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Introduction to Manifolds Preliminaries on Rn

The n-Fold Cartesian Product Rn

Let R denote the set of real numbers.

Let Rn be their n-fold Cartesian product

n︷ ︸︸ ︷
R× · · · ×R,

the set of all ordered n-tuples (x1, . . . , xn) of real numbers.

Individual n-tuples may be denoted at times by a single letter.

Thus x = (x1, . . . , xn), a = (a1, . . . , an), and so on.

We agree to use on Rn its topology as a metric space, with the
metric defined by

d(x , y) =

(
n∑

i=1

(x i − y i )2

)1/2

.
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Neighborhoods

The neighborhoods are then open balls Bn
ε (x), or Bε(x), defined, for

any ε > 0, as
Bε(x) = {y ∈ R

n : d(x , y) < ε}.

One may take equivalently open cubes Cn
ε (x), or Cε(x), of side 2ε

and center x , defined by

Cε(x) = {y ∈ R
n : |x i − y i | < ε, i = 1, . . . , n}.

Note that R1 = R.

We define R0 to be a single point.
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Meanings of Rn

We shall invariably consider Rn with the topology defined by the
metric.

This space Rn is used in several senses, however, and we must usually
decide from the context which one is intended.

Sometimes Rn means merely Rn as topological space;
Sometimes Rn denotes an n-dimensional vector space;
Sometimes it is identified with Euclidean space.
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The Issue of Naturality

We assume familiarity with the definition and basic theorems of
vector spaces over R.

Among these is the theorem which states that any two vector spaces
over R which have the same dimension n are isomorphic.

It is important to note that this isomorphism depends on choices of
bases in the two spaces.

There is in general no natural or canonical isomorphism independent
of these choices.

However, there does exist one important example of an n-dimensional
vector space over R which has a distinguished or canonical basis.

By this we mean a basis given by the nature of the space itself.

This is the vector space of n-tuples of real numbers with
componentwise addition and scalar multiplication.
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The Space V
n

The vector space of n-tuples of real numbers with componentwise
addition and scalar multiplication is, as a set at least, just Rn.

To avoid confusion, sometimes we will denote it by V n.

We then use boldface for its elements (e.g., x instead of x).

For this space the n-tuples

e1 = (1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1)

form a basis, known as the natural or canonical basis.

We may at times suppose that the n-tuples are written as rows, that
is, 1× n matrices, and at other times as columns, that is, n × 1
matrices.

This only becomes important when we use matrix notation to simplify
things, e.g., to describe linear mappings, equations, and so on.
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Euclidean Spaces

Rn may denote a vector space of dimension n over R.

We sometimes mean even more by Rn.

An abstract n-dimensional vector space over R is called Euclidean if
it has defined on it a positive definite inner product.

In general there is no natural way to choose such an inner product.

In the case of Rn or V n, we have the natural inner product

(x , y) =

n∑

i=1

x iy i .

It is characterized by the fact that relative to this inner product the
natural basis is orthonormal, (e i , e j) = δij .
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The Norm

The metric in Rn discussed at the beginning can be defined using the
inner product on Rn.

We define ‖x‖, the norm of the vector x , by

‖x‖ = ((x , x))1/2.

Then we have
d(x , y) = ‖x − y‖.

This notation is frequently useful even when we are dealing with Rn

as a metric space and not using its vector space structure.

Note, in particular, that ‖x‖ = d(x , 0), the distance from the point x
to the origin.

In this equality x is a vector on the left-hand side and x is the
corresponding point on the right-hand side.
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n and Euclidean Space

Euclidean Space

Another role which Rn plays is that of a model for n-dimensional
Euclidean space En, in the sense of Euclidean geometry.

Some texts refer to Rn with the metric d(x , y) as Euclidean space.

This identification is misleading in the same sense that it would be
misleading to identify all n-dimensional vector spaces with Rn.

It is an identification that can hamper clarification of the concept of
manifold and the role of coordinates.

Euclid and the geometers before the seventeenth century did not
think of the Euclidean plane E 2 or three-dimensional space E 3 as
pairs or triples of real numbers.

They were rather defined axiomatically.
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n and Euclidean Space

Coordinatization

Consider the Euclidean plane E 2 as studied in high school geometry.

