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Convex Functions [SConvexiFunctions on the Realtine

Subsection 1

Convex Functions on the Real Line
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Convex Functions

o We will be concerned with a real-valued function f:/ — R defined on
a non-degenerate (i.e., contains more than one point) interval | of the
real line.

o Such a function f is said to be convex if

f(Ax+py) < Af(x)+uf(y),

whenever x,y €/ and A, u=0 with A+pu=1.

o Geometrically, f is convex if every (et A+ /0D

chord joining two points on its
graph lies on or above the graph.

o If —f: 1 — R is convex, then

f:1— 1R is said to be concave. (,,,W:,,(,“,,,),

]
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Convex Functions

o We show that the square function f: IR — R defined for real x by the

equation
f(x) = x>
is convex.
o Let x,yeR and let A, u=0 with A +pu=1.
o Then

AF(x) +puf (y) = F(Ax +py) Ax® + py? = (Ax + py)?
= AxX%+uy? —A2x% =2 uxy — u?y?
= M1-A)x%=2Auxy +u(1—p)y?
= Aux®=2Auxy + Auy?
= Ap(x*=2xy +y?)
= Au(x—y)?>=0.
o This establishes the convexity of the square function.



Convex Functions

Theorem (Three Chords Lemma)

Let f:/ — R be a convex function and let x,y,z €/ satisfy x<z<y. Then

f(2)=F(x) _ ) =F(x) _ Fy)=(2)
z-x y-x y-z
N -z z-X
o We express z as a convex combination of x, y: z= X+ y.
y=x y—-x
By the convexity of f, f(z) < uf(x)+ Z_Xf(y). Thus,
y—=Xx y=x
y—z—-y+x zZ—Xx _Z-x B
F(2)= ) = 2225 )+ 22 () = 22 () - 1)
So, we get LA =X _F)=F9
z—x y—X

The other inequality follows similarly.
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Convex Functions

Corollary
Let f:/ — IR be a convex function and let ae /. Then the function
g :1\{a} = R defined by the equation

g(x)—f(x) e ), x € [\{a},

QJ

is increasing.

o If b,cel\{a} with b< c, then we must show that g(b) < g(c).

Either b<c<a, b<a<c, or a<b<c. Suppose that b<c<a. Then
the theorem with x = b, y = a, z = c shows that g(b) < g(c).

The other cases can be proved in a similar fashion.
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Convex Functions

Theorem

Let f:/ — R be a convex function. Then f possesses left and right
derivatives at each interior point of /. Moreover, if a, b are interior points
of | with a< b, then

f(b)-f(a)

f'(a)<fl(a) < —

< f'(b) = f(b).

o Let ¢ be an interior point of f and let x,y be points of / such that
x < c<y. The corollary shows that, as x increases to ¢ from below,

LXQ:Z(C) increases and is bounded above by % Thus, the left
derivative f’(c) exists and satisfies the inequality
(o)< =)
y-c

George Voutsadakis (LSSU) Convexity



Convex Functions

o Letting y decrease to c in this inequality, we see that the right
derivative f/(c) exists and satisfies the inequality ' (c) < f{(c¢).

Thus, if a, b are interior points of /, then
f'(a)<fl(a) and fF/(b)=fl(b).
By the corollary, for a<x < b,

F0)-fa) _FB)-F@) _, F(b)-F(a) _ F(b)-F()
x—a  b-a b-a =  b-x

Letting x — a* in the first and x — b~ in the second, we get

10O g
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Convex Functions

Corollary

Let f:/ — R be a convex function. Then, on the interior of /, f is
continuous and f’, f are increasing.

o At each interior point of /, f has both left and right derivatives, and
so is continuous from the left and from the right.

Hence it is continuous.

That f!, f] are increasing on the interior of f follows immediately
from the theorem.
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Convex Functions

o A convex function need not be continuous at the boundary points of
its domain.

: The convex function f:[0,1] — R defined by the equations

0, if0<x<l1,
f(X)‘{ 1, ifx=0,1.

is not continuous at 0 and 1.

o Also a convex function need not be differentiable, even at an interior
point of its domain.

: The modulus (absolute value) function is not differentiable
at the origin. There its left and right derivatives are —1 and 1,
respectively.
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Convex Functions

Corollary

Let f:/ — R be a convex function. Then the set of those points of / at
which f is not differentiable is countable.

o Let C be the set of points of int/ at which f is not differentiable. With
each c in C, we associate a rational rc such that f/(c) <rc <f/(c). It
follows from the theorem that, if ¢,d € C with c < d, then

fl(c)<re<fl(c)<f(d)<rg<fl(d),

whence r. < rg. This shows immediately that the set of points of int/,
and hence of /, at which [ is not differentiable is countable.
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Convex Functions

Let f:/ — R be a differentiable function. Then f is convex if and only if '
is increasing.

o Suppose first that f is convex. Let a,be [ with a< b. Then a previous
corollary shows that

Fio)= tim TO=1E) _FOFE) _y (O=F) _

Hence f'(a) < f'(b) and f’ is increasing.
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Convex Functions

o Suppose next that f’ is increasing. Let a,be [ with a< b and let
A, pu>0 with A+ p=1. By the first Mean Value Theorem, there exist
real numbers, ¢,d with a<c<Aa+ub<d< b, such that
f(la+pub)—17(a) f(b)—f(Aa+ub)

— £ "(d) =
Aa+ub—-a =fle)=F(d)= b—Aa—pub

So we get
f(]La+ub)—f(a)< f(b)—f(Aa+ub)
p(b— a) - Ab-a)
Af(Aa+ub)—Af(a) < pf(b) - pf(Aa+pub)
f(la+pub) < Af(a)+ uf(b).

Hence, f is convex.

Corollary

Let f:/ — R be a twice differentiable function. Then f is convex if and
only if f”(x)=0 for all x in /.
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Convex Functions

o The function e~ is convex on RR.
(eX)H — (eX)/ — eX > 0

o The function —logx is convex on (0, +00).

(~logx)" = (-%)' RS

2
o The function xlogx is convex on (0, +00).

1\ 1
(xlogx)" = (logx+x—) ==>0.
x) x

o The function xP, p=1, is convex on [0,00).

(xP)" = (pxP™1) = p(p—1)xP72 = 0.
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Convex Functions

o Suppose that f:/ — R is a real-valued function defined on an open
interval | of the real line and that xg e /.
o Then an affine transformation T: R — R
is said to support f at xg if T(xg) = f(x0)
and T(x)=f(x), for all xel.
We say that f has support T at xp.

=T =fxg) +mix - xp)

' %
o Such an affine transformation T can be expressed in the form
T(x)="f(x0)+ m(x—xp) for some real number m.
o y="f(x0)+m(x—xp) is the equation of the line with slope m passing
through the point (xg,f(xg)) on the graph of f.
o The condition T(x) =< f(x) means that this line lies on or below the
graph of f.
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Convex Functions

Let f:/ — R be a real-valued function defined on an open interval / of RR.
Then f is convex if and only if it has support at each point of /.

o Suppose first that f has support at each point of /. Let x,y €/ and let
A,u=0with A+u=1. Let T support f at Ax+uy. Then

f(Ax+py)=TAx+py)=AT(x)+uT(y) < Af(x)+puf(y).

So f is convex.
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Convex Functions

o Suppose next that f is convex. Let xg €/ and let m be a real number
satisfying the inequalities f/(xo) < m < f](xo). Define an affine
transformation T :IR — R by the equation

T(x)=f(x0)+m(x—xp), xeR.

Let y,z€ | be such that y < xg<z. Then, by a previous theorem,

ferbe) < f1(x)
< TW-To) _ ) T(2)=T(x0)
- Y—Xo Z—Xp
< fi(x)
< f2)-flx)
Z—Xo

Hence T(y)<f(y) and T(z)<f(z). Thus T supports f at xp.
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Convex Functions

Theorem

Let f:/ — R be a convex function defined on an open interval / of R.
Then f is differentiable at a point xp of / if and only if it has unique
support at xp.

o Suppose first that f is differentiable at xp. Let T:R — R support f at
Xo; say
T(x)=f(x0)+m(x—xg), for xe R,

where m is a real number. Let y,z€ | be such that y <xg<z. Then

fly)=flxo) _ T(y) - T(x) e T(2)=T(x) _ f(2)-f(x0)
y=xo  Y-x z-x9 z-xo

Thus, letting y — x5, z— xj, we deduce that m=f'(xg). Hence, f
has unique support at xg.
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Convex Functions

o Suppose next that f has unique support at xg.
Let the real number m satisfy f/(xp) < m<f](xp).

Then, as in the proof of the preceding theorem, the affine
transformation T defined by the equation

T(x)="(x0)+m(x—xp)

supports f at xg. But f has unique support at xg.
Hence, m is unique and f’(xg) = ] (xo).
So f is differentiable at xg.
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Convex Functions Classical Inequalities

Subsection 2

Classical Inequalities
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Convex Functions

Theorem (Jensen's Inequality)

Let f:/ — R be a convex function. Let xq,...,xn €/ and let A¢,...,4,, =0
with A1 +---+A,,=1. Then

f(Aixi 4+ Amxm) S A1f(x1) +--- + Amf (Xm)-

o We argue by induction on m.
The inequality is trivially true when m=1.
Assume, then, that it is true when m =k, where k>1.
Let a real number x be defined by the equation

x=A1xy+e + A1 Xk+1)

where x1,..., X1 €1 and Aq,.., A1 =0 with A1+ + A1 =1.
At least one of Ay,...,A,.1 must be less than 1, say A,,1 < 1.
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Convex Functions

o Write
A=A1+ 4+ A =1-Aps1-
Then A >0. Write

1 k
= —=Xxp++ — Xk
Y= Ak

The induction hypothesis shows that

A A
Fy) = 5 )+ o+ =5F ().
Since f is convex,

f(x) f(Ay + Ags1Xks1)
/lf()’) + Aks1 f(xk+1)

A1 f(Xl) +oo 4+ Apat f(Xk+1).

IANCIN

This establishes the inequality for m=k +1.



