Introduction to Differential Geometry

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU)

Differential Geometry

Differentiable Manifolds and Submanifolds

- The Definition of a Differentiable Manifold
- Further Examples
- Differentiable Functions and Mappings
- Rank of a Mapping. Immersions
- Submanifolds
- Lie Groups
- The Action of a Lie Group on a Manifold
- The Action of a Discrete Group on a Manifold
- Covering Manifolds

Subsection 1

The Definition of a Differentiable Manifold

Topological Manifolds

- Recall that a topological manifold M of dimension n is a Hausdorff space, with a countable basis of open sets, such that each point has a neighborhood homeomorphic to an open subset of Rⁿ.
- A coordinate neighborhood is a pair U, φ , where:
 - U is an open set of M;
 - φ is a homeomorphism of U to an open subset of \mathbb{R}^n .
- To $q \in U$ we assign the *n* coordinates of its image $\varphi(q)$ in \mathbb{R}^n ,

$$x^1(q),\ldots,x^n(q).$$

• Each $x^i(q)$ is a real-valued function on U, the *i*th coordinate function.

Topological Manifolds (Cont'd)

- Suppose q lies also in a second coordinate neighborhood V, ψ .
- Then it has coordinates $y^1(q), \ldots, y^n(q)$ in this neighborhood.
- ${\scriptstyle \bullet }$ Since φ and ψ are homeomorphisms, this defines a homeomorphism

$$\psi \circ \varphi^{-1} : \varphi(U \cap V) \to \psi(U \cap V).$$

- The domain and range are the two open subsets of ℝⁿ which correspond to the points of U ∩ V by the two coordinate maps φ, ψ, respectively.
- In coordinates, $\psi \circ \varphi^{-1}$ is given by continuous functions

$$y^i = h^i(x^1,\ldots,x^n), \quad i=1,\ldots,n.$$

The hⁱ's give the y-coordinates of each q ∈ U ∩ V in terms of its x-coordinates.

Topological Manifolds (Cont'd)

- Similarly $\varphi \circ \psi^{-1}$ gives the inverse mapping.
- It expresses the x-coordinates as functions of the y-coordinates,

$$x^i = g^i(y^1, \ldots, y^n), \quad i = 1, \ldots, n.$$

- The fact that $\varphi \circ \psi^{-1}$ and $\psi \circ \varphi^{-1}$ are homeomorphisms and are inverse to each other is equivalent to the following conditions:
 - The continuity of $h^i(x)$ and $g^j(y)$, i, j = 1, ..., n;
 - The identities

$$\begin{array}{lll} h^i(g^1(y),\ldots,g^n(y)) &\equiv y^i, & i=1,\ldots,n,\\ g^i(h^1(x),\ldots,h^n(x)) &\equiv x^j, & j=1,\ldots,n. \end{array}$$

- Thus, every point of a topological manifold *M* lies in a very large collection of coordinate neighborhoods.
- Whenever two such neighborhoods overlap, we have the formulas just given for change of coordinates.

George Voutsadakis (LSSU)

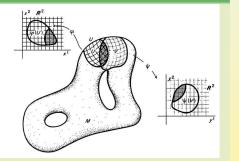
Differential Geometry

\mathcal{C}^∞ -Compatibility

• The basic idea that leads to differentiable manifolds is to try to select a family or subcollection of neighborhoods so that the change of coordinates is always given by differentiable functions.

Definition

We shall say that U, φ and V, ψ are C^{∞} -compatible if $U \cap V$ nonempty implies that the functions $h^{i}(x)$ and $g^{j}(y)$ giving the change of coordinates are C^{∞} . This is equivalent to requiring $\varphi \circ \psi^{-1}$ and $\psi \circ \varphi^{-1}$ to be *diffeomorphisms* of the open subsets $\varphi(U \cap V)$ and $\psi(U \cap V)$ of \mathbb{R}^{n} .



Definition

A differentiable or C^{∞} (or smooth) structure on a topological manifold *M* is a family $\mathcal{U} = \{U_{\alpha}, \varphi_{\alpha}\}$ of coordinate neighborhoods such that:

- (1) The U_{α} cover M;
- For any α , β , the neighborhoods $U_{\alpha}, \varphi_{\alpha}$ and $U_{\beta}, \varphi_{\beta}$ are C^{∞} -compatible;
- (3) Any coordinate neighborhood $V, \psi C^{\infty}$ -compatible with every $U_{\alpha}, \varphi_{\alpha} \in \mathcal{U}$ is itself in \mathcal{U} .
- A C^{∞} manifold is a topological manifold together with a C^{∞} -differentiable structure.

Existence and Uniqueness

- It is, of course, conceivable that for some topological manifold no such family of compatible coordinate neighborhoods can be singled out.
- It is also conceivable that, on the contrary, families can be chosen in a multiplicity of inequivalent ways so that two inequivalent C^{∞} manifolds have the same underlying topological manifold.
- These are basic but very difficult questions.
- What is important, from our point of view, is that we will be able to find an abundance of topological manifolds with at least one differentiable structure.
- So there exists an abundance of C^{∞} manifolds.

Terminology and Conventions

- Since there is no danger of confusion, we will often say simply "manifold" for C^{∞} manifold;
- We may also sometimes say differentiable or smooth manifold.
- "Coordinate neighborhood" will refer exclusively to the *coordinate neighborhoods belonging to the differentiable structure*.
- To consider a manifold without differentiable structure, we will say *topological* manifold and *topological* coordinate neighborhood.
- By requiring only that the change of coordinates be given by C^r functions, for r < ∞, we could define C^r-compatible coordinate neighborhoods and C^r manifolds, C⁰ denoting a topological manifold.
- One can also require that the change of coordinates be C^ω, that is, real analytic.
- We shall restrict ourselves almost exclusively to the C^∞ case.

Sufficient Conditions for Existence of Structure

- The following proposition shows that Conditions (1) and (2) of the definition are the essential properties defining a C^{∞} structure.
- Thus, in examples we need only check the compatibility of a covering by neighborhoods.

Theorem

Let M be a Hausdorff space with a countable basis of open sets. Suppose $V = \{V_{\beta}, \psi_{\beta}\}$ is a covering of M by C^{∞} -compatible coordinate neighborhoods. Then there is a unique C^{∞} structure on M containing these coordinate neighborhoods.

We shall define the differentiable structure to be the collection U of all topological coordinate neighborhoods U, φ which are C[∞]-compatible with each and every one of those of the given collection {V_β, ψ_β}. This new collection naturally includes the V_β, ψ_β. So Property (1) of the definition is automatically satisfied.

Proof (Cont'd)

- Now we turn to Property (2).
 - Let U, φ and $U', \varphi', U \cap U' \neq \emptyset$, be in \mathcal{U} .

We must show that they are C^{∞} -compatible.

 U, φ and U', φ' are (topological) coordinate neighborhoods.

So the functions

$$\varphi'\circ\varphi^{-1}\quad\text{and}\quad\varphi\circ\varphi'^{-1},$$

giving the change of coordinates, are well-defined homeomorphisms on open subsets of \mathbb{R}^n .

So we need only make sure that they are C^{∞} .

Proof (Cont'd)

• Let $x = \varphi(p)$ be an arbitrary point of $\varphi(U \cap U')$.

Then $p \in V_{\beta}$ for one of the coordinate neighborhoods V_{β}, ψ_{β} . It follows that:

- $W = V_{\beta} \cap U \cap U'$ is an open set containing p;
- $\varphi(W)$ is an open set containing x.

On $\varphi(W)$, we have

$$\varphi' \circ \varphi^{-1} = \varphi' \circ \psi_{\beta}^{-1} \circ \psi_{\beta} \circ \varphi^{-1}.$$

But U, φ and U', φ' are both C^{∞} -compatible with V_{β}, ψ_{β} . So $\varphi' \circ \psi_{\beta}^{-1}$ and $\psi_{\beta} \circ \varphi^{-1}$ are C^{∞} . It follows that their composition $\varphi' \circ \varphi^{-1}$ is C^{∞} on $\varphi(W)$. Also, $\varphi' \circ \varphi^{-1}$ is C^{∞} on a neighborhood of any point of its domain.

So it is C^{∞} .

Proof (Cont'd)

- This proves everything except Property (3), which is automatic.
 Suppose U, φ is compatible with all of the coordinate neighborhoods in our collection.
 - Then it certainly has this property with respect to the subcollection $\{V_{\beta}, \psi_{\beta}\}$.
 - So it is in the differentiable structure.

Remark

- A coordinate neighborhood U, φ depends on both the neighborhood U and the map φ of U to ℝⁿ.
- If we change either, then we have a different coordinate neighborhood.
- For example, suppose $V \subseteq U$ is an open subset.
- Then V, φ|_V is a new coordinate neighborhood, although the coordinates of p ∈ V are the same as its coordinates in the original neighborhood.
- If p ∈ U, we may choose V so that φ(V) is an open ball Bⁿ_ε(a), or cube Cⁿ_ε(a), in ℝⁿ with φ(p) = a as center.
- Or we might alter φ by composing it with a map $\theta : \mathbb{R}^n \to \mathbb{R}^n$.
- E.g., by composing with a translation, we can send some p ∈ U to coordinates (0, 0, ..., 0).
- Of course, this gives a new coordinate system on U.
- Thus, we get a new coordinate neighborhood $U, \theta \circ \varphi$.

Example (The Euclidean Plane)

- Once a unit of length is chosen, the Euclidean plane *E*² becomes a metric space.
- It is Hausdorff and has a countable basis of open sets.
- The choice of an origin and mutually perpendicular coordinate axes establishes a homeomorphism (even an isometry) $\psi : \mathbf{E}^2 \to \mathbb{R}^2$.
- Thus we cover \boldsymbol{E}^2 with a single coordinate neighborhood V, ψ , with $V = \boldsymbol{E}^2$ and $\psi(V) = \mathbb{R}^2$.
- It follows that E^2 is a topological manifold.
- By the theorem, V, ψ determines a differentiable structure.
- Thus, E^2 is a C^∞ manifold.

Example (The Euclidean Plane Cont'd)

- There are many other coordinate neighborhoods on E^2 which are C^{∞} -compatible with V, ψ .
- These also belong to the differentiable structure determined by V, ψ .
- For example, we may choose another rectangular Cartesian coordinate system $V',\psi'.$
- Then it is shown in analytic geometry that the change of coordinates is given by linear, hence C^{∞} (even analytic) functions

$$y^{1} = x^{1} \cos \theta - x^{2} \sin \theta + h,$$

$$y^{2} = x^{1} \sin \theta + x^{2} \cos \theta + k.$$

- Note that V = V', but the coordinate neighborhoods are not the same since $\psi' \neq \psi$.
- That is, the coordinates of each point are different for the two mappings.

Example

- It is also possible to choose as U the plane minus a ray extending from a point 0.
- We use as coordinate functions on U:
 - The angle $\theta(q)$ measured from this ray to $\overline{0q}$;
 - The distance r(q) of q from 0.
- We define a homeomorphism

$$arphi: egin{array}{cccc} U &
ightarrow \ \{(r, heta) \mid r > 0, 0 < heta < 2\pi\} \subseteq \mathbb{R}^2; \ q & \mapsto \ (r(q), heta(q)). \end{array}$$

• The equations for change of coordinates to those above, assuming that 0 is the origin and that the ray is the positive x-axis, are

$$x^1 = r \cos \theta, \quad x^2 = r \sin \theta.$$

• These are analytic and, thus, C^{∞} .

Example (Cont'd)

- If the origin and axes are not chosen in this special way, then we must compose this mapping on R² with a rotation and translation of the previous type to obtain the functions giving the change of coordinates.
- The various coordinate neighborhoods just enumerated are C^{∞} -compatible with our original V, ψ .
- So they are in the differentiable structure on \boldsymbol{E}^2 determined by V, ψ .

Euclidean Space Revisited

- In the same manner, Euclidean space of arbitrary dimension n gives an example of a C[∞] manifold, covered by a single coordinate system.
- Again, this may be done in a variety of ways.
- As we have noted, it is customary to identify **E**ⁿ and **R**ⁿ since the former is difficult to axiomatize.
- This is equivalent to choosing a fixed rectangular Cartesian coordinate system covering all of *E*^{*n*}.
- Though many examples, it will become clear that manifolds, in general, cannot be covered by a single coordinate system nor are there preferred coordinates.
- Thus, it is often better in thinking of Euclidean space as a manifold to visualize the model **E**ⁿ of classical geometry, without coordinates, rather than \mathbb{R}^n , Euclidean space with coordinates.

Finite-Dimensional Vector Spaces

- A finite-dimensional vector space V over R can be identified with Rⁿ, n = dimV, once a basis e₁,..., e_n is chosen.
- Vector $\mathbf{v} = x^1 \mathbf{e}_1 + \cdots + x^n \mathbf{e}_n$ is identified with (x^1, \dots, x^n) in \mathbb{R}^n ;
- Similarly, the space of $m \times n$ matrices (a_{ij}) can be identified with \mathbb{R}^{mn} .
- The matrix $A = (a_{ij})$ corresponds to $(a_{11}, \ldots, a_{1n}; \ldots; a_{m1}, \ldots, a_{mn})$.
- Using these identifications, we may define a natural topology and C^{∞} structure on \mathbf{V} and on the set $\mathcal{M}_{mn}(\mathbb{R})$ of $m \times n$ matrices over \mathbb{R} .
- We suppose them to be:
 - Homeomorphic to Cartesian or Euclidean space of dimension n in the case of V, and mn in the case of M_{mn}(R);
 - Covered by a single coordinate neighborhood, the identification map above being the coordinate map.

Open Submanifolds

- Let M be a C^{∞} manifold.
- Consider an open subset U of M.
- U is itself a C^{∞} manifold with differentiable structure consisting of the coordinate neighborhoods V', ψ' obtained by restriction of ψ on those coordinate neighborhoods V, ψ , which intersect U, to the open set $V' = V \cap U$, that is,

$$\psi' = \psi \mid_{V \cap U} .$$

- This gives a covering of U by topological coordinate neighborhoods which are C[∞]-compatible.
- Hence, it defines a C^{∞} structure on U.
- U, with this structure, is said to be an **open submanifold** of M.

Example $(Gl(n, \mathbb{R}))$

- Consider the subset U = Gl(n, ℝ) of M = M_n(ℝ), n × n matrices over ℝ, which consists of all nonsingular n × n matrices.
- Recall that an $n \times n$ matrix A is nonsingular if and only if its determinant detA is not zero.
- So we have

$$U = \{A \in \mathcal{M}_n(\mathbb{R}) : \det A \neq 0\}.$$

- This is the usual definition of the group $Gl(n, \mathbb{R})$.
- Now detA is a polynomial function of its entries a_{ij}.
- Hence, it is a continuous function of its entries.
- So it is a continuous function of A in the topology of identification with \mathbb{R}^{n^2} .
- Thus, $U = Gl(n, \mathbb{R})$ is an open set, the complement of the closed set of those A such that detA = 0.
- So $Gl(n, \mathbb{R})$ is an open submanifold of $\mathcal{M}_n(\mathbb{R})$.

Product Manifold

• We state without proof a result on the manifold structure that can be constructed on the product of two manifolds.

Theorem

Let M and N be C^{∞} manifolds of dimensions m and n. Then $M \times N$ is a C^{∞} manifold of dimension m + n. Its C^{∞} structure is determined by coordinate neighborhoods of the form

$$\{U \times V, \varphi \times \psi\},\$$

where:

- U, φ is a coordinate neighborhood on M;
- V, ψ is a coordinate neighborhood on N;
- Homeomorphisms $\varphi \times \psi : U \times V \to \mathbb{R}^{m+n} = \mathbb{R}^m \times \mathbb{R}^n$, defined by

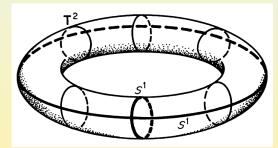
$$\varphi \times \psi(p,q) = (\varphi(p),\psi(q)).$$

Example: The Torus

• An important example is the torus

$$T^2 = S^1 \times S^1,$$

the product of two circles.



• More generally, $T^n = S^1 \times \cdots \times S^1$, the *n*-fold product of circles, is a C^{∞} manifold obtained as a Cartesian product.

Example: The Sphere

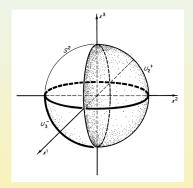
• We give a fairly detailed proof, using the theorem, that the unit 2-sphere

$$S^2 = \{x \in \mathbb{R}^3 : ||x|| = 1\}$$

- is a C^{∞} manifold.
- The idea extends in an obvious way to

$$S^{n-1} = \{x \in \mathbb{R}^n : \|x\| = 1\},$$

the unit n-1 sphere in \mathbb{R}^n .



