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Subsection 1

The Definition of a Differentiable Manifold
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Topological Manifolds

Recall that a topological manifold M of dimension n is a Hausdorff
space, with a countable basis of open sets, such that each point has a
neighborhood homeomorphic to an open subset of Rn.

A coordinate neighborhood is a pair U, ϕ, where:

U is an open set of M ;
ϕ is a homeomorphism of U to an open subset of Rn.

To q ∈ U we assign the n coordinates of its image ϕ(q) in Rn,

x1(q), . . . , xn(q).

Each x i (q) is a real-valued function on U, the ith coordinate

function.
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Topological Manifolds (Cont’d)

Suppose q lies also in a second coordinate neighborhood V , ψ.

Then it has coordinates y1(q), . . . , yn(q) in this neighborhood.

Since ϕ and ψ are homeomorphisms, this defines a homeomorphism

ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ).

The domain and range are the two open subsets of Rn which
correspond to the points of U ∩ V by the two coordinate maps ϕ,ψ,
respectively.

In coordinates, ψ ◦ ϕ−1 is given by continuous functions

y i = hi(x1, . . . , xn), i = 1, . . . , n.

The hi ’s give the y -coordinates of each q ∈ U ∩ V in terms of its
x-coordinates.
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Topological Manifolds (Cont’d)

Similarly ϕ ◦ ψ−1 gives the inverse mapping.

It expresses the x-coordinates as functions of the y -coordinates,

x i = g i (y1, . . . , yn), i = 1, . . . , n.

The fact that ϕ ◦ ψ−1 and ψ ◦ ϕ−1 are homeomorphisms and are
inverse to each other is equivalent to the following conditions:

The continuity of hi (x) and g j(y), i , j = 1, . . . , n;
The identities

hi (g 1(y), . . . , gn(y)) ≡ y i , i = 1, . . . , n,
g i(h1(x), . . . , hn(x)) ≡ x j , j = 1, . . . , n.

Thus, every point of a topological manifold M lies in a very large
collection of coordinate neighborhoods.

Whenever two such neighborhoods overlap, we have the formulas just
given for change of coordinates.
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C
∞-Compatibility

The basic idea that leads to differentiable manifolds is to try to select
a family or subcollection of neighborhoods so that the change of
coordinates is always given by differentiable functions.

Definition

We shall say that U, ϕ and V , ψ are
C∞-compatible if U ∩V nonempty
implies that the functions hi (x) and
g j(y) giving the change of coordi-
nates are C∞. This is equivalent to
requiring ϕ ◦ψ−1 and ψ ◦ϕ−1 to be
diffeomorphisms of the open subsets
ϕ(U ∩ V ) and ψ(U ∩ V ) of Rn.
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Differentiable Structure and C
∞-Manifolds

Definition

A differentiable or C∞ (or smooth) structure on a topological manifold
M is a family U = {Uα, ϕα} of coordinate neighborhoods such that:

(1) The Uα cover M;

(2) For any α, β, the neighborhoods Uα, ϕα and Uβ, ϕβ are
C∞-compatible;

(3) Any coordinate neighborhood V , ψ C∞-compatible with every
Uα, ϕα ∈ U is itself in U .

A C∞ manifold is a topological manifold together with a
C∞-differentiable structure.
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Existence and Uniqueness

It is, of course, conceivable that for some topological manifold no such
family of compatible coordinate neighborhoods can be singled out.

It is also conceivable that, on the contrary, families can be chosen in a
multiplicity of inequivalent ways so that two inequivalent C∞

manifolds have the same underlying topological manifold.

These are basic but very difficult questions.

What is important, from our point of view, is that we will be able to
find an abundance of topological manifolds with at least one
differentiable structure.

So there exists an abundance of C∞ manifolds.
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Terminology and Conventions

Since there is no danger of confusion, we will often say simply
“manifold” for C∞ manifold;

We may also sometimes say differentiable or smooth manifold.

“Coordinate neighborhood” will refer exclusively to the coordinate

neighborhoods belonging to the differentiable structure.

To consider a manifold without differentiable structure, we will say
topological manifold and topological coordinate neighborhood.

By requiring only that the change of coordinates be given by C r

functions, for r <∞, we could define C r -compatible coordinate

neighborhoods and C r manifolds, C 0 denoting a topological
manifold.

One can also require that the change of coordinates be Cω, that is,
real analytic.

We shall restrict ourselves almost exclusively to the C∞ case.
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Sufficient Conditions for Existence of Structure

The following proposition shows that Conditions (1) and (2) of the
definition are the essential properties defining a C∞ structure.

Thus, in examples we need only check the compatibility of a covering
by neighborhoods.

Theorem

Let M be a Hausdorff space with a countable basis of open sets.
Suppose V = {Vβ , ψβ} is a covering of M by C∞-compatible coordinate
neighborhoods. Then there is a unique C∞ structure on M containing
these coordinate neighborhoods.

We shall define the differentiable structure to be the collection U of all
topological coordinate neighborhoods U, ϕ which are C∞-compatible
with each and every one of those of the given collection {Vβ, ψβ}.
This new collection naturally includes the Vβ, ψβ .

So Property (1) of the definition is automatically satisfied.
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Proof (Cont’d)

Now we turn to Property (2).

Let U, ϕ and U ′, ϕ′, U ∩ U ′ 6= ∅, be in U .
We must show that they are C∞-compatible.

U, ϕ and U ′, ϕ′ are (topological) coordinate neighborhoods.

So the functions
ϕ′ ◦ ϕ−1 and ϕ ◦ ϕ′−1,

giving the change of coordinates, are well-defined homeomorphisms
on open subsets of Rn.

So we need only make sure that they are C∞.
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Proof (Cont’d)

Let x = ϕ(p) be an arbitrary point of ϕ(U ∩ U ′).

Then p ∈ Vβ for one of the coordinate neighborhoods Vβ, ψβ .

It follows that:

W = Vβ ∩ U ∩ U ′ is an open set containing p;
ϕ(W ) is an open set containing x .

On ϕ(W ), we have

ϕ′ ◦ ϕ−1 = ϕ′ ◦ ψ−1
β ◦ ψβ ◦ ϕ−1.

But U, ϕ and U ′, ϕ′ are both C∞-compatible with Vβ, ψβ .

So ϕ′ ◦ ψ−1
β and ψβ ◦ ϕ−1 are C∞.

It follows that their composition ϕ′ ◦ ϕ−1 is C∞ on ϕ(W ).

Also, ϕ′ ◦ ϕ−1 is C∞ on a neighborhood of any point of its domain.

So it is C∞.
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Proof (Cont’d)

This proves everything except Property (3), which is automatic.

Suppose U, ϕ is compatible with all of the coordinate neighborhoods
in our collection.

Then it certainly has this property with respect to the subcollection
{Vβ, ψβ}.
So it is in the differentiable structure.
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Remark

A coordinate neighborhood U, ϕ depends on both the neighborhood
U and the map ϕ of U to Rn.

If we change either, then we have a different coordinate neighborhood.

For example, suppose V ⊆ U is an open subset.

Then V , ϕ|V is a new coordinate neighborhood, although the
coordinates of p ∈ V are the same as its coordinates in the original
neighborhood.

If p ∈ U, we may choose V so that ϕ(V ) is an open ball Bn
ǫ (a), or

cube Cn
ǫ (a), in Rn with ϕ(p) = a as center.

Or we might alter ϕ by composing it with a map θ : Rn → Rn.

E.g., by composing with a translation, we can send some p ∈ U to
coordinates (0, 0, . . . , 0).

Of course, this gives a new coordinate system on U.

Thus, we get a new coordinate neighborhood U, θ ◦ ϕ.
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Example (The Euclidean Plane)

Once a unit of length is chosen, the Euclidean plane E 2 becomes a
metric space.

It is Hausdorff and has a countable basis of open sets.

The choice of an origin and mutually perpendicular coordinate axes
establishes a homeomorphism (even an isometry) ψ : E 2 → R2.

Thus we cover E 2 with a single coordinate neighborhood V , ψ, with
V = E 2 and ψ(V ) = R2.

It follows that E 2 is a topological manifold.

By the theorem, V , ψ determines a differentiable structure.

Thus, E 2 is a C∞ manifold.
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Example (The Euclidean Plane Cont’d)

There are many other coordinate neighborhoods on E 2 which are
C∞-compatible with V , ψ.

These also belong to the differentiable structure determined by V , ψ.

For example, we may choose another rectangular Cartesian coordinate
system V ′, ψ′.

Then it is shown in analytic geometry that the change of coordinates
is given by linear, hence C∞ (even analytic) functions

y1 = x1 cos θ − x2 sin θ + h,

y2 = x1 sin θ + x2 cos θ + k .

Note that V = V ′, but the coordinate neighborhoods are not the
same since ψ′ 6= ψ.

That is, the coordinates of each point are different for the two
mappings.
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Example

It is also possible to choose as U the plane minus a ray extending
from a point 0.

We use as coordinate functions on U:

The angle θ(q) measured from this ray to 0q;
The distance r(q) of q from 0.

We define a homeomorphism

ϕ : U → {(r , θ) | r > 0, 0 < θ < 2π} ⊆ R2;

q 7→ (r(q), θ(q)).

The equations for change of coordinates to those above, assuming
that 0 is the origin and that the ray is the positive x-axis, are

x1 = r cos θ, x2 = r sin θ.

These are analytic and, thus, C∞.
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Example (Cont’d)

If the origin and axes are not chosen in this special way, then we must
compose this mapping on R2 with a rotation and translation of the
previous type to obtain the functions giving the change of coordinates.

The various coordinate neighborhoods just enumerated are
C∞-compatible with our original V , ψ.

So they are in the differentiable structure on E 2 determined by V , ψ.
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Euclidean Space Revisited

In the same manner, Euclidean space of arbitrary dimension n gives
an example of a C∞ manifold, covered by a single coordinate system.

Again, this may be done in a variety of ways.

As we have noted, it is customary to identify En and Rn since the
former is difficult to axiomatize.

This is equivalent to choosing a fixed rectangular Cartesian coordinate
system covering all of En.

Though many examples, it will become clear that manifolds, in
general, cannot be covered by a single coordinate system nor are
there preferred coordinates.

Thus, it is often better in thinking of Euclidean space as a manifold
to visualize the model En of classical geometry, without coordinates,
rather than Rn, Euclidean space with coordinates.
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Finite-Dimensional Vector Spaces

A finite-dimensional vector space V over R can be identified with Rn,
n = dimV , once a basis e1, . . . , en is chosen.

Vector v = x1e1 + · · ·+ xnen is identified with (x1, . . . , xn) in Rn;

Similarly, the space of m×n matrices (aij) can be identified with Rmn.

The matrix A = (aij) corresponds to (a11, . . . , a1n; . . . ; am1, . . . , amn).

Using these identifications, we may define a natural topology and C∞

structure on V and on the set Mmn(R) of m × n matrices over R.

We suppose them to be:

Homeomorphic to Cartesian or Euclidean space of dimension n in the
case of V , and mn in the case of Mmn(R);
Covered by a single coordinate neighborhood, the identification map
above being the coordinate map.

George Voutsadakis (LSSU) Differential Geometry December 2024 21 / 209



Differentiable Manifolds and Submanifolds The Definition of a Differentiable Manifold

Open Submanifolds

Let M be a C∞ manifold.

Consider an open subset U of M.

U is itself a C∞ manifold with differentiable structure consisting of
the coordinate neighborhoods V ′, ψ′ obtained by restriction of ψ on
those coordinate neighborhoods V , ψ, which intersect U, to the open
set V ′ = V ∩ U, that is,

ψ′ = ψ |V∩U .

This gives a covering of U by topological coordinate neighborhoods
which are C∞-compatible.

Hence, it defines a C∞ structure on U.

U, with this structure, is said to be an open submanifold of M.
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Example (Gl(n,R))

Consider the subset U = Gl(n,R) of M = Mn(R), n × n matrices
over R, which consists of all nonsingular n× n matrices.

Recall that an n × n matrix A is nonsingular if and only if its
determinant detA is not zero.

So we have
U = {A ∈ Mn(R) : detA 6= 0}.

This is the usual definition of the group Gl(n,R).

Now detA is a polynomial function of its entries aij .

Hence, it is a continuous function of its entries.

So it is a continuous function of A in the topology of identification
with Rn2 .

Thus, U = Gl(n,R) is an open set, the complement of the closed set
of those A such that detA = 0.

So Gl(n,R) is an open submanifold of Mn(R).
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Product Manifold

We state without proof a result on the manifold structure that can be
constructed on the product of two manifolds.

Theorem

Let M and N be C∞ manifolds of dimensions m and n.
Then M × N is a C∞ manifold of dimension m + n.
Its C∞ structure is determined by coordinate neighborhoods of the form

{U × V , ϕ× ψ},
where:

U, ϕ is a coordinate neighborhood on M;

V , ψ is a coordinate neighborhood on N;

Homeomorphisms ϕ× ψ : U × V → Rm+n = Rm ×Rn, defined by

ϕ× ψ(p, q) = (ϕ(p), ψ(q)).
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Example: The Torus

An important example is the torus

T 2 = S1 × S1,

the product of two circles.

More generally, T n = S1 × · · · × S1, the n-fold product of circles, is a
C∞ manifold obtained as a Cartesian product.
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Example: The Sphere

We give a fairly detailed proof,
using the theorem, that the unit
2-sphere

S2 = {x ∈ R
3 : ‖x‖ = 1}

is a C∞ manifold.

The idea extends in an obvious
way to

Sn−1 = {x ∈ R
n : ‖x‖ = 1},

the unit n − 1 sphere in Rn.
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Example: The Sphere (Cont’d)

We take S2 with its topology as a subspace of R3.

