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Convex Functions Convex Functions on the Real Line

Convex and Concave Functions

We will be concerned with a real-valued function f : I →R defined on
a non-degenerate (i.e., contains more than one point) interval I of the
real line.

Such a function f is said to be convex if

f (λx +µy)≤λf (x)+µf (y),

whenever x ,y ∈ I and λ,µ≥ 0 with λ+µ= 1.

Geometrically, f is convex if every
chord joining two points on its
graph lies on or above the graph.

If −f : I →R is convex, then
f : I →R is said to be concave.
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Example

We show that the square function f :R→R defined for real x by the
equation

f (x)= x2

is convex.

Let x ,y ∈R and let λ,µ≥ 0 with λ+µ= 1.

Then

λf (x)+µf (y)− f (λx +µy) = λx2+µy2− (λx +µy)2

= λx2+µy2−λ2x2−2λµxy −µ2y2

= λ(1−λ)x2 −2λµxy +µ(1−µ)y2

= λµx2−2λµxy +λµy2

= λµ(x2−2xy +y2)

= λµ(x −y)2 ≥ 0.

This establishes the convexity of the square function.
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The Three Chords Lemma

Theorem (Three Chords Lemma)

Let f : I →R be a convex function and let x ,y ,z ∈ I satisfy x < z < y . Then

f (z)− f (x)

z −x
≤
f (y)− f (x)

y −x
≤
f (y)− f (z)

y −z
.

We express z as a convex combination of x , y : z =
y −z

y −x
x +

z −x

y −x
y .

By the convexity of f , f (z)≤
y −z

y −x
f (x)+

z −x

y −x
f (y). Thus,

f (z)− f (x)≤
y −z −y +x

y −x
f (x)+

z −x

y −x
f (y)=

z −x

y −x
(f (y)− f (x)).

So, we get
f (z)− f (x)

z −x
≤
f (y)− f (x)

y −x
.

The other inequality follows similarly.
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The Slope Function

Corollary

Let f : I →R be a convex function and let a ∈ I . Then the function
g : I \{a} →R defined by the equation

g(x)=
f (x)− f (a)

x −a
, x ∈ I \{a},

is increasing.

If b,c ∈ I \{a} with b < c , then we must show that g(b)≤ g(c).

Either b < c < a, b < a< c , or a< b < c . Suppose that b < c < a. Then
the theorem with x = b, y = a, z = c shows that g(b)≤ g(c).

The other cases can be proved in a similar fashion.
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Convexity and Differentiability

Theorem

Let f : I →R be a convex function. Then f possesses left and right
derivatives at each interior point of I . Moreover, if a,b are interior points
of I with a< b, then

f ′−(a)≤ f ′+(a)≤
f (b)− f (a)

b−a
≤ f ′−(b)≤ f ′+(b).

Let c be an interior point of f and let x ,y be points of I such that
x < c < y . The corollary shows that, as x increases to c from below,
f (x)−f (c)

x−c increases and is bounded above by
f (y )−f (c)

y−c . Thus, the left

derivative f ′−(c) exists and satisfies the inequality

f ′−(c)≤
f (y)− f (c)

y −c
.
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Convexity and Differentiability (Cont’d)

Letting y decrease to c in this inequality, we see that the right
derivative f ′+(c) exists and satisfies the inequality f ′−(c)≤ f ′+(c).

Thus, if a,b are interior points of I , then

f ′−(a)≤ f ′+(a) and f ′−(b)≤ f ′+(b).

By the corollary, for a< x < b,

f (x)− f (a)

x −a
≤
f (b)− f (a)

b−a
and

f (b)− f (a)

b−a
≤
f (b)− f (x)

b−x
.

Letting x → a+ in the first and x → b− in the second, we get

f ′+(a)≤
f (b)− f (a)

b−a
≤ f ′−(b).
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Convexity and Continuity

Corollary

Let f : I →R be a convex function. Then, on the interior of I , f is
continuous and f ′−, f ′+ are increasing.

At each interior point of I , f has both left and right derivatives, and
so is continuous from the left and from the right.

Hence it is continuous.

That f ′−, f ′+ are increasing on the interior of f follows immediately
from the theorem.
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Behavior at the Boundary

A convex function need not be continuous at the boundary points of
its domain.

Example: The convex function f : [0,1]→R defined by the equations

f (x)=
{

0, if 0< x < 1,

1, if x = 0,1.

is not continuous at 0 and 1.

Also a convex function need not be differentiable, even at an interior
point of its domain.

Example: The modulus (absolute value) function is not differentiable
at the origin. There its left and right derivatives are −1 and 1,
respectively.
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Points of NonDifferentiability

Corollary

Let f : I →R be a convex function. Then the set of those points of I at
which f is not differentiable is countable.

Let C be the set of points of intI at which f is not differentiable. With
each c in C , we associate a rational rc such that f ′−(c)< rc < f ′+(c). It
follows from the theorem that, if c ,d ∈C with c < d , then

f ′−(c)< rc < f ′+(c)< f ′−(d)< rd < f ′+(d),

whence rc < rd . This shows immediately that the set of points of intI ,
and hence of I , at which I is not differentiable is countable.
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Criterion for Convexity

Theorem

Let f : I →R be a differentiable function. Then f is convex if and only if f ′

is increasing.

Suppose first that f is convex. Let a,b ∈ I with a< b. Then a previous
corollary shows that

f ′(a)= lim
x→a+

f (x)− f (a)

x −a
≤
f (b)− f (a)

b−a
≤ lim

x→b−

f (x)− f (b)

x −b
= f ′(b).

Hence f ′(a)< f ′(b) and f ′ is increasing.
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Criterion for Convexity (Converse)

Suppose next that f ′ is increasing. Let a,b ∈ I with a< b and let
λ,µ> 0 with λ+µ= 1. By the first Mean Value Theorem, there exist
real numbers, c ,d with a< c <λa+µb < d < b, such that

f (λa+µb)− f (a)

λa+µb−a
= f ′(c)≤ f ′(d)=

f (b)− f (λa+µb)

b−λa−µb
.

So we get
f (λa+µb)− f (a)

µ(b−a)
≤
f (b)− f (λa+µb)

λ(b−a)

λf (λa+µb)−λf (a)≤µf (b)−µf (λa+µb)

f (λa+µb)≤λf (a)+µf (b).

Hence, f is convex.

Corollary

Let f : I →R be a twice differentiable function. Then f is convex if and
only if f ′′(x)≥ 0 for all x in I .
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Example

The function ex is convex on R.

(ex )′′ = (ex )′ = ex > 0.

The function − logx is convex on (0,+∞).

(− logx)′′ =
(

−
1

x

)′
=

1

x2
> 0.

The function x logx is convex on (0,+∞).

(x logx)′′ =
(

logx +x
1

x

)′
=

1

x
> 0.

The function xp, p ≥ 1, is convex on [0,∞).

(xp)′′ = (pxp−1)′ = p(p−1)xp−2 ≥ 0.
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Support

Suppose that f : I →R is a real-valued function defined on an open
interval I of the real line and that x0 ∈ I .
Then an affine transformation T :R→R

is said to support f at x0 if T (x0)= f (x0)
and T (x)≤ f (x), for all x ∈ I .
We say that f has support T at x0.

Such an affine transformation T can be expressed in the form
T (x)= f (x0)+m(x −x0) for some real number m.

y = f (x0)+m(x −x0) is the equation of the line with slope m passing
through the point (x0, f (x0)) on the graph of f .

The condition T (x)≤ f (x) means that this line lies on or below the
graph of f .
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Convexity and Support

Theorem

Let f : I →R be a real-valued function defined on an open interval I of R.
Then f is convex if and only if it has support at each point of I .

Suppose first that f has support at each point of I . Let x ,y ∈ I and let
λ,µ≥ 0 with λ+µ= 1. Let T support f at λx +µy . Then

f (λx +µy)=T (λx +µy)=λT (x)+µT (y)≤λf (x)+µf (y).

So f is convex.
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Convexity and Support (Converse)

Suppose next that f is convex. Let x0 ∈ I and let m be a real number
satisfying the inequalities f ′−(x0)≤m≤ f ′+(x0). Define an affine
transformation T :R→R by the equation

T (x)= f (x0)+m(x −x0), x ∈R.

Let y ,z ∈ I be such that y < x0 < z . Then, by a previous theorem,

f (y )−f (x0)
y−x0

≤ f ′−(x0)

≤ T (y )−T (x0)
y−x0

=m= T (z)−T (x0)
z−x0

≤ f ′+(x0)

≤ f (z)−f (x0)
z−x0

.

Hence T (y)≤ f (y) and T (z)≤ f (z). Thus T supports f at x0.
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Differentiability and Support

Theorem

Let f : I →R be a convex function defined on an open interval I of R.
Then f is differentiable at a point x0 of I if and only if it has unique
support at x0.

Suppose first that f is differentiable at x0. Let T :R→R support f at
x0; say

T (x)= f (x0)+m(x −x0), for x ∈R,

where m is a real number. Let y ,z ∈ I be such that y < x0 < z . Then

f (y)− f (x0)

y −x0
≤
T (y)−T (x0)

y −x0
=m=

T (z)−T (x0)

z −x0
≤
f (z)− f (x0)

z −x0
.

Thus, letting y → x−0 , z → x+0 , we deduce that m= f ′(x0). Hence, f
has unique support at x0.
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Differentiability and Support (Converse)

Suppose next that f has unique support at x0.

Let the real number m satisfy f ′−(x0)≤m≤ f ′+(x0).

Then, as in the proof of the preceding theorem, the affine
transformation T defined by the equation

T (x)= f (x0)+m(x −x0)

supports f at x0. But f has unique support at x0.

Hence, m is unique and f ′−(x0)= f ′+(x0).

So f is differentiable at x0.
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Subsection 2

Classical Inequalities
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Convex Functions Classical Inequalities

Jensen’s Inequality

Theorem (Jensen’s Inequality)

Let f : I →R be a convex function. Let x1, . . . ,xm ∈ I and let λ1, . . . ,λm ≥ 0
with λ1+·· ·+λm = 1. Then

f (λ1x1+·· ·+λmxm)≤λ1f (x1)+·· ·+λmf (xm).

We argue by induction on m.

The inequality is trivially true when m= 1.

Assume, then, that it is true when m= k , where k ≥ 1.

Let a real number x be defined by the equation

x =λ1x1+·· ·+λk+1xk+1,

where x1, . . . ,xk+1 ∈ I and λ1, . . . ,λk+1 ≥ 0 with λ1+·· ·+λk+1 = 1.

At least one of λ1, . . . ,λk+1 must be less than 1, say λk+1 < 1.

George Voutsadakis (LSSU) Convexity July 2023 22 / 155



Convex Functions Classical Inequalities

Jensen’s Inequality (Cont’d)

Write
λ=λ1+·· ·+λk = 1−λk+1.

Then λ> 0. Write

y =
λ1

λ
x1+·· ·+

λk

λ
xk .

The induction hypothesis shows that

f (y)≤
λ1

λ
f (x1)+·· ·+

λk

λ
f (xk).

Since f is convex,

f (x) = f (λy +λk+1xk+1)
≤ λf (y)+λk+1f (xk+1)
≤ λ1f (x1)+·· ·+λk+1f (xk+1).

This establishes the inequality for m= k +1.
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Arithmetic and Geometric Means

In this section the word number will be used exclusively to mean
positive real number.

The arithmetic mean and the geometric mean of numbers x1 and
x2 are defined to be

1

2
(x1+x2) and

p
x1x2.

The basic inequality between these means is that the geometric mean
never exceeds the arithmetic mean, i.e.,

p
x1x2 ≤ 1

2
(x1+x2).

This follows immediately from the fact that (
p
x1−

p
x2)

2 ≥ 0.
The arithmetic mean and the geometric mean of numbers
x1, . . . ,xm are defined, respectively, to be

1

m
(x1+·· ·+xm) and (x1 · · ·xm)1/m.

Once again the geometric mean never exceeds the arithmetic mean,
although the proof is appreciably more difficult than when m= 2.
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Weighted Arithmetic and Geometric Means

The concepts of arithmetic and geometric means can be generalized
by attaching weights α1, . . . ,αm to the numbers as follows.

Let α1, . . . ,αm be numbers whose sum is 1.

Then the numbers

α1x1+·· ·+αmxm and x
α1

1
· · ·xαm

m

are called, respectively, the weighted arithmetic mean and the
weighted geometric mean of the numbers x1, . . . ,xm with respect to
the weights α1, . . . ,αm.

These weighted means reduce to the usual means when each of the
weights α1, . . . ,αm is 1

m
.

George Voutsadakis (LSSU) Convexity July 2023 25 / 155



Convex Functions Classical Inequalities

Relations Between Weighted Means

Theorem

Let x1, . . . ,xm,α1, . . . ,αm > 0 with α1+·· ·+αm = 1. Then

x
α1

1
· · ·xαm

m ≤α1x1+·· ·+αmxm.

The function − log is convex on (0,∞). Hence, by Jensen’s inequality,

− log (α1x1+·· ·+αmxm) ≤ − (α1 logx1+·· ·+αm logxm)
= − log (xα1

1
· · ·xαm

m ).

Since log is a strictly increasing function, we can deduce that

x
α1

1
· · ·xαm

m ≤α1x1+·· ·+αmxm.

