter of a Bounded Set and its Convex Hull

Theorem

Let A be a nonempty bounded set in Rn. Then A and convA have the
same diameter.

Suppose that A has diameter s. Let x ,y ∈ convA. Then

x =λ1a1+·· ·+λmam, y =µ1b1+·· ·+µpbp ,

for some a1, . . . ,am, b1, . . . ,bp ∈A and λ1, . . . ,λm, µ1, . . . ,µp ≥ 0 with
λ1+·· ·+λm = 1, µ1+·· ·+µp = 1. Thus x =

∑m
i=1

∑p

j=1
λiµjai and

y =
∑m

i=1

∑p

j=1
λiµjbj . Hence, using the Triangle Inequality,

‖x −y‖ = ‖
∑m

i=1

∑p

j=1
λiµj(ai −bj)‖

≤
∑m

i=1

∑p

j=1
λiµj‖ai −bj‖

≤
∑m

i=1

∑p

j=1
λiµj s = s .

Hence the diameter of convA does not exceed s. Since A⊆ convA, the
diameter of convA is at least s. Thus convA has diameter s.

George Voutsadakis (LSSU) Convexity July 2023 33 / 173



Convex Sets The Convex Hull

Convex Hull of Set of Complex Numbers

We now prove a result concerning the location of the roots of the
derivative of a complex polynomial.

In a natural way we can identify the Euclidean space R2 with the
complex plane by identifying each point (x ,y) of R2 with the complex
number x + iy and vice versa.

This identification allows us to refer to the convex hull of a set of
complex numbers or to a convex combination of complex numbers.

Example: Consider a complex polynomial P(z)= az2+bz +c .

Then P has roots −b±
p
b2−4ac
2a

, and its derivative P ′ has root − b
2a

.

Hence the root of P ′ lies midway between the roots of P .

So the root of P ′ is in the convex hull of the roots of P .
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Convex Sets The Convex Hull

The Gauss-Lucas Theorem

Theorem (Gauss-Lucas Theorem)

The roots of the derivative of a non-constant complex polynomial belong
to the convex hull of the set of roots of the polynomial itself.

Let P be the complex polynomial defined for complex z by the
equation

P(z)= anz
n+·· ·+a1z +a0,

where n≥ 1 and a0,a1, . . . ,an are complex numbers with an 6= 0. Then

P(z)= an(z −z1) · · ·(z −zn),

where z1, . . . ,zn are the roots of P , each being repeated according to
its multiplicity. A routine verification shows that, for z 6= z1, . . . ,zn,

P ′(z)

P(z)
=

1

z −z1
+·· ·+

1

z −zn
=

z −z1

|z −z1|2
+·· ·+

z −zn

|z −zn|2
.
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Convex Sets The Convex Hull

The Gauss-Lucas Theorem (Cont’d)

Suppose now that z is a root of P ′. We establish the theorem by
exhibiting z as a convex combination of z1, . . . ,zn. This can be done
trivially if z is one of z1, . . . ,zn. So assume that this is not the case.
Putting P ′(z)= 0 in the preceding equation, we find easily that

z =
1

|z−z1|2 z1+·· ·+ 1
|z−zn|2 zn

1
|z−z1|2 +·· ·+ 1

|z−zn|2
.

This expresses z as a convex combination of z1, . . . ,zn.

Corollary

Suppose that the roots of a non-constant complex polynomial lie in some
given convex set. Then the roots of its derivative lie in the same convex set.

A simple application of the corollary:
If all the roots of a non-constant complex polynomial have positive
imaginary parts, then the same is also true of the roots of its derivative.
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Convex Sets Interiors and Closures

Subsection 3

Interiors and Closures
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Convex Sets Interiors and Closures

Relative Interior of a Nonempty Convex Set

Theorem

The relative interior of a non-empty convex set in Rn is non-empty.

Let A be a non-empty r -dimensional convex set in Rn. Then A

contains points a0, . . . ,ar which form an affine basis for the r -flat affA,
and the barycentric coordinates λ0, . . . ,λr of a point x of affA relative
to a0, . . . ,ar are continuous functions of x , a fact which follows easily
from a previous theorem. Let a = 1

r+1
(a0+·· ·+ar ). Then a lies in A

and its barycentric coordinates λ0, . . . ,λr are positive, each being 1
r+1

.
By the continuity of the barycentric coordinates, for each i = 0, . . . ,r ,
there exists si > 0, such that λi > 0 whenever x lies in B(a;si)∩affA.
Let s be the minimum of s0, . . . ,sr . So s > 0. Then if x lies in
B(a;s)∩affA, all its barycentric coordinates λ0, . . . ,λr are positive.
So, since A is convex, x lies in A. Thus, the relative interior of A
contains the point a.
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Convex Sets Interiors and Closures

Convex Sets with Empty Interior

Corollary

A convex set in Rn has an empty interior if and only if it lies in some hyper
plane of Rn.

Since a hyperplane in Rn has an empty interior, so does each of its
subsets.

A convex set in Rn which does not lie in any hyperplane of Rn must
be n-dimensional. Therefore its interior coincides with its relative
interior. This relative interior is non-empty by the theorem.
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Line Segment Between Relative Interior and Set

Lemma

Let A be a convex set in Rn. Let a ∈ riA and b ∈A. Then, for 0<λ≤ 1,

λa+ (1−λ)b ∈ riA.

Since a ∈ riA, there is an r > 0 such that B(a;r)∩affA⊆A.

Let c =λa+ (1−λ)b, where 0<λ≤ 1.

We show that B(c;λr)∩affA⊆A.
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Convex Sets Interiors and Closures

Line Segment Between Relative Interior and Set (Cont’d)

Let x ∈B(c;λr)∩affA. Let

y = a+
1

λ
(x −c)= a+

1

λ
(x −λa− (1−λ)b)=

1

λ
x +

(

1−
1

λ

)

b.

Then y ∈ affA and ‖y −a‖ = 1
λ‖x−c‖< r . Thus, y ∈B(a;r)∩affA⊆A.

The equation x =λy + (1−λ)b, together with the convexity of A,
shows that x ∈A. Hence, B(c;λr)∩affA⊆A. So c ∈ riA.
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A Closure and a Relative Interior Point of a Convex Set

Theorem

Let A be a convex set in Rn. Let a ∈ riA and b ∈ clA. Then
λa+ (1−λ)b ∈ riA for 0<λ≤ 1.

Since a ∈ riA, there is an r > 0 such that B(a;r)∩affA⊆A. Let
c =λa+ (1−λ)b, where 0<λ≤ 1. Since b ∈ clA, there exists d ∈A
satisfying (1−λ)‖d −b‖<λr . Let

e = a+ 1−λ
λ (b−d )= 1

λ(λa+ (1−λ)b− (1−λ)d )

= 1
λ
(c + (λ−1)d )= 1

λ
c +

(

1− 1
λ

)

d .

Then e ∈ affA and ‖e−a‖ = 1−λ
λ ‖b−d‖< r . Thus e lies in

B(a;r)∩affA. Hence, it lies in riA. The equation c =λe+ (1−λ)d ,
together with the lemma, shows that c ∈ riA.
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Relative Interior, Interior and Closure of Convex Sets

Theorem

Let A be a convex set in Rn. Then riA, intA and clA are convex.

If a,b ∈ riA and 0≤λ≤ 1, then λa+ (1−λ)b ∈ riA, either trivially, if
λ= 0, or by the preceding theorem, otherwise. Thus riA is convex.

That intA is convex follows from the fact that either intA is empty or
coincides with riA.

If a,b ∈ clA, then there are sequences a1, . . . ,ak , . . . and b1, . . . ,bk , . . . of
points of A such that ak → a, bk → b as k →∞. Let 0≤λ≤ 1. Then
λak + (1−λ)bk ∈A for each k , since A is convex. Now

λak + (1−λ)bk →λa+ (1−λ)b as k →∞.

This shows that λa+ (1−λ)b ∈ clA. Thus clA is convex.
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The Closed Convex Hull of a Set

The preceding theorem shows that, for any set A in Rn, the set
cl(convA) is a closed convex set containing A.

If B is any closed convex set in Rn containing A, then

B = cl(convB)⊇ cl(convA).

So cl(convA) is the smallest closed convex set containing A.

It is called the closed convex hull of A.
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Convex Sets Interiors and Closures

Characterization of Relative Interior Points

The next result asserts that a point a0 of a convex set A is a relative
interior point of A if and only if every line segment lying in A, and
having a0 as an endpoint, can be extended some distance beyond a0

without leaving A.

Theorem

Let a0 be a point of a convex set A in Rn. Then a0 ∈ riA if and only if, for
each a ∈A, there exists µ> 1 such that (1−µ)a+µa0 ∈A.

Clearly, if a0 ∈ riA, then the condition of the theorem is satisfied.

Conversely, suppose that a0 satisfies this condition. Let a ∈ riA. Then
there is µ> 1 such that the point x = (1−µ)a+µa0 lies in A. Hence
a0 =λa+ (1−λ)x , where 0<λ= 1− 1

µ < 1. But a ∈ riA and x ∈A, so

a0 ∈ riA by a previous lemma.
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Relative Interior of the Convex Hull of a Finite Set

Theorem

Let A= conv{a1, . . . ,am}, where a1, . . . ,am ∈Rn. Then

riA= {λ1a1+·· ·+λmam :λ1, . . . ,λm > 0,λ1+·· ·+λm = 1}.

Suppose first that a0 =λ1a1+·· ·+λmam, where λ1, . . . ,λm > 0 and
λ1+·· ·+λm = 1, and that a ∈A. Then a0 ∈A, and
a =µ1a1+·· ·+µmam for some µ1, . . . ,µm ≥ 0 with µ1+·· ·+µm = 1.
Choose µ> 1 such that

µλ1+ (1−µ)µ1 ≥ 0, . . . ,µλm+ (1−µ)µm ≥ 0.

Then (1−µ)a+µa0 ∈A. So a0 ∈ riA by the preceding theorem.
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Convex Sets Interiors and Closures

Relative Interior of the Convex Hull of a Finite Set (Cont’d)

Suppose next that a0 ∈ riA, and that a∗ = 1
m
(a1+·· ·+am). Then

a∗ ∈A. By the preceding theorem, there exist µ> 1 and a ∈A such
that a = (1−µ)a∗+µa0, say a =µ1a1+·· ·+µmam, where
µ1, . . . ,µm ≥ 0 with µ1+·· ·+µm = 1. The equation

a0 =
µ1+ µ−1

m

µ
a1+·· ·+

µm+ µ−1

m

µ
am

now expresses a0 in the form λ1a1+·· ·+λmam, where λ1, . . . ,λm > 0
with λ1+·· ·+λm = 1.
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Closure and Relative Interior

Theorem

Let A be a convex set in Rn. Then riA= ri(clA) and clA= cl(riA).

We assume, throughout, that A is non-empty with a ∈ riA.

The inclusion riA⊆ ri(clA) follows from the inclusion A⊆ clA and the
fact that the affine hulls of A and clA coincide. To establish the
inclusion ri(clA)⊆ riA, suppose that b ∈ ri(clA). By a previous
theorem, there exist µ> 1 and c ∈ clA such that c = (1−µ)a+µb.
Hence b = (1−λ)a+λc , where 0<λ= 1

µ < 1. That b ∈ riA follows

from a previous theorem. Thus, ri(clA)⊆ riA.