Convex Functions

o In this section the word will be used exclusively to mean
positive real number.

o The arithmetic mean and the geometric mean of numbers x; and
Xxo are defined to be

1
§(x1 +x2) and /xixa.

o The basic inequality between these means is that the geometric mean
never exceeds the arithmetic mean, i.e., /x1x2 < %(xl +Xx2).

o This follows immediately from the fact that (/X1 — /x2)? = 0.

o The arithmetic mean and the geometric mean of numbers
X1,...,Xm are defined, respectively, to be

%(Xl +--+Xpm) and (X1---Xm)1/m.

o Once again the geometric mean never exceeds the arithmetic mean,
although the proof is appreciably more difficult than when m = 2.
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Convex Functions

o The concepts of arithmetic and geometric means can be generalized
by attaching weights ay,...,a,, to the numbers as follows.

o Let ay,...,an be numbers whose sum is 1.

o Then the numbers
a1xy+- o +a&mxm and xf‘1~~~x,‘f,m

are called, respectively, the weighted arithmetic mean and the
weighted geometric mean of the numbers xi,...,x, with respect to
the weights ay,...,amn.

o These weighted means reduce to the usual means when each of the

weights a1,...,amy is %
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Convex Functions

Let x1,...,Xm, @1,...,&m >0 with @y +---+a,, =1. Then

xf‘l e XPT S QLX)+ A X

o The function —log is convex on (0,00). Hence, by Jensen's inequality,

—log(aixi+-- +amxm) = —(ailogxi+---+amlogxm)
= —log (X" xm").

Since log is a strictly increasing function, we can deduce that

X[ X" S QX+ AmXin

Corollary

Let x1,...,xm >0. Then

1
(X1 xm)Y™ < ;(x1+---+xm).
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Convex Functions

Let a;j>0(i=1,...,m;j=1,...,n) and ay,...,a@m >0 with a1 +---+a, =1.
Then

am
ml

Om

a1 a1 a a
311 e g +...+aln...am’;’75(all+...+aln) 1...(am1+...+amn)

o We use the inequality between weighted means to deduce that, for

each j=1,...,n,
ay a
ay; ...am’J?’ - ayay) @ am
(311+"'+31n)“1"'(3m1+"'+3mn)“’" = ayi+--+ai, ami+-+amn "

Adding these n inequalities together, we deduce that
i a:_;l ---amJ
<a;+--+am=1.

= (all+...+a1n)a1...(am1+...+amn)am

Am

The desired result follows immediately.
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Convex Functions

Corollary

Let x1,...,Xm, Y1,---,¥m>0. Then

1/m l/m.

(Xl"'Xm)l/m"'(YI"'Ym)l/mS(Xl"'}/l) "(Xm"'}/m)

o Letn=2, a; = %,...,am: % aj1 =x; and aj = y; in the theorem.

Corollary (Hélder's Inequality)

Let x1,...,Xn, ¥1,...,¥n > 0. Suppose that p,q > 0 satisfy %+% =1. Then

i=1

@ @ /p( p 1/q
ZXiYiS(ZX,-p) (Z%—q) :
=1 i =1

il 1 p q .
o Let m=2 =¥ == and let a;; = x! i =y. in the above

theorem.
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Convex Functions

Theorem (Minkowski's Inequality)

Let x1,...,Xn, ¥1,.--,¥n>0 and let p=1. Then
1/p
y,-p) :

@ 1/p @ 1/p
(Z(Xl+y;)p) S(le.p) +(
i=1 i=1

o Write a= (X, x")Y/P and b= (X, yP)V/P. Since xP (p=1) is
convex on (0,00), we can deduce that, for i=1,...,n,

(5557~ (sl ol =5l 25
Adding these n inequalities together, we deduce

i(xi+}/i)p< a ( 7=1XIP)+ b (er'lzlyip)_ D . b

&

i=1

T a+b aP a+b bP Ta+b a+b

Thus, ¥ (x1 +yi)P < (a+ b)P = (X, xP)/P+ (X, yP)L/P)P.



Convex Functions

o Given the numbers xq,...,xn, their harmonic mean is defined to be

o The basic inequalities connecting the four means are:

harmonic mean < geometric mean
arithmetic mean
root mean square.

IA

IA
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Convex Functions

o The harmonic mean and the root mean square are generalized in the
natural way to the corresponding weighted means.

o Let ay,...,ap >0 with a; +---+a,=1.

o Then the numbers

Q.4 8m

X1 Xm

and \/a1x12 A

are called, respectively, the weighted harmonic mean and the
weighted root mean square of the numbers xi,...,x, with respect
to the weights ag,...,am.

o We will see that the basic inequalities stated above connecting the
four unweighted means continue to hold for the weighted means.
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Convex Functions

o The four means so far introduced are special cases of the
t:
o Let a=(ai,....,am), x=(x1,...,Xm), where a1,...,am, x1,...,xm >0
and a1 +---+a, =1.
o Then for each non-zero real number t, the mean M;(x; «) of order t
is defined by the equation

M(x; &) = ((xlxlt REPPNE amxﬁ,)l/t.

o The values t =-1,1,2 give rise, respectively, to the weighted harmonic
mean, the weighted arithmetic mean and the weighted root mean
square.

o The weighted geometric mean is not the mean of order t for any
non-zero real number t.
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Convex Functions

©

We consider the limit of M(x; &) as t tends to zero.
Taking logarithms on both sides of the defining equation of M;(x; &),

©

log (a1 x{ +---+ amxt)
- .

log Mi(x; &) =
L . | ty ... - t
By definition, lim;_q og(alxlt )
log (@1 xt +-+-+amxt,) at t=0.
We calculate

is the derivative of

©

©

t t
| : fap L A1) logx1 + - + amxp, log xm
[log(aixq + - Amxy,)] =

A1X; + o+ A Xy

©

Therefore,

log (a1 X} +-+amx},)
t

ailogxy+---amlogxm
a1 a
log (X3t - xm™).

lim:_g

o Hence, lim;—glog M¢(x; &) = log (x;* -+ xm™).
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Convex Functions

o We calculated
lir’%log M;(x; &) = log (x;* -~ xpm™).

o Thus T

“mtﬂo e
— elimt_.oloth(X;a)

“mtﬂo Mt(x; a)

— elog(xflmx,‘:,’")
— X{xl ...ng_’m‘
co) 20 an
0 So Mi(x;a) — x;'t X"
o We define the mean of order zero
Mo(x; @) ==X -+ X"

o M;(x; @) is now defined for every real number t and is continuous on
the whole of R, in particular at t =0.
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Convex Functions

Let x =(x1,...,xXm), @ =(ai,...,am), where xi,...,xXm, a1,...,&m >0 and
ay+---+am=1. Then My(x; @) is an increasing function of t.

o Since x and a are fixed, we write My(x; &) simply as M(t).
We show that M'(t) =0 for all non-zero real numbers t¢.
Since M is continuous at 0, this shows that M is increasing on R.
We have tlog M(t) =log(aix{ + -+ amxt,).
So, by differentiating,

M (t aixtlogxy+ -+ amxt logx,
t ()+|ogl\/l(t)= e m¥m %EFm ¢ £0.
M(t) A1X] + o+ AmXy
Thus, for t #0,
M'(t aixtlogxt+-- +amxt log xt
t2—( )+t|ogl\/l(t)= 1% 08 L L 2
M(t) A1X; + o+ AmXhy

George Voutsadakis (LSSU) Convexity



Convex Functions

o We get

tzM/(t)(lX1X{+m+lZmX,t;,,) t t t t
D = aixqlogx{ +--+amxp,log xp,

—(@1x{ +--- + amxf,)log (a1 xf + -+ amx,).

Jensen's inequality, applied to the convex function ylogy on (0,00),
shows that, for all y4,...,ym >0,

(al}/I +eet am}’m) log(“l}’l +oeet am}’m)
<aiyilogyr +---+amymlogym.

If we put y; = x} for i=1,...,m in this inequality, we deduce from the
equality previously stated that M'(t) =0 for t #0.

Corollary

Let x =(x1,...,Xm), @ =(a1,...,am), where x1,...,xm, a1,...,a&m >0 and
ai+--+am=1. Then M_1(x; &) < My(x; @) = Mi(x; &) < Ma(x; @).
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Convex Functions [SFhelGamma and Beta Functions

Subsection 3

The Gamma and Beta Functions
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Convex Functions

o [, f denotes the (Riemann) integral of a continuous function f:/ — R
over an interval / of the real line.

Theorem (Holder's Inequality for Integrals)

Let f,g:/ — R be continuous non-negative functions for which the
integrals [, f, [, g are positive. Let A,pu=0 with A+p=1. Then

e (o) ([

: f(1)\ f
o By a previous theorem, for te/, (%) (%) <)Lfst) “f/( )

We integrate both sides of this inequality to deduce that

Lif' (et (t)dt _ if f/g
e Y e

Hence fAfE < f; f) (f )"

=A+pu=1.



Convex Functions

o Let f:/ — R be a function defined on an interval | of the real line.

o Then / is said to be log-convex if it is positive and its logarithm,

9

logf:I— IR, is convex.
Thus a positive function f is log-convex on an interval / if and only if,
whenever x,y €/ and A, =0 with A+p =1, we have

log f(Ax + uy) < Alog f(x) + plog f(y) = log FA(x)F*(y).

This amounts to

f(Ax +py) < FHx)FE(y).
Since fFA(x)fH(y) < Af(x) +uf(y), it follows that every log-convex
function is convex.

On the other hand, on the interval (0,00), the positive function x is
convex but not log-convex.

For any positive number a, the function a* is log-convex on R.
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Convex Functions

o The class of functions which are log-convex on some interval / is
closed under addition and multiplication.

o Suppose that the functions f,g:/ — R are log-convex.
Let x,y €/ and let A,u=0 with A+ pu=1.
By a previous theorem,

f(Ax+uy)+g(Ax +py)
FAx)FH(y) +&*(x)gh(y)

(F(x) +gCNMF () +& ()"
(F+g)* () +(F+8)"(y);
f(Ax+uy)g(Ax +py)
FH(x)FH(y)eM(x)g" ()
(f)* () (fg)H(y).

(f+8)(Ax+py)

i IA 1A

(fg)(Ax +py)

IA
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Convex Functions

o The gamma function T': (0,00) — R is defined by the equation

I'(x)= f " letdt, x>0.

o Elementary analysis shows that, for each x>0, I'(x) is a well-defined
positive number.

The gamma function has the following properties:

[(x+1)=xT(x) for x> 0;
I(1)=

T is log-convex.
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Convex Functions

For x >0,

T(x+1)= f e tdt = [~ ¥ et + x f Ple~tdt = xI'(x).
0 0

F(1) = fé’o e tdt= “mAﬂoo[l _ e—A] -1
Let x,y >0. Let 2, u=0 with A+pu=1. Then, by the preceding
theorem,

f(;)o tAx+uy—1e—tdt

57 (P te ) (et at

(oo vletde)M(f5° ety
T ()TH(y).

T(Ax +py)

Al
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Convex Functions

Corollary
For n=0,1,2,..., T(n+1)=n.
o By the theorem, I'(1) =1. Hence, for n=1,2,...,
I'(n+1)=nI(n)=n(n-1)I'(n-1)=n(n-1)---T(1) =n!.

