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Subsection 1

The Tangent Space at a Point on a Manifold

George Voutsadakis (LSSU) Differential Geometry December 2024 3 / 275



Vector Fields on a Manifold The Tangent Space at a Point on a Manifold

Algebra of Functions

Let M denote a C∞ manifold of dimension n.

We have defined for M the concepts of:

C∞ function on an open subset U ;
C∞ mapping to another manifold.

This allows us to consider C∞(U), the collection of all C∞ functions
on the open subset U (including the special case U = M).

We can verify, as we did for U ∈ Rn, that C∞(U) is a commutative
algebra over the real numbers R.

As before, R may be identified in a natural way with the constant
functions and the constant 1 with the unit.
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Germs

Let M denote a C∞ manifold of dimension n.

Let p ∈ M be a given point.

We define C∞(p) as the algebra of C∞ functions whose domain of
definition includes some open neighborhood of p.

In C∞(p), functions are identified if they agree on any neighborhood
of p.

The objects so obtained are called “germs” of C∞ functions.
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Equivalence of Algebras of Germs

Choose an arbitrary coordinate neighborhood U, ϕ of p.

Consider the mapping ϕ∗ : C∞(ϕ(p)) → C∞(p) given by

ϕ∗(f ) = f ◦ ϕ.

It can be verified that ϕ∗ is an isomorphism of the algebra of “germs”
of C∞ functions at ϕ(p) ∈ Rn onto the algebra C∞(p).

This is to be expected since locally M is C∞-equivalent to Rn by the
diffeomorphism ϕ.

Our main purpose is to attach to each p ∈ M a tangent vector space
Tp(M), as was done for Rn and E

n.

Our first definitions in the latter case giving Tp(R
n) as directed line

segments do not generalize.

But the identification of Tp(R
n) with directional derivatives

generalizes.
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Geometric Idea of Tp(M)
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Tangent Space

Definition

We define the tangent space Tp(M) to M at p to be the set of all
mappings Xp : C∞(p) → R satisfying for all α, β ∈ R and f , g ∈ C∞(p)
the two conditions:

(i) Xp(αf + βg) = α(Xpf ) + β(Xpg) (linearity);

(ii) Xp(fg) = (Xpf )g(p) + f (p)(Xpg) (Leibniz Rule),

with the vector space operations in Tp(M) defined by

(Xp + Yp)f = Xpf + Ypf ;
(αXp)f = α(Xpf ).

A tangent vector to M at p is any Xp ∈ Tp(M).

One can check that this defines a vector space Tp(M) at each p ∈ M.
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Remark

The definition of Tp(M) uses only C∞(p), not all of M.

Thus, if U is any open set of M containing p, then Tp(U) and Tp(M)
are naturally identified.

The proof that Tp(M) is a vector space includes the case of Rn.

The difference is that we no longer have the alternative “geometric”
way of defining Tp(M) as pairs of points −→px as we did in Rn.

That method used special features of Rn, namely the existence of a
natural one-to-one correspondence with the vector space V

n.

For manifolds in general, any such correspondence entails a choice of
a coordinate neighborhood and depends on the particular choice.

So, for manifolds, it is not natural in the preceding sense.

However, for each choice of coordinate neighborhood U, ϕ containing
p ∈ M we obtain an isomorphism to V

n, as we shall see.

Using this method, we can establish that dimTp(M) = dimM.
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Tangent Space Homomorphisms

Theorem

Let F : M → N be a C∞ map of manifolds. Then, for p ∈ M, the map
F ∗ : C∞(F (p)) → C∞(p) defined by

F ∗(f ) = f ◦ F

is a homomorphism of algebras. Moreover, it induces a dual vector space
homomorphism F∗ : Tp(M) → TF (p)(N), defined by

F∗(Xp)f = Xp(F
∗f ),

which gives F∗(Xp) as a map of C∞(F (p)) to R.
When F : M → M is the identity, both F ∗ and F∗ are the identity
isomorphism.
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Tangent Space Homomorphisms (Cont’d)

Theorem (Cont’d)

Finally, if H = G ◦ F is a composition of C∞ maps, then

H∗ = F ∗ ◦ G ∗ and H∗ = G∗ ◦ F∗.

The proof consists of checking the statements against definitions.

We omit the verification that F ∗ is a homomorphism.

We only consider F∗ only.

Let Xp ∈ Tp(M) and f , g ∈ C∞(F (p)).

We must prove that the map

F∗(Xp) : C
∞(F (p)) → R

is a vector at F (p).

That is, we must show it is a linear map satisfying the Leibniz rule.
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Tangent Space Homomorphisms (Cont’d)

We have

F∗(Xp)(fg) = XpF
∗(fg)

= Xp[(f ◦ F )(g ◦ F )]
= Xp(f ◦ F )g(F (p)) + f (F (p))Xp(g ◦ F ).

So we obtain

F∗(Xp)(fg) = (F∗(Xp)f )g(F (p)) + f (F (p))F∗(Xp)g .

Linearity is even simpler.

Thus, F∗ : Tp(M) → TF (p)(N).

Further, F∗ is a homomorphism:

F∗(αXp + βYp)f = (αXp + βYp)(F ◦ f )
= αXp(F ◦ f ) + βYp(F ◦ f )
= αF∗(Xp)f + βF∗(Yp)f
= [αF∗(Xp) + βF∗(Yp)]f .
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Remark

The homomorphism F∗ : Tp(M) → TF (p)(M) is often called the
differential of F .

One frequently sees other notations for F∗.

Other notations include dF , DF , F ′, and so on.

The ∗ is a subscript since the mapping is in the same “direction” as
F , that is, from M to N.

In contrast, F ∗ : C∞(F (p)) → C∞(p) goes opposite to the direction
of F .

This notational convention can be quite important and reflects a
similar situation in linear algebra related to linear mappings of vector
spaces and their duals.
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The Case of a Diffeomorphism

Corollary

Let F : M → N be a diffeomorphism of M onto an open set U ⊆ N.
For p ∈ M, F∗ : Tp(M) → TF (p)(N) is an isomorphism onto.

This follows at once from:

The last statement of the theorem;
The remark after the definition of tangent space.

Taking G to be the inverse to F , we get that each of

G∗ ◦ F∗ : Tp(M) → Tp(M),
F∗ ◦ G∗ : TF (p)(N) → TF (p)(N)

is the identity isomorphism on the corresponding vector space.
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The Coordinate Frames

Recall that any open subset of a manifold M is a (sub)manifold of the
same dimension.

Let U, ϕ be a coordinate neighborhood on M.

Then the coordinate map ϕ induces an isomorphism

ϕ∗ : Tp(M) → Tϕ(p)(R
n)

of the tangent space at each point p ∈ U onto Ta(R
n), a = ϕ(p).

Similarly, the map ϕ−1 maps Ta(R
n) isomorphically onto Tp(M).

Consider, now, the natural basis ∂
∂x1

, . . . , ∂
∂xn

at each a ∈ ϕ(U) ⊆ Rn.

The images

Eip = ϕ−1
∗

(
∂

∂x i

)
, i = 1, . . . , n,

determine at p = ϕ−1(a) ∈ M a basis E1p , . . . ,Enp of Tp(M).

We call these bases the coordinate frames.
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Natural Basis

Corollary

To each coordinate neighborhood U on M there corresponds a natural
basis E1p , . . . ,Enp of Tp(M), for every p ∈ U. In particular,

dimTp(M) = dimM.

Let f be a C∞ function defined in a neighborhood of p, and

f̂ = f ◦ ϕ−1

its expression in local coordinates relative to U, ϕ. Then

Eipf =

(
∂ f̂

∂x i

)

ϕ(p)

.
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Natural Basis (Cont’d)

Corollary (Cont’d)

In particular, if x i (q) is the ith coordinate function, Xpx
i is the ith

component of Xp in this basis, that is,

Xp =

n∑

i=1

(Xpx
i )Eip .

The last statement of the corollary is a restatement of the definition
of ∗ for Eip = ϕ−1

∗

(
∂
∂x i

)
.

Namely,

Eipf =

(
ϕ−1
∗

(
∂

∂x i

))
f =

∂

∂x i
(f ◦ ϕ−1)|x=ϕ(p).
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Matrix of F∗ in Local Coordinates

Take f to be the ith coordinate function, f (q) = x i (q).

Moreover, let
Xp =

∑
αjEjp .

Then

Xpx
i =

∑

j

αj (Ejpx
i ) =

∑

j

αj

(
∂x i

∂x j

)

ϕ(p)

= αi .

We may use this to derive a standard formula which gives the matrix
of the linear map F∗ relative to local coordinate systems.
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Matrix of F∗ in Local Coordinates (Cont’d)

Let F : M → N be a smooth map.

Let U, ϕ and V , ψ be coordinate neighborhoods on M and N, with

F (U) ⊆ V .

Suppose that, in these local coordinates, F is given by

y i = f i (x1, . . . , xn), i = 1, . . . ,m.

Let p is a point with coordinates a = (a1, . . . , an).

Then F (p) has y coordinates determined by these functions.

Further let ∂y j

∂x i
denote ∂f j

∂x i
.
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The Coordinate Theorem

Theorem

Let Eip = ϕ−1
∗ ( ∂

∂x i
) and ẼjF (p) = ψ−1

∗ ( ∂
∂y j ), i = 1, . . . , n and j = 1, . . . ,m,

be the basis of Tp(M) and TF (p)(N), respectively, determined by the given
coordinate neighborhoods. Then

F∗(Eip) =
m∑

j=1

(
∂y j

∂x i

)

a

ẼjF (p), i = 1, . . . , n.

In terms of components, if X =
∑
αiEip maps to F∗(Xp) =

∑
βjYjF (p),

then we have

βj =

n∑

i=1

αi

(
∂y j

∂x i

)

a

, j = 1, . . . ,m.

The partial derivatives in these formulas are evaluated at the coordinates
of p: a = (a1, . . . , an) = ϕ(p).
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The Coordinate Theorem (Proof)

We have F∗(Eip) = F∗ ◦ ϕ
−1
∗

(
∂
∂x i

)
ϕ(p)

.

According to the preceding corollary, to compute its components
relative to ẼjF (p), we must apply this vector as an operator on
C∞(F (p)) to the coordinate functions yj ,

F∗(Eip)yj =

(
F∗ ◦ ϕ

−1
∗

(
∂

∂x i

))
yj =

∂

∂x i
yj(F ◦ ϕ−1)(x) =

∂f i

∂x i
,

the derivatives being evaluated at the coordinates of p, i.e., at ϕ(p).

They could also be written
(
∂y j

∂x i

)
ϕ(p)

.
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The Rank of a Mapping

In the following F , M, and N are as in the preceding theorem.

Corollary

The rank of F at p is exactly the dimension of the image of F∗(Tp(M)).
F∗ is an isomorphism into if and only if this rank is the dimension of M.
It is onto if and only if the rank equals dimN.

Note that (∂y
i

∂x j
) is exactly the Jacobian of ψ ◦ F ◦ ϕ−1.

This matrix was used to define the rank.

It is also the matrix of the linear transformation F∗ : Tp(M) → Tp(N)
in the given bases.

So we obtain the conclusion from linear algebra.

This corollary gives a characterization of the rank which is
independent of any coordinate systems.
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Change of Basis Formulas

We apply the theorem to the maps

F = ϕ̃ ◦ ϕ−1 and F−1 = ϕ ◦ ϕ̃−1.

These maps give the change of coordinates between U, ϕ and Ũ, ϕ̃ in
U ∩ Ũ on M.

We obtain formulas for:

Change of basis in Tp(M);
Corresponding change of components relative to these bases.
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Change of Basis Formulas (Cont’d)

Corollary

Let p ∈ U ∩ Ũ and let Eip = ϕ−1
∗

(
∂
∂x i

)
and Ẽip = ϕ̃−1

∗

(
∂
∂x i

)
be the bases

of Tp(M) corresponding to the two coordinate systems. Then with indices
running from 1 to n, we have

Eip =
∑

k

(
∂xk

∂x i

)

ϕ(p)

Ẽkp and Ẽjp =
∑

ℓ

(
∂xℓ

∂x̃ j

)

ϕ̃(p)

Eℓp.

If Xp =
∑
αiEip =

∑
βj Ẽjp, then

αi =
∑

j

βj
∂x i

∂x̃ j
and βj =

∑

i

αi ∂x̃
j

∂x i
.
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Tangent Vector

The second set of formulas in the preceding corollary is often used to
define tangent vector at a point p of a manifold.

A tangent vector Xp is an equivalence class of the collection of all
n-tuples

{(α1, . . . , αn)(U,ϕ) : α
i ∈ R,U, ϕ a coordinate neighborhood of p}.

Two such n-tuples

(α1, . . . , αn)U,ϕ and (β1, . . . , βn)
Ũ,ϕ̃

are equivalent if they are related as in the last formula of the corollary.
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The Case of Submanifolds

Let M be a submanifold of N.

Let F : M → N be the immersion or inclusion map of M into N.

In either case, the mapping F from M (with its C∞ manifold
structure) into N (with its C∞ structure) is a C∞ mapping, and

rankF = dimM.

This means that F∗ : Tp(M) → Tp(N) is an injective isomorphism.

So Tp(M) can be identified with a subspace of Tp(N).

Under this identification, we can think of Tp(M), the tangent space
to M, as a subspace in Tp(N) for each p ∈ M.

Applying this principle to our examples of submanifolds of Rn,
especially when n = 2 or 3, will enable us to recapture some of the
intuitive meaning of tangent vector which was lost in the transition
from Euclidean space to general manifolds.
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Example

Let M = (a, b) be an open interval of R.

Consider the case of a C∞ curve F : M → N in a manifold.

For the moment we drop the requirement that F is an immersion.

Given t0 ∈ M, a < t0 < b, then d
dt

taken at t0 is a basis for Tt0(M).

Suppose p = F (t0) and f ∈ C∞(p).

Then F∗(
d
dt
) is determined by its value on all such f :

F∗

(
d

dt

)
f =

(
d

dt
(f ◦ F )

)

t0

.

We call this vector the (tangent) velocity vector to the curve at p.

In this interpretation we use the parameter t ∈ R as time, and we
think of F (t) as a point moving in N.
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Example (Illustration)
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Example (Cont’d)

Let U, ϕ be coordinates around p.

Then, in the local coordinates, F is given by

F̂ (t) = ϕ ◦ F (t) = (x1(t), . . . , xn(t)).

The ith coordinate x i is a function on U.

Using somewhat sloppy notation, we write x i (t) = (x i ◦ F )(t);

Thus, F∗(
d
dt
)x i = (dx

i

dt
)t0 , which we denote

ẋ i (t0), i = 1, . . . , n.

So by the theorem (with Eip = d
dt

and E ’s replacing Ẽ ’s),

F∗

(
d

dt

)
=

n∑

i=1

ẋ i(t0)Eip .
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Example (Special Case)

As a special case let N = Rn.

Take the usual (canonical) coordinates of Rn

The formula means that the image of d
dt

is just the velocity vector at
the point p = (x1(t0), . . . , x

n(t0)) of the curve.

Its components relative to the natural basis at the point p are
ẋ1(t0), . . . , ẋ

n(t0);

It is the vector of Tp(R
n) whose:

Initial point is p = x(t0);
Terminal point is (x1(t0) + ẋ1(t0), . . . , x

n(t0) + ẋn(t0)).

If the rank of F at t0 is 1, then F∗ is an isomorphism.

Then, we may identify the tangent space to the image curve at p with
the subspace of Tp(R

n) spanned by this vector.

Thus, we obtain the usual tangent line at the point p of the curve.

If the rank of F at t0 is 0, then F∗(
d
dt
) = 0.
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Example

Let M be a two-dimensional submanifold of R3, that is, a surface.

Let W be an open subset, say a rectangle in the (u, v)-plane R2.

Let θ : W → R
3 be a parametrization of a portion of M, that is, θ is

an imbedding whose image is an open subset V of M.