- We take S^2 with its topology as a subspace of \mathbb{R}^3 .
- That is, U is open in S^2 if $U = \widetilde{U} \cap S^2$, for some open set $\widetilde{U} \subseteq \mathbb{R}^3$.
- This implies that S^2 is Hausdorff with a countable basis.
- We shall show that it is locally Euclidean.
- For i = 1, 2, or 3, let

$$\begin{array}{lll} \widetilde{U}_i^+ &=& \{(x^1,x^2,x^3):x^i>0\};\\ \widetilde{U}_i^- &=& \{(x^1,x^2,x^3):x^i<0\}. \end{array}$$

These U_i[±] are two open sets into which the coordinate hyperplane xⁱ = 0 divides R³.

The relatively open sets

$$U_i^{\pm} = \widetilde{U}_i^{\pm} \cap S^2, \quad i = 1, 2, 3,$$

cover S^2 .

• We define $\varphi_i^{\pm}: U_i^{\pm} \to \mathbb{R}^2$ by projection.

$$\begin{array}{rcl} \varphi_1^{\pm}(x^1,x^2,x^3) &=& (x^2,x^3);\\ \varphi_2^{\pm}(x^1,x^2,x^3) &=& (x^1,x^3);\\ \varphi_3^{\pm}(x^1,x^2,x^3) &=& (x^1,x^2). \end{array}$$

It can be checked that these are homeomorphisms to the open set

$$W = \{x \in \mathbb{R}^2 : ||x|| < 1\}.$$

• Thus, S^2 is locally Euclidean and a topological manifold.

- The formulas for the change of coordinates are C^{∞} .
- Thus, these coordinate neighborhoods are C^{∞} -compatible.
- For example, $\varphi_1^+ \circ (\varphi_2^-)^{-1}$ is given on $U_1^+ \cap U_2^-$ by composing $(\varphi_2^-)^{-1}$ and φ_1^+ .

$$\begin{array}{ccc} (x^1, x^3) & \stackrel{(\varphi_2^-)^{-1}}{\to} & (x^1, -(1 - (x^1)^2 - (x^3)^2)^{1/2}, x^3); \\ (x^1, -(1 - (x^1)^2 - (x^3)^2)^{1/2}, x^3) & \stackrel{\varphi_1^+}{\to} & (-(1 - (x^1)^2 - (x^3)^2)^{1/2}, x^3). \end{array}$$

• Then, by change of notation, using (u^1, u^2) as U_2^- -coordinates and (v^1, v^2) as U_1^+ -coordinates instead of (x^1, x^3) and (x^2, x^3) , we have

$$v^1 = -(1 - (u^1)^2 - (u^2)^2)^{1/2}, \quad v^2 = u^2.$$

The square root term is never zero on

$$\{(u^1, u^2): (u^1)^2 + (u^2)^2 < 1\}.$$

- So the v^i are C^{∞} functions of the u^i .
- By similar computations, $arphi_2^{-1} \circ (arphi_1^+)^{-1}$ is \mathcal{C}^∞ on

$$\{(v^1, v^2) : (v^1)^2 + (v^2)^2 < 1\}.$$

- Thus the coordinate neighborhoods U_1^+, φ_1^+ and U_2^-, φ_2^- are $C^\infty\text{-compatible.}$
- Parallel arguments apply to the other cases.
- This naturally defined covering of S^2 by eight coordinate neighborhoods determines a unique C^{∞} structure.

Surfaces and Curves

- Thus S^2 is an example of a manifold which is a subset of another manifold, namely \mathbb{R}^3 , and which satisfies certain other conditions by virtue of which it is a manifold.
- A two-dimensional submanifold of **E**³ or \mathbb{R}^3 is often called a **surface** in Euclidean space.
- A one-dimensional submanifold is called a curve.
- Planes and spheres, circles and lines are the simplest examples.
- Manifolds frequently arise in other ways than as submanifolds.
- So it is natural to ask whether every manifold can be represented as a submanifold of some simple manifold, especially of Euclidean space.

Subsection 2

Further Examples

Quotient Space

- Let X be a topological space.
- Let \sim be an equivalence relation on X.
- Denote by [x] the equivalence class of x,

$$[x] = \{y \in X : y \sim x\}.$$

• For a subset $A \subseteq X$, denote by [A] the set

$$[A] = \bigcup_{a \in A} [a],$$

that is, all x equivalent to some element of A.

- We let X/\sim stand for the set of equivalence classes.
- Denote by π : X → X/~ the natural mapping (projection) taking each x ∈ X to its equivalence class,

$$\pi(x) = [x].$$

Quotient Space (Cont'd)

• Let the **quotient topology** on X/\sim be defined by stipulating that

 $U \subseteq X/\sim$ is an open subset if $\pi^{-1}(U)$ is open.

• The projection $\pi:X \to X/\sim$ is then continuous.

Definition

 X/\sim is called the **quotient space** of X relative to the relation \sim .

Example

• Let $X = \mathbb{R}$ be the real numbers and \mathbb{Z} be the integers.

Define

$$x \sim y$$
 if $x - y \in \mathbb{Z}$.

- Denote by \mathbb{R}/\sim the quotient space.
- This quotient space may be naturally identified with

$$S^1 = \{ z \in \mathbb{C} : |z| = 1 \},\$$

the unit circle in the complex plane.

 ${\ }$ ${\ }$ The projection $\pi:\mathbb{R}\rightarrow\mathbb{R}/\!\!\sim$ is then identified with the map

$$\pi(t) = \exp(2\pi t \sqrt{-1}).$$

Note that X/~ is a space of cosets of a group relative to a subgroup.
This situation occurs frequently.

Open Equivalence Relations

Definition

An equivalence relation \sim on a space X is called **open** if, whenever a subset $A \subseteq X$ is open, then [A] is also open.

Lemma

An equivalence relation \sim on X is open if and only if π is an open mapping. When \sim is open and X has a countable basis of open sets, then X/\sim has a countable basis also.

Suppose, first, that ~ is open. Let A ⊆ X be an open subset. By hypothesis, [A] is open. Note that [A] = π⁻¹(π(A)). Thus, by definition, π(A) is open in X/~. So π is an open mapping.

Open Equivalence Relations (Cont'd)

• Suppose, conversely, that π is open.

Let $A \subseteq X$ be an open subset.

By hypothesis, $\pi(A)$ is open in X/\sim .

Since $[A] = \pi^{-1}(\pi(A))$, [A] is open in *X*.

It follows that \sim is open.

Suppose \sim is open and X has a countable basis $\{U_i\}$ of open sets. Let W be an open subset of X/\sim . Then $\pi^{-1}(W) = \bigcup_{j \in J} U_j$, for some subfamily of $\{U_i\}$.

Hence,
$$W = \pi(\pi^{-1}(W)) = \bigcup_{j \in J} \pi(U_j)$$
.

It follows that $\{\pi(U_i)\}$ is a basis of open sets for X/\sim .

Utility of the Lemma

- Recall that a manifold must be a Hausdorff space with a countable basis of open sets.
- So the lemma is clearly useful in determining those equivalence relations on a manifold *M* whose quotient space is again a manifold.
- Unfortunately, there is no simple condition which will assure that the quotient space is Hausdorff.
- In fact, a quotient space X/~ may be locally Euclidean with a countable basis of open sets and still fail to be Hausdorff.
- Nevertheless we obtain important examples by this method.
- The following lemma is sometimes helpful.

Characterization of Hausdorff Quotients

Lemma

Let \sim be an open equivalence relation on a topological space X. Then $R = \{(x, y) : x \sim y\}$ is a closed subset of the space $X \times X$ if and only if the quotient space X/\sim is Hausdorff.

• Assume X/\sim is Hausdorff. Suppose $(x, y) \notin R$, that is, $x \nsim y$. Then there are disjoint neighborhoods U of $\pi(x)$ and V of $\pi(y)$. We denote by U and V the open sets $\pi^{-1}(U)$ and $\pi^{-1}(V)$. These contain x and y, respectively. Suppose the open set $\widetilde{U} \times \widetilde{V}$ containing (x, y) intersects R. Then it must contain a point (x', y') for which $x' \sim y'$. But then $\pi(x') = \pi(y')$ contrary to the assumption that $U \cap V = \emptyset$. This contradiction shows that $\widetilde{U} \times \widetilde{V}$ does not intersect R. Therefore, *R* is closed.

George Voutsadakis (LSSU)

Characterization of Hausdorff Quotients (Converse)

• Conversely, suppose that *R* is closed.

Let $\pi(x), \pi(y)$ in X/\sim be a distinct pair of points.

Then, there is an open set of the form $U \times V$ containing (x, y) and having no point in R.

It follows that
$$U = \pi(\widetilde{U})$$
 and $V = \pi(\widetilde{V})$ are disjoint.

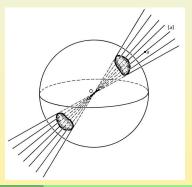
By the preceding lemma and the hypothesis, U and V are open. Thus X/\sim is Hausdorff.

Example: Real Projective Space

- We let $X = \mathbb{R}^{n+1} \{0\}$, all (n + 1)-tuples of real numbers $x = (x^1, ..., x^{n+1})$ except 0 = (0, ..., 0).
- Define $x \sim y$ if, there is a real number $t \neq 0$, such that y = tx, that is,

$$(y^1,\ldots,y^{n+1})=(tx^1,\ldots,tx^{n+1}).$$

- The equivalence classes [x] may be visualized as lines through the origin.
- We denote the quotient space by $P^n(\mathbb{R})$.
- It is called real projective space.



- We show that $P^n(\mathbb{R})$ is a differentiable manifold of dimension n. First note that $\pi: X \to P^n(\mathbb{R})$ is an open mapping.
 - Let $t \neq 0$ be a real number.
 - Let $\varphi_t: X \to X$ be the mapping defined by

$$\varphi_t(x)=tx.$$

It is clearly a homeomorphism, with $\varphi_t^{-1} = \varphi_{1/t}$. Let $U \subseteq X$ be an open set.

Then $[U] = \bigcup \varphi_t(U)$, the union being over all real $t \neq 0$. Each $\varphi_t(U)$ is open.

- So [U] is open.
- By a previous lemma, π is open.

Next we apply the preceding lemma to prove that Pⁿ(ℝ) is Hausdorff.
 On the open submanifold X × X ⊆ ℝⁿ⁺¹ × ℝⁿ⁺¹ we define a real-valued function f(x, y) by

$$f(x^1,...,x^{n+1};y^1,...,y^{n+1}) = \sum_{i\neq j} (x^i y^j - x^j y^i)^2.$$

Then f(x, y) is continuous.

f vanishes if and only if y = tx, for some real number $t \neq 0$. That is, if and only if $x \sim y$.

Thus

$$R = \{(x, y) : x \sim y\} = f^{-1}(0)$$

is a closed subset of $X \times X$. Therefore, $P^n(\mathbb{R})$ is Hausdorff.

• We define n + 1 coordinate neighborhoods

$$U_i, \varphi_i, \quad i=1,\ldots,n+1.$$

Let
$$U_i = \{x \in X : x' \neq 0\}$$
.
Let $U_i = \pi(\widetilde{U}_i)$.
Then $\varphi_i : U_i \to \mathbb{R}^n$ is defined by:
a Choosing any $x = (x^1 - x^{n+1})$ representing $[x] \in I$.

- Choosing any $x = (x^1, \ldots, x^{n+1})$ representing $[x] \in U_i$;
- Setting

$$\varphi_i(x) = \left(\frac{x^1}{x^i}, \dots, \frac{x^{i-1}}{x^i}, \frac{x^{i+1}}{x^i}, \dots, \frac{x^{n+1}}{x^i}\right)$$

It is seen that if $x \sim y$, then $\varphi_i(x) = \varphi_i(y)$. Moreover, $\varphi_i(x) = \varphi_i(y)$ implies $x \sim y$. Thus, $\varphi_i : U_i \to \mathbb{R}^n$ is properly defined, continuous, one-to-one, and even onto.

George Voutsadakis (LSSU)

• $\varphi_i^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ is given by composing a C^{∞} map of \mathbb{R}^n to \mathbb{R}^{n+1} with π .

For $z \in \mathbb{R}^n$, we have

$$\varphi_i^{-1}(z^1,\ldots,z^n) = \pi(z^1,\ldots,z^{i-1},+1,z^i,\ldots,z^n).$$

Therefore φ_i^{-1} is continuous. Thus, $P^n(\mathbb{R})$ is a (topological) manifold. It is C^{∞} if the coordinate neighborhoods are C^{∞} -compatible. That is, if $\varphi_i \circ \varphi_j^{-1}$ is C^{∞} (where defined), for $1 \le i, j \le n+1$. This can be verified explicitly.

Example: Grassman Manifolds G(k, n)

- The Grassman manifold G(k, n) is the set of all k-planes through the origin of ℝⁿ, or k-dimensional subspaces of Vⁿ = ℝⁿ (as a vector space), endowed with a suitable topology and differentiable structure.
- We will realize G(k, n) as a quotient space arising from an equivalence relation on the manifold F(k, n) of k-frames in \mathbb{R}^n .
- We define a *k*-**frame** in \mathbb{R}^n to be a linearly independent set *x* of *k* elements of \mathbb{R}^n ,

$$x_1 = (x_1^1, \dots, x_1^n),$$

$$\vdots$$

$$x_k = (x_k^1, \dots, x_k^n).$$

k-Frames

- A k-frame in ℝⁿ may be identified with the k × n matrix, which we also denote by x, whose rows are x₁,..., x_k.
- We use the fact that the set $\mathcal{M}_{kn}(\mathbb{R})$ of all $k \times n$ real matrices is a differentiable manifold by virtue of its identification with \mathbb{R}^{kn} .
- The matrices which correspond to *k*-frames, that is, those of rank *k*, form an open subset.
- Hence, F(k, n) is a differentiable manifold.
- This is because of the fact that "*x* is of rank *k*" means that the following two equivalent statements hold:
 - (i) The row vectors form a linearly independent set;
 - ii) Not all $k \times k$ minor determinants are zero simultaneously.
- Statement (ii) shows that the rank is less than k at the simultaneous zeros of a set of continuous functions on $\mathcal{M}_{kn}(\mathbb{R})$.
- So the rank is less than k on a closed subset.
- It follows that F(k, n) is open.

Equivalence Relation on F(k, n)

- Each frame x determines a k-plane or point of G(k, n), namely, the subspace spanned by x₁,..., x_k.
- So we have a natural map of F(k, n) onto G(k, n).
- Moreover x = (x₁,...,x_k) and y = (y₁,...,y_k) determine the same k-plane if and only if

$$y_i = \sum_{j=1}^k \alpha_{ij} x_j,$$

where $a = (\alpha_{ij})$ is a nonsingular $k \times k$ matrix.

- Equivalently, if and only if y = ax, the product of the matrices a and x.
- It is natural to define \sim by

$$\boldsymbol{y} \sim \boldsymbol{x}$$
 if $\boldsymbol{y} = a\boldsymbol{x}, a \in Gl(k,\mathbb{R}).$

Construction of G(k, n)

- We now identify:
 - G(k, n) with $F(k, n)/\sim$, the set of equivalence classes;
 - The above mentioned natural map with π .
- We sketch a proof that G(k, n) with the quotient space topology has the structure of a differentiable manifold of dimension k(n k).
- Note that if k = 1, then $a \in Gl(1, \mathbb{R}) = \mathbb{R}^*$.
- So G(k, n) becomes $P^{n-1}(\mathbb{R})$.
- The proof that π is an open mapping is analogous to the preceding example.
- The proof that G(k, n) is Hausdorff is trickier and is omitted.

Open Subsets

- We describe a covering by coordinate neighborhoods with C^{∞} -compatible coordinate maps.
- Then a previous theorem may be applied to complete the proof.
- We use the $k \times k$ submatrices of $\mathbf{x} \in \mathcal{M}_{kn}(\mathbb{R})$.
- Let $J = (j_1, \ldots, j_k)$ be an ordered subset of $(1, \ldots, n)$.
- Let J' be the complementary subset.
- By \boldsymbol{x}_J we denote the $k \times k$ submatrix

$$(x_i^{j_\ell}), \quad 1 \leq i, \ell \leq k,$$

of the $k \times n$ matrix \boldsymbol{x} .

- Denote by x_{J'} the complementary k × (n − k) submatrix obtained by striking out the columns j₁,..., j_k of x.
- Let U_J be the open set in F(k, n), consisting of matrices for which x_J is nonsingular.
- Let $U_J = \pi(\widetilde{U}_J)$ be the corresponding open set in G(k, n).