Corollary

The gamma function is convex, continuous, and xI'(x) — 1, I'(x) — oo as
x—07".

o The gamma function is log-convex. So it is convex. By a previous
corollary, it must also be continuous. The continuity of I' at 1 shows
that

x—0*

xI(x)=T(x+1)"— I(1)=1.

Hence I'(x) — oo as x — 0*.

George Voutsadakis (LSSU) Convexity



Convex Functions

o Since I'(n+1)=n! for n=0,1,2,..., the gamma function can be
considered to be an extension of the factorial function, even if the two
functions are one unit out of phase with each other.

o There are, of course, infinitely many functions f : (0,00) — R satisfying
f(n+1)=n!for n=0,1,2,....

o The natural question that arises is:

Is there some sense in which the gamma function is a extension
of the factorial function?

o One answer is given by Artin's Characterization.
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Convex Functions

Theorem (Artin’s Characterization of the Gamma Function)

Let the function f:(0,00) — R satisfy:
f(x+1)=xf(x) for x>0;
f(1)=1;
f is log-convex.
Then f =T.
o Conditions (i), (ii) imply that f(n+1)=n! for n=0,1,2,....

Let 0<x <1 and let n be any positive integer. Then the log-convexity
of f and condition (i) show that

f(n+1+x) f(1-x)(n+1)+x(n+2))
fl_x(n+ 1)f*(n+2)
fIX(n+1)((n+1)f(n+1))*
(n+1)*f(n+1)=(n+1)*nl.
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o We also have

n'=f(n+1) f(x(n+x)+(1-x)(n+1+x))
FX(n+x)F1X(n+1+x)
(n+x)FX(n+1+x)F1>X(n+1+x)

(n+x)*f(n+1+x).

Al

But f(n+1+x)=(n+x)(n—1+x)---xf(x).
Therefore,

(1+£)X< (n+x)(n—1+x)---xf(x) - (1+ 1)X.

nlnX n

Hence

nln*

f(x)= lim

, for0<x=<1.
n—oo(n+x)(n—1+x)---x or=x=
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o Suppose that x> 1. Let m be the positive integer such that
0<x—m=<1. Then, by condition (i) and what we have just proved,

f(x) = (x=1)--(x=—m)f(x—m)
= (x - 1) ‘e (x = m) limp—oo E,,er)_(m)(n’l!;l;':)zm_m)...((x_m)))
_ c nln* L (n+x)(n+x—=1)--(n+x=(m-1
= limpeo ( (nx)(n—1+x)x i )

e [ P 1, o S—
—® (n+x)(n=1+x)-x
o (14 £)(1 4+ 553)- (L4 Le22m)
e 10— L S —
(n+x)(n—1+x)---x

ThUS, for all x> 0, f(X) = ||mn_,ooW
This is a remarkable conclusion, since it shows that f is uniquely
determined by conditions (i), (ii), and (iii).

Since T itself satisfies these three conditions, we must have f =T.
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For every real x with 0<x <1,

r(x)r(l-x)=

sinx’

o Artin's Theorem shows that for 0 < x <1,

['(x)r'(1-x)

n!'n*nlnl—>
n+x)--x(n+1-x)-+(1-x)

Iim,,ﬂoo(

(n+1=X)X 15035 (1+x)(1=x)--(n+x)(n—x)
XTI, (1-53)

. 2
sinnnx' (5'"X:XH7<O=1(1_#))

o From the Theorem, we get I'(3) = v/7.



Convex Functions

Theorem (Legendre's Duplication Formula)

r(f)r(x—ﬂ) = YT 1(x), for x>0,

2 2 el

o Define a function f:(0,00) = R by

F(%)F(XTH), for x> 0.

2X—1
VT

Then f is a product of log-convex functions. So it is itself log-convex.
We also have, for all x> 0:

o f(x+1)= ZT(5L)r(42) = 22;;r(XT+1)§r(§) = xf(x);

o f(1)= #r(%)r(l) = #\/ﬁl =1.
Thus, by Artin's Theorem, f =T.
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Lemma

The sequence whose nth term is logn! — (n+ )logn+ n converges.

o Let a,=logn!—(n+ %)Iogn+n. First we show that the sequence (a,)
is decreasing. Then we show that it is bounded below. We note that,
for n=1,2,..., ap—ans1= (n+ )Iog(1+ )—1. Since % is convex on
(0,00), the area bounded by the graph of y= % the x-axis, and the

lines x = n, x = n+1 exceeds that of the trapezoid bounded by the

tangent to y = ; at the point (n+ —1 ) the x-axis, and the lines
2
x=n x=n+1; ie.,
1 n+1 dlx 1
log|[1+=]= —> s
n n X n+§

It now follows from the preceding formula, that a, —a,.1>0. Hence
the sequence (a,) is decreasing.
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o Since logx is concave on (0,00), the area bounded by the graph of
=log x, the x-axis, and the lines x = r — % X = r+% forr=1,2,..., is
less than that of the trapezoid bounded by the tangent to y =logx at
the point (r,logr), the x-axis, and the lines x=r— % X=r+ % ie.,
1
frr+12 log xdx < logr. It follows easily that, for n= 3,
-2

J{logxdx = leogxdx+f2|ogxdx+ f 2|ogxdx+f 1|ogxdx
< %Iogl +|og2+ -+log(n— 1)+ Iogn
5 +log(n!) - 3logn.
Thus,

n 1 1
n|ogn—n+1:f log xdx < —+|ogn!——|ogn.

Hence a,=logn!—(n+ 2)Iogn+ n> 2 Thus, the decreasing sequence
(an) is bounded below by 1. So it converges.
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Theorem (Stirling’s Formula)
nl~v27n™ze".

o In the notation of the proof of the lemma, let for n=1,2,.

bp,=e= +"T Then the sequence (b,) converges to some b > 0.
2e
Thus,
(bn)2 (n!)2(2n)2n+%e—2n 22n+%(n!) b2
= £ =— — —=b, as n— oo.
bon n2n+le=2n(2p)! nz(2n)! b
1
For n=1,2,..., let ¢y = ! ;Ir)ﬁg; Then ¢, ="T(3) = v7. So
2 22
bn)? _ nln/2(2n+1 1 oo
2SR o
bon on (2n+1)! 2n
2n+12nn|
Hence, b=+v2m. So b, = V2.
n" Ze n
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o The beta function B is the real function of two variables defined by
the equation

1
B(X,y)=f0 tx'l(l—t)y‘ldt, for x,y > 0.

The beta function has the following properties:

B(x+1,y)=2B(x,y) for x,y >0;

x+y
B(x,y) is a log-convex function of x for each fixed y > 0;

Blxy) = ke

, for x,y > 0.
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We have
B(x+1ly) = [itX(1-t) ldt
= folﬁ(l—t)x(l—t)y‘ldt
= -ty i(g)¥dt
1 X+y 1 1 1 X+y
= [ - fo S [ e
_ (1-t)*Y 1 1 —(1-tyY x-1
- [ x+y (1L ]0 X+y (1tt)X1(1 t)2]dt
1 X+y 1 _
= | ] e 2yt a0 e
= 25 BMky).

X+y
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Let a,b,y>0. Let A,u=0, with A+pu=1.

By a previous theorem,

B(Aa+ub,y) = Ji(trerHb-1(1— ) ~1)dt

= Jo (21—t )M (P (1 - t) Yt
(o 22— t) " Ldt) (Jo tP2 (1) 2dt)H
B*(a,y)B*(b,y).

IA

Thus B(x,y) is a log-convex function of x, for fixed y.
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Let y >0. Define a function f, : (0,00) = R by

I'(x+y)B(x,y)

, for x>0.
I'(y)

fy(x) =

Then f, is a product of log-convex functions. So it is log-convex.

For x >0,
f(x+1) = F(x+y+£l()yB)(x+1,y)
_ [(X+y)F(X;81Xi—yB(ny) — xF, (x):
£(1) = r(1+%/()}1/9)(1,y)

yJo L+t dt=1.

Thus, f, =T by Artin's Theorem. So B(x,y) = % for x,y > 0.
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o According to the definition,

n+1l n+1 L opa
B , = t7(1-t¢
( 2 2 ) fo (1 )
o Set u=2t—1. Then dt=13du, t=215¢ 1-t=1% and t=0,1
correspond to u=—1,1, respectively.

Thus, we get

(251, 24) =

—

du

ST

1 n=1 9\ nzl
LN E ()
S A (1-u?)T du

2n u
= fi(1-)) % du.

N[

N
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o We prove by induction on n that B(Z:, 251) = L g(3, 2.
o For the base case, we prove the formula for n=0 and n=1.
s For n=0, B(%*, %) = B(3,3) = % B(3, %)
s For n=1, noting that B(1,y) = % we get
B(34 431 =B(L1)=1=175=3B(31) = % B(3,*5")

o Assume the formula holds for some n.
o Then, recalling B(x+1,y) = 2-B(x,y), we get

X+y

(n+2)+1 (n+2)+1 _ ol n+l (n+2)+1
B( 2 ’ 2 ) n+1+n+3 B( » 2
= LlLl (_1 Ll)
2(n+2) 2(n+1) 2 2

— 1 1 p(l n+l
- 2'(1;+2) »B(2) %)

- 2n+2 n+2 ( Tl)
_ 2n+2 B( 1 (n+2)+1)
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Subsection 4

Convex Functions on R
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o A real-valued function f defined on a non-empty convex set X in R"
is said to be convex if

f(Ax +py) < Af(x)+pf(y)

whenever x,y € X and A, u =0 with A+pu=1.
o The convexity of X ensures that Ax +uy € X.
o A concave function is one whose negative is convex.

o Exactly as in the case of a convex function of a single real variable,
each convex function f : X — R" satisfies Jensen's inequality.

f(Aix1+-+Amxm) < A1f(x1)+ -+ Amf(Xm),

whenever x1,...,xm € X and A1,...,1,, =0 with A;+---+ A, =1.
o Affine transformations f : R” — R and their restrictions to non-empty
convex subsets of R" provide important examples of convex functions.
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o The distance function dx : R” — R of a non-empty set X in R" was
defined by the equation
dx(u)=inf{lu—x|l:xe X}, for ue R".

o We now assume that X is convex and show that in this case the
resulting distance function dx is convex.

o Let u,veR" and let A, =0 with A+ u=1. Then, for each €>0,
there exist points x,y € X such that

lu—xll<dx(u)+e and |lv—yl <dx(v)+e.
Since X is convex, Ax+puy e X. So

dx(Au+pv) IAu+pv—(Ax +py)l

<
s AMu=-xl+plv-yl
< Adx(u)+pdy(v)+e.
But € >0 is arbitrary. Hence, dx(Au+puv) < Adx(u)+ pdx(v).