V , θ−1 is a coordinate neighborhood on M.

Suppose θ(u0, v0) = (x0, y0, z0), where we now use (x , y , z) as the
natural coordinates in R3.

We may assume that θ is given by coordinate functions

x = f (u, v), y = g(u, v), z = h(u, v).

Since θ is an imbedding, the Jacobian matrix ∂(f ,g ,h)
∂(u,v) has rank 2 at

each point of W .

We consider the image of the basis vectors ∂
∂u

and ∂
∂v

at (u0, v0).

We denote these by (Xu)0 and (Xv )0.
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Example (Illustration)
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Example (Cont’d)

According to the first formula of the theorem,

(Xu)0 = θ∗(
∂
∂u

) = ∂x
∂u

∂
∂x

+ ∂y
∂u

∂
∂y

+ ∂z
∂u

∂
∂z
,

(Xv )0 = θ∗(
∂
∂v

) = ∂x
∂v

∂
∂x

+ ∂y
∂v

∂
∂y

+ ∂z
∂v

∂
∂z
,

where we have written ∂x
∂u
, ∂x
∂v

for ∂f
∂u
, ∂f
∂v

, and so on, these derivatives
being evaluated at u0, v0.

Since θ∗ has rank 2, these are linearly independent vectors.

So they span a two-dimensional subspace of T(x0,y0,z0)(R
3).

This subspace is what we have, by our identification, agreed to call
the tangent space of M at the point (x0, y0, z0).
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Example (Cont’d)

The tangent space T(x0,y0,z0)(R
3) of M at the point (x0, y0, z0)

consists of all the vectors of the form

αθ∗

(
∂

∂u

)
+ βθ∗

(
∂

∂v

)
= α(Xu)0 + β(Xv )0, α, β ∈ R.

Their initial point, of course, is always at (x0, y0, z0).

It can be seen that this subspace is the usual tangent plane to a
surface, as we would naturally expect it to be.

We next use one of the standard descriptions of the tangent plane at
a point p of a surface M in R3 as the collection of all tangent vectors
at p to curves through p which lie on M.
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Example (Cont’d)

Let I be an open interval about t = t0.

Let us consider a curve on N through (x0, y0, z0).

It is no loss of generality to suppose the curve is given by F : I → W

composed with θ : W → R
3.

Thus, u, v are functions of t with:
u(t0) = u0, v(t0) = v0;
θ(F (t)) = (x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))).

The tangent to the curve at (x0, y0, z0) is given by

(θ ◦ F )∗

(
d

dt

)
= ẋ(t0)

∂

∂x
+ ẏ(t0)

∂

∂y
+ ż(t0)

∂

∂z
,

where

ẋ(t0) =

(
dx

dt

)

t0

=
∂x

∂u

du

dt
+
∂x

∂v

dv

dt
,

evaluated at (x0, y0, z0) and t = t0.
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Example (Cont’d)

Substituting and collecting terms, we have

(θ ◦ F )∗(
d
dt
) = du

dt
(∂x
∂u

∂
∂x

+ ∂y
∂u

∂
∂y

+ ∂z
∂u

∂
∂z
)

+ dv
dt
(∂x
∂v

∂
∂x

+ ∂y
∂v

∂
∂y

+ ∂z
∂v

∂
∂z
)

= du
dt
θ∗(

∂
∂u
) + du

dt
θ∗(

∂
∂v

)

= u̇(t0)(Xu)0 + v̇(t0)(Xv )0.

If we let u = t, v = v0, we obtain just (Xu)0 = θ∗(
∂
∂u

).

Similarly, (Xv )0 is tangent to the parameter curve u = u0, v = t.

The coordinate frame vectors are tangent to the coordinate curves.

This means that the (tangent) velocity to every curve in M through
p = (x0, y0, z0) lies in the subspace Tp(M) ⊆ Tp(R

3) spanned by
(Xu)0 and (Xv )0.

Conversely, by suitable choice of the curve, every vector of Tp(M)
may be so represented.
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Subsection 2

Vector Fields

George Voutsadakis (LSSU) Differential Geometry December 2024 37 / 275



Vector Fields on a Manifold Vector Fields

Introducing Vector Fields

We defined the notion of a tangent vector to a manifold at a point
p ∈ M, that is, of an element Xp of Tp(M).

Now we define and give examples of a C r -vector field on M, r ≥ 0.

A vector field X on M is a “function” assigning
to each point p of M an element Xp of Tp(M).

We place the word “function” in quotation
marks since we have not really defined its range,
only its domain M.

The range is, in fact, the set T (M) consisting of
all tangent vectors at all points of M,

T (M) =
⋃

p∈M

Tp(M).
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Partition Property of Vector Fields

The set T (M) is partitioned into disjoint subsets {Tp(M)} which are
indexed by the points of M.

That is, to p ∈ M corresponds its tangent space Tp(M).

It follows that there is a natural projection

π : T (M) → M;
Xp 7→ p.

The vector field X as a function X : M → T (M), must satisfy the
condition

π ◦ X = iM ,

the identity on M.
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Regularity of Vector Fields

A vector field X is also required to satisfy some condition of
regularity, that is, of continuity or differentiability.

For p ∈ M, let U, ϕ be any coordinate neighborhood of p.

Let E1p, . . . ,Enp be the corresponding basis (coordinate frames) of
Tp(M).

Then Xp, the value of X at p, may be written uniquely as

Xp =
n∑

i=1

αiEip.
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Regularity of Vector Fields (Cont’d)

Suppose p varies in U.

Then the components α1, . . . , αn are well-defined functions of p.

They must, then, be given by functions of the local coordinates
(denoted by the same letters)

α1 = αi (x1, . . . , xn), i = 1, . . . , n, on ϕ(U) ⊆ Rn.

We say that X is of class C r , r ≥ 0, if these functions are of class C r

on U, for every local coordinate system U, ϕ.

The expressions, given in a previous corollary, for changing coordinate
systems are linear, with C∞ coefficients.

We see that this definition is independent of the coordinates used.
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Vector Fields

Definition

A vector field X of class C r on M is a function assigning, to each point
p of M, a vector

Xp ∈ Tp(M)

whose components in the frames of any local coordinates U, ϕ are
functions of class C r on the domain U of the coordinates.
Unless otherwise noted, we will use vector field to mean C∞-vector field.
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Alternative Definitions of Vector Fields

One way to avoid reliance on local coordinates is to define X to be
C r if, for every C∞ function f whose domain Wf is an open subset of
U, the function Xf , defined by

(Xf )(p) = Xpf ,

is of class C r .

Another very elegant approach is to:

Give T (M) the structure of a C∞ manifold;
Then X becomes a mapping

X : M → T (M)

of one C∞ manifold to another.

In this case we have already defined the meaning of C r .
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Example

Let M = R3 − {0}.

Consider the gravitational field of an object of unit mass at 0.

It is a C∞-vector field.

Consider the basis

∂

∂x1
= E1,

∂

∂x2
= E2,

∂

∂x3
= E3.

The components α1, α2, α3 relative to this basis are

αi =
x i

r3
, i = 1, 2, 3,

where

r =
√

(x1)2 + (x2)2 + (x3)2.
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Example

Let M be a manifold.

Let U, ϕ be a coordinate neighborhood on M.

Then U is an open set of M.

So it is itself a manifold of the same dimension, say n.

Consider the vector fields

Ei = ϕ−1
∗

(
∂

∂x i

)
, i = 1, . . . , n.

They have components αj = δji .

These are constants.

Hence, they are C∞ functions on U.

So each Ei is a C∞-vector field on U.

The set E1, . . . ,En is a basis of Tp(M) at
each p ∈ U, the coordinate frames.
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Field of k-Frames

Consider a manifold M, with dimM = n.

A set of k vector fields on M which is linearly independent at each
point is called a field of k-frames on M.

If k = n, then the frames form a basis at each point.

It would be convenient if on a manifold one could always find such a
field of n-frames.

Then the components of any vector field would be globally defined.

That is, they would be functions whose domain is all of M.
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Field of k-Frames (Cont’d)

This would relieve us of the necessity of using local coordinate
neighborhoods and the associated frames E1, . . . ,En.

However, it is known that this is not possible in general.

For example, on the sphere S2 it is not possible to define even one
continuous vector field X which is linearly independent (nonzero) at
each point of S2.

This a classical theorem of algebraic topology discovered by Brouwer
that will be proved later.
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Vector Fields on Regular Submanifolds

Lemma

Let M be a manifold. Let N be a regular submanifold of M. Let X be a
C∞-vector field on M, such that, for each p ∈ N, Xp ∈ Tp(N). Then X

restricted to N is a C∞-vector field on N.

By hypothesis, X assigns to each p ∈ N the tangent vector Xp in the
subspace Tp(N) of Tp(M).

We must prove that X restricted to N is of class C∞.

Let U, ϕ be a preferred coordinate neighborhood in M relative to N.

So V = U ∩ N, ψ = ϕ|V is a coordinate neighborhood on N, such
that p ∈ V if and only if its last m − n coordinates are zero,

xn+1(p) = · · · = xm(p) = 0, dimN = n, dimM = m.
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Vector Fields on Regular Submanifolds (Cont’d)

Suppose on U we have X =
∑m

i=1 α
iEi .

By a previous corollary, E1p , . . . ,Emp span Tp(N) for p ∈ V .

So, on V = U ∩ N, we must have

αn+1 = · · · = αm = 0.

The αi are the same functions as in the case of U but with the last
m − n variables equated to zero when we restrict to V .

Thus, X restricted to N has C∞-components relative to the frames
E1, . . . ,En of preferred coordinate systems.

However, by a previous corollary, it is clearly sufficient to check that
X is C∞ for a covering by coordinate neighborhoods.

It must then be C∞ relative to any coordinates.
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Vector Fields on a Manifold Vector Fields

Example

On the 2-sphere S2, there do not exist any nonvanishing continuous
vector fields.

However, there are three mutually perpendicular unit vector fields on
S3 ⊆ R4, that is, a frame field.

Let

S3 =

{
(x1, x2, x3, x4) :

4∑

i=1

(x i )2 = 1

}
.

Let the vector fields be given by

X = −x2 ∂
∂x1

+ x1 ∂
∂x2

+ x4 ∂
∂x3

− x3 ∂
∂x4

,

Y = −x3 ∂
∂x1

− x4 ∂
∂x2

+ x1 ∂
∂x3

+ x2 ∂
∂x4

,

Z = −x4 ∂
∂x1

+ x3 ∂
∂x2

− x2 ∂
∂x3

+ x1 ∂
∂x4

,

at the point x = (x l , x2, x3, x4) of S3.
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Vector Fields on a Manifold Vector Fields

Example (Cont’d)

At each point these are mutually orthogonal unit vectors in R4.

So they are independent.

It can be seen that they are orthogonal to the radius vector from the
origin 0 to the point x of S3.

This shows that they are tangent to S3.

Finally, by the preceding lemma with N = S3 and M = R4, they are
C∞-vector fields.
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Parallelizable Manifolds

It is possible to show that all odd-dimensional spheres have at least
one nonvanishing C∞-vector field.

Moreover, like S2, no even-dimensional sphere has any continuous
nonvanishing field of tangent vectors.

It has been proved that only the spheres S1,S3,S7 have a C∞ field of
bases, as we have just seen to be the case for S3.

Manifolds with this very special property are called parallelizable.

As already mentioned, coordinate neighborhoods are parallelizable.
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Situation with Mappings

We have established the concept of vector field on a manifold.

We must now consider what happens when we map a manifold N on
which a vector field is defined into another manifold M.

We saw that if F : N → M is a C∞ map, then to each point p ∈ M

there is associated a homomorphism

F∗ : Tp(N) → TF (p)(M).

If X is a vector field on N, then F∗(Xp) is a vector at F (p).

But this process does not, in general, induce a vector field on M:

F (N) may not be all of M , that is, given q ∈ M it may well happen
that for no p ∈ N is F (p) = q.
Even if F−1(q) is not empty, it may contain more than one element,
say p1, p2, with p1 6= p2. Then it may happen that F∗(Xp1) 6= F∗(Xp2).
So that there would be no uniquely determined vector Yq at q which is
the image of vectors of the field X on N .
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Vector Fields on a Manifold Vector Fields

Example

It is easy to construct examples of these mishaps.

Let N be the half-space x1 > 0 in R3.

Let F : N → M be projection to the coordinate plane x3 = 0.

Let X be the gravitational field restricted to N.

The image vectors do not determine a vector field on M.
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Related Vector Fields

Definition

Let N and M be manifolds.
Let F : N → M be a C∞ map.
Let X be a vector field on N.
Suppose we have a vector field Y on M, such that, for each q ∈ M and
p ∈ F−1(q) ⊆ N,

F∗(Xp) = Yq.

Then we say that the vector fields X and Y are F -related and we write,
briefly,

Y = F∗(X ).

We do not require F to be onto. If F−1(q) is empty, then the condition is
vacuously satisfied.
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Diffeomorphisms and Related Vector Fields

Theorem

If F : N → M is a diffeomorphism, then each vector field X on N is
F -related to a uniquely determined vector field Y on M.

Since F is a diffeomorphism, it has an inverse G : M → N.

Moreover, at each point p we have

F∗ : Tp(N) → TF (p)(M)

is an isomorphism onto, with G∗ as inverse.

Let X be a C∞-vector field on N.

Then, at each point q of M, the vector

Yq = F∗(XG(q))

is uniquely determined.
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F -Related Vector Fields (Cont’d)

It then remains to check that Y is a C∞-vector field.

This is immediate if we:

Introduce local coordinates;
Apply a previous theorem to the component functions.

Remark: Under the hypotheses of the lemma we have a second
example of F -related vector fields.

Let F : N → M be the inclusion map.

Let X ′ be X restricted to N.

Then X ′ and X are F -related by the lemma.
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Invariance With Respect to a Diffeomorphism

Definition

Let F : M → M be a diffeomorphism. Let X be a C∞ vector field on M,
such that

F∗(X ) = X ,

that is, X is F -related to itself. Then X is said to be invariant with

respect to F or F -invariant.
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Lie Groups and Invariance Under Translations

Theorem

Let G be a Lie group and Te(G ) the tangent space at the identity. Then
each Xe ∈ Te(G ) determines uniquely a C∞-vector field X on G which is
invariant under left translations. In particular, G is parallelizable.

Let g ∈ G .

Consider the unique left translation Lg taking e to g .

Therefore, if it exists, X is uniquely determined by the formula

Xg = Lg∗(Xe).

Except for differentiability, this formula does define a left invariant
vector field, since for a ∈ G , we have

La∗(Xg ) = La∗ ◦ Lg∗(Xe) = Lag∗(Xe) = Xag .
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Lie Groups and Invariance Under Translations (Cont’d)

We must show that X , so determined, is C∞.

Let U, ϕ be a coordinate neighborhood of e, such that

ϕ(e) = (0, . . . , 0).

Let V be a neighborhood of e satisfying VV ⊆ U.

Let g , h ∈ V have coordinates

x = (x1, . . . , xn) and y = (y1, . . . , yn).

Let the coordinates of the product gh be

z = (z1, . . . , zn).

Then
z i = f i (x , y), i = 1, . . . , n,

are C∞ functions on ϕ(V )× ϕ(V ).
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Lie Groups and Invariance Under Translations (Cont’d)

Write

Xe =

n∑

i=1

γiEie , γ1, . . . , γn real numbers.

In local coordinates Lg is given by

z i = f i (x , y), i = 1, . . . , n,

with the coordinates x of g fixed.

So, by a previous theorem, the formula above for Xg becomes

Xg = Lg∗(Xe) =
∑

γj
(
∂f i

∂y j

)

(x ,0)

Eig .

It follows that, on V , the components of Xg in the coordinate frames
are C∞ functions of the local coordinates.
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Lie Groups and Invariance Under Translations (Cont’d)

However, for any a ∈ G , the open set aV is the diffeomorphic image
by La of V .