We later introduce coordinates using the notions of length and
perpendicularity.

We choose two mutually perpendicular “number axes”.

They are used to define a one-to-one mapping of E 2 onto R2 by

p 7→ (x(p), y(p)),

where x(p) and y(p) are the coordinates of p ∈ E 2.

This mapping is (by design) an isometry, preserving distances of
points of E 2 and their images in R2.
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n and Euclidean Space

Coordinatization (Cont’d)

Finally, we obtain further correspondences of essential geometric
elements.

E.g., lines of E 2 correspond to subsets of R2 consisting of the
solutions of linear equations.

Thus, we carry each geometric object to a corresponding one in R2.

It is the existence of such coordinate mappings which make the
identification of E 2 and R2 possible.
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n and Euclidean Space

Coordinate Systems

An arbitrary choice of coordinates is involved.

There is no natural, geometrically determined way to identify the two
spaces.

Thus, at best, we can say that R2 may be identified with E 2 plus a
coordinate system.

Even then we need to define in R2 the notions of line, angle of lines
and other attributes of the Euclidean plane, before thinking of it as
Euclidean space.

Thus, with qualifications, we may identify E 2 and R2 or En and Rn,
especially remembering that they carry a choice of rectangular
coordinates.
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Properties

Using the analytic geometry approach to the study of a geometry
makes it sometimes difficult to distinguish between:

Underlying geometric properties;
Properties which depend on the choice of coordinates.

Example: Suppose we have identified E 2 and R2.

Suppose we identify lines with the graphs of linear equations.

E.g., consider
L = {(x , y) : y = mx + b}.

We then define the slope m and the y -intercept b.
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Properties (Cont’d)

Neither slope nor y -intercept has geometric meaning.

They both depend on the choice of coordinates.

However, given two such lines of slope m1, m2, the expression

m2 −m1

1 +m1m2

does have geometric meaning.

This can be demonstrated in one of two ways:

Directly checking independence of the choice of coordinates.
Determining that its value is the tangent of the angle between the lines.
This concept is indeed independent of coordinates.

George Voutsadakis (LSSU) Differential Geometry December 2024 17 / 60



Introduction to Manifolds R
n and Euclidean Space

The Two Approaches

It should be clear that it can be difficult to do geometry, even in the
simplest case of Euclidean geometry, working with coordinates alone,
that is, with the model Rn.

We need to develop both approaches:

The coordinate method;
The coordinate-free method.

We shall often seek ways of looking at manifolds and their geometry,
which do not involve coordinates.

But will use coordinates as a useful computational device (and not
only), when necessary.

Being aware now of what is involved, we shall usually refer to Rn as
Euclidean space and make the identification.

This is especially true when we are interested only in questions
involving topology or differentiability.
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Locally Euclidean Spaces

Of all the spaces which one studies in topology the Euclidean spaces
and their subspaces are the most important.

As we have just seen, the metric spaces Rn serve as a topological

model for Euclidean space En, for finite-dimensional vector spaces
over R or C, and for other basic mathematical systems.

It is natural enough that we are led to study those spaces which are
locally like Rn.

These are the spaces for which each point p has a neighborhood U

which is homeomorphic to an open subset U ′ of Rn, n fixed.

A space with this property is said to be locally Euclidean of

dimension n.
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Manifolds

In order to stay as close as possible to Euclidean spaces, we will
consider spaces called manifolds.

Definition

A manifold M of dimension n, or n-manifold, is a topological space with
the following properties:

(i) M is Hausdorff;

(ii) M is locally Euclidean of dimension n.

(iii) M has a countable basis of open sets.

As a matter of notation dimM is used for the dimension of M;

When dimM = 0, then M is a countable space with the discrete
topology.
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The Locally Euclidean Property

It follows from the homeomorphism of U and U ′ that locally
Euclidean is equivalent to the requirement that each point p have a
neighborhood U homeomorphic to an n-ball in Rn.

Thus a manifold of dimension 1 is locally homeomorphic to an open
interval.

Similarly, a manifold of dimension 2 is locally homeomorphic to an
open disk, and so on.
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Example

Our first examples will remove any lingering suspicion that an
n-manifold is necessarily globally equivalent, that is, homeomorphic,
to En.