That is, U is open in S2 if U = Ũ ∩ S2, for some open set Ũ ⊆ R3.

This implies that S2 is Hausdorff with a countable basis.

We shall show that it is locally Euclidean.

For i = 1, 2, or 3, let

Ũ+
i = {(x1, x2, x3) : x i > 0};

Ũ−
i = {(x1, x2, x3) : x i < 0}.

These Ũ±
i are two open sets into which the coordinate hyperplane

x i = 0 divides R3.
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Example: The Sphere (Cont’d)

The relatively open sets

U±
i = Ũ±

i ∩ S2, i = 1, 2, 3,

cover S2.

We define ϕ±
i : U±

i → R2 by projection.

ϕ±
1 (x

1, x2, x3) = (x2, x3);

ϕ±
2 (x

1, x2, x3) = (x1, x3);

ϕ±
3 (x

1, x2, x3) = (x1, x2).

It can be checked that these are homeomorphisms to the open set

W = {x ∈ R
2 : ‖x‖ < 1}.

Thus, S2 is locally Euclidean and a topological manifold.
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Example: The Sphere (Cont’d)

The formulas for the change of coordinates are C∞.

Thus, these coordinate neighborhoods are C∞-compatible.

For example, ϕ+
1 ◦ (ϕ−

2 )
−1 is given on U+

1 ∩ U−
2 by composing

(ϕ−
2 )

−1 and ϕ+
1 .

(x1, x3)
(ϕ−

2 )−1

→ (x1,−(1− (x1)2 − (x3)2)1/2, x3);

(x1,−(1− (x1)2 − (x3)2)1/2, x3)
ϕ+

1→ (−(1− (x1)2 − (x3)2)1/2, x3).

Then, by change of notation, using (u1, u2) as U−
2 -coordinates and

(v1, v2) as U+
1 -coordinates instead of (x1, x3) and (x2, x3), we have

v1 = −(1− (u1)2 − (u2)2)1/2, v2 = u2.
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Example: The Sphere (Cont’d)

The square root term is never zero on

{(u1, u2) : (u1)2 + (u2)2 < 1}.

So the v i are C∞ functions of the ui .

By similar computations, ϕ−1
2 ◦ (ϕ+

1 )
−1 is C∞ on

{(v1, v2) : (v1)2 + (v2)2 < 1}.

Thus the coordinate neighborhoods U+
1 , ϕ

+
1 and U−

2 , ϕ
−
2 are

C∞-compatible.

Parallel arguments apply to the other cases.

This naturally defined covering of S2 by eight coordinate
neighborhoods determines a unique C∞ structure.
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Surfaces and Curves

Thus S2 is an example of a manifold which is a subset of another
manifold, namely R3, and which satisfies certain other conditions by
virtue of which it is a manifold.

A two-dimensional submanifold of E 3 or R3 is often called a surface

in Euclidean space.

A one-dimensional submanifold is called a curve.

Planes and spheres, circles and lines are the simplest examples.

Manifolds frequently arise in other ways than as submanifolds.

So it is natural to ask whether every manifold can be represented as a
submanifold of some simple manifold, especially of Euclidean space.
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Subsection 2

Further Examples

George Voutsadakis (LSSU) Differential Geometry December 2024 32 / 209



Differentiable Manifolds and Submanifolds Further Examples

Quotient Space

Let X be a topological space.

Let ∼ be an equivalence relation on X .

Denote by [x ] the equivalence class of x ,

[x ] = {y ∈ X : y ∼ x}.
For a subset A ⊆ X , denote by [A] the set

[A] =
⋃

a∈A

[a],

that is, all x equivalent to some element of A.

We let X/∼ stand for the set of equivalence classes.

Denote by π : X → X/∼ the natural mapping (projection) taking
each x ∈ X to its equivalence class,

π(x) = [x ].
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Quotient Space (Cont’d)

Let the quotient topology on X/∼ be defined by stipulating that

U ⊆ X/∼ is an open subset if π−1(U) is open.

The projection π : X → X/∼ is then continuous.

Definition

X/∼ is called the quotient space of X relative to the relation ∼.
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Example

Let X = R be the real numbers and Z be the integers.

Define
x ∼ y if x − y ∈ Z.

Denote by R/∼ the quotient space.

This quotient space may be naturally identified with

S1 = {z ∈ C : |z | = 1},

the unit circle in the complex plane.

The projection π : R → R/∼ is then identified with the map

π(t) = exp(2πt
√
−1).

Note that X/∼ is a space of cosets of a group relative to a subgroup.

This situation occurs frequently.
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Open Equivalence Relations

Definition

An equivalence relation ∼ on a space X is called open if, whenever a
subset A ⊆ X is open, then [A] is also open.

Lemma

An equivalence relation ∼ on X is open if and only if π is an open
mapping. When ∼ is open and X has a countable basis of open sets, then
X/∼ has a countable basis also.

Suppose, first, that ∼ is open.

Let A ⊆ X be an open subset.

By hypothesis, [A] is open.

Note that [A] = π−1(π(A)).

Thus, by definition, π(A) is open in X/ ∼.

So π is an open mapping.
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Open Equivalence Relations (Cont’d)

Suppose, conversely, that π is open.

Let A ⊆ X be an open subset.

By hypothesis, π(A) is open in X/ ∼.

Since [A] = π−1(π(A)), [A] is open in X .

It follows that ∼ is open.

Suppose ∼ is open and X has a countable basis {Ui} of open sets.

Let W be an open subset of X/∼.

Then π−1(W ) =
⋃

j∈J Uj , for some subfamily of {Ui}.
Hence, W = π(π−1(W )) =

⋃
j∈J π(Uj).

It follows that {π(Ui )} is a basis of open sets for X/∼.
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Utility of the Lemma

Recall that a manifold must be a Hausdorff space with a countable
basis of open sets.

So the lemma is clearly useful in determining those equivalence
relations on a manifold M whose quotient space is again a manifold.

Unfortunately, there is no simple condition which will assure that the
quotient space is Hausdorff.

In fact, a quotient space X/∼ may be locally Euclidean with a
countable basis of open sets and still fail to be Hausdorff.

Nevertheless we obtain important examples by this method.

The following lemma is sometimes helpful.
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Characterization of Hausdorff Quotients

Lemma

Let ∼ be an open equivalence relation on a topological space X . Then
R = {(x , y) : x ∼ y} is a closed subset of the space X × X if and only if
the quotient space X/∼ is Hausdorff.

Assume X/∼ is Hausdorff.

Suppose (x , y) 6∈ R , that is, x ≁ y .

Then there are disjoint neighborhoods U of π(x) and V of π(y).

We denote by Ũ and Ṽ the open sets π−1(U) and π−1(V ).

These contain x and y , respectively.

Suppose the open set Ũ × Ṽ containing (x , y) intersects R .

Then it must contain a point (x ′, y ′) for which x ′ ∼ y ′.

But then π(x ′) = π(y ′) contrary to the assumption that U ∩ V = ∅.
This contradiction shows that Ũ × Ṽ does not intersect R .

Therefore, R is closed.
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Characterization of Hausdorff Quotients (Converse)

Conversely, suppose that R is closed.

Let π(x), π(y) in X/∼ be a distinct pair of points.

Then, there is an open set of the form Ũ × Ṽ containing (x , y) and
having no point in R .

It follows that U = π(Ũ) and V = π(Ṽ ) are disjoint.

By the preceding lemma and the hypothesis, U and V are open.

Thus X/∼ is Hausdorff.
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Example: Real Projective Space

We let X = Rn+1 − {0}, all (n + 1)-tuples of real numbers
x = (x1, . . . , xn+1) except 0 = (0, ..., 0).

Define x ∼ y if, there is a real number t 6= 0, such that y = tx , that
is,

(y1, . . . , yn+1) = (tx1, . . . , txn+1).

The equivalence classes [x ] may be
visualized as lines through the origin.

We denote the quotient space by
Pn(R).

It is called real projective space.
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Example: Real Projective Space (Cont’d)

We show that Pn(R) is a differentiable manifold of dimension n.

First note that π : X → Pn(R) is an open mapping.

Let t 6= 0 be a real number.

Let ϕt : X → X be the mapping defined by

ϕt(x) = tx .

It is clearly a homeomorphism, with ϕ−1
t = ϕ1/t .

Let U ⊆ X be an open set.

Then [U] =
⋃
ϕt(U), the union being over all real t 6= 0.

Each ϕt(U) is open.

So [U] is open.

By a previous lemma, π is open.
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Example: Real Projective Space (Cont’d)

Next we apply the preceding lemma to prove that Pn(R) is Hausdorff.

On the open submanifold X × X ⊆ Rn+1 ×Rn+1 we define a
real-valued function f (x , y) by

f (x1, . . . , xn+1; y1, . . . , yn+1) =
∑

i 6=j

(x iy j − x jy i)2.

Then f (x , y) is continuous.

f vanishes if and only if y = tx , for some real number t 6= 0.

That is, if and only if x ∼ y .

Thus
R = {(x , y) : x ∼ y} = f −1(0)

is a closed subset of X × X .

Therefore, Pn(R) is Hausdorff.
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Example: Real Projective Space (Cont’d)

We define n+ 1 coordinate neighborhoods

Ui , ϕi , i = 1, . . . , n + 1.

Let Ũi = {x ∈ X : x i 6= 0}.
Let Ui = π(Ũi).

Then ϕi : Ui → Rn is defined by:
Choosing any x = (x1, . . . , xn+1) representing [x ] ∈ Ui ;
Setting

ϕi(x) =

(
x1

x i
, . . . ,

x i−1

x i
,
x i+1

x i
, . . . ,

xn+1

x i

)
.

It is seen that if x ∼ y , then ϕi (x) = ϕi (y).

Moreover, ϕi (x) = ϕi (y) implies x ∼ y .

Thus, ϕi : Ui → Rn is properly defined, continuous, one-to-one, and
even onto.
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Example: Real Projective Space (Cont’d)

ϕ−1
i : Rn → Rn is given by composing a C∞ map of Rn to Rn+1

with π.

For z ∈ Rn, we have

ϕ−1
i (z1, . . . , zn) = π(z1, . . . , z i−1,+1, z i , . . . , zn).

Therefore ϕ−1
i is continuous.

Thus, Pn(R) is a (topological) manifold.

It is C∞ if the coordinate neighborhoods are C∞-compatible.

That is, if ϕi ◦ ϕ−1
j is C∞ (where defined), for 1 ≤ i , j ≤ n+ 1.

This can be verified explicitly.
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Example: Grassman Manifolds G (k , n)

The Grassman manifold G (k , n) is the set of all k-planes through the
origin of Rn, or k-dimensional subspaces of V n = Rn (as a vector
space), endowed with a suitable topology and differentiable structure.

We will realize G (k , n) as a quotient space arising from an
equivalence relation on the manifold F (k , n) of k-frames in Rn.

We define a k-frame in Rn to be a linearly independent set x of k
elements of Rn,

x1 = (x11 , . . . , x
n
1 ),

...
xk = (x1k , . . . , x

n
k ).
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k-Frames

A k-frame in Rn may be identified with the k × n matrix, which we
also denote by x , whose rows are x1, . . . , xk .

We use the fact that the set Mkn(R) of all k × n real matrices is a
differentiable manifold by virtue of its identification with Rkn.

The matrices which correspond to k-frames, that is, those of rank k ,
form an open subset.

Hence, F (k , n) is a differentiable manifold.

This is because of the fact that “x is of rank k” means that the
following two equivalent statements hold:
(i) The row vectors form a linearly independent set;
(ii) Not all k × k minor determinants are zero simultaneously.

Statement (ii) shows that the rank is less than k at the simultaneous
zeros of a set of continuous functions on Mkn(R).

So the rank is less than k on a closed subset.

It follows that F (k , n) is open.
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Equivalence Relation on F (k , n)

Each frame x determines a k-plane or point of G (k , n), namely, the
subspace spanned by x1, . . . , xk .

So we have a natural map of F (k , n) onto G (k , n).

Moreover x = (x1, . . . , xk) and y = (y1, . . . , yk) determine the same
k-plane if and only if

yi =

k∑

j=1

αijxj ,

where a = (αij) is a nonsingular k × k matrix.

Equivalently, if and only if y = ax, the product of the matrices a and
x .

It is natural to define ∼ by

y ∼ x if y = ax, a ∈ Gl(k ,R).
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Construction of G (k , n)

We now identify:

G(k , n) with F (k , n)/∼, the set of equivalence classes;
The above mentioned natural map with π.

We sketch a proof that G (k , n) with the quotient space topology has
the structure of a differentiable manifold of dimension k(n − k).

Note that if k = 1, then a ∈ Gl(1,R) = R∗.

So G (k , n) becomes Pn−1(R).

The proof that π is an open mapping is analogous to the preceding
example.

The proof that G (k , n) is Hausdorff is trickier and is omitted.
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Open Subsets

We describe a covering by coordinate neighborhoods with
C∞-compatible coordinate maps.

Then a previous theorem may be applied to complete the proof.

We use the k × k submatrices of x ∈ Mkn(R).

Let J = (j1, . . . , jk) be an ordered subset of (1, . . . , n).

Let J ′ be the complementary subset.

By xJ we denote the k × k submatrix

(x jℓi ), 1 ≤ i , ℓ ≤ k ,

of the k × n matrix x .

Denote by xJ′ the complementary k × (n − k) submatrix obtained by
striking out the columns j1, . . . , jk of x .

Let ŨJ be the open set in F (k , n), consisting of matrices for which xJ

is nonsingular.