Moreover, X , as noted above, is La-invariant.

So, for every g = ah ∈ aV , we have

Xg = La∗(Xh).

It follows that X on aV is La-related to X on V .

Therefore, X is C∞ on aV by the previous theorem.

But X is C∞ in a neighborhood of each element of G .

So X is C∞ on G .
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Lie Group Homomorphisms and Invariant Vector Fields

Corollary

Let G1 and G2 be Lie groups and F : G1 → G2 a homomorphism. Then to
each left-invariant vector field X on G1, there is a uniquely determined
left-invariant vector field Y on G2 which is F -related to X .

By the theorem, X is determined by Xe1 , where e1 is the identity of
G1.

Let e2 = F (e1) be the identity of G2.

Let Y be the uniquely determined left-invariant vector field on G2,
such that

Ye2 = F∗(Xe1).

This is certainly a necessary condition for Y to be F -related to X .

It remains to see whether Y satisfies

F∗(Xg ) = YF (g), for every g ∈ G1.
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Proof (Cont’d)

We must show that the vector field Y satisfies

F∗(Xg ) = YF (g), for every g ∈ G1.

If so, Y is indeed F -related (and uniquely determined).

We have F (x) = F (g)F (g−1x).

Using this, we write F as a composition

F = LF (g) ◦ F ◦ Lg−1 .

Now both X and Y are left-invariant by assumption.

So this gives

F∗(Xg ) = LF (g)∗ ◦ F∗ ◦ Lg−1∗(Xg ),

F∗(Xg ) = LF (g)∗ ◦ F∗(Xe) = LF (g)∗Ye2,

F∗(Xg ) = YF (g).

Therefore, Y meets all conditions and the corollary is true.
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Subsection 3

One-Parameter Groups Acting on a Manifold
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Vector Fields on a Manifold One-Parameter Groups Acting on a Manifold

Introduction

We study the case of a connected Lie group of dimension 1 acting on
a manifold M.

When we looked at the case of a Lie group of dimension 0 we focused
in the space of orbits.

Here we are mainly concerned with the relation to vector fields on M.

For this reason we shall limit ourselves to the action of R , by which
we denote the additive (Lie) group of real numbers R, acting on M.

This will illustrate all the relevant facts.

We note that R and S1 are the only connected Lie groups of
dimension 1.

These two cases, discrete Lie groups and the one-dimensional Lie
group R acting on M, will give some idea of the depth and diversity
of the whole subject of group action on manifolds.
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The Action

Consider the general definition of action specialized to an action θ of
R on M.

Let
θ : R ×M → M

be a C∞ mapping which satisfies the two conditions:

(i) θ0(p) = p, for all p ∈ M ;
(ii) θt ◦ θs(p) = θt+s(p) = θs ◦ θt(p), for all p ∈ M and s, t ∈ R .

We will often write θ(t, p) as θt(p) or θp(t), depending on which
variable is to be emphasized.
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Example: Translations

Suppose that M = R3.

Let a = (a1, a2, a3) be fixed and different from 0.

Consider the mapping

θt(x) = (x1 + a1t, x2 + a2t, x3 + a3t).

It defines a C∞ action of R on M.

To each t ∈ R , it assigns the translation θt : R
3 → R

3, taking the
point x to the point x + ta.

This is a free action.

The orbits consist of straight lines parallel to the vector a.

A particularly simple special case is given by a = (1, 0, 0).

Then
θt(x) = (x1 + t, x2, x3).
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Infinitesimal Generator of an Action

Suppose that θ : R ×M → M is any such C∞ action.

It defines on M a C∞-vector field X , which we shall call the
infinitesimal generator of θ, according to the following prescription.

For each p ∈ M, Xp : C∞(p) → R is given by

Xpf = lim
∆t→0

1

∆t
[f (θ∆t(p))− f (p)].

We may check directly that Xp is a vector at p.

We may then verify that p → Xp defines a vector field.

George Voutsadakis (LSSU) Differential Geometry December 2024 69 / 275



Vector Fields on a Manifold One-Parameter Groups Acting on a Manifold

Infinitesimal Generator of an Action (Cont’d)

Alternatively, we may proceed as follows

Let U, ϕ be a coordinate neighborhood of p ∈ M.

Let Iδ × V be an open subset of (0, p) in R ×M, where:

I = {t ∈ R : −δ < t < δ};
V and δ > 0 are so chosen that

θ(Iδ × V ) ⊆ U .

In particular, V = θ0(V ) is contained in U and contains p.
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Infinitesimal Generator of an Action (Cont’d)

Restricted to the open set Iδ × V , we may write θ in local coordinates

y1 = h1(t, x1, . . . , xn), . . . , yn = hn(t, x1, . . . , xn)

or y = h(t, x), where:

x = (x1, . . . , xn) are the coordinates of q ∈ V ;
y = (y1, . . . , yn) are the coordinates of θt(q), its image.

The hi are defined and C∞ on Iδ × ϕ(V ).

The range of h(t, x) is in ϕ(U).

The fact that θ0 is the identity and θt1+t2 = θt1 ◦ θt2 is reflected in
having, for all i = 1, . . . , n,

hi (0, x) = x i ;
hi (t1 + t2, x) = hi (t1, h(t2, x)).
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Infinitesimal Generator of an Action (Cont’d)

Let f̂ (x1, . . . , xn) be the local expression for f ∈ C∞(p)

Then
1

∆t
[f (θ∆t(p))− f (p)] =

1

∆t
[f̂ (h(∆t, x))− f̂ (x)].

Let dot indicate differentiation with respect to t.

Then, we also have

Xpf = lim
∆t→0

1

∆t
[f̂ (h(∆t, x))− f̂ (x)] =

n∑

i=1

ḣi (0, x)

(
∂ f̂

∂x i

)

ϕ(p)

.

This formula is valid for every p ∈ V .
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Infinitesimal Generator of an Action (Cont’d)

We obtained, for all p ∈ V ,

Xpf =

n∑

i=1

ḣi (0, x)

(
∂ f̂

∂x i

)

ϕ(p)

.

The formula implies that on V ;

Xp =
∑

ḣi(0, x)Eip ,

where:
Ei = ϕ−1

∗
( ∂
∂x i

);
x = ϕ(p).

This shows that X is a C∞-vector field over V .
But every point of M lies in such a neighborhood.
So X is C∞ on M.

Definition of X at p ∈ M involves only the values of θ on Iδ × V .
That is, like derivatives in general, it is defined locally and involves
only values of t near t = 0.
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Invariance

Definition

Let θ : G ×M → M be the action of a group G on a manifold M.
Let X be a vector field on M.
X is said to be invariant under the action of G or G -invariant if X is
invariant under each of the diffeomorphisms

θg : M → M.

In brief if
θg∗(X ) = X .
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Invariance of the Infinitesimal Generator

Theorem

Let θ : R ×M → M be a C∞ action of R on M.
Then the infinitesimal generator X is invariant under this action, that is,

θt∗(Xp) = Xθt (p), for all t ∈ R .

Let f ∈ C∞(θt(p)), for some (t, p) ∈ R ×M.

Compute θt∗(Xp)f ,

θt∗(Xp)f = Xp(f ◦ θt) = lim
∆t→0

1

∆t
[f ◦ θt(θ∆t(p))− f ◦ θt(p)].

But R is Abelian and we have θt ◦ θ∆t = θt+∆t = θ∆t ◦ θt .

So

θt∗(Xp)f = lim
∆t→0

[(f ◦ θ∆t)(θt(p))− f (θt(p))] = Xθt(p)f .

Since this holds for all f , the result follows.
George Voutsadakis (LSSU) Differential Geometry December 2024 75 / 275



Vector Fields on a Manifold One-Parameter Groups Acting on a Manifold

Vanishing and Orbits

Corollary

If Xp = 0, then for each q in the orbit of p we have Xq = 0.
That is, at the points of an orbit the associated vector field vanishes
identically or is never zero.

The orbit of p consists of all q such that q = θt(p) for some t ∈ R .

Thus, by the theorem,
Xq = θt∗Xp.

Now θt is a diffeomorphism.

So θt∗ is an isomorphism of Tp(M) onto Tq(M).

So Xq = 0 if and only if Xp = 0.
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Orbits as Immersions

Theorem

The orbit of p is either a single point or an immersion of R in M by the
map t → θt(p), depending on whether or not Xp = 0.

The orbit of p is the image of R under the C∞ map

F : R → M;
t 7→ θt(p).

Let t0 ∈ R and d
dt

denote the standard basis of Tt0(R).

F is an immersion if and only if

F∗

(
d

dt

)
6= 0, for every t0 ∈ R .
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Orbits as Immersions (Cont’d)

Let f ∈ C∞(F (t0)) = C∞(θt0(p)).

Observe that

F∗

(
d

dt

)
f =

d

dt
(f ◦ F )t0

= lim
∆t→0

1

∆t
[f ◦ F (t0 +∆t)− f ◦ F (t0)]

= lim
∆t→0

1

∆t
[f (θt0+∆t(p))− f (θt0(p))]

= Xθt0(p)
f .

This formula and the preceding corollary show that either Xp 6= 0 and
F is an immersion or else XF (t) = F∗(

d
dt
) ≡ 0.

In the latter case F is a constant map with F (R) = p.
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Remarks and Notation

Consider again the formula just obtained,

F∗

(
d

dt

)
= Xθt0(p)

= XF (t0).

It shows that, at each point p ∈ M, the vector Xp is tangent to its
orbit.

It is, in fact, the (tangent) velocity vector of the curve t → F (t) in
M, in the sense in which we have previously defined the velocity
vector to a parameterized curve.

Recall that, for a differentiable map of an open interval J of R into
M, this was defined by F∗(

d
dt
).
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Remarks and Notation (Cont’d)

The notation F∗(
d
dt
) does not indicate that:

d
dt

∈ Tt0(R);
F∗ is a homomorphism of Tt0(R) into TF (t0)(M).

For this reason we often write either

Ḟ (t0) or

(
dF

dt

)

t0

to denote the velocity vector.

Sometimes we use t → p(t) to denote the mapping rather than F .

Then its velocity vector is written

dp

dt
or ṗ(t).

In the notation of the theorem, the formula above can be written

θ̇(t, p) = Xθ(t,p).
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The Chain Rule

Suppose we change parameter by a function t = f (s).
Then s → G (s) = F (f (s)) represents the curve.
So for t0 = f (s0),(

dG

ds

)

s0

= G∗

(
d

ds

)
= F∗ ◦ f∗

(
d

ds

)
= F∗

(
dt

ds

d

dt

)
.

These give the formula
(
dG

ds

)

s0

=

(
dt

ds

)

s0

F∗

(
d

dt

)

t0

.

Thus the velocity vector with respect to s is a scalar multiple by
(dt
ds
)s0 of the velocity vector with respect to t.

This may be conveniently written

Ġ =

(
dt

ds

)
Ḟ (f (s)) or

dp

ds
=

dp

dt

dt

ds
.

This vector equation is, of course, just a special case of the chain rule.
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Integral Curves

Definition

Let M be a manifold. Let X be a vector field on M.
We say that a curve

t → F (t)

defined on an open interval J of R is an integral curve of X if

dF

dt
= XF (t) on J.

We have just shown that each orbit of the action θ is an integral
curve of the infinitesimal generator X of θ.

That is, for each fixed p ∈ M,

θ̇(t, p) = Xθ(t,p).
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Questions

Some natural questions arise concerning vector fields and
one-parameter group actions.

Is every C∞-vector field the infinitesimal generator of some group
action?
Can two different actions of R on M give rise to the same vector field
X as infinitesimal generator?

These questions will be answered next.

First we use a simple, but instructive, example to:

Illustrate the difficulties involved;
Show the necessity for a less restrictive concept of one-parameter group
action.
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Example

Let M = R2 and let θ : R ×M → M be defined by

θ(t, (x , y)) = (x + t, y).

Then the infinitesimal generator is

X =
∂

∂x
.

This action is given by translation of each point (x , y) to a point t
units to the right.

Suppose now that we remove the origin (0, 0) from R
2 and let

M0 = R
2 − {(0, 0)}.

For most points θt is defined as before.
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Example (Cont’d)

However, we cannot obtain an action of R on M0 by restriction of θ
to R ×M0.

This is because points of the closed set

F = {(t, (x , 0)) : t + x = 0} = θ−1(0, 0)

of R ×M are mapped by θ to the origin.

On the other hand, let W ⊆ R ×M0 be the open set defined by

W = R ×M0 − F ∩ (R ×M0).

Then θ = θ|W maps W onto M0.

Moreover, it preserves many of the features of θ which we have used.
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Example (Cont’d)

For example, let p = (x , y) ∈ M0.

Then, if all terms are defined we get:

(i) (0, p) ∈ W and θ0(p) = p;
(ii) θs ◦ θt(p) = θs+t(p) = θt ◦ θs(p).

The infinitesimal generator X is defined, as before, by

Xp = lim
∆t→0

1

∆t
[f (θ∆t(p))− f (p)]

It is again X = ∂
∂x
.

Finally we have orbits t → θt(p), which are:

The lines y = constant when p = (x , y), y 6= 0;
The portion of the x-axis minus the origin which contains p, for
p = (x , 0).

This curve is not defined for all values of t in the case of the orbit of
a point on the x-axis.
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Local One Parameter Group Actions

Let M be a C∞ manifold.

Let W ⊆ R ×M be an open set which satisfies:

For every p ∈ M , there exist real numbers α(p) < 0 < β(p), such that

W ∩ (R × {p}) = {(t, p) : α(p) < t < β(p)}.

Denote by I (p) the interval α(p) < t < β(p).

Denote by Iδ the interval defined by |t| < δ.

The displayed condition simply states that

W =
⋃

p∈M

I (p)× {p}.
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Local One Parameter Group Actions (Cont’d)

We use the preceding notation and consider W as above.

Definition

A local one-parameter group action or flow on a manifold M is a C∞

map
θ : W → M

which satisfies the following two conditions:

(i) θ0(p) = p, for all p ∈ M ;

(ii) If (s, p) ∈ W , then

α(θs(p)) = α(p)− s and β(θs(p)) = β(p)− s.

Moreover, for any t, such that α(p) − s < t < β(p)− s, θt+s(p) is defined
and

θt ◦ θs(p) = θt+s(p).
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On the Preceding Example

It is easy to check that the preceding example has these properties.

This example also shows that, to obtain a correspondence between
one-parameter group actions and vector fields, we must abandon the
requirement that W is all of R ×M.

Such actions are called global actions.

The set W is open and contains (0, p), for each p ∈ M.

So it also contains Iδ × U, U a neighborhood of p, for sufficiently
small δ > 0.

Therefore, the definition of the vector field X (infinitesimal generator)
associated with θ is valid in the case of local action also.

Moreover, it associates a C∞-vector field to each flow θ.
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Local One-Parameter Actions as Diffeomorphisms

Let R act on M, as in the case of any group acting on M.

For each t, θt : M → M is a diffeomorphism, with θ−1
t = θ−t .

Something like this is also true for the local case.

The difference is that θt is not defined on all of M in general.

Let Vt ⊆ M be the domain of definition of θt ,

Vt = {p ∈ M : (t, p) ∈ W }.

Theorem

Vt is an open set for every t ∈ R and θt : Vt → V−t is a diffeomorphism
with θ−1

t = θ−t .

Let p0 ∈ Vt0 so that (t0, p0) ∈ W .

Since W is open, there is a δ > 0 and a neighborhood V of p0, such
that

{t : |t − t0| < δ} × V ⊆ W .
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Local One-Parameter Actions as Diffeomorphisms (Cont’d)

In particular, {t0} × V ⊆ W .

So V ⊆ Vt0 .

Next, note that if p ∈ Vt , then α(p) < t < β(p).

By definition t + (−t) lies in the same interval.