Example: Let M be an open subset of Rn with the subspace topology.

Then M is an n-manifold.

Indeed Properties (i) and (iii) of the definition are hereditary, holding
for any subspace of a space which possesses them.

Property (ii) holds with U = U ′ = M and with the homeomorphism
of U to U ′ being the identity map.
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Example (Cont’d)

We use some imagination, assisted perhaps by the figure.

Even when n = 2 or 3 these examples can be rather complicated and
certainly not equivalent to Euclidean space in general.

They may be equivalent in special cases: e.g., trivially when M = En.
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Example: Manifolds Not Homeomorphic to Open Subsets

Consider the circle S1 and the 2-sphere S2, which may be defined to
be all points of E 2, or of E 3, respectively, which are at unit distance
from a fixed point 0.

These are to be taken with the subspace topology so that (i) and (iii)
are immediate.

To see that they are locally Euclidean we introduce coordinate axes
with 0 as origin in the corresponding ambient Euclidean space.
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Example (Cont’d)

Thus in the case of S2 we identify R3 and E 3, and S2 becomes the
unit sphere centered at the origin.

At each point p of S2 we have:

A tangent plane;
A unit normal vector Np.

There will be a coordinate axis which is not perpendicular to Np .

Some neighborhood U of p on S2 will then project in a continuous
and one-to-one fashion onto an open set U ′ of the coordinate plane
perpendicular to that axis.
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Example (Cont’d)

Consider the figure.

Np is not perpendicular to the x2-axis.

So for q ∈ U, the projection is given quite
explicitly by

ϕ(q) = (x1(q), 0, x3(q)),

where (x1(q), x2(q), x3(q)) are the
coordinates of q in E 3.

Similar considerations show that S1 is locally Euclidean.

Note that S2 and R2 cannot be homeomorphic since one is compact
while the other is not.
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Example: Torus

Our final example is that of the surface of revolution obtained by
revolving a circle around an axis which does not intersect it.

The figure we obtain is the torus or “inner tube” (denoted T 2).

This figure can be studied analytically.

We may write down an equation whose locus is T 2 if we introduce
coordinates in E 3 as shown in the figure.
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Example: Torus (Cont’d)

T 2 is indeed locally Euclidean.

Consider once more the normal vector Np at p ∈ T 2.

There will be at least one coordinate axis to which it is not
perpendicular, say x3.

Then some neighborhood U of p projects homeomorphically onto a
neighborhood U ′ in the x1x2-plane.

We use the relative topology derived from E 3.

So the space T 2 is necessarily Hausdorff and has a countable basis of
open sets.

Thus Conditions (i)-(iii) of the manifold definition are satisfied.
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Remark

It should be clear from the last two examples that certain subspaces
M of E 3 are easily seen to be 2-manifolds.

They are surfaces which are “smooth”, i.e., without corners or edges.

So they have at each p ∈ M:

A (unit) normal vector Np, which varies continuously as we move from
point to point;
A tangent plane Tp(M).

Continuity means that the components of the unit normal vector
depend continuously on the point p.

This smoothness allows us to prove the locally Euclidean property by
projection of a neighborhood of p onto a plane, as in the preceding
examples.

The other properties are immediate since we use the subspace
topology.
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A Little Topology

Recall that a topological space is called normal if, for each disjoint
pair of closed sets A and B , there are disjoint open sets U and V ,
such that A ⊆ U and B ⊆ V .

Lindelöf’s Theorem asserts that in a topological space whose topology
has a countable base, every open cover of a subset of the space has a
countable subcover.

A T1-space is one in which singletons are closed.

A space is regular if, for each point x and each neighborhood U of x ,
there is a closed neighborhood V of x , such that V ⊆ U.

Urysohn’s Metrization Theorem asserts that a regular T1-space whose
topology has a countable base is homeomorphic to a subspace of the
unit cube Qω and is, hence, metrizable.
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Properties of Topological Manifolds

Theorem

A topological manifold M is locally connected, locally compact and a
union of a countable collection of compact subsets. Furthermore, it is
normal and metrizable.

These are all immediate consequences of the definition and standard
theorems of general topology.