Let UJ = π(ŨJ) be the corresponding open set in G (k , n).
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Open Subsets (Cont’d)

Each y ∈ ŨJ is equivalent to exactly one k × n matrix x in which the
submatrix xJ is the k × k identity matrix.

For example, if J = (1, 2, . . . , k), then x is of the form

x =




1 · · · 0 x1,k+1 · · · x1n
0 · · · 0
...

...
...

0 · · · 1 xk,k+1 · · · xkn


 .

In fact the x equivalent to a matrix y , for which y J is nonsingular, is
given by the matrix formula

x = y−1
J y .
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Coordinate Mappings

We define
ϕJ : UJ → Mk(n−k)(R),

identified with Rk(n−k), by deleting the k columns corresponding to J

in this representative x of y ,

ϕJ ([y ]) = xJ′ .

It can be shown that:
ϕJ is properly defined;
ϕJ maps UJ onto Rk(n−k) homeomorphically;
The UJ , ϕJ′ , for all subsets J of k distinct elements of (1, 2, . . . , n),
form a covering of G(k , n) by C∞-compatible coordinate
neighborhoods.

A verification of this for G (2, 4), the 2-planes through the origin of
R4, is sufficient to show how to proceed in general.

A different proof of these facts will be provided later.
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Subsection 3

Differentiable Functions and Mappings
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Functions in Local Coordinates

Let
f : Wf → R

be a real-valued function defined on an open set Wf of a C∞

manifold M, possibly all of M.

Let U, ϕ is be a coordinate neighborhood such that Wf ∩ U 6= ∅.
Let x1, . . . , xn denote the local coordinates.

Then f corresponds to a function f̂ (x1, . . . , xn) on ϕ(Wf ∩ U)
defined by

f̂ = f ◦ ϕ−1.

That is, we have, for all p ∈ Wf ∩ U,

f (p) = f̂ (x1(p), . . . , xn(p)) = f̂ (ϕ(p)).
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Using Multiple Local Coordinates

We will customarily omit the hat and use the same letter “f ” for:

f as defined on Wf ;
f̂ , its expression in local coordinates.

Ordinarily this will result in no confusion.

Suppose two coordinate neighborhoods U, ϕ and V , ψ are involved.

Then we will use different letters for the coordinates, say

x1, . . . , xn and y1, . . . , yn.

Thus, for p ∈ Wf ∩ U ∩ V , we have, omitting hats,

f (p) = f (x1(p), . . . , xn(p)) = f (y1(p), . . . , yn(p)),

the latter two f ’s denoting f̂ ’s, or f ◦ ϕ−1 and f ◦ ψ−1, respectively,
the expressions in local coordinates.
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C
∞ Functions

Definition

Using the notation above, f : Wf → R is a C∞ function if each p ∈ Wf

lies in a coordinate neighborhood U, ϕ such that

f ◦ ϕ−1(x1, . . . , xn) = f̂ (x1, . . . , xn)

is C∞ on ϕ(Wf ∩ U).

Clearly, a C∞ function is continuous.
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Coordinate Functions

Among the C∞ functions on M are the n-coordinate functions
(x1(q), . . . , xn(q)) of a coordinate neighborhood U, ϕ.

More precisely, suppose πi : Rn → R is defined by

πi (x1, . . . , xn) = x i .

These functions are defined by x i (q) = πi ◦ ϕ(q).
Their expression in local coordinates, on ϕ(U), is given by

x̂ i (x1, . . . , xn) = x i (ϕ−1(x1, . . . , xn)) = πi(x1, . . . , xn) = x i .

Since the hat is usually omitted, we have the statement

x i (x1, . . . , xn) = x i , i = 1, . . . , n.

This is somewhat confusing since the same letter is used for a
function and its values.
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Properties

It is a consequence of the definition that if f is C∞ on W and
V ⊆ W is an open set, then f |V is C∞ on V .

Moreover, if W is a union of open sets on each of which a real-valued
function f is C∞, then f is C∞ on W .

Using the C∞ compatibility of coordinate neighborhoods, it can be
verified that, if f is C∞ on W and V , ψ is any coordinate
neighborhood intersecting W , then f ◦ ψ−1 is C∞ on the open set
ψ(V ∩W ) in Rn.

George Voutsadakis (LSSU) Differential Geometry December 2024 58 / 209



Differentiable Manifolds and Submanifolds Differentiable Functions and Mappings

C
∞ Mappings

Let M and N be C∞ manifolds.

Let W ⊆ M be an open subset.

Let F : W → N be a mapping.

Definition

F is a C∞ mapping of W into N if, for every p ∈ M, there exist
coordinate neighborhoods U, ϕ of p and V , ψ of F (p), with

F (U) ⊆ V ,

such that
ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(V )

is C∞.
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C
∞ Mappings (Cont’d)

Let x1, . . . , xn be local coordinates for φ(U).

Let y1, . . . , ym be local coordinates for ψ(V ).

Then F being a C∞ mapping means that F |U : U → V may be
written in these local coordinates as a mapping from ϕ(U) into ψ(V )
by

F̂ (x1, . . . , xn) = (f 1(x1, . . . , xn), . . . , f m(x1, . . . , xn))

(or simply y i = f i (x), i = 1, . . . ,m) and each f i (x) is C∞ on ϕ(U).

Note that C∞ mapping is a more general notion than C∞ function,
the latter being a mapping to N = R.

George Voutsadakis (LSSU) Differential Geometry December 2024 60 / 209



Differentiable Manifolds and Submanifolds Differentiable Functions and Mappings

Remarks

C∞ mappings are continuous.

Their restrictions to open subsets are C∞.

Any mapping from an open subset W ⊆ N into M, whose restriction
to each of a collection of open sets (which cover W ) is C∞, is
necessarily C∞ on W .

As is the case with C∞ functions, the C∞ compatibility of local
coordinate neighborhoods, closure under composition of C r mappings
and the remarks above show that the property does not depend on
any particular choice of coordinates.

Similarly it follows from closure under composition of C r mappings
that composition of C∞ mappings is again a C∞ mapping.
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Terminology

C∞ manifolds, functions and mappings are also called smooth.

From now on we shall refer to differentiable manifold, function and
mapping.

Recall, however, that we previously used this term in a much weaker
sense than C∞.

One reason that C∞ is a desirable differentiability class to use is that,
when we later take derivatives of C∞ functions on manifolds, we
obtain C∞ functions.

In contrast, in the C r case, we would obtain C r−1 functions.

Thus, assuming infinite differentiability relieves us of many irritating
concerns about order of differentiability.
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Disjoint Compact and Closed Sets

Theorem

Let F be a closed subset and K a compact subset of a C∞ manifold M,
with F ∩ K = ∅. Then there is a C∞ function f defined on M which has
the value +1 on K and 0 on F .

Corollary

Let U be an open subset of a manifold M. Suppose p ∈ U. Let f be a
C∞ function on U. Then there is a neighborhood V of p in U and a C∞

function f ∗ on M, such that:

f ∗ = f on V ;

f ∗ = 0 outside of U.

The proofs of these results follow along the lines of the proofs of
corresponding results already established for C∞ mappings from open
subsets of Rn to Rn.
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Diffeomorphisms

Definition

A C∞ mapping F : M → N between C∞ manifolds is a diffeomorphism

if it is a homeomorphism and F−1 is C∞.
M and N are diffeomorphic if there exists a diffeomorphism F : M → N.

This extends the concept of diffeomorphism, previously defined for
open subsets of Rn only, to arbitrary C∞ manifolds.

Diffeomorphism of manifolds is an equivalence relation.

Reflexivity and symmetry are obvious from the definition.
Transitivity is a consequence of the following facts:

Composition of C∞ maps is C∞;
Composition of homeomorphisms is a homeomorphism.

It is important that F−1, as well as F , be C∞.
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Example

Let F : R → R be defined by

F (t) = t3.

Then F is C∞ and a homeomorphism.

It is not a diffeomorphism since F−1(t) = t1/3, and this is not even of
class C 1, let alone C∞, at t = 0.

This example shows how it is possible to define two distinct C∞

structures on R.

The first is the usual one defined by:

U = R;
ϕ : U → R be the identity map.

This determines a C∞ structure on R by a previous theorem.
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Example (Cont’d)

We may also consider the structure defined by the coordinate
neighborhood V , ψ, where:

V = R;
ψ : V → R is defined by ψ(t) = t3.

Then ϕ ◦ ψ−1 = t1/3.

So U, ϕ and V , ψ are not C∞-compatible.

Hence they are not in the same differentiable structure.

However, R with its first structure is diffeomorphic to R̃, denoting R

with its second structure.

The diffeomorphism F : R → R̃ being defined by

F (t) = t1/3.

So in local coordinates it is given by ψ ◦ F ◦ ϕ−1 = t.
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Remarks

The preceding examples shows that two C∞ manifolds with the same
underlying topological manifold but incompatible C∞ structures can
still be diffeomorphic.

A fundamental question is:

Can the same manifold M or homeomorphic manifolds have
C∞ structures which are not diffeomorphic?

This was an unsolved problem for many years.

It was finally settled by Milnor, who proved the existence of two C∞

structures on S7 which were not diffeomorphic.
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Remark: Characterization of Coordinate Neighborhoods

We conclude with a remark which is occasionally useful.

A necessary and sufficient condition that an open set U of M,
together with a mapping ϕ : U → Rn, be a coordinate neighborhood
is that ϕ be a diffeomorphism of U onto an open subset W of Rn.

Conversely, if W is an open subset of Rn and ψ : W → M is a
diffeomorphism onto an open subset U, then U, ψ−1 is a coordinate
neighborhood.

We sometimes call W , ψ a parametrization, especially in the case
dimM = 1.
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Subsection 4

Rank of a Mapping. Immersions
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Rank of a Differentiable Mapping

Let N and M be C∞ manifolds.

Let F : N → M be a differentiable mapping.

Let p ∈ N.

Suppose U, ϕ and V , ψ are coordinate neighborhoods of p and F (p),
respectively, such that F (U) ⊆ V .

Then we have a corresponding expression for F in local coordinates,

F̂ = ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(V ).

Definition

The rank of F at p is defined to be the rank of F̂ at ϕ(p).
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Rank of a Differentiable Mapping (Cont’d)

Thus, the rank at p is the rank at a = ϕ(p) of the Jacobian matrix




∂f 1

∂x1
· · · ∂f 1

∂xn
...

...
∂f m

∂x1
· · · ∂f m

∂xn




a

of the mapping

F̂ (x1, . . . , xn) = (f 1(x1, . . . , xn), . . . , f m(x1, . . . , xn))

expressing F in the local coordinates.

This definition must be validated by showing that the rank is
independent of the choice of coordinates.

Another definition which is clearly independent of this choice is given
in the next chapter.
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The Case of Constant Rank

The important case for us will be that in which the rank is constant.

The theorem on rank of the previous chapter, and its corollary, can be
restated as follows:

Let N and M be C∞ manifolds.
Let F : N → M be a differentiable mapping.
Suppose dimN = n, dimM = m and rankF = k at every point of N .
If p ∈ N , then, there exist coordinate neighborhoods U , ϕ and V , ψ of
p and F (p), respectively, with F (U) ⊆ V , such that:

ϕ(p) = (0, . . . , 0);
ψ(F (p)) = (0, . . . , 0);

F̂ = ψ ◦ F ◦ ϕ−1 is given by

F̂ (x1
, . . . , x

n) = (x1
, . . . , x

k
, 0, . . . , 0).

Moreover, we may assume ϕ(U) = C n
ε (0) and ψ(V ) = Cm

ε (0) with the
same ε > 0.
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Necessary Condition for Diffeomorphism

An obvious corollary to this remark is:

A necessary condition for F : N → M to be a diffeomorphism is that

dimM = dimN = rankF .

Otherwise k would be either less than n or less than m.

In that case the expression in local coordinates implies that it is not
possible for both F and F−1 to be one-to-one, even locally.

For example, suppose k < n in the expression above.

Then all points in U with coordinates of the form

(0, . . . , 0, xk+1, . . . , xn)

are mapped onto the same point of V .
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Immersions

Definition

Let N and M be C∞ manifolds and F : N → M be a differentiable
mapping.
Suppose, using the notation above, that n < m.
We say that F is an immersion of N in M if

rankF = n, at every point.

If an immersion F : N → M is univalent (injective), then we say that the
image Ñ = F (N), endowed with the topology and C∞ structure which
makes F : N → Ñ a diffeomorphism, is a submanifold (or an immersed

submanifold).
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Remarks

In every case that follows:

N = R or an open interval of R;
M = R2, except in the first example where M = R3.

We use the natural coordinates (given by the identity map).

To verify that F is an immersion it is necessary to check that the
Jacobian has rank 1 at every point.

Equivalently, one of the derivatives with respect to t differs from zero,
for every value of t for which the mapping F is defined.

The demonstration of this is usually omitted.
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Example

F : R → R3 is given by

F (t) = (cos 2πt, sin 2πt, t).

The image F (R) is a helix lying on a unit cylinder whose axis is the
x3-axis in R3.
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Example

F : R → R2 is given by

F (t) = (cos 2πt, sin 2πt).

The image F (R) is the unit circle in R2,

S1 = {(x1, x2) : (x1)2 + (x2)2 = 1}.
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Example

F : (1,∞) → R2 is given by

F (t) =

(
1

t
cos 2πt,

1

t
sin 2πt

)
.

The image is a curve with the following properties:
It spirals to (0, 0) as t → ∞;
It tends to (1, 0) as t → 1.
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Example

In this example, F : (1,∞) → R2 is also a spiral.

However, F is modified so that the
image F (R) spirals toward the circle
with center at (0, 0) and radius 1

2 as
t → ∞.

The mapping is given by

F (t) =

(
t + 1

2t
cos 2πt,

t + 1

2t
sin 2πt

)
.