It follows that θt(p) ∈ V−t and

θ−t ◦ θt(p) = p.

Similarly, θ−t(V−t) ⊆ Vt and

θt ◦ θ−t(q) = q, for any q ∈ V−t .

Combining these statements with the fact that θt , θ−t are C∞ on any
open subsets of M on which they are defined completes the proof.
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Remarks

For local one-parameter actions we may show as in the global case
that:

θt∗(Xp) = Xθt(p), if p ∈ Vt .

As before,
F (t) = θt(p), α(p) < t < β(p)

is a C∞-integral curve of X .

It is an immersion of I (p) in M, provided that Xp 6= 0.

It is a single point if Xp = 0.

We shall continue to refer to these curves as orbits of the local
one-parameter group, just as in the global case.

It is a consequence of our definitions that these curves (and points)
partition M into a union of mutually disjoint sets.

The proofs are the same, essentially, as in the global case.
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Flows in Local Coordinates

Theorem

Let θ : W → M be as in the definition of local one-parameter group
actions. Let X be the associated infinitesimal generator.
Suppose p ∈ M such that Xp 6= 0. Then there exist:

A coordinate neighborhood V , ψ around p;

A ν > 0;

A corresponding neighborhood V ′ of p, V ′ ⊆ V ,

such that, in local coordinates, θ restricted to Iν × V ′ is given by

(t, y1, . . . , yn) → (y1 + t, y2, . . . , yn).

In these coordinates

X = ψ−1
∗

(
∂

∂y1

)
at every point of V ′.
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Flows in Local Coordinates (Cont’d)

In W introduce coordinates U, ϕ around p.
Express θ in the local coordinates by

x → h(t; x),

where x = (x1, . . . , xn) and h(t; x) stands for an n-tuple of functions
satisfying:
(i) h(0; x) = x ;
(ii) h(t; h(t ′; x)) = h(t + t ′; x).
We will assume coordinates so chosen that:

ϕ(p) = (0, . . . , 0);
ϕ(U) = C n

ε (0);
Xp = ϕ−1

∗
( ∂
∂x1

) = Eip.

Recall the expression for Xp, Xp =
∑

ḣi(0; 0, . . . , 0)Eip .
It implies that

ḣi(0; 0, . . . , 0) =

{
1, for i = 1,
0, for i > 1.
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Flows in Local Coordinates (Cont’d)

Choose δ > 0 small enough so that:
V ′′ = ϕ−1(C n

δ (0)) ⊆ U ;
θ(Iδ × V ′′) ⊆ U .

Then map the cube Cn
δ (0) ⊆ Iδ ×R

n−1 into Cn
δ (0) ⊆ ϕ(U) by a map

F , given in local coordinates by

F : (y1, . . . , yn) → (h1(y1; 0, y2, . . . , yn), . . . , hn(y1; 0, y2, . . . , yn)).

From the expression for Xp, we see that ( ∂h
i

∂y1 )0 = δi1.

From y i = hi(0; 0, y2, . . . , yn), we see that ( ∂h
i

∂y j )0 = δij , for j > 1.

Thus, the Jacobian of F at y = (0, . . . , 0) is the identity matrix.

Hence, there is a µ > 0, with µ ≤ δ, such that F is a diffeomorphism
of Cn

µ(0) onto an open set of Cn
ε (0) = ϕ(U).

Let V = ϕ−1 ◦ F (Cn
µ(0)) and ψ = F−1 ◦ ϕ.

They form a coordinate neighborhood of p with V ⊆ U.
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Flows in Local Coordinates (Cont’d)

The relations satisfied by hi(t, x), i = 1, . . . , n, give:

(i) ψ(p) = F−1(ϕ(p)) = F−1(0, . . . , 0).

For (y1, . . . , yn) ∈ Cν(0) and |t| < ν with ν = µ
2 , they give:

(ii) hi (t + y1; 0, y2, . . . , yn) = hi (t, h(y1; 0, y2, . . . , yn)), i = 1, . . . , n.

Formula (ii) may be interpreted as follows.

In the coordinate system (V , ψ), if ψ(q) = (y1, . . . , yn), then

ψ(θt(q)) = (t + y1, . . . , yn),

provided only that |t| < ν and q ∈ ψ−1(Cn
ν (0)), so that all functions

are defined.
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Flows in Local Coordinates (Cont’d)

In other words, in the y -coordinates of V , ψ, the mapping θt is
expressed by functions h̃i(t, y), defined on Iν × Cn

ν (0) by

h̃1(t, y1, . . . , yn) = t + y1,

h̃i(t, y1, . . . , yn) = y i , for i > 1.

We also have

ψ∗(Xq) =
∑

ḣi(0, y)
∂

∂y i
=

∂

∂y1
.

From these formulas, we get that, on V ′ = ψ−1(Cn
ν (0)),

Xq = ψ−1
∗

(
∂

∂y1

)
.
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Subsection 4

The Existence Theorem for Ordinary Differential Equations
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Existence Theorem for Ordinary Differential Equations

Theorem (Existence Theorem for Ordinary Differential Equations)

Let U ⊆ Rn be an open set. For ε > 0, let Iε = (−ε, ε). Let

f i(t, x1, . . . , xn), i = 1, . . . , n,

be functions of class C r , r ≥ 1, on Iε × U.
Then, for each x ∈ U, there exists δ > 0 and a neighborhood V of x ,
V ⊆ U, such that:

(I) For each a = (a1, . . . , an) ∈ V there exists an n-tuple of C r functions
x(t) = (x1(t), . . . , xn(t)), defined on Iδ and mapping Iδ into U, which
satisfy the system of first-order differential equations

dx i

dt
= f i (t, x), i = 1, . . . , n,

and the initial conditions x i (0) = ai , i = 1, . . . , n.
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Existence Theorem (Cont’d)

Theorem (Existence Theorem Cont’d)

For each a, the functions x(t) = (x1(t), . . . , xn(t)) are uniquely
determined, in the sense that any other functions x1(t), . . . , xn(t)
satisfying the same condition must agree with x(t) on their common
domain, which includes Iδ.

(II) These functions being uniquely determined by a = (a1, . . . , an) for
every a ∈ V , we write them

x i (t, a1, . . . , an), i = 1, . . . , n.

They are of class C r in all variables and, thus, determine a C r map of
Iδ × V → U.
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Autonomous Systems

If f i(t, x), i = 1, . . . , n, is independent of t, then the system of
differential equations is called autonomous.

Throughout the remainder of this chapter we shall deal only with
autonomous systems.

In this case it is possible to restate the hypotheses and conclusions of
the fundamental existence theorem in coordinate-free form using the
concepts of vector field and integral curve.

This will allow us to derive various global theorems useful in both
geometry and analysis from a purely local existence theorem about
open subsets of Rn.
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The Autonomous Case

In the autonomous case, the f i depend on x = (x1, . . . , xn) alone.

For simplicity we shall also assume hereafter that all data are C∞.

Define on U ⊆ Rn a C∞-vector field X by

X = f 1(x)
∂

∂x1
+ · · ·+ f n(x)

∂

∂xn
.

Recall that an integral curve of X is a C∞ mapping F of an open
interval (α, β) of R into U such that

Ḟ (t) = XF (t), α < t < β.
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The Autonomous Case (Cont’d)

Write F in terms of its coordinate functions

F (t) = (x1(t), . . . , xn(t)).

Then the vector equation Ḟ (t) = XF (t) is satisfied if and only if

dx i

dt
= f i (x1(t), . . . , xn(t)), i = 1, . . . , n.

This states precisely that the functions

x(t) = (x1(t), . . . , xn(t))

are a solution of the system of the theorem.
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The Autonomous Case (Cont’d)

Given x ∈ U, Part (I) states that, for
each a in a neighborhood V of x , there
is a unique integral curve F (t)
satisfying F (0) = a.

F (t) is defined at least for −δ < t < δ,
with same δ > 0, for every a ∈ V .

Use a notation for these integral curves through points of V ,
indicating dependence on a, say F (t, a) = (x1(t, a), . . . , xn(t, a)).

Use an overdot for differentiation with respect to t.

Then these equations become

ẋ i (t, a) = f i(x(t, a)), x i(0, a) = ai , i = 1, . . . , n.

Part (II) states that these functions x i (t, a) are C∞ - in all variables -
on Iδ × V , an open subset of R× U.
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Interpreting the Solution as a Flow

As an aid to intuition we may interpret the mapping F : Iδ × V → U

as a “flow”, that is, a motion within U of the points of V so that the
point at position a at time t = 0 moves to F (t, a) at time t.

The path of a moving point is the integral curve.

Moreover, its velocity at any of its positions is given by the vector X
assigned to that point of U.
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The Case of Vector Fields on Manifolds

Theorem

Let X be a C∞-vector field on a manifold M.
Then, for each p ∈ M, there exists a neighborhood V and real number
δ > 0, such that there corresponds a C∞ mapping θV : Iδ × V → M, with

θ̇V (t, q) = XθV (t,q)

and
θV (0, q) = q, for all q ∈ V .

If F (t) is an integral curve of X , with F (0) = q ∈ V , then

F (t) = θV (t, q), for |t| < δ.

In particular, this mapping is unique in the sense that if V1, δ1 is another
such pair for p ∈ M, then θV = θV1 on the common part of their domains.
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Proof of the Theorem

This is basically a restatement of the existence theorem as follows.

For p ∈ M, we choose:
A coordinate neighborhood U , ϕ;
A map X to the ϕ-related vector field X̃ = ϕ∗(X ) on Ũ = ϕ(U) ⊆ Rn.

Apply the local existence theorem to obtain F : Iδ × Ṽ → Ũ defined by

F (t, a) = (x1(t, a), . . . , xn(t, a))

on a neighborhood Ṽ ⊆ Ũ of ϕ(p).

Set V = ϕ−1(Ṽ ) and define θV : Iδ × V → U by

θV (t, q) = ϕ−1(F (t, ϕ(q))).

Now ϕ and ϕ−1 are diffeomorphisms.

So θV satisfies the required conditions.

The final assertion is a consequence of the uniqueness of solutions.
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Vector Fields and Integral Curves

Theorem

Let X be a C∞-vector field on a manifold M and suppose p ∈ M.
Then there is a uniquely determined open interval of R ,

I (p) = {α(p) < t < β(p)},

containing t = 0, and having the properties:

(1) There exists a C∞-integral curve F (t) defined on I (p) and such that
F (0) = p;

(2) Given any other integral curve G (t) with G (0) = p, then the interval
of definition of G is contained in I (p) and F (t) = G (t) on this
interval.
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Vector Fields and Integral Curves (Cont’d)

Let F (t) and G (t) be two integral curves such that F (0) = p = G (0).

Suppose IF , IG to be the open intervals on which they are defined.

Let I ∗ the set on which they agree.

I ∗ is not empty since it contains t = 0.

F (t) and G (t) are C∞ mappings (hence continuous).

So I ∗ is closed.

Suppose s ∈ I ∗.

Now s ∈ IF ∩ IG , an open set.

So there is some interval −δ < t < δ on which

F̃ (t) = F (t + s) and G̃(t) = G (t + s)

are both defined.

They are both integral curves, satisfying the same initial condition,

F̃ (0) = F (s) = G (s) = G̃ (0).
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Vector Fields and Integral Curves (Cont’d)

From the existence theorem they agree on some open interval |t| < δ
around t = 0.

Thus, F (t) = G (t) on an open set around s and I ∗ is open.

It follows that I ∗ = IF ∩ IG .

Therefore I (p) is defined.

It is the union of the domains of all integral curves which pass
through p at t = 0.

The asserted properties are immediate.

Note that it is possible for α(p) = −∞ and/or β(p) = +∞.

If both occur, then I (p) = R .

We shall use the notation F (t) = θ(t, p) for the unique integral curve
F (t) such that F (0) = p.

When we wish to emphasize dependence on t, we may write θp(t) for
θ(t, p).
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Notation and Summary

Let the subset W ⊆ R ×M be defined by

W = {(t, p) ∈ R ×M : α(p) < t < β(p)}.

According to what has been shown thus far:

Both W and θ are uniquely determined by X ;
W is the domain of θ : W → M .

Moreover we have the following properties of θ and W :

(i) {0} ×M ∈ W and θ(0, p) = p for all p ∈ M .
(ii) For each (fixed) p ∈ M , let θp(t) = θ(t, p).

Then θp : I (p) → M is a C∞-integral curve, that is,

θ̇p(t) = Xθp(t).

(iii) For each p ∈ M , there is a neighborhood V and a δ > 0, such that
Iδ × V ⊆ W and θ is C∞ on Iδ × V .
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Relation Between I (p) and I (q)

Corollary

Let s ∈ I (p) and q = θp(s) = θ(s, p) be the corresponding point of the
integral curve determined by p. Then

α(q) = α(p)− s and β(q) = β(p)− s

so that
I (q) = I (θp(s)) = {α(p) − s < t < β(p)− s}.

Thus t ∈ I (q) if and only if t + s ∈ I (p), and then we have

θ(t, θ(s, p)) = θ(t + s, p).
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Relation Between I (p) and I (q) (Cont’d)

Suppose that s ∈ I (p) and let

F (t) = θp(s + t).

Then F (t) is defined on the open interval α(p) < s + t < β(p) and

F (0) = θp(s) = q.

By hypothesis, F (t) is an integral curve.

So, by uniqueness, we have

F (t) = θ(t, θp(s)) = θ(t, q).

So its domain must be I (q) = {α(q) < t < β(q)}.
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On W and θ

Theorem

Consider a C∞-vector field X .

The domain W of θ(t, p) is open in R ×M.

θ is a C∞ map onto M.

Let (t ′, p0) ∈ W .
We must show that there is a neighborhood V of p0 and δ > 0, such
that:

The open set (t ′ − δ, t ′ + δ)× V is in W ;
θ is C∞ on it.

This is already known to be the case for (0, p0).

Suppose, to the contrary, that the theorem fails.

There exists (t0, p0) ∈ W , such that, for each 0 ≤ t ′ < t0 there exists
(t ′ − δ, t ′ + δ)× V with the above properties, but not for (t0, p0).

We have assumed, without loss of generality, that t0 > 0.
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On W and θ (Cont’d)

We shall show by contradiction that there can be no (t0, p0).

Using a previous theorem, we find δ0 > 0 and a neighborhood V0 of
q0 = θ(t0, p0), such that:

Iδ0 × V0 ⊆ W ;
θ is C∞ on it.

By continuity of θ(t, p0) in t we may find t1 < t0, with:

|t0 − t1| <
1
3δ0;

θ(t1, p0) ∈ V0.

Since t1 < t0, by our assumption on (t0, p0), there is a δ1 > 0 and a
neighborhood V1 of p0 such that:

(t1 − δ1, t1 + δ1)× V1 ⊆ W ;
θ is C∞ on this open set.

In particular, θ(t1, p0) is in V0 and θt1 : V1 → M is defined and C∞.
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On W and θ (Cont’d)

We may suppose by continuity (restricting V1 if necessary) that

θt1(V1) ⊆ V0.

We now have:

θ(s + t1, q) defined and C∞ on the open set |s| < δ1 and q ∈ V1;
θ(s + t1, q)’s values for s = 0 are in V0.

By a previous corollary, for α(θ(t1, q)) < s < β(θ(t1, q)),

θ(s + t1, q) = θ(s, θ(t1, q)).

Since θ(t1, q) is in V0, by the definition of δ0 and V0, the interval
I (θ(t1, q)) contains all s for which |s| < δ0.

Thus, θ(s + t1, q) is defined and C∞ for |s| < δ0 and any q ∈ V1.

This is an open set and, since |t0 − t1| <
1
3δ0, it contains (t0, p0).

This shows that our assumption on (t0, p0) leads to a contradiction.
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Equality of Flows

Recall that a (local) one-parameter group θ acting on M was defined
in terms of a C∞ mapping θ of an open set W ⊆ R ×M into M.