Let p be a point of M and U a neighborhood of p homeomorphic to
an open ball Bε(x) of radius ε in Rn.

We denote the homeomorphism by ϕ, and suppose ϕ(p) = x .

Interior to any neighborhood V of p, there is a neighborhood W

whose closure W is in V , for which ϕ(W ) = Bδ(x), ε > δ > 0.

Now Bδ(x) and hence W , to which it is homeomorphic by ϕ−1, is
connected. It follows that M is locally connected.

George Voutsadakis (LSSU) Differential Geometry December 2024 32 / 60



Introduction to Manifolds Topological Manifolds

Properties of Topological Manifolds (Cont’d)

Similarly W is compact since Bδ(x) is compact.

Thus, M is locally compact.

By hypothesis, M has a countable base of open sets.

So we may now suppose that it has a countable base of relatively
compact open sets {Vi}.

Obviously M =
⋃
V i .

Normality follows from Lindelöf’s theorem.

Metrizability is a consequence of Urysohn’s Metrization Theorem.
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Different Dimensions

There is one difficulty in our concept of manifold.

It concerns Euclidean spaces and their topology and arises even before
consideration of manifolds.

It is the question of dimension.

Could it be that En and Em are homeomorphic, or locally
homeomorphic, so that an open set U of En is homeomorphic to
some open set U ′ of Em, with m 6= n?

The answer is no, but the proof requires algebraic topology.

The result is known as Brouwer’s Theorem on Invariance of Domain.

Later we will give a differentiable version of this theorem.

For now we assume the theorem.
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Coordinate Neighborhoods and Coordinates

The notion of coordinates plays an important role in manifold theory,
just as it does in the study of the geometry of En.

In En, however, it is possible to find a single system of coordinates for
the entire space, that is, to establish a correspondence between all of
En and Rn.

Built into the definition of n-manifold M is a correspondence of a
neighborhood U of each p ∈ M and an open subset U ′ of Rn.

Let ϕ : U → U ′ be this correspondence.

The pair U, ϕ is called a coordinate neighborhood of p ∈ M.

The numbers x1(p), . . . , xn(p), given by

ϕ(p) = (x1(p), . . . , xn(p)),

are called the coordinates of p ∈ M.
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Coordinate Functions

The assumption is that ϕ is a homeomorphism, i.e., it is one-to-one
and both ϕ and ϕ−1 are continuous.

Thus each q ∈ U has n uniquely determined real coordinates, which
vary continuously with q.

For each 1 ≤ i ≤ n, the function

q 7→ x i (q),

is called the ith coordinate function.

It is, by definition, continuous.

There is obviously nothing unique about our choice of coordinates.

Finally, note that even in the case of Euclidean space it is often useful
to use local coordinates.

E.g., the domain of a polar coordinate system on E 2 must omit a ray
if it is to be one-to-one.
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Further Examples. Cutting and Pasting
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Introducing Manifolds With Boundary

Typical examples of manifolds with boundary:

A hemispherical cap (including the equator);
A right circular cylinder (including the circles at the ends).

Except for the equator, or the end-circles, they are 2-manifolds.

The boundary sets are themselves manifolds of dimension one less.

In fact, they are homeomorphic to S1 or to S1 ∪S1 in these two cases.
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Introducing Manifolds With Boundary (Cont’d)

An even simpler example is the upper half-plane H2.

More generally we may consider Hn, the subspace of Rn defined by

Hn = {(x1, . . . , xn) ∈ R
n : xn ≥ 0}.

Every point p ∈ Hn has a neighborhood U which is homeomorphic to
an open subset U ′ of Rn except the set of points (x1, . . . , xn−1, 0).

This set forms a subspace homeomorphic to Rn−1

It is called the boundary of Hn and denoted by ∂Hn.
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Manifolds With Boundary

We shall define a manifold with boundary to be a Hausdorff space
M with a countable basis of open sets which has the property that
each p ∈ M is contained in an open set U, with a homeomorphism

ϕ : U → U ′,

where U ′ is one of the following:

(a) An open set of Hn − ∂Hn;
(b) An open set of Hn with ϕ(p) ∈ ∂Hn, i.e., a boundary point of Hn.
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Interior and Boundary

Let M be a manifold with boundary.