The inclusion cl(riA)⊆ clA is clear. To establish the inclusion
clA⊆ cl(riA), suppose that b ∈ clA. A previous theorem shows that
λa+ (1−λ)b ∈ riA for 0<λ≤ 1. Hence, b ∈ cl(riA). Thus,
clA⊆ cl(riA).
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Convex Sets Interiors and Closures

Interior, Closure and Boundaries

Corollary

Let A be a convex set in Rn. Then intA= int(clA) and, when intA is
nonempty, clA= cl(intA).

If intA is non-empty, then riA= intA and ri(clA)= int(clA), and the
corollary follows from the theorem.

If intA is empty, then A, and hence clA, lie in a hyperplane of Rn.
Hence, both intA and int(clA) are empty.

Corollary

Let A be a convex set in Rn. Then rebdA= rebd(clA) and bdA= bd(clA).

By the theorem and its first corollary,

rebd(clA) = cl(clA)\ri(clA)= clA\riA= rebdA;

bd(clA) = cl(clA)\int(clA)= clA\intA= bdA.
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Subsection 4

Separation and Support
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Convex Sets Separation and Support

Uniqueness of Closest Point

Theorem

In Rn let A be a nonempty closed convex set and let x be a point. Then
there exists a unique point a0 of A such that ‖x −a0‖= inf {‖x −z‖ : z ∈A}.
Moreover, (x −a0) · (a−a0)≤ 0, for each a in A.

By a previous theorem, there exists a0 ∈ A

such that ‖x−a0‖= inf {‖x −z‖ : z ∈A}. Let
a ∈ A and 0 < λ ≤ 1. The convexity of A

shows (1−λ)a0+λa ∈A.

The choice of a0 shows that

‖x − ((1−λ)a0+λa)‖ = ‖(x −a0)+λ(a0−a)‖ ≥ ‖x −a0‖.

We deduce, using a previous theorem that (x −a0) · (a−a0)≤ 0.
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Convex Sets Separation and Support

Uniqueness of Closest Point (Cont’d)

Suppose that a1 ∈A also satisfies the equation

‖x −a1‖ = inf {‖x −z‖ : z ∈A}.

Then, by what we have just proved, (x −a0) · (a1−a0)≤ 0. Because of
the symmetry between a0 and a1, we have (x −a1) · (a0−a1)≤ 0.
Adding these last two inequalities together, we deduce that

‖a1−a0‖2 = (a1−a0) · (a1−a0)≤ 0.

This proves that a0 = a1.

The theorem shows how each non-empty closed convex set A in Rn

gives rise to a mapping f :Rn →A defined by f (x)= a0, where a0 is
the nearest point of A to a point x of Rn.

This mapping is called the projection operator of A.
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Convex Sets Separation and Support

Lipschitz Property of Projection

Corollary

Let A be a non-empty closed convex set in Rn. Then the projection
operator f :Rn →A of A satisfies the Lipschitz condition
‖f (x)− f (y)‖ ≤ ‖x −y‖ for all x ,y ∈Rn. So it is continuous.

Let x ,y ∈Rn. Write u = x − f (x), v = y − f (y). Then, by the theorem,
u · (f (y)− f (x))≤ 0 and v · (f (x)− f (y))≤ 0. So, we get
(u−v) · (f (x)− f (y))≥ 0. Thus,

‖x −y‖2 = ‖(u−v)+ (f (x)− f (y))‖2

= ‖u−v‖2+2(u−v) · (f (x)− f (y))+‖f (x)− f (y)‖2

≥ ‖f (x)− f (y)‖2.

So ‖f (x)− f (y)‖ ≤ ‖x −y‖.
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Convex Sets Separation and Support

Geometry of Nearest Points

Geometrically, the following corollary states that, if f (x) is the nearest
point of a non-empty closed convex set A in Rn to a point x of Rn

not belonging to A,

then it is also the nearest point of A to any point on the halfline
starting at f (x) and passing through x .
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Convex Sets Separation and Support

Nearest Points and Line Segments

Corollary

Let A be a non-empty closed convex set in Rn with projection operator f .
Then, for all x ∈Rn and λ≥ 0,

f (f (x)+λ(x − f (x)))= f (x).

Write y = f (x)+λ(x − f (x)), where x ∈Rn, λ≥ 0. By the theorem,
(x − f (x)) · (f (y)− f (x))≤ 0 and (y − f (y)) · (f (x)− f (y))≤ 0.

From these inequalities, we deduce that

0 ≤ (f (y)− f (x)) · (f (y)− f (x))
= (f (y)+λ(x − f (x))−y ) · (f (y)− f (x))
= (f (y)−y) · (f (y)− f (x))+λ(x − f (x)) · (f (y)− f (x))
≤ 0.

Hence, ‖f (y)− f (x)‖2 = 0. Therefore, f (y)= f (x).
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Convex Sets Separation and Support

Relative Boundaries and Closest Points

Theorem

Let a be a relative boundary point of a non-empty closed convex set A in
R

n with projection operator f . Then there exists x ∈ (affA)\A such that
f (x)= a.

Since a ∈ rebdA, there exists, for each positive integer m, a point ym

of (affA)\A satisfying ‖ym−a‖ ≤ 1
m

. Write am = f (ym) and

xm = am+
ym−am

‖ym−am‖
.
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Convex Sets Separation and Support

Relative Boundaries and Closest Points (Cont’d)

Then ‖xm−am‖= 1 and, by the preceding corollary, f (xm)= am.

A previous corollary shows that

‖am−a‖ = ‖f (ym)− f (a)‖ ≤ ‖ym−a‖ ≤
1

m
.

So am → a as m→∞. We have

‖xm‖≤ ‖xm−am‖+‖am−a‖+‖a‖≤ 1+
1

m
+‖a‖.

So the sequence x1,x2, . . . is bounded. Thus x1,x2, . . . contains a
convergent subsequence. Assume, without loss of generality, that
x1,x2, . . . itself converges to some point x of Rn. Since x1,x2, . . .

belong to affA, we can deduce that x ∈ affA. The continuity of f
shows that f (xm)→ f (x) as m→∞, i.e., am → f (x) as m→∞. But
am → a as m→∞. Hence, f (x)= a. Clearly ‖x −a‖ = 1. So x 6∈A.
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Bounded Sets and Boundaries

Corollary

Let A be a non-empty closed convex set in Rn with projection operator f
and let B be a bounded set in Rn such that A⊆B . Then f (bdB)= bdA.

We show that bdA⊆ f (bdB), the opposite inclusion being obvious.

Let a ∈ bdA. Then there exists x ∈Rn\A such that f (x)= a. This can
be proved by substituting bdA for rebdA, and Rn for affA, in the
proof of the theorem. As B is bounded, there is some µ> 0 such that,
for λ≥µ, a+λ(x −a) 6∈B . But a ∈B . So a+λ0(x −a) ∈ bdB for
some λ0 ≥ 0. The preceding corollary shows that f (a+λ0(x −a))= a.
Hence, bdA⊆ f (bdB).
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Convex Sets Separation and Support

Separation

Let A and B be sets, and let H be a hyperplane in Rn.

Then H is said to separate A and B if A lies in one of the closed
halfspaces determined by H and B lies in the other.

H is said to separate A and B properly if it separates them, but not
both A and B lie in H.

If A and B lie in opposite open halfspaces determined by H, then H is
said to separate A and B strictly.

It follows from the convexity of halfspaces that, if a hyperplane
separates two sets, then it also separates their convex hulls.

For this reason, we consider only the separation of convex sets.
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Convex Sets Separation and Support

Examples

It is not always possible to separate two convex sets by a hyperplane.

For example, there is no line separating the set {0} and the closed unit
disc {(x ,y) : x2+y2 ≤ 1} in R2.

Any two sets that can be strictly separated can be properly separated,
unless they are both empty.

The convex sets {(x ,y) : x ≤ 0} and {(x ,y) : x > 0,y ≥ 1
x

} in R2 cannot
be strictly separated, but they are properly separated by the y -axis.

A hyperplane in Rn separates any two of its subsets, but does not
separate them properly.
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Convex Sets Separation and Support

Strict Separation of a Closed and a Compact Set

Theorem

Let A and B be disjoint non-empty convex sets in Rn with A closed and B

compact. Then A and B can be strictly separated by a hyperplane in Rn.

The geometry of the proof is as follows.
Let a and b be nearest points of A and
B . Then the hyperplane through the
midpoint of the line segment joining a

and b with normal vector a−b strictly
separates A and B .
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Convex Sets Separation and Support

Strict Separation of a Closed and a Compact Set (Cont’d)

Let a ∈A, b ∈B be such that a is the nearest point of A to b, and b is
the nearest point of B to a. This is possible by a previous theorem.
Since A and B are disjoint, a 6= b. Let x ∈A, y ∈B . Then, by a
previous theorem, (b−a) · (x −a)≤ 0 and (a−b) · (y −b)≤ 0. Thus,

(a−b) ·x ≥ (a−b) ·a
= 1

2
(‖a‖2−‖b‖2+‖a−b‖2)

> 1
2
(‖a‖2−‖b‖2)

> 1
2
(‖a‖2−‖b‖2−‖a−b‖2)

= (a−b) ·b
≥ (a−b) ·y .

Write c = a−b and c0 = 1
2
(‖a‖2−‖b‖2). Then we have shown that

the hyperplane c ·z = c0 strictly separates A and B .
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Convex Sets Separation and Support

Consequences

Corollary

In Rn let A be a closed convex set and let b be a point not lying in A.
Then A and {b} can be strictly separated by a hyperplane in Rn.

Corollary

Each closed convex set A in Rn is the intersection of all the closed
halfspaces in Rn containing A.

Denote by B the intersection of all the closed haifspaces in Rn

containing A. Then B is a closed convex set containing A. If b 6∈A,
then the corollary above shows that there exists some closed halfspace
in Rn which contains A but not b. Hence b 6∈B . Thus B ⊆A, and
A=B .
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Convex Sets Not Containing the Origin

Lemma

In Rn let A be a non-empty convex set not containing the origin. Then
there exists a hyperplane in Rn which separates the origin and A, and does
not contain A.

Suppose first that 0 6∈ clA. Then the lemma follows from a previous
corollary applied to the closed convex set clA. Suppose next that
0 ∈ clA. Then 0 ∈ rebdA. By a previous corollary, rebdA= rebd(clA).
So 0 ∈ rebd(clA). A previous theorem asserts the existence of a point
x of (aff(clA))\clA whose nearest point in clA is 0. By a previous
theorem, clA⊆ {z ∈Rn : x ·z ≤ 0}. This shows that the hyperplane
H = {z ∈Rn : x ·z = 0} separates 0 and A.

We cannot have A⊆H: This would imply that x ∈ aff(clA)⊆H. But,
this is impossible since x ·x > 0. Thus, H separates {0} and A, and
does not contain A.
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Disjoint Nonempty Convex Sets

Theorem

Each pair of disjoint non-empty convex sets A and B in Rn can be properly
separated by a hyperplane in Rn.

The non-empty convex set A−B does not contain the origin.

By the lemma, there exists a hyperplane in Rn which separates {0}

and A−B , and that does not contain A−B . Thus, there exist c ∈Rn

with c 6= 0 and c0 ∈R such that

0= c ·0≤ c0 and c · (a−b)≥ c0, for a ∈A, b ∈B .

