George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) **[Differential Geometry](#page-59-0)** Differential Geometry December 2024 1/60

[Introduction to Manifolds](#page-2-0)

- \bullet [Preliminaries on](#page-2-0) \mathbb{R}^n
- \mathbb{R}^n [and Euclidean Space](#page-10-0)
- [Topological Manifolds](#page-18-0)
- **[Further Examples. Cutting and Pasting](#page-36-0)**
- [Abstract Manifolds. Some Examples](#page-48-0)

Subsection 1

The *n*-Fold Cartesian Product \mathbb{R}^n

- **Q** Let R denote the set of real numbers.
- Let \mathbb{R}^n be their *n*-fold Cartesian product

$$
\overbrace{\mathbb{R}\times\cdots\times\mathbb{R}}^{n},
$$

the set of all ordered n-tuples (x^1,\ldots,x^n) of real numbers.

- Individual *n*-tuples may be denoted at times by a single letter. \bullet
- Thus $x = (x^1, ..., x^n)$, $a = (a^1, ..., a^n)$, and so on.
- We agree to use on \mathbb{R}^n its topology as a metric space, with the metric defined by

$$
d(x,y) = \left(\sum_{i=1}^n (x^i - y^i)^2\right)^{1/2}.
$$

Neighborhoods

The neighborhoods are then open balls $B_\varepsilon^n(x)$, or $B_\varepsilon(x)$, defined, for any $\varepsilon > 0$, as

$$
B_{\varepsilon}(x)=\{y\in\mathbb{R}^n:d(x,y)<\varepsilon\}.
$$

One may take equivalently open cubes $\mathcal{C}^n_\varepsilon(x)$, or $\mathcal{C}_\varepsilon(x)$, of side 2ε and center x , defined by

$$
C_{\varepsilon}(x)=\{y\in\mathbb{R}^n:|x^i-y^i|<\varepsilon,\ i=1,\ldots,n\}.
$$

- \circ Note that $\mathbb{R}^1 = \mathbb{R}$.
- We define \mathbb{R}^0 to be a single point.

Meanings of \mathbb{R}^n

- We shall invariably consider \mathbb{R}^n with the topology defined by the metric.
- This space \mathbb{R}^n is used in several senses, however, and we must usually decide from the context which one is intended.
	- Sometimes \mathbb{R}^n means merely \mathbb{R}^n as topological space;
	- \circ Sometimes \mathbb{R}^n denotes an *n*-dimensional vector space;
	- Sometimes it is identified with Euclidean space.

The Issue of Naturality

- We assume familiarity with the definition and basic theorems of vector spaces over \mathbb{R} .
- Among these is the theorem which states that any two vector spaces over $\mathbb R$ which have the same dimension n are isomorphic.
- It is important to note that this isomorphism depends on choices of bases in the two spaces.
- There is in general no natural or canonical isomorphism independent of these choices.
- \bullet However, there does exist one important example of an *n*-dimensional vector space over $\mathbb R$ which has a distinguished or canonical basis.
- By this we mean a basis given by the nature of the space itself.
- \circ This is the vector space of *n*-tuples of real numbers with componentwise addition and scalar multiplication.

- The vector space of *n*-tuples of real numbers with componentwise addition and scalar multiplication is, as a set at least, just \mathbb{R}^n .
- To avoid confusion, sometimes we will denote it by V^n .
- We then use boldface for its elements (e.g., x instead of x).
- \circ For this space the *n*-tuples

$$
\bm{e}_1 = (1,0,\ldots,0), \ldots, \bm{e}_n = (0,0,\ldots,0,1)
$$

form a basis, known as the natural or canonical basis.

- \bullet We may at times suppose that the *n*-tuples are written as rows, that is, $1 \times n$ matrices, and at other times as columns, that is, $n \times 1$ matrices.
- This only becomes important when we use matrix notation to simplify things, e.g., to describe linear mappings, equations, and so on.