It is not difficult to check that the Jacobian could have rank 0, i.e.,
both derivatives dx1

dt
and dx2

dt
could vanish simultaneously on

1 < t <∞, if and only if cot 2πt = − tan 2πt.

This, however, is impossible.
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Example

F : R → R2 is given by

F (t) =

(
2 cos

(
t − 1

2
π

)
, sin 2

(
t − 1

2
π

))
.

The image is a “figure eight” traversed in the sense shown.

The image point makes a complete circuit starting at the origin as t
goes from 0 to 2π.
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Example

G : R → R2 again and the image is the “figure eight” as in the
previous example, but with an important difference.

We pass through (0, 0) only once, when t = 1
2 .

For t → −∞ and t → +∞ we only approach (0, 0) as limit.
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Example (Cont’d)

The immersion is given by changing parameter in the previous
example.
Let g(t) be a monotone increasing C∞ function on −∞ < t <∞,
such that:

g(0) = π;
lim

t→−∞

g(t) = 0;

lim
t→+∞

g(t) = 2π.

For example, we may use

g(t) = π + 2 tan−1 t.

Then G (t) is given by composition of g(t) with F (t) from the
previous example:

G (t) = F (g(t)) =
(
2 cos

(
g(t)− π

2

)
, sin 2

(
g(t)− π

2

))
.
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Example

Again F : R → R2 so that

F (t) =

{ (
1
t
, sinπt

)
, if 1 ≤ t <∞,

(0, t + 2), if −∞ < t ≤ −1.

This gives a curve with a gap as
shown.

For −1 ≤ t ≤ +1 we connect the two
pieces together smoothly, as shown by
the dotted line.

This gives a C∞ immersion of all of R
in R2 whose image is as shown.
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Injectivity

We may draw some conclusions from these examples about the nature
of immersions.

First we note that an immersion need not be univalent, that is,
one-to-one into (injective), at large, even though it is one-to-one
locally.

The unit circle (F (t) = (cos 2πt, sin 2πt)) and the figure eight
(F (t) =

(
2 cos

(
t − 1

2π
)
, sin 2

(
t − 1

2π
))
) show this.

For example, in both cases

t = 0,+2π,+4π, . . .

all have the same image point:

(0, 1) in the case of the circle;
(0, 0) for the figure eight.
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Immersions versus Homeomorphisms

The second conclusion we can draw is that even when it is one-to-one,
an immersion is not necessarily a homeomorphism onto its image.

That is, F : N → M a one-to-one immersion does not imply that F is
a homeomorphism of N onto Ñ = F (N) considered as a subspace of
M.

The second figure eight and the last example show this:

In the case of the former, Ñ is the figure eight whereas N is the real
line R, two spaces which are not homeomorphic.
In the case of the latter, N is again the real line and Ñ = F (N) as a
subspace of R2 is not locally connected at all of its points.
There are points on the x2-axis, such as (0, 1), which do not have
arbitrarily small connected neighborhoods.
Hence, Ñ and N = R are not homeomorphic.

In any case, F : N → M is continuous, since it is differentiable.
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Imbeddings

Definition

An imbedding is a one-to-one immersion F : N → M which is a
homeomorphism of N into M. That is, F is a homeomorphism of N onto
its image, Ñ = F (N), with its topology as a subspace of M.
The image of an imbedding is called an imbedded submanifold.

The examples of the helix and the two spirals above are imbeddings.
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Immersions and Imbeddings

The following theorem, essentially a restatement of the theorem on
rank and its corollary, shows that the distinction between immersions
and imbeddings is a global one.

Theorem

Let F : N → M be an immersion. Then each p ∈ N has a neighborhood U

such that F |U is an imbedding of U in M.

According to a previous remark, we may choose cubical coordinate
neighborhoods U, ϕ and V , ψ of p ∈ N and F (p) ∈ M, respectively,
such that:

ϕ(p) = (0, . . . , 0) in Rn;
ψ(F (p)) = (0, . . . , 0) in Rm;
ϕ(U) = C n

ε (0) and ψ(V ) = Cm
ε (0) (cubes of the same breadth ε);

F̂ = ψ ◦ F ◦ ϕ−1, the expression of F in these local coordinates, is
given by

F̂ (x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).
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Proof of the Theorem

We want to show that F |U is a homeomorphism of U onto F (U) with
the relative topology.

It is enough to show that F̂ is a homeomorphism of Cn
ε (0) onto its

image in Cm
ε (0).

First, note that F (U) ⊆ V , an open subset of M.

So the topology of F (U) as a subspace of M is the same as its
topology as a subspace of V .

Now ϕ : U → Cn
ε (0) and ψ : V → Cm

ε (0) are homeomorphisms.

So F̂ is a homeomorphism of Cn
ε (0) onto its image in Cm

ε (0).

But it is clear that F̃ is a homeomorphism of Cn
ε (0) onto the subset

xn+1 = · · · = xm = 0 of Cm
ε (0).

Hence, the theorem holds.
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Slices

We call a subset S of a cube Cm
ε (a) in Rm a slice if it consists of all

points for which certain of the coordinates are held constant.

Example: The set

S = {x ∈ Cm
ε (0) : xn+1 = · · · = xm = 0}

is a slice through the center 0 = (0, . . . , 0) of Cm
ε (0).

Suppose V , ψ is a cubical coordinate neighborhood on a manifold M.

Let S ′ is a subset of V , such that ψ(S ′) is a slice S of the cube ψ(V ).

Then S ′ is called a slice of V .

Note that, in the proof of the theorem, S ′ = F (U) is a slice of V .

In general this slice is not equal to the set V ∩ F (N) but only
contained in it, even if F is univalent and U is chosen very small.
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Subsection 5

Submanifolds
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Submanifolds

A submanifold N is the image in M of a one-to-one immersion
F : N ′ → M, N = F (N ′), of a manifold N ′ into M, together with the
topology and C∞ structure which makes F : N ′ → N a
diffeomorphism.

We frequently refer to N in this case as an immersed submanifold.

As shown by the second figure eight and the last example above, the
C∞ structure of N has an obscure and complicated relation to that of
M.

A more natural notion is that of a regular submanifold.

As its name implies, it will be a special case of the one above.

It is more natural since its topology and differentiable structure are
derived directly from that of M.
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The Submanifold Property

Definition

A subset N of a C∞ manifold M is said to have the n-submanifold

property if each p ∈ N has a coordinate neighborhood U, ϕ on M with
local coordinates x1, . . . , xm such that:

(i) ϕ(p) = (0, . . . , 0);

(ii) ϕ(U) = Cm
ε (0);

(iii) ϕ(U ∩ N) = {x ∈ Cm
ε (0) : xn+1 = · · · = xm = 0}.

If N has this property, coordinate neighborhoods of this type are called
preferred coordinates (relative to N).
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Illustration

The figure shows such a subset N in M = R3 (n = 2 and m = 3).

Note that immersed submanifolds do not always have this property.

For example, take p = (0, 0) in the second figure eight and the last
example above.

George Voutsadakis (LSSU) Differential Geometry December 2024 93 / 209



Differentiable Manifolds and Submanifolds Submanifolds

Consequence of Submanifold Property

Denote by
π : Rm → R

n, n ≤ m,

the projection to the first n coordinates.

Then we may state the following lemma, using the notation above.

Lemma

Let N ⊆ M have the n-submanifold property. Then N, with the relative
topology, is a topological n manifold and each preferred coordinate system
U, ϕ of M (relative to N) defines a local coordinate neighborhood V , ϕ̃ on
N by

V = U ∩ N and ϕ̃ = π ◦ ϕ|V .
These local coordinates on N are C∞-compatible wherever they overlap.
Moreover, they determine a C∞ structure on N relative to which the
inclusion i : N → M is an imbedding.
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Proof

Assume N has the subspace topology relative to M.

Now V = U ∩ N is an open set in the relative topology.

Also, ϕ̃ is a homeomorphism onto Cn
ε (0) = π(Cm

ε (0)) in Rn.

Thus, V , ϕ̃ are topological coordinate neighborhoods covering N.

Suppose that for two preferred neighborhoods, U, ϕ and U ′, ϕ′,
V = U ∩ N and V ′ = U ′ ∩ N have nonempty intersection.

V , ϕ̃ and V ′, ϕ̃′ are topological coordinate neighborhoods.

So the change of coordinates is given by homeomorphisms

ϕ̃′ ◦ ϕ̃−1 and ϕ̃ ◦ (ϕ̃′)−1.

It suffices to show that these are C∞.
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Proof (Cont’d)

Let θ : Rn → Rm be given by

θ(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

So we have that π ◦ θ is the identity on Rn.

This map θ is C∞ as is its restriction to Cn
ε (0), an open subset of Rn.

Thus, ϕ̃−1 = ϕ−1 ◦ θ is C∞ since it is a composition of C∞ maps.

On the other hand, ϕ̃′ = π ◦ ϕ′.

ϕ′ is a C∞ map of U ′ and its open subset U ′ ∩ U to Rm.

So ϕ̃′ is C∞ on V ∩ V ′.

Thus ϕ̃′ ◦ ϕ̃−1 is C∞ on its domain, ϕ̃(V ∩ V ′).
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Proof (Cont’d)

We can see this if we write the expressions in local coordinates.

Suppose
y i = f i (x1, . . . , xm), i = 1, . . . ,m,

are the functions giving ϕ′ ◦ ϕ−1, which we know to be C∞.

It can be checked that ϕ̃′ ◦ ϕ̃−1 is given by

y i = f i(x1, . . . , xn, 0, . . . , 0), i = 1, . . . , n.

Therefore, ϕ̃′ ◦ ϕ̃−1 is C∞ by a previous definition.
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Proof (Cont’d)

By a previous theorem, the totality of these neighborhoods defines a
unique differentiable structure on N.

In preferred local coordinates V , ϕ̃, i : N → M is given on V by

(x1, . . . , xn) → (x1, . . . , xn, 0, . . . , 0).

So it is obviously an immersion.

But we have taken the relative topology on N.

So i : N → M is, by definition, a homeomorphism to its image
i(N) = N, with the subspace topology.

So, i is an imbedding.
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Regular Submanifolds

Definition

A regular submanifold of a C∞ manifold M is any subspace N with the
submanifold property and with the C∞ structure that the corresponding
preferred coordinate neighborhoods determine on it.

Example: We see that S2 = {x ∈ R3 : ‖x‖ = 1} is really a
submanifold, as was indicated previously.

Let q = (a1, a2, a3) be an arbitrary point on S2.

q cannot lie on more than one coordinate axis.

For convenience we suppose that it does not lie on the x3-axis.

We introduce the usual spherical coordinates (r , θ, ϕ).

They are defined on R3 − {x3-axis}.
Suppose (1, θ0, ϕ0) are the coordinates of q.
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Regular Submanifolds (Cont’d)

We may change the coordinate map slightly so that:
r is replaced by r̃ = r − 1;
θ is replaced by θ̃ = θ − θ0
ϕ is replaced by ϕ̃ = ϕ− ϕ0.

Consider the neighborhood V , ψ with coordinate function

ψ : p → (r̃(p), θ̃(p), ϕ̃(p)),

defined for p, such that |r̃ | < ε, |θ̃| < ε, and |ϕ̃| < ε.
For sufficiently small θ, V , ψ defines a coordinate neighborhood of q,
with:

q having coordinates (0, 0, 0);
V ∩ S2 the open subset of S2 corresponding to r̃ = 0.

The fact that these neighborhoods are compatible with the ones
previously defined for S2 can be proved by writing down the standard
equations giving rectangular Cartesian coordinates as functions of the
spherical coordinates.
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Remark

At this point we have defined three classes of submanifolds in a
manifold M, immersed, imbedded and regular.

The first of these, usually called simply a submanifold, was defined as
the image N = F (N ′) of a C∞ univalent immersion F of N ′ into M.

Since F : N ′ → N ⊆ M is one-to-one and onto, we may and do (as
part of the definition) carry over to N the topology and differentiable
structure of N ′.

Open sets of N are the images of open sets of N ′;
Coordinate neighborhoods U , ϕ of N are of the form:

U = F (U ′), where U ′ is a coordinate neighborhood of N ′;
ϕ = ϕ′

◦ F−1.

The continuity of F implies that the topology of N, thus obtained, is
in general finer than its relative topology as a subspace of M.

That is, if V is open in M, then V ∩ N is open in N, but there may
be open sets of N which are not of this form.
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Remark (Cont’d)

An imbedding is a particular type of univalent immersion, one in
which U ′ is open in N ′ if and only if F (U ′) = U ∩ N, for some open
set U of M.

So the topology of the submanifold N = F (N ′) is exactly its relative
topology as a subspace of M.

An imbedded submanifold is thus a special type of (immersed)
submanifold.

Note: Although submanifold and immersed submanifold are the same
thing by definition, nevertheless we will frequently use the latter term
both for emphasis and to avoid potential confusion.

Finally, if N ⊆ M is a regular submanifold, then it is also an imbedded
submanifold, since the inclusion i : N → M is an imbedding.
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Imbedded and Regular Submanifolds

Theorem

Let F : N ′ → M be an imbedding of a C∞ manifold N ′ of dimension n in
a C∞ manifold M of dimension m. Then N = F (N ′) has the
n-submanifold property and, thus, N is a regular submanifold. As such it is
diffeomorphic to N ′ with respect to the mapping F : N ′ → N.

Let q = F (p) be any point of N. According to a previous theorem
(and its proof), there are cubical coordinate neighborhoods U, ϕ of p
and V , ψ of q such that:
(i) ϕ(p) = (0, . . . , 0) ∈ C n

ε (0) = ϕ(U);
(ii) ψ(q) = Cm

ε (0) = ψ(V );
(iii) The mapping F |U is given in local coordinates by

F̂ : (x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0).