Also, for some a0 ∈A, b0 ∈B , we have c · (a0−b0)> c0 ≥ 0.

For every a ∈A, b ∈B ,

c ·a ≥ c ·b+c0 ≥ c ·b.
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Disjoint Nonempty Convex Sets (Cont’d)

Thus there is a scalar d satisfying the inequalities

inf {c ·a : a ∈A} ≥ d ≥ sup {c ·b : b ∈B}.

For any a′ ∈A, b′ ∈B , we have c ·a′ ≥ d ≥ c ·b′. So the hyperplane H

with equation c ·z = d separates A and B .

H cannot contain both A and B , for this would imply that
c · (a0−b0)= 0, which contradicts the inequality above. Thus H
separates A and B properly.

George Voutsadakis (LSSU) Convexity July 2023 66 / 173



Convex Sets Separation and Support

Convex Sets With Disjoint Relative Interiors

Corollary

Each pair of non-empty convex sets A and B in Rn whose relative interiors
are disjoint can be properly separated by a hyperplane in Rn.

The non-empty convex sets riA and riB are disjoint. So, by the
theorem, there exists a hyperplane H in Rn which properly separates
them. Since closed halfspaces are closed, H also properly separates
cl(riA)= clA and cl(riB)= clB . Hence, it also properly separates A and
B .
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Support Hyperplanes

In Rn a hyperplane H is called a support hyperplane to a set A if H
meets clA and A lies in one of the closed halfspaces determined by H.

Such a hyperplane H is said to support A at those points where H

meets clA.

A hyperplane H cannot support a set A at an interior point of A,
because every ball with center in H meets both the open halfspaces
determined by H.

A hyperplane in Rn is a trivial support hyperplane to each of its
non-empty subsets.

A support hyperplane to a set in Rn is said to be a non-trivial

support hyperplane to the set if it does not contain the set itself.
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Boundary Points and Support Hyperplanes

Theorem

Through each boundary point of a convex set A in Rn there passes a
support hyperplane to A, and through each relative boundary point of A
there passes a non-trivial support hyperplane to A.

Suppose first that a is a boundary point of A, but not a relative
boundary point of A. Then A cannot be n-dimensional. So it lies in
some hyperplane H of Rn. Clearly H is a support hyperplane to A

passing through a.
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Boundary Points and Support Hyperplanes (Cont’d)

Suppose next that a is a relative boundary point of A.

The preceding theorem shows the existence of a hyperplane H which
properly separates {a} and riA.

H cannot contain riA, for this would imply that H also contains
cl(riA)= clA, and hence a.

By the definition of separation, {a} and riA, and thus {a} and
cl(riA)= clA, belong to opposite closed halfspaces determined by H.

Since a ∈ clA, we must have a ∈H. Thus H is a non-trivial support
hyperplane to A passing through a.
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Example

Let H be a support hyperplane to a closed ball B [a;r ] in Rn at some
point c .

Since H does not meet the interior of the ball, every point of H must
be a distance of at least r from a.

Hence c must be a nearest point of H to a.

By the uniqueness of nearest points of convex sets, H can meet the
ball only in the point c .

A previous theorem shows that (h−c) · (a−c)≤ 0 for all h in H.

We cannot have (h−c) · (a−c)< 0 for some h in H.

This would imply that the point h′ = 2c −h of H satisfies

(h′−c) · (a−c)= (2c −h−c) · (a−c)= (c −h) · (a−c)> 0.

But this is impossible.

Thus H must be the hyperplane with equation (x −c) · (a−c)= 0.

So H is the unique support hyperplane to B [a;r ] at c .
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Distance Between a Point and a Hyperplane

We conclude this section by establishing a formula for the distance
between a point a and a hyperplane H with equation c ·x = c0 in Rn.

Denote by a0 the point defined by the equation

a0 = a+
c0−c ·a
‖c‖2

c .

Then a0 lies in H, and for any x in H, we have

‖a−x‖2 = ‖(a−a0)+ (a0−x)‖2 =‖a−a0‖2+‖a0−x‖2
.

This shows that a0 is the unique nearest point of H to a, and that the
(shortest) distance between a and H is ‖a−a0‖ = |c ·a−c0|

‖c‖ .

When c is a unit vector and a is the origin, this distance becomes |c0|.
The (shortest) distance between parallel hyperplanes c ·x = c0 and
c ·x = d0 is |d0−c0|

‖c‖ which becomes |d0−c0| when c is a unit vector.
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Subsection 5

Unbounded Convex Sets
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Example: Recession Cone

Let A be the closed unbounded convex set in
R

2 that is defined by the equation

A= {(x ,y) : y ≥
1

x
,x > 0}

and let a ∈A.

Then there are halflines starting at a which are contained in A.

If we denote by Aa the union of all these halflines, then Aa is a closed
convex set that is a union of halflines starting at a.

Such a set Aa is called a closed convex cone with apex a.

In fact, Aa = a+P , where P is the non-negative quadrant
{(x ,y) : x ≥ 0,y ≥ 0} of R2.
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Recession Cone

Aa = a+P , where P = {(x ,y) : x ≥ 0,y ≥ 0}.

The important observation here is that P is determined by the set A
alone, being independent of the initial choice of the point a in A.

We refer to P as the recession cone of A.

Roughly speaking, the recession cone of a convex set indicates in
which directions the set recedes to infinity.
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Halflines

A halfline L+ in Rn is a set of the form {x0+λy :λ≥ 0}, where
x0,y ∈Rn and y 6= 0.

The reason for this is that the line joining the points x0 and x0+y is
the set

{(1−λ)x0+λ(x0+y) :λ ∈R} = {x0+λy :λ ∈R}.

A halfline L+0 of the form {λy :λ≥ 0}, where y ∈Rn and y 6= 0, is
called a ray.

The equation L+ = x0+L+0 expresses L+ as a translate of the ray L+0 .

Since x0 is the only point of L+ whose removal from L+ leaves a
convex set, and L+0 = L+−x0, it follows that x0 and L+0 are uniquely
determined by L+.

L+ is the halfline with direction L+0 and initial point x0.

The word direction will be used as a synonym for ray.
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Closed Unbounded Convex Sets and Halflines

Theorem

Let A be a closed unbounded convex set in Rn. Then A contains a halfline.
Moreover, if A contains some halfline with direction L+0 , then it contains
every halfline with direction L+0 whose initial point is in A.

Since A is unbounded, it contains a sequence a1, . . . ,ak , . . . of non-zero
vectors such that ‖ak‖→∞ as k →∞. Let λk = 1

‖ak‖ . Then the
sequence λ1a1, . . . ,λkak , . . . lies in the compact set {x : ‖x‖ = 1}. So it
contains some subsequence converging to a point a with ‖a‖= 1. We
may suppose that the sequence itself converges to a. Let L+ be the
direction {λa :λ≥ 0}. Then we show that a0+L+ ⊆A for every a0 in A.
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Closed Unbounded Convex Sets and Halflines (Cont’d)

Let a0 ∈A and let λ≥ 0. Since λk → 0 as k →∞, we must have, for
all but a finite number of k ’s, 0≤λλk ≤ 1 and
(1−λλk)a0+λλkak ∈A. Clearly,

(1−λλk )a0+λλkak → a0+λa, as k →∞.

So a0+λa ∈A, since A is closed. Thus the halfline a0+L+ is
contained in A.

Suppose next that A contains the halfline b0+L+
0
, where L+

0
is the

direction {λb :λ≥ 0} for some b 6= 0. We show that every halfline
c0+L+0 , where c0 ∈A, is contained in A. Let µ≥ 0. Then, for all λ>µ,

(

1−
µ

λ

)

c0+
µ

λ
(b0+λb) ∈A.

Letting λ→∞ in this last relation and using the fact that A is closed,
we deduce that c0+µb ∈A. Thus c0+L+0 ⊆A.
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Relative Interior, Closure and Halflines

Corollary

Let A be an unbounded convex set in Rn. Then riA contains a halfline.
Moreover, if clA contains some halfline with direction L+0 , then riA contains
every halfline with direction L+0 whose initial point is in riA.

We apply the theorem to the closed unbounded convex set clA.

Suppose that clA contains the halfline b0+L+0 , where L+0 is the
direction {λb :λ≥ 0}. Let a0 ∈ riA and let µ≥ 0. Then a0+2µb ∈ clA.
So a0+µb = 1

2
a0+ 1

2
(a0+2µb) ∈ riA, by a previous theorem. Thus

a0+L+
0
⊆ riA.
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Cones

A nonempty set A in Rn is called a cone if λa ∈A whenever a ∈A and
λ≥ 0.

Examples of cones are:

subspaces;
rays;
the nonnegative orthant

{(x1, . . . ,xn) : x1 ≥ 0, . . . ,xn ≥ 0}

of Rn.

All cones contain the origin and are, with the exception of the trivial
cone {0}, unbounded.

Cones need not be convex.

The set {(x ,y) : xy ≥ 0} is a non-convex cone in R2.
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Characterization of Convex Cones

Theorem

Let A be a non-empty set in Rn. Then A is a convex cone if and only if
λa+µb ∈A whenever a,b ∈A and λ,µ≥ 0.

Let A be a convex cone. Suppose that a,b ∈A and λ,µ≥ 0. If
λ+µ= 0, then λ=µ= 0 and trivially λa+µb ∈A. If λ+µ> 0, then

λ

λ+µ
a+

µ

λ+µ
b ∈A,

since A is convex. Hence

λa+µb= (λ+µ)

(

λ

λ+µ
a+

µ

λ+µ
b

)

∈A,

since A is a cone. Thus, in all cases, λa+µb ∈A.
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Characterization of Convex Cones (Cont’d)

Suppose next that λa+µb ∈A whenever a,b ∈A and λ,µ≥ 0.

Clearly A is convex.

To show that A is a cone, let a ∈A and λ≥ 0. Then, by our
hypothesis, λa =λa+0 ∈A.

Corollary

Let A be a non-empty set in Rn. Then A is a convex cone if and only if
a+b ∈A and λa ∈A whenever a,b ∈A and λ≥ 0.
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Convex Cone Generated by a Set

It is a routine matter to show that the intersection of any family of
convex cones in Rn is a convex cone.

Hence coneA, defined as the intersection of all convex cones
containing a set A in Rn, is a convex cone.

It is called the convex cone generated by A.

Clearly coneA is the smallest convex cone containing A.

We note that cone;= {0}.

We now characterize coneA, in the case when A is non-empty, as the
set of all nonnegative linear combinations of points of A,

i.e., points of the form

λ1a1+·· ·+λmam,

where a1, . . . ,am ∈A and λ1, . . . ,λm ≥ 0.
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Characterization of Generated Convex Cones

Theorem

Let A be a nonempty set in Rn. Then coneA is the set of all non-negative
linear combinations of points of A.

Denote by B the set of all nonnegative linear combinations of points
of A. Let x ∈B . Then

x =λ1a1+·· ·+λmam, for some a1, . . . ,am ∈A and λ1, . . . ,λm ≥ 0.