Open Subsets (Cont'd)

- Each y ∈ Ũ_J is equivalent to exactly one k × n matrix x in which the submatrix x_J is the k × k identity matrix.
- For example, if J = (1, 2, ..., k), then \boldsymbol{x} is of the form

$$\mathbf{x} = \begin{pmatrix} 1 & \cdots & 0 & x_{1,k+1} & \cdots & x_{1n} \\ 0 & \cdots & 0 & & & \\ \vdots & \vdots & & & \vdots \\ 0 & \cdots & 1 & x_{k,k+1} & \cdots & x_{kn} \end{pmatrix}$$

 In fact the x equivalent to a matrix y, for which y_J is nonsingular, is given by the matrix formula

$$\boldsymbol{x} = \boldsymbol{y}_J^{-1} \boldsymbol{y}.$$

Coordinate Mappings

We define

$$\varphi_J: U_J \to \mathcal{M}_{k(n-k)}(\mathbb{R}),$$

identified with $\mathbb{R}^{k(n-k)}$, by deleting the k columns corresponding to J in this representative x of y,

$$\varphi_J([\boldsymbol{y}]) = \boldsymbol{x}_{J'}.$$

It can be shown that:

- φ_J is properly defined;
- φ_J maps U_J onto $\mathbb{R}^{k(n-k)}$ homeomorphically;
- The U_J, φ_{J'}, for all subsets J of k distinct elements of (1, 2, ..., n), form a covering of G(k, n) by C[∞]-compatible coordinate neighborhoods.
- A verification of this for G(2, 4), the 2-planes through the origin of \mathbb{R}^4 , is sufficient to show how to proceed in general.
- A different proof of these facts will be provided later.

Subsection 3

Differentiable Functions and Mappings

Functions in Local Coordinates

Let

$$f: W_f \to \mathbb{R}$$

be a real-valued function defined on an open set W_f of a C^{∞} manifold M, possibly all of M.

- Let U, φ is be a coordinate neighborhood such that $W_f \cap U \neq \emptyset$.
- Let x^1, \ldots, x^n denote the local coordinates.
- Then f corresponds to a function $\widehat{f}(x^1, \ldots, x^n)$ on $\varphi(W_f \cap U)$ defined by

$$\widehat{f}=f\circ\varphi^{-1}.$$

• That is, we have, for all $p \in W_f \cap U$,

$$f(p) = \widehat{f}(x^1(p), \ldots, x^n(p)) = \widehat{f}(\varphi(p)).$$

Using Multiple Local Coordinates

- We will customarily omit the hat and use the same letter "f" for:
 - f as defined on W_f ;
 - \widehat{f} , its expression in local coordinates.
- Ordinarily this will result in no confusion.
- Suppose two coordinate neighborhoods U, φ and V, ψ are involved.
- Then we will use different letters for the coordinates, say

$$x^1,\ldots,x^n$$
 and y^1,\ldots,y^n .

• Thus, for $p \in W_f \cap U \cap V$, we have, omitting hats,

$$f(p) = f(x^1(p), \dots, x^n(p)) = f(y^1(p), \dots, y^n(p)),$$

the latter two f's denoting \hat{f} 's, or $f \circ \varphi^{-1}$ and $f \circ \psi^{-1}$, respectively, the expressions in local coordinates.

C^{∞} Functions

Definition

Using the notation above, $f: W_f \to \mathbb{R}$ is a C^{∞} function if each $p \in W_f$ lies in a coordinate neighborhood U, φ such that

$$f \circ \varphi^{-1}(x^1,\ldots,x^n) = \widehat{f}(x^1,\ldots,x^n)$$

is C^{∞} on $\varphi(W_f \cap U)$.

• Clearly, a C^{∞} function is continuous.

Coordinate Functions

- Among the C^{∞} functions on M are the *n*-coordinate functions $(x^1(q), \ldots, x^n(q))$ of a coordinate neighborhood U, φ .
- More precisely, suppose $\pi^i:\mathbb{R}^n \to \mathbb{R}$ is defined by

$$\pi^i(x^1,\ldots,x^n)=x^i.$$

- These functions are defined by $x^i(q) = \pi^i \circ \varphi(q)$.
- Their expression in local coordinates, on $\varphi(U)$, is given by

$$\widehat{x}^{i}(x^{1},\ldots,x^{n})=x^{i}(\varphi^{-1}(x^{1},\ldots,x^{n}))=\pi^{i}(x^{1},\ldots,x^{n})=x^{i}.$$

• Since the hat is usually omitted, we have the statement

$$x^i(x^1,\ldots,x^n)=x^i, \quad i=1,\ldots,n.$$

• This is somewhat confusing since the same letter is used for a function and its values.

George Voutsadakis (LSSU)

Differential Geometry

Properties

- It is a consequence of the definition that if f is C^{∞} on W and $V \subseteq W$ is an open set, then $f|_V$ is C^{∞} on V.
- Moreover, if W is a union of open sets on each of which a real-valued function f is C[∞], then f is C[∞] on W.
- Using the C[∞] compatibility of coordinate neighborhoods, it can be verified that, if f is C[∞] on W and V, ψ is any coordinate neighborhood intersecting W, then f ∘ ψ⁻¹ is C[∞] on the open set ψ(V ∩ W) in ℝⁿ.

C^{∞} Mappings

- Let M and N be C^{∞} manifolds.
- Let $W \subseteq M$ be an open subset.
- Let $F: W \to N$ be a mapping.

Definition

F is a C^{∞} mapping of *W* into *N* if, for every $p \in M$, there exist coordinate neighborhoods U, φ of *p* and V, ψ of F(p), with

 $F(U) \subseteq V$,

such that

$$\psi \circ F \circ \varphi^{-1} : \varphi(U) \to \psi(V)$$

is C^{∞} .

\mathcal{C}^∞ Mappings (Cont'd)

- Let x^1, \ldots, x^n be local coordinates for $\phi(U)$.
- Let y^1, \ldots, y^m be local coordinates for $\psi(V)$.
- Then F being a C[∞] mapping means that F|_U : U → V may be written in these local coordinates as a mapping from φ(U) into ψ(V) by

$$\widehat{F}(x^1,\ldots,x^n)=(f^1(x^1,\ldots,x^n),\ldots,f^m(x^1,\ldots,x^n))$$

(or simply $y^i = f^i(x)$, i = 1, ..., m) and each $f^i(x)$ is C^{∞} on $\varphi(U)$.

• Note that C^{∞} mapping is a more general notion than C^{∞} function, the latter being a mapping to $N = \mathbb{R}$.

Remarks

- C^{∞} mappings are continuous.
- Their restrictions to open subsets are C^{∞} .
- Any mapping from an open subset W ⊆ N into M, whose restriction to each of a collection of open sets (which cover W) is C[∞], is necessarily C[∞] on W.
- As is the case with C[∞] functions, the C[∞] compatibility of local coordinate neighborhoods, closure under composition of C^r mappings and the remarks above show that the property does not depend on any particular choice of coordinates.
- Similarly it follows from closure under composition of C^r mappings that composition of C[∞] mappings is again a C[∞] mapping.

Terminology

- C^{∞} manifolds, functions and mappings are also called **smooth**.
- From now on we shall refer to **differentiable** manifold, function and mapping.
- Recall, however, that we previously used this term in a much weaker sense than C^{∞} .
- One reason that C^{∞} is a desirable differentiability class to use is that, when we later take derivatives of C^{∞} functions on manifolds, we obtain C^{∞} functions.
- In contrast, in the C^r case, we would obtain C^{r-1} functions.
- Thus, assuming infinite differentiability relieves us of many irritating concerns about order of differentiability.

Disjoint Compact and Closed Sets

Theorem

Let F be a closed subset and K a compact subset of a C^{∞} manifold M, with $F \cap K = \emptyset$. Then there is a C^{∞} function f defined on M which has the value +1 on K and 0 on F.

Corollary

Let U be an open subset of a manifold M. Suppose $p \in U$. Let f be a C^{∞} function on U. Then there is a neighborhood V of p in U and a C^{∞} function f^* on M, such that:

- $f^* = f$ on V;
- $f^* = 0$ outside of U.
- The proofs of these results follow along the lines of the proofs of corresponding results already established for C[∞] mappings from open subsets of ℝⁿ to ℝⁿ.

George Voutsadakis (LSSU)

Diffeomorphisms

Definition

A C^{∞} mapping $F : M \to N$ between C^{∞} manifolds is a **diffeomorphism** if it is a homeomorphism and F^{-1} is C^{∞} . *M* and *N* are **diffeomorphic** if there exists a diffeomorphism $F : M \to N$.

- This extends the concept of diffeomorphism, previously defined for open subsets of ℝⁿ only, to arbitrary C[∞] manifolds.
- Diffeomorphism of manifolds is an equivalence relation.
 - Reflexivity and symmetry are obvious from the definition.
 - Transitivity is a consequence of the following facts:
 - Composition of C^{∞} maps is C^{∞} ;
 - Composition of homeomorphisms is a homeomorphism.
- It is important that F^{-1} , as well as F, be C^{∞} .

Example

• Let $F:\mathbb{R}\to\mathbb{R}$ be defined by

$$F(t)=t^3.$$

- Then F is C^{∞} and a homeomorphism.
- It is not a diffeomorphism since F⁻¹(t) = t^{1/3}, and this is not even of class C¹, let alone C[∞], at t = 0.
- This example shows how it is possible to define two distinct C^{∞} structures on \mathbb{R} .
- The first is the usual one defined by:
 - $U = \mathbb{R};$
 - $\varphi: U \to \mathbb{R}$ be the identity map.
- This determines a C^{∞} structure on $\mathbb R$ by a previous theorem.

Example (Cont'd)

- We may also consider the structure defined by the coordinate neighborhood V, ψ , where:
 - $V = \mathbb{R};$
 - $\psi: V \to \mathbb{R}$ is defined by $\psi(t) = t^3$.
- Then $\varphi \circ \psi^{-1} = t^{1/3}$.
- So U, φ and V, ψ are not C^{∞} -compatible.
- Hence they are not in the same differentiable structure.
- However, $\mathbb R$ with its first structure is diffeomorphic to $\widetilde{\mathbb R},$ denoting $\mathbb R$ with its second structure.
- The diffeomorphism $F:\mathbb{R}
 ightarrow \widetilde{\mathbb{R}}$ being defined by

$$F(t)=t^{1/3}.$$

• So in local coordinates it is given by $\psi \circ F \circ \varphi^{-1} = t$.

Remarks

- The preceding examples shows that two C[∞] manifolds with the same underlying topological manifold but incompatible C[∞] structures can still be diffeomorphic.
- A fundamental question is:

Can the same manifold M or homeomorphic manifolds have C^{∞} structures which are not diffeomorphic?

- This was an unsolved problem for many years.
- It was finally settled by Milnor, who proved the existence of two C^{∞} structures on S^7 which were not diffeomorphic.

Remark: Characterization of Coordinate Neighborhoods

- We conclude with a remark which is occasionally useful.
- A necessary and sufficient condition that an open set U of M, together with a mapping φ : U → ℝⁿ, be a coordinate neighborhood is that φ be a diffeomorphism of U onto an open subset W of ℝⁿ.
- Conversely, if W is an open subset of \mathbb{R}^n and $\psi: W \to M$ is a diffeomorphism onto an open subset U, then U, ψ^{-1} is a coordinate neighborhood.
- We sometimes call W, ψ a **parametrization**, especially in the case dimM = 1.

Subsection 4

Rank of a Mapping. Immersions

Rank of a Differentiable Mapping

- Let N and M be C^{∞} manifolds.
- Let $F: N \to M$ be a differentiable mapping.
- Let $p \in N$.
- Suppose U, φ and V, ψ are coordinate neighborhoods of p and F(p), respectively, such that $F(U) \subseteq V$.
- Then we have a corresponding expression for F in local coordinates,

$$\widehat{\mathsf{F}} = \psi \circ \mathsf{F} \circ \varphi^{-1} : \varphi(\mathsf{U}) \to \psi(\mathsf{V}).$$

Definition

The rank of F at p is defined to be the rank of \widehat{F} at $\varphi(p)$.

Rank of a Differentiable Mapping (Cont'd)

• Thus, the rank at p is the rank at $a = \varphi(p)$ of the Jacobian matrix

$$\begin{pmatrix} \frac{\partial f^1}{\partial x^1} & \cdots & \frac{\partial f^1}{\partial x^n} \\ \vdots & & \vdots \\ \frac{\partial f^m}{\partial x^1} & \cdots & \frac{\partial f^m}{\partial x^n} \end{pmatrix}_{\mathcal{A}}$$

of the mapping

$$\widehat{F}(x^1,\ldots,x^n) = (f^1(x^1,\ldots,x^n),\ldots,f^m(x^1,\ldots,x^n))$$

expressing F in the local coordinates.

- This definition must be validated by showing that the rank is independent of the choice of coordinates.
- Another definition which is clearly independent of this choice is given in the next chapter.

The Case of Constant Rank

- The important case for us will be that in which the rank is constant.
- The theorem on rank of the previous chapter, and its corollary, can be restated as follows:

Let N and M be C^{∞} manifolds. Let $F : N \to M$ be a differentiable mapping. Suppose dimN = n, dimM = m and rankF = k at every point of N. If $p \in N$, then, there exist coordinate neighborhoods U, φ and V, ψ of p and F(p), respectively, with $F(U) \subseteq V$, such that: • $\varphi(p) = (0, \dots, 0);$ • $\psi(F(p)) = (0, \dots, 0);$ • $\widehat{F} = \psi \circ F \circ \varphi^{-1}$ is given by $\widehat{F}(x^1, \dots, x^n) = (x^1, \dots, x^k, 0, \dots, 0).$

Moreover, we may assume $\varphi(U) = C_{\varepsilon}^{n}(0)$ and $\psi(V) = C_{\varepsilon}^{m}(0)$ with the same $\varepsilon > 0$.

Necessary Condition for Diffeomorphism

• An obvious corollary to this remark is:

A necessary condition for $F: N \rightarrow M$ to be a diffeomorphism is that

 $\dim M = \dim N = \operatorname{rank} F.$

• Otherwise k would be either less than n or less than m.

In that case the expression in local coordinates implies that it is not possible for both F and F^{-1} to be one-to-one, even locally.

For example, suppose k < n in the expression above.

Then all points in U with coordinates of the form

$$(0,\ldots,0,x^{k+1},\ldots,x^n)$$

are mapped onto the same point of V.

Immersions

Definition

Let N and M be C^{∞} manifolds and $F : N \to M$ be a differentiable mapping. Suppose, using the notation above, that n < m. We say that F is an **immersion** of N in M if

rankF = n, at every point.

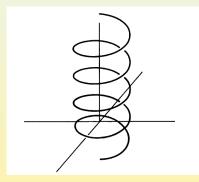
If an immersion $F : N \to M$ is univalent (injective), then we say that the image $\widetilde{N} = F(N)$, endowed with the topology and C^{∞} structure which makes $F : N \to \widetilde{N}$ a diffeomorphism, is a **submanifold** (or an **immersed submanifold**).

Remarks

- In every case that follows:
 - $N = \mathbb{R}$ or an open interval of \mathbb{R} ;
 - $M = \mathbb{R}^2$, except in the first example where $M = \mathbb{R}^3$.
- We use the natural coordinates (given by the identity map).
- To verify that *F* is an immersion it is necessary to check that the Jacobian has rank 1 at every point.
- Equivalently, one of the derivatives with respect to *t* differs from zero, for every value of *t* for which the mapping *F* is defined.
- The demonstration of this is usually omitted.

• $F: \mathbb{R} \to \mathbb{R}^3$ is given by

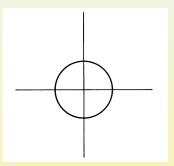
$$F(t) = (\cos 2\pi t, \sin 2\pi t, t).$$



• The image $F(\mathbb{R})$ is a helix lying on a unit cylinder whose axis is the x^3 -axis in \mathbb{R}^3 .

• $F: \mathbb{R} \to \mathbb{R}^2$ is given by

$$F(t) = (\cos 2\pi t, \sin 2\pi t).$$

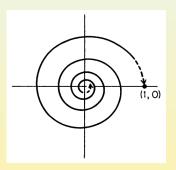


• The image $F(\mathbb{R})$ is the unit circle in \mathbb{R}^2 ,

$$S^1 = \{(x^1, x^2) : (x^1)^2 + (x^2)^2 = 1\}.$$

• $F:(1,\infty) \to \mathbb{R}^2$ is given by

$$F(t) = \left(\frac{1}{t}\cos 2\pi t, \frac{1}{t}\sin 2\pi t\right).$$

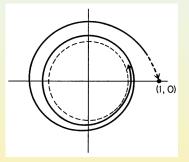


• The image is a curve with the following properties:

- It spirals to (0,0) as $t \to \infty$;
- It tends to (1,0) as $t \to 1$.