It can be shown (as a consequence of invariance of domain) that
every p ∈ M satisfies exactly one of (a) or (b).

Those p of the first type are called interior points of M .
Those p mapped onto the boundary of Hn by one, and hence by all,
homeomorphisms of their neighborhoods into Hn are called boundary

points.

The collection of boundary points is denoted by ∂M and is called the
boundary of M.

The boundary ∂M of M is a manifold of dimension n− 1.
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Pasting Manifolds Along Boundaries

Our interest is in pointing out that new surfaces, that is, 2-manifolds,
can be formed by fastening together manifolds with boundary along
their boundaries.

This involves identifying points of various boundary components by a
homeomorphism, assuming, of course, the necessary condition that
such components are homeomorphic.

The simplest examples are:

S2, which is obtained by pasting two
disks (or hemispheres) together so as
to form the equator;
T 2, formed by pasting the two
end-circles of a cylinder together.
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Pretzel-Like Surfaces

One can go much further and paste any number of cylinders onto a
sphere S2 with “holes”, that is, with circular disks removed.

This gives various pretzel-like surfaces as illustrated below.

One can prove that these are manifolds.
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Cutting and Pasting

To generate new 2-manifolds from old ones we may:

(1) Cut out two disks, leaving a manifold M whose boundary ∂M is the
disjoint union of two circles;

(2) Paste on a cylinder or “handle” so that each end-circle is identified
with one of the boundary circles of M .
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More on Cutting and Pasting

The pasting on of handles is not the only way in which we can
generate examples of 2-manifolds.

It is also possible to do so by identifying or pasting together the edges
of certain polygons.

For example, the sides of a square may be identified in various ways in
order to obtain surfaces.
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More on Cutting and Pasting: The Klein Bottle

The Klein bottle cannot be pictured as a surface in E 3 unless we
allow it to cut itself as shown.

Thus as a subspace of E 3 it is not a manifold.

It is possible to identify the sides of the square, as shown, and obtain
a manifold, but it is not possible to put it inside E 3.
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Orientable Manifolds with Boundary

Let M be a connected 2-manifold, which lies smoothly inside E 3.

That is, at each point p, there is a tangent plane and normal line Lp .

We may ask whether it is possible to choose a unit normal vector Np

(on Lp), for every p ∈ M, which varies continuously with M.

This is possible for S2 and T 2.

It is not for the Mobius band (which is actually a manifold with
boundary) or the Klein bottle.

We say that a manifold or manifold with boundary is orientable if
such a choice of Np is possible.
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Fundamental Theorem of 2-Manifolds

Theorem

Every compact, connected, orientable 2-manifold is homeomorphic to a
sphere with handles added. Two such manifolds with the same number of
handles are homeomorphic and conversely, so that the number of handles
is the only topological invariant.

Nonorientable, as well as noncompact 2-manifolds, can be described
equally completely, although the noncompact case is more involved.

Also, every connected, one-dimensional manifold is homeomorphic to
S1 or to R, depending on whether it is compact or not.

However, beginning with n = 3 everything is far more complicated
and no such classification is known, even in the compact case.
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Subsection 5

Abstract Manifolds. Some Examples
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Manifolds Pictured in E
3

The manifolds of dimensions 1 and 2 considered above are pictured as
subspaces of E 3 except in the case of the Klein bottle.

This is the way in which manifolds are first and most easily visualized.

However, the definition makes no such requirement.

Such visualization makes equivalent (homeomorphic) manifolds look
different just because they are differently placed in Euclidean space.

In spite of appearances, the following are homeomorphic manifolds.

George Voutsadakis (LSSU) Differential Geometry December 2024 50 / 60



Introduction to Manifolds Abstract Manifolds. Some Examples

“Abstractly” Defined Manifolds

As we might expect from the definition, it is possible to give examples
of manifolds which we do not think of as lying in Euclidean space.

Indeed, it is not clear that they can be realized at all as a subspace of
Euclidean space.

This can already be guessed from the construction of manifolds by
pasting, which does not really use E 3 at all.