Euclidean Spaces

- \bullet \mathbb{R}^n may denote a vector space of dimension *n* over \mathbb{R} .
- We sometimes mean even more by \mathbb{R}^n .
- \bullet An abstract *n*-dimensional vector space over $\mathbb R$ is called **Euclidean** if it has defined on it a positive definite inner product.
- In general there is no natural way to choose such an inner product.
- In the case of \mathbb{R}^n or \boldsymbol{V}^n , we have the natural inner product

$$
(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n x^i y^i.
$$

o It is characterized by the fact that relative to this inner product the natural basis is orthonormal, $(\boldsymbol{e}_i, \boldsymbol{e}_j) = \delta_{ij}.$

The Norm

- \bullet The metric in \mathbb{R}^n discussed at the beginning can be defined using the inner product on \mathbb{R}^n .
- We define $\|\mathbf{x}\|$, the norm of the vector **x**, by

 $\|\mathbf{x}\| = ((\mathbf{x}, \mathbf{x}))^{1/2}.$

o Then we have

$$
d(x,y)=\|\mathbf{x}-\mathbf{y}\|.
$$

- \bullet This notation is frequently useful even when we are dealing with \mathbb{R}^n as a metric space and not using its vector space structure.
- Note, in particular, that $\|\mathbf{x}\| = d(x, 0)$, the distance from the point x to the origin.
- In this equality x is a vector on the left-hand side and x is the corresponding point on the right-hand side.

Subsection 2

Euclidean Space

- Another role which \mathbb{R}^n plays is that of a model for *n*-dimensional Euclidean space E^n , in the sense of Euclidean geometry.
- Some texts refer to \mathbb{R}^n with the metric $d(x, y)$ as Euclidean space.
- This identification is misleading in the same sense that it would be misleading to identify all *n*-dimensional vector spaces with \mathbb{R}^n .
- o It is an identification that can hamper clarification of the concept of manifold and the role of coordinates.
- Euclid and the geometers before the seventeenth century did not think of the Euclidean plane \bm{E}^2 or three-dimensional space \bm{E}^3 as pairs or triples of real numbers.
- They were rather defined axiomatically.

Coordinatization

- Consider the Euclidean plane \boldsymbol{E}^2 as studied in high school geometry.
- We later introduce coordinates using the notions of length and perpendicularity.
- We choose two mutually perpendicular "number axes".
- They are used to define a one-to-one mapping of \bm{E}^2 onto \mathbb{R}^2 by

$$
p\mapsto (x(p),y(p)),
$$

where $x(p)$ and $y(p)$ are the coordinates of $p\in \boldsymbol{E}^2.$

This mapping is (by design) an isometry, preserving distances of points of \bm{E}^2 and their images in \mathbb{R}^2 .

- Finally, we obtain further correspondences of essential geometric elements.
- E.g., lines of \boldsymbol{E}^2 correspond to subsets of \mathbb{R}^2 consisting of the solutions of linear equations.
- Thus, we carry each geometric object to a corresponding one in $\mathbb{R}^2.$
- o It is the existence of such coordinate mappings which make the identification of \bm{E}^2 and \mathbb{R}^2 possible.

Coordinate Systems

- An arbitrary choice of coordinates is involved.
- There is no natural, geometrically determined way to identify the two spaces.
- Thus, at best, we can say that \mathbb{R}^2 may be identified with \boldsymbol{E}^2 plus a coordinate system.
- Even then we need to define in \mathbb{R}^2 the notions of line, angle of lines and other attributes of the Euclidean plane, before thinking of it as Euclidean space.
- Thus, with qualifications, we may identify \boldsymbol{E}^2 and \mathbb{R}^2 or \boldsymbol{E}^n and \mathbb{R}^n , especially remembering that they carry a choice of rectangular coordinates.

Properties

- Using the analytic geometry approach to the study of a geometry makes it sometimes difficult to distinguish between:
	- Underlying geometric properties;
	- Properties which depend on the choice of coordinates.

Example: Suppose we have identified E^2 and \mathbb{R}^2 .

Suppose we identify lines with the graphs of linear equations.

E.g., consider

$$
L = \{(x, y) : y = mx + b\}.
$$

We then define the slope m and the y-intercept b .

Properties (Cont'd)

• Neither slope nor y-intercept has geometric meaning. They both depend on the choice of coordinates.

However, given two such lines of slope m_1 , m_2 , the expression

 $m_2 - m_1$ $1 + m_1 m_2$

does have geometric meaning.