Corollary

Let x1, . . . ,xm > 0. Then

(x1 · · ·xm)1/m ≤
1

m
(x1+·· ·+xm).
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A very General Inequality

Theorem

Let aij > 0 (i = 1, . . . ,m; j = 1, . . . ,n) and α1, . . . ,αm > 0 with α1+·· ·+αm = 1.
Then

a
α1

11
· · ·aαm

m1
+·· ·+a

α1

1n · · ·a
αm
mn ≤ (a11+·· ·+a1n)

α1 · · ·(am1+·· ·+amn)
αm .

We use the inequality between weighted means to deduce that, for
each j = 1, . . . ,n,

a
α1
1j

···aαm
mj

(a11+···+a1n)α1 ···(am1+···+amn)αm
≤ α1a1j

a11+···+a1n
+·· ·+ αmamj

am1+···+amn
.

Adding these n inequalities together, we deduce that

n
∑

j=1

a
α1

ij
· · ·aαm

mj

(a11+·· ·+a1n)α1 · · ·(am1+·· ·+amn)αm
≤α1+·· ·+αm = 1.

The desired result follows immediately.
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Hölder’s Inequality

Corollary

Let x1, . . . ,xm, y1, . . . ,ym > 0. Then

(x1 · · ·xm)1/m+ (y1 · · ·ym)1/m ≤ (x1+y1)
1/m · · ·(xm+ym)

1/m
.

Let n= 2, α1 = 1
m , . . . ,αm = 1

m , ai1 = xi and ai2 = yi in the theorem.

Corollary (Hölder’s Inequality)

Let x1, . . . ,xn,y1, . . . ,yn > 0. Suppose that p,q > 0 satisfy 1
p + 1

q = 1. Then

n
∑

i=1

xiyi ≤
(

n
∑

i=1

x
p

i

)1/p (

n
∑

i=1

y
q

i

)1/q

.

Let m= 2, α1 = 1
p
, α2 = 1

q
and let a1j = x

p

j
, a2j = y

q

j
in the above

theorem.
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Minkowski’s Inequality

Theorem (Minkowski’s Inequality)

Let x1, . . . ,xn,y1, . . . ,yn > 0 and let p ≥ 1. Then
(

n
∑

i=1

(x1+yi)
p

)1/p

≤
(

n
∑

i=1

x
p

i

)1/p

+
(

n
∑

i=1

y
p

i

)1/p

.

Write a= (
∑n

i=1
x
p

i
)1/p and b = (

∑n
i=1

y
p

i
)1/p. Since xp (p ≥ 1) is

convex on (0,∞), we can deduce that, for i = 1, . . . ,n,
(xi +yi

a+b

)p

=
(

a

a+b

(xi

a

)

+
b

a+b

(yi

b

)

)p

≤
a

a+b

(xi

a

)p
+

b

a+b

(yi

b

)p
.

Adding these n inequalities together, we deduce

n
∑

i=1

(
xi +yi

a+b
)p ≤

a

a+b

(
∑n

i=1
x
p

i

ap

)

+
b

a+b

(
∑n

i=1
y
p

i

bp

)

=
a

a+b
+

b

a+b
= 1.

Thus,
∑n

i=1
(x1+yi)

p ≤ (a+b)p = ((
∑n

i=1
x
p

i
)1/p + (

∑n
i=1

y
p

i
)1/p)p .
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Harmonic Mean and Root Mean Square

Given the numbers x1, . . . ,xm, their harmonic mean is defined to be

1
1
m
( 1
x1

+·· ·+ 1
xm
)

.

Their root mean square is defined to be

√

x2
1 +·· ·+x2

m

m
.

The basic inequalities connecting the four means are:

harmonic mean ≤ geometric mean
≤ arithmetic mean
≤ root mean square.
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Weighted Harmonic Mean and Root Mean Square

The harmonic mean and the root mean square are generalized in the
natural way to the corresponding weighted means.

Let α1, . . . ,αm > 0 with α1+·· ·+αm = 1.

Then the numbers

1
α1

x1
+·· ·+ αm

xm

and
√

α1x
2
1
+·· ·+αmx

2
m

are called, respectively, the weighted harmonic mean and the
weighted root mean square of the numbers x1, . . . ,xm with respect
to the weights α1, . . . ,αm.

We will see that the basic inequalities stated above connecting the
four unweighted means continue to hold for the weighted means.
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Mean of Order t

The four means so far introduced are special cases of the mean of
order t:

Let α= (α1, . . . ,αm), x = (x1, . . . ,xm), where α1, . . . ,αm, x1, . . . ,xm > 0
and α1+·· ·+αm = 1.

Then for each non-zero real number t, the mean Mt(x ;α) of order t

is defined by the equation

Mt(x ;α)= (α1x
t
1 +·· ·+αmx

t
m)

1/t
.

The values t =−1,1,2 give rise, respectively, to the weighted harmonic
mean, the weighted arithmetic mean and the weighted root mean
square.

The weighted geometric mean is not the mean of order t for any
non-zero real number t.
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The Mean of Order Zero

We consider the limit of Mt(x ;α) as t tends to zero.

Taking logarithms on both sides of the defining equation of Mt(x ;α),

logMt(x ;α)=
log(α1x

t
1 +·· ·+αmx

t
m)

t
.

By definition, limt→0
log(α1x

t
1+···+αmx

t
m)

t
is the derivative of

log (α1x
t
1 +·· ·+αmx

t
m) at t = 0.

We calculate

[log (α1x
t
1 +·· ·αmx

t
m)]

′ =
α1x

t
1 logx1+·· ·+αmx

t
m logxm

α1x
t
1
+·· ·+αmx

t
m

.

Therefore,

limt→0
log(α1x

t
1+···+αmx

t
m)

t = α1 logx1+·· ·αm logxm
= log (xα1

1
· · ·xαm

m ).

Hence, limt→0 logMt(x ;α)= log (xα1

1 · · ·xαm
m ).
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The Mean of Order Zero (Cont’d)

We calculated

lim
t→0

logMt(x ;α)= log (xα1

1
· · ·xαm

m ).

Thus
limt→0Mt(x ;α) = limt→0 e

logMt(x ;α)

= e limt→0 logMt(x ;α)

= e log (x
α1
1 ···xαm

m )

= x
α1

1
· · ·xαm

m .

So Mt(x ;α)
t→0−→ x

α1

1
· · ·xαm

m .

We define the mean of order zero

M0(x ;α) := x
α1

1
· · ·xαm

m .

Mt(x ;α) is now defined for every real number t and is continuous on
the whole of R, in particular at t = 0.
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Monotonicity of Mean of Order t

Theorem

Let x = (x1, . . . ,xm), α= (α1, . . . ,αm), where x1, . . . ,xm, α1, . . . ,αm > 0 and
α1+·· ·+αm = 1. Then Mt(x ;α) is an increasing function of t.

Since x and α are fixed, we write Mt(x ;α) simply as M(t).
We show that M ′(t)≥ 0 for all non-zero real numbers t.

Since M is continuous at 0, this shows that M is increasing on R.

We have t logM(t)= log (α1x
t
1 +·· ·+αmx

t
m).

So, by differentiating,

t
M ′(t)

M(t)
+ logM(t)=

α1x
t
1 logx1+·· ·+αmx

t
m logxm

α1x
t
1 +·· ·+αmx

t
m

, t 6= 0.

Thus, for t 6= 0,

t2
M ′(t)

M(t)
+ t logM(t)=

α1x
t
1 logx t1 +·· ·+αmx

t
m logx tm

α1x
t
1
+·· ·+αmx

t
m

.
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Monotonicity of Mean of Order t (Cont’d)

We get

t2M ′(t)(α1x
t
1+···+αmx

t
m)

M(t)
= α1x

t
1 logx t1 +·· ·+αmx

t
m logx tm

−(α1x
t
1 +·· ·+αmx

t
m) log (α1x

t
1 +·· ·+αmx

t
m).

Jensen’s inequality, applied to the convex function y logy on (0,∞),
shows that, for all y1, . . . ,ym > 0,

(α1y1+·· ·+αmym) log (α1y1+·· ·+αmym)
≤α1y1 logy1+·· ·+αmym logym.

If we put yi = x t
i

for i = 1, . . . ,m in this inequality, we deduce from the
equality previously stated that M ′(t)≥ 0 for t 6= 0.

Corollary

Let x = (x1, . . . ,xm), α= (α1, . . . ,αm), where x1, . . . ,xm, α1, . . . ,αm > 0 and
α1+·· ·+αm = 1. Then M−1(x ;α)≤M0(x ;α)≤M1(x ;α)≤M2(x ;α).
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Subsection 3

The Gamma and Beta Functions
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Hölder’s Inequality for Intervals

∫

I f denotes the (Riemann) integral of a continuous function f : I →R
over an interval I of the real line.

Theorem (Hölder’s Inequality for Integrals)

Let f ,g : I →R be continuous non-negative functions for which the
integrals

∫

I f ,
∫

I g are positive. Let λ,µ≥ 0 with λ+µ= 1. Then
∫

I
f λgµ ≤

(
∫

I
f

)λ (
∫

I
g

)µ

.

By a previous theorem, for t ∈ I ,
(

f (t)
∫

I f

)λ (

g (t)
∫

I g

)µ
≤λ

f (t)
∫

I f
+µ

g (t)
∫

I g
.

We integrate both sides of this inequality to deduce that
∫

I f
λ(t)gµ(t)dt

(
∫

I f )
λ(

∫

I g)
µ

≤λ

∫

I f
∫

I f
+µ

∫

I g
∫

I g
=λ+µ= 1.

Hence
∫

I f
λf µ ≤ (

∫

I f )
λ(

∫

I g)
µ.
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Log-Convex Functions

Let f : I →R be a function defined on an interval I of the real line.

Then I is said to be log-convex if it is positive and its logarithm,
log f : I →R, is convex.

Thus a positive function f is log-convex on an interval I if and only if,
whenever x ,y ∈ I and λ,µ≥ 0 with λ+µ= 1, we have

log f (λx +µy)≤λ log f (x)+µ log f (y)= log f λ(x)f µ(y).

This amounts to
f (λx +µy)≤ f λ(x)f µ(y).

Since f λ(x)f µ(y)≤λf (x)+µf (y), it follows that every log-convex
function is convex.

On the other hand, on the interval (0,∞), the positive function x is
convex but not log-convex.

For any positive number a, the function ax is log-convex on R.
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Closure Under Addition and Multiplication

The class of functions which are log-convex on some interval I is
closed under addition and multiplication.

Suppose that the functions f ,g : I →R are log-convex.

Let x ,y ∈ I and let λ,µ≥ 0 with λ+µ= 1.

By a previous theorem,

(f +g)(λx +µy) = f (λx +µy)+g(λx +µy)

≤ f λ(x)f µ(y)+gλ(x)gµ(y)

≤ (f (x)+g(x))λ(f (y)+g(y))µ

= (f +g)λ(x)+ (f +g)µ(y);

(fg)(λx +µy) = f (λx +µy)g(λx +µy)

≤ f λ(x)f µ(y)gλ(x)gµ(y)

= (fg)λ(x)(fg)µ(y).
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The Gamma Function

The gamma function Γ : (0,∞)→R is defined by the equation

Γ(x)=
∫∞

0
tx−1e−tdt , x > 0.

Elementary analysis shows that, for each x > 0, Γ(x) is a well-defined
positive number.

Theorem

The gamma function has the following properties:

(i) Γ(x +1)= xΓ(x) for x > 0;

(ii) Γ(1)= 1;

(iii) Γ is log-convex.
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Proofs of the Properties

(i) For x > 0,

Γ(x +1)=
∫∞

0
txe−tdt = [−txe−t ]∞0 +x

∫∞

0
tx−1e−tdt = xΓ(x).

(ii) Γ(1)=
∫∞
0 e−tdt = limA→∞ [1−e−A]= 1.

(iii) Let x ,y > 0. Let λ,µ≥ 0 with λ+µ= 1. Then, by the preceding
theorem,

Γ(λx +µy) =
∫∞
0 tλx+µy−1e−tdt

=
∫∞
0 (tx−1e−t)λ(ty−1e−t)µdt

≤ (
∫∞
0 tx−1e−tdt)λ(

∫∞
0 ty−1e−tdt)µ

= Γ
λ(x)Γµ(y).
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Value on Integers and Limit Properties

Corollary

For n = 0,1,2, . . ., Γ(n+1)= n!.

By the theorem, Γ(1)= 1. Hence, for n= 1,2, . . .,

Γ(n+1)= nΓ(n)= n(n−1)Γ(n−1)= n(n−1) · · ·Γ(1)= n!.

Corollary

The gamma function is convex, continuous, and xΓ(x)→ 1, Γ(x)→∞ as
x → 0+.

The gamma function is log-convex. So it is convex. By a previous
corollary, it must also be continuous. The continuity of Γ at 1 shows
that

xΓ(x)=Γ(x +1)
x→0+
−→ Γ(1)= 1.

Hence Γ(x)→∞ as x → 0+.
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The Gamma Function and the Factorial Function

Since Γ(n+1)= n! for n= 0,1,2, . . ., the gamma function can be
considered to be an extension of the factorial function, even if the two
functions are one unit out of phase with each other.

There are, of course, infinitely many functions f : (0,∞)→R satisfying
f (n+1)= n! for n= 0,1,2, . . ..

The natural question that arises is:

Is there some sense in which the gamma function is a unique extension
of the factorial function?