The simplest, as well as one of the most important examples of
manifolds defined “abstractly”, that is, not as a subspace of
Euclidean space, is real projective space Pn(R), the space of (real)
projective geometry.
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Real Projective Space Pn(R)

Let an equivalence relation ∼ be defined on Rn+1 − {0} by

(x1, . . . , xn+1) ∼ (y1, . . . , yn+1)

if there is a real number t, such that y i = tx i , i = 1, . . . , n + 1, i.e.,
y = tx .

We denote by [x ] the equivalence class of x .

Let Pn(R) be the set of equivalence classes.

There is a natural map π : Rn+1 − {0} → Pn(R) given by

π(x) = [x ].

We topologize Pn(R) by saying that U ⊆ Pn(R) is open if and only if
π−1(U) is open in Rn+1.

This gives Pn(R) the structure of an n-manifold.
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Alternative Description of Pn(R)

We note that there is an alternative description of Pn(R) as the
space of all lines through the origin 0 of Rn+1.

π takes each x 6= 0 to the line through 0 which contains it.

Then we define the topology as follows.

A collection Ũ of lines is open if it is the set of all lines through 0
which meet a given open set U.
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Generalization

Let M be the set of all r -planes through the origin in Rn, where n

and r are fixed.

E.g., the set of all planes through the origin in R3 or the set of all
three-dimensional planes through the origin of R5, and so on.

This set has a natural topology which makes it a manifold.

Intuitively it consists of defining a neighborhood of a given plane p to
be all planes q which are “close” to it in a relatively obvious sense.

There exist corresponding bases of both planes p and q (considered
as r -dimensional subspaces of Rn, viewed as a vector space), such
that corresponding basis vectors are close, say, for example, that their
differences have norm less than some ε > 0.
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Tangent Bundle of S2

Consider S2, the unit sphere in R3.

We denote by T (S2) the collection of all tangent vectors to points of
S2, including the zero vector at each point.

Thus,
T (S2) =

⋃

p∈S2

Tp(S
2).

This set has a natural topology.

Two tangent vectors Xp and Yq are “close” if their initial points p
and q and their terminal points are close.
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Tangent Bundle of M

Let M be any 2-manifold, lying “smoothly” in E 3, so as to have a
tangent plane at each point which turns continuously as we move
about on M.

Then T (M) =
⋃

p∈M Tp(M) is a manifold.

It is called the tangent bundle of M.

The dimension of T (M) is 4 since, roughly speaking, Xp depends
locally on four parameters:

Two being the local coordinates of p relative to some coordinate
neighborhood U ;
Two more being the components which determine Xp relative to some
basis {E1p,E2p} of Tp(M), a basis which varies continuously over the
neighborhood U .
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Tangent Bundle of M (Cont’d)

We later make these statements quite precise.

At the same time, we exhibit the locally Euclidean character of T (M).

For now, we note that E1 and E2 can be visualized as vectors tangent
to the coordinate curves x1 = constant and x2 = constant in U.
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Remark on Tangent Bundles

We should note that these manifolds are not subspaces of E 3, even
though M is and although the geometry of E 3 is used here to
describe them.

One of our major tasks is to describe Tp(M) and T (M)
independently of any way of placing M in Euclidean space.

In other words, we wish to give a description valid for an abstract
manifold.
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The Gauss Mapping

Let M be such an orientable surface in E 3.

Let Np be a unit normal vector at each p ∈ M, such that Np varies
continuously with p on M.

Translate Np to Ñp from a fixed origin 0.

Let G (p) be the endpoint of Ñp on S2, the unit sphere at 0.

The mapping taking p to G (p) is known as the Gauss mapping.

The Gaussian curvature is a measure of the distortion of areas under
this mapping.

If M is sharply curved near p, then the area of a small region around
p would be greatly magnified in mapping to S2.
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The Gauss Mapping (Cont’d)

Even if M is not orientable, we still have a tangent plane Tp(M) at

each p parallel to a uniquely determined plane G̃(p) through 0.

Thus a slight variant of the previous definition defines a mapping of
M to the manifold of 2-planes through 0, introduced above.

Using normal lines instead of tangent planes, we can obtain a
mapping from M to the manifold of lines through 0.

This, as we have remarked, is equivalent to P2(R).
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