Convex Functions

o Consider the convex function f(x;) = x? defined on R!.

o The graph of f is the parabola {(xl,x12) :x1 € R} in R?, which is clearly
not convex.

o The set of points {(x1,x): x1 € R,x = x2} in R? which lie on or above
the graph of f, however, is convex.

o Thus with this particular convex function of a single variable, we have
associated a convex set in R?.

o We will show how the convexity of a real-valued function of n variables
is equivalent to the convexity of a certain subset of R"*1.
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o Let f be a real-valued function defined on a non-empty convex set X
in R".
o Then the graph of f is defined to be the subset

{1, oo Xn F(X1,e 00 xn)) - (X150, Xn) € X3

of R,
o The epigraph of f, denoted epif, is defined to be the subset

{(x1,-- 0o Xy X) 2 (X150, xn) € X, x = F (X150, Xn )}

of R™M1,
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Let f be a real-valued function defined on a non-empty convex set X in
IR". Then f is convex if and only if its epigraph is convex.

o For each point x = (x1,...,x,) of R" and for each scalar x, we denote
by (x,x) the point (xi,...,Xp,x) of R+,

Suppose that f is convex. Let (x,x),(y,y)€epif. So x,y € X and
x=f(x), y=f(y). Let L, u=0 with A+ u=1. Then the convexity of
f shows that

f(Ax+py) s Af(x)+puf(y) < Ax+py.

Thus the point A(x,x)+pu(y,y) = (Ax+py, Ax+py) belongs to epif.

So epif is convex.
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o Conversely, suppose that epif is convex.
Let x,y € X and let A,u=0 with A+ pu=1.

Since epif is convex, the point

Alx, f(x))+u(y, f(y)) = (Ax +py, Af (x) + puf(y))

belongs to epif.

Hence
f(Ax +py) < AMf(x)+uf(y).

This shows that f is a convex function.
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Theorem

Let (fi:i€l) be a non-empty family of convex functions defined on a
non-empty convex set X in R" such that, for each x in X, the set
{fi(x):i€l} of real numbers is bounded above. Then the function

f: X — R defined by the equation f(x) =sup{fi(x):i€l}, for xe X, is
convex.

o We observe that

epif = {(x1,-.o, xmx) (X1, xn) €X,x = F(x1,...,Xn)}

= A(x1,-o, X, X) 1 (x1,.., xn) € X, x = fi(x1,...,xp) for i€}
Nier{(X1, s Xn X) (X1, 0, %n) € X, x = fi(x1,...,Xn)}
Niesepifi.

The preceding theorem shows that all of the sets epif; are convex.
Hence so is their intersection epif. Thus, by the same theorem f is a
convex function.
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Let f,g be convex functions defined on a non-empty convex subset X of
R" and let @, =0. Then the function af + g is convex.

o Let x,ye X and let A,u=0 with A+ pu=1.
Then

af (Ax +py)+Bg(Ax +uy)
a(Af(x)+puf(y))+P(Ag(x) +ug(y))
Alaf +Bg)(x) +p(af +pg)(y).

(af +pg)(Ax +py)

IA

George Voutsadakis (LSSU) Convexity



Convex Functions

Theorem

Let f be a convex function defined on a non-empty convex set X in R"
and let g:/ — R be an increasing convex function defined on an interval /
of R which contains the image f(X) of X under f. Then the composite
function gof : X — R is convex.

o Let x,ye X and let A, u=0, with A +pu=1.

Then
(gof)(Ax+py) = g(f(Ax+py))
= g(Af(x)+uf(y))
= Ag(f(x))+psg(f(y))
= Agof)(x)+u(gof)(y)
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o Let f be a real-valued function defined on a convex set X in R" and
let xg € X.

o Then an affine transformation T :IR" — R is said to support f at xg
if T(x0)="f(xp) and T(x)<f(x) for all xe X.

o The geometrical interpretation of T supporting f at xq is clear.

The set
{(xtye o Xm T(X1500,%n)) - (X1, xn) € R

is a hyperplane in R™! that passes through the point (xg,f(xo)) and
lies on or below the graph

(Xt X F (X150 00xn)) 2 (X150, %n) € X3

of f.
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Let f be a real-valued function defined on a non-empty open convex set X
in R™. Then f is convex if and only if it has support at each point of X.

o Suppose that f has support at each point of X. Let x,y € X and let
A, =0 with A+ p=1. Then there is an affine transformation
T :R™— R which supports f at Ax+py. Hence

F(Ax+py)=T(Ax+py) =AT(x)+pT(y) < Af(x)+pf(y).

This shows that f is convex.

Conversely, suppose that f is convex and that xg € X. Since f is
convex, its epigraph epif is a convex set in R™1. Now (xq,f(xo)) is a
boundary point of epif. So there exists a support hyperplane H to
epif at (xo,f(x0))-
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o Suppose that H has equation a;xy + -+ anx, + apns1Xn+1 = A0.
Suppose, also, that aixy + -+ apXn + ant1Xn+1 = ag, Whenever
(x1,-..,xn) €X and xp41 = (x1,...,%n).

o We have a,,1 #0. Otherwise, the hyperplane in R" with equation
aixy+---+apx, = ag supports X at xg. This is impossible because xq
is an interior point of X.

o For each (x,...,xn) € X, a1x1 + -+ + anxn + an+1A = ag for all
A=f(x1,...,xn). Hence, a1 >0.

Define an affine transformation T :RR"” — R by the equation

1
T(X1,...,Xn) = 3 (ap—aix1—+--—anxp), for (x1,...,xn) €R".

n+1

Since H supports epif at (xq,f(x0)) and a1 >0,

0
an Xn _ _ .
o T(x0) = sy (oo - ==+ ) = 2283 =20, (e
o FOF aII XEX, T(X) = anl;l (ao —aixy—--- _aan) < an;:,l::rlwl — f(X)

Thus, T supports f at xq.



Convex Functions

o Many of the functions which arise naturally in convexity are
real-valued functions f defined on a convex cone X in R” (often R"
itself) that satisfy the equation

f(Ax)=Af(x), for all xe X and all 1 =0.

o Such functions are called positively homogeneous.

o The most important example of such a function is the norm mapping
II-Il, which is defined on the whole of R".
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Let f be a positively homogeneous function defined on a convex cone X in
R". Then f is convex if and only if f(x+y)<f(x)+f(y) for all x,y € X.

o Suppose that f is convex. Let x,y € X. Then

1 1 1 1 1

5f(x+y) = f(§x+ Ey) < 5f(x)+ Ef(y).
So f(x+y)=<f(x)+f(y).
Conversely, suppose that f(x+y)<f(x)+f(y) for all x,y € X. Then,
for all x,y e X and for all A,u=0 with A+u=1,

f(Ax +py) < f(Ax)+f(py) = A (x) +pf(y).

This shows that f is convex.

George Voutsadakis (LSSU) Convexity



Convex Functions

o Let f be a real-valued function defined on a non-empty convex set X
in R".

o Then, for each scalar a, the level set L, of f at height « is the set
defined by the equation

Ly={xeX:f(x)<al.

o We show that each level set L, of a convex function f: X — R is
convex.
Let x,y € Ly and let A,u=0 with A+pu=1. Then, since f is convex,

f(Ax+py) < AMf(x)+puf(y)<Aa+pa=a.

Thus Ax +uy € Ly and L, is convex.
o There exist non-convex functions all of whose level sets are convex.
An example is the cube function defined on the real line.
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Theorem

Let f be a non-negative positively homogeneous function defined on a
convex cone X in R" such that the level set {x € X : f(x) <1} is convex.
Then f is a convex function.

o We use the criterion of the preceding theorem to show that f is
convex. Let x,y € X. Choose scalars a, f such that a > f(x),
B> f(y). Since f is non-negative and positively homogeneous,
f(%)=<1 and f(%) <1. Thus ¥ and % lie in the level set of f at
height 1. The assumed convexity of this level set shows that

X+
2pflery) = f(GF)=f(a %+ )
B _
= atpf (%) +apf (F) salpramp=1

Hence f(x+y) < a+ B whenever a > f(x), > 1f(y). So

f(x+y)=<f(x)+f(y). This shows that f is convex.
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o Let p=1. Define a function f on the nonnegative orthant X of R" by
the equation

F(X1yeeexn) = (X0 -+ xP)YP, for xi,...,x, 2 0.

Then f is non-negative and positively homogeneous.

It follows from a previous theorem and the fact that the function x” is
convex on the interval [0,00), that the function fP: X — R is convex.

Hence the level set {x € X : fP(x) <1} ={x e X :f(x) <1} is convex.
By the preceding theorem, f is convex.

Let x =(x1,...,Xn), ¥ =(¥1,-..,¥n) belong to X.

Then, by a previous theorem, f(x+y) <f(x)+f(y). Thatis,

((xa+y2)P 4+ Ot yn)P) P = O ot XEVP o (4o y )P

We have re-proved Minkowski's inequality.
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Subsection 5

Continuity and Differentiability
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o Let f be a convex function defined on an open convex set X in R".

Let xe X and y e R".

o Then the set / ={1eR:x+ Ay € X} is an open interval of R which
contains the origin.

o The function g:/ — R defined by the equation

g(A)=f(x+Ay), for 1€,

©

is convex.
To see that g is convex, let a,be [/ and let A,u=0 with A +p=1.
Then
g(la+ub) = f(x+(Aa+ub)y)

= f(Mx+ay)+p(x+by))

< Af(x+ay)+uf(x+by)

= Ag(a)+pg(b).

o Thus g/(0) = limy_q- EX5EQ _ jim, o, AN it
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Let f be a convex function defined on a non-empty open convex set X in
R". Then f is continuous on X.

o Let xg€ X and let yq,...,y,, be the vertices of some polytope P
which is contained in X and has xg as an interior point. Choose r >0
such that B[xg;r] < P. Each point x of B[xg;r] can be expressed in
the form x = A1y, +---+ Amy, for some Ag,..., A, =0 with
A1+ +Am=1. Setting M = max{f(y;),...,f(ym,)} and applying
Jensen's inequality to f, we get

f(x) F(ALyi+--+AmY m)

Mf(yy)++Amf(Ym)

MM+ -+ AnM =M.

IACIA I

Hence f is bounded above by M on the closed ball B[xq;r].
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o Let x € R" satisfy the inequalities 0 < || x —xgll < r. Then the function
g :[—r,r] = R defined by the equation

x_
Xg+t———|, for —r<t=<r,

is convex, and g(t) <M for —r <t <r. By a previous corollary,

_M-g(0) _g(-r)-g(0) _g(lx~-xall)-£(0)
r S o T xexdl
- g(r)—g((?) - M—g(O).