One answer is given by Artin’s Characterization.
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Artin’s Characterization of the Gamma Function

Theorem (Artin’s Characterization of the Gamma Function)

Let the function f : (0,∞)→R satisfy:

(i) f (x +1)= xf (x) for x > 0;

(ii) f (1)= 1;

(iii) f is log-convex.

Then f =Γ.

Conditions (i), (ii) imply that f (n+1)= n! for n = 0,1,2, . . ..

Let 0< x ≤ 1 and let n be any positive integer. Then the log-convexity
of f and condition (i) show that

f (n+1+x) = f ((1−x)(n+1)+x(n+2))
≤ f 1−x(n+1)f x(n+2)
= f 1−x(n+1)((n+1)f (n+1))x

= (n+1)x f (n+1)= (n+1)xn!.
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Artin’s Characterization of the Gamma Function (Cont’d)

We also have

n!= f (n+1) = f (x(n+x)+ (1−x)(n+1+x))
≤ f x(n+x)f 1−x(n+1+x)
= (n+x)−x f x(n+1+x)f 1−x(n+1+x)
= (n+x)−x f (n+1+x).

But f (n+1+x)= (n+x)(n−1+x) · · ·xf (x).
Therefore,

(

1+
x

n

)x
≤
(n+x)(n−1+x) · · ·xf (x)

n!nx
≤

(

1+
1

n

)x

.

Hence

f (x)= lim
n→∞

n!nx

(n+x)(n−1+x) · · ·x
, for 0< x ≤ 1.
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Artin’s Characterization of the Gamma Function (Cont’d)

Suppose that x > 1. Let m be the positive integer such that
0< x −m≤ 1. Then, by condition (i) and what we have just proved,

f (x) = (x −1) · · ·(x −m)f (x −m)

= (x −1) · · ·(x −m) limn→∞
n!nx−m

(n+x−m)(n−1+x−m)···(x−m)

= limn→∞
(

n!nx

(n+x)(n−1+x)···x · (n+x)(n+x−1)···(n+x−(m−1))
nm

)

= limn→∞
n!nx

(n+x)(n−1+x)···x ·
limn→∞ ((1+ x

n
)(1+ x−1

n
) · · ·(1+ 1+x−m

n
))

= limn→∞
n!nx

(n+x)(n−1+x)···x .

Thus, for all x > 0, f (x)= limn→∞
n!nx

(n+x)(n−1+x)···x .

This is a remarkable conclusion, since it shows that f is uniquely
determined by conditions (i), (ii), and (iii).

Since Γ itself satisfies these three conditions, we must have f =Γ.
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Gamma and Sine

Theorem

For every real x with 0< x < 1,

Γ(x)Γ(1−x)=
π

sinπx
.

Artin’s Theorem shows that for 0< x < 1,

Γ(x)Γ(1−x) = limn→∞
n!nxn!n1−x

(n+x)···x(n+1−x)···(1−x)

= limn→∞
n

(n+1−x)x 1
1222 ···n2

(1+x)(1−x)···(n+x)(n−x)

= 1

x
∏∞

k=1(1−
x2

k2
)

= π
sinπx . (sinx = x

∏∞
k=1

(1− x2

k2π2 ))

From the Theorem, we get Γ(1
2
)=

p
π.
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Legendre’s Duplication Formula

Theorem (Legendre’s Duplication Formula)

Γ

(x

2

)

Γ

(

x +1

2

)

=
p
π

2x−1
Γ(x), for x > 0.

Define a function f : (0,∞)→R by

f (x)=
2x−1

p
π

Γ

(x

2

)

Γ

(

x +1

2

)

, for x > 0.

Then f is a product of log-convex functions. So it is itself log-convex.
We also have, for all x > 0:

f (x +1)= 2xp
π
Γ( x+1

2 )Γ( x+2
2 )= 22x−1

p
π
Γ( x+1

2 ) x2Γ(
x
2 )= xf (x);

f (1)= 1p
π
Γ(1

2 )Γ(1)=
1p
π

p
π1= 1.

Thus, by Artin’s Theorem, f = Γ.
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Lemma for Stirling’s Formula

Lemma

The sequence whose nth term is logn!− (n+ 1
2
) logn+n converges.

Let an = logn!− (n+ 1
2
) logn+n. First we show that the sequence (an)

is decreasing. Then we show that it is bounded below. We note that,
for n= 1,2, . . ., an−an+1 = (n+ 1

2
) log (1+ 1

n )−1. Since 1
x is convex on

(0,∞), the area bounded by the graph of y = 1
x , the x-axis, and the

lines x = n, x = n+1 exceeds that of the trapezoid bounded by the

tangent to y = 1
x at the point

(

n+ 1
2

,
1

n+ 1
2

)

, the x-axis, and the lines

x = n, x = n+1; i.e.,

log

(

1+
1

n

)

=
∫n+1

n

dx

x
>

1

n+ 1
2

.

It now follows from the preceding formula, that an−an+1 > 0. Hence
the sequence (an) is decreasing.
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Lemma for Stirling’s Formula (Cont’d)

Since logx is concave on (0,∞), the area bounded by the graph of
y = logx , the x-axis, and the lines x = r − 1

2
, x = r + 1

2
for r = 1,2, . . ., is

less than that of the trapezoid bounded by the tangent to y = logx at
the point (r , log r), the x-axis, and the lines x = r − 1

2
, x = r + 1

2
, i.e.,

∫r+ 1
2

r− 1
2

logxdx < log r . It follows easily that, for n≥ 3,

∫n
1 logxdx =

∫1 1
2

1
logxdx +

∫2 1
2

1 1
2

logxdx +·· ·+
∫n− 1

2

n− 3
2

logxdx +
∫n

n− 1
2
logxdx

< 1
2
log11

2
+ log2+·· ·+ log (n−1)+ 1

2
logn

< 1
2
+ log (n!)− 1

2
logn.

Thus,

n logn−n+1=
∫n

1
logxdx <

1

2
+ logn!−

1

2
logn.

Hence an = logn!−(n+ 1
2
) logn+n> 1

2
. Thus, the decreasing sequence

(an) is bounded below by 1
2
. So it converges.
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Lemma for Stirling’s Formula

Theorem (Stirling’s Formula)

n!∼
p

2πnn+
1
2 e−n.

In the notation of the proof of the lemma, let for n= 1,2, . . .,
bn = ean = n!

nn+
1
2 e−n

. Then the sequence (bn) converges to some b > 0.

Thus,

(bn)
2

b2n
=
(n!)2(2n)2n+

1
2 e−2n

n2n+1e−2n(2n)!
=

22n+ 1
2 (n!)2

n
1
2 (2n)!

→
b2

b
= b, as n→∞.

For n= 1,2, . . ., let cn = n!n
1
2

(n+ 1
2 )···

3
2

1
2

. Then cn
n→∞−→ Γ(1

2
)=

p
π. So

(bn)
2

b2n
=
n!n1/2(2n+1)

p
2

2n
(2n+1)!

2n+12nn!

= cn

(

1+
1

2n

)p
2
n→∞−→

p
2π.

Hence, b =
p

2π. So bn = n!

nn+
1
2 e−n

n→∞−→
p

2π.
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The Beta Function

The beta function B is the real function of two variables defined by
the equation

B(x ,y)=
∫1

0
tx−1(1− t)y−1dt , for x ,y > 0.

Theorem

The beta function has the following properties:

(i) B(x +1,y)= x
x+yB(x ,y) for x ,y > 0;

(ii) B(x ,y) is a log-convex function of x for each fixed y > 0;

(iii) B(x ,y)= Γ(x)Γ(y)
Γ(x+y) , for x ,y > 0.
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The Beta Function (Part (i))

(i) We have

B(x +1,y) =
∫1
0 tx(1− t)y−1dt

=
∫1
0

tx

(1−t)x (1− t)x (1− t)y−1dt

=
∫1
0 (1− t)x+y−1( t

1−t )
xdt

=
[

−(1−t)x+y
x+y ( t

1−t )
x
]1

0
−

∫1
0

−(1−t)x+y
x+y

[

( t
1−t )

x
]′
dt

=
[

−(1−t)x+y
x+y ( t

1−t )
x
]1

0
−

∫1
0

−(1−t)x+y
x+y

[

x tx−1

(1−t)x−1
1

(1−t)2
]

dt

=
[

−(1−t)x+y
x+y ( t

1−t )
x
]1

0
+

∫1
0

x
x+y t

x−1(1− t)y−1dt

= x
x+yB(x ,y).
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The Beta Function (Part (ii))

(ii) Let a,b,y > 0. Let λ,µ≥ 0, with λ+µ= 1.

By a previous theorem,

B(λa+µb,y) =
∫1
0 (tλa+µb−1(1− t)y−1)dt

=
∫1
0 (ta−1(1− t)y−1)λ(tb−1(1− t)y−1)µdt

≤ (
∫1
0 ta−1(1− t)y−1dt)λ(

∫1
0 tb−1(1− t)y−1dt)µ

= Bλ(a,y)Bµ(b,y).

Thus B(x ,y) is a log-convex function of x , for fixed y .
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The Beta Function (Part (iii))

(iii) Let y > 0. Define a function fy : (0,∞)→R by

fy (x)=
Γ(x +y)B(x ,y)

Γ(y)
, for x > 0.

Then fy is a product of log-convex functions. So it is log-convex.

For x > 0,

fy (x +1) = Γ(x+y+1)B(x+1,y )
Γ(y )

=
[(x+y )Γ(x+y )] x

x+y B(x ,y )

Γ(y ) = xfy (x);

fy (1) = Γ(1+y )B(1,y )
Γ(y )

= y
∫1
0 (1+ t)y−1dt = 1.

Thus, fy = Γ by Artin’s Theorem. So B(x ,y)= Γ(x)Γ(y )
Γ(x+y ) , for x ,y > 0.
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An Integral Formula for B

According to the definition,

B

(

n+1

2
,
n+1

2

)

=
∫1

0
t

n−1
2 (1− t)

n−1
2 dt .

Set u = 2t −1. Then dt = 1
2
du, t = 1+u

2
, 1− t = 1−u

2
and t = 0,1

correspond to u =−1,1, respectively.

Thus, we get

B(n+1
2

,
n+1
2
) =

∫1
−1 (

1+u
2
)
n−1
2 (1−u

2
)
n−1
2

1
2
du

= 1
2

∫1
−1

1
2n−1 (1−u2)

n−1
2 du

= 1
2n−1

∫1
0 (1−u2)

n−1
2 du.
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A Recursive Formula for B

We prove by induction on n that B(n+1
2

,
n+1
2
)= 1

2n
B(1

2
,
n+1
2
).

For the base case, we prove the formula for n= 0 and n= 1.
For n= 0, B(0+1

2 ,
0+1
2 )=B(1

2 ,
1
2 )=

1
20B(

1
2 ,

0+1
2 ).

For n= 1, noting that B(1,y)= 1
y
, we get

B(1+1
2 ,

1+1
2 )=B(1,1)= 1= 1

2
1

1/2
= 1

2B(
1
2 ,1)= 1

21B(
1
2 ,

1+1
2 ).

Assume the formula holds for some n.
Then, recalling B(x +1,y)= x

x+yB(x ,y), we get

B(
(n+2)+1

2
,
(n+2)+1

2
) =

n+1
2

n+1+n+3
2

B(n+1
2

,
(n+2)+1

2
)

= n+1
2(n+2)

n+1
2(n+1)

B(n+1
2

,
n+1
2
)

= n+1
22(n+2)

1
2n
B(1

2
,
n+1
2
)

= 1
2n+2

n+1
2

n+2
2

B(1
2

,
n+1
2
)

= 1
2n+2B(1

2
,
(n+2)+1

2
).
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Subsection 4

Convex Functions on Rn
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Convex Function on Rn

A real-valued function f defined on a non-empty convex set X in Rn

is said to be convex if

f (λx +µy)≤λf (x)+µf (y)

whenever x ,y ∈X and λ,µ≥ 0 with λ+µ= 1.

The convexity of X ensures that λx +µy ∈X .

A concave function is one whose negative is convex.

Exactly as in the case of a convex function of a single real variable,
each convex function f :X →Rn satisfies Jensen’s inequality:

f (λ1x1+·· ·+λmxm)≤λ1f (x1)+·· ·+λmf (xm),

whenever x1, . . . ,xm ∈X and λ1, . . . ,λm ≥ 0 with λ1+·· ·+λm = 1.

Affine transformations f :Rn →R and their restrictions to non-empty
convex subsets of Rn provide important examples of convex functions.
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Convexity of Distance of Convex Sets

The distance function dX :Rn →R of a non-empty set X in Rn was
defined by the equation

dX (u)= inf {‖u−x‖ : x ∈X }, for u ∈Rn
.

We now assume that X is convex and show that in this case the
resulting distance function dX is convex.

Let u,v ∈Rn and let λ,µ≥ 0 with λ+µ= 1. Then, for each ε> 0,
there exist points x ,y ∈X such that

‖u−x‖ ≤ dX (u)+ε and ‖v −y‖ ≤ dX (v )+ε.

Since X is convex, λx +µy ∈X . So

dX (λu+µv) ≤ ‖λu+µv − (λx +µy)‖
≤ λ‖u−x‖+µ‖v −y‖
≤ λdX (u)+µdx(v)+ε.

But ε> 0 is arbitrary. Hence, dX (λu+µv)≤λdX (u)+µdX (v).
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Example: Introducing Graphs

Consider the convex function f (x1)= x2
1 defined on R1.