If F (U) = V ∩ N, then the neighborhood V , ψ would be a preferred
coordinate neighborhood relative to N.
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Imbedded and Regular Submanifolds (Cont’d)

To achieve this situation, we use the fact that F is an imbedding.

This implies at least that F (V ) is a relatively open set of N.

That is, F (V ) = W ∩ N, where W is open in M.

Since V ⊇ F (U), it is no loss of generality to suppose W ⊆ V .

Thus:

ψ(W ) is an open subset of Cm
ε (0) containing the origin;

ψ(W ) ⊇ ψ(F (U)), which is a slice S of Cm
ε (0),

S = {x ∈ Cm
ε (0) : xn+1 = · · · = xm = 0}.

Therefore, we may choose a (smaller) open cube Cm
δ (0) ⊆ ψ(W ) and

let
V ′ = ψ−1(Cm

δ (0)), ψ′ = ψ|′V .
This is a cubical coordinate neighborhood of q, with
F (U) ∩ V ′ = V ′ ∩ N.
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Imbedded and Regular Submanifolds (Cont’d)

Take U ′ = ϕ−1(Cn
δ (0)) = F−1(V ′).

We see that U ′, ϕ′, with ϕ′ = ϕ|U′ , is a coordinate neighborhood of p.

Moreover, the pair U ′, ϕ′, and V ′, ψ′ have exactly the properties
needed, namely, Properties (i), (ii), (iii) and F (U ′) = V ′ ∩ N.

This proves simultaneously that:

N has the n-submanifold property;
F is a diffeomorphism.

The latter is true since the inverse of F : N ′ → N is given in the local
preferred coordinates V ′, π ◦ ψ′ and U ′, ϕ′ by

F̂−1(x1, . . . , xn) = (x1, . . . , xn),

which is clearly C∞.
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Remark

Suppose that N ⊆ M is an (immersed) submanifold.

Let q ∈ N.

Then there is a cubical neighborhood V , ψ of q with

ψ(q) = (0, . . . , 0) ∈ Cm
ε (0) = ψ(V ),

such that the slice S ′ ⊆ V consisting of all points of V whose last
m − n coordinates vanish is:

An open set;
A cubical coordinate neighborhood of the submanifold structure of N ,
with coordinate map

ψ′(r) = π ◦ ψ(r) = (x1(r), . . . , xn(r)).
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One-One Immersion From Compact Domain

It is usually easier to determine that a map from one C∞ manifold
into another is an immersion than to see that it is an imbedding.

So the following theorem is useful.

Theorem

Suppose F : N → M is a one-to-one immersion and N is compact.
Then F is an imbedding and Ñ = F (N) is a regular submanifold.

We know that F is continuous.

Also both N and Ñ, with the subspace topology, are Hausdorff.

So we have a continuous (one-to-one) mapping from a compact space
to a Hausdorff space.
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One-One Immersion From Compact Domain (Cont’d)

A closed subset K of N is compact.

So F (K ) is compact.

Therefore, F (K ) is closed.

Thus, F takes closed subsets of N to closed subsets of Ñ .

Since it is one-to-one onto, it takes open subsets to open subsets also.

It follows that F−1 is continuous.

So F : N → Ñ is a homeomorphism and, therefore, an imbedding.

The rest of the statement follows from the preceding remarks.
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Submanifolds via Maps of Constant Rank

Theorem

Let N be a C∞ manifold of dimension n and M be a C∞ manifold of
dimension m. Let F : N → M be a C∞ mapping. Suppose that F has
constant rank k on N. Let q ∈ F (N). Then F−1(q) is a closed, regular
submanifold of N of dimension n − k .

Let A denote F−1(q).

{q} is a closed subset of M.

A is the inverse image of {q} under a continuous map.

So A is a closed subset.
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Submanifolds via Maps of Constant Rank (Cont’d)

We show A has the submanifold property for the dimension n − k .

Let p ∈ A.

F has constant rank k on a neighborhood of p.

By the theorem on rank we may find coordinate neighborhoods U, ϕ
and V , ψ of p and q, respectively, such that:

ϕ(p) and ψ(q) are the origins in Rn and Rm;
ϕ(U) = C n

ε (0), ψ(V ) = Cm
ε (0);

In local coordinate (x1, . . . , xn) and (y1, . . . , ym), F |U is given by

ψ ◦ F ◦ ϕ−1(x) = F̂ (x1, . . . , xn) = (x1, . . . , xk , 0, . . . , 0).
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Submanifolds via Maps of Constant Rank (Cont’d)

This means that the only points of U mapping onto q are those
whose first k coordinates are zero.

That is,

A ∩ U = ϕ−1(ϕ ◦ F−1 ◦ ψ−1(0))

= ϕ−1(F̂−1(0))

= ϕ−1({x ∈ Cn
ε (0) : x

1 = · · · = xk = 0}).

Hence, A has the submanifold property.

So it is a regular manifold of dimension n − k .

George Voutsadakis (LSSU) Differential Geometry December 2024 111 / 209



Differentiable Manifolds and Submanifolds Submanifolds

Corollary

Corollary

Let F : N → M be a C∞ mapping of manifolds. Suppose

dimM = m < n = dimN,

and rankF = m at every point of A = F−1(a). Then A is a closed, regular
submanifold of N.

At p ∈ A, F has the maximum rank possible, namely m.

By a previous section and the independence of rank on local
coordinates, in some neighborhood of p in N, F has this rank also.

Thus, the rank of F is m on an open subset of N containing A.

But such a subset is itself a (open) manifold of dimension n.

Now we may apply the preceding theorem to that subset.
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Example

Consider the map F : Rn → R defined by

F (x1, . . . , xn) =

n∑

i=1

(x i )2.

It has rank 1 on Rn − {0}.
Moreover, Rn − {0} contains F−1(+1) = Sn−1.

Thus, by the corollary, Sn−1 is an (n − 1)-dimensional submanifold of
Rn.
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Example

Consider the map F : R3 → R given by

F (x1, x2, x3) =
(
a − ((x1)2 + (x2)2)1/2

)2
+ (x3)2.

Its has rank 1 at each point of F−1(b2), a > b > 0.

The locus F−1(b2) is the torus in R3.

So, by the corollary, the torus in R3 is a submanifold.
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Subsection 6

Lie Groups
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Introducing Lie Groups

The space Rn is:

A C∞ manifold;
An Abelian group with group operation given by componentwise
addition.

Moreover the algebraic and differentiable structures are related.

The mapping
(x , y) 7→ x + y

is a C∞ mapping of the product manifold Rn ×Rn onto Rn, that is,
the group operation is differentiable.

We also see that the mapping of Rn onto Rn given by

x 7→ −x (its inverse)

is differentiable.
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Lie Groups

Let G be a group which is at the same time a differentiable manifold.

For x , y ∈ G let:

xy denote their product;
x−1 the inverse of x .

Definition

G is a Lie group provided that the following are both C∞ mappings:

The mapping of G × G → G defined by

(x , y) → xy ;

The mapping of G → G defined by

x → x−1.
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Example

Consider Gl(n,R), the set of nonsingular n × n matrices.

We have seen that it is an open submanifold of Mn(R), the set of
n × n real matrices identified with Rn2 .

Moreover Gl(n,R) is a group with respect to matrix multiplication.

In fact, an n × n matrix A is nonsingular if and only if detA 6= 0.

But we also have
det(AB) = (detA)(detB).

So if A and B are nonsingular, AB is also.

An n× n matrix A is nonsingular, that is, detA 6= 0, if and only if A
has a multiplicative inverse.

Thus Gl(n,R) is a group.
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Example (Cont’d)

Both the maps (A,B) → AB and A → A−1 are Cω.

The product has entries which are polynomials in those of A and B .

These entries are exactly the expressions in local coordinates of the
product map.

So the product map is Cω and, hence, C∞.
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Example (Cont’d)

The inverse of A = (aij) may be written as

A−1 =
1

detA
(ãij),

where:

The ãij are the cofactors of A (thus polynomials in the entries of A);
detA is a polynomial in these entries which does not vanish on
Gl(n,R).

It follows that the entries of A−1 are rational functions on Gl(n,R)
with non-vanishing denominators.

Hence they are Cω (and C∞).

Therefore Gl(n,R) is a Lie group.

A special case is Gl(1,R) = R∗, the multiplicative group of nonzero
real numbers.
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Example

Let C∗ be the set of nonzero complex numbers.

Then C∗ is a group with respect to multiplication of complex
numbers, the inverse being

z−1 =
1

z
.

Moreover, C∗ is a one-dimensional C∞ manifold covered by a single
coordinate neighborhood U = C∗, with coordinate map z → ϕ(z)
given by

ϕ(x + iy) = (x , y), for z = x + iy .
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Example (Cont’d)

Using these coordinates:

The product w = zz ′, z = x + iy , and z ′ = x ′ + iy ′, is given by

((x , y)(x ′, y ′)) → (xx ′ − yy ′, xy ′ + yx ′);

The mapping z → z−1 by

(x , y) →
(

x

x2 + y2
,

−y

x2 + y2

)
.

This means that the two mappings are C∞.

Therefore C∗ is a Lie group.
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Products of Lie Groups

Theorem

Let G1 and G2 be Lie groups. Then the direct product G1 × G2 of these
groups with the C∞ structure of the Cartesian product of manifolds is a
Lie group.

Example (Toral Groups):

The circle S1 may be identified with the complex numbers of absolute
value +1.

We have
|z1z2| = |z1||z2|.

So it is a group with respect to multiplication of complex numbers.

It is actually a subgroup of C∗.
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Products of Lie Groups (Cont’d)

It is a Lie group as can be checked directly or proved as a
consequence of the previous example and the next theorem.

Combining this with the preceding theorem, we see that

T n = S1 × · · · × S1

︸ ︷︷ ︸
n

.

the n-fold Cartesian product, is a Lie group.

It is called the toral group.

Since S1 is Abelian, T n is Abelian also.
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Subgroups as Lie Groups

Theorem

Let G be a Lie group. Let H a subgroup which is also a regular
submanifold. Then, with its differentiable structure as a submanifold, H is
a Lie group.

It can be shown that H × H is a regular submanifold of G × G .

Thus, the inclusion map

F1 : H × H → G × G

is a C∞ imbedding.

Let F2 : G × G → G be the C∞ mapping

(g , g ′) → gg ′.

Let
F = F2 ◦ F1

be the composition.
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Subgroups as Lie Groups (Cont’d)

Then F is a C∞ mapping from H × H → G with image in H.

Let F denote this map considered as a map into H.

It is not the same mapping as F , since we have changed the range.

We must show that F is C∞.

Similarly, we must show that the map H → G , given by taking

h → h−1,

is C∞ as a map onto H.

These facts both follow from the next lemma, which completes the
proof.
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Changing the Codomain

Lemma

Let A and M be C∞ manifolds. Let F : A → M be a C∞ mapping.
Suppose F (A) ⊆ N, N being a regular submanifold of M. Then F is C∞

as a mapping into N.

By hypothesis, N is a regular submanifold of M.

So each point is contained in a preferred coordinate neighborhood.

Let p ∈ A and let q = F (p) be its image.

Let U, ϕ be a neighborhood of p which maps into a preferred
coordinate neighborhood V , ψ of q.

For m = dimM and n = dimN, we have:

ψ(V ) = Cm
ε (0);

ψ(q) = (0, . . . , 0), the origin of Rm;
V ∩ N consists of those points of V whose last m − n coordinates are
zero.

George Voutsadakis (LSSU) Differential Geometry December 2024 127 / 209



Differentiable Manifolds and Submanifolds Lie Groups

Changing the Codomain (Cont’d)

Let (x1, . . . , xp) be the local coordinates in U, ϕ on A.

Then the expression in local coordinates for F is

F̂ (x1, . . . , xp) = (f 1(x), . . . , f n(x), 0, . . . , 0).

That is, f n+1(x) = · · · = f m(x) = 0 since F (A) ⊆ N.

But V ∩ N, π ◦ ψ|V∩N is a coordinate neighborhood of q on N.

So F , considered as a mapping into N, is given in local coordinates by

(x1, . . . , xn) → (f 1(x), . . . , f n(x)).

This is F̂ , followed by projection to the first n coordinates (projection
of Rm to Rn).

Being a composition of C∞ maps, it is, therefore, C∞.
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Remark

The lemma does not hold for immersed submanifolds.

Consider the second figure eight example.

Suppose we map the open interval (−1, 1) by a mapping G into
N = F (R), the figure eight, so that it crosses the origin as shown in
the figure.

Then G is C∞ as a mapping into R2.

But it is not even continuous as a mapping to N.
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Remark (Cont’d)

Thus, N is diffeomorphic to the real line by F : R → N.

Identifying N and R, we may think of G as taking:

Part of the open interval (−1, 1), say (0, 1), onto the real numbers
t > 1;
0 onto 0;
(−1, 0), the remaining part, onto the real numbers t < 1.

The image is not even connected.

So G is not continuous.
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Diffeomorphisms of a Lie Group

We make use of the following naturally defined maps of a Lie group G
onto itself.

(i) x → x−1;
(ii) Left and right translations by a fixed element a of G :

La : G → G , defined by La(x) = ax ;
Ra : G → G , defined by Ra(x) = xa.

These maps are C∞, by the definition of Lie group.

Moreover, they have inverses which are C∞.

So they are, in fact, diffeomorphisms.

The mapping x → x−1 is its own inverse.

Additionally, we have

(La)
−1 = La−1 and (Ra)

−1 = Ra−1.
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Example

Consider
Sl(n,R) = {X ∈ Gl(n,R) : detX = +1}.