Then x ∈ coneA by repeated use of the corollary to coneA. Hence
B ⊆ coneA. The corollary shows that B is a convex cone. Clearly
A⊆B . So coneA⊆B . Thus, B = coneA.
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Recession Cone

A nonempty convex set A in Rn is said to recede in a direction L+
0
,

or to have a direction of recession L+0 , if every halfline with initial
point in A and direction L+0 lies in A, i.e., if A+L+0 ⊆A.

The union of all directions of recession of A, together with the zero
vector, is called the recession cone of A.

A previous theorem shows that a nonempty closed convex set in Rn is
bounded if and only if its recession cone consists of the zero vector
alone.

The recession cone of a non-empty flat is the unique subspace which is
parallel to it.

The set {(x ,y) : x > 0,y > 0}∪ {(0,0)} is its own recession cone.

It is an example of a set whose recession cone is not closed.
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Characterization of Recession Cone

Theorem

Let A be a non-empty convex set in Rn. Then the recession cone of A
consists of all those points x such that A+x ⊆A. Moreover, the recession
cone of A is a convex cone, which is closed when A is closed.

If x belongs to the recession cone of A, then trivially A+x ⊆A.

Conversely, if A+x ⊆A, then

A+2x = (A+x)+x ⊆A+x ⊆A.

By repeated application of this argument, A+mx ⊆A for each positive
integer m. But A is convex. So A+λx ⊆A, for all λ≥ 0. Hence x lies
in the recession cone of A.
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Characterization of Recession Cone (Cont’d)

Denote by C the recession cone of A. Let x ,y ∈C and λ,µ≥ 0. Then

A+λx +µy = (A+λx)+µy ⊆A+µy ⊆A.

So λx +µy ∈C . Hence C is a convex cone by a previous theorem.

Suppose now that A is closed. Let x1, . . . ,xk , . . . be a sequence of
points of the recession cone C that converges to some point x of Rn.
Then a+xk ∈A for each k and for each point a of A. But A is closed,
so a+x ∈A for each point a of A. I.e., A+x ⊆A. Thus, x ∈C . This
shows that C is closed.
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Direction of a Line

Let L be a line in Rn.

Then by the direction of L is meant the unique line L0 in Rn, which
is parallel to L and passes through the origin.

A line is uniquely determined by specifying one of its points and giving
its direction.

Indeed, if x lies on a line L in Rn, then:

The direction L0 of L is simply the line L−x ;
L= x +L0.
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Lineality Space

Let L0 be a line in Rn that passes through the origin.

Then a nonempty convex set A in Rn is said to be linear in the

direction L0, or to have a direction of linearity L0, if every line
meeting A which has direction L0 lies in A, i.e., if A+L0 ⊆A.

The union of all the directions of linearity of A, together with the zero
vector, is called the lineality space of A.

A previous theorem shows that, if a closed convex set A contains a
line with direction L0, then it contains every line with direction L0

which meets A, i.e., L0 is a direction of linearity of A.
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Lineality Space: Examples

A non-empty closed convex set contains a line if and only if its
lineality space does not consist of the zero vector alone.

The lineality space of a non-empty flat is the unique subspace which is
parallel to it.

The lineality space of the unbounded circular cylinder

{(x ,y ,z) : x2+y2 ≤ 1}

is the subspace {(0,0,z) : z ∈R}, i.e., the z-axis.
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Characterization of Lineality Space

Theorem

Let A be a non-empty convex set in Rn. Then the lineality space of A
consists of all those points x of Rn such that A+x =A, and is a subspace
of Rn.

If x belongs to the lineality space of A, then trivially A+x ⊆A and
A−x ⊆A. Hence, A+x =A.

Conversely, if A+x =A, then, as in the proof of the preceding
theorem, A+mx =A, for each positive integer m. If m is a negative
integer, then A+mx = (A+ (−m)x)+mx =A. Hence A+mx =A, for
all integers m. But A is convex, so A+λx =A for all real λ. Thus x

belongs to the lineality space of A.

Let S be the lineality space of A. Let x ,y ∈ S and λ,µ ∈R. Then
trivially A+λx =A and A+µy =A. Thus

A+λx +µy = (A+λx)+µy =A+µy =A.

So λx +µy ∈ S . This shows that S is a subspace of Rn.
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Decomposition of a Closed Convex Set

Theorem

Let A be a non-empty closed convex set in Rn with lineality space S . Then

A= S + (A∩S⊥),

and the convex set A∩S⊥ contains no lines.

Let a ∈A. Then a can be expressed uniquely in the form a =b+c ,
where b ∈ S and c ∈ S⊥. Since b ∈ S , −b ∈ S . Hence, by the preceding
theorem, c = a−b ∈A. Thus c ∈A∩S⊥. So A⊆ S + (A∩S⊥). The
opposite inclusion follows immediately from the preceding theorem.
Thus A= S + (A∩S⊥).

Suppose that A∩S⊥ does contain a line. Then there exist x ,y in Rn

with y 6= 0 such that x +λy ∈A∩S⊥ for all real λ. A previous theorem
shows that y ∈ S . Hence, for all real λ, (x +λy) ·y = x ·y +λ‖y‖2 = 0,

which is clearly impossible. Thus A∩S⊥ contains no lines.

George Voutsadakis (LSSU) Convexity July 2023 92 / 173



Convex Sets Facial Structure

Subsection 6

Facial Structure
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Faces of a Convex Set

Each face F of a three-dimensional convex polyhedron P is a convex
subset of P with the property that whenever the relative interior of a
line segment L lying in P meets F , then the endpoints of L lie in F .

This observation motivates the definition of a face of a general convex
set.

A face of a convex set A in Rn is a convex subset B of A such that
whenever λx +µy ∈B , where x ,y ∈A and λ,µ> 0 with λ+µ= 1, then
x ,y ∈B .

Every convex set A in Rn has the faces ; and A, called improper

faces of A.

Faces of A other than ; and A are called proper faces of A.
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Example and k-Faces

The above definition of a face is more comprehensive than the one
usually understood in elementary geometry.

Example: A cube has:

six two-dimensional faces;
one three-dimensional face (itself);
twelve one-dimensional faces (its edges);
eight zero-dimensional faces (its vertices);
one face of dimension −1 (the empty set).

In general, we refer to a k-dimensional face of a convex set as a
k-face.
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Special Names for Particular Faces

Certain faces of a convex set are of particular importance and are
given special names.

The 0-faces of a convex set are called its extreme points.

The faces that are halflines are called its extreme half lines.

The directions of the extreme halflines of a convex set are called its
extreme directions.

Clearly, a point a of a convex set A in Rn is an extreme point of A if
and only if whenever a =λx +µy , where x ,y ∈A and λ,µ> 0 with
λ+µ= 1, then x = y = a.
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Example

Denote by A the set of those points (x ,y)
in R2 which satisfy the four inequalities

x ≥ 0,

−x +y +1 ≥ 0,

x +3y −1 ≥ 0,

3x +y −1 ≥ 0.

The extreme points of A are the points a = (0,1), b= (1
4

,
1
4
) and

c = (1,0).

The extreme directions of A are the directions D = {(0,λ) :λ≥ 0} and
E = {(λ,λ) :λ≥ 0}.

The extreme halflines of A are the halflines a+D and c +E .
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Characterization of the Faces

Consider the case of a 2-face B of a cube A in R3.

The set A\B, i.e., the cube A with its face B removed, is convex.
Also B is the intersection of its affine hull affB, i.e., the plane
containing B, with the cube A itself.

Theorem

Let B be a convex subset of a convex set A in Rn. Then B is a face of A if
and only if A\B is convex and B = (affB)∩A. In particular, a point a of A
is an extreme point of A if and only if A\{a} is convex.

Suppose that B is a face of A. If x ,y ∈A\B and λ,µ> 0 with
λ+µ= 1, then λx +µy ∈A, since x ,y ∈A and A is convex. We cannot
have λx +µy ∈B , for this would imply that x ,y ∈B . Thus
λx +µy ∈A\B and A\B is convex.
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Characterization of the Faces (Cont’d)

Trivially, B ⊆ (affB)∩A.

We now establish the opposite inclusion. Suppose that u ∈ (affB)∩A.
Let b ∈ riB . Then there exist v ∈B and α,β> 0 with α+β= 1 such
that b=αu+βv . Since u,v ∈A and B is a face of A, u ∈B . Hence,
(affB)∩A⊆B . So B = (affB)∩A.

Suppose next that A\B is convex and B = (affB)∩A. If λx +µy ∈B ,
where x ,y ∈A and λ,µ> 0 with λ+µ= 1, then not both x and y can
lie in A\B , for the convexity of A\B would imply that λx +µy ∈A\B .
Suppose that x 6∈A\B . Then x ∈B . So

y =
1

µ
(λx +µy)−

λ

µ
x =

(

1+
λ

µ

)

(λx +µy)−
λ

µ
x ∈ affB .

Thus, y ∈ (affB)∩A. Hence, y ∈B . So x ,y ∈B and B is a face of A.

The final assertion of the theorem follows from what we have just
proved and the fact that a singleton set is its own affine hull.
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Consequences

Corollary

Each face of a closed convex set in Rn is closed.

Let B be a face of a closed convex set A in Rn. Then B , being the
intersection of the closed sets affB and A, is itself closed.

Corollary

Let A= convC , where C is a set in Rn. Then each extreme point of A lies
in C .

Suppose that there is an extreme point a of A which does not lie in C .
Then A\{a} is a proper convex subset of A containing C . Hence A

properly contains convC , i.e. A. This contradiction shows that each
extreme point of A lies in C .
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Properties of Faces

Theorem

Let A be a convex set in Rn. Then:

(i) The intersection of any non-empty family of faces of A is a face of A;

(ii) If B is a face of A, and C is a face of B , then C is a face of A;

(iii) The intersection of A with each of its support hyperplanes is a face of
A.

(i) Let (Ai : i ∈ I ) be a non-empty family of faces of A. Then
⋂

(Ai : i ∈ I )
is a convex subset of A. If λx +µy ∈⋂

(Ai : i ∈ I ), where x ,y ∈A and
λ,µ> 0 with λ+µ= 1, then λx +µy ∈Ai for all i ∈ I . So, since each
Ai is a face of A, we have x ,y ∈Ai , for all i ∈ I . Hence,
x ,y ∈⋂

(Ai : i ∈ I ). Therefore,
⋂

(Ai : i ∈ I ) is a face of A.
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Properties of Faces (Cont’d)

(ii) Let B be a face of A and let C be a face of B . If λx +µy ∈C , where
x ,y ∈A and λ,µ> 0 with λ+µ= 1, then λx +µy ∈B , since C ⊆B .
Since B is a face of A, x ,y ∈B . But C is a face of B , so x ,y ∈C .
This proves that C is a face of A.

(iii) Let H = {z ∈Rn : c ·z = c0}, where c0 ∈R, c ∈Rn and c 6= 0, be a
support hyperplane to A. Suppose that c ·a ≤ c0 whenever a ∈A. If
λx +µy ∈A∩H, where x ,y ∈A and λ,µ> 0 with λ+µ= 1, then

c0 = c · (λx +µy)=λc ·x +µc ·y ≤λc0+µc0 = c0.

Since λ,µ> 0, we must have c ·x = c ·y = c0. Hence, x ,y ∈A∩H.

Thus, A∩H is a face of A, for clearly it is a convex subset of A.
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Strengthening the Defining Property

Theorem

Let B be a face of a convex set A in Rn. Suppose that C is a subset of A
such that riC meets B . Then C ⊆B .