The graph of f is the parabola {(x1,x2
1 ) : x1 ∈R} in R2, which is clearly

not convex.

The set of points {(x1,x) : x1 ∈R,x ≥ x2
1 } in R2 which lie on or above

the graph of f , however, is convex.

Thus with this particular convex function of a single variable, we have
associated a convex set in R2.

We will show how the convexity of a real-valued function of n variables
is equivalent to the convexity of a certain subset of Rn+1.
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Graphs and Epigraphs

Let f be a real-valued function defined on a non-empty convex set X
in Rn.

Then the graph of f is defined to be the subset

{(x1, . . . ,xn, f (x1, . . . ,xn)) : (x1, . . . ,xn) ∈X }

of Rn+1.

The epigraph of f , denoted epif , is defined to be the subset

{(x1, . . . ,xn,x) : (x1, . . . ,xn) ∈X ,x ≥ f (x1, . . . ,xn)}

of Rn+1.
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Convex Functions and Their Epigraphs

Theorem

Let f be a real-valued function defined on a non-empty convex set X in
R

n. Then f is convex if and only if its epigraph is convex.

For each point x = (x1, . . . ,xn) of Rn and for each scalar x , we denote
by (x ,x) the point (x1, . . . ,xn,x) of Rn+1.

Suppose that f is convex. Let (x ,x),(y ,y) ∈ epif . So x ,y ∈X and
x ≥ f (x), y ≥ f (y). Let λ,µ≥ 0 with λ+µ= 1. Then the convexity of
f shows that

f (λx +µy)≤λf (x)+µf (y)≤λx +µy .

Thus the point λ(x ,x)+µ(y ,y)= (λx +µy ,λx +µy) belongs to epif .

So epif is convex.
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Convex Functions and Their Epigraphs (Converse)

Conversely, suppose that epif is convex.

Let x ,y ∈X and let λ,µ≥ 0 with λ+µ= 1.

Since epif is convex, the point

λ(x , f (x))+µ(y , f (y))= (λx +µy ,λf (x)+µf (y))

belongs to epif .

Hence
f (λx +µy)≤λf (x)+µf (y).

This shows that f is a convex function.
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Properties of Convex Functions and of Convex Sets

Theorem

Let (fi : i ∈ I ) be a non-empty family of convex functions defined on a
non-empty convex set X in Rn such that, for each x in X , the set
{fi (x) : i ∈ I } of real numbers is bounded above. Then the function
f :X →R defined by the equation f (x)= sup {fi(x) : i ∈ I }, for x ∈X , is
convex.

We observe that

epif = {(x1, . . . ,xn,x) : (x1, . . . ,xn) ∈X ,x ≥ f (x1, . . . ,xn)}

= {(x1, . . . ,xn,x) : (x1, . . . ,xn) ∈X ,x ≥ fi(x1, . . . ,xn) for i ∈ I }

= ⋂

i∈I {(x1, . . . ,xn,x) : (x1, . . . ,xn) ∈X ,x ≥ fi(x1, . . . ,xn)}

= ⋂

i∈I epifi .

The preceding theorem shows that all of the sets epifi are convex.
Hence so is their intersection epif . Thus, by the same theorem f is a
convex function.
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Linear Combinations of Convex Functions

Theorem

Let f ,g be convex functions defined on a non-empty convex subset X of
R

n and let α,β≥ 0. Then the function αf +βg is convex.

Let x ,y ∈X and let λ,µ≥ 0 with λ+µ= 1.

Then

(αf +βg)(λx +µy) = αf (λx +µy)+βg(λx +µy)

≤ α(λf (x)+µf (y))+β(λg(x )+µg(y ))

= λ(αf +βg)(x)+µ(αf +βg)(y ).
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Composition of Convex and Increasing Convex Functions

Theorem

Let f be a convex function defined on a non-empty convex set X in Rn

and let g : I →R be an increasing convex function defined on an interval I
of R which contains the image f (X ) of X under f . Then the composite
function g ◦ f :X →R is convex.

Let x ,y ∈X and let λ,µ≥ 0, with λ+µ= 1.

Then
(g ◦ f )(λx +µy) = g(f (λx +µy))

≤ g(λf (x)+µf (y))

≤ λg(f (x))+µg(f (y))

= λ(g ◦ f )(x)+µ(g ◦ f )(y).

George Voutsadakis (LSSU) Convexity July 2023 68 / 155



Convex Functions Convex Functions on Rn

Supporting Affine Transformations

Let f be a real-valued function defined on a convex set X in Rn and
let x0 ∈X .

Then an affine transformation T :Rn →R is said to support f at x0

if T (x0)= f (x0) and T (x)≤ f (x) for all x ∈X .

The geometrical interpretation of T supporting f at x0 is clear.

The set
{(x1, . . . ,xn,T (x1, . . . ,xn)) : (x1, . . . ,xn) ∈Rn

}

is a hyperplane in Rn+1 that passes through the point (x0, f (x0)) and
lies on or below the graph

{(x1, . . . ,xn, f (x1, . . . ,xn)) : (x1, . . . ,xn) ∈X }

of f .
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Convexity and Support

Theorem

Let f be a real-valued function defined on a non-empty open convex set X
in Rn. Then f is convex if and only if it has support at each point of X .

Suppose that f has support at each point of X . Let x ,y ∈X and let
λ,µ≥ 0 with λ+µ= 1. Then there is an affine transformation
T :Rn →R which supports f at λx +µy . Hence

f (λx +µy)=T (λx +µy)=λT (x)+µT (y )≤λf (x)+µf (y).

This shows that f is convex.

Conversely, suppose that f is convex and that x0 ∈X . Since f is
convex, its epigraph epif is a convex set in Rn+1. Now (x0, f (x0)) is a
boundary point of epif . So there exists a support hyperplane H to
epif at (x0, f (x0)).
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Convexity and Support (Converse)

Suppose that H has equation a1x1+·· ·+anxn+an+1xn+1 = a0.
Suppose, also, that a1x1+·· ·+anxn+an+1xn+1 ≥ a0, whenever
(x1, . . . ,xn) ∈X and xn+1 ≥ f (x1, . . . ,xn).

We have an+1 6= 0. Otherwise, the hyperplane in Rn with equation
a1x1+·· ·+anxn = a0 supports X at x0. This is impossible because x0

is an interior point of X .
For each (x1, . . . ,xn) ∈X , a1x1+·· ·+anxn+an+1λ≥ a0 for all
λ≥ f (x1, . . . ,xn). Hence, an+1 > 0.

Define an affine transformation T :Rn →R by the equation

T (x1, . . . ,xn)=
1

an+1
(a0−a1x1−·· ·−anxn), for (x1, . . . ,xn) ∈Rn

.

Since H supports epif at (x0, f (x0)) and an+1 > 0,

T (x0)= 1
an+1

(a0−a1x
0
1
−·· ·−anx

0
n )=

an+1x
0
n+1

an+1
= x0

n+1
= f (x0);

For all x ∈X , T (x)= 1
an+1

(a0−a1x1−·· ·−anxn)≤ an+1xn+1
an+1

= f (x).

Thus, T supports f at x0.
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Positively Homogeneous Functions

Many of the functions which arise naturally in convexity are
real-valued functions f defined on a convex cone X in Rn (often Rn

itself) that satisfy the equation

f (λx)=λf (x), for all x ∈X and all λ≥ 0.

Such functions are called positively homogeneous.

The most important example of such a function is the norm mapping
‖·‖, which is defined on the whole of Rn.
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Positive Homogeneous vs. Convex Functions

Theorem

Let f be a positively homogeneous function defined on a convex cone X in
R

n. Then f is convex if and only if f (x +y)≤ f (x)+ f (y) for all x ,y ∈X .

Suppose that f is convex. Let x ,y ∈X . Then

1

2
f (x +y)= f

(

1

2
x +

1

2
y

)

≤
1

2
f (x)+

1

2
f (y).

So f (x +y)≤ f (x)+ f (y).

Conversely, suppose that f (x +y)≤ f (x)+ f (y ) for all x ,y ∈X . Then,
for all x ,y ∈X and for all λ,µ≥ 0 with λ+µ= 1,

f (λx +µy)≤ f (λx)+ f (µy)=λf (x)+µf (y).

This shows that f is convex.
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The Level Sets of a Function

Let f be a real-valued function defined on a non-empty convex set X
in Rn.

Then, for each scalar α, the level set Lα of f at height α is the set
defined by the equation

Lα = {x ∈X : f (x)≤α}.

We show that each level set Lα of a convex function f :X →R is
convex.

Let x ,y ∈ Lα and let λ,µ≥ 0 with λ+µ= 1. Then, since f is convex,

f (λx +µy)≤λf (x)+µf (y)≤λα+µα=α.

Thus λx +µy ∈ Lα and Lα is convex.

There exist non-convex functions all of whose level sets are convex.

An example is the cube function defined on the real line.
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Non-Negative Positive Homogeneous Case

Theorem

Let f be a non-negative positively homogeneous function defined on a
convex cone X in Rn such that the level set {x ∈X : f (x)≤ 1} is convex.
Then f is a convex function.

We use the criterion of the preceding theorem to show that f is
convex. Let x ,y ∈X . Choose scalars α,β such that α> f (x),
β> f (y ). Since f is non-negative and positively homogeneous,
f (xα )≤ 1 and f (

y
β )≤ 1. Thus x

α and
y
β lie in the level set of f at

height 1. The assumed convexity of this level set shows that

1
α+β f (x +y) = f

(

x+y
α+β

)

= f
(

α
α+β

x
α + β

α+β
y
β

)

≤ α
α+β f

(x
α

)

+ β
α+β f

(

y
β

)

≤ α
α+β + β

α+β = 1.

Hence f (x +y)≤α+β whenever α> f (x), β> f (y). So
f (x +y)≤ f (x)+ f (y ). This shows that f is convex.
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Example

Let p ≥ 1. Define a function f on the nonnegative orthant X of Rn by
the equation

f (x1, . . . ,xn)= (xp
1
+·· ·+x

p
n )

1/p
, for x1, . . . ,xn ≥ 0.

Then f is non-negative and positively homogeneous.

It follows from a previous theorem and the fact that the function xp is
convex on the interval [0,∞), that the function f p :X →R is convex.

Hence the level set {x ∈X : f p(x)≤ 1} = {x ∈X : f (x)≤ 1} is convex.

By the preceding theorem, f is convex.

Let x = (x1, . . . ,xn), y = (y1, . . . ,yn) belong to X .

Then, by a previous theorem, f (x +y)≤ f (x)+ f (y ). That is,

((x1 +y1)
p +·· ·+ (xn+yn)

p)1/p ≤ (x
p
1
+·· ·+x

p
n )

1/p + (y
p
1
+·· ·+y

p
n )

1/p
.

We have re-proved Minkowski’s inequality.
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Subsection 5

Continuity and Differentiability
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Convex Functions on Open Convex Sets

Let f be a convex function defined on an open convex set X in Rn.

Let x ∈X and y ∈Rn.

Then the set I = {λ ∈R : x +λy ∈X } is an open interval of R which
contains the origin.

The function g : I →R defined by the equation

g(λ)= f (x +λy), for λ∈ I ,

is convex.

To see that g is convex, let a,b ∈ I and let λ,µ≥ 0 with λ+µ= 1.
Then

g(λa+µb) = f (x + (λa+µb)y )
= f (λ(x +ay)+µ(x +by))
≤ λf (x +ay)+µf (x +by)
= λg(a)+µg(b).

Thus g ′
+(0)= limλ→0+

g (λ)−g (0)
λ = limλ→0+

f (x+λy )−f (x )
λ exists.
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Continuity

Theorem

Let f be a convex function defined on a non-empty open convex set X in
R

n. Then f is continuous on X .

Let x0 ∈X and let y1, . . . ,ym be the vertices of some polytope P

which is contained in X and has x0 as an interior point. Choose r > 0
such that B [x0;r ]⊆P . Each point x of B [x0;r ] can be expressed in
the form x =λ1y1+·· ·+λmym for some λ1, . . . ,λm ≥ 0 with
λ1+·· ·+λm = 1. Setting M =max {f (y1), . . . , f (ym)} and applying
Jensen’s inequality to f , we get

f (x) = f (λ1y1+·· ·+λmym)
≤ λ1f (y 1)+·· ·+λmf (ym)
≤ λ1M +·· ·+λmM =M .

Hence f is bounded above by M on the closed ball B [x0;r ].

George Voutsadakis (LSSU) Convexity July 2023 79 / 155



Convex Functions Continuity and Differentiability

Continuity (Cont’d)

Let x ∈Rn satisfy the inequalities 0<‖x −x0‖≤ r . Then the function
g : [−r ,r ]→R defined by the equation

g(t)= f

(

x0+ t
x −x0

‖x −x0‖

)

, for − r ≤ t ≤ r ,

is convex, and g(t)≤M for −r ≤ t ≤ r . By a previous corollary,

−
M −g(0)

r
≤
g(−r)−g(0)

−r
≤
g(‖x −x0‖)−g(0)

‖x −x0‖

≤
g(r)−g(0)

r
≤
M −g(0)

r
.

Hence

|f (x)− f (x0)| = |g(‖x −x0‖)−g(0)| ≤
M − f (x0)

r
‖x −x0‖.