It is a subgroup and regular submanifold of Gl(n,R).

Hence, it is a Lie group.

To prove this, we consider the mapping F : Gl(n,R) → R∗,

F (X ) = detX .

According to the product rule,

det(XY ) = (detX )(detY ).

Thus F is a homomorphism onto R∗ = Gl(1,R);

It is also C∞ since it is given by polynomials in the entries.
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Example (Cont’d)

Finally, its rank is constant.

Let A ∈ Gl(n,R), with a = detA.

Let LX , Lx denote left translations in Gl(n,R) and Gl(1,R) = R∗.

Then we have a · det(A−1X ) = detX .

Therefore,
F (X ) = La ◦ F ◦ LA−1(X ).

Now we get, for all A ∈ Gl(n,R),

rankDF (X ) = rank[aDF (A−1X )DLA−1(X )] (chain rule)

= rankDF (A−1X ).
(DLa = a 6= 0 and LA−1 diffeomorphism)

In particular,

rankDF (X ) = rankDF (X−1X ) = rankDF (I ).

Thus, we see that the rank is constant as claimed.
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Example (Cont’d)

By a previous theorem, it follows that Sl(n,R) = F−1(+1) is a
closed, regular submanifold.

It is also a subgroup - in fact the kernel of a homomorphism - by
virtue of the product rule for determinants.

Therefore it is a Lie group.

George Voutsadakis (LSSU) Differential Geometry December 2024 134 / 209



Differentiable Manifolds and Submanifolds Lie Groups

Example

Consider
O(n) = {X ∈ Gl(n,R) : X tX = I},

the subgroup of orthogonal n× n matrices.

It is a regular submanifold and, thus, a Lie group.

Consider the mapping F from Gl(n,R) to Gl(n,R),

F (X ) = X tX , X t = transpose of X .

For A ∈ Gl(n,R), we will show that

rankDF (X ) = rankDF (XA−1).

But any Y ∈ Gl(n,R) can be written in the form Y = XA−1.

It follows that rank DF is constant on Gl(n,R).

To prove this equality we note that

F (XA−1) = L(At)−1 ◦ RA−1 ◦ F (X ).
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Example (Cont’d)

Therefore

DF (XA−1) = DL(At)−1 ◦DRA−1 ◦DF (X ),

where:

DRA−1 is evaluated at F (X );
DL(At)−1 is evaluated at RA−1(F (X )).

Then the equality of rankDF (XA−1) and rankDF (X ) follows as above
from the fact that DL(At)−1 and DRA−1 are everywhere nonsingular.

Now O(n) = F−1(I ), where I is the identity matrix.

So the statement follows from a previous theorem.
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Homomorphisms of Lie Groups

Definition

Let F : G1 → G2 be an algebraic homomorphism of Lie groups G1 and G2.
We shall call F a homomorphism (of Lie groups) if F is also a C∞

mapping.

Example: Let G1 = Gl(n,R) and G2 = R∗ [= Gl(1,R)].

Consider the map F given by

F (X ) = detX .

F : G1 → G2 is a homomorphism.
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Example

Let G1 = R, the additive group of real numbers.

Let G2 = S1, identified with the multiplicative group of real numbers
of absolute value 1.

Consider the mapping
F (t) = e2πit .

F is a homomorphism.
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Example

Similarly, let G1 = Rn be a Lie group with componentwise addition.

Let G2 = T n = S1 × · · · × S1.

Consider the mapping F : Rn → T n given by

F (t1, . . . , tn) = (e2πit1 , . . . , e2πitn ).

F is a homomorphism.

Its kernel is the discrete additive group Zn consisting of all n-tuples of
integers.

It is called the integral lattice of Rn.
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Rank of Homomorphisms of Lie Groups

Theorem

Let F : G1 → G2 be a homomorphism of Lie groups. Then:

The rank of F is constant

The kernel is a closed regular submanifold and, thus, a Lie group;

dimkerF = dimG1 − rankF .

Let a ∈ G1 be arbitrarily chosen.

Let b = F (a) be its image in G2.

Denote by e1, e2 the unit elements of G1,G2, respectively.

Then we may write

F (x) = F (aa−1x) = F (a)F (a−1x) = Lb ◦ F ◦ La−1(x).

So for all a ∈ G1,

DF (a) = DLb(e2) · DLa−1(a).
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Rank of Homomorphisms of Lie Groups (Cont’d)

For all a ∈ G1,
DF (a) = DLb(e2) · DLa−1(a).

Now La−1 and Lb are diffeomorphisms.

Thus, they have nonsingular Jacobian matrices at each point.

The rank of F at a and at e1 is the same.

By a previous theorem, kerF = F−1(e1) is a closed regular
submanifold whose dimension is dimG1 − rankF .

By another theorem, kerF is a Lie group since it is a regular
submanifold (and a group).
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Example

A very useful example of a submanifold which is not regular but is a
subgroup of a Lie group is obtained as follows.

Let T 2 = S1 × S1.

Let F : R2 → T 2 be given by

F (x1, x2) = (e2πix
1
, e2πix

2
).

Then F is a C∞ map of rank 2 everywhere.

Moreover, it is a homomorphism of Lie groups.

The rank may be easily computed at (0, 0).

It is constant by the theorem.
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Example

Let α be an irrational number.

Define G : R → R2 by

G (t) = (t, αt).

G is obviously an imbedding.

Its image is the line through the origin of slope α.

Let F : R2 → T 2 be the map of the preceding slide.

Let
H = F ◦ G : R → T 2.

DH = DF · DG has rank 1, for all t ∈ R.

It follows that H is an immersion of R into T 2
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Example (Cont’d)

Note that H is one-to-one.

Suppose H(t1) = H(t2).

Then e2πit1 = e2πit2 and e2πiαt1 = e2πiαt2 .

However, e2πiu = e2πiv if and only if u − v is an integer.

Clearly t1 − t2 and α(t1 − t2) are both integers only if t1 = t2.

Thus H : R → T 2 is a one-to-one immersion.

So H(R) is an immersed submanifold.

However, the interesting fact is that H(R) is a dense subset of T 2.

So it is about as far from being a regular submanifold.

For example, as a subspace it is not locally connected at any point.
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Example (Cont’d)

We shall prove that H(R) is dense in T 2.

F is continuous and onto.

Thus, a dense subset D of R2 is mapped to a dense subset of T 2.

We will show that D = F−1(H(R)) is dense.

D consists not only of the line of slope α through the origin but of all
lines which can be obtained from it by translation by an integral
vector in either direction.
Let (x1 +m, x2 + n) be a point, with:

m, n integers;
x1 = t, x2 = αt.

We have F (x1, x2) = F (x1 +m, x2 + n).

So (x1 +m, x2 + n) must also be in D.

These lines are all parallel to the given one H(R).

In fact D consists of the union of all lines t → (t +m, αt + n).

That is, all lines with equation x2 = αx1 + (n − αm), n,m ∈ N.
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Example (Cont’d)

Obviously, D is dense on the plane if the y -intercepts (n − αm) form
a dense subset of the y -axis.

Thus, we must show that given α, any real number b, and any ε > 0,
there is a pair of integers n,m with |b − (n − αm)| < ε.

Assume that there exist integers n′,m′ such that 0 ≤ n′ − αm′ < ε;

Since n′ − αm′ is irrational, it must then in fact be positive.

It follows that for some integer k ,

k(n′ − αm′) ≤ b ≤ (k + 1)(n′ − αm′).

This implies

0 < b − k(n′ − αm′) < n′ − αm′ < ε.

Now n − αm = kn′ − αkm′ is a y -intercept of a line of D.

So, since either n′ − αm′ or (−n′)− α(−m′) is nonnegative, the
following fact from number theory completes the proof.
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Example (Cont’d)

If α > 0 is any irrational number, then there exist arbitrarily large
integers n′,m′ such that

∣∣∣∣
n′

m′
− α

∣∣∣∣ <
1

m′2
.

This is asserted by the Kronecker Approximation Theorem.

We remark that H : R → R2 in addition to being a one-to-one
immersion is a homomorphism of Lie groups.

So that R̃ = H(R) is:

A subgroup algebraically;
An immersed submanifold.

It is clearly a Lie group with the manifold structure of R.

However, it is not a regular submanifold nor is it a closed subset.
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Lie Subgroups

Definition

A (Lie) subgroup H of a Lie group G is any algebraic subgroup which is a
submanifold and is a Lie group with its C∞ structure as an (immersed)
submanifold.

Theorem

If H is a regular submanifold and subgroup of a Lie group G , then H is
closed as a subset of G .

It is enough to show that whenever a sequence {hn} of elements of H
has a limit g ∈ G , then g is in H.

Let U, ϕ be a preferred coordinate neighborhood of the identity e

relative to the regular submanifold H.
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Lie Subgroups (Cont’d)

Then the following hold:

ϕ(U) = Cm
ε (0) is a cube with ϕ(e) = 0;

V = H ∩ U consists exactly of those points whose last m − n

coordinates are zero;
ϕ′ = ϕ|V maps V homeomorphically onto this slice of the cube.

Let {h̃n} is a sequence in V = H ∩ U.

Suppose lim h̃n = g̃ , with g̃ ∈ V .

Then the last m − n coordinates of g̃ are also zero.

So g̃ ∈ H ∩ U ⊆ H.
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Lie Subgroups (Cont’d)

Let {hn} be any sequence of H with limhn = g .

Let W be a neighborhood of e small enough so that W−1W ⊆ V ,
where

W−1W = {x−1y ∈ G : x , y ∈ W }.
Such W exist by continuity of the group operations.

There exists N, such that, for n ≥ N, hn ∈ gW .

In particular, hN ∈ gW .

Using group operations, we may verify that:

(i) g̃ = g−1hN ∈ W ;

(ii) lim h̃n = g̃ , where h̃n := h−1
n hN .

But for n ≥ N, h̃n = h−1
n hN lies in (gW )−1gW = W−1W ⊆ V .

Thus, by preceding remarks, g̃ ∈ H.

Hence, g = hN g̃
−1 ∈ H.
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Closed Subgroups

A converse statement is also true:

A Lie subgroup H of a Lie group G that is closed as a subset is
necessarily a regular submanifold.

In fact it is even true that an algebraic subgroup (not assumed to be
an immersed submanifold), which is closed as a subset, is a regular
submanifold.

The proof is complicated and we omit it.

However, it validates the following terminology.

A subgroup H of a Lie group G , which is a regular submanifold, will
be called a closed subgroup of G .
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Subsection 7

The Action of a Lie Group on a Manifold
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Actions of a Group

Definition

Let G be a group and X a set.
Then G is said to act on X (on the left) if there is a mapping

θ : G × X → X

satisfying two conditions:

(i) If e is the identity element of G , then θ(e, x) = x , for all x ∈ X ;

(ii) If g1, g2 ∈ G , then θ(g1, θ(g2, x)) = θ(g1g2, x), for all x ∈ X .

When G is a topological group, X is a topological space, and θ is
continuous, then the action is called continuous.
When G is a Lie group, X is a C∞ manifold, and θ is a C∞ mapping, we
speak of a C∞ action.

Note that a C∞ action is a fortiori continuous.
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Notation

As a matter of notation we shall often write gx for θ(g , x).

So Condition (ii) reads

(g1g2)x = g1(g2x).

For g fixed, we let θg (x) denote the mapping θg : X → X defined by

θg (x) = θ(g , x).

So Condition (ii) may also be written

θg1g2 = θg1 ◦ θg2 .
When we define right action, Conditions (i) and (ii) become:
(i) θ(x , e) = x ;
(ii) θ(θ(x , g1), g2) = θ(x , g1g2).

Usually we are concerned with left action, but in both cases we usually
say G acts on X , and leave the rest to be determined by the context.
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Actions and Permutations

We have θg−1 = (θg )
−1.

θg−1 ◦ θg = θg−1g = θe = iX .

So each mapping θg is one-to-one onto.

This and Condition (ii) show that the following statement holds.

If G acts on a set X , then the map

g → θg

is a homomorphism of G into S(X ), the group of all permutations on
X .

Conversely, any such homomorphism determines an action with

θ(g , x) = θg (x).
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Special Kinds of Actions

We note that the homomorphism is injective if and only if

θg = iX implies g = e.

If this is so, we shall call the action effective.

When the action is effective, G may be identified with a subgroup of
S(X ) by the map g → θg .

The preceding considerations all refer only to the set-theoretic
aspects, since S(X ) has not been topologized.

We also note that if X is a topological space (C∞ manifold), G a
topological group (Lie group), and the action is continuous (C∞),
then each θg is a homeomorphism (diffeomorphism).
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Actions via Homomorphisms

Let H,G be groups.

Let ψ : H → G be a homomorphism.

Then θ : H × G → G defined by

θ(h, x) = ψ(h)x

is a left action.

Indeed, we have:
(i) θ(eH , x) = ψ(eH)x = eGx = x ;
(ii) Moreover,

θ(h1, θ(h2, x)) = θ(h1, ψ(h2)x)

= ψ(h1)(ψ(h2)x)

= (ψ(h1)ψ(h2))x

= ψ(h1h2)x

= θ(h1h2, x).

George Voutsadakis (LSSU) Differential Geometry December 2024 157 / 209



Differentiable Manifolds and Submanifolds The Action of a Lie Group on a Manifold

Actions by Left Translations

Suppose H and G are Lie groups.

Suppose ψ : H → G is a homomorphism of Lie groups.

Then the action θ : H × G → G defined by

θ(h, x) = ψ(h)x

is C∞.

This may be applied to the case where H is a Lie subgroup of G (or
even if H = G ).

In this case ψ is the identity (inclusion) mapping of H into G .