Hence

1£(2) - Flxo)l = le(1x - x0l) - £(0)1 = 5 1y,

Thus, if x1,...,Xk,... is a sequence of points of X that converges to
Xo, then f(xx)— f(xg) as k —oo. So f is continuous at xg.
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o Let f be a real-valued function defined on an open set X in R" and
let x =(x1,...,xn) be a point of X.

o Recall that the ith partial derlvatlve f of f at x, when it exists, is
the derivative at x; of the function of a smgle variable obtained by
regarding f as a function of its ith variable only, the remaining n—1
variables being held fixed to their values at x.

o Thus, fori=1,...,n

of . f(X15eees Xi—1, Xi + A, X1, -0 Xn) — F (X100, Xn)
6X, A—0 A ’

o More succinctly,

a_f(x): im f(x+)te,-)—f(x)’

0x; A—0 A

where e; denotes the ith elementary vector in R".
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o For the directional derivative, which is a natural generalization of a
partial derivative, we simply consider the above limit with an arbitrary
vector y in R" replacing the vector e;.

o The directional derivative of f at x relative to y is defined to be

the limit
)lLiTO f(x+]t_)]/t)—f(x)’
whenever this limit exists.
o Thus the partial derivative g—)fl_ is simply the directional derivative of f

relative to e;.
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o A convex function defined on an open interval of IR need not be
differentiable, but it always possesses both one-sided derivatives.

o The one-sided directional derivative of f at x relative to y is
defined to be the limit
f(x+Ay)—f(x)
//{/ ’

Fl(x;y)= i
(xiy)= lim

provided that this limit exists.

o We have Flx+ Ay) - F(x)
_ x+Ay)—f(x
—f'(x;-y)= | .
(=)= fimy =—=7
o So the directional derivative of f at x relative to y exists if and only if
both of the one-sided directional derivatives f'(x;y) and f'(x;—y)

exist and satisfy the relation f'(x;y) =—f'(x;-y).
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o If, for some x € X, the one-sided directional derivative f'(x;y) exists
for each y e R", we write '(x; ) to denote the function
f'(x; ):R" — R whose value at y is f'(x;y).

o The remarks before the preceding theorem show that, for each convex
function f: X — R", the one-sided directional derivative f'(x;y) exists
for every x in the interior of X and for all y in R".
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o Consider the convex function f :IR" — R defined, for each

x=(x1,...,%n), by
f(x) = lIxII? = X2 +---+x2.

o Then, for each y = (y1,...,yn) in R",

f’(x;y) = JL”&W
. 2/1()(1)/1+"'+Xn)/n)+;"2(y12+"'+y3)
= lim 1
A—0"
= 2xyy1+---+2XpYn
= 2x-y.

o Thus f'(x;y) exists and equals 2x - y.

o For this particular function, the (two-sided) directional derivative of f
at x relative to y exists.

o The one-sided derivative f'(x; ):R"” — R is linear for each x in R".
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Theorem

Let f be a convex function defined on an open convex set X in R" and let
x € X. Then f'(x; ) is a positively homogeneous convex function such that
f'(x;y)=—f'(x;—y) for all y in R". If f has a directional derivative at x
relative to y, then f'(x;Ay) = Af'(x;y) for all scalars A.

o Let u>0and let y e R". Then

_ A'L"& f(x+/1u]_:/) f(x) _ AlLrg+uf(x+A;i{t) f(x) = uf(x:y).
This shows that f/(x; ) is positively homogeneous.
Let y,z€ R". By the convexity of f,
f(X+A(Yy+2Z))-f(X)
(l f(X+2//11y)—f(X) n 1 f(X+2/IZ)—f(X))
2 A 2 A

f'(x; uy)

f'(x;y+2) limy—o+

IA

|im,1ﬁ0+
f'(x;y)+f'(x;z).
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o A previous theorem shows that f'(x; ) is convex.

By what we have just proved, for each y in R”,
0=F"(x;0)=f'(x;y—y)<f'(x;y)+f(x;-y).

Hence f'(x;y) = —f'(x;-y).

Suppose, finally, that f has a directional derivative at x relative to y.
Then f'(x;y)=—f'(x;y). If <0, then, since f is positively
homogeneous,

Fi(xidy) = f'(x: (=A)(=y)) = —Af'(x;—y) = Af'(x;y).

Hence f'(x;Ay) = Af'(x;y) for all scalars A.
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o Suppose now that f is a real-valued function defined on an open set X
in R” and that x is a point of X.

o Recall that f is differentiable at x if there exists a vector x’
(necessarily unique) such that

—_— —_— ,-
m f(x+u)-f(x)—x"-u
u-0 llull

=0.

© When such an x’ exists it is called the gradient of f at x.
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o Suppose that f is a real-valued function defined on an open set X in
R™ and that x is a point of X.

o Let f be differentiable at x with gradient x’ there.

o Then, for any non-zero vector y in R”,

If(x+Ay)—f(x)—x"-(Ay)I

0= lim
A—0 Ayl
.1 | f(x+Ay)—1f(x)
= lim — —x"-y|.
A0yl p) y

o This shows that f possesses a directional derivative at x relative to y
and that f'(x;y)=x"-y.
o So f'(x; ) is linear.
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o The existence of the directional derivatives of f at x relative to all

points y in R" neither guarantees that f is differentiable nor that
f'(x; ) is linear.

Theorem

Suppose that a convex function f defined on an open convex set X in R"
possesses all its partial derivatives g)f . ,g)f at some point x of X. Then
f is differentiable at x.

o Let r>0 be such that B(x;r)< X. For each u=(uy,...,un) in
B(0;r), let

y(u)=f(x+u)-f(x)- %u1+~~+—un .

Then v is convex on B(0;r).
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o For each i=1,...,n, define a function 0; on B(0;r) at a point
u=(uy,...,up) of B(0;r) as follows:

y(ui€))
o(u)=] _w for u; #0,
0, for u; =0.

Then 0;(u) — 0 as u— 0. For each u=(uy,...,u,) such that nllull <r,
Jensen's inequality applied to the convex function ¥ shows that

y(u)

v (L(nuer)+-+L(nupen)) < ty(nuier) +--- + Ly(nupen)
u01(nu) + -+ upfn(nu) < lull(161(nu)l +--- + 10, (nu))).

But 0=y (Ju+3(-u)) = 3y (u)+iy(-u). So y(u) = —y(-u).
Thus,
—Null(101(—nu)l+---+10,(—nu)l) <y (u) < lull(101(nu)|+---+10,(nu))).

y(u)
So Tan
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Let f be a convex function defined on an open convex set X in R". Then f
is differentiable at a point xg of X if and only if it has unique support at xq.

o Suppose that f is differentiable at xg. Let T:IR" — R be a support
for f at xg. Then there exists x’ € R" such that, for all xe R",
T(xo+x)="1(x0)+x"-x. Let ye R". Then, for all sufficiently small
A1>0,

f(xo+Ay)—f(x0)=Ax"-y.
Hence f'(x0;y) = x"-y. Replacing y by —y in this last inequality and
using the fact that f is differentiable at xq, we deduce that
—f'(x0;y)=f'(x0;,-y)=—x"-y.

Hence f'(xg;y) =x"-y. It follows that x" = (f'(x0;e1),...,f'(xo0;€n)).
So f has unique support T at xq.
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o Suppose next that f has unique support T:R" — R at xg. Let m be
any real number satisfying —f'(xq;—e1) < m<f'(xp;e1). Let L be the
line in R"*1 defined by the equation

L={(xo+te1, f(xo)+mt):teR}.

It can be shown that f(xg)+ mt < f(xo+tey), for xo+te; € X.

Thus, L meets the epigraph of f at (xo,f(x0)) but does not meet its
interior. A previous corollary shows that there is a support hyperplane
to the epigraph of f at (xo,7(xg)) which contains L.

The uniqueness of the support to f at xg shows that this support
hyperplane must be the graph of T. Hence

T(xo+tey)=1f(xo)+mt=T(xo)+mt, for teR.
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o Thus, m is uniquely determined by T.
Thus, by the choice of m,

—fl(Xo; —e1) = f,(Xo; e1).

This shows that the partial derivative g—)fl at xg exists.
Similarly, the partial derivatives %, % exist.

By the preceding theorem, f is differentiable.
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Let f be a real-valued function which is defined and has continuous
second-order partial derivatives on a non-empty convex set X in R"”. Then
f is convex if and only if, for every x € X,

33

i=1j=1

9%f
ax, 0x;j |

zizj =0,

for all (z1,...,z,) € R".

o Let ye X and z=(z,...,z5) e R". Let f be the open interval of R
defined by the equation / ={1e R :y+ Az € X}. We have already seen
that the function g:/ — R defined by the equation g(A) =f(y +1z)
for A€ | is convex when f is. Conversely, suppose that each such
function g is convex. We show that this implies that f is convex.
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o Let x,ye X and let 0=A<1. Write z=x—y. Since g is convex,

f(Ax+(1-2)y) fly+Mx-y))

g((1-2)0+ A1)
(1-2)g(0)+Ag(1)
Af(x)+(1=2)F(y).

This shows that f is convex. Thus f is convex on X if and only if each
function g (as above) is convex on f. Since f has continuous
second-order partial derivatives on X, each function g is differentiable
twice on f. The first two derivatives of g can be calculated from the
chain rule for functions of n variables:

or zj, g"(ﬂ)=ii

x i=1j=1

Al

n

g)=>

J=1

0%f

ZiZj
0x;0x; i

X

0x;

where A €/ and the partial derivatives are evaluated at the point
x =y +Az. The desired result follows by a previous corollary.
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o Suppose that f is as in the last theorem.
2

o Then the nx n matrix whose (/,/)th element is evaluated at a

X;0X;
point x of X is called the Hessian matrix of f at, x.J

o The conditions which we have imposed upon f ensure that this matrix
is symmetric.

o We have thus proved that:

f is convex on X if and only if its Hessian matrix is non-negative
semidefinite at each point of X.
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Subsection 6

Support Functions
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o Let A be a non-empty compact convex set in R"” and let u be a
nonzero vector in R".
o For each real number a, denote by H, the hyperplane defined by the
equation
Hy={xeR":u-x=ajl.

o Denote by H the closed halfspace
defined by the equation

Hy ={xeR":u-x<a}.

o As «a increases, the hyperplane H,
describes a family of parallel
hyperplanes each having u as a normal
vector.
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o In general, there will be two values of a for which the hyperplane H,
supports A.

o These values are a7 and a5 in the figure.
o Only one of these, a3 in the figure, will be such that Ac H,.

o Clearly Ac H; if and only if u-a<a for all ain A, i.e., if and only if
supfu-a:ac Al <a.

o If, in addition to the requirement A< H_, it is also demanded that H,
supports A, then, for some point ag of A, u-ag = a.

o Thus H, is a support hyperplane to A such that Ac H, if and only if

a=sup{u-a:acA.
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o The support function h, or more precisely ha, of a non-empty
compact convex set A in R" is defined by the equation

h(u) =sup{u-a:acAj}, for each u in R".

o Since A is non-empty and bounded, for each u in R", the subset
{u-a:ae A} of R is non-empty and bounded.