Thus, if x1, . . . ,xk , . . . is a sequence of points of X that converges to
x0, then f (xk)→ f (x0) as k →∞. So f is continuous at x0.
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Partial Derivatives

Let f be a real-valued function defined on an open set X in Rn and
let x = (x1, . . . ,xn) be a point of X .

Recall that the ith partial derivative ∂f
∂xi

of f at x , when it exists, is
the derivative at xi of the function of a single variable obtained by
regarding f as a function of its ith variable only, the remaining n−1
variables being held fixed to their values at x .

Thus, for i = 1, . . . ,n,

∂f

∂xi
= lim

λ→0

f (x1, . . . ,xi−1,xi +λ,xi+1, . . . ,xn)− f (x1, . . . ,xn)

λ
.

More succinctly,

∂f

∂xi
(x)= lim

λ→0

f (x +λe i )− f (x)

λ
,

where e i denotes the ith elementary vector in Rn.
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Directional Derivatives

For the directional derivative, which is a natural generalization of a
partial derivative, we simply consider the above limit with an arbitrary
vector y in Rn replacing the vector e i .

The directional derivative of f at x relative to y is defined to be
the limit

lim
λ→0

f (x +λy)− f (x)

λ
,

whenever this limit exists.

Thus the partial derivative ∂f
∂xi

is simply the directional derivative of f
relative to e i .
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One-Sided Directional Derivatives

A convex function defined on an open interval of R need not be
differentiable, but it always possesses both one-sided derivatives.

The one-sided directional derivative of f at x relative to y is
defined to be the limit

f ′(x ;y)= lim
λ→0+

f (x +λy)− f (x)

λ
,

provided that this limit exists.

We have

−f ′(x ;−y)= lim
λ→0−

f (x +λy)− f (x)

λ
.

So the directional derivative of f at x relative to y exists if and only if
both of the one-sided directional derivatives f ′(x ;y) and f ′(x ;−y )
exist and satisfy the relation f ′(x ;y)=−f ′(x ;−y).
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Notation and Remark

If, for some x ∈X , the one-sided directional derivative f ′(x ;y) exists
for each y ∈Rn, we write f ′(x ; ) to denote the function
f ′(x ; ) :Rn →R whose value at y is f ′(x ;y).

The remarks before the preceding theorem show that, for each convex
function f :X →Rn, the one-sided directional derivative f ′(x ;y) exists
for every x in the interior of X and for all y in Rn.
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Example

Consider the convex function f :Rn →R defined, for each
x = (x1, . . . ,xn), by

f (x)=‖x‖2 = x2
1 +·· ·+x2

n .

Then, for each y = (y1, . . . ,yn) in Rn,

f ′(x ;y) = lim
λ→0+

f (x+λy )−f (x )
λ

= lim
λ→0+

2λ(x1y1+···+xnyn)+λ2(y2
1+···+y

2
n )

λ

= 2x1y1+·· ·+2xnyn
= 2x ·y .

Thus f ′(x ;y) exists and equals 2x ·y .

For this particular function, the (two-sided) directional derivative of f
at x relative to y exists.

The one-sided derivative f ′(x ; ) :Rn →R is linear for each x in Rn.
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Properties of Directional Derivative Function

Theorem

Let f be a convex function defined on an open convex set X in Rn and let
x ∈X . Then f ′(x ; ) is a positively homogeneous convex function such that
f ′(x ;y)≥−f ′(x ;−y) for all y in Rn. If f has a directional derivative at x

relative to y , then f ′(x ;λy)=λf ′(x ;y) for all scalars λ.

Let µ> 0 and let y ∈Rn. Then

f ′(x ;µy)= lim
λ→0+

f (x +λµy)− f (x)

λ
= lim

λ→0+
µ
f (x +λµy)− f (x)

λµ
=µf ′(x ;y).

This shows that f ′(x ; ) is positively homogeneous.

Let y ,z ∈Rn. By the convexity of f ,

f ′(x ;y +z) = limλ→0+
f (x+λ(y+z))−f (x )

λ

≤ limλ→0+

(

1
2

f (x+2λy )−f (x )
λ

+ 1
2

f (x+2λz)−f (x )
λ

)

= f ′(x ;y)+ f ′(x ;z).
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Properties of Directional Derivative Function (Cont’d)

A previous theorem shows that f ′(x ; ) is convex.

By what we have just proved, for each y in Rn,

0= f ′(x ;0)= f ′(x ;y −y)≤ f ′(x ;y)+ f ′(x ;−y).

Hence f ′(x ;y)≥−f ′(x ;−y).

Suppose, finally, that f has a directional derivative at x relative to y .
Then f ′(x ;y)=−f ′(x ;y). If λ< 0, then, since f is positively
homogeneous,

f ′(x ;λy)= f ′(x ;(−λ)(−y ))= −λf ′(x ;−y)=λf ′(x ;y).

Hence f ′(x ;λy)=λf ′(x ;y) for all scalars λ.
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Differentiability and Gradient

Suppose now that f is a real-valued function defined on an open set X
in Rn and that x is a point of X .

Recall that f is differentiable at x if there exists a vector x ′

(necessarily unique) such that

lim
u→0

f (x +u)− f (x)−x ′ ·u
‖u‖

= 0.

When such an x ′ exists it is called the gradient of f at x .
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Gradient and Directional Derivatives

Suppose that f is a real-valued function defined on an open set X in
R

n and that x is a point of X .

Let f be differentiable at x with gradient x ′ there.

Then, for any non-zero vector y in Rn,

0= lim
λ→0

|f (x +λy)− f (x)−x ′ · (λy)|
‖λy‖

= lim
λ→0

1

‖y‖

∣

∣

∣

∣

f (x +λy)− f (x)

λ
−x ′ ·y

∣

∣

∣

∣

.

This shows that f possesses a directional derivative at x relative to y

and that f ′(x ;y)= x ′ ·y .

So f ′(x ; ) is linear.
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Directional Derivatives and Differentiability

The existence of the directional derivatives of f at x relative to all
points y in Rn neither guarantees that f is differentiable nor that
f ′(x ; ) is linear.

Theorem

Suppose that a convex function f defined on an open convex set X in Rn

possesses all its partial derivatives ∂f
∂x1

, . . . ,
∂f
∂xn

at some point x of X . Then
f is differentiable at x .

Let r > 0 be such that B(x;r)⊆X . For each u = (u1, . . . ,un) in
B(0;r), let

ψ(u)= f (x +u)− f (x)−
(

∂f

∂x1
u1+·· ·+

∂f

∂xn
un

)

.

Then ψ is convex on B(0;r).
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Directional Derivatives and Differentiability (Cont’d)

For each i = 1, . . . ,n, define a function θi on B(0;r) at a point
u = (u1, . . . ,un) of B(0;r) as follows:

θi (u)=
{

ψ(uie i )
ui

, for ui 6= 0,

0, for ui = 0.

Then θi(u)→ 0 as u → 0. For each u = (u1, . . . ,un) such that n‖u‖< r ,
Jensen’s inequality applied to the convex function ψ shows that

ψ(u) = ψ
(

1
n (nu1e1)+·· ·+ 1

n (nunen)
)

≤ 1
nψ(nu1e1)+·· ·+ 1

nψ(nunen)

= u1θ1(nu)+·· ·+unθn(nu)≤ ‖u‖(|θ1(nu)|+ · · ·+ |θn(nu)|).

But 0=ψ
(

1
2
u+ 1

2
(−u)

)

≤ 1
2
ψ(u)+ 1

2
ψ(−u). So ψ(u)≥−ψ(−u).

Thus,

−‖u‖(|θ1(−nu)|+· · ·+|θn(−nu)|)≤ψ(u)≤ ‖u‖(|θ1(nu)|+· · ·+|θn(nu)|).

So
ψ(u)
‖u‖ → 0 as u → 0. Hence f has gradient ( ∂f

∂x1
, . . . ,

∂f
∂xn

) at x .
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Convex Functions Continuity and Differentiability

Differentiability and Uniqueness of Support

Theorem

Let f be a convex function defined on an open convex set X in Rn. Then f

is differentiable at a point x0 of X if and only if it has unique support at x0.

Suppose that f is differentiable at x0. Let T :Rn →R be a support
for f at x0. Then there exists x ′ ∈Rn such that, for all x ∈Rn,
T (x0+x)= f (x0)+x ′ ·x . Let y ∈Rn. Then, for all sufficiently small
λ> 0,

f (x0+λy)− f (x0)≥λx ′ ·y .

Hence f ′(x0;y)≥ x ′ ·y . Replacing y by −y in this last inequality and
using the fact that f is differentiable at x0, we deduce that

−f ′(x0;y)= f ′(x0;−y)≥−x ′ ·y .

Hence f ′(x0;y)= x ′ ·y . It follows that x ′ = (f ′(x0;e1), . . . , f ′(x0;en)).

So f has unique support T at x0.
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Convex Functions Continuity and Differentiability

Differentiability and Uniqueness of Support (Cont’d)

Suppose next that f has unique support T :Rn →R at x0. Let m be
any real number satisfying −f ′(x0;−e1)≤m≤ f ′(x0;e1). Let L be the
line in Rn+1 defined by the equation

L= {(x0+ te1, f (x0)+mt) : t ∈R}.

It can be shown that f (x0)+mt ≤ f (x0+ te1), for x0+ te1 ∈X .

Thus, L meets the epigraph of f at (x0, f (x0)) but does not meet its
interior. A previous corollary shows that there is a support hyperplane
to the epigraph of f at (x0, f (x0)) which contains L.

The uniqueness of the support to f at x0 shows that this support
hyperplane must be the graph of T . Hence

T (x0+ te1)= f (x0)+mt =T (x0)+mt , for t ∈R.
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Convex Functions Continuity and Differentiability

Differentiability and Uniqueness of Support (Cont’d)

Thus, m is uniquely determined by T .

Thus, by the choice of m,

−f ′(x0;−e1)= f ′(x0;e1).

This shows that the partial derivative ∂f
∂x1

at x0 exists.

Similarly, the partial derivatives ∂f
∂x2

, . . ., ∂f
∂xn

exist.

By the preceding theorem, f is differentiable.
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Convex Functions Continuity and Differentiability

Criterion for Convexity

Theorem

Let f be a real-valued function which is defined and has continuous
second-order partial derivatives on a non-empty convex set X in Rn. Then
f is convex if and only if, for every x ∈X ,

n
∑

i=1

n
∑

j=1

[

∂2f

∂xi∂xj

]

x
zizj ≥ 0,

for all (z1, . . . ,zn) ∈Rn.

Let y ∈X and z = (z1, . . . ,zn) ∈Rn. Let f be the open interval of R
defined by the equation I = {λ ∈R : y +λz ∈X }. We have already seen
that the function g : I →R defined by the equation g(λ)= f (y +λz)
for λ∈ I is convex when f is. Conversely, suppose that each such
function g is convex. We show that this implies that f is convex.
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Convex Functions Continuity and Differentiability

Criterion for Convexity (Cont’d)

Let x ,y ∈X and let 0≤λ≤ 1. Write z = x −y . Since g is convex,

f (λx + (1−λ)y ) = f (y +λ(x −y))
= g((1−λ)0+λ1)
≤ (1−λ)g(0)+λg(1)
= λf (x)+ (1−λ)f (y).

This shows that f is convex. Thus f is convex on X if and only if each
function g (as above) is convex on f . Since f has continuous
second-order partial derivatives on X , each function g is differentiable
twice on f . The first two derivatives of g can be calculated from the
chain rule for functions of n variables:

g ′(λ)=
n
∑

j=1

[

∂f

∂xj

]

x
zj , g ′′(λ)=

n
∑

i=1

n
∑

j=1

[

∂2f

∂xi∂xj

]

x
zizj ,

where λ∈ I and the partial derivatives are evaluated at the point
x = y +λz . The desired result follows by a previous corollary.
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The Hessian

Suppose that f is as in the last theorem.

Then the n×n matrix whose (i , j)th element is
∂2f

∂xi∂xj
evaluated at a

point x of X is called the Hessian matrix of f at x .

The conditions which we have imposed upon f ensure that this matrix
is symmetric.

We have thus proved that:

f is convex on X if and only if its Hessian matrix is non-negative

semidefinite at each point of X .
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Subsection 6

Support Functions
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Convex Functions Support Functions

Family of Parallel Hyperplanes

Let A be a non-empty compact convex set in Rn and let u be a
nonzero vector in Rn.

For each real number α, denote by Hα the hyperplane defined by the
equation

Hα = {x ∈Rn : u ·x =α}.

Denote by H−
α the closed halfspace

defined by the equation

H−
α = {x ∈Rn : u ·x ≤α}.

As α increases, the hyperplane Hα

describes a family of parallel
hyperplanes each having u as a normal
vector.
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Convex Functions Support Functions

Family of Parallel Hyperplanes (Cont’d)

In general, there will be two values of α for which the hyperplane Hα

supports A.

These values are α1 and α2 in the figure.

Only one of these, α2 in the figure, will be such that A⊆H−
α .

Clearly A⊆H−
α if and only if u ·a ≤α for all a in A, i.e., if and only if

sup{u ·a : a ∈A}≤α.

If, in addition to the requirement A⊆H−
α , it is also demanded that Hα

supports A, then, for some point a0 of A, u ·a0 =α.