Let c ∈C and b ∈B ∩ riC . Then there exist d ∈C and λ,µ> 0 with
λ+µ= 1 such that b =λc +µd . Since c ,d ∈A and B is a face of A,
we see that c ∈B . Thus, C ⊆B .

Corollary

Let B and C be faces of a convex set A in Rn such that riB and riC meet.
Then B =C .

Since riC meets B , we have C ⊆B . Similarly, B ⊆C . Thus, B =C .
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On Dimensional Properties of Faces

Corollary

Let B be a face of a convex set A in Rn, other than A itself. Then
dimB < dimA.

We suppose that B is non-empty. Clearly, affB ⊆ affA and
dimB ≤ dimA. If dimB = dimA, then affB = affA and ;⊂ riB ⊆ riA.
Hence A=B by the preceding corollary.

Corollary

The intersection of any family of faces of a convex set in Rn can be
expressed as an intersection of n+1 or fewer members of the family.

Suppose that the result is false. Then there exist faces A1, . . . ,An+2 of
some convex set A in Rn such that A1 ⊂A2 ⊂ ·· · ⊂An+2 ⊂A. Since Ai

is a face of Ai+1 for i = 1, . . . ,n+1, the preceding corollary shows that

−1< dimA1 < dimA2 < ·· · < dimAn+2 ≤ n−1,

which is impossible.

George Voutsadakis (LSSU) Convexity July 2023 104 / 173



Convex Sets Facial Structure

Smallest Face Containing a Point

Each point of a convex set belongs to at least one face of the set,
namely the set itself, and in general belongs to several different faces.

Example: A vertex of a three-dimensional cube belongs to one 0-face,
three 1-faces, three 2-faces, and one 3-face of the cube.

Suppose that a is a point of a convex set A in Rn and that Fa, is the
intersection of all faces of A containing a.

Then it follows from the preceding theorem that Fa is the smallest

face of A containing a.
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Characterization of Smallest Face Containing a Point

Theorem

Let a be a point of a convex set A in Rn and let Fa be the intersection of
all faces of A containing a. Then a ∈ riFa and the relative interiors of the
faces of A form a partition of A.

If a 6∈ riFa, then a ∈ rebdFa. So, by a previous theorem, there exists a
support hyperplane H of Fa passing through a but not containing Fa.
Hence, by the preceding theorem, Part (iii), H∩Fa is a face of A
containing a which is strictly contained in Fa. Since this is impossible,
a ∈ riFa. Thus each point a of A belongs to the relative interior of the
face Fa of A. The relative interiors of two different faces of A are
disjoint by a previous corollary. Hence the relative interiors of the faces
of A form a partition of A.
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Smallest Face of a Relative Boundary Point

Corollary

Let a be a relative boundary point of a convex set A in Rn. Then
dimFa < dimA.

The faces A and Fa of A cannot be equal because a ∈ riFa. Thus
Fa ⊂A. Hence dimFa < dimA by a previous corollary.
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Primitive Convex Sets and Halfflats

A closed convex set in Rn which is not the convex hull of its relative
boundary is said be primitive.

The reader should have little difficulty in discovering that the only
primitive sets in R2 are:

points;
lines;
halflines;
closed halfplanes;
R

2 itself.

Before we can extend this last result to Rn, we need to generalize the
concepts of halflines and halfplanes from R

2 to Rn.

In Rn a closed halfflat is the intersection of a flat with a closed
halfspace which meets it, but does not contain it.
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Characterization of Primitive Sets

Theorem

A closed convex set in Rn is primitive if and only if it is either a nonempty
flat or a closed halfflat.

We establish only the non-trivial part of the theorem, i.e., that, for
each closed convex set A in Rn other than a flat or a closed halfflat,
A= conv(rebdA).

We know conv(rebdA) ⊆ A. Moreover, A =
(rebdA)∪ (riA) and rebdA⊆ conv(rebdA). So,
we must show riA⊆ conv(rebdA).
Let a ∈ riA. Since A is not a flat, its relative
boundary is not empty, say b ∈ rebdA. A pre-
vious theorem shows that there is a non-trivial
support hyperplane H to A at b.
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Characterization of Primitive Sets (Cont’d)

Since A∩H is a proper face of A, a previous theorem shows that
a 6∈H. Thus there exist u0 ∈R, u ∈Rn such that H has equation
n ·x = u0 and u ·a < u0, u ·b= u0 with A lying in the closed halfspace

H− = {x ∈Rn : u ·x ≤ u0}.

By the hypothesis, A is not a closed halfflat, and so cannot be
(affA)∩H−. Thus there exists a point c of (affA)∩H− that does not
lie in A. Denote by d the point where the line segment joining a and
c meets rebdA. Since u ·a < u0 and u ·c ≤ u0, we get u ·d < u0.

The existence of a non-trivial support hyperplane to A at d , J say,
shows that there exist v0 ∈R, v ∈Rn such that J has equation
v ·x = v0 and v ·a < v0, v ·d = v0, with A lying in the closed halfspace
{x ∈Rn : v ·x ≤ v0}.
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Characterization of Primitive Sets (Cont’d)

Since u ·a < u0, u ·b = u0 and u ·d < u0, there is a point e of riA lying
on the line segment joining a and b such that u ·e >u ·d . Because e

lies in riA, we must have v ·e < v0. For each scalar λ, denote by xλ

the point a+λ(d −e) on the line L joining the points a and a+d −e

of affA. Choose scalars λ1,λ2 such that

λ1 <
u0−u ·a

u ·d −u ·e
< 0<

v0−v ·a
v ·d −v ·e

<λ2.

Then

u ·xλ1
= u · (a+λ1(d −e))= u ·a+λ1u · (d −e)
> u ·a+u0−u ·a = u0;

v ·xλ2
= v · (a+λ2(d −e))= v ·a+λ2v · (d −e)
> v ·a+v0−v ·a = v0.

Hence neither xλ1
nor xλ2

lies in A. Thus, there are scalars µ1,µ2

with λ1 <µ1 < 0<µ2 <λ2 such that xµ1 ,xµ2 ∈ rebdA. Hence,
a = µ2

µ2−µ1
xµ1 −

µ1

µ2−µ1
xµ2 ∈ conv{xµ1 ,xµ2 }. So riA⊆ conv(rebdA).
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Facial Structure of Closed Convex Sets

By the convex hull of a family of sets in Rn is meant the convex hull
of its union.

Theorem

Every closed convex set in Rn is the convex hull of its primitive faces.

Let A be a closed convex set in Rn. We argue by induction on the
dimension of A.

The case dimA=−1 is trivial.

Suppose that dimA=m, where m>−1, and that the assertion is true
for all closed convex sets in Rn with dimension less than m. The
theorem is trivial when A is primitive. Suppose, then, that A is not
primitive. Denote by B the convex hull of the primitive faces of A.
Then B ⊆A. So we need only show that A⊆B .
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Facial Structure of Closed Convex Sets (Cont’d)

Since A is not primitive, we have A= conv(rebdA). Let a ∈ rebdA.
Then a lies in Fa, the smallest face of A containing a. By a previous
corollary, dimFa < dimA. The induction hypothesis shows that Fa is
the convex hull of its primitive faces. Since each primitive face of Fa
is a primitive face of A, Fa ⊆B . Hence, a ∈Fa ⊆B and rebdA⊆B . So
A= conv(rebdA)⊆B . Thus, A=B , i.e., A is the convex hull of its
primitive faces.
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Consequences

Corollary

Every closed convex set in Rn is the convex hull of those of its faces which
are flats or closed halfflats.

The result follows from the theorem and a previous theorem.

Corollary

Every closed convex set in Rn that contains no lines is the convex hull of
its extreme points and extreme halflines.

The corollary follows from the theorem and the fact that points and
halflines are the only primitive sets which contain no lines.

Theorem (Krein-Milman)

Every compact convex set in Rn is the convex hull of its extreme points.

The theorem follows from the preceding theorem and the fact that
points are the only compact primitive sets.
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Comment on Set of Extreme Points

The Krein-Milman theorem shows that the convex hull of the extreme
points of a compact convex set in Rn is closed.

It is not true, however, that the set of extreme points itself is
necessarily closed.

To see this, let A and B denote the circular disc and the line segment
in R3 given by the equations

A= {(x ,y ,0) : x2+y2 ≤ 1} and B = {(1,0,z) :−1≤ z ≤ 1}.

Let C = conv(A∪B). Then C is a compact
convex set. Its set of extreme points con-
sists of (1,0,1) and (1,0,−1) together with the
points on the relative boundary of A with the
exception of (1,0,0). This set is not closed.
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Exposed Faces

By a previous theorem, the intersection of a convex set in Rn with one
of its support hyperplanes is a face of the set.

A face which arises in this way is called an exposed face of the set.

It is technically convenient to allow the empty set and the set itself as
exposed faces of any convex set in Rn.

Thus, an exposed face of a convex set in Rn is either the empty set,
the set itself, or the intersection of the set with one of its support
hyperplanes.
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Example: Exposed Faces

Faces of a convex set are not always exposed.

Example: Let A be the convex hull of the union of the circular discs
U +e1, and U −e1, in R2, where

U = {(x ,y) : x2+y2 ≤ 1} and e1 = (1,0).

Then the points (1,1), (1,−1), (−1,1),
(−1,−1) are faces of A that are not
exposed.

This example also serves to show that an
exposed face of an exposed face of a
convex set need not be an exposed face
of that convex set.

The line segment joining (−1,1) and (1,1) is an exposed face of A and
(1,1) is an exposed face of this line segment, but (1,1) is not an
exposed face of A.
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Closure of Exposed Faces Under Intersections

Theorem

The intersection of any non-empty family of exposed faces of a convex set
in Rn is an exposed face of the set.

In view of a previous corollary, we may assume that the family of
exposed faces is finite.

Let A1, . . . ,Am be exposed faces of a convex set A in Rn. We show
that A1∩·· ·∩Am is an exposed face of A, considering only the
non-trivial case when the A1, . . . ,Am are proper exposed faces of A,
whose intersection is non-empty, containing some point a0, say. For
each i = 1, . . . ,m, there exists u i ∈Rn such that

Ai = {a ∈A : u i ·a =u i ·a0} and A⊆ {x ∈Rn : u i ·x ≤ u i ·a0}.
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Closure of Exposed Faces Under Intersections (Cont’d)

It follows easily that

A1∩·· ·∩Am = {a ∈A : (u1+·· ·+um) ·a = (u1+·· ·+um) ·a0},

and that

A⊆ {x ∈Rn : (u1+·· ·um) ·x ≤ (u1+·· ·+um) ·a0}.

This shows that A1∩·· ·∩Am is an exposed face of A.
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Exposed Faces of Sums

Theorem

Let A and B be convex sets in Rn. Then each exposed face of A+B has
the form C +D, where C is an exposed face of A and D is an exposed face
of B .

Suppose that F is a proper exposed face of A+B . Then there exist
a0 ∈A, b0 ∈B , and a non-zero u in Rn such that

A+B ⊆ {x ∈Rn :u ·x ≤u · (a0+b0)},

F = {x ∈A+B : u ·x =u · (a0+b0)}.