Suppose
θi ,Wi , i = 1, 2,

are two such local group actions.

We say that θ1 = θ2 if they are equal (as mappings) on W1 ∩W2.

Recall, also, the expression

Xpf = lim
∆t→0

1

∆t
[f (θ∆t(p))− f (p)].

So, if θ1 = θ2, then they have the same infinitesimal generator X .

We note once again that if W = R ×M, then θ defines an action of
R on M, that is, a global one-parameter group action.
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Summary of Results

Collecting the preceding results, we have the following

Theorem

To each local one-parameter group action θ on M is associated a
unique maximal domain of definition W .

If θ1,W1 is equal to θ,W , then

W1 ⊆ W and θ1 = θ|W1
.

Two local one-parameter groups are equal if and only if they have the
same infinitesimal generator X .

Each vector field X on M determines a local one-parameter group
θ,W of which it is the infinitesimal generator.
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Summary of Results (Cont’d)

This theorem summarizes the results of the last two sections.

We saw those for the autonomous case, in which the vector field X

does not depend on t (time), but only on the point of the manifold.

It follows from the Existence Theorem.

But, conversely, it implies the Existence Theorem as a special case
when M is assumed to be an open set of Rn.
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First Generalization

A general nth order ordinary differential equation in the independent
variable t and dependent variable x and its derivatives is given by a
relation

F

(
t, x ,

dx

dt
, . . . ,

dnx

dtn

)
= 0.

We suppose that this is a function of class C r defined on some
neighborhood in Rn+2 of the point (0, a0, a1, a2, . . . , an).

Also, in a neighborhood U of this point we can write it in the form

dnx

dtn
= G

(
t, x ,

dx

dt
, . . . ,

dn−1x

dtn−1

)
.

This can be done if the derivative of F with respect to its last variable
is not zero at the point.
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First Generalization (Cont’d)

Let

x = x1,
dx

dt
= x2, . . . ,

dn−1x

dtn−1
= xn.

Consider the first-order system of ordinary differential equations

dx1

dt
= x2

dx2

dt
= x3

...
dxn

dt
= G (t, x1, x2, . . . , xn−1)

with initial conditions

x i (0) = ai , i = 1, . . . , n.
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First Generalization (Cont’d)

The original nth order equation has a solution x(t) satisfying initial
conditions (at t = 0):

x(0) = a1,

(
dx

dt

)

0

= a2, . . . ,

(
dn−1x

dtn−1

)

0

= an

if and only if the first-order system above has a solution satisfying the
indicated initial conditions.

Hence, the existence theorem gives the existence and uniqueness of
solutions of ordinary differential equations of nth order.

This can be extended also to systems of ordinary differential
equations of higher order than one.
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Second Generalization

Suppose the functions dx i

dt
= f i depend on parameters z1, . . . , zm.

So the system becomes

dx i

dt
= f i (t, x1, . . . , xn, z1, . . . , zm), i = 1, . . . , n.

Assume that the functions f i are of class C r in the z ’s also, on some
open set V ′ ⊆ Rm.

That is, f i is a function of class C r on

Iε × U × U ′ ⊆ R×Rn ×Rm.
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Second Generalization (Cont’d)

Then the solutions will depend on the z ’s as well as on the initial
conditions,

x i = x i (t, a1, . . . , an, z1, . . . , zm).

It is a further consequence of the theorem that these functions are of
class C r in all variables on an open set

Iε × V × V ′ ⊆ R×Rn ×Rm.

This is very easily proved by introducing new equations of the form

dz j

dt
= 0, j = 1, . . . ,m.

In this way, we are dealing with a system of n +m ordinary equations
to which we apply the theorem.
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Application

Choose a basis
E1, . . . ,En

of the tangent space at the identity e of a Lie group G .

Consider the uniquely determined left-invariant vector field X whose
value Xe at e has components z1, . . . , zn,

Xe =
n∑

i=1

z iEi .

Let Xg (z
1, . . . , zn) denote the value at g ∈ G of X .

George Voutsadakis (LSSU) Differential Geometry December 2024 125 / 275



Vector Fields on a Manifold The Existence Theorem for Ordinary Differential Equations

Application (Cont’d)

With the choice of basis fixed, the left-invariant vector fields on G

are, thus, parameterized by Rn.

The dependence on g and on the parameters is C∞.

So the solutions of the system of equations corresponding to each of
the vector fields X (z1, . . . , zn) is C∞ in all variables.

Thus, we have θ(t; g ; z1, . . . , zn), which gives a C∞ mapping

θ : R × G ×Rn → G .

For g , z fixed, θ determines the integral curve through g .
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Subsection 5

Examples of One-Parameter Groups Acting on a Manifold
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The Setup

We consider a local one-parameter group θ with (maximal) domain
W and infinitesimal generator X acting on a manifold M.

For p ∈ M, we denote by I (p) the set α(p) < t < β(p) of all real
numbers t such that (t, p) is in W .

The integral curve of X through p is given by

θp : I (p) → M, θp(t) = θ(t, p).

If Xp = 0, the curve is a single point p.

Otherwise θp is an immersion, as was shown earlier.

In the latter case, we consider the nature of the integral curves on M.

George Voutsadakis (LSSU) Differential Geometry December 2024 128 / 275



Vector Fields on a Manifold Examples of One-Parameter Groups Acting on a Manifold

Sequence Converging to Endpoints

Lemma

Suppose that β(p) <∞ and that {tn} ⊆ I (p) is an increasing sequence
converging to β(p). Then {θ(tn, p)} cannot lie in any compact set.
In particular, the sequence {θ(tn, p)} cannot approach a limit on M.
A similar statement holds for a decreasing sequence approaching α(p) if
α(p) is finite.

Let K be a compact subset of M.

Let X be a C∞-vector field on M.

By the Existence Theorem, to each q ∈ M corresponds a δ > 0 and a
neighborhood V of q, such that θ is defined on Iδ × V .

A finite number of such neighborhoods cover K .

We let δ0 be the minimum δ for these neighborhoods.

Then for each q ∈ K , θ(t, q) is defined for |t| < δ0.
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Sequence Converging to Endpoints (Cont’d)

Suppose {θ(tn, p)} ⊆ K .

Take N is so large that β(p)− tN < 1
3δ0.

Then we see that

θ(tN + t, p) = θ(t, θ(tN , p)).

The right side is defined for all t with |t| < δ0, since θ(tN , p) ∈ K .

The left side is also defined for such t, e.g., for tN + 2
3δ0 > β(p).

This contradicts a previous corollary and proves the first statement.

For the second, suppose limn→∞ θ(tn, p) = q.

Then there is a neighborhood of q whose closure K is compact and
contains all but a finite number of terms of the sequence {θ(tn, p)}.

We discard the terms not in K and obtain the same contradiction.

Obviously the same arguments apply to decreasing sequences
approaching α(p), if α(p) is finite.
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Bounded Interval and Constant Infinitesimal Generator

Corollary

If I (p) is a bounded interval, then the integral curve is a closed subset of
M.

Corollary

If Xp = 0, then I (p) = R.

We skip the proofs.
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Singular and Regular Points of a Vector Field

A point p of M at which Xp = 0 is called a singular point of the
vector field.

Any other point is referred to as regular.

We have seen that in the neighborhood of a regular point the integral
curves are - to within diffeomorphism - the family of parallel lines

x2 = c2, . . . , xn = cn

in Rn.

On the other hand the pattern of integral curves at an isolated
singularity can take many forms, even in the two-dimensional case.

These patterns have been extensively studied.

At least in the two-dimensional case singularities can be visualized in
terms of the integral curves of the vector field X near p.
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Complete Vector Fields

Definition

A vector field X on a manifold M is said to be complete if it generates a
(global) action of R on M, that is, if W = R ×M.

This is clearly the most desirable case.

So it is very convenient to have sufficient conditions for completeness.

Corollary

If M is a compact manifold, then every vector field X on M is complete.

To see that this is so, we take K = M in the lemma.

Note that, in this case, α(p) = −∞ and β(p) = +∞.

That is I (p) = R , for every p ∈ M.
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Diffeomorphisms and Invariance

Theorem

Let X be a C∞-vector field on a manifold M.
Let F : M → M be a diffeomorphism.
Let θ(t, p) denote the C∞ map θ : W → M defined by X .
Then X is invariant under F if and only if

F (θ(t, p)) = θ(t,F (p)),

whenever both sides are defined.

Suppose that X is invariant under F .

Let θp : I (p) → M be the integral curve of X with θp(0) = p.

F takes it to an integral curve F (θp(t)) of the vector field F∗(X ).

Now F∗(X ) = X and F (θp(0)) = F (p).

By uniqueness of integral curves, we get F (θp(t)) = θ(t,F (p)).

This proves the “only if” part of the theorem.
George Voutsadakis (LSSU) Differential Geometry December 2024 134 / 275



Vector Fields on a Manifold Examples of One-Parameter Groups Acting on a Manifold

Diffeomorphisms and Invariance (Cont’d)

Suppose, conversely, that F (θ(t, p)) = θ(t,F (p)).

We must show that F∗(Xp) = XF (p).

This could be done directly from the expression for the infinitesimal
generator X , but we proceed in a slightly different way.

Let
θp(t) = θ(t, p).

Let d
dt

be the natural basis of T0(R), the tangent space to R at t = 0.

Then, by definition,

Xp = θ̇p(0) = θp∗

(
d

dt

)
.
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Diffeomorphisms and Invariance (Cont’d)

Applying the isomorphism F∗ : Tp(M) → TF (p)(M) to this definition,

F∗(Xp) = F∗ ◦ θp∗
(
d
dt

)

= (F ◦ θp)∗
(
d
dt

)

(chain rule applied to θR and F )

= θF (p)∗
(
d
dt

)

(by hypothesis, F ◦ θp(t) = θF (P)(t))

= XF (p).
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Completeness of Left-Invariant Vector Field

Corollary

A left-invariant vector field on a Lie group G is complete.

Let X be such a vector field. Then, there is a neighborhood V of e
and a δ > 0 such that θ(t, g) is defined on Iδ × V .

For h ∈ G , let Lh denote the left translation by h.

By the theorem, with F = Lh, we get θ(t, Lhg) = Lhθ(t, g).

So θ is defined on Iδ × Lh(V ), a neighborhood of (0, h) in R × G .

Thus, for every h ∈ G , there is a neighborhood U = Lh(V ), such that
Iδ × U ⊆ W , the domain of θ with the same δ > 0 as obtained for V .

Hence, δ is fixed and independent of h.

As in the compact case, we obtain a contradiction if we assume for
any g ∈ M that either α(g) or β(g) is finite.

Therefore, W = R ×M and X is complete.
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One-Parameter Subgroups of Lie Groups

Definition

Let R be the additive group of real numbers, considered as a Lie group.
Let G be an arbitrary Lie group.
A one-parameter subgroup H of G is the homomorphic image

H = F (R)

of a homomorphism F : R → G .
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Comments

Let G be a Lie group which acts on a manifold M by

θ : G ×M → M.

Let F : R → G be a homomorphism.

Then θ : R ×M → M defined by

θ(t, p) = θ(F (t), p)

defines an action of R on M.

Applying our theory, we have an associated infinitesimal generator X ,
integral curves as orbits of the action, and so on.

The same G may act on different manifolds, or in different ways on
the same manifold.

Consequently, a fixed one-parameter subgroup of G will give many
examples of a one-parameter group of transformations of a manifold.
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Example

Let G be the group Gl(3,R).

We consider two one-parameter subgroups, that is, two
homomorphisms F1,F2 of R into G , defined as follows (a, b, c ∈ R
are constants):

F1(t) =




eat 0 0
0 eat 0
0 0 eat


 , F2(t) =




1 at bt + 1
2act

2

0 1 ct

0 0 1


 .

We can check that these are indeed homomorphisms.

Now Gl(3,R) acts naturally on R3.

Hence each Fi defines an action on R3.

George Voutsadakis (LSSU) Differential Geometry December 2024 140 / 275



Vector Fields on a Manifold Examples of One-Parameter Groups Acting on a Manifold

Example (Cont’d)

In the case of F1, we have

θ(t, x1, x2, x3) = (eatx1, eatx2, eatx3).

Therefore the infinitesimal generator X is given at x ∈ R3 by

Xx = θ̇(0, x) = ax1
∂

∂x1
+ ax2

∂

∂x2
+ ax3

∂

∂x3
.

The integral curves, or orbits, are the lines through the origin.

The group Gl(n,R) also acts on Pn−1(R), since it preserves the
equivalence relation (proportionality) of n-tuples which defines it.

Therefore Gl(3,R) acts on two-dimensional projective space P2(R).

In this case F1 defines a trivial action θ(t, p) ≡ p.
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Example

Let G be the Lie group SO(3) of orthogonal matrices with
determinant +1.

Define F : R → SO(3) and, thus, a one-parameter subgroup by

F (t) =




cos at sin at 0
− sin at cos at 0

0 0 1


 .

It can be checked that this is in fact a homomorphism.

Thus, SO(3) acts on the unit sphere S2 in a standard manner.
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Example (Cont’d)

The action is just the usual rotation of the sphere.

F defines a one-parameter group of rotations holding the x3 axis fixed:

θ(t, x1, x2, x3) = (x1 cos at + x2 sin at,−x1 sin at + x2 cos at, x3).

The orbits are the lines of latitude.

The generator X is tangent to them and orthogonal to the x3-axis.

X = 0 at the north and south poles (0, 0,±1).
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Example

We recall also that a Lie group G acts on itself (on the right) by right
translations.

Thus if we are given a homomorphism F : R → G , we may define an
action θ of R on M = G by

θ(t, g) = RF (t)(g) = gF (t).

We have used Ra to denote right translation: Ra(g) = ga.

As previously noted, this is a composition of the C∞ maps F and
right translation.

It is an action, since F is a homomorphism and multiplication is
associative:

(i) θ(0, g) = gF (0) = g ;
(ii) θ(t + s, g) = gF (t + s) = g(F (t)F (s)) = (gF (t))F (s) = θ(t, θ(s, g)).
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Characterization of One-Parameter Subgroups

Recall that a left-invariant vector field on G is uniquely determined by
its value at the identity e.

Theorem

Let F : R → G be a one-parameter subgroup of the Lie group G .
Let X be the left-invariant vector field on G defined by Xe = Ḟ (0).
Then

θ(t, g) = RF (t)(g)

defines an action θ : R × G → G of R on G (as a manifold) having X as
infinitesimal generator.
Conversely, let X be a left-invariant vector field.
Let θ : R × G → G the corresponding action.
Then F (t) = θ(t, e) is a one- parameter subgroup of G and

θ(t, g) = RF (t)(g).
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Characterization (Cont’d)

Consider the C∞ homomorphism F : R → G .

θ : R × G → G , defined by

θ(t, g) = RF (t)(g) = gF (t)

is an action of R on G .

If a ∈ G , then

Laθ(t, g) = a(gF (t)) = (ag)F (t) = θ(t, La(g)).

By a previous theorem, the generator X of θ is La-invariant, for any
a ∈ G .

However, θ(t, e) = F (t).

So
Xe = θ̇(0, e) = Ḟ (0).
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Characterization (Cont’d)

For the converse X , being left-invariant, is both C∞ and complete
and it generates an action θ of R on G .

By a previous theorem, for any left translation Lh,

Lhθ(t, g) = θ(t, Lh(g)).

Equivalently, hθ(t, g) = θ(t, hg).

Let F (t) = θ(t, e) and h = F (s).

Then this relation implies

F (s)F (t) = F (s)θ(t, e) = θ(t, θ(s, e)) = θ(t + s, e) = F (s + t).

Thus, t → F (t) is a C∞ homomorphism.

But Ḟ (0) = θ̇(0, e) = Xe . Moreover, X is left-invariant.