Thus Hα is a support hyperplane to A such that A⊆H−
α if and only if

α= sup {u ·a : a ∈A}.
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Convex Functions Support Functions

The Support Function of a Nonempty Compact Convex Set

The support function h, or more precisely hA, of a non-empty
compact convex set A in Rn is defined by the equation

h(u)= sup{u ·a : a ∈A}, for each u in Rn.

Since A is non-empty and bounded, for each u in Rn, the subset
{u ·a : a ∈A} of R is non-empty and bounded.

Hence h(u) is well defined.

The above definition of h makes sense even if A is only assumed to be
non-empty and bounded.

For our purposes, it will suffice to consider the restricted case when A

is a non-empty compact convex set.
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Convex Functions Support Functions

Example

We find the support function h of the regular n-crosspolytope A

defined by the equation

A= {(x1, . . . ,xn) ∈Rn : |x1|+ · · ·+ |xn| ≤ 1}.

Let u = (u1, . . . ,un).

Then

h(u) = sup{u ·a : a ∈A}

= sup{u1a1+·· ·+unan : |a1|+ · · ·+ |an| ≤ 1}

≤ sup{|u1||a1|+ · · ·+ |un||an| : |a1|+ · · ·+ |an| ≤ 1}

≤ sup{(max {|u1|, . . . , |un|})(|a1|+ · · ·+ |an|) :
|a1|+ · · ·+ |an| ≤ 1}

= max {|u1|. . . . , |un|}.
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Convex Functions Support Functions

Example (Cont’d)

Let m ∈ {1, . . . ,n} be such that |um| =max {|u1|, . . . , |un|}.
Define a point a = (a1, . . . ,an) of A by the conditions ai = 0 when i 6=m

and am is 1 or −1 according as um is non-negative or negative.

Then
u ·a = |um| =max {|u1|, . . . , |un|}.

Hence h(u)≥max {|u1|, . . . , |un|}.
We have thus shown that

h(u)=max {|u1|, . . . , |un|}.

We note that this support function is positively homogeneous and
convex.
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Convex Functions Support Functions

Positive Homogeneity and Convexity

Theorem

The support function of a non-empty compact convex set in Rn is
positively homogeneous and convex.

Let h be the support function of a non-empty compact convex set A in
R

n. Let u,v ∈Rn and let λ> 0. Then

h(λu)= sup {(λu) ·a : a ∈A} =λsup{u ·a : a ∈A}=λh(u).

This shows that h is positively homogeneous.

Also
h(u+v) = sup{(u+v) ·a : a ∈A}

= sup{u ·a+v ·a : a ∈A}

≤ sup{u ·a : a ∈A}+ sup{v ·a : a ∈A}

= h(u)+h(v).

The convexity of h now follows from a previous theorem.
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Convex Functions Support Functions

Exposed Face and Outward Normal

Suppose that h is the support function of a non-empty compact
convex set A in Rn, and that u is a non-zero vector in Rn.

By the definition of h, u ·a ≤ h(u) for each a in A, whence
A⊆ {x ∈Rn : u ·x ≤ h(u)}.

Consider the function f :A→R defined by the rule f (a)=u ·a for
each point a in A.

Then f is continuous, and so is bounded and attains its bounds on the
compact set A.

In particular, there exists a point a0 in A such that

u ·a0 = sup{u ·a : a ∈A} = h(u).

So the hyperplane with equation u ·x = h(u) supports A at a0.
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Convex Functions Support Functions

Exposed Face and Outward Normal (Cont’d)

The distance of this support hyperplane from the origin is
|h(u)|
‖u‖ ,

which simplifies to h(u) when u is a unit vector and the origin is a
point of A.

The earlier discussion shows that the set

{x ∈Rn : u ·x = h(u)}∩A= {x ∈A : u ·x = h(u)}

is a non-empty exposed face of A.

It is called the exposed face of A with outward normal u and is
denoted by Au .

Since h is positively homogeneous, for λ> 0,

Aλu = {x ∈A : (λu) ·x = h(λu)}

= {x ∈A : u ·x = h(u)}

= Au .

George Voutsadakis (LSSU) Convexity July 2023 106 / 155



Convex Functions Support Functions

Properties of the Support Function

Theorem

Let A,B be non-empty compact convex sets in Rn with support functions
hA, hB , respectively. Then the support functions hA+B of A+B and hλA of
λA, where λ≥ 0, are given by the equations hA+B = hA+hB and hλA =λhA.

Let u ∈Rn. Then

hA+B(u) = sup{u · (a+b) : a ∈A,b ∈B}

= sup{u ·a : a ∈A}+ sup {u ·b : b ∈B}

= hA(u)+hB (u).

Hence hA+B = hA+hB . Also

hλA(u)= sup{u · (λa) : a ∈A}=λsup{u ·a : a ∈A} =λhA(u).

Hence hλA =λhA.
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Convex Functions Support Functions

Properties of the Exposed Face

Theorem

Let A,B be non-empty compact convex sets in Rn. Then, for each non-zero
vector u in Rn and for each λ≥ 0, (A+B)u =Au +Bu and (λA)u =λAu .

We note that

(A+B)u = {a+b : a ∈A,b ∈B ,hA+B(u)= u · (a+b)}

= {a+b : a ∈A,b ∈B ,hA(u)+hB (u)= u ·a+u ·b}

= {a+b : a ∈A,b ∈B ,hA(u)= u ·a,hB(u)= u ·b}

= {a ∈A : hA(u)=u ·a}+ {b ∈B : hB(u)=u ·b}

= Au +Bu .

We also have, for λ≥ 0,

(λA)u = {λa : a ∈A,hλA(u)= u · (λa)}

= λ{a ∈A :λhA(u)=λu ·a}

= λ{a ∈A : hA(u)= u ·a}

= λAu .
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Convex Functions Support Functions

Convex Sets Determined By Support Functions

Theorem

Let h be the support function of a non-empty compact convex set A in Rn.
Then A= {x ∈Rn : u ·x ≤ h(u) for all u ∈Rn}.

We prove the theorem by showing that:

(i) If a ∈A,u ∈Rn, then u ·a ≤ h(u);
(ii) If a0 ∈Rn\A, then u ·a0 > h(u) for some u ∈Rn.

Statement (i) follows immediately from the definition of h.

Suppose that a0 ∈Rn\A. Then {a0} and A can be strictly separated by
a hyperplane. Thus there exists u ∈Rn such that

h(u)= sup{u ·a : a ∈A} < u ·a0.

This verifies Statement (ii).
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Convex Functions Support Functions

Positively Homogeneous Convex Functions as Supports

Theorem

Let g :Rn →R be a positively homogeneous convex function. Then the set
A defined by the equation

A= {x ∈Rn : u ·x ≤ g(u) for all u ∈Rn
}

is non-empty, compact, convex, and has support function g .

Let u ∈Rn. Since g is convex, it has support at u. So there exist
a0 ∈R, a ∈Rn such that a0+a ·u = g(u) and a0+a ·v ≤ g(v ), for
v ∈Rn. Putting v =λu, we get, for all λ≥ 0,

a0+λ(a ·u)≤ g(λu)=λg(u)=λa0+λ(a ·u).

Thus, a0 ≤λa0 for all λ≥ 0. Hence, a0 = 0. Putting a0 = 0 in the same
relations, we find that a ·u = g(u) and a ∈A.
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Convex Functions Support Functions

Positively Homogeneous Convex Functions (Cont’d)

We have just shown that A is non-empty.

From its definition, A is an intersection of closed halfspaces, and so is
closed and convex.

For each a = (a1, . . . ,an) in A, and i = 1, . . . ,n,

−g(−e i)≤ a ·e i = ai ≤ g(e i).

This shows that A is bounded.

Thus A is a non-empty compact convex set.

Denote by h the support function of A. Let u ∈Rn.

By the first part of this proof, there is a ∈A for which a ·u = g(u).
Hence, g(u)≤ h(u). For each a in A, a ·u ≤ g(u). So h(u)≤ g(u).

Thus g = h and g is the support function of A.
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Convex Functions Support Functions

The Gauge Function

Let A be a closed convex set in Rn having the origin as an interior
point.

Then it follows easily that λA⊆µA whenever 0≤λ≤µ.

Moreover, for each x in Rn, there is some λ≥ 0 such that x ∈λA.

Thus Rn can be expressed as an increasing union of convex sets as
follows:

R
n =

⋃

(λA :λ≥ 0).

The gauge function g , or more precisely gA, of A is the function
g :Rn →R defined, for each x in Rn, by the equation

g(x)= inf {λ≥ 0 : x ∈λA}.

In view of the earlier comments, g is well defined.
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Convex Functions Support Functions

Properties of the Gauge Function

Some immediate consequences of the definition are:

(i) g(0)= 0 and g(x)≥ 0 for x ∈Rn;
(ii) g(x)≤ 1 when x ∈A;
(iii) If g(x)= 0, then {µx :µ≥ 0} ⊆A;
(iv) g(x)= 0 for all x ∈Rn if and only if A=Rn.

Suppose now that g(x)> 0. Then, for each ε> 0, x ∈ (g(x)+ε)A.
Hence x

g (x )+ε ∈A. Letting ε→ 0+ and using our assumption that A is

closed, we deduce that x
g (x) ∈A. Hence x ∈ g(x)A. In particular, if

0< g(x)≤ 1, then x ∈ g(x)A⊆A. We have thus established:

(v) A= {x ∈Rn : g(x)≤ 1}.
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Convex Functions Support Functions

Positive Homogeneity and Convexity of the Gauge Function

Theorem

The gauge function of a closed convex set having the origin as an interior
point is positively homogeneous and convex.

Let g be the gauge function of a closed convex set A in Rn which
contains the origin in its interior.

Let x ∈Rn and let λ> 0. Then λx ∈µA if and only if x ∈ µ
λA. It

follows easily from the definition of g that

1

λ
g(λx)=

1

λ
inf {µ≥ 0 :λx ∈µA}= inf

{µ

λ
: x ∈

µ

λ
A

}

= g(x).

Trivially, g(0x)= 0g(x). Thus g is positively homogeneous.

Let x ,y ∈Rn and let λ,µ≥ 0 with λ+µ= 1. Then, for each ε> 0,
x ∈ (g(x)+ε)A, y ∈ (g(y )+ε)A. So λx +µy ∈ (λg(x)+µg(y )+ε)A.
Since ε> 0 is arbitrary, g(λx +µy)≤λg(x)+µg(y ). This shows that
g is convex.

George Voutsadakis (LSSU) Convexity July 2023 114 / 155



Convex Functions Support Functions

Example

We find the gauge function g of the n-cube A defined by the equation

A= {(x1, . . . ,xn) : |x1|, . . . , |xn| ≤ 1}.

Let u = (u1, . . . ,un). Then, for λ≥ 0,

λA= {(x1, . . . ,xn) : |x1|, . . . , |xn| ≤λ}.

So u ∈λA if and only if max{|u1|, . . . , |un|} ≤λ. Thus,

g(u)=max {|u1|, . . . , |un|}.
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Convex Functions Support Functions

Nonnegative Positively Homogeneous Convex Functions

Theorem

Let f :Rn →R be a non-negative positively homogeneous convex function.
Then the set A defined by the equation

A= {x ∈Rn : f (x)≤ 1}

is closed, convex, contains the origin in its interior and has gauge function
f .

The function f is continuous by a previous theorem. Thus A is closed
and contains the open set {x ∈Rn : f (x)< 1}, which contains the
origin. The set A is convex, being the level set of a convex function.
Hence A is a closed convex set containing the origin in its interior.
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Convex Functions Support Functions

Nonnegative Positively Homogeneous Convex Functions II

Denote by g the gauge function of A.

Then, as proved earlier, A= {x ∈Rn : g(x)≤ 1}.

Suppose that u ∈Rn satisfies g(u)> 0.

Since g is positively homogeneous, g
(

u
g (u)

)

= 1. Hence u
g (u) ∈A.

Since f is positively homogeneous and u
g (u)

∈A, f
(

u
g (u)

)

= f (u)
g (u)

≤ 1.

This shows that f (u)≤ g(u).

If g(u)= 0, then, for all λ> 0, λu ∈A.

So 0≤ f (λu)=λf (u)≤ 1. It follows that f (u)= 0.

Thus f (u)≤ g(u) for all u ∈Rn.

By a similar argument, g(u)≤ f (u) for all u ∈Rn.

Hence f = g and f is the gauge function of A.
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Example

We have already seen that the support function of the regular
n-crosspolytope

{(x1, . . . ,xn) : |x1|+ · · ·+ |xn| ≤ 1}

and the gauge function of its dual, the n-cube

{(x1, . . . ,xn) : |x1|, . . . , |xn| ≤ 1}

are the same, namely the function f :Rn →R defined by the equation

f (u)=max {|u1|, . . . , |un|}, for u = (u1, . . . ,un) ∈Rn
.
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Convex Functions Support Functions

Duality: Support and Gauge Functions

Theorem

Suppose that g ,h are the gauge and support functions, respectively, of a
compact convex set A in Rn which has the origin as an interior point. Then
the gauge and support functions of the dual A∗ of A are h,g , respectively.

If u ∈A∗, then u ·a ≤ 1 for all a in A, whence h(u)≤ 1.

Conversely, if h(u)≤ 1, then u ·a ≤ 1 for all a in A, and so u ∈A∗.
Thus,

A∗ = {x ∈Rn : h(x)≤ 1}.

Since A contains the origin, h is non-negative.

Thus h is a non-negative, positively homogeneous convex function.