- In this example, $F:(1,\infty) \to \mathbb{R}^2$ is also a spiral.
- However, F is modified so that the image $F(\mathbb{R})$ spirals toward the circle with center at (0,0) and radius $\frac{1}{2}$ as $t \to \infty$.
- The mapping is given by

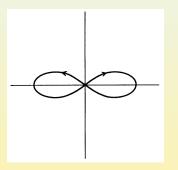
$$F(t) = \left(\frac{t+1}{2t}\cos 2\pi t, \frac{t+1}{2t}\sin 2\pi t\right)$$



- It is not difficult to check that the Jacobian could have rank 0, i.e., both derivatives $\frac{dx^1}{dt}$ and $\frac{dx^2}{dt}$ could vanish simultaneously on $1 < t < \infty$, if and only if $\cot 2\pi t = -\tan 2\pi t$.
- This, however, is impossible.

• $F : \mathbb{R} \to \mathbb{R}^2$ is given by

$$F(t) = \left(2\cos\left(t - \frac{1}{2}\pi\right), \sin 2\left(t - \frac{1}{2}\pi\right)\right)$$

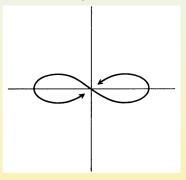


- The image is a "figure eight" traversed in the sense shown.
- The image point makes a complete circuit starting at the origin as t goes from 0 to 2π.

George Voutsadakis (LSSU)

Differential Geometry

• $G : \mathbb{R} \to \mathbb{R}^2$ again and the image is the "figure eight" as in the previous example, but with an important difference.



- We pass through (0,0) only once, when $t = \frac{1}{2}$.
- For $t \to -\infty$ and $t \to +\infty$ we only approach (0,0) as limit.

Example (Cont'd)

- The immersion is given by changing parameter in the previous example.
- Let g(t) be a monotone increasing C^{∞} function on $-\infty < t < \infty$, such that:
 - $g(0) = \pi;$ • $\lim_{t \to \infty} g(t) = 0;$
 - $\lim_{t\to+\infty} g(t) = 2\pi.$
- For example, we may use

$$g(t) = \pi + 2\tan^{-1}t.$$

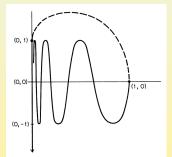
• Then G(t) is given by composition of g(t) with F(t) from the previous example:

$$G(t) = F(g(t)) = \left(2\cos\left(g(t) - \frac{\pi}{2}\right), \sin 2\left(g(t) - \frac{\pi}{2}\right)\right).$$

• Again $F: \mathbb{R} \to \mathbb{R}^2$ so that

$$egin{aligned} \mathcal{F}(t) = \left\{ egin{aligned} & \left(rac{1}{t},\sin\pi t
ight), & ext{if } 1 \leq t < \infty, \ & (0,t+2), & ext{if } -\infty < t \leq -1. \end{aligned}
ight. \end{aligned}$$

- This gives a curve with a gap as shown.
- For $-1 \le t \le +1$ we connect the two pieces together smoothly, as shown by the dotted line.
- This gives a C[∞] immersion of all of ℝ in ℝ² whose image is as shown.



Injectivity

- We may draw some conclusions from these examples about the nature of immersions.
- First we note that an immersion need not be univalent, that is, one-to-one into (injective), at large, even though it is one-to-one locally.
- The unit circle $(F(t) = (\cos 2\pi t, \sin 2\pi t))$ and the figure eight $(F(t) = (2\cos(t \frac{1}{2}\pi), \sin 2(t \frac{1}{2}\pi)))$ show this.
- For example, in both cases

$$t = 0, +2\pi, +4\pi, \dots$$

all have the same image point:

- (0,1) in the case of the circle;
- (0,0) for the figure eight.

Immersions versus Homeomorphisms

- The second conclusion we can draw is that even when it is one-to-one, an immersion is not necessarily a homeomorphism onto its image.
- That is, F : N → M a one-to-one immersion does not imply that F is a homeomorphism of N onto N
 = F(N) considered as a subspace of M.
- The second figure eight and the last example show this:
 - In the case of the former, N is the figure eight whereas N is the real line R, two spaces which are not homeomorphic.
 - In the case of the latter, N is again the real line and N = F(N) as a subspace of R² is not locally connected at all of its points. There are points on the x²-axis, such as (0, 1), which do not have arbitrarily small connected neighborhoods. Hence, N and N = R are not homeomorphic.
- In any case, $F : N \rightarrow M$ is continuous, since it is differentiable.

Imbeddings

Definition

An **imbedding** is a one-to-one immersion $F : N \to M$ which is a homeomorphism of N into M. That is, F is a homeomorphism of N onto its image, $\tilde{N} = F(N)$, with its topology as a subspace of M. The image of an imbedding is called an **imbedded submanifold**.

• The examples of the helix and the two spirals above are imbeddings.

Immersions and Imbeddings

• The following theorem, essentially a restatement of the theorem on rank and its corollary, shows that the distinction between immersions and imbeddings is a global one.

Theorem

Let $F : N \to M$ be an immersion. Then each $p \in N$ has a neighborhood U such that $F|_U$ is an imbedding of U in M.

• According to a previous remark, we may choose cubical coordinate neighborhoods U, φ and V, ψ of $p \in N$ and $F(p) \in M$, respectively, such that:

•
$$\varphi(p) = (0, \ldots, 0)$$
 in \mathbb{R}^n ;

•
$$\psi(F(p)) = (0, ..., 0)$$
 in \mathbb{R}^m ;

- $\varphi(U) = C_{\varepsilon}^{n}(0)$ and $\psi(V) = C_{\varepsilon}^{m}(0)$ (cubes of the same breadth ε);
- $\widehat{F} = \psi \circ F \circ \varphi^{-1}$, the expression of F in these local coordinates, is given by

$$\widehat{F}(x^1,\ldots,x^n)=(x^1,\ldots,x^n,0,\ldots,0).$$

Proof of the Theorem

• We want to show that $F|_U$ is a homeomorphism of U onto F(U) with the relative topology.

It is enough to show that \widehat{F} is a homeomorphism of $C_{\varepsilon}^{n}(0)$ onto its image in $C_{\varepsilon}^{m}(0)$.

First, note that $F(U) \subseteq V$, an open subset of M.

So the topology of F(U) as a subspace of M is the same as its topology as a subspace of V.

Now $\varphi: U \to C_{\varepsilon}^{n}(0)$ and $\psi: V \to C_{\varepsilon}^{m}(0)$ are homeomorphisms. So \widehat{F} is a homeomorphism of $C_{\varepsilon}^{n}(0)$ onto its image in $C_{\varepsilon}^{m}(0)$. But it is clear that \widetilde{F} is a homeomorphism of $C_{\varepsilon}^{n}(0)$ onto the subset $x^{n+1} = \cdots = x^{m} = 0$ of $C_{\varepsilon}^{m}(0)$.

Hence, the theorem holds.

Slices

We call a subset S of a cube C^m_ε(a) in ℝ^m a slice if it consists of all points for which certain of the coordinates are held constant.
 Example: The set

$$S=\{x\in \mathit{C}^m_arepsilon(0): x^{n+1}=\cdots=x^m=0\}$$

is a slice through the center 0 = (0, ..., 0) of $C_{\varepsilon}^{m}(0)$.

- Suppose V, ψ is a cubical coordinate neighborhood on a manifold M. Let S' is a subset of V, such that ψ(S') is a slice S of the cube ψ(V). Then S' is called a slice of V.
- Note that, in the proof of the theorem, S' = F(U) is a slice of V.
- In general this slice is not equal to the set V ∩ F(N) but only contained in it, even if F is univalent and U is chosen very small.

Subsection 5

Submanifolds

Submanifolds

- A submanifold N is the image in M of a one-to-one immersion F : N' → M, N = F(N'), of a manifold N' into M, together with the topology and C[∞] structure which makes F : N' → N a diffeomorphism.
- We frequently refer to N in this case as an immersed submanifold.
- As shown by the second figure eight and the last example above, the C^{∞} structure of N has an obscure and complicated relation to that of M.
- A more natural notion is that of a *regular* submanifold.
- As its name implies, it will be a special case of the one above.
- It is more natural since its topology and differentiable structure are derived directly from that of *M*.

The Submanifold Property

Definition

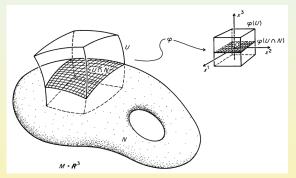
A subset N of a C^{∞} manifold M is said to have the *n*-submanifold **property** if each $p \in N$ has a coordinate neighborhood U, φ on M with local coordinates x^1, \ldots, x^m such that:

(i) $\varphi(p) = (0, \dots, 0);$ (ii) $\varphi(U) = C_{\varepsilon}^{m}(0);$ (iii) $\varphi(U \cap N) = \{x \in C_{\varepsilon}^{m}(0) : x^{n+1} = \dots = x^{m} = 0\}.$

If N has this property, coordinate neighborhoods of this type are called **preferred coordinates** (relative to N).

Illustration

• The figure shows such a subset N in $M = \mathbb{R}^3$ (n = 2 and m = 3).



- Note that immersed submanifolds do not always have this property.
- For example, take p = (0,0) in the second figure eight and the last example above.

Consequence of Submanifold Property

Denote by

$$\pi: \mathbb{R}^m \to \mathbb{R}^n, \quad n \le m,$$

the projection to the first n coordinates.

• Then we may state the following lemma, using the notation above.

Lemma

Let $N \subseteq M$ have the *n*-submanifold property. Then *N*, with the relative topology, is a topological *n* manifold and each preferred coordinate system U, φ of *M* (relative to *N*) defines a local coordinate neighborhood $V, \widetilde{\varphi}$ on *N* by

$$V = U \cap N$$
 and $\widetilde{\varphi} = \pi \circ \varphi|_V$.

These local coordinates on N are C^{∞} -compatible wherever they overlap. Moreover, they determine a C^{∞} structure on N relative to which the inclusion $i : N \to M$ is an imbedding.

Proof

• Assume N has the subspace topology relative to M.

Now $V = U \cap N$ is an open set in the relative topology. Also, $\tilde{\varphi}$ is a homeomorphism onto $C_{\varepsilon}^{n}(0) = \pi(C_{\varepsilon}^{m}(0))$ in \mathbb{R}^{n} . Thus, $V, \tilde{\varphi}$ are topological coordinate neighborhoods covering N. Suppose that for two preferred neighborhoods, U, φ and $U', \varphi', V = U \cap N$ and $V' = U' \cap N$ have nonempty intersection. $V, \tilde{\varphi}$ and $V', \tilde{\varphi}'$ are topological coordinate neighborhoods. So the change of coordinates is given by homeomorphisms

$$\widetilde{arphi}'\circ\widetilde{arphi}^{-1}$$
 and $\widetilde{arphi}\circ(\widetilde{arphi}')^{-1}.$

It suffices to show that these are C^{∞} .

Proof (Cont'd)

• Let $\theta : \mathbb{R}^n \to \mathbb{R}^m$ be given by

$$\theta(x^1,\ldots,x^n)=(x^1,\ldots,x^n,0,\ldots,0).$$

So we have that $\pi \circ \theta$ is the identity on \mathbb{R}^n .

This map θ is C^{∞} as is its restriction to $C_{\varepsilon}^{n}(0)$, an open subset of \mathbb{R}^{n} . Thus, $\tilde{\varphi}^{-1} = \varphi^{-1} \circ \theta$ is C^{∞} since it is a composition of C^{∞} maps. On the other hand, $\tilde{\varphi}' = \pi \circ \varphi'$. φ' is a C^{∞} map of U' and its open subset $U' \cap U$ to \mathbb{R}^{m} . So $\tilde{\varphi}'$ is C^{∞} on $V \cap V'$.

Thus $\widetilde{\varphi}' \circ \widetilde{\varphi}^{-1}$ is C^{∞} on its domain, $\widetilde{\varphi}(V \cap V')$.

Proof (Cont'd)

• We can see this if we write the expressions in local coordinates. Suppose

$$y^i = f^i(x^1,\ldots,x^m), \quad i=1,\ldots,m,$$

are the functions giving $\varphi' \circ \varphi^{-1}$, which we know to be C^{∞} . It can be checked that $\widetilde{\varphi}' \circ \widetilde{\varphi}^{-1}$ is given by

$$y^{i} = f^{i}(x^{1}, \dots, x^{n}, 0, \dots, 0), \quad i = 1, \dots, n.$$

Therefore, $\widetilde{\varphi}' \circ \widetilde{\varphi}^{-1}$ is C^{∞} by a previous definition.

Proof (Cont'd)

• By a previous theorem, the totality of these neighborhoods defines a unique differentiable structure on N.

In preferred local coordinates $V, \widetilde{\varphi}, i: N \to M$ is given on V by

$$(x^1,\ldots,x^n) \rightarrow (x^1,\ldots,x^n,0,\ldots,0).$$

So it is obviously an immersion.

But we have taken the relative topology on N.

So $i : N \to M$ is, by definition, a homeomorphism to its image i(N) = N, with the subspace topology.

So, *i* is an imbedding.

Regular Submanifolds

Definition

A **regular submanifold** of a C^{∞} manifold *M* is any subspace *N* with the submanifold property and with the C^{∞} structure that the corresponding preferred coordinate neighborhoods determine on it.

Example: We see that $S^2 = \{x \in \mathbb{R}^3 : ||x|| = 1\}$ is really a submanifold, as was indicated previously.

Let
$$q = (a^1, a^2, a^3)$$
 be an arbitrary point on S^2 .

q cannot lie on more than one coordinate axis.

For convenience we suppose that it does not lie on the x^3 -axis.

- We introduce the usual spherical coordinates (r, θ, φ) .
- They are defined on $\mathbb{R}^3 \{x^3 \text{-} axis\}$.
- Suppose $(1, \theta_0, \varphi_0)$ are the coordinates of q.

Regular Submanifolds (Cont'd)

• We may change the coordinate map slightly so that:

- r is replaced by $\tilde{r} = r 1$;
- θ is replaced by $\theta = \theta \theta_0$
- φ is replaced by $\widetilde{\varphi} = \varphi \varphi_0$.

Consider the neighborhood V, ψ with coordinate function

$$\psi: \boldsymbol{p}
ightarrow (\widetilde{r}(\boldsymbol{p}), \widetilde{ heta}(\boldsymbol{p}), \widetilde{arphi}(\boldsymbol{p})),$$

defined for p, such that $|\widetilde{r}| < \varepsilon$, $|\widetilde{\theta}| < \varepsilon$, and $|\widetilde{\varphi}| < \varepsilon$.

For sufficiently small θ , V, ψ defines a coordinate neighborhood of q, with:

- q having coordinates (0,0,0);
- $V \cap S^2$ the open subset of S^2 corresponding to $\tilde{r} = 0$.

The fact that these neighborhoods are compatible with the ones previously defined for S^2 can be proved by writing down the standard equations giving rectangular Cartesian coordinates as functions of the spherical coordinates.

George Voutsadakis (LSSU)

Remark

- At this point we have defined three classes of submanifolds in a manifold *M*, **immersed**, **imbedded** and **regular**.
- The first of these, usually called simply a submanifold, was defined as the image N = F(N') of a C^{∞} univalent immersion F of N' into M.
- Since F : N' → N ⊆ M is one-to-one and onto, we may and do (as part of the definition) carry over to N the topology and differentiable structure of N'.
 - Open sets of N are the images of open sets of N';
 - Coordinate neighborhoods U,φ of N are of the form:

U = F(U'), where U' is a coordinate neighborhood of N';
 φ = φ' ∘ F⁻¹.

- The continuity of F implies that the topology of N, thus obtained, is in general finer than its relative topology as a subspace of M.
- That is, if V is open in M, then V ∩ N is open in N, but there may be open sets of N which are not of this form.

Remark (Cont'd)

- An imbedding is a particular type of univalent immersion, one in which U' is open in N' if and only if $F(U') = U \cap N$, for some open set U of M.
- So the topology of the submanifold N = F(N') is exactly its relative topology as a subspace of M.
- An imbedded submanifold is thus a special type of (immersed) submanifold.

Note: Although submanifold and immersed submanifold are the same thing by definition, nevertheless we will frequently use the latter term both for emphasis and to avoid potential confusion.

 Finally, if N ⊆ M is a regular submanifold, then it is also an imbedded submanifold, since the inclusion i : N → M is an imbedding.

Imbedded and Regular Submanifolds

Theorem

Let $F: N' \to M$ be an imbedding of a C^{∞} manifold N' of dimension n in a C^{∞} manifold M of dimension m. Then N = F(N') has the n-submanifold property and, thus, N is a regular submanifold. As such it is diffeomorphic to N' with respect to the mapping $F: N' \to N$.