We say that H acts on G by left translations.
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Natural Action of Gl(n,R) on Rn

Let G = Gl(n,R) and X = Rn.
Define θ : G ×Rn → Rn by

θ(A, x) = Ax ,

i.e., multiplication of the n × n matrix A by the n× 1 column vector
obtained by writing x ∈ Rn vertically.

This satisfies Conditions (i) and (ii) rather trivially.
Condition (ii) is associativity (of matrix products):

(AB)x = A(Bx).

Since θ : G ×Rn → Rn is given by polynomials in the entries of
A ∈ Gl(n,R) and x ∈ Rn, it is a C∞-map:

θ


(aij)




x1

...
xn





 =




n∑

j=1

aijx
j


 .
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Natural Action of Gl(n,R) on Rn (Cont’d)

Let H ⊆ Gl(n,R) be a subgroup in the sense of Lie groups.

That is, H has its own Lie group structure such that the inclusion
map i : H → Gl(n,R) is an immersion, or, if H is a closed subgroup,
an imbedding.

Then θ restricted to H defines a C∞ action

θH : H ×R
n → R

n.

This is because:

θH = θ ◦ i , i : H → G the inclusion map;
Both θ and i are C∞.
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Example

Let H ⊆ Gl(2,R) be the subgroup of all matrices of the form

(
a b

0 a

)
, a > 0.

Then H is seen to be a two-dimensional submanifold of Gl(2,R).

Therefore, it is a closed subgroup.

The restriction to H of the natural action of Gl(2,R) on R2 is

θH

((
a b

0 a

)
,

(
x1

x2

))
=

(
ax1 + bx2

ax2

)
.

θH is obviously C∞, as expected.
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Example

Identify En with Rn.

Let d be the usual metric,

d(x , y) =

√√√√
n∑

i=1

(x i − y i)2.

Consider the group G of all rigid motions.

These are diffeomorphisms T : Rn → Rn such that

d(Tx ,Ty) = d(x , y).

They are transformations T of the form

T (x) = Ax + b,

where:
A ∈ O(n), a rotation of Rn about the origin;
b ∈ Rn, inducing a translation taking the origin to b.
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Example (Cont’d)

The group operation is composition of rigid motions.

The group of rigid motions is a Lie group.

It is in one-to-one correspondence with O(n)×Rn.

It takes its manifold structure from this correspondence.

The correspondence is given by assigning to each rigid motion, as
above, the pair (A, b) ∈ O(n)×Rn.

However, G is not a direct product in the group theoretic sense.

Now θ : G ×Rn → Rn is defined by

θ((A, b), x) = Ax + b.

So θ is a C∞ mapping.
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Orbits

Definition

Let a group G act on a set M. Suppose that A ⊆ M is a subset.
Then GA denotes the set

GA = {ga : g ∈ G and a ∈ A}.

The orbit of x ∈ M is the set Gx .
If Gx = x , then x is a fixed point of G .
If Gx = M, for some x , then G said to be transitive on M.
In this case, Gx = M, for all x .
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Example

Consider the natural action of Gl(n,R) on M = Rn.

The origin 0 is a fixed point of Gl(n,R)

Gl(n,R) is transitive on Rn − {0}.
To see this, let x = (x1, . . . , xn) 6= 0.

There is a basis f 1, . . . , f n with x = f 1.

Express these basis elements in terms of the canonical basis

f i =

n∑

j=1

aije j , i = 1, . . . , n.

Then we see that

x = A · e1, A = (aij) ∈ Gl(n,R).

From this it follows that every x 6= 0 is in the orbit of e1.
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Example (Cont’d)

This action is not very interesting from the point of view of its orbits.

However, if we consider this action restricted to various subgroups
G ⊆ Gl(n,R), then the orbits can be quite complicated.

A relatively simple case of this type is obtained by letting G = O(n),
the subgroup of n × n orthogonal matrices in Gl(n,R).

This is a closed subgroup as we have seen.

Moreover, by a previous example, the natural action of Gl(n,R)
restricted to O(n) is a C∞ action.

The orbits are the concentric spheres.

The origin is a fixed point (sphere of radius zero).
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Space of Frames

The same facts from linear algebra that we used above also show that
Gl(n,R) is transitive on the collection B of all bases of Rn.

Given any basis {f 1, . . . , f n}, there exists A ∈ Gl(n,R), such that

A · e i = f i .

In fact, there is exactly one such A.

Let f = {f 1, . . . , f n} and e = {e1, . . . , en} be elements of B.

By the preceding, we may define a left action of Gl(n,R) on B, that
is, a mapping θ : Gl(n,R)× B → B by

θ(A, e) = A · e = f = {Ae1, . . . ,Aen}.
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Space of Frames (Cont’d)

This action is transitive as mentioned.

Moreover, the uniqueness of A (such that A · e = f ) implies that it is
simply transitive.

That is, given bases f , f̃ , there is exactly one A ∈ Gl(n,R), such that

A · f = f̃ .

This means that Gl(n,R) is in one-to-one correspondence with B.

A ∈ Gl(n,R) corresponds to A · e, where e is the canonical basis.

We may use this correspondence to give B the topology and C∞

structure which makes it diffeomorphic to Gl(n,R).

As a C∞ manifold it is called the space of frames of Rn.
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Equivalence Induced By Action

Let G denote a Lie group and M a C∞ manifold.

Assume a C∞ action θ : G ×M → M.

We define a relation ∼ on M by

p ∼ q iff for some g ∈ G , q = θg (p) = gp.

We can show that ∼ is an equivalence relation.
p ∼ p, since p = ep. So ∼ is reflexive.
p ∼ q means q = gp. This implies p = g−1q. Hence, q ∼ p.
So ∼ is symmetric.
p ∼ q and q ∼ r imply q = gp and r = hq. So r = (hg)p.
Hence, p ∼ r . So ∼ is transitive.

Moreover, the equivalence classes coincide with the orbits of G .

Obviously, p ∼ q implies that p and q are on the same orbit.

So the equivalence class [p] ⊆ Gp.

Conversely, if q ∈ Gp, then p ∼ q. So Gp ⊆ [p].
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Orbit Space of an Action

We denote by M/G the set of equivalence classes.

It will always be taken with the quotient topology.

It is often called the orbit space of the action.

With this topology the projection π : M → M/G (taking each x ∈ M

to its orbit) is continuous.

Since the action θ is continuous, π is also open.

Let U ⊆ M be an open set.

Then so is θg (U) for every g ∈ G .

Now GU = [U] =
⋃

g∈G θg (U).

Hence GU, being a union of open sets, is open.
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Orbit Space of an Action (Cont’d)

The orbit space need not be Hausdorff.

But, if it is, then the orbits must be closed subsets of M.

Note that each orbit is the inverse image by π of a point of G/H.

Points are closed in a Hausdorff space.

We shall be particularly interested in discovering examples in which:

M/G is a C∞ manifold;
π : M → M/G a C∞ mapping.
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Example

When M = Rn and G = O(n) acting naturally as a subgroup of
Gl(n,R), then the orbits correspond to concentric spheres.

Thus, they are in one-to-one correspondence with the real numbers
r ≥ 0 by the mapping which assigns to each sphere its radius.

This is a homeomorphism of Rn/O(n) and the ray 0 ≤ r <∞.

This is not a manifold, but it is almost one.
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Example

Let G be a Lie group and H a subgroup (in the algebraic sense).

Then H acts on G on the right by right translations.

If H is a Lie subgroup, then, according to a previous example, this is a
C∞ action.

The set G/H of left cosets coincides with the orbits of this action.

It is, thus, a space with the quotient topology.

The following theorem concerns G/H (with this topology).
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The Set of Left Cosets of a Lie Group

Theorem

The natural map π : G → G/H, taking each element of G to its orbit,
that is, to its left coset, is not only continuous but open.
G/H is Hausdorff if and only if H is closed.

Note that the space G/H, usually called the (left) coset space,
coincides with the orbit space of H acting on G .

So π is continuous and open.

For the last statement, use the C∞ mapping F : G × G → G , with

F (x , y) = y−1x .

F is continuous and F−1(H) is the subset

R = {(x , y) : x ∼ y} ⊆ G × G .

By a previous lemma, R is closed.

G/H is Hausdorff if and only if H is a closed subset of G .
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Stability Group and Free Action

Definition

Let G be a group acting on a set X and let x ∈ X .
The stability or isotropy group of x , denoted by Gx , is the subgroup of
all elements of G leaving x fixed,

Gx = {g ∈ G : gx = x}.

Definition

Let G be a group acting on a set X .
Then G is said to act freely on X if

gx = x implies g = e.

That is, the identity is the only element of G having a fixed point.
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Subsection 8

The Action of a Discrete Group on a Manifold
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The Action of a Discrete Group on a Manifold

By a discrete group Γ we shall mean a group with a countable
number of elements and the discrete topology (every point is an open
set).

The countability means that Γ falls within our definition of a
manifold.

It has a countable basis of open sets;
Each is homeomorphic to a zero-dimensional Euclidean space, i.e., a
point.

Thus Γ is a zero-dimensional Lie group.

In this case to verify that an action θ : Γ× M̃ → M̃ is C∞, we must
show that, for each h ∈ Γ, θh : M̃ → M̃ is a diffeomorphism.

For convenience of notation, we will let h denote θh, writing hx for
θh(x), and so on.
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Set of Orbits and Topology

Suppose that a C∞ action is given.

Consider the set of orbits

M = M̃/Γ,

with the quotient topology.

U ⊆ M is open if and only if π−1(U) is open in M, where

π : M̃ → M

denotes the natural map taking each x to its orbit Γx .

We have seen that π is then continuous and open.
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Discontinuous Group Actions

If M is Hausdorff in the topology, then points are closed sets and the
inverse image of any p ∈ M, that is, the orbit π−1(p), must be closed.

Thus, an obvious necessary condition for M to possess some kind of
reasonable topology and manifold structure is that, for each x ∈ M̃,
the orbit Γx is closed.

However, this condition is not sufficient.

A stronger requirement is the following:

Given any point x ∈ M̃ and any sequence {hn} of distinct elements of

Γ, then {hnx} does not converge to any point of M̃.

A group action with this property is called discontinuous.

Discontinuity is equivalent to the requirement that each orbit be a
closed, discrete subset of M̃.
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Properly Discontinuous Group Actions

In the presence of other conditions, discontinuity is sometimes enough
to ensure that M̃/Γ is Hausdorff.

In general we need the following condition, which is even stronger.

Definition

A discrete group Γ is said to act properly discontinuously on a manifold
M̃ if the action is C∞ and satisfies the following two conditions:

(i) Each x ∈ M̃ has a neighborhood U, such that the following is finite

{h ∈ Γ : hU ∩ U 6= ∅};

(ii) If x , y ∈ M̃ are not in the same orbit, then there are neighborhoods
U, V of x , y , such that U ∩ ΓV = ∅.
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Consequences of Proper Discontinuity

Condition (ii) implies at once that M = M̃/Γ is Hausdorff.

In fact, Condition (ii) is equivalent to the statement that

R = {(x , y) : x ∼ y} ⊆ M ×M is closed.

A consequence of proper discontinuity is the following statement.

(i’) The isotropy group Γx of each x ∈ M̃ is finite, and each x has a
neighborhood U, such that

{
hU ∩ U = ∅, if h 6∈ Γx ,
hU = U, if h ∈ Γx .

This condition is denoted Condition (i’) because it could be used to
replace Condition (i) in the definition.
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Example

Let M = Sn−1, the set

{x ∈ R
n : ‖x‖ = 1}.

Let Γ = Z2, the cyclic group of order 2 with generator h.

Γ consists of h and h2 = e, the identity.

Define an action θ : Z2 × Sn−1 → Sn−1 by setting

h(x) = −x and e(x) = x .

It can be shown that θ : Z2 × Sn−1 → Sn−1 is free and properly
discontinuous.

The quotient space Sn−1/Z2 is none other than real projective n− 1
space Pn−1(R).
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Free and Properly Discontinuous Action

Theorem

Let Γ be a discrete group which acts freely and properly discontinuously on
a manifold M̃. Then there is a unique C∞ structure of differentiable
manifold on M = M̃/Γ (with the quotient topology), such that each
p ∈ M has a connected neighborhood U with the property:

π−1(U) =
⋃

Ũα is a decomposition of π−1(U) into its (open)
connected components and π|

Ũα
is a diffeomorphism onto U for each

component Ũα.

The manifold M is Hausdorff since Γ acts properly discontinuously.

By a previous lemma it has a countable basis of open sets.

Using both Condition (i’) and the assumption that the action is free,
we may find, for each x ∈ M̃, a neighborhood Ũ such that
hŨ ∩ Ũ = ∅ except when h = e.

This implies that π
Ũ
(= π|

Ũ
) is one-to-one onto its image U.
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Free and Properly Discontinuous Action (Cont’d)

We know the mapping π is both continuous and open.

Therefore, π
Ũ
: Ũ → U is a homeomorphism of Ũ to the open set U.

We may assume, without loss of generality, that Ũ is a connected
coordinate neighborhood Ũ, ϕ̃.

Let ϕ = ϕ̃ ◦ π−1

Ũ
.

Then ϕ : U → ϕ̃(Ũ) ⊆ Rn is a homeomorphism.

But every p ∈ M is the image of some x ∈ M̃.

So we see that M is locally Euclidean.

Thus, M is a topological manifold.
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Free and Properly Discontinuous Action (Cont’d)

The coordinate neighborhoods U, ϕ will be called admissible.

The differentiable structure is determined by the admissible
coordinate neighborhoods.

Note that
π−1(U) =

⋃

h∈Γ

hŨ,

a disjoint union of connected open sets each diffeomorphic to Ũ.