So, by uniqueness of the action generated by X ,

θ(t, g) = RF (t)(g),

the action defined just previously.
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Tangent Vectors and One-Parameter Subgroups

Corollary

There is a one-to-one correspondence between the elements of Te(G ) and
one-parameter subgroups of G . For Z ∈ Te(G ), let

t → F (t,Z )

denote the (unique) corresponding one-parameter subgroup.
Then F : R × Te(G ) → G is C∞ and satisfies

F (t, sZ ) = F (st,Z ).
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Tangent Vectors and One-Parameter Subgroups

According to the theorem, each Z ∈ Te(G ) determines a unique
homomorphism t → F (t,Z ) of R into G , such that

Ḟ (0,Z ) = Z .

Identify Te(G ) with Rn via some choice of basis.

By our extension of the Existence Theorem, F is C∞ simultaneously
in t and Z .

Using the rule for change of parameter in a curve on a manifold,
[
d

dt
F (ts,Z )

]

t=0

= s

[
d

dt
F (t,Z )

]

t=0

= sZ .

On the other hand, t → F (ts,Z ) is a homomorphism.

Therefore, by uniqueness,

F (st,Z ) = F (t, sZ ).
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Subsection 6

One-Parameter Subgroups of Lie Groups
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One-Parameter Subgroups of Gl(n,R)

We have seen that one-parameter subgroups of a Lie group G are in
one-to-one correspondence with the elements of Te(G ).

We shall use this to help determine all one-parameter subgroups of
various matrix groups.

We first consider G = Gl(n,R).

The matrix entries xij , 1 ≤ i , j ≤ n, for any X = (xij ) ∈ Gl(n,R) are
coordinates on a single neighborhood covering the group, which is an
open subset of Mn(R), the n× n matrices over R.

Therefore ∂
∂xij

, 1 ≤ i , j ≤ n, is a field of frames on G .

Relative to these frames as a basis at e = I (the identity n× n

matrix), there an isomorphism of Mn(R) as a vector space onto
Te(G ) given by

A = (aij) →
∑

i ,j

aij

(
∂

∂xij

)

e

.
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Exponential of a Matrix

Definition

The exponential eX of a matrix X ∈ Mn(R) is defined to be the matrix
given by

eX = I + X +
1

2!
X 2 +

1

3!
X 3 + · · ·

if the series converges.
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Properties of the Exponential of a Matrix

Theorem

The exponential series converges absolutely, for all X ∈ Mn(R), and
uniformly on compact subsets.
The mapping Mn(R) → Mn(R) defined by

X → eX

is C∞.
Its has nonsingular Jacobian at X = 0.
Its image lies in Gl(n,R).
If A,B ∈ Mn(R) such that AB = BA, then

eA+B = eAeB .
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Proof of the Theorem

Denote by x
(k)
ij the entries of the matrix X k , with

X 1 = X = (xij) and X 0 = I = (δij ).

Let
ρ = sup

1≤i ,j≤n

|xij |.

By induction on k , we have the inequality

|x
(k)
ij | ≤ (nρ)k .

This is true for k = 0. Suppose it holds for k .

Then

|x
(k+1)
ij | =

∣∣∣∣∣
∑

ℓ

x
(k)
iℓ xℓj

∣∣∣∣∣ ≤ n(nρ)kρ = (nρ)k+1.

So the sequence eX converges absolutely for every X .
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Proof (Cont’d)

It also converges uniformly on every compact subset of Mn(R).

Indeed each compact set is contained in a set Kρ = {X : |xij | ≤ ρ}.

Consider the mapping X → eX .

The entries of the partial sums are polynomials in xij .

So, by uniformity of convergence, the mapping is C∞ (even analytic)
in the xij .

Denote by fij(X ) the coordinate functions of the mapping.

Then the terms of degree less than 2 in the variables xij are

fij(X ) = δij + xij , 1 ≤ i , j ≤ n.

Hence the Jacobian at X = 0 reduces to the n2 × n2 identity matrix.
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Proof (Cont’d)

We know the convergence is absolute.

So we may rearrange terms.

Moreover, an analog of Cauchy’s Theorem for multiplication of series
also holds for matrices.

So, when AB = BA, we obtain the equality

(
∑∞

k=0
1
k!A

k)(
∑∞

ℓ=0 B
ℓ) =

∑∞
m=0

∑m
p=0

1
(m−p)!A

m−p 1
p!B

p

=
∑

m
1
m!(A+ B)m.

From this we may deduce eAeB = eA+B .

In particular, this implies eAe−A = e0 = I .

Hence, eA is nonsingular.

It follows that eA ∈ Gl(n,R), for any A ∈ Mn(R).
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Exponential One-Parameter Subgroup

Corollary

t → etA is the one-parameter subgroup of Gl(n,R) whose corresponding
left-invariant vector field has the value

∑
i ,j aij(

∂
∂xij

)e . Moreover, all

one-parameter subgroups of Gl(n,R) are of this form.

For every t ∈ R, t1A and t2A commute. Thus

e(t1+t2)A = et1Aet2A.

So t → etA is a group homomorphism.

It is C∞ since it is a restriction of a C∞-map on Mn(R) to the
submanifold {tA : t ∈ R}.

Write xij(t) for the ij-th entry of etA.

Letting A = (aij), we have xij(t) = δij + taij + O(t2).

So ẋij(0) = aij , 1 ≤ i , j ≤ n. Equivalently (de
tA

dt
)t=0 = A.
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Example

Consider

A =




0 a b

0 0 c

0 0 0


 ∈ M3(R).

We have

etA = I + tA+
1

2
t2A2 + · · · .

However, Ak = 0 if k > 2.

So we obtain once again

etA =




1 ta tb + 1
2t

2ac

0 1 tc

0 0 1


 .
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Characterization of One-Parameter Subgroups

Theorem

Let H be a Lie subgroup of G . Then the one-parameter subgroups of H
are exactly those one-parameter subgroups t → F (t) of G , such that

Ḟ (0) ∈ Te(H),

considered as a subspace of Te(G ).

Let F : R → H be any one-parameter subgroup of H.

The inclusion H ⊆ G is an immersion, and so C∞.

So F , followed by inclusion, is a one-parameter subgroup of G .

Its tangent vector at any point is tangent to H.

In particular, Ḟ (0) ∈ Te(H) a subspace of Te(G ).
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Characterization of One-Parameter Subgroups (Cont’d)

Conversely, let F : R → G is a one-parameter subgroup, such that

Ḟ (0) ∈ Te(H).

Then Ḟ (0) determines a one-parameter subgroup of H, F1 : R → H,
with

Ḟ1(0) = Ḟ (0).

As just seen, F1 can be considered a one-parameter subgroup of G .

But F and F1 have the same tangent vector at e.

So they must agree.

Therefore, the correspondence is one-to-one, as claimed.
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One-Parameter Subgroups of Gl(n,R)

Suppose that G = Gl(n,R) in the preceding discussion.

Then we have the following application.

Corollary

The one-parameter subgroups of a subgroup H ⊆ Gl(n,R) are all of the
form t → etA, where A = (aij) are the components of a vector

∑

i ,j

(
∂

∂xij
)e ∈ Te(G ),

which is tangent to H at e, that is, is in Te(H) ⊆ Te(G ).

This is an immediate consequence of the theorem and the fact that
every one-parameter subgroup of G = Gl(n,R) is of the form
F (t) = etA.
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Example

Let H = O(n) and G = Gl(n,R).

We determine the one-parameter subgroups of H.

Suppose etA ∈ H for all t.

Then (etA)(etA)′ = I , where the prime indicates the transpose.

By the definition, (etA)′ = etA
′

.

By a previous theorem, (etA)−1 = e−tA.

We conclude that etA ∈ H implies etA
′

= e−tA.

Now, X → eX maps the (linear) submanifold of Mn(R) of skew
symmetric matrices to the submanifold O(n) of G .

Both manifolds have the same dimension.

The Jacobian is nonsingular at X = 0, by a previous theorem.

Hence, on some neighborhood of the 0 matrix, X → eX is a
diffeomorphism.

Therefore, there is a δ such that if |t| < δ, then tA′ = −tA.

It follows that A is skew symmetric.
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Example (Cont’d)

Conversely, suppose A′ = −A.

Then
etA(etA)′ = etAetA

′

= etAe−tA = I .

This means that etA is an orthogonal matrix.

We have, therefore, proven the following:

The homomorphism t → etA is a one-parameter subgroup of O(n) if
and only if

A′ = −A.

This is the necessary and sufficient condition on A = (aij) in order that
the tangent vector

∑

i ,j

(
∂

∂xij

)

e

to Gl(n,R) at the identity be tangent to the subgroup O(n).
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Generalization of the Exponential Mapping

Recall that, if G is a Lie group and Z ∈ Te(G ), then Z determines
uniquely a one-parameter subgroup, denoted earlier by F (t,Z ).

We now define an exponential mapping on an arbitrary Lie group.

Definition

The exponential mapping exp : Te(G ) → G is defined by the formula

expZ = F (1,Z ).
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Generalization of the Exponential Mapping (Cont’d)

According to a previous theorem, we have the following properties.

Theorem

For any Lie group G the mapping exp : Te(G ) → G is C∞ and

F (t) = exp tZ

is the unique one-parameter subgroup such that Ḟ (0) = Z .
The Jacobian matrix at 0 of exp is the identity.
That is, at e, exp∗ is the identity.
Finally, if G is a subgroup of Gl(n,R), then for each Z ∈ Te(G ), there is
an A = (aij) ∈ Mn(R) such that

Z =
∑

aij

(
∂

∂xij

)

e

.

For this Z , exp tZ = etA.
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Subsection 7

The Lie Algebra of Vector Field on a Manifold
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Space of Vector Fields on a Manifold

We denote by X(M) the set of all C∞-vector fields defined on the
C∞ manifold M.

Suppose X and Y are C∞-vector fields on M.

Then so is any linear combination of them with constant coefficients.

So X(M) is itself a vector space over R.

More generally, any linear combination with coefficients which are
C∞ functions on M is again a C∞-vector field.

Let X ,Y ∈ X(M) and f , g ∈ C∞(M).

The vector field Z = fX + gY , with the obvious definition

Zp = f (p)Xp + g(p)Yp, for each p ∈ M,

is a C∞-vector field.

Hence, X(M) is a vector space over R and a module over C∞(M).

As a vector space X(M) is not finite-dimensional over R.
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Lie Algebras

Definition

We shall say that a vector space L over R is a (real) Lie algebra if, in
addition to its vector space structure, it possesses a product, that is, a
map L×L → L, taking the pair (X ,Y ) to the element [X ,Y ] of L, which
has the following properties:

(1) It is bilinear over R:

[α1X1 + α2X2,Y ] = α1[X1,Y ] + α2[X2,Y ],
[X , α1Y1 + α2Y2] = α1[X ,Y1] + α2[X ,Y2];

(2) It is skew commutative: [Y ,X ] = −[X ,Y ];

(3) It satisfies the Jacobi identity:

[X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0.
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Examples

A vector space V
3, of dimension 3 over R, with the usual vector

product of vector calculus, is a Lie algebra.

Let Mn(R) denote the algebra of n × n matrices over R, with XY

denoting the usual matrix product of X and Y .

Let the product [X ,Y ] be defined as the “commutator” of X and Y ,

[X ,Y ] = XY − YX .

This defines a Lie algebra structure on Mn(R).
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A Product on X(M)

Now suppose that X and Y denote C∞-vector fields on a manifold
M, that is, X ,Y ∈ X(M).

Let f be a C∞ function on a neighborhood of p.

Let f → Xp(Yf ) be the operator defined on C∞(p).

In general, f → Xp(Yf ) does not define a vector at p.

Thus XY , considered as an operator on C∞ functions on M, does not
in general determine a C∞-vector field.

However, XY − YX defines a vector field Z ∈ X(M) according to the
prescription

Zpf = (XY − YX )pf = Xp(Yf )− Yp(Xf ), f ∈ C∞(p).

If f ∈ C∞(p), then Xf and Yf are C∞ on a neighborhood of p.

So the formula determines a linear map Zp : C∞(p) → R.

George Voutsadakis (LSSU) Differential Geometry December 2024 170 / 275



Vector Fields on a Manifold The Lie Algebra of Vector Field on a Manifold

The Leibniz Rule for Zp

It follows that, if the Leibniz rule holds for Zp, then Zp is an element
of Tp(M) at each p ∈ M.

Consider f , g ∈ C∞(p).

Then f , g ∈ C∞(U), for some open set U containing p.

We have the relations

(XY − YX )p(fg) = Xp(Yfg)− Yp(Xfg)

= Xp(fYg − gYf )− Yp(fXg − gXf )

= (Xpf )(Yg)p + f (p)Xp(Yg)− (Xpg)(Yf )p

− g(p)Xp(Yf )− (Ypf )(Xg)p − f (p)Yp(Xg)

+ (Ypg)(Xf )p + g(p)Yp(Xf ).
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The Leibniz Rule for Zp (Cont’d)

So we get

Zp(fg) = (XY − YX )p(fg)

= f (p)Xp(Yg)− f (p)Yp(Xg)

− g(p)Xp(Yf ) + g(p)Yp(Xf )

= f (p)(XY − YX )pg − g(p)(XY − YX )pf

= f (p)Zpg + g(p)Zpf .

Finally, if f is C∞ on any open set U ⊆ M, then so is (XY − YX )f .

Therefore, Z is a C∞-vector field on M as claimed.
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Lie Algebra Structure on X(M)

We may now define on X(M) the product of X and Y by

[X ,Y ] = XY − YX .

Theorem

X(M) with the product [X ,Y ] is a Lie algebra.

Let α, β ∈ R and X1,X2,Y be C∞-vector fields.

Then we can verify that

[αX1 + βX1,Y ]f = α[X1,Y ]f + β[X2,Y ]f .

Thus, [X ,Y ] is linear in the first variable.

Skew commutativity is immediate from the definition.

So linearity in the first variable implies linearity in the second.

Therefore, [X ,Y ] is bilinear and skew-commutative.
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Lie Algebra Structure on X(M) (The Jacobi Identity)

There remains the Jacobi identity which follows immediately if we
evaluate [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] applied to a
C∞-function f .

Using the definition, we obtain

[X , [Y ,Z ]]f = X (([Y ,Z ])f )− [Y ,Z ](Xf )

= X (Y (Zf ))− X (Z (Yf ))
− Y (Z (Xf )) + Z (Y (Xf )).

Permuting cyclically, we get

[Y , [Z ,X ]]f = Y (Z (Xf ))− Y (X (Zf ))
− Z (X (Yf )) + X (Z (Yf ));

[Z , [X ,Y ]]f = Z (X (Yf ))− Z (Y (Xf ))
− X (Y (Zf )) + Y (X (Zf )).

Adding these establishes the identity.
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Rate of Change of Y in the Direction of X

Let X be a vector field on M.

There is an associated one-parameter group θ : W → M generated by
X .

By a previous theorem, for each t ∈ R , θt : Vt → V−t is a
diffeomorphism (with inverse θ−t) of the open set Vt , provided Vt is
not empty.

In particular, for each p ∈ M, there is a neighborhood V and a δ > 0,
such that

V ⊆ Vt , for |t| < δ.

The isomorphism
θt∗ : Tp(M) → Tθt(p)(M)

and its inverse allow us to compare the values of vector fields at these
two points.
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Rate of Change of Y in the Direction of X (Cont’d)

Indeed, suppose Y is a second C∞-vector field on M.

We may use this idea to compute for each p the rate of change of Y
in the direction of X .

This is the rate of change of Y along the integral curve of the vector
field X passing through p.

We denote this rate of change by LXY .

It is itself a C∞-vector field.
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The Lie Derivative

Definition

The vector field LXY , called the Lie derivative of X with respect to Y

is defined at each p ∈ M by either of the following limits:

(LXY )p = lim
t→0

1

t
[θ−t∗(Yθ(t,p))− Yp]

= lim
t→0

1

t
[Yp − θt∗(Yθ(−t,p))].