Hence, by the preceding theorem, h is the gauge function of A∗.

By what we have just proved, the support function of A∗ is the gauge
function of A∗∗ =A, viz. g .
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Subsection 7

The Convex Programming Problem
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Convex Functions The Convex Programming Problem

The Convex Programming Problem

Throughout this section f ,g1, . . . ,gm will denote convex functions
defined on Rn.

The convex programming problem is to minimize f (x) subject to
the constraints x ≥0, g1(x)≤ 0, . . . ,gm(x)≤ 0.

The feasible set for the problem is the convex set X defined by the
equation

X = {x ∈Rn : x ≥ 0,g1(x)≤ 0, . . . ,gm(x)≤ 0}.

Thus the convex programming problem is to find x0 ∈X such that
f (x0)≤ f (x) for all x ∈X .
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Convex Functions The Convex Programming Problem

Existence of Coefficients

Theorem

Let f1, . . . , fk be convex functions defined on a nonempty convex set Y in
R

n. Suppose that there exists no y in Y such that f1(y)< 0, . . ., fk(y)< 0.
Then there exist a1, . . . ,ak ≥ 0, not all zero, such that

a1f1(y)+·· ·+ak fk(y)≥ 0, for all y ∈Y .

Define a set C in Rk by the equation

C = {(z1, . . . ,zk) : there is y ∈Y such that fi(y )< zi for i = 1, . . . ,k}.

Let u = (u1, . . . ,uk), v = (v1, . . . ,vk) ∈C . Let λ,µ≥ 0 with λ+µ= 1.
Then there exist a,b ∈Y such that, for i = 1, . . . ,k , fi(a)< ui and
fi(b)< vi . The convexity of f1, . . . , fk shows that, for i = 1, . . . ,k ,

fi (λa+µb)≤λfi(a)+µfi (b)<λui +µvi .

Hence, since λa+µb ∈Y , λu+µv ∈C . Thus C is convex.
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Convex Functions The Convex Programming Problem

Existence of Coefficients (Cont’d)

By hypothesis, C does not contain the origin of Rk .

So the origin and C can be separated by a hyperplane.

Thus, there exist scalars a1, . . . ,ak , not all zero, such that, for all y ∈Y
and all λ1, . . . ,λk > 0,

a1(f1(y)+λ1)+·· ·+ak(fk(y)+λk )≥ 0.

Letting λ1 →∞, whilst keeping λ2, . . . ,λk fixed in, we deduce that
a1 ≥ 0. Similarly, a2 ≥ 0, . . ., ak ≥ 0.

Letting λ1 → 0+, . . . ,λk → 0+, we deduce that, for all y in Y ,

a1f1(y)+·· ·+ak fk(y)≥ 0.
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Lagrangian Function and Saddle-Point Problem

The Lagrangian function associated with the convex programming
problem is the function F of the m+n variables x1, . . . ,xn, y1, . . . ,ym
defined by the equation

F (x ,y)= f (x)+y1g1(x)+·· ·+ymgm(x),

where x = (x1, . . . ,xn), y = (y1, . . . ,ym).

The saddle-point problem is to determine a saddle point of F , that
is, a point (x0,y0) of Rm+n such that x0 ≥ 0, y0 ≥0 and

F (x0,y)≤F (x0,y0)≤ F (x ,y0),

for all x ≥ 0, y ≥0.
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Saddle-Points and Convex Programming Problem

Theorem

Let (x0,y0) be a saddle point of the Lagrangian function F . Then x0 is a
solution to the convex programming problem and F (x0,y0)= f (x0).

Let x0 = (x0
1 , . . . ,x0

n)≥ 0 and y0 = (y0
1 , . . . ,y0

m)≥ 0. For all
y = (y1, . . . ,ym)≥ 0, F (x0,y0)≥ F (x0,y). So

y0
1 g1(x0)+·· ·+y0

mgm(x0)≥ y1g1(x0)+·· ·+ymgm(x0).

By fixing y2, . . . ,ym and letting y1 →∞, we deduce that g1(x0)≤ 0.

Similarly, g2(x0)≤ 0, . . ., gm(x0)≤ 0.

Thus x0 is a point of the feasible set X of the convex programming
problem.
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Saddle-Points and Convex Programming Problem (Cont’d)

Putting y = 0 in the saddle-point inequality F (x0,y0)≥ F (x0,y) and
using the fact that x0 ∈X , we deduce that

f (x0)≤ f (x0)+y0
1 g1(x0)+·· ·+y0

mgm(x0).

Therefore, since y0 ≥0 and gi (x0)≤ 0,

0≤ y0
1 g1(x0)+·· ·+y0

mgm(x0)≤ 0.

Hence

y0
1 g1(x0)+·· ·+y0

mgm(x0)= 0 and F (x0,y0)= f (x0).

Since F (x0,y0)≤ F (x ,y0) for all x ≥ 0, we deduce that, for all x ∈X ,

f (x0)≤ f (x)+y0
1 g1(x)+·· ·+y0

mgm(x)≤ f (x).

This shows that x0 is a solution to the convex programming problem.
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A Partial Converse

It is not true that, given any solution x0 of the convex programming
problem, there is always a y0 such that (x0,y0) is a saddle point of
the Lagrangian function F .

Theorem

Suppose that x0 is a solution of the convex programming problem.
Suppose also that there exists x∗ ≥ 0 such that g1(x

∗)< 0, . . ., gm(x
∗)< 0.

Then there exists y0 ∈Rm for which (x0,y0) is a saddle point of the
Lagrangian function F .

Suppose that x belongs to the nonnegative orthant Y of Rn. Then
not all of the following inequalities can hold: g1(x)< 0, . . ., gm(x)< 0,
f (x)− f (x0)< 0. Thus, by a previous theorem, there exist
a1, . . . ,am,a0 ≥ 0, not all zero, such that

a1g1(x)+·· ·+amgm(x)+a0(f (x)− f (x0))≥ 0

whenever x ∈Y , i.e., x ≥ 0.
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A Partial Converse (Cont’d)

If a0 = 0, then

0> a1g1(x
∗)+·· ·+amgm(x

∗)≥ 0,

which is impossible. Thus a0 > 0. For i = 1, . . . ,m, let y0
i
= ai

a0
and let

y0 = (y0
1 , . . . ,y0

m)≥ 0. Then, for any x ≥ 0, we deduce from the
displayed inequality that

f (x0)≤ f (x)+y0
1 g1(x)+·· ·+y0

mgm(x)= F (x ,y0).

Hence

f (x0)≤ f (x0)+y0
1 g1(x0)+·· ·+y0

mgm(x0)≤ f (x0).

So y0
1 g1(x0)+·· ·+y0

mgm(x0)= 0. Thus, for all x ≥ 0,
F (x0,y0)= f (x0)≤F (x ,y0). For y = (y1, . . . ,ym)≥ 0,

F (x0,y0)= f (x0)≥ f (x0)+y1g1(x0)+·· ·+ymgm(x0)= F (x0,y).

This shows that (x0,y0) is a saddle point of F .
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Kuhn-Tucker Conditions

Theorem (Kuhn-Tucker Conditions)

Suppose that the convex functions f ,g1, . . . ,gm :Rn →R are differentiable.
Then (x0,y0), where x0 = (x0

1 , . . . ,x0
n) and y0 = (y0

1 , . . . ,y0
m), is a saddle

point of the Lagrangian function F if and only if

x0 ≥ 0,

∂F
∂xj

(x0,y0)= ∂f
∂xj

(x0)+
∑m

i=1
y0
i
∂gi
∂xj

(x0)≥ 0,

∂F
∂xj

(x0,y0)= 0, if x0
j
> 0,

and
y0 ≥ 0,
∂F
∂yj

(x0,y0)= gj(x0)≤ 0,

∂F
∂yj

(x0,y0)= 0, if y0
j
> 0.
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Proof

Suppose first that (x0,y0) is a saddle point of F .

Then certainly the first conditions of each triple are satisfied.

For each j = 1, . . . ,n,

F (x0+λe j ,y0)≥ f (x0,y0), if λ≥−x0
j .

It now follows, by elementary calculus, that

∂F

∂xj
(x0,y0)≥ 0 and

∂F

∂xj
(x0,y0)= 0, if x0

j > 0.

Thus, the last two conditions of the first triple are satisfied.

By a previous theorem, the remaining conditions are also satisfied.
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Proof (Converse)

Suppose next that the six Kuhn-Tucker conditions are satisfied.
The function F (x ,y0) of x , for fixed y0, is convex and differentiable,
because f ,g1, . . . ,gm are, and y0 ≥ 0. Thus F (x ,y0) has unique
support at x0. Hence, for all x = (x1, . . . ,xn)≥ 0,

F (x ,y0) ≥ F (x0,y0)+ (x1 −x0
1 )

∂F
∂x1

(x0,y0)+·· ·+ (xn−x0
n)

∂F
∂xn

(x0,y0)

= F (x0,y0)+x1
∂F
∂x1

(x0,y0)+·· ·+xn
∂F
∂xn

(x0,y0)

≥ F (x0,y0).

The first set of conditions was used here.
Finally for y = (y1, . . . ,ym)≥ 0, we have

F (x0,y) = F (x0,y0)+ (y1 −y0
1 )g1(x0)+·· ·+ (ym−y0

m)gm(x0)
= F (x0,y0)+y1g1(x0)+·· ·+ymgm(x0)
≤ F (x0,y0).

Here we have used the second set of conditions.
We have thus shown that (x0,y0) is a saddle point of F .
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Example

Solve the convex programming problem:

minimize −6x1+2x2
1 −2x1x2+2x2

2

subject to x1+x2 ≤ 2, x1 ≥ 0, x2 ≥ 0.

Write f (x1,x2)=−6x1+2x2
1 −2x1x2+2x2

2 and g(x1,x2)= x1+x2−2.

The Lagrangian function F is defined by the equation

F (x ,y)=−6x1+2x2
1 −2x1x2+2x2

2 +y1(x1+x2−2).

The Kuhn-Tucker conditions give the following equations and
inequalities:

x1(−6+4x1−2x2+y1)= 0, −6+4x1−2x2+y1 ≥ 0,

x2(−2x1+4x2+y1)= 0, −2x1+4x2+y1 ≥ 0,

y1(x1+x2−2)= 0, x1+x2−2≤ 0,

x1 ≥ 0, x2 ≥ 0, y1 ≥ 0.
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Example (Cont’d)

The three equations have the following six solutions:

x1 x2 y1

(i) 0 0 0
(ii) 0 2 −8
(iii) 3

2
0 0

(iv) 2 0 −2
(v) 2 1 0
(vi) 3

2
1
2

1.

Of these solutions only (vi) satisfies all the remaining inequalities.

Hence f has minimal value −11
2

at (3
2

,
1
2
).
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Subsection 8

Matrix Inequalities
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A Problem Involving Quadratic Forms

Associated with each real symmetric square matrix A of order n, there
is a quadratic function q :Rn →R defined for each x in Rn by the
equation

q(x)= xTAx = (Ax) ·x .

Let u1, . . . ,un be an orthonormal sequence in Rn consisting of
eigenvectors of A corresponding to the eigenvalues λ1, . . . ,λn of A.

Then, for i = 1, . . . ,n, uT
i
Au i = (Au i) ·u i = (λiu i ) ·u i =λi .

Hence (q(u1), . . . ,q(un))= (λ1, . . . ,λn).

We consider the following problem:

If v1, . . . ,v n is any orthonormal sequence in Rn, how are the points
u = (q(u1), . . . ,q(un)) and v = (q(v1), . . . ,q(v n)) related to one
another?
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Answering the Problem

Express each v i , for i = 1, . . . ,n, as a linear combination of u1, . . . ,un,
thus:

v i = (v i ·u1)u1+·· ·+ (v i ·un)un.

Hence

q(v i ) = ((v i ·u1)Au1+·· ·+ (v i ·un)Aun) ·
((v i ·u1)u1+·· ·+ (v i ·un)un)

= (λ1(v i ·u1)u1+·· ·+λn(v i ·un)un) ·
((v i ·u1)u1+·· ·+ (v i ·un)un)

= (v i ·u1)
2λ1+·· ·+ (v i ·un)

2λn

= (v i ·u1)
2q(u1)+·· ·+ (v i ·un)

2q(un).

Thus v =Su, where S is the square matrix of order n whose (i , j)th
element is (v i ·u j)

2.
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Double Stochasticity of the Matrix S

The matric S is a square matrix all of whose elements are
non-negative real numbers.

Squaring both sides of equation v i = (v i ·u1)u1+·· ·+ (v i ·un)un, and
using the orthonormality of the sequences u1, . . . ,un and v1, . . . ,vn, we
deduce that, for i = 1, . . . ,n,

(v i ·u1)
2+·· ·+ (v i ·un)

2 = ‖v i‖2 = 1.

Similarly, for j = 1, . . . ,n,

(u j ·v1)
2+·· ·+ (u j ·vn)

2 = ‖u j‖2 = 1.

Thus S is a square matrix of order n whose elements are non-negative
real numbers, and the sum of the elements in each of its rows and
columns is equal to 1.

Such a matrix is called a doubly stochastic matrix.

The set of all doubly stochastic n×n matrices will be denoted by Ωn.
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Permutation Matrices

The simplest example of a doubly stochastic matrix is a permutation

matrix, which is a square matrix with precisely one 1 in each row and
column, all of its other elements being zero.