Now π : hŨ → U is the same map as π ◦ h−1 : hŨ → U.

So that π|
hŨ

is a diffeomorphism will follow trivially from the fact

that h−1 and π|
Ũ
: Ũ → U are diffeomorphisms.

But, we must first establish that any overlapping admissible
neighborhoods U, ϕ and V , ψ are C∞-compatible, so that they define
a C∞ structure.
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Free and Properly Discontinuous Action (Cont’d)

To prove this let U = π(Ũ) and V = π(Ṽ ), where Ũ, ϕ̃ and Ṽ , ψ̃ are
the corresponding coordinate neighborhoods on M̃.

If p ∈ U ∩ V , then there are points x ∈ Ũ and y ∈ Ṽ (possibly not
distinct), with π(x) = p = π(y).

This implies that x = h(y), for some h ∈ Γ.

Since h is a diffeomorphism, Ṽ1 = h(Ṽ ), with ψ̃1 = ψ̃ ◦ h−1, is a
coordinate neighborhood and

ψ = ψ̃ ◦ π−1

Ṽ
= ψ̃1 ◦ h ◦ π−1

Ṽ
= ψ1 ◦ π−1

Ṽ1
.

However, Ũ, ϕ̃ and Ṽ1, ϕ̃1 are C∞-compatible.

Thus U, ϕ and V , ψ are also compatible.

Because of the requirement that π(Ũ) be a diffeomorphism, no other
C∞ structure is possible.
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Discrete Subgroups

Lemma

Let G be a Lie group. Let Γ be a subgroup which has the property that,
there exists a neighborhood U of e, such that U ∩ Γ = {e}. Then Γ is a
countable, closed subset of G and is discrete as a subspace.

We first show that:

Γ is closed as a subset of G ;
Γ is discrete in the relative topology.

Let V be a neighborhood of e, such that VV−1 ⊆ U.

Such V exists, since the map

(g1, g2) → g1g
−1
2

is continuous and takes (e, e) → e.
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Discrete Subgroups (Cont’d)

Suppose {hn} ⊆ Γ is a sequence, such that lim hn = g .

Now Vg is a neighborhood of g .

So there exists N > 0, such that, for n > N, hn ∈ Vg .

Suppose vn, vm ∈ V so chosen that hn = vng and hm = vmg .

Then hnh
−1
m = vnv

−1
m ∈ U.

From U ∩ Γ = {e} it follows that hnh
−1
m = e.

So hn = hm, for all n,m > N.

Thus g = hN ∈ Γ.

So Γ is closed.

Moreover, for U of the hypothesis and h ∈ Γ, hU is a neighborhood of
h whose intersection with Γ is just h.

This proves the discreteness.

George Voutsadakis (LSSU) Differential Geometry December 2024 188 / 209



Differentiable Manifolds and Submanifolds The Action of a Discrete Group on a Manifold

Discrete Subgroups (Cont’d)

Finally Γ must be countable, since {hV : h ∈ Γ} form a
nonintersecting family of disjoint open sets indexed by Γ.

In fact, suppose h1V ∩ h2V 6= ∅.
Then h1v1 = h2v2 for v1, v2 ∈ V .

This implies h2h
−1
1 = v2v

−1
1 ∈ VV−1 ⊆ U.

So h1 = h2.

Were Γ not countable, this would mean we could not have a
countable basis of open sets.

We remark that a Γ with this property is a closed zero-dimensional
Lie subgroup of G .

Such subgroups are often called simply discrete subgroups.
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Properties of Discrete Subgroups

Theorem

Any discrete subgroup Γ of a Lie group G acts freely and properly
discontinuously on G by left translations.

No other translation than the identity has a fixed point so the action
is free.

To see that it is properly discontinuous we must check Properties (i)
and (ii) of the definition.

Choose U,V neighborhoods of e, as in the proof of the preceding
lemma so that VV−1 ⊆ U and U ∩ Γ = {e}.
Then the only h ∈ Γ such that hV ∩ V 6= ∅ is h = e.

This proves Condition (i).
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Properties of Discrete Subgroups (Cont’d)

To prove Condition (ii) we argue as follows.

Suppose Γx and Γy are distinct orbits.

Then x 6∈ Γy .

Now Γy is closed.

By the regularity of G , there is a neighborhood U of x , such that
U ∩ Γy = ∅.
Let V be a neighborhood of e such that xVV−1 ⊆ U.

Assume the open sets ΓxV and ΓyV intersect.

Then some element of xVV−1 must be in Γy .

This is an immediate contradiction.

Corollary

If Γ is a discrete subgroup of a Lie group G , then the space of right (or
left) cosets G/Γ is a C∞ manifold and π : G → G/Γ is a C∞ mapping.
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Example

Let G = V n, that is, Rn considered as a vector space.

Let Γ = Zn, the n-tuples of integers, called the integral lattice.

More generally one could take for Γ the integral linear combinations
of any basis f 1, . . . , f n of V n.

Γ is a discrete subgroup.

The neighborhood Cn
ε (0) of the origin with ε < 1 does not contain

any element of Γ other than (0, . . . , 0).

V n/Γ = V n/Zn is diffeomorphic to T n = S1 × · · · × S1, the
n-dimensional torus.

Additionally, π is a Lie group homomorphism of V n onto T n.

Its kernel is Γ.
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Example

Any finite subgroup Γ of a Lie group G is a discrete subgroup.

When G is compact, a discrete subgroup must be finite.

But even in this case there are interesting examples.

Consider the case of SO(3) the group of 3× 3 orthogonal matrices of
determinant +1.

The subgroups of symmetries of the five regular solids give examples
among which is the famous icosahedral group, which contains 60
elements.
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Example

In the case of groups which are not compact we have many variations
of the following theme.

Let G0 = Gl(n,R) and Γ0 = Sl(n,Z), the n × n matrices with integer
coefficients and determinant +1.

The topology of G0 is obtained by viewing it as an open subset of Rn2 .

So it is clear that Γ0 corresponds to the intersection of G0 with the
integral lattice Zn2 .

Hence Γ0 is discrete.

Suppose G is a Lie subgroup of G0.

Let Γ = Γ0 ∩ G .

Then Γ is discrete in G .

For an illustration, let:
G be the set of all matrices in Gl(n,R) with +1 on the main diagonal
and zero below;
Γ be its intersection with Sl(n,Z).
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On Compactness

An interesting question about which one can speculate is the
following:

In which, if any, of these cases is G/Γ compact?

Note that it is compact when G = V n and Γ = Zn.

A necessary and sufficient condition for compactness is the existence
of a compact subset K ⊆ G whose Γ-orbit covers G , ΓK = G .

In the first example above, any cube K of side one or greater has this
property.
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Tiling

Note that reflection in a line is a rigid motion of the plane.

In fact, any rigid motion is a product of reflections.

So reflections generate the group of motions of the plane.

For example, the group Γ generated by reflections in the four lines
x = 0, x = 1

2 , y = 0, y = 1 relative to a fixed Cartesian coordinate
system contains the group of translations (x , y) → (x +m, y + n),
m, n integers.

This latter group may be identified with the subgroup Z2 of V 2

discussed above.

The action of Γ leaves unchanged the figure consisting of lines

x =
k

2
, y =

ℓ

2
, k , ℓ integers,

that is, a collection of squares which “tile” the plane.
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Tiling (Cont’d)

Similarly, suppose we tile the plane with other polygons as shown.

We see that the group Γ of reflections in all lines forming edges of
these polygons leaves the whole configuration or tiling unchanged.

We may verify geometrically that the group Γ in these illustrations
acts properly discontinuously.

Is the action free?

This is an important method of obtaining such group actions.
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Subsection 9

Covering Manifolds
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Covering Manifolds

Let M̃ and M be two C∞ manifolds of the same dimension.

Let π : M̃ → M be a C∞ mapping.

Definition

M̃ is said to be a covering (manifold) of M, with covering mapping π, if
it is connected and if each p ∈ M has a connected neighborhood U, such
that

π−1(U) =
⋃

Uα,

a union of open components Uα, with the property that πUα
, the

restriction of π to Uα, is a diffeomorphism onto U.
The U are called admissible neighborhoods and π is called the
projection or covering mapping.
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Examples

M̃ = R covers M = S1 realized as complex
numbers of absolute value +1, with

π(t) = e2πit .

More generally M̃ = Rn covers T n.

Sn−1 covers Pn−1(R).

In a very general way the main theorem of the
preceding section tells us that, if Γ acts freely
and properly discontinuously on M̃, then M̃

covers M = M̃/Γ.

The map π is the obvious one, taking each
x ∈ M̃, to its orbit Γx which is a point of M.

George Voutsadakis (LSSU) Differential Geometry December 2024 200 / 209



Differentiable Manifolds and Submanifolds Covering Manifolds

Covering or Deck Transformations

Let us assume that π : M̃ → M is any covering of a manifold M by a
connected manifold M̃.

We indicate how this may give rise to a group Γ acting freely and
properly discontinuously on M̃.

Definition

A diffeomorphism h : M̃ → M̃ is said to be a covering transformation, or
deck transformation, if π ◦ h = π.

Note that this is equivalent to the requirement that each set π−1(p)
is carried into itself.

If the covering is one arising from a free, properly discontinuous
action of a group Γ on M̃, then each h ∈ Γ is a covering
transformation of the covering π : M̃ → M̃/Γ.
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Group Property of Covering Transformations

We verify at once that the set Γ̃ of all covering transformations is a
group acting on M̃.

It contains at least the identity.

So it is not empty.

Let x ∈ M̃ and p = π(x).

Let U be an admissible neighborhood of p so

π−1(U) =
⋃

Ũα, α = 1, 2, . . . ,

(the collection of mutually disjoint neighborhoods {Ũα} must be
countable).
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Group Property of Covering Transformations (Cont’d)

Let xα = π−1(p) ∩ Ũα.

Then x is one of the xα’s, say x1.

The set of xα’s is exactly π
−1(p) and h : π−1(p) → π−1(p) is a

permutation of this set.

It follows that h(xα) = xα′ and h : Ũα → Ũα′ is a diffeomorphism.

In fact
h|

Ũα
= π−1

Ũ
α′

◦ π
Ũα
.
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Group Property of Covering Transformations (Cont’d)

We can conclude that the points left fixed by h form an open set.

By continuity of h they also form a closed set.

M being connected, this set is empty or h is the identity.

In particular, two covering transformations with the same value on a
point x must be identical.

Thus covering transformations are completely determined by the
permutation α→ α′ they induce on the set of points {xα} = π−1(p)
for an arbitrary (but fixed) point p ∈ M.

In particular, the action of Γ̃ on M̃ is free.

If x1 ∈ π−1(p), then h → hx1 maps Γ̃ into π−1(p).

This mapping is an injection so Γ̃ must be countable.

Also, as a discrete group of diffeomorphisms of M̃, it acts
differentiably on M̃.

This proves, in part, the following theorem.
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Properties of the Action

Theorem

Let M̃ be a covering manifold of M, with covering mapping π.
Let Γ̃ be the set of all covering transformations on M̃.
Then Γ̃ acts freely and properly discontinuously on M̃.
If p ∈ M and Γ̃ is transitive on π−1(p), then M̃/Γ̃ is naturally
diffeomorphic to M. Relative to this diffeomorphism the covering map
π : M̃ → M corresponds to the projection of each x ∈ M̃ to its orbit Γ̃x .

We have already seen that Γ̃ acts on M̃ freely since only the identity
has a fixed point.

We must check (using admissible neighborhoods) that the action is
properly discontinuous.
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Properties of the Action (Cont’d)

Suppose x ∈ M̃ and p = π(x).

Then x ∈ {xα} = π−1(p), say x = x1.

Moreover, if h 6= e, then h(x1) = xβ 6= x1.

So h(Ũ1) = Ũβ, with Ũβ ∩ Ũ1 = ∅.
Thus the first part of proper discontinuity is proved.
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Properties of the Action (Cont’d)

Next, we prove the second part.

Take x , y ∈ M̃ not in the same orbit of Γ̃.

Consider two cases, depending on whether π(x) = π(y) or not.

Suppose π(x) = π(y) and let p = π(x) = π(y).

Note that, in permuting {xα} = π−1(p), no h ∈ Γ̃ takes x = xα to
y = xβ , for α 6= β.

Thus, Ũα is not carried to Ũβ by any h ∈ Γ̃.
This establishes Condition (ii) of the definition in this case.
Suppose π(x) = p and π(y) = q are distinct.
Let U ,V be disjoint admissible neighborhoods of p, q, respectively.
Then the open sets π−1(U) and π−1(V ) are disjoint and carried into

themselves by every h ∈ Γ̃.
So Condition (ii) is satisfied in this case also.

We conclude that the action is properly discontinuous.
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Properties of the Action (Cont’d)

We now define a map
π1 : M̃/Γ̃ → M.

For [y ] a point of M̃/Γ̃, i.e., an orbit Γ̃y of Γ̃,

π1([y ]) = π(y).

This is well-defined, since π(hy) = π(y).

Since M̃ is connected, M̃/Γ̃ is connected.

The mapping π1 is onto, since π : M̃ → M is onto.

Further π1 is a covering map.

To see this one checks the definition of M̃/Γ̃ from the main theorem
of the preceding section.
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Properties of the Action (Cont’d)

Suppose, further, that Γ̃ is transitive on π−1(p), for some p ∈ M.

Then π−1
1 (p) consists of a single point.

This reduces the proof of the last part of the theorem to the following
lemma.

Lemma

Let π : M̃ → M be a covering and suppose that for some p ∈ M,

π−1(p) is a single point.

Then π is a diffeomorphism.

We omit the proof.
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