 Let q = F(p) be any point of N. According to a previous theorem (and its proof), there are cubical coordinate neighborhoods U, φ of p and V, ψ of q such that:

(i)
$$\varphi(p) = (0, \ldots, 0) \in C^n_{\varepsilon}(0) = \varphi(U);$$

(ii)
$$\psi(q) = C_{\varepsilon}^{m}(0) = \psi(V);$$

(iii) The mapping $F|_U$ is given in local coordinates by

$$\widehat{F}:(x^1,\ldots,x^n)\mapsto(x^1,\ldots,x^n,0,\ldots,0).$$

If $F(U) = V \cap N$, then the neighborhood V, ψ would be a preferred coordinate neighborhood relative to N.

George Voutsadakis (LSSU)

Differential Geometry

Imbedded and Regular Submanifolds (Cont'd)

- To achieve this situation, we use the fact that F is an imbedding. This implies at least that F(V) is a relatively open set of N. That is, F(V) = W ∩ N, where W is open in M.
 Since V ⊇ F(U), it is no loss of generality to suppose W ⊆ V. Thus:
 - $\psi(W)$ is an open subset of $C_{\varepsilon}^{m}(0)$ containing the origin;
 - $\psi(W) \supseteq \psi(F(U))$, which is a slice S of $C^m_{\varepsilon}(0)$,

$$S = \{x \in C^m_{\varepsilon}(0) : x^{n+1} = \cdots = x^m = 0\}.$$

Therefore, we may choose a (smaller) open cube $C^m_{\delta}(0) \subseteq \psi(W)$ and let

$$V' = \psi^{-1}(C^m_{\delta}(0)), \quad \psi' = \psi|_V'.$$

This is a cubical coordinate neighborhood of q, with $F(U) \cap V' = V' \cap N$.

• Take
$$U' = \varphi^{-1}(C_{\delta}^{n}(0)) = F^{-1}(V').$$

We see that U', φ' , with $\varphi' = \varphi|_{U'}$, is a coordinate neighborhood of p. Moreover, the pair U', φ' , and V', ψ' have exactly the properties needed, namely, Properties (i), (ii), (iii) and $F(U') = V' \cap N$. This proves simultaneously that:

- *N* has the *n*-submanifold property;
- F is a diffeomorphism.

The latter is true since the inverse of $F: N' \to N$ is given in the local preferred coordinates $V', \pi \circ \psi'$ and U', φ' by

$$\widehat{F}^{-1}(x^1,\ldots,x^n)=(x^1,\ldots,x^n),$$

which is clearly C^{∞} .

Remark

- Suppose that $N \subseteq M$ is an (immersed) submanifold.
- Let $q \in N$.
- Then there is a cubical neighborhood V,ψ of q with

$$\psi(q) = (0,\ldots,0) \in C^m_{\varepsilon}(0) = \psi(V),$$

such that the slice $S' \subseteq V$ consisting of all points of V whose last m - n coordinates vanish is:

- An open set;
- A cubical coordinate neighborhood of the submanifold structure of *N*, with coordinate map

$$\psi'(r) = \pi \circ \psi(r) = (x^1(r), \ldots, x^n(r)).$$

One-One Immersion From Compact Domain

- It is usually easier to determine that a map from one C^{∞} manifold into another is an immersion than to see that it is an imbedding.
- So the following theorem is useful.

Theorem

Suppose $F : N \to M$ is a one-to-one immersion and N is compact. Then F is an imbedding and $\widetilde{N} = F(N)$ is a regular submanifold.

We know that F is continuous.
 Also both N and N
 , with the subspace topology, are Hausdorff.
 So we have a continuous (one-to-one) mapping from a compact space to a Hausdorff space.

One-One Immersion From Compact Domain (Cont'd)

- A closed subset K of N is compact.
 - So F(K) is compact.
 - Therefore, F(K) is closed.
 - Thus, F takes closed subsets of N to closed subsets of N.
 - Since it is one-to-one onto, it takes open subsets to open subsets also. It follows that F^{-1} is continuous.
 - So $F: N \to \widetilde{N}$ is a homeomorphism and, therefore, an imbedding.
 - The rest of the statement follows from the preceding remarks.

Submanifolds via Maps of Constant Rank

Theorem

Let N be a C^{∞} manifold of dimension n and M be a C^{∞} manifold of dimension m. Let $F : N \to M$ be a C^{∞} mapping. Suppose that F has constant rank k on N. Let $q \in F(N)$. Then $F^{-1}(q)$ is a closed, regular submanifold of N of dimension n - k.

• Let A denote $F^{-1}(q)$.

 $\{q\}$ is a closed subset of M.

A is the inverse image of $\{q\}$ under a continuous map.

So A is a closed subset.

Submanifolds via Maps of Constant Rank (Cont'd)

- We show A has the submanifold property for the dimension n − k.
 Let p ∈ A.
 - F has constant rank k on a neighborhood of p.

By the theorem on rank we may find coordinate neighborhoods U, φ and V, ψ of p and q, respectively, such that:

- $\varphi(p)$ and $\psi(q)$ are the origins in \mathbb{R}^n and \mathbb{R}^m ;
- $\varphi(U) = C_{\varepsilon}^{n}(0), \ \psi(V) = C_{\varepsilon}^{m}(0);$
- In local coordinate (x^1, \ldots, x^n) and (y^1, \ldots, y^m) , $F|_U$ is given by

$$\psi \circ F \circ \varphi^{-1}(x) = \widehat{F}(x^1, \dots, x^n) = (x^1, \dots, x^k, 0, \dots, 0).$$

Submanifolds via Maps of Constant Rank (Cont'd)

 This means that the only points of U mapping onto q are those whose first k coordinates are zero.
 That is,

 $\begin{aligned} A \cap U &= \varphi^{-1}(\varphi \circ F^{-1} \circ \psi^{-1}(0)) \\ &= \varphi^{-1}(\widehat{F}^{-1}(0)) \\ &= \varphi^{-1}(\{x \in C_{\varepsilon}^{n}(0) : x^{1} = \cdots = x^{k} = 0\}). \end{aligned}$

Hence, A has the submanifold property. So it is a regular manifold of dimension n - k.

Corollary

Corollary

Let $F: N \to M$ be a C^{∞} mapping of manifolds. Suppose

$$\dim M = m < n = \dim N,$$

and rank F = m at every point of $A = F^{-1}(a)$. Then A is a closed, regular submanifold of N.

At p ∈ A, F has the maximum rank possible, namely m. By a previous section and the independence of rank on local coordinates, in some neighborhood of p in N, F has this rank also. Thus, the rank of F is m on an open subset of N containing A. But such a subset is itself a (open) manifold of dimension n. Now we may apply the preceding theorem to that subset.

• Consider the map $F : \mathbb{R}^n \to \mathbb{R}$ defined by

$$F(x^1,...,x^n) = \sum_{i=1}^n (x^i)^2.$$

- It has rank 1 on $\mathbb{R}^n \{0\}$.
- Moreover, $\mathbb{R}^n \{0\}$ contains $F^{-1}(+1) = S^{n-1}$.
- Thus, by the corollary, S^{n-1} is an (n-1)-dimensional submanifold of \mathbb{R}^n .

• Consider the map $F: \mathbb{R}^3 \to \mathbb{R}$ given by

$$F(x^1, x^2, x^3) = \left(a - ((x^1)^2 + (x^2)^2)^{1/2}\right)^2 + (x^3)^2.$$

- Its has rank 1 at each point of $F^{-1}(b^2)$, a > b > 0.
- The locus $F^{-1}(b^2)$ is the torus in \mathbb{R}^3 .
- So, by the corollary, the torus in \mathbb{R}^3 is a submanifold.

Subsection 6

Lie Groups

Introducing Lie Groups

- The space \mathbb{R}^n is:
 - A C^{∞} manifold;
 - An Abelian group with group operation given by componentwise addition.
- Moreover the algebraic and differentiable structures are related.
- The mapping

$$(x,y)\mapsto x+y$$

is a C^{∞} mapping of the product manifold $\mathbb{R}^n \times \mathbb{R}^n$ onto \mathbb{R}^n , that is, the group operation is differentiable.

• We also see that the mapping of \mathbb{R}^n onto \mathbb{R}^n given by

$$x \mapsto -x$$
 (its inverse)

is differentiable.

Lie Groups

- Let G be a group which is at the same time a differentiable manifold.
- For $x, y \in G$ let:
 - xy denote their product;
 - x^{-1} the inverse of x.

Definition

G is a **Lie group** provided that the following are both C^{∞} mappings:

• The mapping of $G \times G \to G$ defined by

$$(x, y) \rightarrow xy;$$

• The mapping of G o G defined by

$$x \rightarrow x^{-1}$$
.

- Consider $Gl(n, \mathbb{R})$, the set of nonsingular $n \times n$ matrices.
- We have seen that it is an open submanifold of M_n(ℝ), the set of n × n real matrices identified with ℝ^{n²}.
- Moreover $Gl(n, \mathbb{R})$ is a group with respect to matrix multiplication.
- In fact, an n × n matrix A is nonsingular if and only if detA ≠ 0.
 But we also have

$$det(AB) = (detA)(detB).$$

So if A and B are nonsingular, AB is also.

- An n × n matrix A is nonsingular, that is, detA ≠ 0, if and only if A has a multiplicative inverse.
- Thus $Gl(n, \mathbb{R})$ is a group.

Example (Cont'd)

- Both the maps $(A, B) \rightarrow AB$ and $A \rightarrow A^{-1}$ are C^{ω} .
- The product has entries which are polynomials in those of A and B. These entries are exactly the expressions in local coordinates of the product map.

So the product map is C^{ω} and, hence, C^{∞} .

Example (Cont'd)

• The inverse of $A = (a_{ij})$ may be written as

$$A^{-1} = \frac{1}{\det A}(\widetilde{a}_{ij}),$$

where:

- The \tilde{a}_{ij} are the cofactors of A (thus polynomials in the entries of A);
- det *A* is a polynomial in these entries which does not vanish on $Gl(n, \mathbb{R})$.

It follows that the entries of A^{-1} are rational functions on $Gl(n, \mathbb{R})$ with non-vanishing denominators.

Hence they are C^{ω} (and C^{∞}).

- Therefore $Gl(n, \mathbb{R})$ is a Lie group.
- A special case is $Gl(1,\mathbb{R}) = \mathbb{R}^*$, the multiplicative group of nonzero real numbers.

- $\bullet\,$ Let \mathbb{C}^* be the set of nonzero complex numbers.
- Then \mathbb{C}^* is a group with respect to multiplication of complex numbers, the inverse being

$$z^{-1}=\frac{1}{z}.$$

• Moreover, \mathbb{C}^* is a one-dimensional C^{∞} manifold covered by a single coordinate neighborhood $U = \mathbb{C}^*$, with coordinate map $z \to \varphi(z)$ given by

$$\varphi(x + iy) = (x, y), \text{ for } z = x + iy.$$

Example (Cont'd)

- Using these coordinates:
 - The product w = zz', z = x + iy, and z' = x' + iy', is given by

$$((x,y)(x',y')) \rightarrow (xx'-yy',xy'+yx');$$

• The mapping
$$z o z^{-1}$$
 by

$$(x,y) \rightarrow \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right).$$

- This means that the two mappings are C^{∞} .
- Therefore \mathbb{C}^* is a Lie group.

Products of Lie Groups

Theorem

Let G_1 and G_2 be Lie groups. Then the direct product $G_1 \times G_2$ of these groups with the C^{∞} structure of the Cartesian product of manifolds is a Lie group.

Example (Toral Groups):

The circle S^1 may be identified with the complex numbers of absolute value +1.

We have

$$|z_1 z_2| = |z_1| |z_2|.$$

So it is a group with respect to multiplication of complex numbers. It is actually a subgroup of \mathbb{C}^* .

Products of Lie Groups (Cont'd)

 It is a Lie group as can be checked directly or proved as a consequence of the previous example and the next theorem.
 Combining this with the preceding theorem, we see that

$$T^n = \underbrace{S^1 \times \cdots \times S^1}_n.$$

the *n*-fold Cartesian product, is a Lie group. It is called the **toral group**. Since S^1 is Abelian, T^n is Abelian also.

Subgroups as Lie Groups

Theorem

Let G be a Lie group. Let H a subgroup which is also a regular submanifold. Then, with its differentiable structure as a submanifold, H is a Lie group.

• It can be shown that $H \times H$ is a regular submanifold of $G \times G$. Thus, the inclusion map

$$F_1: H imes H o G imes G$$

is a C^∞ imbedding. Let $F_2: G \times G \to G$ be the C^∞ mapping $(g,g') \to gg'.$

Let

$$F = F_2 \circ F_1$$

be the composition.

George Voutsadakis (LSSU)

Subgroups as Lie Groups (Cont'd)

Then F is a C[∞] mapping from H × H → G with image in H.
Let F denote this map considered as a map into H.
It is not the same mapping as F, since we have changed the range.
We must show that F is C[∞].

Similarly, we must show that the map $H \rightarrow G$, given by taking

$$h \rightarrow h^{-1},$$

is C^{∞} as a map onto H.

These facts both follow from the next lemma, which completes the proof.

Changing the Codomain

Lemma

Let A and M be C^{∞} manifolds. Let $F : A \to M$ be a C^{∞} mapping. Suppose $F(A) \subseteq N$, N being a regular submanifold of M. Then F is C^{∞} as a mapping into N.

• By hypothesis, N is a regular submanifold of M.

So each point is contained in a preferred coordinate neighborhood. Let $p \in A$ and let q = F(p) be its image.

Let U, φ be a neighborhood of p which maps into a preferred coordinate neighborhood V, ψ of q.

For $m = \dim M$ and $n = \dim N$, we have:

•
$$\psi(V) = C_{\varepsilon}^{m}(0);$$

- $\psi(q) = (0, \dots, 0)$, the origin of \mathbb{R}^m ;
- V ∩ N consists of those points of V whose last m − n coordinates are zero.

Changing the Codomain (Cont'd)

Let (x¹,...,x^p) be the local coordinates in U, φ on A.
 Then the expression in local coordinates for F is

$$\widehat{F}(x^1,\ldots,x^p)=(f^1(x),\ldots,f^n(x),0,\ldots,0).$$

That is, $f^{n+1}(x) = \cdots = f^m(x) = 0$ since $F(A) \subseteq N$. But $V \cap N$, $\pi \circ \psi|_{V \cap N}$ is a coordinate neighborhood of q on N. So F, considered as a mapping into N, is given in local coordinates by

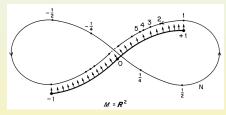
$$(x^1,\ldots,x^n) \rightarrow (f^1(x),\ldots,f^n(x)).$$

This is \widehat{F} , followed by projection to the first *n* coordinates (projection of \mathbb{R}^m to \mathbb{R}^n).

Being a composition of C^{∞} maps, it is, therefore, C^{∞} .

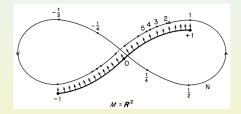
Remark

- The lemma does not hold for immersed submanifolds.
- Consider the second figure eight example.



- Suppose we map the open interval (-1,1) by a mapping G into $N = F(\mathbb{R})$, the figure eight, so that it crosses the origin as shown in the figure.
- Then G is C^{∞} as a mapping into \mathbb{R}^2 .
- But it is not even continuous as a mapping to N.

Remark (Cont'd)



- Thus, N is diffeomorphic to the real line by $F : \mathbb{R} \to N$.
- Identifying N and \mathbb{R} , we may think of G as taking:
 - Part of the open interval (-1, 1), say (0, 1), onto the real numbers t > 1;
 - 0 onto 0;
 - (-1,0), the remaining part, onto the real numbers t < 1.
- The image is not even connected.
- So G is not continuous.

Diffeomorphisms of a Lie Group

- We make use of the following naturally defined maps of a Lie group G onto itself.
 - (i) x → x⁻¹;
 (ii) Left and right translations by a fixed element a of G:
 L_a: G → G, defined by L_a(x) = ax;
 R_a: G → G, defined by R_a(x) = xa.
- These maps are C^{∞} , by the definition of Lie group.
- Moreover, they have inverses which are C^{∞} .
- So they are, in fact, diffeomorphisms.
- The mapping $x \to x^{-1}$ is its own inverse.
- Additionally, we have

$$(L_a)^{-1} = L_{a^{-1}}$$
 and $(R_a)^{-1} = R_{a^{-1}}$.