If a ∈A, then a+b0 ∈A+B . Hence u · (a+b0)≤u · (a0+b0) and
u ·a ≤ u ·a0. Similarly, if b ∈B , then u ·b ≤ u ·b0. Thus

C = {x ∈A : u ·x = u ·a0} and D = {x ∈B : u ·x = u ·b0}

are, respectively, exposed faces of A and B .
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Exposed Faces of Sums (Cont’d)

We derived that

C = {x ∈A : u ·x = u ·a0} and D = {x ∈B : u ·x = u ·b0}

are, respectively, exposed faces of A and B . Clearly C +D ⊆ F .

If f ∈F , then f = a+b for some a ∈A, b ∈B .

Now u · (a+b)= u · (a0+b0), u ·a ≤ u ·a0 and u ·b ≤ u ·b0.

Hence, u ·a =u ·a0 and u ·b = u ·b0.

Thus a ∈C , b ∈D, and F =C +D.
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Exposed Points

The zero-dimensional exposed faces of a convex set are called its
exposed points.

Thus a point a of a convex set A in Rn is an exposed point of A if
and only if there is some support hyperplane to A meeting it in the
single point a.

Every exposed point of a convex set in Rn is one of its extreme points,
but not necessarily conversely.

The point (1,1) of the set A of the pre-
ceding example is an extreme, but not an
exposed, point of A.
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Farthest Points

Let A be a non-empty compact set in Rn and let b be a point of Rn.

For each point x of A, denote by f (x) the distance ‖x −b‖ of x from
b.

Then f is a continuous real-valued function defined on a non-empty
compact set A.

So it is bounded and attains its bounds.

In particular, f attains its upper bound.

So there is a point a of A such that ‖x −b‖ ≤ ‖a−b‖ for all x in A.

Each such point a of A is called a farthest point of A from b.
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Farthest Points and Exposed Points

Theorem

Let a be a farthest point of a compact convex set A in Rn from some point
b of Rn. Then a is an exposed point of A.

We consider the non-trivial case when a 6= b. Since a is a farthest
point of A from b, we have, for each point x of A,

‖a−b‖2 ≥ ‖x −b‖2

= ‖(x −a)+ (a−b)‖2

= ‖x −a‖2+2(x −a) · (a−b)+‖a−b‖2.

Hence 0≥ (x −a) · (a−b). Equality occurs in the last inequality if and
only if x = a. So the hyperplane H = {z ∈Rn : (a−b) · (z −a)= 0}

supports A at a and H ∩A= {a}. Thus a is an exposed point of A.
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Compact Convex Sets and Exposed Points

Lemma

A compact convex set in Rn has an exposed point in every open halfspace
which meets it.

Suppose that the compact convex set A in Rn meets the open
halfspace J = {z ∈Rn : u ·z +u0 < 0}, where u0 ∈R, u ∈Rn, and u 6=0,
say a ∈A∩J. Let λ> 0 satisfy s2+2λ(u ·a+u0)< 0, where s is the
diameter of A. Let c = a+λu. For each point x of A\J, u ·x +u0 ≥ 0
and u · (a−x)≤u ·a+u0. Hence,

‖c −x‖2 = ‖a−x +λu‖2

= ‖a−x‖2+2λu · (a−x)+λ2‖u‖2

≤ s2+2λ(u ·a+u0)+λ2‖u‖2

< λ2‖u‖2 =‖c −a‖2.

Thus no point x of A\J is a farthest point of A from c . So every
farthest point of A from c is an exposed point of A lying in J.
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Compact Convex Sets as Hulls of Exposed Points

Theorem (Straszewicz)

Every compact convex set in Rn is the closure of the convex hull of its
exposed points.

Let B be the set of the exposed points of a compact convex set A in
R

n. Trivially cl(convB)⊆A. So we must show that A⊆ cl(convB).

Suppose that this is not so. Then there is a point a of A which does
not belong to the closed convex set cl(convB). It follows immediately
from a previous corollary that there is an open halfspace J in Rn

which contains a but is disjoint from cl(convB). By the preceding
lemma, there is a point of B lying in J, which is impossible. Thus
A⊆ cl(convB) as desired.
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Necessity of the Closure Requirement

The two-dimensional set illustrated in the figure

shows that the closure requirement in Straszewicz’s theorem cannot
be omitted.
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Subsection 7

The Blaschke Selection Principle
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Distance Between Two Sets

Sets A and B in Rn are said to be a finite distance apart if there
exists λ≥ 0 such that, for each point a of A, there is a point b of B
whose distance ‖a−b‖ from a does not exceed λ, and vice versa.

In this situation, we say that the distance between A and B does

not exceed λ.

The distance between sets A and B in Rn that are a finite distance
apart is defined to be the infimum of the set of all those λ≥ 0 for
which the distance between A and B does not exceed λ.

This definition does not assign a distance between the empty set and
a non-empty set or between a bounded set and an unbounded one.

On the other hand, the definition always assigns a distance between
two non-empty bounded sets.

For our purposes here, it will be sufficient to restrict attention to
non-empty compact sets.
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λ-Neighborhood of a Set

Let A be a set in Rn and let λ≥ 0.

Then the λ-neighborhood (A)λ of A is the set
A+λU , where U denotes the closed unit ball
{x ∈Rn : ‖x‖ ≤ 1}.
The figure makes it clear why the set (A)λ is
often referred to as the outer parallel set of

A at distance λ.

Clearly, if a ∈Rn, r > 0, and λ≥ 0, then:

The r -neighborhood of {a} is the closed ball B[a;r ];
The λ-neighborhood of B[a;r ] is the closed ball B[a;r +λ].
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Properties of Neighborhoods

Theorem

Let A, B be sets in Rn and let λ,µ≥ 0. Then:

(i) (A)0 =A and A⊆ (A)λ;

(ii) (A)λ ⊆ (B)λ when A⊆B ;

(iii) (A)λ is convex when A is;

(iv) ((A)λ)µ = (A)λ+µ.

Parts (i) and (ii) are easy consequences of the definition of a
λ-neighborhood.

Part (iii) follows from a previous example and theorem.

To prove Part (iv) we note, using a previous theorem, that

((A)λ)µ = (A)λ+µU = (A+λU)+µU =A+ (λ+µ)U = (A)λ+µ.
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The Hausdorff Distance

The assertions that, for each point a of a set A in Rn, there is a point
b of a set B in Rn such that ‖a−b‖ ≤λ, and that A⊆ (B)λ, where
λ≥ 0, are equivalent.

Thus the definition we now give of the distance between non-empty
compact sets in Rn coincides with the one given earlier.

The distance ρ(A,B) between non-empty compact sets A,B in Rn is
defined by the equation

ρ(A,B)= inf {λ≥ 0 :A⊆ (B)λ and B ⊆ (A)λ}.

The assumptions that A and B are non-empty and compact ensure
that ρ(A,B) is well-defined.

The function ρ is known as the Hausdorff metric or Hausdorff

distance.
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Properties of the Distance

It is easily seen that the Hausdorff distance ρ({a}, {b}) between the
singleton sets {a} and {b} in Rn is ‖a−b‖, i.e., the distance between
the points a and b themselves.

Another readily verified fact is that the Hausdorff distance is invariant
under translation in the sense that, if A and B are non-empty compact
sets in Rn and x is a point of Rn, then ρ(A,B)= ρ(A+x ,B +x).
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Example

Let A and B be, respectively, the closed balls B [a;r ] and B [b;s] in Rn.

Then ρ(A,B)=‖b−a‖+|s − r |.
Suppose first that r ≤ s. We have

A ⊆ B − (b−a)⊆ (B)‖b−a‖;

B = A+b−a+ (s − r)U ⊆ (A)‖b−a‖+s−r .

Hence, ρ(A,B)≤ ‖b−a‖+ s − r .

Now B contains a point whose distance from a is ‖b−a‖+ s.

Thus, if λ≥ 0 and B ⊆ (A)λ =B [a;λ+ r ], then ‖b−a‖+ s ≤λ+ r .

Hence, ρ(A,B)≥ ‖b−a‖+ s − r . Thus, ρ(A,B)= ‖b−a‖+ s − r .

I.e., ρ(A,B)= ‖b−a‖+|s − r |.
The case s ≤ r is similar.
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Necessary Condition

Theorem

Let A and B be nonempty compact sets in Rn with ρ(A,B)=λ. Then
A⊆ (B)λ and B ⊆ (A)λ.

Let a ∈A. For each ε> 0, A⊆ (B)λ+ε. Hence there is a point bε of B
for which ‖a−bε‖≤λ+ε. So inf {‖a−b‖ : b ∈B}≤λ.

A previous theorem shows that there exists some point b0 of B such
that ‖a−b0‖≤λ. Thus, a ∈ (B)λ and A⊆ (B)λ.

Similarly, B ⊆ (A)λ.
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Metric Properties of the Distance

Theorem

Let A,B ,C be non-empty compact sets in Rn and let θ≥ 0. Then:

(i) ρ(A,B)≥ 0 and ρ(A,B)= 0 if and only if A=B ;

(ii) ρ(A,B)= ρ(B ,A);

(iii) ρ(A,C )≤ ρ(A,B)+ρ(B ,C );

(iv) ρ(convA,convB)≤ρ(A,B);

(v) if A and B are convex, then ρ(A,B)=ρ((A)θ ,(B)θ).

(i) Trivially ρ(A,B)≥ 0. Also ρ(A,A)= 0. If ρ(A,B)= 0, then
A⊆ (B)0 =B and B ⊆ (A)0 =A. Hence A=B .

(ii) This follows immediately from the definition of ρ.

(iii) Let ρ(A,B)=α and ρ(B ,C )=β. Then A⊆ (B)α ⊆ ((C )β)α = (C )α+β
and C ⊆ (B)β ⊆ ((A)α)β = (A)α+β. Hence ρ(A,C )≤α+β=ρ(A,B)
+ρ(B ,C ).
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Metric Properties of the Distance (Cont’d)

(iv) Let ρ(A,B)=α. Then (convA)α is convex and B ⊆ (A)α ⊆ (convA)α.
Hence convB ⊆ (convA)α. Similarly, convA⊆ (convB)α. Thus,
ρ(convA,convB)≤α=ρ(A,B). We note that convA and convB are
compact by a previous theorem.

(v) Let A and B be convex. The sets (A)θ and (B)θ are compact by a
previous theorem. Let ρ(A,B)=α and ρ((A)θ,(B)θ)=β. Then

(A)θ ⊆ ((B)α)θ = ((B)θ)α and (B)θ ⊆ ((A)α)θ = ((A)θ)α.

This shows that β≤α. Also

A+θU ⊆ (B +θU)+βU and B +θU ⊆ (A+θU)+βU ,

i.e.,

A+θU ⊆ (B +βU)+θU and B +θU ⊆ (A+βU)+θU .

Hence, A⊆B +βU and B ⊆A+βU by a previous theorem. Thus,
α≤β. So α=β.
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Convergence of Compact Sets

The sequence A1, . . . ,Aj , . . . of non-empty compact sets in Rn is said to
converge to the non-empty compact set A in Rn, written Aj →A as
j →∞, if ρ(Aj ,A)→ 0 as j →∞.

Such a sequence cannot converge to more than one nonempty
compact set A.

If it also converges to a nonempty compact set B in Rn, then

0≤ρ(A,B)≤ρ(A,Aj)+ρ(Aj ,B)→ 0,

as j →∞. Hence ρ(A,B)= 0 and A=B .
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Convergence and Convexity

If the sequence A1, . . . ,Aj , . . . converges to A and each Aj is convex,
then so too is A.