The second definition is obtained from the first by replacing t by −t.
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The Lie Derivative (Cont’d)

We interpret the first expression as follows.

Apply to Yθ(t,p) ∈ Tθ(t,p)(M) the isomorphism θ−t∗, taking
Tθ(t,p)(M) to Tp(M).

Then in Tp(M):

Take the difference of this vector and Yp ;
Multiply by the scalar 1

t
.

Pass to the limit as t → 0.

This limit is a vector (LXY )p ∈ Tp(M), if it exists at all.

The existence and the fact that the vector field so defined is C∞ may
be verified by writing the formula above in local coordinates.

George Voutsadakis (LSSU) Differential Geometry December 2024 178 / 275



Vector Fields on a Manifold The Lie Algebra of Vector Field on a Manifold

A Technical Lemma

Lemma

Let X be a C∞-vector field on M.
Let θ be the corresponding map of W ⊆ R ×M onto M.
Let p ∈ M and f ∈ C∞(U), where U an open set containing p.
Choose δ > 0 and a neighborhood V of p in U, such that θ(Iδ × V ) ⊆ U.
Then there is a C∞ function g(q, t) defined on V × Iδ , such that, for
q ∈ V and t ∈ Iδ, we have

f (θt(q)) = f (q) + tg(q, t) and Xqf = g(q, 0).

By a previous theorem, there is a neighborhood V of p and a δ > 0,
such that:

θt(p) = θ(t, p) is defined and C∞ on Iδ × V ;
θ maps Iδ × V into U .
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A Technical Lemma (Cont’d)

The function
r(t, q) = f (θt(q))− f (q)

is C∞ on Iδ × V and r(0, q) = 0.

We denote by ṙ(t, q) its derivative with respect to t.

We define g(q, t) - for each fixed q - by the formula

g(q, t) =

∫ 1

0
ṙ(ts, q)ds .

This function is also C∞ on Iδ × V .

This can be verified by use of local coordinates and properties of the
integral.
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A Technical Lemma (Cont’d)

By the Fundamental Theorem of Calculus,

tg(q, t) =

∫ 1

0
ṙ(ts, q)tds = r(t, q)− r(0, q) = r(t, q).

Using the definition of r , this becomes

f (θt(q)) = f (q) + tg(q, t).

Now, by the definition of the infinitesimal generator of θ,

g(q, 0) = limt→0 g(q, t)

= limt→0
1
t
r(t, q)

= limt→0
1
t
[f (θt(q))− f (q)]

= Xqf .
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Characterization of LXY

Theorem

If X and Y are C∞-vector fields on M, then LXY = [X ,Y ].

By definition

(LXY )pf =

(
lim
t→0

1

t
[Yp − θt∗(Yθ−t(p))]

)
f .

This differential quotient and that of the following expression, whose
limit is the derivative of a C∞ function of t, are equal for all
0 < |t| < δ, and, hence, are equal in the limit

(LXY )pf = lim
t→0

1

t
[Ypf − Yθ−t(p)(f ◦ θt)].

Using the lemma and denoting g(q, t) by gt we have

(LXY )pf = lim
t→0

1

t
[Ypf − Yθ−t(p)(f + tgt)].
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Characterization of LXY (Cont’d)

Then, replacing t by −t and rearranging terms, we get

(LXY )p = lim
t→0

1

t
[(Yf )(θt(p))− (Yf )(p)]− lim

t→0
Yθt(p)gt .

Now, using both the formula of the definition of the infinitesimal
generator, with f replaced by Yf and ∆t by t, and the fact that
g0 = g(q, 0) = Xf (q), we obtain in the limit

(LXY )pf = Xp(Yf )− Yp(Xf ) = [X ,Y ]pf .

This completes the proof of the theorem.

It also shows that LXY is C∞.
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F∗ and Lie Derivatives

Theorem

Let F : N → M be a C∞ mapping and suppose that X1,X2 and Y1,Y2 are
vector fields on N,M, respectively, which are F -related, that is,

F∗(Xi ) = Yi , i = 1, 2.

Then [X1,X2] and [Y1,Y2] are F -related, i.e.,

F∗[X1,X2] = [F∗(X1),F∗(X2)].

George Voutsadakis (LSSU) Differential Geometry December 2024 184 / 275



Vector Fields on a Manifold The Lie Algebra of Vector Field on a Manifold

F∗ and Lie Derivatives (Cont’d)

Before proving the theorem we note the following necessary and
sufficient condition for X on N and Y on M to be F -related.

For any g which is C∞ on some open set V ⊆ M,

(Yg) ◦ F = X (g ◦ F )

on F−1(V ).

We show this is a restatement of the definition of F -related.
Suppose q ∈ F−1(V ). Then, we have:

On the one hand,

F∗(Xq)g = Xq(g ◦ F ) = X (g ◦ F )(q);

On the other, YF (q)g is the value of the C∞ function Yg at F (q).
Therefore, YF (q)g = ((Yg) ◦ F )(q).

Thus, the condition holds if and only if

F∗(Xq) = YF (q), for all q ∈ M.
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F∗ and Lie Derivatives (Cont’d)

Returning to the proof, consider f ∈ C∞(V ), V ⊆ M, so that Y1f

and Y2f ∈ C∞(V ) also.

Apply the formula above, first with g = Y2f and then with g = f .

We get

[Y1(Y2f )] ◦ F = X1((Y2f ) ◦ F ) = X1[X2(f ◦ F )].

Interchange the roles of Y1,Y2 and X1,X2 to get

[Y2(Y1f )] ◦ F = X2[X1(f ◦ F )].

Subtract to obtain

([Y1,Y2]f ) ◦ F = [X1,X2](f ◦ F ).

By the formula above, [X1,X2] and [Y1,Y2] are F -related.
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Lie Algebra of a Lie Group

Corollary

If G is a Lie group, then the left-invariant vector fields on G form a Lie
algebra g with the product [X ,Y ] and dimg = dimG . If F : G1 → G2 is a
homomorphism of Lie groups, F∗ : g1 → g2 is a homomorphism of Lie
algebras.

Let a ∈ G , and let X and Y be left-invariant vector fields.

La (left translation) is a diffeomorphism and La∗X = X , La∗Y = Y .

Therefore, by the theorem, La∗[X ,Y ] = [X ,Y ].

So [X ,Y ] is La-invariant, for any a.

Hence, the subspace g is closed with respect to [X ,Y ].

Now each X ∈ g is uniquely determined by Xe .

So X → Xe is an isomorphism of g and Te(G ) as vector spaces.

The last statement follows from a previous corollary and the
preceding theorem.
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Lie Algebra of a Lie Subgroup

Let H ⊆ G be a Lie subgroup.

Then, by the corollary, i∗(h) is a subalgebra of g.

It consists of the elements of g tangent to H and its cosets gH.
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Commutativity of Actions

Theorem

Let X and Y be complete C∞-vector fields on a manifold M.
Let θ, σ denote the corresponding actions of R on M.
Then

θt ◦ σs = σs ◦ θt , for all s, t ∈ R , if and only if [X ,Y ] = 0.

We first suppose that θt ◦ σs = σs ◦ θt , for all s, t ∈ R .

Applying a previous theorem to the diffeomorphism θt : M → M, we
see that Y is θt-invariant.

In particular, θt∗Y = Y .

This implies that

[X ,Y ] = LXY = lim
∆t→0

[Y − θ−t∗Y ] = 0.
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Commutativity of Actions (Converse)

Next assume [X ,Y ] = 0.

By the previous theorem,

0 = θt∗[X ,Y ] = [θt∗X , θt∗Y ] = [X , θt∗Y ].

So, for any p ∈ M and any f ∈ C∞(p), we have

0 = (LX (θt∗Y ))pf = lim
∆t→0

1

∆t
[(θt∗Y )pf − (θt−∆t∗Y )pf ].

So
d(θt∗Y )pf

dt
= 0, for every t.
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Commutativity of Actions (Converse)

We got, for every t,
d(θt∗Y )pf

dt
= 0.

That is, (θt∗Y )pf is constant.

When t = 0, this constant function has the value Ypf .

Therefore
(θt∗Y )pf = Ypf .

Since p and f ∈ C∞(p) were arbitrary, it follows that

θt∗Y = Y .

By a previous theorem, we conclude that, for each t ∈ R ,

θt ◦ σs = σs ◦ θt .
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Subsection 8

Frobenius’ Theorem
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Example

Let
Fα(x

1, x2, x3; y1, y2, pkℓ ) = 0, α = 1, . . . , 6,

be a system of six partial differential equations involving:

Two unknown functions y1 and y2 of three variables x1, x2, x3;

Their first derivatives pkℓ = ∂yk

∂xℓ
, k = 1, 2, ℓ = 1, 2, 3.

To simplify matters, we assume that these equations can be solved for
pkℓ and written equivalently

∂yk

∂xℓ
= G k

ℓ (x ; y), k = 1, 2, ℓ = 1, 2, 3,

in some neighborhood U of a point (a; b) = (a1, a2, a3; b1, b2).
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Example (Cont’d)

Consider again

∂yk

∂xℓ
= G k

ℓ (x ; y), k = 1, 2, ℓ = 1, 2, 3,

in some neighborhood U of a point (a; b) = (a1, a2, a3; b1, b2).

A solution of the system consists of functions

yk = f k(x1, x2, x3), k = 1, 2,

such that they satisfy:

The system of equations

∂f k

∂xℓ
≡ G k

ℓ (x ; f
1(x), f 2(x))

in a neighborhood of x = a;
f (a) = b, this last being “initial conditions”.
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Example (Solutions)

This is equivalent to defining a three-dimensional submanifold of
R

5 = R3 ×R2 given by

(x1, x2, x3) → (x1, x2, x3; f 1(x), f 2(x)).

The tangent plane at the point (x ; y) is spanned by three vectors
X1,X2,X3, with components given by

X1 = (1, 0, 0,G 1
1 (x , y),G

2
1 (x , y)),

X2 = (0, 1, 0,G 1
2 (x , y),G

2
2 (x , y)),

X3 = (0, 0, 1,G 1
3 (x , y),G

2
3 (x , y)).
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Example (Solutions)

Any such surface gives a solution.

The initial conditions add the requirement that it pass through (a; b).

Such solutions may not exist.

The equations must satisfy certain necessary conditions on the
functions G k

ℓ .

They reflect the fact that if there is a solution, then one can
interchange the order of differentiation of f 1 and f 2.

These conditions can be written as relations among Xi and [Xi ,Xj ],
i , j = 1, 2, 3.
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Example (The Vector Fields)

The vector fields X1,X2,X3 are determined by the system.

They define, at each point q of U, a three-dimensional subspace
∆q ⊂ Tq(R

5), at least if they are linearly independent, which we will
assume.

Thus, such a system of equations determines in some domain of R5

three linearly independent vector fields X1,X2,X3 at each point.

A solution is a three-dimensional submanifold whose tangent space at
each of its points q is spanned by X1,X2,X3.
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Example (Equivalent Systems)

Two systems of differential equations will be equivalent if they
determine, at each q of this domain, the same three-dimensional
subspace ∆q of Tq(R

5).

In that case, they would - if some sort of uniqueness prevailed -have
the same solutions.
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Example (Complete Integrability)

A system of equations is completely integrable, roughly speaking, if
there is a single such solution manifold through each point of some
domain of R5.

That is, if the domain, up to diffeomorphism, is like an open subspace
of R5, presented as a union of disjoint “surfaces”, like the surfaces
obtained by holding two coordinates fixed and letting the other three
vary.
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Distributions and Local Bases

Let M be a manifold of dimension m = n + k .

Suppose that to each p ∈ M is assigned an n-dimensional subspace
∆p of Tp(M).

Suppose, also, that, in a neighborhood U of each p ∈ M, there are n

linearly independent C∞-vector fields X1, . . . ,Xn which form a basis
of ∆q, for every q ∈ U.

In this case we shall say that:

∆ is a C∞ distribution of dimension n on M ;
X1, . . . ,Xn is a local basis of ∆.
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Involutive Distributions

We shall say that the distribution ∆ is involutive if, there exists a
local basis X1, . . . ,Xn in a neighborhood of each point, such that

[Xi ,Xj ] =

n∑

k=1

ckijXk , 1 ≤ i , j ≤ n.

The ckij will not in general be constants, but will be C∞ functions on
the neighborhood.
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Integral Manifolds

Suppose ∆ is a C∞ distribution on M.

Let N be a connected C∞ manifold.

Suppose F : N → M is a one-to-one immersion, such that, for each
q ∈ N, we have

F∗(Tq(N)) ⊆ ∆F (q).

Then we say that the immersed submanifold is an integral manifold

of ∆.

Note that an integral manifold may be of lower dimension than ∆.
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Example: Involutive Distribution

Consider M = Rn ×Rk .

Suppose

Xi =
∂

∂x i
, i = 1, . . . , n.

Then the distribution is the subspace of dimension n consisting of all
those vectors parallel to Rn at each point q of M.

We will see that this apparently rather special example is actually
typical, locally, of involutive distributions.
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Completely Integrable Distributions

Let M be a manifold of dimension m = n + k .

Let ∆ be a C∞ distribution on M of dimension n.

We shall say that ∆ is completely integrable if each point p ∈ M

has a coordinate neighborhood U, ϕ, such that if x1, . . . , xm denote
the local coordinates, then the n vectors

Ei = ϕ−1
∗

(
∂

∂x i

)
, i = 1, . . . , n,

are a local basis on U for ∆.
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Completely Integrable Distributions (Cont’d)

Note that, if ∆ is completely integral, there is an n-dimensional
integral manifold N through each point q of U, such that

Tq(N) = ∆q.

That is, the tangent space to N is exactly ∆.

In fact, let (a1, . . . , am) denote the coordinates of q.

Then an integral manifold through q is the set of all points whose
coordinates satisfy

xn+1 = an+1, . . . , xm = am.

In other words, N is the slice of U

N = ϕ−1{x ∈ ϕ(U) : x j = aj , j = n+ 1, . . . ,m}.
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Complete Integrability and Involutivity

In the completely integrable case the distribution is involutive, since

[Ei ,Ej ] = ϕ−1
∗

[
∂

∂x i
,
∂

∂x j

]
= 0, 1 ≤ i , j ≤ n.

Thus any completely integrable distribution is involutive.

However, most distributions are not involutive.

For example, on R3 the distribution

X1 = x3
∂

∂x1
+

∂

∂x3
, X2 =

∂

∂x2
+

∂

∂x3

is not involutive since [X1,X2] = − ∂
∂x1

, which is not a linear
combination of X1 and X2.

This means, in particular, that X1,X2 could not be tangent vectors to
a surface x3 = f (x1, x2).
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Involutive Distributions and Lie Algebras

An important and instructive example of an involutive distribution is
furnished by the Lie algebra h of a subgroup H of a Lie group G .

h consists of left-invariant vector fields on G which are tangent to H

at the identity.

We saw that this determines a subalgebra, the image of the Lie
algebra of H under the inclusion mapping.

These give a (left-invariant) distribution ∆ on G , such that

∆h = Th(H), for every h ∈ H.

The cosets gH are the integral manifolds of this distribution.

∆ is evidently involutive since h is a subalgebra of g.
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One-Dimensional Distributions

A distribution ∆ of dimension 1 is just a field of line elements.

That is, ∆ consists of one-dimensional subspaces.

A local basis is given by any nonvanishing vector field X which
belongs to ∆ at each point.

An integral curve of X is an integral manifold.

We know from the existence theorem that such integral manifolds,
passing through any given point, exist and are unique.

In fact, a previous theorem says precisely that any such distribution is
completely integrable.

It is also involutive since [X ,X ] = 0.
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Frobenius’ Generalized Existence Theorem

The following theorem may be considered a generalization of the
existence theorem to certain types of partial differential equations.

In the general case, however, there is a necessary condition which is
not automatic, as it is in the case of a one-dimensional distribution.