Consider

$$SI(n,\mathbb{R}) = \{X \in GI(n,\mathbb{R}) : \det X = +1\}.$$

- It is a subgroup and regular submanifold of $Gl(n, \mathbb{R})$.
- Hence, it is a Lie group.
- To prove this, we consider the mapping $F: Gl(n,\mathbb{R}) \to \mathbb{R}^*$,

$$F(X) = \det X.$$

According to the product rule,

$$\det(XY) = (\det X)(\det Y).$$

Thus F is a homomorphism onto ℝ* = Gl(1, ℝ);
It is also C[∞] since it is given by polynomials in the entries.

Example (Cont'd)

- Finally, its rank is constant.
- Let $A \in Gl(n, \mathbb{R})$, with $a = \det A$.
- Let L_X , L_X denote left translations in $Gl(n, \mathbb{R})$ and $Gl(1, \mathbb{R}) = \mathbb{R}^*$.
- Then we have $a \cdot \det(A^{-1}X) = \det X$.

Therefore,

$$F(X) = L_a \circ F \circ L_{A^{-1}}(X).$$

• Now we get, for all $A \in Gl(n, \mathbb{R})$,

$$rankDF(X) = rank[aDF(A^{-1}X)DL_{A^{-1}}(X)]$$
(chain rule)
$$= rankDF(A^{-1}X).$$
$$(DL_a = a \neq 0 \text{ and } L_{A^{-1}} \text{ diffeomorphism})$$

In particular,

$$\operatorname{rank} DF(X) = \operatorname{rank} DF(X^{-1}X) = \operatorname{rank} DF(I).$$

Thus, we see that the rank is constant as claimed.

George Voutsadakis (LSSU)

Differential Geometry

Example (Cont'd)

- By a previous theorem, it follows that Sl(n, ℝ) = F⁻¹(+1) is a closed, regular submanifold.
- It is also a subgroup in fact the kernel of a homomorphism by virtue of the product rule for determinants.
- Therefore it is a Lie group.

Consider

$$O(n) = \{X \in Gl(n, \mathbb{R}) : X^{t}X = I\},\$$

the subgroup of orthogonal $n \times n$ matrices.

- It is a regular submanifold and, thus, a Lie group.
- Consider the mapping F from $Gl(n, \mathbb{R})$ to $Gl(n, \mathbb{R})$,

$$F(X) = X^t X$$
, $X^t =$ transpose of X .

• For $A \in Gl(n, \mathbb{R})$, we will show that

$$\operatorname{rank} DF(X) = \operatorname{rank} DF(XA^{-1}).$$

• But any $Y \in Gl(n, \mathbb{R})$ can be written in the form $Y = XA^{-1}$.

- It follows that rank DF is constant on $Gl(n, \mathbb{R})$.
- To prove this equality we note that

$$F(XA^{-1}) = L_{(A^t)^{-1}} \circ R_{A^{-1}} \circ F(X).$$

Example (Cont'd)

Therefore

$$DF(XA^{-1}) = DL_{(A^t)^{-1}} \circ DR_{A^{-1}} \circ DF(X),$$

where:

- $DR_{A^{-1}}$ is evaluated at F(X);
- $DL_{(A^t)^{-1}}$ is evaluated at $R_{A^{-1}}(F(X))$.
- Then the equality of rank $DF(XA^{-1})$ and rank DF(X) follows as above from the fact that $DL_{(A^{t})^{-1}}$ and $DR_{A^{-1}}$ are everywhere nonsingular.
- Now $O(n) = F^{-1}(I)$, where I is the identity matrix.
- So the statement follows from a previous theorem.

Homomorphisms of Lie Groups

Definition

Let $F : G_1 \to G_2$ be an algebraic homomorphism of Lie groups G_1 and G_2 . We shall call F a **homomorphism** (of Lie groups) if F is also a C^{∞} mapping.

Example: Let
$$G_1 = Gl(n, \mathbb{R})$$
 and $G_2 = \mathbb{R}^* [= Gl(1, \mathbb{R})]$.
Consider the map F given by

$$F(X) = \det X.$$

 $F: G_1 \rightarrow G_2$ is a homomorphism.

- Let $G_1 = \mathbb{R}$, the additive group of real numbers.
- Let $G_2 = S^1$, identified with the multiplicative group of real numbers of absolute value 1.
- Consider the mapping

$$F(t)=e^{2\pi i t}.$$

• *F* is a homomorphism.

- Similarly, let $G_1 = \mathbb{R}^n$ be a Lie group with componentwise addition.
- Let $G_2 = T^n = S^1 \times \cdots \times S^1$.
- Consider the mapping $F : \mathbb{R}^n \to T^n$ given by

$$F(t_1,\ldots,t_n)=(e^{2\pi i t_1},\ldots,e^{2\pi i t_n}).$$

- *F* is a homomorphism.
- Its kernel is the discrete additive group Zⁿ consisting of all n-tuples of integers.
- It is called the **integral lattice** of \mathbb{R}^n .

Rank of Homomorphisms of Lie Groups

Theorem

Let $F: G_1 \rightarrow G_2$ be a homomorphism of Lie groups. Then:

- The rank of F is constant
- The kernel is a closed regular submanifold and, thus, a Lie group;
- dimker $F = \dim G_1 \operatorname{rank} F$.

Let a ∈ G₁ be arbitrarily chosen.
Let b = F(a) be its image in G₂.
Denote by e₁, e₂ the unit elements of G₁, G₂, respectively.
Then we may write

$$F(x) = F(aa^{-1}x) = F(a)F(a^{-1}x) = L_b \circ F \circ L_{a^{-1}}(x).$$

So for all $a \in G_1$,

$$DF(a) = DL_b(e_2) \cdot DL_{a^{-1}}(a).$$

Rank of Homomorphisms of Lie Groups (Cont'd)

• For all $a \in G_1$,

$$DF(a) = DL_b(e_2) \cdot DL_{a^{-1}}(a).$$

Now $L_{a^{-1}}$ and L_b are diffeomorphisms.

Thus, they have nonsingular Jacobian matrices at each point.

The rank of F at a and at e_1 is the same.

By a previous theorem, $\ker F = F^{-1}(e_1)$ is a closed regular submanifold whose dimension is $\dim G_1 - \operatorname{rank} F$.

By another theorem, $\ker F$ is a Lie group since it is a regular submanifold (and a group).

- A very useful example of a submanifold which is not regular but is a subgroup of a Lie group is obtained as follows.
- Let $T^2 = S^1 \times S^1$.
- Let $F: \mathbb{R}^2 \to T^2$ be given by

$$F(x^1, x^2) = (e^{2\pi i x^1}, e^{2\pi i x^2}).$$

- Then F is a C^{∞} map of rank 2 everywhere.
- Moreover, it is a homomorphism of Lie groups.
- The rank may be easily computed at (0,0).
- It is constant by the theorem.

- Let α be an irrational number.
- Define $G: \mathbb{R}
 ightarrow \mathbb{R}^2$ by

$$G(t) = (t, \alpha t).$$

- G is obviously an imbedding.
- Its image is the line through the origin of slope α .
- Let $F : \mathbb{R}^2 \to T^2$ be the map of the preceding slide.

Let

$$H=F\circ G:\mathbb{R}\to T^2.$$

- $DH = DF \cdot DG$ has rank 1, for all $t \in \mathbb{R}$.
- It follows that H is an immersion of \mathbbm{R} into T^2

Example (Cont'd)

- Note that *H* is one-to-one.
 - Suppose $H(t_1) = H(t_2)$. Then $e^{2\pi i t_1} = e^{2\pi i t_2}$ and $e^{2\pi i \alpha t_1} = e^{2\pi i \alpha t_2}$. However, $e^{2\pi i u} = e^{2\pi i v}$ if and only if u - v is an integer. Clearly $t_1 - t_2$ and $\alpha(t_1 - t_2)$ are both integers only if $t_1 = t_2$.
- Thus $H : \mathbb{R} \to T^2$ is a one-to-one immersion.
- So $H(\mathbb{R})$ is an immersed submanifold.
- However, the interesting fact is that $H(\mathbb{R})$ is a dense subset of T^2 .
- So it is about as far from being a regular submanifold.
- For example, as a subspace it is not locally connected at any point.

- We shall prove that $H(\mathbb{R})$ is dense in T^2 .
- F is continuous and onto.
- Thus, a dense subset D of \mathbb{R}^2 is mapped to a dense subset of T^2 .
- We will show that $D = F^{-1}(H(\mathbb{R}))$ is dense.
- D consists not only of the line of slope α through the origin but of all lines which can be obtained from it by translation by an integral vector in either direction.
- Let $(x^1 + m, x^2 + n)$ be a point, with:
 - *m*, *n* integers;

•
$$x^1 = t$$
, $x^2 = \alpha t$.

- We have $F(x^1, x^2) = F(x^1 + m, x^2 + n)$.
- So $(x^1 + m, x^2 + n)$ must also be in D.
- These lines are all parallel to the given one $H(\mathbb{R})$.
- In fact D consists of the union of all lines $t \to (t + m, \alpha t + n)$.
- That is, all lines with equation $x^2 = \alpha x^1 + (n \alpha m)$, $n, m \in \mathbb{N}$.

- Obviously, D is dense on the plane if the y-intercepts $(n \alpha m)$ form a dense subset of the y-axis.
- Thus, we must show that given α, any real number b, and any ε > 0, there is a pair of integers n, m with |b − (n − αm)| < ε.
- Assume that there exist integers n', m' such that $0 \le n' \alpha m' < \varepsilon$;
- Since $n' \alpha m'$ is irrational, it must then in fact be positive.
- It follows that for some integer k,

$$k(n' - \alpha m') \leq b \leq (k+1)(n' - \alpha m').$$

This implies

$$0 < b - k(n' - \alpha m') < n' - \alpha m' < \varepsilon.$$

- Now $n \alpha m = kn' \alpha km'$ is a y-intercept of a line of D.
- So, since either $n' \alpha m'$ or $(-n') \alpha(-m')$ is nonnegative, the following fact from number theory completes the proof.

• If $\alpha > 0$ is any irrational number, then there exist arbitrarily large integers n', m' such that

$$\left|\frac{n'}{m'} - \alpha\right| < \frac{1}{m'^2}.$$

- This is asserted by the Kronecker Approximation Theorem.
- We remark that H : ℝ → ℝ² in addition to being a one-to-one immersion is a homomorphism of Lie groups.
- So that $\widetilde{R} = H(\mathbb{R})$ is:
 - A subgroup algebraically;
 - An immersed submanifold.
- It is clearly a Lie group with the manifold structure of \mathbb{R} .
- However, it is not a regular submanifold nor is it a closed subset.

Lie Subgroups

Definition

A (Lie) subgroup H of a Lie group G is any algebraic subgroup which is a submanifold and is a Lie group with its C^{∞} structure as an (immersed) submanifold.

Theorem

If H is a regular submanifold and subgroup of a Lie group G, then H is closed as a subset of G.

It is enough to show that whenever a sequence {h_n} of elements of H has a limit g ∈ G, then g is in H.

Let U, φ be a preferred coordinate neighborhood of the identity e relative to the regular submanifold H.

Lie Subgroups (Cont'd)

• Then the following hold:

- $\varphi(U) = C^m_{\varepsilon}(0)$ is a cube with $\varphi(e) = 0$;
- V = H ∩ U consists exactly of those points whose last m − n coordinates are zero;

• $\varphi' = \varphi|_V$ maps V homeomorphically onto this slice of the cube.

Let
$$\{h_n\}$$
 is a sequence in $V = H \cap U$.

Suppose
$$\lim h_n = \widetilde{g}$$
, with $\widetilde{g} \in V$.

Then the last m - n coordinates of \tilde{g} are also zero.

So $\widetilde{g} \in H \cap U \subseteq H$.

Lie Subgroups (Cont'd)

Let {h_n} be any sequence of H with lim h_n = g.
 Let W be a neighborhood of e small enough so that W⁻¹W ⊆ V, where

$$W^{-1}W = \{x^{-1}y \in G : x, y \in W\}.$$

Such W exist by continuity of the group operations.

There exists N, such that, for $n \ge N$, $h_n \in gW$.

In particular, $h_N \in gW$.

Using group operations, we may verify that:

(i)
$$\tilde{g} = g^{-1}h_N \in W$$
;
(ii) $\lim \tilde{h}_n = \tilde{g}$, where $\tilde{h}_n := h_n^{-1}h_N$.
But for $n \ge N$, $\tilde{h}_n = h_n^{-1}h_N$ lies in $(gW)^{-1}gW = W^{-1}W \subseteq V$.
Thus, by preceding remarks, $\tilde{g} \in H$.
Hence, $g = h_N \tilde{g}^{-1} \in H$.

Closed Subgroups

• A converse statement is also true:

A Lie subgroup H of a Lie group G that is closed as a subset is necessarily a regular submanifold.

- In fact it is even true that an algebraic subgroup (not assumed to be an immersed submanifold), which is closed as a subset, is a regular submanifold.
- The proof is complicated and we omit it.
- However, it validates the following terminology.
- A subgroup *H* of a Lie group *G*, which is a regular submanifold, will be called a **closed subgroup** of *G*.

Subsection 7

The Action of a Lie Group on a Manifold

Actions of a Group

Definition

Let G be a group and X a set. Then G is said to **act on** X (on the left) if there is a mapping

 $\theta: G \times X \to X$

satisfying two conditions:

(i) If e is the identity element of G, then $\theta(e, x) = x$, for all $x \in X$; (ii) If $g_1, g_2 \in G$, then $\theta(g_1, \theta(g_2, x)) = \theta(g_1g_2, x)$, for all $x \in X$. When G is a topological group, X is a topological space, and θ is continuous, then the action is called **continuous**. When G is a Lie group, X is a C^{∞} manifold, and θ is a C^{∞} mapping, we speak of a C^{∞} action.

• Note that a C^{∞} action is a fortiori continuous.

Notation

- As a matter of notation we shall often write gx for $\theta(g, x)$.
- So Condition (ii) reads

$$(g_1g_2)x=g_1(g_2x).$$

• For g fixed, we let $\theta_g(x)$ denote the mapping $\theta_g:X\to X$ defined by

$$\theta_g(x) = \theta(g, x).$$

• So Condition (ii) may also be written

$$\theta_{g_1g_2}=\theta_{g_1}\circ\theta_{g_2}.$$

• When we define right action, Conditions (i) and (ii) become:

(i)
$$\theta(x, e) = x;$$

(ii) $\theta(\theta(x, g_1), g_2) = \theta(x, g_1g_2).$

• Usually we are concerned with left action, but in both cases we usually say *G* acts on *X*, and leave the rest to be determined by the context.

Actions and Permutations

• We have
$$\theta_{g^{-1}} = (\theta_g)^{-1}$$
.

$$\theta_{g^{-1}} \circ \theta_g = \theta_{g^{-1}g} = \theta_e = i_X.$$

- So each mapping θ_g is one-to-one onto.
- This and Condition (ii) show that the following statement holds.
- If G acts on a set X, then the map

$$g
ightarrow heta_g$$

- is a homomorphism of G into S(X), the group of all permutations on X.
- Conversely, any such homomorphism determines an action with

$$\theta(g,x)=\theta_g(x).$$

Special Kinds of Actions

• We note that the homomorphism is injective if and only if

$$\theta_g = i_X$$
 implies $g = e$.

- If this is so, we shall call the action effective.
- When the action is effective, G may be identified with a subgroup of S(X) by the map $g \to \theta_g$.
- The preceding considerations all refer only to the set-theoretic aspects, since S(X) has not been topologized.
- We also note that if X is a topological space (C^{∞} manifold), G a topological group (Lie group), and the action is continuous (C^{∞}), then each θ_g is a homeomorphism (diffeomorphism).

Actions via Homomorphisms

- Let H, G be groups.
- Let $\psi: H \to G$ be a homomorphism.
- Then $\theta: H \times G \rightarrow G$ defined by

$$\theta(h,x)=\psi(h)x$$

is a left action.

- Indeed, we have:
 - (i) $\theta(e_H, x) = \psi(e_H)x = e_G x = x;$ (ii) Moreover,

$$\theta(h_1, \theta(h_2, x)) = \theta(h_1, \psi(h_2)x)$$

- $= \psi(h_1)(\psi(h_2)x)$
- $= (\psi(h_1)\psi(h_2))x$
- $= \psi(h_1h_2)x$
- $= \theta(h_1h_2,x).$

Actions by Left Translations

- Suppose *H* and *G* are Lie groups.
- Suppose $\psi: H \to G$ is a homomorphism of Lie groups.
- Then the action $\theta: H \times G \rightarrow G$ defined by

$$\theta(h,x) = \psi(h)x$$

is C^{∞} .

- This may be applied to the case where H is a Lie subgroup of G (or even if H = G).
- In this case ψ is the identity (inclusion) mapping of H into G.
- We say that *H* acts on *G* by left translations.