Hence h(u) is well defined.

o The above definition of h makes sense even if A is only assumed to be
non-empty and bounded.

o For our purposes, it will suffice to consider the restricted case when A
is a non-empty compact convex set.
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o We find the support function h of the regular n-crosspolytope A
defined by the equation

A={(x1,...,xn) ER" : [xq|+ -+ +|xpl < 1}

o Let u=(uy,...,up).
o Then

h(u) = supfu-a:acA}

supf{uiai +:--+upap:lail+---+lapl <1}

supfluillarl +---+|upllapl : la1l+--- +lanl = 1}

sup{(max{luil,...,lual})(lazl +--- +lanl):
lail+---+lapl = 1}

INIA

max{luyl....,|unl}.
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Let me{1,...,n} be such that |um| = max{|uil,..., |unsl}.

©

©

Define a point a=(ay,...,an) of A by the conditions a; =0 when i # m
and a,, is 1 or —1 according as uj, is non-negative or negative.

o Then
u-a=|uml=max{luil,...,lunpl}.

©

Hence h(u) = max{luil,..., unl}.
o We have thus shown that

h(u) = max{|u1l, ..., lupl}.

o We note that this support function is positively homogeneous and
convex.
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The support function of a non-empty compact convex set in R" is
positively homogeneous and convex.

o Let h be the support function of a non-empty compact convex set A in
R". Let u,veR" and let A >0. Then

h(Au) = sup{(Au)-a:ac A} =Asup{u-a:ac Al = Ah(u).

This shows that h is positively homogeneous.
Also

h(u+v) sup{(u+v)-a:acA}
sup{u-a+v-a:acA}
supfu-a:ac Al +supfv-a:acAl

h(u) + h(v).
The convexity of h now follows from a previous theorem.
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o Suppose that h is the support function of a non-empty compact
convex set A in R”, and that u is a non-zero vector in R".

o By the definition of h, u-a < h(u) for each a in A, whence
Ac{xeR":u-x<h(u)}.

o Consider the function f: A— R defined by the rule f(a) =u-a for
each point a in A.

o Then f is continuous, and so is bounded and attains its bounds on the
compact set A.

o In particular, there exists a point ag in A such that
u-ag=sup{u-a:acA}=h(u).

o So the hyperplane with equation u-x = h(u) supports A at ag.
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o The distance of this support hyperplane from the origin is ”ﬁ(:")l,

which simplifies to h(u) when u is a unit vector and the origin is a
point of A.

o The earlier discussion shows that the set
xeR":u-x=h(u)}nA={xeA:u-x=h(u)}

is a non-empty exposed face of A.
o It is called the exposed face of A with outward normal u and is
denoted by AY.

o Since h is positively homogeneous, for A >0,

AN = (xeA:(Au)-x = h(Au)}

{xeA:u-x=h(u)}
AU,
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Theorem

Let A, B be non-empty compact convex sets in R” with support functions
ha, hg, respectively. Then the support functions ha,g of A+ B and hy of
AA, where A =0, are given by the equations ha,g = ha+hg and hya = Aha.

o Let ueR". Then

sup{u-(a+b):acAbeB}
sup{u-a:ae€ Al +sup{u-b:be B}
hA(u)+hB(u)

Hence harg = ha+ hg. Also

haig(u)

ha(u) = sup{u-(Aa):ac Al = Asupfu-a:ac A = Ahp(u).

Hence hya = Aha.
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Let A, B be non-empty compact convex sets in R". Then, for each non-zero
vector u in R" and for each 1 >0, (A+B)Y = AY + BY and (1A)Y = 1AY.

o We note that

(A+B)Y = {a+b:acAbeB,hyg(u)=u-(a+b)
= {a+b:acAbeB hs(u)+hg(u)=u-a+u-b}
= {a+b:acAbeB,hp(u)=u-a,hg(u)=u-b}
= {a€A:hap(u)=u-at+{beB:hg(u)=u-b}
= AU4+BY
We also have, for 1 =0,
(AAY = {la:acAha(u)=u-(1a)}

MaeA: Aha(u) = Au-a}
MaeA:ha(u)=u-a}
= AAY,
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Let h be the support function of a non-empty compact convex set A in R”".
Then A={xeR":u-x < h(u) for all ue R"}.

o We prove the theorem by showing that:
If ac A,ueR", then u-a< h(u);
If ag € R™A, then u-ag > h(u) for some ueR".

Statement (i) follows immediately from the definition of h.

Suppose that ag € R"\A. Then {ag} and A can be strictly separated by
a hyperplane. Thus there exists u € R" such that

h(u) =sup{u-a:acAl<u-ap.

This verifies Statement (ii).
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Theorem

Let g:R" — R be a positively homogeneous convex function. Then the set
A defined by the equation

A={xeR": u-x<g(u) for all ue R"}
is non-empty, compact, convex, and has support function g.

o Let ueR". Since g is convex, it has support at u. So there exist
aoe R, aeR" such that ag+a-u=g(u) and ag+a-v < g(v), for
veR". Putting v = Au, we get, for all 1 =0,

ap+A(a-u)<g(Alu)=2Ag(u)=2Aag+A(a-u).

Thus, ag < Aag for all A=0. Hence, ag =0. Putting ag =0 in the same
relations, we find that a-u =g(u) and a€ A.
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o We have just shown that A is non-empty.

From its definition, A is an intersection of closed halfspaces, and so is
closed and convex.

For each a=(ay,...,a,) in A, and i=1,...,n,
-g(-ej)<a-ej=a;<g(e)).

This shows that A is bounded.
Thus A is a non-empty compact convex set.
Denote by h the support function of A. Let ue R".

By the first part of this proof, there is a€ A for which a-u = g(u).
Hence, g(u) < h(u). For each ain A, a-u<g(u). So h(u) < g(u).

Thus g = h and g is the support function of A.
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o Let A be a closed convex set in R" having the origin as an interior
point.
Then it follows easily that AA< uA whenever 0 <A < p.

©

Moreover, for each x in IR", there is some A =0 such that x € AA.

©

Thus R"” can be expressed as an increasing union of convex sets as
follows:

©

R"=J(AA:1=0).

The gauge function g, or more precisely g4, of A is the function
g:R" — R defined, for each x in R", by the equation

©

g(x)=inf{l=0:x€e 1A}

o In view of the earlier comments, g is well defined.
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o Some immediate consequences of the definition are:
g(0)=0 and g(x) =0 for xe R";
g(x) =1 when x € A;
If g(x)=0, then {ux: u=0}cA;
g(x)=0 for all xeR" if and only if A=R".

o Suppose now that g(x)>0. Then, for each €¢>0, x € (g(x) +¢)A.
Hence m € A. Letting e — 0" and using our assumption that A is
closed, we deduce that ﬁ € A. Hence x e g(x)A. In particular, if
0<g(x) <1, then xe g(x)A< A. We have thus established:

={xeR":g(x)=<1}.
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The gauge function of a closed convex set having the origin as an interior
point is positively homogeneous and convex.

o Let g be the gauge function of a closed convex set A in R” which
contains the origin in its interior.
Let x€R" and let 1>0. Then Ax € pA if and only if xe §A. It
follows easily from the definition of g that

1 1 _ (BB
Zg()tx) = Zlnf{,uZO.)LXEuA} = |nf{z X E XA} =g(x).

Trivially, g(0x) =0g(x). Thus g is positively homogeneous.

Let x,y € R" and let A,u=0 with A+ u=1. Then, for each &£ >0,

x € (g(x)+e)A, ye(g(y)+€)A. So Ax+py € (Ag(x)+ug(y)+e)A.
Since € >0 is arbitrary, g(Ax +py) <Ag(x)+ug(y). This shows that
g is convex.
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o We find the gauge function g of the n-cube A defined by the equation
A={(x1,..c,xn) tIx1l, ..., Ixal < 1}.
Let u=(uy,...,up). Then, for A =0,
AA={(x1,..,Xn) X1l .o, IXnl < A}
So ue AA if and only if max{|ui],...,|unl} < A. Thus,

g(u) =max{lul,..., upl}.
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Theorem

Let f:IR" — R be a non-negative positively homogeneous convex function.
Then the set A defined by the equation

A={xeR":f(x)<1}

is closed, convex, contains the origin in its interior and has gauge function
f.

o The function f is continuous by a previous theorem. Thus A is closed
and contains the open set {x e R": f(x) < 1}, which contains the
origin. The set A is convex, being the level set of a convex function.
Hence A is a closed convex set containing the origin in its interior.
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o Denote by g the gauge function of A.
Then, as proved earlier, A={xeR": g(x) < 1}.
Suppose that u € R" satisfies g(u) > 0.

Since g is positively homogeneous, g(ﬁ) =1. Hence -4~

Since f is positively homogeneous and ﬁ €A, f(ﬁ) 2 (@
This shows that f(u) < g(u).

If g(u)=0, then, for all 1 >0, AueA.

So 0= f(Au)=Af(u)<1. It follows that f(u)=0.
Thus f(u) < g(u) for all ueR".

By a similar argument, g(u) < f(u) for all ue R".

Hence f = g and f is the gauge function of A.
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o We have already seen that the support function of the regular
n-crosspolytope

{(X1, o Xn) T Ixa ]+ +Ixpl = 1}
and the gauge function of its dual, the n-cube
{(X1, s Xn) T IX1 ] e Xl = 1}
are the same, namely the function f : R” — R defined by the equation

f(u)=max{lu1l,...,lupl}, for u=(uy,...,u,) e R".
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Theorem

Suppose that g, h are the gauge and support functions, respectively, of a
compact convex set A in R” which has the origin as an interior point. Then
the gauge and support functions of the dual A* of A are h,g, respectively.

o If ue A*, then u-a<1 for all ain A, whence h(u) <1.
Conversely, if h(u) <1, then u-a<1 for all ain A, and so ue A*.
Thus,
A*={xeR": h(x) <1}
Since A contains the origin, h is non-negative.
Thus h is a non-negative, positively homogeneous convex function.
Hence, by the preceding theorem, h is the gauge function of A*.
By what we have just proved, the support function of A* is the gauge
function of A** = A, viz. g.
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Subsection 7

The Convex Programming Problem
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o Throughout this section f,g1,...,gm will denote convex functions
defined on R".

o The convex programming problem is to minimize f(x) subject to
the constraints x 20, g1(x) <0,...,gm(x) <0.
o The feasible set for the problem is the convex set X defined by the
equation
X={xeR":x=0,g1(x)<0,...,gm(x) <0}

o Thus the convex programming problem is to find xg € X such that
f(xo0) = f(x) for all xe X.