This can be demonstrated in one of two ways:

- Directly checking independence of the choice of coordinates.
- Determining that its value is the tangent of the angle between the lines. This concept is indeed independent of coordinates.

The Two Approaches

- It should be clear that it can be difficult to do geometry, even in the simplest case of Euclidean geometry, working with coordinates alone, that is, with the model \mathbb{R}^n .
- We need to develop both approaches:
	- The coordinate method:
	- The coordinate-free method.
- We shall often seek ways of looking at manifolds and their geometry, which do not involve coordinates
- But will use coordinates as a useful computational device (and not only), when necessary.
- Being aware now of what is involved, we shall usually refer to \mathbb{R}^n as Euclidean space and make the identification.
- This is especially true when we are interested only in questions involving topology or differentiability.

Subsection 3

Locally Euclidean Spaces

- Of all the spaces which one studies in topology the Euclidean spaces and their subspaces are the most important.
- As we have just seen, the metric spaces \mathbb{R}^n serve as a topological model for Euclidean space E^n , for finite-dimensional vector spaces over $\mathbb R$ or $\mathbb C$, and for other basic mathematical systems.
- It is natural enough that we are led to study those spaces which are locally like \mathbb{R}^n .
- \circ These are the spaces for which each point p has a neighborhood U which is homeomorphic to an open subset U' of \mathbb{R}^n , n fixed.
- A space with this property is said to be **locally Euclidean of** dimension n.

Manifolds

• In order to stay as close as possible to Euclidean spaces, we will consider spaces called manifolds.

Definition

A manifold M of dimension n, or n-manifold, is a topological space with the following properties:

- (i) *M* is Hausdorff:
- (ii) M is locally Euclidean of dimension n .
- (iii) M has a countable basis of open sets.
	- \bullet As a matter of notation dimM is used for the **dimension** of M;
	- \bullet When dim $M = 0$, then M is a countable space with the discrete topology.

The Locally Euclidean Property

- It follows from the homeomorphism of U and U' that locally **Euclidean** is equivalent to the requirement that each point p have a neighborhood U homeomorphic to an n-ball in \mathbb{R}^n .
- Thus a manifold of dimension 1 is locally homeomorphic to an open interval.
- Similarly, a manifold of dimension 2 is locally homeomorphic to an open disk, and so on.

Example

Our first examples will remove any lingering suspicion that an n -manifold is necessarily globally equivalent, that is, homeomorphic, to E^n .

Example: Let M be an open subset of \mathbb{R}^n with the subspace topology.

Then M is an n-manifold.

Indeed Properties (i) and (iii) of the definition are hereditary, holding for any subspace of a space which possesses them.

Property (ii) holds with $U = U' = M$ and with the homeomorphism of U to U' being the identity map.

We use some imagination, assisted perhaps by the figure.

- \bullet Even when $n = 2$ or 3 these examples can be rather complicated and certainly not equivalent to Euclidean space in general.
- They may be equivalent in special cases: e.g., trivially when $M = \boldsymbol{E}^n$.

Example: Manifolds Not Homeomorphic to Open Subsets

- Consider the circle S^1 and the 2-sphere S^2 , which may be defined to be all points of \bm{E}^2 , or of \bm{E}^3 , respectively, which are at unit distance from a fixed point 0.
- These are to be taken with the subspace topology so that (i) and (iii) are immediate.
- To see that they are locally Euclidean we introduce coordinate axes with 0 as origin in the corresponding ambient Euclidean space.

Example (Cont'd)

- Thus in the case of S^2 we identify \mathbb{R}^3 and \boldsymbol{E}^3 , and S^2 becomes the unit sphere centered at the origin.
- At each point p of S^2 we have:
	- A tangent plane;
	- \circ A unit normal vector N_p .
- \bullet There will be a coordinate axis which is not perpendicular to N_p .
- Some neighborhood \it{U} of \it{p} on S^2 will then project in a continuous and one-to-one fashion onto an open set U^{\prime} of the coordinate plane perpendicular to that axis.