Natural Action of $Gl(n, \mathbb{R})$ on \mathbb{R}^n

• Let
$$G = Gl(n, \mathbb{R})$$
 and $X = \mathbb{R}^n$.

• Define $\theta : G \times \mathbb{R}^n \to \mathbb{R}^n$ by

$$\theta(A,x)=Ax,$$

i.e., multiplication of the $n \times n$ matrix A by the $n \times 1$ column vector obtained by writing $x \in \mathbb{R}^n$ vertically.

- This satisfies Conditions (i) and (ii) rather trivially.
- Condition (ii) is associativity (of matrix products):

$$(AB)x = A(Bx).$$

• Since $\theta: G \times \mathbb{R}^n \to \mathbb{R}^n$ is given by polynomials in the entries of $A \in Gl(n, \mathbb{R})$ and $x \in \mathbb{R}^n$, it is a C^{∞} -map:

$$\theta\left(\left(a_{ij}\right)\left(\begin{array}{c}x^{1}\\\vdots\\x^{n}\end{array}\right)\right)=\left(\sum_{j=1}^{n}a_{ij}x^{j}\right)$$

Natural Action of $GI(n, \mathbb{R})$ on \mathbb{R}^n (Cont'd)

- Let $H \subseteq Gl(n, \mathbb{R})$ be a subgroup in the sense of Lie groups.
- That is, H has its own Lie group structure such that the inclusion map i : H → Gl(n, ℝ) is an immersion, or, if H is a closed subgroup, an imbedding.
- Then θ restricted to H defines a C^{∞} action

 $\theta_H: H \times \mathbb{R}^n \to \mathbb{R}^n.$

- This is because:
 - $\theta_H = \theta \circ i$, $i : H \to G$ the inclusion map;
 - Both θ and *i* are C^{∞} .

Example

• Let $H \subseteq Gl(2,\mathbb{R})$ be the subgroup of all matrices of the form

$$\left(egin{array}{cc} a & b \\ 0 & a \end{array}
ight), \quad a>0.$$

- Then H is seen to be a two-dimensional submanifold of $GI(2,\mathbb{R})$.
- Therefore, it is a closed subgroup.
- The restriction to H of the natural action of $GI(2,\mathbb{R})$ on \mathbb{R}^2 is

$$\theta_{H}\left(\left(\begin{array}{cc}a&b\\0&a\end{array}\right),\left(\begin{array}{c}x^{1}\\x^{2}\end{array}\right)\right)=\left(\begin{array}{c}ax^{1}+bx^{2}\\ax^{2}\end{array}\right)$$

• θ_H is obviously C^{∞} , as expected.

Example

- Identify \boldsymbol{E}^n with \mathbb{R}^n .
- Let *d* be the usual metric,

$$d(x,y) = \sqrt{\sum_{i=1}^n (x^i - y^i)^2}.$$

- Consider the group G of all rigid motions.
- These are diffeomorphisms $\mathcal{T}:\mathbb{R}^n o \mathbb{R}^n$ such that

$$d(Tx,Ty)=d(x,y).$$

• They are transformations T of the form

$$T(x)=Ax+b,$$

where:

- $A \in O(n)$, a rotation of \mathbb{R}^n about the origin;
- $b \in \mathbb{R}^n$, inducing a translation taking the origin to b.

- The group operation is composition of rigid motions.
- The group of rigid motions is a Lie group.
- It is in one-to-one correspondence with $O(n) \times \mathbb{R}^n$.
- It takes its manifold structure from this correspondence.
- The correspondence is given by assigning to each rigid motion, as above, the pair $(A, b) \in O(n) \times \mathbb{R}^n$.
- However, G is not a direct product in the group theoretic sense.
- Now $\theta: G \times \mathbb{R}^n \to \mathbb{R}^n$ is defined by

$$\theta((A, b), x) = Ax + b.$$

• So θ is a C^{∞} mapping.

Orbits

Definition

Let a group G act on a set M. Suppose that $A \subseteq M$ is a subset. Then GA denotes the set

$$GA = \{ga : g \in G \text{ and } a \in A\}.$$

The **orbit of** $x \in M$ is the set Gx. If Gx = x, then x is a **fixed point** of G. If Gx = M, for some x, then G said to be **transitive** on M. In this case, Gx = M, for all x.

Example

- Consider the natural action of $Gl(n, \mathbb{R})$ on $M = \mathbb{R}^n$.
- The origin 0 is a fixed point of $GI(n, \mathbb{R})$
- $Gl(n, \mathbb{R})$ is transitive on $\mathbb{R}^n \{0\}$.
- To see this, let $x = (x^1, \dots, x^n) \neq 0$.
- There is a basis f_1, \ldots, f_n with $x = f_1$.
- Express these basis elements in terms of the canonical basis

$$\boldsymbol{f}_i = \sum_{j=1}^n a_{ij} \boldsymbol{e}_j, \quad i = 1, \dots, n.$$

Then we see that

$$x = A \cdot \boldsymbol{e}_1, \quad A = (a_{ij}) \in Gl(n, \mathbb{R}).$$

• From this it follows that every $x \neq 0$ is in the orbit of e_1 .

- This action is not very interesting from the point of view of its orbits.
- However, if we consider this action restricted to various subgroups $G \subseteq Gl(n, \mathbb{R})$, then the orbits can be quite complicated.
- A relatively simple case of this type is obtained by letting G = O(n), the subgroup of $n \times n$ orthogonal matrices in $Gl(n, \mathbb{R})$.
- This is a closed subgroup as we have seen.
- Moreover, by a previous example, the natural action of Gl(n, ℝ) restricted to O(n) is a C[∞] action.
- The orbits are the concentric spheres.
- The origin is a fixed point (sphere of radius zero).

Space of Frames

- The same facts from linear algebra that we used above also show that Gl(n, ℝ) is transitive on the collection B of all bases of ℝⁿ.
- Given any basis $\{f_1, \ldots, f_n\}$, there exists $A \in Gl(n, \mathbb{R})$, such that

$$A \cdot \boldsymbol{e}_i = \boldsymbol{f}_i.$$

- In fact, there is exactly one such A.
- Let $\boldsymbol{f} = \{\boldsymbol{f}_1, \dots, \boldsymbol{f}_n\}$ and $\boldsymbol{e} = \{\boldsymbol{e}_1, \dots, \boldsymbol{e}_n\}$ be elements of \boldsymbol{B} .
- By the preceding, we may define a left action of $Gl(n, \mathbb{R})$ on B, that is, a mapping $\theta : Gl(n, \mathbb{R}) \times B \to B$ by

$$\theta(A, \boldsymbol{e}) = A \cdot \boldsymbol{e} = \boldsymbol{f} = \{A\boldsymbol{e}_1, \dots, A\boldsymbol{e}_n\}.$$

Space of Frames (Cont'd)

- This action is transitive as mentioned.
- Moreover, the uniqueness of A (such that A · e = f) implies that it is simply transitive.
- That is, given bases f, f, there is exactly one $A \in Gl(n, \mathbb{R})$, such that

$$A \cdot \boldsymbol{f} = \widetilde{\boldsymbol{f}}.$$

- This means that $Gl(n, \mathbb{R})$ is in one-to-one correspondence with **B**.
- $A \in Gl(n, \mathbb{R})$ corresponds to $A \cdot e$, where e is the canonical basis.
- We may use this correspondence to give **B** the topology and C^{∞} structure which makes it diffeomorphic to $Gl(n, \mathbb{R})$.
- As a C^{∞} manifold it is called the **space of frames** of \mathbb{R}^n .

Equivalence Induced By Action

- Let G denote a Lie group and M a C^{∞} manifold.
- Assume a C^{∞} action $\theta : G \times M \to M$.
- We define a relation \sim on M by

 $p \sim q$ iff for some $g \in G, q = \theta_g(p) = gp$.

• We can show that \sim is an equivalence relation.

•
$$p \sim p$$
, since $p = ep$. So \sim is reflexive.

- $p \sim q$ means q = gp. This implies $p = g^{-1}q$. Hence, $q \sim p$. So \sim is symmetric.
- $p \sim q$ and $q \sim r$ imply q = gp and r = hq. So r = (hg)p. Hence, $p \sim r$. So \sim is transitive.
- Moreover, the equivalence classes coincide with the orbits of G. Obviously, p ~ q implies that p and q are on the same orbit. So the equivalence class [p] ⊆ Gp. Conversely, if q ∈ Gp, then p ~ q. So Gp ⊆ [p].

Orbit Space of an Action

- We denote by M/G the set of equivalence classes.
- It will always be taken with the quotient topology.
- It is often called the orbit space of the action.
- With this topology the projection π : M → M/G (taking each x ∈ M to its orbit) is continuous.
- Since the action θ is continuous, π is also open.
 - Let $U \subseteq M$ be an open set.

Then so is $\theta_g(U)$ for every $g \in G$.

Now
$$GU = [U] = \bigcup_{g \in G} \theta_g(U)$$
.

Hence GU, being a union of open sets, is open.

Orbit Space of an Action (Cont'd)

- The orbit space need not be Hausdorff.
- But, if it is, then the orbits must be closed subsets of M.
 Note that each orbit is the inverse image by π of a point of G/H.
 Points are closed in a Hausdorff space.
- We shall be particularly interested in discovering examples in which:
 - M/G is a C^{∞} manifold;
 - $\pi: M \to M/G$ a C^{∞} mapping.

Example

- When M = ℝⁿ and G = O(n) acting naturally as a subgroup of Gl(n, ℝ), then the orbits correspond to concentric spheres.
- Thus, they are in one-to-one correspondence with the real numbers $r \ge 0$ by the mapping which assigns to each sphere its radius.
- This is a homeomorphism of $\mathbb{R}^n/O(n)$ and the ray $0 \le r < \infty$.
- This is not a manifold, but it is almost one.

Example

- Let G be a Lie group and H a subgroup (in the algebraic sense).
- Then *H* acts on *G* on the right by right translations.
- If H is a Lie subgroup, then, according to a previous example, this is a C^{∞} action.
- The set G/H of left cosets coincides with the orbits of this action.
- It is, thus, a space with the quotient topology.
- The following theorem concerns G/H (with this topology).

The Set of Left Cosets of a Lie Group

Theorem

The natural map $\pi : G \to G/H$, taking each element of G to its orbit, that is, to its left coset, is not only continuous but open. G/H is Hausdorff if and only if H is closed.

Note that the space G/H, usually called the (left) coset space, coincides with the orbit space of H acting on G.
 So π is continuous and open.

For the last statement, use the C^∞ mapping F:G imes G
ightarrow G, with

$$F(x,y)=y^{-1}x.$$

F is continuous and $F^{-1}(H)$ is the subset

$$R = \{(x, y) : x \sim y\} \subseteq G \times G.$$

By a previous lemma, R is closed. G/H is Hausdorff if and only if H is a closed subset of G.

Stability Group and Free Action

Definition

Let *G* be a group acting on a set *X* and let $x \in X$. The **stability** or **isotropy group of** *x*, denoted by *G_x*, is the subgroup of all elements of *G* leaving *x* fixed,

$$G_x = \{g \in G : gx = x\}.$$

Definition

Let G be a group acting on a set X. Then G is said to **act freely** on X if

gx = x implies g = e.

That is, the identity is the only element of G having a fixed point.

Subsection 8

The Action of a Discrete Group on a Manifold

The Action of a Discrete Group on a Manifold

- By a discrete group Γ we shall mean a group with a countable number of elements and the discrete topology (every point is an open set).
- The countability means that Γ falls within our definition of a manifold.
 - It has a countable basis of open sets;
 - Each is homeomorphic to a zero-dimensional Euclidean space, i.e., a point.
- Thus Γ is a zero-dimensional Lie group.
- In this case to verify that an action θ : Γ × M̃ → M̃ is C[∞], we must show that, for each h ∈ Γ, θ_h : M̃ → M̃ is a diffeomorphism.
- For convenience of notation, we will let *h* denote θ_h , writing *hx* for $\theta_h(x)$, and so on.

Set of Orbits and Topology

- Suppose that a C^{∞} action is given.
- Consider the set of orbits

$$M = \widetilde{M}/\Gamma,$$

with the quotient topology.

• $U \subseteq M$ is open if and only if $\pi^{-1}(U)$ is open in M, where

$$\pi:\widetilde{M}\to M$$

denotes the natural map taking each x to its orbit Γx .

• We have seen that π is then continuous and open.

Discontinuous Group Actions

- If M is Hausdorff in the topology, then points are closed sets and the inverse image of any p ∈ M, that is, the orbit π⁻¹(p), must be closed.
- Thus, an obvious necessary condition for M to possess some kind of reasonable topology and manifold structure is that, for each $x \in \widetilde{M}$, the orbit Γx is closed.
- However, this condition is not sufficient.
- A stronger requirement is the following:
 - Given any point $x \in \widetilde{M}$ and any sequence $\{h_n\}$ of distinct elements of Γ , then $\{h_n x\}$ does not converge to any point of \widetilde{M} .
- A group action with this property is called **discontinuous**.
- Discontinuity is equivalent to the requirement that each orbit be a closed, discrete subset of M.

Properly Discontinuous Group Actions

- In the presence of other conditions, discontinuity is sometimes enough to ensure that \widetilde{M}/Γ is Hausdorff.
- In general we need the following condition, which is even stronger.

Definition

A discrete group Γ is said to act **properly discontinuously** on a manifold \widetilde{M} if the action is C^{∞} and satisfies the following two conditions:

(i) Each $x \in M$ has a neighborhood U, such that the following is finite

$${h \in \Gamma : hU \cap U \neq \emptyset};$$

(ii) If $x, y \in \widetilde{M}$ are not in the same orbit, then there are neighborhoods U, V of x, y, such that $U \cap \Gamma V = \emptyset$.

Consequences of Proper Discontinuity

- Condition (ii) implies at once that $M = \widetilde{M}/\Gamma$ is Hausdorff.
- In fact, Condition (ii) is equivalent to the statement that

$$R = \{(x, y) : x \sim y\} \subseteq M \times M$$
 is closed.

A consequence of proper discontinuity is the following statement.
 (i') The isotropy group Γ_x of each x ∈ M̃ is finite, and each x has a neighborhood U, such that

$$\begin{cases} hU \cap U = \emptyset, & \text{if } h \notin \Gamma_x, \\ hU = U, & \text{if } h \in \Gamma_x. \end{cases}$$

• This condition is denoted Condition (i') because it could be used to replace Condition (i) in the definition.

• Let
$$M = S^{n-1}$$
, the set

$$\{x\in\mathbb{R}^n:\|x\|=1\}.$$

- Let $\Gamma = \mathbb{Z}_2$, the cyclic group of order 2 with generator *h*.
- Γ consists of *h* and $h^2 = e$, the identity.
- Define an action $heta: \mathbb{Z}_2 imes S^{n-1} o S^{n-1}$ by setting

$$h(x) = -x$$
 and $e(x) = x$.

- It can be shown that $\theta : \mathbb{Z}_2 \times S^{n-1} \to S^{n-1}$ is free and properly discontinuous.
- The quotient space Sⁿ⁻¹/ℤ₂ is none other than real projective n − 1 space Pⁿ⁻¹(ℝ).

Free and Properly Discontinuous Action

Theorem

Let Γ be a discrete group which acts freely and properly discontinuously on a manifold \widetilde{M} . Then there is a unique C^{∞} structure of differentiable manifold on $M = \widetilde{M}/\Gamma$ (with the quotient topology), such that each $p \in M$ has a connected neighborhood U with the property: $\pi^{-1}(U) = \bigcup \widetilde{U}_{\alpha}$ is a decomposition of $\pi^{-1}(U)$ into its (open) connected components and $\pi|_{\widetilde{U}_{\alpha}}$ is a diffeomorphism onto U for each component \widetilde{U}_{α} .

The manifold M is Hausdorff since Γ acts properly discontinuously. By a previous lemma it has a countable basis of open sets. Using both Condition (i') and the assumption that the action is free, we may find, for each x ∈ M, a neighborhood U such that hU ∩ U = Ø except when h = e. This implies that π_U (= π|_U) is one-to-one onto its image U.

Free and Properly Discontinuous Action (Cont'd)

• We know the mapping π is both continuous and open. Therefore, $\pi_{\widetilde{U}}: \widetilde{U} \to U$ is a homeomorphism of \widetilde{U} to the open set U. We may assume, without loss of generality, that U is a connected coordinate neighborhood $U, \tilde{\varphi}$. Let $\varphi = \widetilde{\varphi} \circ \pi_{\widetilde{\mu}}^{-1}$. Then $\varphi: U \to \widetilde{\varphi}(\widetilde{U}) \subseteq \mathbb{R}^n$ is a homeomorphism. But every $p \in M$ is the image of some $x \in M$. So we see that M is locally Euclidean. Thus, M is a topological manifold.