George Voutsadakis (LSSU) Convexity



Convex Functions

Theorem

Let f1,...,fx be convex functions defined on a nonempty convex set Y in
R". Suppose that there exists no y in Y such that f1(y) <0, ..., f(y) <O0.
Then there exist ay,...,ax =0, not all zero, such that

aif(y)+---+akfk(y)=0, forall yeVY.

o Define a set C in RX by the equation
C={(z1,...,zx) : there is y € Y such that fi(y) <z for i=1,...,k}.

Let u=(uy,...,ux), v=_(v1,...,vx) € C. Let A,u=0 with A +p=1.
Then there exist a,be Y such that, for i=1,...,k, fi(a) <u; and
fi(b) < vj. The convexity of f,...,fx shows that, for i=1,...,k,

fi(Aa+ ub) < Afi(a) + ufi(b) < Auj + uv;.
Hence, since Aa+ube Y, Au+puve C. Thus C is convex.

George Voutsadakis (LSSU) Convexity



Convex Functions

o By hypothesis, C does not contain the origin of R¥.
So the origin and C can be separated by a hyperplane.

Thus, there exist scalars ay,...,ax, not all zero, such that, for all ye Y
and all Aq,...,1, >0,

ar(fA(y)+ A1)+ +ar(f(y)+Ak) = 0.

Letting A1 — oo, whilst keeping A5,..., A fixed in, we deduce that
a; =0. Similarly, a =0, ..., a, =0.
Letting A1 — 0%,..., A, — 0%, we deduce that, for all y in Y,

afi(y)+---+akf(y)=0.
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o The Lagrangian function associated with the convex programming
problem is the function F of the m+ n variables x1,...,x5, y1,..-,¥m
defined by the equation

F(x,y)=f(x)+y181(x)+ -+ Ym&m(x),

where x = (x1,...,%n), ¥ = (V1,--,¥Ym)-
o The saddle-point problem is to determine a saddle point of F, that
is, a point (xo,¥o) of R™*" such that xo=0, y,=0 and

F(x0,y) = F(x0,¥0) = F(x,¥0),

for all x=0, y =0.
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Let (x0,yo) be a saddle point of the Lagrangian function F. Then xq is a
solution to the convex programming problem and F(xo,yq) = f(xo).

o Let xo=(x?,...,x8)=0 and yo = (y?,...,¥%) = 0. For all
y=(1--¥Ym) 20, F(x0,y0) = F(x0,y). So

y2g1(x0) + - + ymgm(X0) = y181(X0) + -+ + Ymg&m(Xo).

By fixing y»,...,ym and letting y; — oo, we deduce that gi(xg) <0.

Similarly, g2(x0) <0, ..., gm(x0) =0.
Thus xg is a point of the feasible set X of the convex programming
problem.
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o Putting y =0 in the saddle-point inequality F(xo,¥)= F(xo,y) and
using the fact that xg € X, we deduce that

f(x0) = f(x0) +y7 &1(X0) + -+ +ypgm(X0)-
Therefore, since yq =0 and g;j(xo) <0,

0 Syfgl(xo) +~~~+y,9,gm(xo) <0.
Hence

y281(X0) + -+ ymgm(x0) = 0 and F(x0,¥0) = f (o).
Since F(xo,yq) < F(x,y) for all x=0, we deduce that, for all x € X,
f(x0) < f(x)+yPg1(x) + -+ ymgm(x) =< f(x).

This shows that xg is a solution to the convex programming problem.
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o It is not true that, given any solution xq of the convex programming

problem, there is always a y, such that (xq,y) is a saddle point of
the Lagrangian function F.

Theorem

Suppose that xq is a solution of the convex programming problem.
Suppose also that there exists x* =0 such that g1(x*) <0, ..., gm(x*) <O0.
Then there exists yy, € R™ for which (xg,y,) is a saddle point of the
Lagrangian function F.

o Suppose that x belongs to the nonnegative orthant Y of R". Then
not all of the following inequalities can hold: g1(x) <0, ..., gm(x) <0,
f(x)—f(x0) <0. Thus, by a previous theorem, there exist
ai,...,am,ag =0, not all zero, such that

a181(x) +++++amgm(x) + ao(f (x) — f(x0)) =0
whenever x€ Y, i.e.,, x=0.
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o If ag=0, then
0>a181(x*) 4+ +amgm(x™) =0,

which is impossible. Thus ag>0. For i=1,...,m, let yl.0 = j—(” and let
yo=(y{,-..,¥3) = 0. Then, for any x =0, we deduce from the
displayed inequality that
f(x0) < F(x)+yPg1(x) +- -+ ymgm(x) = F(x,y).
Hence
f(x0) < f(x0)+yr81(x0) + -+ + ym&m(x0) = f(x0).
So y2g1(x0) +--+y2&m(x0) =0. Thus, for all x=0,
F(x0,¥0)=f(x0)<F(x,yg). For y=(y1,...,¥m)=0,
F(x0,¥0) = f(x0) = f(x0) + y181(x0) + -+ + Ym&m(x0) = F(x0,¥ ).

This shows that (xo,y() is a saddle point of F.
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Theorem (Kuhn-Tucker Conditions)

Suppose that the convex functions f,gi,...,gm : R" — R are differentiable.
Then (xo,¥q), where xg = (x?,...,x2) and yo = (y?,...,y3,), is a saddle
point of the Lagrangian function F if and only if

X0>0
9 (x0,¥0) = af(xo)+Zf"1y,°af’(xo) 0,
a_)g(XO»YO)—O» |ij >0,

and
yOZO
oF ) =0
9 (x0,¥0) = g(x0) =0,

gyj(XO»YO) 0, if y? >0.
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o Suppose first that (xg,y,) is a saddle point of F.
Then certainly the first conditions of each triple are satisfied.
For each j=1,...,n,

F(xo+Aej,yo) = f(x0,y0), if A2 —XJQ.

It now follows, by elementary calculus, that

oF

oF _
a_Xj(xo,yo) =0 and 6—)9_("0»)’0) =0, if x> 0.

Thus, the last two conditions of the first triple are satisfied.

By a previous theorem, the remaining conditions are also satisfied.
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o Suppose next that the six Kuhn-Tucker conditions are satisfied.
The function F(x,y,) of x, for fixed yy, is convex and differentiable,
because f,g1,...,8m are, and yo=0. Thus F(x,yg) has unique
support at xg. Hence, for all x=(xg,...,x5) =0,

F(x,y0) = F(x0y0)+(xa—x)) 3 (x0,y0) + + (xn—x0) 3= (X0, ¥0)
= F(x0,¥0)+x1 (X0, ¥0) +** +Xn 3= (X0, ¥0)
>  F(x0,¥p)-
The first set of conditions was used here.
Finally for y = (y1,...,¥m) =0, we have
F(xoy) = F(x0y0)+(v1—yP)g1(xo0)+ -+ (Ym—ym)&m(xo)
= F(xo0,y0)+y181(x0) +--* +Ymgm(xo)
< F(xo0,¥p)-

Here we have used the second set of conditions.
We have thus shown that (xg,y,) is a saddle point of F.
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o Solve the convex programming problem:
minimize  —6x +2x} —2x1%p + 2x3
subject to x1+x <2, x1 =0, x0 =0.

Write f(x1,x2) = —6x7 + 2x12 —2x1X0 + 2x22 and g(x1,x2) =x1 +x—2.
The Lagrangian function F is defined by the equation

F(x,y)=—6x1+ 2x12 —-2x1X0 + 2x§ +y1(x1 +x2—2).

The Kuhn-Tucker conditions give the following equations and
inequalities:

X1(—6+4X1—2X2+y1)=0, —6+4X1—2X2+y120,
X2(—2X1 +4x7 +y1) =0, —2x1 +4x> +y12 0,
yl(X1+X2—2)=O, x1+x0—2<0,

x120, x0=0, y120.
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o The three equations have the following six solutions:

X1 X2 N
i[o o o
(i|o 2 -8
)2 0 0
(ivy|2 0 -2
(v)/2 1 0
(vi)| 3 3 L

Of these solutions only (vi) satisfies all the remaining inequalities.

3 1)_

« . _H 31
Hence f has minimal value 5> at (2,2
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Subsection 8

Matrix Inequalities
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o Associated with each real symmetric square matrix A of order n, there
is a quadratic function g:R" — R defined for each x in R" by the
equation

q(x)=xT Ax = (Ax)-x.

o Let uq,...,u, be an orthonormal sequence in R" consisting of
eigenvectors of A corresponding to the eigenvalues A4,...,1, of A.

o Then, fori=1,...,n, ul.TAu,- =(Auj)-uj=(Aju;)-u;=A,.

o Hence (g(u1),...,q(un)) =(A1,...,1n).

o We consider the following problem:

If vi,...,v, is any orthonormal sequence in R", how are the points

u=(qg(u1),...,q(up)) and v=(g(v1),...,q(vn)) related to one
another?
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o Express each v;, for i=1,...,n, as a linear combination of uq,...,u,,
thus:
vi=(vi-uy)ug+---+(vi-up)up.

o Hence

((vi-u1)Auy+---+(v;i-up)Auy)-
((V,‘ o ul)ul TP ooo qF (V,‘ o u,,)u,,)
(A(vi-u)uy+---+Ap(vi-up)uy)-
((vi-up)ui+---+(vj-up)uy)
(V,'~ U1)2/11 TP eoo P (V,'~ u,,)2/1,,
(vi-u1)?q(ur)+--+(vi-u,)?q(uy).

q(vi)

o Thus v =Su, where S is the square matrix of order n whose (/,/)th
element is (v; - u;)2.
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o The matric S is a square matrix all of whose elements are
non-negative real numbers.

o Squaring both sides of equation v; = (v;-uj)u;+---+(v;-u,)u,, and
using the orthonormality of the sequences uq,...,u, and vy,...,v,, we
deduce that, for i=1,...,n,

(vicur)>+-+(vi-up)? =lvilI> =1
o Similarly, for j=1,...,n,
(uj-vi)?+-+(uj-vp) = lujl? = 1.

o Thus S is a square matrix of order n whose elements are non-negative
real numbers, and the sum of the elements in each of its rows and
columns is equal to 1.

o Such a matrix is called a doubly stochastic matrix.

o The set of all doubly stochastic nx n matrices will be denoted by Q,.
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o The simplest example of a doubly stochastic matrix is a permutation
matrix, which is a square matrix with precisely one 1 in each row and
column, all of its other elements being zero.

o Equivalently, a permutation matrix is one that can be obtained by
permuting the rows of an identity matrix.

o Clearly every convex combination (in the obvious sense) of
permutation matrices is a doubly stochastic matrix.

o The converse of this result, namely that every doubly stochastic
matrix is a convex combination of permutation matrices, is also true
and it is known as

o This theorem, which will be proven here, is perhaps the most
fundamental result in the whole study of doubly stochastic matrices.
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o In a natural way we may regard each real nx n matrix A=[a;] as a

point a = (ajj) of R™, the n? elements of A corresponding in some
prescribed way to the n? coordinates of a.

o To be definite, we set up the correspondence

A=aj] < (a11,..,a1n, @21,--.,@2n, .., An1,-.-,ann) = a.

o This correspondence is a bijection between the set of all real nx n
E o a 2
matrices and the set of points in R™.

o It preserves linear combinations, and so we can usefully identify the
matrix A with the point a.

o Under this identification, we may think of the set Q, of doubly
0 0 0 2 0
stochastic nx n matrices as a set in R™ and refer to some of its
members as being permutation matrices.
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Lemma

Let B be a non-singular square matrix of order n that can be partitioned in
the form [ g ] where P and @ are matrices of 0's and 1's, such that no

column of either P or Q contains more than one 1. Then detB = +1.

o We argue by induction on n. The case n=2 is trivial.
Suppose that n=>3 and that the assertion is true for square matrices
of order n—1. Let B be as in the statement of the lemma.
At least one column of B contains precisely one 1.