- Consider the figure.
- \bullet N_p is not perpendicular to the x_2 -axis.
- \bullet So for $q \in U$, the projection is given quite explicitly by

 $\varphi(q) = (x^1(q), 0, x^3(q)),$

where $(x^1(q),x^2(q),x^3(q))$ are the coordinates of q in \boldsymbol{E}^3 .

- Similar considerations show that S^1 is locally Euclidean.
- Note that S^2 and \mathbb{R}^2 cannot be homeomorphic since one is compact while the other is not.

Example: Torus

- Our final example is that of the surface of revolution obtained by revolving a circle around an axis which does not intersect it.
- The figure we obtain is the torus or "inner tube" (denoted \mathcal{T}^2).

- This figure can be studied analytically.
- We may write down an equation whose locus is \mathcal{T}^2 if we introduce coordinates in \boldsymbol{E}^3 as shown in the figure.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 28/60

- $T²$ is indeed locally Euclidean.
- Consider once more the normal vector N_p at $p \in \mathcal{T}^2$.
- There will be at least one coordinate axis to which it is not perpendicular, say x^3 .
- \bullet Then some neighborhood U of p projects homeomorphically onto a neighborhood U' in the x^1x^2 -plane.
- We use the relative topology derived from $\bm{E}^3.$
- So the space \mathcal{T}^2 is necessarily Hausdorff and has a countable basis of open sets.
- Thus Conditions (i)-(iii) of the manifold definition are satisfied.

Remark

- It should be clear from the last two examples that certain subspaces M of \mathbf{E}^3 are easily seen to be 2-manifolds.
- They are surfaces which are "smooth", i.e., without corners or edges.
- \circ So they have at each $p \in M$:
	- A (unit) normal vector N_p , which varies continuously as we move from point to point;
	- A tangent plane $T_p(M)$.
- Continuity means that the components of the unit normal vector depend continuously on the point p.
- This smoothness allows us to prove the locally Euclidean property by projection of a neighborhood of p onto a plane, as in the preceding examples.
- The other properties are immediate since we use the subspace topology.

A Little Topology

- Recall that a topological space is called **normal** if, for each disjoint pair of closed sets A and B, there are disjoint open sets U and V, such that $A \subseteq U$ and $B \subseteq V$.
- Lindelöf's Theorem asserts that in a topological space whose topology has a countable base, every open cover of a subset of the space has a countable subcover.
- \bullet A T_1 -space is one in which singletons are closed.
- A space is regular if, for each point x and each neighborhood U of x, there is a closed neighborhood V of x, such that $V \subseteq U$.
- \circ Urysohn's Metrization Theorem asserts that a regular T_1 -space whose topology has a countable base is homeomorphic to a subspace of the unit cube Q^ω and is, hence, metrizable.

Properties of Topological Manifolds

Theorem

A topological manifold M is locally connected, locally compact and a union of a countable collection of compact subsets. Furthermore, it is normal and metrizable.

These are all immediate consequences of the definition and standard theorems of general topology.

Let p be a point of M and U a neighborhood of p homeomorphic to an open ball $B_\varepsilon(x)$ of radius ε in $\mathbb{R}^n.$

We denote the homeomorphism by φ , and suppose $\varphi(p) = x$.

Interior to any neighborhood V of p , there is a neighborhood W whose closure W is in V, for which $\varphi(W) = B_\delta(x)$, $\varepsilon > \delta > 0$. Now $B_\delta(x)$ and hence W , to which it is homeomorphic by φ^{-1} , is connected. It follows that M is locally connected.

Properties of Topological Manifolds (Cont'd)

Similarly \overline{W} is compact since $\overline{B}_{\delta}(x)$ is compact.

Thus, M is locally compact.

By hypothesis, M has a countable base of open sets.

So we may now suppose that it has a countable base of relatively compact open sets $\{V_i\}$.

Obviously
$$
M = \bigcup \overline{V_i}
$$
.

Normality follows from Lindelöf's theorem.

Metrizability is a consequence of Urysohn's Metrization Theorem.

Different Dimensions

- There is one difficulty in our concept of manifold.
- In the concerns Euclidean spaces and their topology and arises even before consideration of manifolds.
- It is the question of dimension.
- Could it be that E^n and E^m are homeomorphic, or locally homeomorphic, so that an open set U of \boldsymbol{E}^n is homeomorphic to some open set U' of \boldsymbol{E}^m , with $m \neq n$?
- The answer is no, but the proof requires algebraic topology.
- The result is known as Brouwer's Theorem on Invariance of Domain.
- Later we will give a differentiable version of this theorem.
- For now we assume the theorem.