Equivalently, a permutation matrix is one that can be obtained by
permuting the rows of an identity matrix.

Clearly every convex combination (in the obvious sense) of
permutation matrices is a doubly stochastic matrix.

The converse of this result, namely that every doubly stochastic
matrix is a convex combination of permutation matrices, is also true
and it is known as Birkhoff’s Theorem.

This theorem, which will be proven here, is perhaps the most
fundamental result in the whole study of doubly stochastic matrices.
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n×n Matrices and Rn2

In a natural way we may regard each real n×n matrix A= [aij ] as a

point a = (aij) of Rn2
, the n2 elements of A corresponding in some

prescribed way to the n2 coordinates of a.

To be definite, we set up the correspondence

A= [aij ]↔ (a11, . . . ,a1n,a21, . . . ,a2n, . . . ,an1, . . . ,ann)= a.

This correspondence is a bijection between the set of all real n×n

matrices and the set of points in Rn2
.

It preserves linear combinations, and so we can usefully identify the
matrix A with the point a.

Under this identification, we may think of the set Ωn of doubly
stochastic n×n matrices as a set in Rn2

and refer to some of its
members as being permutation matrices.
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Lemma on Non-Singular 0-1-Block Matrices

Lemma

Let B be a non-singular square matrix of order n that can be partitioned in

the form

[

P

Q

]

, where P and Q are matrices of 0’s and 1’s, such that no

column of either P or Q contains more than one 1. Then detB =±1.

We argue by induction on n. The case n= 2 is trivial.

Suppose that n≥ 3 and that the assertion is true for square matrices
of order n−1. Let B be as in the statement of the lemma.

At least one column of B contains precisely one 1.

Otherwise the rows of P could be added to the negatives of the rows
of Q to produce a zero row, contradicting the non-singularity of B.

Expanding detB by a column with precisely one 1, detB =±detC .

But C is a square matrix of order n−1 of the form in the lemma.

Hence, detB =±1, since detC =±1 by the induction hypothesis.
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Birkhoff’s Theorem

Theorem

The set Ωn is a polytope in Rn2
whose extreme points are the permutation

matrices in Ωn. Every doubly stochastic matrix is a convex combination of
permutation matrices.

The set Ωn is polyhedral, since it consists of those points (xij ) in Rn2

satisfying the relations:

xij ≥ 0, i , j = 1, . . . ,n;
∑n

j=1
xij = 1, i = 1, . . . ,n;

∑n
i=1

xij = 1, j = 1, . . . ,n−1.

Note that the equality x1n+·· ·+xnn = 1 follows from the 2n−1
equations in the last two lines.

The relations of the first two lines show that, if (xij ) ∈Ωn, then
0≤ xij ≤ 1. Hence Ωn is a bounded polyhedral set, i.e., a polytope.
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Birkhoff’s Theorem (Cont’d)

That each permutation matrix in Ωn is one of its extreme points
follows easily from the definitions of extreme point and permutation
matrix. The non-trivial part of the proof is to show that each extreme
point of Ωn is a permutation matrix.
Let (aij) be an extreme point of Ωn. Then, by a previous theorem,
(aij) is a nonnegative basic solution for the system of the 2n−1
equations in the last two lines above, i.e., of Ax =b, where

A=































111 . . .11 000 . . .00 · · · 000 . . .00
000 . . .00 111 . . .11 · · · 000 . . .00

...
...

...
000 . . .00 000 . . .00 · · · 111 . . .11
100 . . .00 100 . . .00 · · · 100 . . .00
010 . . .00 010 . . .00 · · · 010 . . .00

...
...

...
000 . . .10 000 . . .10 · · · 000 . . .10































and b= (1, . . . ,1) ∈R2n−1
.
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Birkhoff’s Theorem (Cont’d)

At least n2− (2n−1)= (n−1)2 of the aij must be zero. The others,
a1, . . . ,a2n−1, say, satisfy a system of linear equations of the form

B(a1, . . . ,a2n−1)=b,

where B is a non-singular (2n−1)× (2n−1) submatrix of A.

The matrix B satisfies the conditions of the lemma. So detB =±1.

Thus the elements of B−1, and hence of (a1, . . . ,a2n−1), are integers.

It follows that the doubly stochastic matrix (aij) has only integer
elements. So it must be a permutation matrix.

We complete the proof by noting that a polytope is the convex hull of
its extreme points.
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The λ-Set of a Real Symmetric Matrix

Suppose now that λ is an n-tuple of the (necessarily real) eigenvalues,
in some order, of a real symmetric n×n matrix A.

The set ΛA of all such n-tuples λ is called the λ-set of A.

Clearly ΛA is a finite set containing at most n! points.

Theorem

Let f :X →R be a convex function which is defined on a convex set X in
R

n containing the λ-set ΛA of a real symmetric n×n matrix A. Let
(λ1, . . . ,λn) be a point of ΛA where f assumes its maximum on ΛA. Then,
for any orthonormal sequence v1, . . . ,vn in Rn,

f (vT
1 Av1, . . . ,vT

n Avn)≤ f (λ1, . . . ,λn).
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Proof of the Theorem

We show:
First that the point v = (vT

1
Av1, . . . ,vT

n Avn) lies in X ;
Then that f (v)≤ f (λ), where λ= (λ1, . . . ,λn).

Let u1, . . . ,un be an orthonormal sequence of eigenvectors of A

corresponding to the eigenvalues λ1, . . . ,λn. Then, as we proved at the
beginning of this section, there is a matrix S of Ωn such that v =Sλ.
By Birkhoff’s Theorem, there exist µ1, . . . ,µm ≥ 0 with µ1+·· ·+µm = 1
such that S =µ1P1+·· ·+µmPm, where P1, . . . ,Pm are the
permutation matrices in Ωn. Hence

v =Sλ=µ1(P1λ)+·· ·+µm(Pmλ) ∈ convΛA ⊆X .

The convexity of f shows that

f (v)≤µ1f (P1λ)+·· ·+µmf (Pmλ)≤µ1f (λ)+·· ·+µmf (λ)= f (λ).
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Nonnegative Semidefinite Matrices

Theorem

Let A be a non-negative semidefinite n×n matrix with eigenvalues
λ1, . . . ,λn. Then, for any orthonormal sequence v1, . . . ,vn in Rn,

detA=λ1 · · ·λn ≤
n
∏

j=1

vT
j Av j .

Since A is non-negative semidefinite, λ1, . . . ,λn ≥ 0. The function
f :X →R defined on the non-negative orthant X of Rn by the
equation

f (x1, . . . ,xn)=−(x1 · · ·xn)1/n, for x1, . . . ,xn ≥ 0,

is easily seen to be convex from a previous corollary. The λ-set of A is
clearly contained in X . The preceding theorem shows that

−
(

n
∏

j=1

vT
j Av j

)1/n

≤−(λ1 · · ·λn)
1/n =−(detA)1/n.
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Hadamard’s Determinant Inequality

Theorem (Hadamard’s Determinant Inequality)

Let A= [aij ] be a real n×n matrix. Then

(detA)2 ≤ (a2
11+·· ·+a2

n1) · · ·(a
2
1n+·· ·+a2

nn).

If A is nonnegative semidefinite, then detA≤ a11 · · ·ann.

Let B = [bij ] denote the nonnegative semidefinite matrix ATA.

Applying the preceding theorem to B, and using the orthonormal
sequence e1, . . . ,en of elementary vectors, we deduce that

(detA)2 = detB ≤
n

∏

j=1

eT
j Be j = b11 · · ·b1n.

Hence (detA)2 ≤ (a2
11+·· ·+a2

n1) · · ·(a
2
1n+·· ·+a2

nn).

When A is itself non-negative semidefinite, we apply the preceding
theorem to A and the sequence e1, . . . ,en to get detA≤ a11 · · ·ann.
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Minkowski’s Determinant Inequality

Theorem (Minkowski’s Determinant Inequality)

Let A,B be nonnegative semidefinite n×n matrices. Then

(det(A+B))1/n ≥ (detA)1/n+ (detB)1/n.

Let v1, . . . ,vn be an orthonormal sequence of eigenvectors of the
non-negative semidefinite matrix A+B corresponding to eigenvalues
λ1, . . . ,λn. Then, using previous proven inequalities,

(det(A+B))1/n = (λ1 · · ·λn)
1/n

= (
∏n

j=1
vT
j
(A+B)v j)

1/n

= (
∏n

j=1
(vT

j
Av j +vT

j
Bv j))

1/n

≥ (
∏n

j=1
vT
j
Av j)

1/n+ (
∏n

j=1
vT
j
Bv j)

1/n

≥ (detA)1/n+ (detB)1/n.
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Diagonals of a Square Matrix

A diagonal of a real n×n matrix A= [aij ] is a finite sequence
a1σ(1), . . . ,anσ(n) of elements of A, where σ(1), . . . ,σ(n) is a
permutation of 1, . . . ,n.

To form such a diagonal:

We first choose any element d1 in the first row of A.
Next we choose any element d2 in the second row of A not lying in the
same column as d1.
Then we choose any element d3 in the third row of A not lying in the
same column as either d1 or d2.
Continuing in this way, we produce a diagonal d1, . . . ,dn of A.

Clearly A has at most n! different diagonals.

The diagonal a11, . . . ,ann is called the leading diagonal of A.
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Positive Diagonals and Doubly Stochastic Matrices

A diagonal d1, . . . ,dn of A is said to be positive if d1, · · · ,dn > 0.

It is a non-trivial fact that a doubly stochastic matrix always has a
positive diagonal.

Indeed, by Birkhoff’s Theorem, each doubly stochastic matrix A in Ωn

can be expressed in the form

A=λ1P1+·· ·+λmPm,

where P1, . . . ,Pm are permutation matrices and λ1, . . . ,λm > 0 with
λ1+·· ·+λm = 1.

For each i = 1, . . . ,n, let P1, have a 1 in its ith row and σ(i)th column.
Then a1σ(1), . . . ,anσ(n) is a positive diagonal of A.
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A Corollary to Birkhoff’s Theorem

Theorem

Let C = [cij ] be a real n×n matrix. Then there exists a diagonal
c1σ(1), . . . ,cnσ(n) of C such that

c1σ(1)+·· ·+cnσ(n) ≤
n
∑

i ,j=1

cij sij ,

for every doubly stochastic n×n matrix S = [sij ].

Define a function f :Ωn →R by the equation

f (S)=
n
∑

i ,j=1

cij sij ,

for each doubly stochastic matrix S = [sij ] in Ωn. Let P1, . . . ,Pm be
the permutation matrices in Ωn. Choose one of these matrices,
P = [pij ], say, for which f (P)=min {f (P1), . . . , f (Pm)}. Suppose that
the 1 in the ith row of P lies in its σ(i)th column.
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A Corollary to Birkhoff’s Theorem (Cont’d)

By Birkhoff’s Theorem, each doubly stochastic matrix S = [sij ] in Ωn

can be written in the form S =λ1P1+·· ·+λmPm, for some
λ1, . . . ,λm ≥ 0 with λ1+·· ·+λm = 1. Thus,

f (S)=λ1f (P1)+·· ·+λmf (Pm)≥ f (P).

Finally,

c1σ(1)+·· ·+cnσ(n) =
n
∑

i ,j=1

cijpij

= f (P)
≤ f (S)

=
n
∑

i ,j=1

cij sij .
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Doubly Stochastic Matrices and Average Size of a Diagonal

Theorem

Each doubly stochastic n×n matrix has a positive diagonal whose harmonic
mean is at least 1

n .

Let A= [aij ] be an n×n doubly stochastic matrix. Define an n×n

matrix [cij ] by the equations

cij =
{

1
aij

, for aij > 0

n2+1, foraij = 0.

By the preceding theorem, some diagonal c1σ(1), . . . ,cnσ(n) of [cij ]
satisfies the inequalities

c1σ(1)+·· ·+cnσ(n) ≤
n
∑

i ,j=1

cijaij ≤ n2
.

Now all the terms on the left-hand side are positive, and so no term
can be equal to n2+1.
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Convex Functions Matrix Inequalities

Doubly Stochastic Matrices and Size of a Diagonal (Cont’d)

This implies that, for i = 1, . . . ,n, aiσ(i) > 0 and ciσ(i) = 1
aiσ(i)

. Thus,

from the inequality, we get

1

a1σ(1)
+·· ·+

1

anσ(n)
≤ n2

.

Consequently, the harmonic mean

(

1

n

(

1

a1σ(1)
+·· ·+

1

anσ(n)

))−1

of the diagonal a1σ(1), . . . ,anσ(n) is at least 1
n
.
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Convex Functions Matrix Inequalities

A Consequence

Corollary

Each doubly stochastic n×n matrix [aij ] has a positive diagonal
a1σ(1), . . . ,anσ(n) satisfying the inequalities

a1σ(1)+·· ·+anσ(n) ≥ 1 and a1σ(1) · · ·anσ(n) ≥ n−n.

By the theorem,
1

n
≤

n
1

a1σ(1)
+·· ·+ 1

anσ(n)

.

But the harmonic arithmetic and geometric means satisfy

n
1

a1σ(1)
+·· ·+ 1

anσ(n)

≤ n
√

a1σ(1) · · ·anσ(n) ≤
a1σ(1)+·· ·+anσ(n)

n
.

Therefore, a1σ(1)+·· ·+anσ(n) ≥ 1 and a1σ(1) · · ·anσ(n) ≥ n−n.
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