Otherwise the rows of P could be added to the negatives of the rows
of Q to produce a zero row, contradicting the non-singularity of B.

Expanding detB by a column with precisely one 1, detB = +detC.
But C is a square matrix of order n—1 of the form in the lemma.
Hence, detB = +1, since detC = +1 by the induction hypothesis.
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Theorem

5 g 2 o 0
The set Q, is a polytope in R™ whose extreme points are the permutation
matrices in Q,. Every doubly stochastic matrix is a convex combination of
permutation matrices.

o The set Q, is polyhedral, since it consists of those points (x;) in R"
satisfying the relations:

XU = 0) /,j=1,...,n;
i=1,...,m;
Ty = L j=l..,n-L

™
o,
X
&
[
s

Note that the equality xi,+ -+ xp, = 1 follows from the 2n—1
equations in the last two lines.

The relations of the first two lines show that, if (x;) € Q,, then
0=<xjj<1. Hence Q, is a bounded polyhedral set, i.e., a polytope.
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o That each permutation matrix in Q, is one of its extreme points
follows easily from the definitions of extreme point and permutation
matrix. The non-trivial part of the proof is to show that each extreme
point of Q, is a permutation matrix.

Let (aj) be an extreme point of Q,. Then, by a previous theorem,
(ajj) is a nonnegative basic solution for the system of the 2n—1
equations in the last two lines above, i.e., of Ax = b, where

111...11 000...00 --- 000...00 ]
000...00 111...11 --- 000...00
| 000...00 000..00 --- 111...11 _ on1
A=1 100..00 100..00 --- 100..00 | 2"d b=(.... 1) e R
010...00 010...00 --- 010...00
000...10 000...10 --- 000...10 |
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o At least n—(2n—1) = (n—1)? of the aj; must be zero. The others,
ai,...,azn—1, say, satisfy a system of linear equations of the form

B(ay,...,an-1) = b,

where B is a non-singular (2n—1) x (2n—1) submatrix of A.
The matrix B satisfies the conditions of the lemma. So detB = +1.
Thus the elements of B!, and hence of (a1,...,a2n-1), are integers.

It follows that the doubly stochastic matrix (a;;) has only integer
elements. So it must be a permutation matrix.

We complete the proof by noting that a polytope is the convex hull of
its extreme points.
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o Suppose now that A is an n-tuple of the (necessarily real) eigenvalues,
in some order, of a real symmetric nx n matrix A.

o The set A g of all such n-tuples A is called the A-set of A.

o Clearly A4 is a finite set containing at most n! points.

Let f: X — IR be a convex function which is defined on a convex set X in
R" containing the A-set A g of a real symmetric nx n matrix A. Let
(A1,...,An) be a point of A g where f assumes its maximum on A 4. Then,
for any orthonormal sequence vy,...,v, in R,

f(vi Avi,...,vI Av,) < f(Ag,..., Ap).
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o We show:

o First that the point v = (v{Avl,...,v,Z—Av,,) lies in X;

o Then that f(v)<f(A), where A =(Ag,...,4p).
Let uy,...,u, be an orthonormal sequence of eigenvectors of A
corresponding to the eigenvalues Aq,...,A,. Then, as we proved at the
beginning of this section, there is a matrix S of Q, such that v=SA.
By Birkhoff’'s Theorem, there exist yi,...,m =0 with g3 +--+pup,=1
such that S =y P1+---+ mPm, where Pq,...,Pp, are the
permutation matrices in Q,. Hence

v=SA=pi(P1A)+ -+ pum(PmA) € convA 4 € X.
The convexity of f shows that

f(v) < f(PiA)+ -+ pmf(PmA) s uif(A) +---+ umf(A) = f(A).
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Let A be a non-negative semidefinite nx n matrix with eigenvalues
A1,...,An. Then, for any orthonormal sequence vq,...,v, in R”,

n
detA=A1--- A, < [[v] Av;.
j=1

o Since A is non-negative semidefinite, A1,...,A,=0. The function
f: X — R defined on the non-negative orthant X of R" by the
equation

f(>x1,...0X%p) = —(x1~~~x,,)1/", for x1,...,xp, =0,

is easily seen to be convex from a previous corollary. The A-set of A is
clearly contained in X. The preceding theorem shows that

n 1/n
- (/]"[ VJTAVJ-) < —(Ar---Ap)Y" = —(detA)Y/".
j=1
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Theorem (Hadamard's Determinant Inequality)

Let A=[aj] be a real nx n matrix. Then

(detA)? < (311 +”'+a?11)"'(a%n+'”+a%n)'

If A is nonnegative semidefinite, then detA < aq;---ap.

o Let B =[b;] denote the nonnegative semidefinite matrix A” A.

Applying the preceding theorem to B, and using the orthonormal
sequence es,...,e, of elementary vectors, we deduce that

(detA) —detB<He BeJ—bll -b1p.
Jj=1

2 2 2 2 2
Hence (detA)* < (aj; +---+a-;)---(ag, +--+ap,).
When A is itself non-negative semidefinite, we apply the preceding
theorem to A and the sequence ey,...,e, to get detA<ayi---an,
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Theorem (Minkowski's Determinant Inequality)

Let A, B be nonnegative semidefinite nx n matrices. Then

(det(A+ B))Y/" = (detA)Y/" + (det B)/".

o Let vy,...,v, be an orthonormal sequence of eigenvectors of the
non-negative semidefinite matrix A+ B corresponding to eigenvalues
A1,...,An. Then, using previous proven inequalities,

(det(A+B)Y" = (Ag---A,)Y/"
= J 1 J (A+B) .)1/'7
l(vTAvj + vTBvJ))l/"

(IT7.
(IT7.
(
(

> HJ 1 JAVJ)l/” (., jTij)l/”
> (detA)'/" +(detB)'/",
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o A diagonal of a real nx n matrix A= [aj;] is a finite sequence
314(1)s---»Ano(n) Of elements of A, where o(1),...,0(n) is a
permutation of 1,...,n.

o To form such a diagonal:

o We first choose any element dy in the first row of A.

o Next we choose any element d» in the second row of A not lying in the
same column as dj.

o Then we choose any element d3 in the third row of A not lying in the
same column as either d; or d>.

o Continuing in this way, we produce a diagonal di,...,d, of A.

o Clearly A has at most n! different diagonals.

o The diagonal aj1,...,an, is called the leading diagonal of A.
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o A diagonal di,...,d, of A is said to be positive if d,---,d, > 0.

o It is a non-trivial fact that a doubly stochastic matrix always has a
positive diagonal.

Indeed, by Birkhoff's Theorem, each doubly stochastic matrix A in Q,,
can be expressed in the form

AZA,1P1+---+/1um,

where P4,..., P, are permutation matrices and Aq,...,A, >0 with
M+ +An=1.

For each i=1,...,n, let Py, have a 1 in its ith row and o(i)th column.
Then a15(1),---,3n0(n) is @ positive diagonal of A.
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Theorem

Let C = [cjj] be a real nx n matrix. Then there exists a diagonal
Clo(1)»-++r Cno(n) Of C such that

n
Clo(1) T "t Cho(n) = Z CijSij»
ij=1

for every doubly stochastic nx n matrix S = [s].

o Define a function f:Q, — R by the equation

n
f(S)= Z Cij Sij»
ij=1
for each doubly stochastic matrix § =[s;] in Q,. Let Py,...,Py, be
the permutation matrices in Q,. Choose one of these matrices,
P =[pjj], say, for which f(P)=min{f(Py),...,f(Pm)}. Suppose that
the 1 in the ith row of P lies in its o(/)th column.
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o By Birkhoff's Theorem, each doubly stochastic matrix § = [s;] in Q,
can be written in the form S=A1P1+---+ A, Py, for some
Ao Am =0 with Ay +---+ A, =1. Thus,

f(S)=Mf(P1)+--+Amf(Pm)=f(P).

Finally,

Clo(1) T+ Cno(n) = Z Cij Pij

Il
M=
S
Q(h

A
==
0 T
Q SN—
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Each doubly stochastic nx n matrix has a positive diagonal whose harmonic

mean is at least %
[aj] be an nx n doubly stochastic matrix. Define an nxn

o Let A=
matrix [c;j] by the equations
1
i a for ajj>0
G ;
n“+1, fora;=0.

By the preceding theorem, some diagonal ci4(1),..., Cpo(n) of [cij]

satisfies the inequalities

Clo(1) T "t Cno(n) = Z Cjaj=n
ij=1

Now all the terms on the left-hand side are positive, and so no term

can be equal to n®+1.
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o This implies that, for i=1,...,n, aj5(jy>0 and cj(j) =

from the inequality, we get

1 1
oot <n’.

a10(1) dng(n) -

Consequently, the harmonic mean

(1 1 1 )‘1
= dbooodb
n\aie(1) ang(n)

of the diagonal ajg(1),.-.,an0(n) is at least %
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Corollary

Each doubly stochastic nx n matrix [aj] has a positive diagonal
a15(1)r+-+»ano(n) Satisfying the inequalities

315(1) +*** + Ang(n) = 1 and A6(1)" " Ano(n) = i

o By the theorem,

1
P 1
n

A10(1) + + ana(n)

But the harmonic arithmetic and geometric means satisfy

n - - A1g(1) -+ ang(n)
T ...~ V) dno(n= n :

a14(1) Ana(n)

Therefore, ai5(1) ++*+ang(n) =1 and ayg(1)**ang(m) = 0"
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