Coordinate Neighborhoods and Coordinates

- The notion of coordinates plays an important role in manifold theory, just as it does in the study of the geometry of \boldsymbol{E}^n .
- In $Eⁿ$, however, it is possible to find a single system of coordinates for the entire space, that is, to establish a correspondence between all of \boldsymbol{E}^n and \mathbb{R}^n .
- \bullet Built into the definition of *n*-manifold M is a correspondence of a neighborhood U of each $p \in M$ and an open subset U' of \mathbb{R}^n .
- Let $\varphi: U \to U'$ be this correspondence.
- **•** The pair U, φ is called a **coordinate neighborhood** of $p \in M$.
- The numbers $x^1(p), \ldots, x^n(p)$, given by

$$
\varphi(p)=(x^1(p),\ldots,x^n(p)),
$$

are called the **coordinates** of $p \in M$.

Coordinate Functions

- The assumption is that φ is a homeomorphism, i.e., it is one-to-one and both φ and φ^{-1} are continuous.
- Thus each $q \in U$ has n uniquely determined real coordinates, which vary continuously with q.
- For each $1 \le i \le n$, the function

 $q \mapsto x^i(q),$

is called the *i*th coordinate function.

- It is, by definition, continuous.
- There is obviously nothing unique about our choice of coordinates.
- Finally, note that even in the case of Euclidean space it is often useful to use local coordinates.
- E.g., the domain of a polar coordinate system on \boldsymbol{E}^2 must omit a ray if it is to be one-to-one.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 36/60

Subsection 4

Introducing Manifolds With Boundary

- Typical examples of manifolds with boundary:
	- A hemispherical cap (including the equator);
	- A right circular cylinder (including the circles at the ends).
- Except for the equator, or the end-circles, they are 2-manifolds.
- The boundary sets are themselves manifolds of dimension one less.
- In fact, they are homeomorphic to S^1 or to $S^1\cup S^1$ in these two cases.

Introducing Manifolds With Boundary (Cont'd)

- An even simpler example is the upper half-plane $H^2.$
- More generally we may consider H^n , the subspace of \mathbb{R}^n defined by \bullet

$$
H^n = \{ (x^1, \ldots, x^n) \in \mathbb{R}^n : x^n \ge 0 \}.
$$

- Every point $p \in H^n$ has a neighborhood U which is homeomorphic to an open subset U' of \mathbb{R}^n except the set of points $(x^1,\ldots,x^{n-1},0).$
- \bullet This set forms a subspace homeomorphic to \mathbb{R}^{n-1}
- It is called the **boundary** of H^n and denoted by ∂H^n .

Manifolds With Boundary

• We shall define a **manifold with boundary** to be a Hausdorff space M with a countable basis of open sets which has the property that each $p \in M$ is contained in an open set U, with a homeomorphism

$$
\varphi: U \to U',
$$

where U' is one of the following:

- (a) An open set of $H^n \partial H^n$;
- (b) An open set of H^n with $\varphi(p) \in \partial H^n$, i.e., a boundary point of H^n .

Interior and Boundary

- \bullet Let M be a manifold with boundary.
- It can be shown (as a consequence of invariance of domain) that every $p \in M$ satisfies exactly one of (a) or (b).
	- \bullet Those p of the first type are called **interior points** of M.
	- Those p mapped onto the boundary of $Hⁿ$ by one, and hence by all, homeomorphisms of their neighborhoods into Hⁿ are called **boundary** points.
- \bullet The collection of boundary points is denoted by ∂M and is called the boundary of M.
- \bullet The boundary ∂M of M is a manifold of dimension $n-1$.

Pasting Manifolds Along Boundaries

- Our interest is in pointing out that new surfaces, that is, 2-manifolds, can be formed by fastening together manifolds with boundary along their boundaries.
- This involves identifying points of various boundary components by a homeomorphism, assuming, of course, the necessary condition that such components are homeomorphic.
- The simplest examples are:
	- $S²$, which is obtained by pasting two disks (or hemispheres) together so as to form the equator;
	- T^2 , formed by pasting the two end-circles of a cylinder together.