Free and Properly Discontinuous Action (Cont'd)

 The coordinate neighborhoods U, φ will be called admissible. The differentiable structure is determined by the admissible coordinate neighborhoods.

Note that

$$\pi^{-1}(U) = \bigcup_{h \in \Gamma} h\widetilde{U},$$

a disjoint union of connected open sets each diffeomorphic to \widehat{U} . Now $\pi: h\widetilde{U} \to U$ is the same map as $\pi \circ h^{-1}: h\widetilde{U} \to U$. So that $\pi|_{h\widetilde{U}}$ is a diffeomorphism will follow trivially from the fact that h^{-1} and $\pi|_{\widetilde{U}}: \widetilde{U} \to U$ are diffeomorphisms. But, we must first establish that any overlapping admissible neighborhoods U, φ and V, ψ are C^{∞} -compatible, so that they define a C^{∞} structure.

Free and Properly Discontinuous Action (Cont'd)

• To prove this let $U = \pi(\widetilde{U})$ and $V = \pi(\widetilde{V})$, where $\widetilde{U}, \widetilde{\varphi}$ and $\widetilde{V}, \widetilde{\psi}$ are the corresponding coordinate neighborhoods on \widetilde{M} .

If $p \in U \cap V$, then there are points $x \in \widetilde{U}$ and $y \in \widetilde{V}$ (possibly not distinct), with $\pi(x) = p = \pi(y)$.

This implies that x = h(y), for some $h \in \Gamma$.

Since h is a diffeomorphism, $\widetilde{V}_1 = h(\widetilde{V})$, with $\widetilde{\psi}_1 = \widetilde{\psi} \circ h^{-1}$, is a coordinate neighborhood and

$$\psi = \widetilde{\psi} \circ \pi_{\widetilde{V}}^{-1} = \widetilde{\psi}_1 \circ h \circ \pi_{\widetilde{V}}^{-1} = \psi_1 \circ \pi_{\widetilde{V}_1}^{-1}.$$

However, $\widetilde{U}, \widetilde{\varphi}$ and $\widetilde{V}_1, \widetilde{\varphi}_1$ are C^{∞} -compatible. Thus U, φ and V, ψ are also compatible. Because of the requirement that $\pi(\widetilde{U})$ be a diffeomorphism, no other C^{∞} structure is possible.

Discrete Subgroups

Lemma

Let G be a Lie group. Let Γ be a subgroup which has the property that, there exists a neighborhood U of e, such that $U \cap \Gamma = \{e\}$. Then Γ is a countable, closed subset of G and is discrete as a subspace.

• We first show that:

- Γ is closed as a subset of G;
- Γ is discrete in the relative topology.

Let V be a neighborhood of e, such that $VV^{-1} \subseteq U$. Such V exists, since the map

$$(g_1, g_2) \to g_1 g_2^{-1}$$

is continuous and takes $(e, e) \rightarrow e$.

Discrete Subgroups (Cont'd)

• Suppose $\{h_n\} \subseteq \Gamma$ is a sequence, such that $\lim h_n = g$. Now Vg is a neighborhood of g. So there exists N > 0, such that, for n > N, $h_n \in Vg$. Suppose $v_n, v_m \in V$ so chosen that $h_n = v_n g$ and $h_m = v_m g$. Then $h_n h_m^{-1} = v_n v_m^{-1} \in U$. From $U \cap \Gamma = \{e\}$ it follows that $h_n h_m^{-1} = e$. So $h_n = h_m$, for all n, m > N. Thus $g = h_N \in \Gamma$. So Γ is closed.

Moreover, for U of the hypothesis and $h \in \Gamma$, hU is a neighborhood of h whose intersection with Γ is just h.

This proves the discreteness.

Discrete Subgroups (Cont'd)

Finally Γ must be countable, since {hV : h ∈ Γ} form a nonintersecting family of disjoint open sets indexed by Γ. In fact, suppose h₁V ∩ h₂V ≠ Ø. Then h₁v₁ = h₂v₂ for v₁, v₂ ∈ V. This implies h₂h₁⁻¹ = v₂v₁⁻¹ ∈ VV⁻¹ ⊆ U. So h₁ = h₂. Were Γ not countable, this would mean we could not have a

countable basis of open sets.

- We remark that a Γ with this property is a closed zero-dimensional Lie subgroup of *G*.
- Such subgroups are often called simply discrete subgroups.

Properties of Discrete Subgroups

Theorem

Any discrete subgroup Γ of a Lie group G acts freely and properly discontinuously on G by left translations.

 No other translation than the identity has a fixed point so the action is free.

To see that it is properly discontinuous we must check Properties (i) and (ii) of the definition.

Choose U, V neighborhoods of e, as in the proof of the preceding lemma so that $VV^{-1} \subseteq U$ and $U \cap \Gamma = \{e\}$.

Then the only $h \in \Gamma$ such that $hV \cap V \neq \emptyset$ is h = e.

This proves Condition (i).

Properties of Discrete Subgroups (Cont'd)

 To prove Condition (ii) we argue as follows. Suppose Γx and Γy are distinct orbits. Then $x \notin \Gamma y$. Now Γy is closed. By the regularity of G, there is a neighborhood U of x, such that $U \cap \Gamma v = \emptyset.$ Let V be a neighborhood of e such that $xVV^{-1} \subseteq U$. Assume the open sets $\Gamma \times V$ and $\Gamma \times V$ intersect. Then some element of xVV^{-1} must be in Γy .

This is an immediate contradiction.

Corollary

If Γ is a discrete subgroup of a Lie group G, then the space of right (or left) cosets G/Γ is a C^{∞} manifold and $\pi : G \to G/\Gamma$ is a C^{∞} mapping.

- Let $G = V^n$, that is, \mathbb{R}^n considered as a vector space.
- Let $\Gamma = \mathbb{Z}^n$, the *n*-tuples of integers, called the **integral lattice**.
- More generally one could take for Γ the integral linear combinations of any basis f₁,..., f_n of Vⁿ.
- Γ is a discrete subgroup.
- The neighborhood Cⁿ_ε(0) of the origin with ε < 1 does not contain any element of Γ other than (0,...,0).
- $\mathbf{V}^n/\Gamma = \mathbf{V}^n/\mathbb{Z}^n$ is diffeomorphic to $T^n = S^1 \times \cdots \times S^1$, the *n*-dimensional torus.
- Additionally, π is a Lie group homomorphism of V^n onto T^n .
- Its kernel is Γ.

- Any finite subgroup Γ of a Lie group G is a discrete subgroup.
- When G is compact, a discrete subgroup must be finite.
- But even in this case there are interesting examples.
- Consider the case of SO(3) the group of 3 × 3 orthogonal matrices of determinant +1.
- The subgroups of symmetries of the five regular solids give examples among which is the famous icosahedral group, which contains 60 elements.

- In the case of groups which are not compact we have many variations of the following theme.
- Let G₀ = Gl(n, ℝ) and Γ₀ = Sl(n, ℤ), the n × n matrices with integer coefficients and determinant +1.
- The topology of G_0 is obtained by viewing it as an open subset of \mathbb{R}^{n^2} .
- So it is clear that Γ₀ corresponds to the intersection of G₀ with the integral lattice Z^{n²}.
- Hence Γ₀ is discrete.
- Suppose G is a Lie subgroup of G_0 .
- Let $\Gamma = \Gamma_0 \cap G$.
- Then Γ is discrete in G.
- For an illustration, let:
 - G be the set of all matrices in $Gl(n, \mathbb{R})$ with +1 on the main diagonal and zero below;
 - Γ be its intersection with $SI(n, \mathbb{Z})$.

On Compactness

• An interesting question about which one can speculate is the following:

In which, if any, of these cases is G/Γ compact?

- Note that it is compact when $G = \mathbf{V}^n$ and $\Gamma = \mathbb{Z}^n$.
- A necessary and sufficient condition for compactness is the existence of a compact subset K ⊆ G whose Γ-orbit covers G, ΓK = G.
- In the first example above, any cube *K* of side one or greater has this property.

Tiling

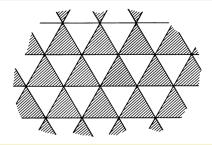
- Note that reflection in a line is a rigid motion of the plane.
- In fact, any rigid motion is a product of reflections.
- So reflections generate the group of motions of the plane.
- For example, the group Γ generated by reflections in the four lines x = 0, x = ¹/₂, y = 0, y = 1 relative to a fixed Cartesian coordinate system contains the group of translations (x, y) → (x + m, y + n), m, n integers.
- This latter group may be identified with the subgroup \mathbb{Z}^2 of $\textbf{\textit{V}}^2$ discussed above.
- $\bullet\,$ The action of Γ leaves unchanged the figure consisting of lines

$$x = \frac{k}{2}, \quad y = \frac{\ell}{2}, \quad k, \ell \text{ integers,}$$

that is, a collection of squares which "tile" the plane.

Tiling (Cont'd)

• Similarly, suppose we tile the plane with other polygons as shown.



- We see that the group Γ of reflections in all lines forming edges of these polygons leaves the whole configuration or tiling unchanged.
- We may verify geometrically that the group Γ in these illustrations acts properly discontinuously.
- Is the action free?
- This is an important method of obtaining such group actions.

Subsection 9

Covering Manifolds

Covering Manifolds

Let *M̃* and *M* be two C[∞] manifolds of the same dimension.
Let π : *M̃* → *M* be a C[∞] mapping.

Definition

M is said to be a **covering** (manifold) of M, with covering mapping π , if it is connected and if each $p \in M$ has a connected neighborhood U, such that

$$\pi^{-1}(U) = \bigcup U_{\alpha},$$

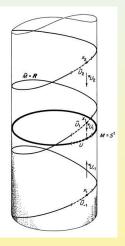
a union of open components U_{α} , with the property that $\pi_{U_{\alpha}}$, the restriction of π to U_{α} , is a diffeomorphism onto U. The U are called **admissible neighborhoods** and π is called the **projection** or **covering mapping**.

$$\pi(t)=e^{2\pi i t}.$$

• More generally
$$\widetilde{M} = \mathbb{R}^n$$
 covers T^n .

- S^{n-1} covers $P^{n-1}(\mathbb{R})$.
- In a very general way the main theorem of the preceding section tells us that, if Γ acts freely and properly discontinuously on \widetilde{M} , then \widetilde{M} covers $M = \widetilde{M}/\Gamma$.

The map π is the obvious one, taking each $x \in \widetilde{M}$, to its orbit Γx which is a point of M.



Covering or Deck Transformations

- Let us assume that $\pi: \widetilde{M} \to M$ is any covering of a manifold M by a connected manifold \widetilde{M} .
- We indicate how this may give rise to a group Γ acting freely and properly discontinuously on *M*.

Definition

A diffeomorphism $h: \widetilde{M} \to \widetilde{M}$ is said to be a **covering transformation**, or **deck transformation**, if $\pi \circ h = \pi$.

- Note that this is equivalent to the requirement that each set π⁻¹(p) is carried into itself.
- If the covering is one arising from a free, properly discontinuous action of a group Γ on *M*, then each h ∈ Γ is a covering transformation of the covering π : *M* → *M*/Γ.

Group Property of Covering Transformations

• We verify at once that the set $\widetilde{\Gamma}$ of all covering transformations is a group acting on \widetilde{M} .

It contains at least the identity.

So it is not empty.

Let
$$x \in \widetilde{M}$$
 and $p = \pi(x)$.

Let U be an admissible neighborhood of p so

$$\pi^{-1}(U) = \bigcup \widetilde{U}_{\alpha}, \quad \alpha = 1, 2, \dots,$$

(the collection of mutually disjoint neighborhoods $\{\widetilde{U}_{\alpha}\}$ must be countable).

• Let
$$x_{\alpha} = \pi^{-1}(p) \cap \widetilde{U}_{\alpha}$$
.

Then x is one of the x_{α} 's, say x_1 .

The set of x_{α} 's is exactly $\pi^{-1}(p)$ and $h: \pi^{-1}(p) \to \pi^{-1}(p)$ is a permutation of this set.

It follows that $h(x_{\alpha}) = x_{\alpha'}$ and $h : \widetilde{U}_{\alpha} \to \widetilde{U}_{\alpha'}$ is a diffeomorphism. In fact

$$h|_{\widetilde{U}_{lpha}}=\pi_{\widetilde{U}_{lpha'}}^{-1}\circ\pi_{\widetilde{U}_{lpha}}.$$

Group Property of Covering Transformations (Cont'd)

• We can conclude that the points left fixed by *h* form an open set. By continuity of *h* they also form a closed set.

M being connected, this set is empty or h is the identity.

In particular, two covering transformations with the same value on a point x must be identical.

Thus covering transformations are completely determined by the permutation $\alpha \to \alpha'$ they induce on the set of points $\{x_{\alpha}\} = \pi^{-1}(p)$ for an arbitrary (but fixed) point $p \in M$.

In particular, the action of Γ on M is free.

If $x_1 \in \pi^{-1}(p)$, then $h \to hx_1$ maps $\widetilde{\Gamma}$ into $\pi^{-1}(p)$.

This mapping is an injection so Γ must be countable.

Also, as a discrete group of diffeomorphisms of \widetilde{M} , it acts differentiably on \widetilde{M} .

This proves, in part, the following theorem.

George Voutsadakis (LSSU)

Differential Geometry

Properties of the Action

Theorem

Let \widetilde{M} be a covering manifold of M, with covering mapping π . Let $\widetilde{\Gamma}$ be the set of all covering transformations on \widetilde{M} . Then $\widetilde{\Gamma}$ acts freely and properly discontinuously on \widetilde{M} . If $p \in M$ and $\widetilde{\Gamma}$ is transitive on $\pi^{-1}(p)$, then $\widetilde{M}/\widetilde{\Gamma}$ is naturally diffeomorphic to M. Relative to this diffeomorphism the covering map $\pi : \widetilde{M} \to M$ corresponds to the projection of each $x \in \widetilde{M}$ to its orbit $\widetilde{\Gamma}_x$.

• We have already seen that $\widetilde{\Gamma}$ acts on \widetilde{M} freely since only the identity has a fixed point.

We must check (using admissible neighborhoods) that the action is properly discontinuous.

• Suppose
$$x \in \widetilde{M}$$
 and $p = \pi(x)$.
Then $x \in \{x_{\alpha}\} = \pi^{-1}(p)$, say $x = x_1$.
Moreover, if $h \neq e$, then $h(x_1) = x_{\beta} \neq x_1$.
So $h(\widetilde{U}_1) = \widetilde{U}_{\beta}$, with $\widetilde{U}_{\beta} \cap \widetilde{U}_1 = \emptyset$.

Thus the first part of proper discontinuity is proved.

• Next, we prove the second part.

Take $x, y \in \widetilde{M}$ not in the same orbit of $\widetilde{\Gamma}$.

Consider two cases, depending on whether $\pi(x) = \pi(y)$ or not.

Suppose π(x) = π(y) and let p = π(x) = π(y). Note that, in permuting {x_α} = π⁻¹(p), no h ∈ Γ takes x = x_α to y = x_β, for α ≠ β. Thus, Ũ_α is not carried to Ũ_β by any h ∈ Γ. This establishes Condition (ii) of the definition in this case.
Suppose π(x) = p and π(y) = q are distinct. Let U, V be disjoint admissible neighborhoods of p, q, respectively. Then the open sets π⁻¹(U) and π⁻¹(V) are disjoint and carried into themselves by every h ∈ Γ.

So Condition (ii) is satisfied in this case also.

We conclude that the action is properly discontinuous.

We now define a map

$$\pi_1: \widetilde{M}/\widetilde{\Gamma} \to M.$$

For [y] a point of $\widetilde{M}/\widetilde{\Gamma}$, i.e., an orbit $\widetilde{\Gamma}y$ of $\widetilde{\Gamma}$,

 $\pi_1([y]) = \pi(y).$

This is well-defined, since $\pi(hy) = \pi(y)$. Since \widetilde{M} is connected, $\widetilde{M}/\widetilde{\Gamma}$ is connected. The mapping π_1 is onto, since $\pi : \widetilde{M} \to M$ is onto. Further π_1 is a covering map.

To see this one checks the definition of M/Γ from the main theorem of the preceding section.

 Suppose, further, that Γ is transitive on π⁻¹(p), for some p ∈ M. Then π₁⁻¹(p) consists of a single point. This reduces the proof of the last part of the theorem to the following lemma.

Lemma

Let $\pi: \widetilde{M} \to M$ be a covering and suppose that for some $p \in M$,

 $\pi^{-1}(p)$ is a single point.

Then π is a diffeomorphism.

• We omit the proof.