Suppose that a sequence A1, . . . ,Aj , . . . of nonempty compact convex
sets in Rn converges to a nonempty compact set A in Rn. The
preceding theorem shows that

ρ(Aj ,convA)=ρ(convAj ,convA)≤ ρ(Aj ,A)→ 0

as j →∞. Thus A1, . . . ,Aj , . . . also converges to convA. Since a
sequence cannot converge to two different limits, A= convA and A is
convex.
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Convergence and Linear Combinations

Theorem

Let sequences A1, . . . ,Aj , . . . and B1, . . . ,Bj , . . . converge, respectively, to A0

and B0, where all the A’s and B ’s are nonempty compact sets in Rn. Let
real sequences α1, . . . ,αj , . . . and β1, . . . ,βj , . . . converge, respectively, to α

and β. Then the sequence α1A1+β1B1, . . ., αjAj +βjBj , . . . converges to
αA0+βB0.

For a,b,aj ,bj ∈Rn,

‖αjaj +βjbj −αa−βb‖
= ‖αj(aj −a)+ (αj −α)a+βj(bj −b)+ (βj −β)b‖
≤ |αj |‖aj −a‖+|αj −α|‖a‖+|βj |‖bj −b‖+|βj −β|‖b‖.

Write θj = ρ(Aj ,A0) and ϕj = ρ(Bj ,B0). Let r > 0 be such that
‖a‖,‖b‖< r whenever a ∈A0, b ∈B0.
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Convergence and Linear Combinations (Cont’d)

It follows easily from the above inequality that

ρ(αjAj +βjBj ,αA0+βB0)
≤ |αj |θj +|αj −α|r +|βj |ϕj +|βj −β|r .

Hence, αjAj +βjBj →αA0+βB0.

Corollary

For i = 1, . . . ,m, let the sequence Ai
1, . . . ,Ai

j
, . . . converge to Ai

0, where all the

A’s are nonempty compact sets in Rn. Let the real sequence αi
1, . . . ,αi

j
, . . .

converge to αi . Then α1
j
A1
j
+·· ·+αm

j
Am
j
→α1A

1
0+·· ·+αmA

m
0 as j →∞.
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Convex Bodies, Inradius and Circumradius

A convex body C is a compact convex set in Rn that has a
nonempty interior.

The inradius r of C is the supremum of the set of radii of closed balls
lying in C .

The circumradius R of C is the infimum of the set of radii of closed
balls in Rn containing C .

Clearly both r and R are positive real numbers satisfying r ≤R .
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Convex Bodies and Balls

Theorem

Let C be a convex body in Rn with inradius r and circumradius R . Then C

contains a closed ball of radius r and is contained in a unique closed ball of
radius R .

The definition of R implies that, for each, j = 1,2, . . ., there exist
aj ∈Rn and Rj > 0 such that C ⊆B [aj ;Rj ] and Rj <R + 1

j
. The

sequence R1, . . . ,Rj , . . . converges to R . The sequence a1, . . . ,aj , . . . is
bounded. Thus there is some subsequence ai1 , . . . ,aij , . . . of
a1, . . . ,aj , . . . that converges to some point a of Rn. It follows from a
previous example that B [aij ;Rij ]→B [a;R ] as j →∞.

We show that C ⊆B [a;R ]: Let c ∈C . Since C ⊆B [aij ;Rij ],
‖c −aij ‖≤Rij . Letting j →∞ in the last inequality, we find that
‖c −a‖ ≤R . Thus, c ∈B [a;R ]. So C ⊆B [a;R ].
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Convex Bodies and Balls (Cont’d)

The proof that C contains a closed ball of radius r is similar to the
one which we have just given.

Suppose that C lies in both of the closed balls B [a;R ] and B [b;R ] of
radius R in Rn. Then, for each x in C ,

∥

∥x − 1
2
(a+b)

∥

∥

2 = ‖x‖2−x ·a−x ·b+ 1
4
(‖a‖2+2a ·b+‖b‖2)

= 1
2
(‖x‖2−2x ·a+‖a‖2)+ 1

2
(‖x‖2−2x ·b+‖b‖2)

− 1
4
(‖a‖2−2a ·b+‖b‖2)

= 1
2
‖x −a‖2+ 1

2
‖x −b‖2− 1

4
‖a−b‖2

≤ R2− 1
4
‖a−b‖2.

Hence, C ⊆B
[

1
2
(a+b);

√

R2− 1
4
‖a−b‖2

]

. Since C cannot lie in a

closed ball of radius less than R , we must have a =b. Thus there is
precisely one closed ball of radius R in Rn which contains C .
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Inballs, Incenters, Circumball, Circumcenter

Let C be a convex body in Rn with inradius r and circumradius R .

Then any closed ball of radius r lying in C is called an inball of C and
its center an incenter of C .

The unique closed ball of radius R which contains C is called the
circumball of C and its center the circumcenter of C .

A (non-square) rectangle in R2 is an example of a convex body that
does not have a unique incentre.
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Comparisons With Elementary Geometry

Our definitions of the terms circumradius, circumcircle and
circumcenter as applied to obtuse-angled triangles do not coincide
with those used in elementary geometry.

For example, consider an isosceles triangle with sides 2,2,2
p

3.

In the parlance of elementary geometry, its circumradius is 2 and its
circumcenter lies exterior to the triangle.
For us here its circumradius is

p
3 and its circumcenter is the midpoint

of its longest side.
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Extremal Problems and Uniform Boundedness

The preceding theorem asserts the existence of solutions to two
extremal problems in geometry.

The first to find a ball of minimal radius containing a given convex
body;
The second to find a ball of maximal radius lying in the body.

The key step in proving the theorem was the extraction of a
convergent subsequence from a sequence of closed balls.

It is a generalization of this idea that turns out to be useful in finding
solutions to many extremal problems.

What is needed is a criterion for a sequence of sets to contain a
convergent subsequence.

A sequence of sets in Rn is said to be uniformly bounded if there
exists some ball in Rn that contains every member of the sequence.
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Uniform Boundedness and Cauchy Sequences

Lemma

Let A1, . . . ,Aj , . . . be a uniformly bounded sequence of nonempty compact
sets in Rn. Let ε> 0. Then there exists a subsequence Ai1 , . . . ,Aij , . . . of
A1, . . . ,Aj , . . . such that ρ(Aij ,Aik )≤ ε, for all j ,k = 1,2, . . ..

Since there is a ball in Rn which contains every member of the given
sequence, there is a finite set E in Rn such that Aj ⊆ (E ) 1

2ε
, for

j = 1,2, . . .. For each j = 1,2, . . . denote by Ej the non-empty subset
E ∩ (Aj) 1

2ε
of E . It is easily verified that ρ(Ej ,Aj)≤ 1

2
ε. Because E is

finite, there can only be a finite number of possible different sets Ej
for j = 1,2, . . .. Hence the sequence E1, . . . ,Ej , . . . must contain some
constant subsequence, Ei1 , . . . ,Eij , . . . say. For j ,k = 1,2, . . ., we have

ρ(Aij ,Aik ) ≤ ρ(Aij ,Eij )+ρ(Eij ,Aik )

= ρ(Aij ,Eij )+ρ(Eik ,Aik )≤
1
2
ε+ 1

2
ε= ε.
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Uniform Boundedness and Convergence

Theorem

Every uniformly bounded sequence A1, . . . ,Aj , . . . of nonempty compact sets
in Rn contains a subsequence which converges to some nonempty compact
set A in Rn.

It follows, by repeated applications of the lemma with ε= 1,
1
2

, . . . ,
1
j

, . . .

that the sequence A1, . . . ,Aj , . . . contains a sequence of subsequences

A11,A12, . . . ,A1j , . . .

A21,A22, . . . ,A2j , . . .

. . .

Ar1,Ar2, . . . ,Arj , . . .

. . .

where each subsequence after the first in the list is a subsequence of
the preceding one, and ρ(Arj ,Ark)≤ 1

r
, for j ,k = 1,2, . . ..

The diagonal sequence A11,A22, . . . ,Ajj , . . . is a subsequence of
A1,A2, . . . ,Aj , . . . with the property that ρ(Ajj ,Akk)≤ 1

j
whenever j ≤ k .
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Uniform Boundedness and Convergence (Cont’d)

Write Bj =Ajj for j = 1,2, . . .. We complete the proof by showing that
the subsequence B1, . . . ,Bj , . . . of A1, . . . ,Aj , . . . converges to the
nonempty compact set B defined by B =⋂

((Bk) 1
k
: k = 1,2, . . .).

Let j be a positive integer and let bj ∈Bj . For i = 1,2, . . ., choose
bj+i ∈Bj+i such that ‖bj+i −bj‖≤ 1

j
; This is possible because

ρ(Bj ,Bj+i)≤ 1
j
. The sequence bj+1,bj+2, . . . lies in the compact set

(B1)1. So it contains a subsequence converging to some point b of
R

n. Since Bj+i ⊆ (Bk) 1
k

whenever j + i ≥ k , all but a finite number of

terms of the sequence bj+1,bj+2, . . . lie in the compact set (Bk) 1
k

for

k = 1,2, . . .. Hence b ∈ (Bk) 1
k

and b ∈B . But bj is an arbitrary point of

Bj and clearly ‖b−bj‖≤ 1
j
. So Bj ⊆ (B) 1

j
. Trivially B ⊆ (Bj) 1

j
. Thus,

ρ(Bj ,B)≤ 1
j

and Bj →B as j →∞.
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Blaschke Selection Principle

Theorem (Blaschke Selection Principle)

Every uniformly bounded sequence of non-empty compact convex sets in
R

n contains a subsequence which converges to some non-empty compact
convex set in Rn.

The principle is a consequence of the theorem and the fact that a
convergent sequence of convex sets must converge to a convex limit.
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Continuity of Functions on Families of Compact Sets

A typical extremal problem of elementary geometry is to maximize or
minimize a real-valued function f defined on some family F of
nonempty compact sets in Rn.

It is important to have a concept of continuity for such functions
f :F →R.

The function f is said to be continuous on F if f (Aj)→ f (A) as
j →∞, whenever Aj →A as j →∞, where all the sets under
consideration belong to F .
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Example

We show that the diameter function D, which associates with each
nonempty compact set A in Rn its diameter D(A), is continuous on
the family F of all nonempty compact sets in Rn.

It is easily verified that D((A)λ)=D(A)+2λ, where A ∈F and λ≥ 0.

Suppose now that A,B ∈F and that ρ(A,B)=λ.

Then

D(A)≤D((B)λ)=D(B)+2λ and D(B)≤D((A)λ)=D(A)+2λ.

Hence |D(A)−D(B)| ≤ 2λ= 2ρ(A,B).

The continuity of D is now clear.
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An Isodiametric Problem

We now indicate how the Blaschke selection principle can be used to
show that in the family F of all compact convex sets in R2 with
diameter 1, there exist sets having maximal area.

For each set A in F , denote by f (A) the area of A.

This area function will be defined formally later and it will be shown to
be continuous on the family of all non-empty compact convex sets in
R

2.

Let α be the supremum of the set of areas of members of F .

For each positive integer j , there is a member Aj of F such that
f (Aj)>α− 1

j
.