Pretzel-Like Surfaces

- One can go much further and paste any number of cylinders onto a sphere \mathcal{S}^2 with "holes", that is, with circular disks removed.
- This gives various pretzel-like surfaces as illustrated below.

One can prove that these are manifolds.

Cutting and Pasting

- To generate new 2-manifolds from old ones we may:
	- (1) Cut out two disks, leaving a manifold M whose boundary ∂M is the disjoint union of two circles;
	- (2) Paste on a cylinder or "handle" so that each end-circle is identified with one of the boundary circles of M.

More on Cutting and Pasting

- The pasting on of handles is not the only way in which we can generate examples of 2-manifolds.
- It is also possible to do so by identifying or pasting together the edges of certain polygons.
- For example, the sides of a square may be identified in various ways in order to obtain surfaces.

More on Cutting and Pasting: The Klein Bottle

The Klein bottle cannot be pictured as a surface in \bm{E}^3 unless we allow it to cut itself as shown.

- Thus as a subspace of \boldsymbol{E}^3 it is not a manifold.
- It is possible to identify the sides of the square, as shown, and obtain a manifold, but it is not possible to put it inside $\bm{E}^3.$

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 46/60

Orientable Manifolds with Boundary

- Let M be a connected 2-manifold, which lies smoothly inside $\bm{E}^3.$
- \bullet That is, at each point p, there is a tangent plane and normal line L_p .
- \bullet We may ask whether it is possible to choose a unit normal vector N_p (on L_p), for every $p \in M$, which varies continuously with M.
- This is possible for S^2 and T^2 .
- It is not for the Mobius band (which is actually a manifold with \bullet boundary) or the Klein bottle.
- We say that a manifold or manifold with boundary is **orientable** if such a choice of N_p is possible.

Fundamental Theorem of 2-Manifolds

Theorem

Every compact, connected, orientable 2-manifold is homeomorphic to a sphere with handles added. Two such manifolds with the same number of handles are homeomorphic and conversely, so that the number of handles is the only topological invariant.

- Nonorientable, as well as noncompact 2-manifolds, can be described equally completely, although the noncompact case is more involved.
- Also, every connected, one-dimensional manifold is homeomorphic to $S¹$ or to $\mathbb R$, depending on whether it is compact or not.
- However, beginning with $n = 3$ everything is far more complicated and no such classification is known, even in the compact case.

Subsection 5

- The manifolds of dimensions 1 and 2 considered above are pictured as subspaces of \bm{E}^3 except in the case of the Klein bottle.
- This is the way in which manifolds are first and most easily visualized.
- However, the definition makes no such requirement.
- Such visualization makes equivalent (homeomorphic) manifolds look different just because they are differently placed in Euclidean space.
- In spite of appearances, the following are homeomorphic manifolds.

- As we might expect from the definition, it is possible to give examples of manifolds which we do not think of as lying in Euclidean space.
- Indeed, it is not clear that they can be realized at all as a subspace of Euclidean space.
- This can already be guessed from the construction of manifolds by pasting, which does not really use \boldsymbol{E}^3 at all.
- The simplest, as well as one of the most important examples of manifolds defined "abstractly", that is, not as a subspace of Euclidean space, is real projective space $Pⁿ(\mathbb{R})$, the space of (real) projective geometry.

• Let an equivalence relation \sim be defined on $\mathbb{R}^{n+1} - \{0\}$ by

$$
(x^1, \ldots, x^{n+1}) \sim (y^1, \ldots, y^{n+1})
$$

if there is a real number t , such that $y^i = t x^i$, $i = 1, \ldots, n+1$, i.e., $y = tx$.

- We denote by $[x]$ the equivalence class of x.
- Let $Pⁿ(\mathbb{R})$ be the set of equivalence classes.
- There is a natural map $\pi:\mathbb{R}^{n+1}-\{0\}\to P^n(\mathbb{R})$ given by

$$
\pi(x)=[x].
$$

- We topologize $P^n(\mathbb{R})$ by saying that $U\subseteq P^n(\mathbb{R})$ is open if and only if $\pi^{-1}(U)$ is open in $\mathbb{R}^{n+1}.$
- This gives $P^n(\mathbb{R})$ the structure of an *n*-manifold.

- We note that there is an alternative description of $P^n(\mathbb{R})$ as the space of all lines through the origin 0 of $\mathbb{R}^{n+1}.$
- $\bullet \pi$ takes each $x \neq 0$ to the line through 0 which contains it.
- Then we define the topology as follows.
- A collection \widetilde{U} of lines is open if it is the set of all lines through 0 which meet a given open set U .

Generalization

- Let M be the set of all r-planes through the origin in \mathbb{R}^n , where n and r are fixed.
- \bullet E.g., the set of all planes through the origin in \mathbb{R}^3 or the set of all three-dimensional planes through the origin of \mathbb{R}^5 , and so on.
- This set has a natural topology which makes it a manifold.
- Intuitively it consists of defining a neighborhood of a given plane p to be all planes q which are "close" to it in a relatively obvious sense.
- \circ There exist corresponding bases of both planes p and q (considered as r-dimensional subspaces of \mathbb{R}^n , viewed as a vector space), such that corresponding basis vectors are close, say, for example, that their differences have norm less than some $\varepsilon > 0$.

- Consider S^2 , the unit sphere in \mathbb{R}^3 .
- We denote by $\,T(S^2)$ the collection of all tangent vectors to points of $S²$, including the zero vector at each point.
- Thus,

$$
\mathcal{T}(S^2) = \bigcup_{p \in S^2} T_p(S^2).
$$

- This set has a natural topology.
- \circ Two tangent vectors X_p and Y_q are "close" if their initial points p and q and their terminal points are close.

Tangent Bundle of M

- Let M be any 2-manifold, lying "smoothly" in \boldsymbol{E}^3 , so as to have a tangent plane at each point which turns continuously as we move about on M.
- Then $T(M) = \bigcup_{p \in M} T_p(M)$ is a manifold.
- It is called the **tangent bundle of** M . \bullet
- The dimension of $T(M)$ is 4 since, roughly speaking, X_p depends locally on four parameters:
	- \circ Two being the local coordinates of p relative to some coordinate neighborhood U;
	- Two more being the components which determine X_p relative to some basis ${E_{1p}, E_{2p}}$ of $T_p(M)$, a basis which varies continuously over the neighborhood U.

Tangent Bundle of M (Cont'd)

- We later make these statements quite precise.
- \bullet At the same time, we exhibit the locally Euclidean character of $T(M)$.
- For now, we note that E_1 and E_2 can be visualized as vectors tangent to the coordinate curves x^1 $=$ constant and x^2 $=$ constant in U .

Remark on Tangent Bundles

- We should note that these manifolds are not subspaces of \bm{E}^3 , even though M is and although the geometry of \boldsymbol{E}^3 is used here to describe them.
- \bullet One of our major tasks is to describe $T_p(M)$ and $T(M)$ independently of any way of placing M in Euclidean space.
- In other words, we wish to give a description valid for an abstract manifold.

The Gauss Mapping

- Let M be such an orientable surface in \boldsymbol{E}^3 .
- Let N_p be a unit normal vector at each $p \in M$, such that N_p varies continuously with p on M .
- Translate N_p to N_p from a fixed origin 0.
- Let $G(p)$ be the endpoint of N_p on S^2 , the unit sphere at 0.
- The mapping taking p to $G(p)$ is known as the Gauss mapping.
- The Gaussian curvature is a measure of the distortion of areas under this mapping.
- If M is sharply curved near p, then the area of a small region around ρ would be greatly magnified in mapping to \mathcal{S}^2 .

The Gauss Mapping (Cont'd)

 \bullet Even if M is not orientable, we still have a tangent plane $T_p(M)$ at each p parallel to a uniquely determined plane $G(p)$ through 0.

- Thus a slight variant of the previous definition defines a mapping of M to the manifold of 2-planes through 0, introduced above.
- Using normal lines instead of tangent planes, we can obtain a mapping from M to the manifold of lines through 0.
- This, as we have remarked, is equivalent to $P^2(\mathbb{R}).$