We may suppose, by translating the Aj ’s if necessary, that they are
uniformly bounded.
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An Isodiametric Problem (Cont’d)

The Blaschke selection principle guarantees the existence of a
subsequence Ai1 , . . . ,Aij , . . . of A1, . . . ,Aj , . . . which converges to some
non-empty compact convex set A0 in R2.

The continuity of the diameter function shows that A0 has diameter 1.

So A0 lies in F .

For each j ,

α≥ f (Aij )>α−
1

ij
≥α−

1

j
.

Letting j →∞ in these inequalities, we deduce, using the continuity of
f , that f (A0)=α.

Thus A0 is a member of F having maximal possible area.
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Subsection 8

Duality
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Convex Sets Duality

The Dual Operator

For each nonzero vector u in Rn, the set H− = {x ∈Rn : u ·x ≤ 1} is a
closed halfspace in Rn containing the origin as an interior point.

Conversely, for each closed halfspace H− in Rn containing the origin
as an interior point, there is a unique non-zero vector u in Rn such
that H− = {x ∈Rn : u ·x ≤ 1}.

Thus there is a bijection between the set of nonzero vectors in Rn and
the set of closed halfspaces in Rn containing the origin as an interior
point.

We define, for each point u of Rn, a set u∗ in Rn by the equation

u∗ = {x ∈Rn : u ·x ≤ 1}.

We note that 0∗ =Rn.
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Polar Duals of Sets

Define the polar dual A∗ of a set A in Rn to be the intersection of all
the sets a∗, for a ∈A, i.e.,

A∗ =
⋂

(a∗ : a ∈A)= {x ∈Rn : a ·x ≤ 1, for all a ∈A}.

For each set A in Rn, its polar dual A∗ is defined as an intersection of
closed convex sets containing the origin.

So A∗ is itself a closed convex set containing the origin.

The polar duals ;∗ and {0}∗ are both Rn.

The polar dual of Rn is {0}.
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Positions of Vector and its Dual

It is instructive to examine the sets u∗ for nonzero vectors u in Rn.

By definition, u∗ is the closed halfspace which is bounded by the
hyperplane H = {x ∈Rn : u ·x = 1} and contains the origin.

This hyperplane H has u as one of its normal vectors and passes
through the point u

‖u‖2 .

The distance of u
‖u‖2 from the origin is 1

‖u‖ , which:

exceeds 1 if ‖u‖ is less than 1;
equals 1 if ‖u‖ equals 1;
is less than 1 if ‖u‖ exceeds 1.
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Vector and Its Dual Illustrated

The relative positions of u and u∗ for the cases ‖u‖< 1, ‖u‖ = 1 and
‖u‖> 1 are illustrated in the figure:
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Properties of the Polar Dual

Theorem

Let A,B be sets in Rn, U the closed unit ball centered on the origin of Rn

and λ a nonzero scalar. Then:

(i) A⊆B implies that B∗ ⊆A∗;

(ii) (A∪B)∗ =A∗∩B∗;

(iii) (λA)∗ = 1
λA

∗;

(iv) U∗ =U .

(i) Suppose that A⊆B . Then

B∗ = {x ∈Rn : b ·x ≤ 1,b ∈B}⊆ {x ∈Rn : a ·x ≤ 1,a ∈A} =A∗
.

(ii) We have x ∈ (A∪B)∗ if and only if both a ·x ≤ 1, for a ∈A, and
b ·x ≤ 1, for b ∈B , if and only if x ∈A∗∩B∗. So (A∪B)∗ =A∗∩B∗.
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Properties of the Polar Dual (Cont’d)

(iii) We have
x ∈ (λA)∗ iff λa ·x ≤ 1, for a ∈A,

iff a · (λx)≤ 1, for a ∈A,

iff λx ∈A∗

iff x ∈ 1
λ
A∗.

Thus (λA)∗ = 1
λA

∗.

(iv) Suppose, first, that x ∈U . Then, for all u ∈U , u ·x ≤ ‖u‖‖x‖≤ 1.
Hence x ∈U∗ and U ⊆U∗.

Conversely, let x ∈U∗ with x 6= 0. Then x
‖x‖ ∈U . So x

‖x‖ ·x = ‖x‖≤ 1.
This shows that x ∈U . Thus U∗ ⊆U .
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Example

We find the polar dual A∗ of the n-cube A defined by the equation

A= {(a1, . . . ,an) : |a1| ≤ 1, . . . , |an| ≤ 1}.

Suppose (x1, . . . ,xn) ∈A∗. Define (a1, . . . ,an) ∈A by ai = 1, if xi ≥ 0,
and ai =−1, if xi < 0. Then

|x1|+ · · ·+ |xn| = a1x1+·· ·+anxn = (a1, . . . ,an) · (x1, . . . ,xn)≤ 1.

Conversely, suppose (x1, . . . ,xn) satisfies |x1|+ · · ·+ |xn| ≤ 1. Then, for
any point (a1, . . . ,an) ∈A,

(a1, . . . ,an) · (x1, . . . ,xn) = a1x1+·· ·+anxn
≤ |a1||x1|+ · · ·+ |an||xn|
≤ |x1|+ · · ·+ |xn| ≤ 1.

Thus, (x1, . . . ,xn) ∈A∗.

So A∗ is the set, known as a regular n-crosspolytope, defined by the
equation A∗ = {(x1, . . . ,xn) : |x1|+ · · ·+ |xn| ≤ 1}.
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Example (Cont’d)

We now find A∗∗ the polar dual of the polar dual A∗ of the n-cube A.

For each point (u1, . . . ,un) of A∗∗, define a point (x1,0, . . . ,0) of A∗ by
the conditions that x1 = 1 if u1 ≥ 0, and x1 =−1 if u1 < 0. Then

(x1,0, . . . ,0) · (u1,u2, . . . ,un)= |u1| < 1.

Similarly, |u2| ≤ 1, . . . , |un| ≤ 1. Hence, (u1, . . . ,un) ∈A and A∗∗ ⊆A.

The inclusion A⊆A∗∗, which holds for every set A in Rn, follows
immediately from the definition of the polar dual.

Hence A∗∗ =A.
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The Double-Polar Dual of a Set

This last example suggests that we examine the double-polar dual

A∗∗ of an arbitrary set A in Rn and see how it is related to A.

The polar dual of any set in Rn is always a closed convex set
containing the origin.

So a necessary condition for the equality of the sets A and A∗∗ is that
A is a closed convex set containing the origin.

We aim to show that this condition is also sufficient, and establish the
exact relationship between A∗∗ and A.
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A Set and Its Double-Polar Dual

Theorem

Let A be a set in Rn. Then A∗∗ = cl(conv(A∪ {0})). In particular, if A is
closed, convex and contains the origin, then A∗∗ =A.

For all a ∈A, x ∈A∗, we have a ·x ≤ 1. Hence a ∈A∗∗. So A⊆A∗∗.
But A∗∗ is a closed convex set containing 0 and A. Therefore,
cl(conv(A∪ {0}))⊆A∗∗.

For the reverse inclusion, suppose z is a point of Rn not lying in
cl(conv(A∪ {0})). By a previous corollary, there exists a hyperplane
strictly separating {z } and cl(conv(A∪ {0})). Thus, since such a
hyperplane cannot pass through the origin, there exists u in Rn such
that u ·z > 1 and u ·a < 1, for all a in A. This shows that u ∈A∗ and
z 6∈A∗∗. Hence, A∗∗ ⊆ cl(conv(A∪ {0})).
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Boundedness and the Origin

Theorem

Let A be a closed convex set in Rn containing the origin. Then A is
bounded if and only if the origin is an interior point of A∗, and A∗ is
bounded if and only if the origin is an interior point of A.

We use two previous theorems.

Suppose first that A is bounded. Then, for some r > 0, A⊆ rU . Hence,
1
r
U ⊆A∗. So the origin is an interior point of A∗.

By applying the last result to the set A∗, we deduce that, if A∗ is
bounded, then the origin is an interior point of A∗∗ =A.

Suppose next that the origin is an interior point of A. Then, for some
s > 0, sU ⊆A. Hence, A∗ ⊆ 1

s
U . So A∗ is bounded.

By applying the last result to A∗, we deduce that, if the origin is an
interior point of A∗, then A∗∗ =A is bounded.
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Polar Duals of Compacts With Origin an Interior Point

Corollary

Let F be the family of all compact convex sets in Rn which contain the
origin as an interior point. Then the mapping θ :F →F defined for A ∈F

by the equation θ(A)=A∗ is a bijection.

Let A,B ∈F . The theorem shows that θ(A) ∈F .

θ is injective, for A∗ =B∗ implies A∗∗ =B∗∗, i.e., A=B .

It is surjective, since θ(A∗)=A.
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The Polar Face Mapping

Suppose that A is a compact convex set in Rn that contains the origin
as an interior point.

Let B be an exposed face of A.

Then, for each point b in B , the set {x ∈A∗ : b ·x = 1} is an exposed
face (possibly empty) of A∗.

Thus the set ϕ(B), defined by the equation

ϕ(B)= {x ∈A∗ : b ·x = 1, for b ∈B},

being an intersection of exposed faces of A∗, is itself an exposed face
of A∗.

In this way we have constructed a mapping ϕ from the set of exposed
faces of A to the set of exposed faces of A∗.

We call ϕ the polar face mapping of A.
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Properties of The Polar Face Mapping

Theorem

Let A be a compact convex set in Rn which contains the origin as an
interior point. Then the polar face mapping ϕ of A is an inclusion-reversing
bijection.

That ϕ is inclusion reversing follows immediately from its definition.

Let ψ be the polar face mapping of A∗. We show that, for each
exposed face B of A, ψ(ϕ(B))=B . This is clear when B is either ;
or A. We assume that B is a proper exposed face of A. Thus there is
u in Rn such that

B = {a ∈A : u ·a = 1} and u ·a ≤ 1, for a ∈A.

This shows that u ∈A∗ and u ∈ϕ(B).
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Properties of The Polar Face Mapping (Cont’d)

Let v ∈ψ(ϕ(B)). Then v ∈A∗∗ =A and u ·v = 1. Hence v ∈B and
ψ(ϕ(B))⊆B .

Conversely, let b ∈B . Then b ∈A= (A∗)∗ and b ·w = 1, for all
w ∈ϕ(B). Hence, b ∈ψ(ϕ(B)) and B ⊆ψ(ϕ(B)).

Thus, ψ(ϕ(B))=B .

We have just shown that the composite mapping ψ◦ϕ is the identity
mapping on the set of exposed faces of A.

By interchanging the roles of A and A∗ in the discussion above, we
can deduce that ϕ◦ψ is the identity mapping on the set of exposed
faces of A∗.

It now follows easily that ϕ is a bijection.
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Example

Let A be the square conv{a,b,c ,d } in R2, where a = (1,1),
b= (−1,1), c = (−1,−1), d = (1,−1).

We saw that the polar dual A∗ of A is the square conv{w ,x ,y ,z },
where w = (1,0), x = (0,1), y = (−1,0), w = (0,−1).
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Example (Cont’d)

The polar face mapping ϕ of A is indicated below, where the faces of
A and A∗are represented by their extreme points.

; a b c d a,b b,c c ,d d ,a A

ϕ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
A∗ w ,x x ,y y ,z z ,w x y z w ;
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