This condition is the involutivity of ∆.

Theorem (Frobenius)

A distribution ∆ on a manifold M is completely integrable if and only if it
is involutive.
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Frobenius’ Theorem (Cont’d)

We showed that a completely integrable distribution is involutive.

This is an easy consequence of the definitions.

We shall prove that involutive distributions are completely integrable
by induction on their dimensions, which we denote by n.

We let m = dimM.

When n = 1, we have seen that we may introduce local coordinates
V , ψ, such that Ẽ1 = ψ−1

∗ ( ∂
∂y1 ) is a local basis for ∆.

This establishes complete integrability when n = 1.

Suppose that the theorem is true for involutive distributions of
dimensions 1, 2, . . . , n − 1.

Let ∆ be of dimension n and in involution.
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Frobenius’ Theorem (Cont’d)

Around any p ∈ M, we may find local coordinates V , ψ and a local
basis X1, . . . ,Xn of ∆ on V , such that X1 = Ẽ1.

By assumption,

[Xi ,Xj ] =

n∑

ℓ=1

cℓijXℓ.

Let y1, . . . , ym denote the local coordinates.

We may suppose that ψ(p) = 0.

We know that the components of Xj relative to the coordinate frames

Ẽ1, . . . , Ẽm are Xjy
1, . . . ,Xjy

m, which are C∞ functions on V .
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Frobenius’ Theorem (Cont’d)

Define a new basis of ∆ on V by

Y1 = X1 (= Ẽ1),
Y2 = X2 − (X2y

1)X1,
...

Yn = Xn − (Xny
1)X1.

By involutivity [Yi ,Yj ] =
∑n

i=1 d
ℓ
ijYℓ.

But we have arranged that Y2, . . . ,Yn are linear combinations of
Ẽ2, . . . , Ẽm at each point and do not involve Ẽ1 (= Y1).

Therefore, they are tangent to the manifolds y1 = constant.

So [Yi ,Yj ], 2 ≤ i , j ≤ n, must be tangent to the submanifolds y1 =
constant.

Hence, d1
ij = 0, 2 ≤ i , j ≤ n.
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Frobenius’ Theorem (Cont’d)

The distribution on V defined by Y2, . . . ,Yn is in involution on V .

Moreover, on each submanifold y1 = constant of V , including
N0 ⊆ U, it is defined by y1 = 0.

The functions (y2, . . . , ym), restricted to N0, give coordinates on
V ∩ N0.

By the induction hypothesis, we may change coordinates on N0 in a
neighborhood of p by, say, functions

y i = f i (x2, . . . , xm), i = 2, . . . ,m,

defined on a neighborhood of the origin of Rm−1, so that:

The image on N0 of ∂
∂x2

, . . . , ∂
∂xn

is a basis at each point of the
subspace spanned by Y2, . . . ,Yn;
We have f i (0, . . . , 0) = 0, i = 2, . . . ,m.
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Frobenius’ Theorem (Cont’d)

We extend this to a change of coordinates in a neighborhood U ⊆ V

of p by adding the function f 1(x) = x1, giving

y1 = x1, y i = f i(x2, . . . , xm), i = 2, . . . ,m.

Note that the Jacobian matrix is nonsingular at the origin.

So this is a valid change of coordinates.

We may suppose, with no loss of generality, that the image of U in
the (x1, . . . , xm) space is the cube Cm

ε (0).

Let ϕ denote the coordinate map.
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Frobenius’ Theorem (Cont’d)

We have ϕ = ψ ◦ F−1 with

F (x1, . . . , xm) = (f 1(x), . . . , f m(x)).

Also ϕ(p) = (0, . . . , 0).
Moreover, in terms of the new coordinates, we have the following
three facts:
(i) Y1 = ϕ−1

∗
( ∂
∂x1

);
(ii) N0 ∩ U consists of those points for which x1 = 0, so (x2, . . . , xm) are

coordinates on this submanifold;
(iii) at each point of N0 ∩ U , Y2, . . . ,Yn are linear combinations of

E2 = ϕ∗

(
∂

∂x2

)
, . . . ,En = ϕ∗

(
∂

∂xn

)
.

Equivalently, when x1 = 0,

Y2x
ℓ = · · · = Ynx

ℓ = 0, for ℓ = n + 1, . . . ,m,

that is, the last m − n components vanish.
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Frobenius’ Theorem (Cont’d)

We now prove that (iii) holds throughout U, without restriction on x1.

We consider Y1(Yjx
ℓ), for j = 2, . . . , n and each ℓ > n.

Using the definition of brackets, we get

Y1(Yjx
ℓ) = Yj(Y1x

ℓ) + [Y1,Yj ]x
ℓ.

We have

Y1x
ℓ =

∂xℓ

∂x1
= 0.

Moreover,

[Y1,Yj ] =

n∑

s=1

d s
1jYs .

So

Y1(Yjx
ℓ) =

n∑

s=2

d s
1j(Ysx

ℓ).
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Frobenius’ Theorem (Cont’d)

We found

Y1(Yjx
ℓ) =

n∑

s=2

d s
1j(Ysx

ℓ).

Now write d s
1j and Yjx

i as functions of (x1, . . . , xm), passing from
functions on U to the corresponding functions in local coordinates.

Then we see that Y2x
1, . . . ,Ynx

ℓ, for fixed ℓ > n and fixed
x2, . . . , xm, are solutions of the system of ordinary differential
equations

dzj

dx1
=

n∑

s=2

d s
1jzs , j = 2, . . . , n,

satisfying initial conditions

zj = 0, j = 2, . . . , n, when x1 = 0.
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Frobenius’ Theorem (Cont’d)

However, the functions zj = 0 also satisfy the system and these same
initial conditions.

So, by the uniqueness of solutions, whenever ℓ > n,

Y2x
ℓ = · · · = Ykx

ℓ = 0, for all values of x1.

This shows that the vectors Y2, . . . ,Yn are linear combinations of the
vectors E2, . . . ,En (of the coordinate frames) throughout U.

We also have E1 = Y1.

It follows that

Ei = ϕ−1
∗

(
∂

∂x i

)
, i = 1, . . . , n,

is a local basis for ∆.
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Local Uniqueness

Corollary

Let U, ϕ be a cubical coordinate neighborhood of p ∈ M, relative to the
involutive distribution ∆, whose slices - corresponding to xn+1, . . . , xm

fixed - are integral manifolds in U. Then any connected integral manifold
V ⊆ U lies on such a slice. That is, there are constants an+1, . . . , am such
that

V ⊆ {q ∈ U : xn+1(q) = an+1, . . . , xm(q) = am}.

By hypothesis, V is an integral manifold.

So its tangent space at each point lies in the space spanned by the
first n vectors E1, . . . ,En of the coordinate frames.
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Local Uniqueness (Cont’d)

Let x j be a coordinate function of U, with j > n.

Let p be any point of V .

Let Xp be any vector at p tangent to V .

Then

Xp =
n∑

i=1

αiEip.

So we get

Xpx
j =

n∑

i=1

αiEipx
j =

n∑

i=1

αj

(
∂x j

∂x i

)

ϕ(p)

= 0.

But x j is defined on all of V and V is connected.

It follows that x j = aj , a constant, on V .
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Restriction of a Mapping

Theorem

Let N ⊆ M be an integral manifold of an involutive distribution ∆, with

dimN = dim∆.

Suppose F : A → M is a C∞ mapping of a manifold A into M.
If F (A) ⊆ N, then F is C∞ as a mapping into N.

Let p ∈ A and let q = F (p) be its image.
Choose a cubical coordinate neighborhood U, ϕ of q, such that:

ϕ(q) = (0, . . . , 0);
ϕ(U) = Cm

ε (0);
Its slices xn+1 = an+1, . . . , xm = am are integral manifolds, where
n = dim∆ and m = dimM .

Now the inclusion i : N → M is an immersion.

So i−1(U) = N ∩ U is an open set in N.

Therefore, it is an open submanifold.
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Restriction of a Mapping (Cont’d)

Manifolds are locally connected.

So the components of N ∩ U are open sets of N and countable in
number.

Each component is itself a (connected) integral manifold.

Thus, by the preceding corollary, it lies on a slice.

It follows that, if x j , j > n, is a coordinate function on U, it can have
only a countable number of values on N ∩ U.

The function x j maps any connected set C ⊆ N ∩U continuously into
this countable subset of R.

Hence, it must be constant on C [the only connected, countable
subset of R is a single point].
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Restriction of a Mapping (Cont’d)

Using the continuity of F : A → M, choose a connected coordinate
neighborhood W , ψ of p such that F (W ) ⊆ U.

F (W ) is a connected subset of U and lies in N ∩ U.

Therefore, it lies on a single slice.

Because q ∈ F (W ), this is the slice xn+1 = · · · = xm = 0.

Let Ũ be the subset of N which lies on this slice.

We know it must be a union of components of i−1(U) = N ∩ U.

So it is an open subset of N in the topology of N.
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Restriction of a Mapping (Cont’d)

The coordinate functions x1, . . . , xn restricted to Ũ are coordinates
on Ũ. That is, they define a mapping

ϕ̃ : Ũ → R
n,

such that Ũ, ϕ̃ is a coordinate neighborhood of q on N.

Let y1, . . . , y r be the local coordinates on W , ψ.

Suppose F : A → M is given on W by C∞ functions

x j = f j(y1, . . . , y r ), j = 1, . . . ,m.

Then
f j(y) = 0, j = n + 1, . . . ,m.

Moreover, as a mapping into N, F is given (in local coordinates) on
W by the same functions f j(y), 1 ≤ j ≤ m.

So it must be C∞, as claimed.
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Maximal Integral Manifolds

Definition

A maximal integral manifold N of an involutive distribution ∆ is a
connected integral manifold which contains every connected integral
manifold which has a point in common with it.

It is immediate from the preceding corollary that a maximal integral
manifold has the same dimension as ∆.

It is also clear that at most one maximal integral manifold can pass
through a point p of M.

It is true, but more difficult to prove, that there is a maximal integral
manifold through every point of M.

The idea is to piece together local slices using the corollary and build
up an immersed submanifold.
The difficulty is in showing that there are not too many such slices,
that is, in proving that we have a countable basis of open sets.
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Application to Lie Groups

Theorem

Let G be a Lie group, g its Lie algebra, and h a subalgebra of g.
Then there is a connected subgroup H of G whose Lie algebra is h.

Let the left-invariant vector fields X1, . . . ,Xn on g be a basis of h.

They define a distribution ∆ which is invariant under left translations.

Hence, each integral manifold N is carried by any left translation Lg
diffeomorphically to an integral manifold Lg (N).

Let H be the maximal integral manifold through the identity e.

If h ∈ H, then Lh−1(h) = e.

So both H and Lh−1(H) have e in common.

Since H is maximal, Lh−1(H) = H.

It follows that, if h1, h2 ∈ H, then h−1
1 h2 ∈ H.

Thus, H is a subgroup as well as an immersed submanifold.
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Application to Lie Groups (Cont’d)

The product mapping
H × H → H

is a composition of:

Inclusion i : H × H → G × G ;
The product mapping θ : G × G → G .

Both are C∞.

So θ ◦ i is C∞ as a mapping into G .

Its image is in H because H is a subgroup.

By the preceding theorem, we see that the product mapping
H × H → H is also C∞.

A similar argument shows that the mapping taking each h ∈ H to its
inverse h−1 is also C∞.

This completes the proof, subject to the unproved assertion
concerning integral manifolds.
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Subsection 9

Homogeneous Spaces
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Transitive Actions and Homogeneous Spaces

Suppose G is a Lie group and M a manifold.

Let θ : G ×M → M be an action of G on M.

We recall that θ is transitive if, for every pair p, q ∈ M, there is a
g ∈ G , such that

θg (p) = q.

This means that, as far as properties preserved by G are concerned,
any two points of the manifold are alike.

Definition

A manifold M is said to be a homogeneous space of the Lie group G if
there is a transitive C∞ action of G on M.
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Examples

Many examples of group actions have this property.

O(n) acts transitively on Sn−1;
Gl(n,R) acts transitively on Rn − {0};
...
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Action on Cosets

Let G be a group.

Let H be a subgroup of G .

Consider the set G/H of left cosets of H in G .

We define a left action λ : G × G/H → G/H by

λ(g , xH) = gxH.

This defines a left action, since:

(i) λ(e, xH) = xH ;
(ii) λ(g1, λ(g2, xH)) = λ(g1, g2xH) = (g1g2)xH = λ(g1g2, xH).
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Properties of the Action on Cosets

Suppose π : G → G/H is the natural mapping of each g ∈ G to the
coset which contains it,

π(g) = gH.

Let Lg : G → G denote left translation.

Then, for all g ∈ G ,
π ◦ Lg = λg ◦ π.

The transitivity is apparent, since, for all x , y ∈ G ,

λyx−1(xH) = yH.
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Outline of Work

We would like to assert that:

When G is a Lie group, then G/H is a manifold;
The mappings λ and π, defined by G and H as above, are C∞.

We saw that, if H is closed in G (a Lie group), then the quotient
topology on G/H makes it a Hausdorff space and π an open - as well
as continuous - mapping.

Moreover, we asserted that, with this topology on G/H, λ is a
continuous group action.

In this section we show that G/H is a manifold and λ is a C∞ action.

This will give us many new examples of manifolds and group action.

More importantly, the manifolds G/H, with G acting by left
translation, form a universal model for all transitive actions, that is,
for all homogeneous spaces.
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Set-Theoretic Action

Consider universality from the set-theoretic viewpoint, without
topology or differentiable structure.

Let X be a set on which a group G acts transitively by the rule

θ : G × X → X .

Choose, arbitrarily, a point a ∈ X .

Let the isotropy subgroup (or stability group) of a be

H = {g ∈ G : θg (a) = a}.

We then define a mapping F̃ : G → X by

F̃ (g) = θg (a).

Since θ is transitive, F̃ is onto.

Moreover for any x ∈ X , F̃−1(x) = gH, where g is any element of G
such that F̃ (g) = x .
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Set-Theoretic Action (Cont’d)

It is then easily verified that F̃ induces a one-to-one onto mapping
F : G/H → X by

F (gh) = F̃ (g).

For these mappings we have the relation

F ◦ π = F̃ .

Finally F carries the natural action of G on G/H, which we denoted
by λ, to the action θ, that is,

F ◦ λg = θg ◦ F , g ∈ G .

Thus, from the set-theoretic and abstract group viewpoint,
λ : G × G/H → G/H is equivalent as an action to θ : G × X → X .
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Sections on a Quotient

Recall that a Lie subgroup H of a Lie group G is an immersed
submanifold which is a Lie group with respect to the group operations
of G .

We intend to use the quotient topology on G/H.

Moreover, we wish G/H to be a Hausdorff space.

So we must restrict our attention to those Lie subgroups that are
closed subsets.

Therefore, H will be assumed to be a closed Lie subgroup.

We show later that this implies that H is a submanifold of G .

A section V , σ on G/H is a continuous mapping σ of an open subset
V of G/H into G , σ : V → G , satisfying

π ◦ σ = iV , the identity on V .
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Manifold Structure on Quotient

Theorem

Let G be a Lie group and H a closed Lie subgroup.
Then there exists a unique C∞-manifold structure on the space G/H,
satisfying the following properties:

(i) π is C∞;

(ii) Each g ∈ G is in the image σ(V ) of a C∞ section V , σ on G/H.

The natural action
λ : G × G/H → G/H,

described above, is a C∞ action of G on G/H with this structure.
Moreover, we have

dim(G/H) = dimG − dimH.

The proof will be given shortly.
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Diffeomorphism Between Quotient and Manifold

Now suppose that a Lie group G acts transitively on a manifold M,
the action being given by the C∞-mapping

θ : G ×M → M.

We use the notation above, with X replaced by M.

Suppose a ∈ M is fixed.

Let H be the isotropy subgroup of a.

We then have a closely related theorem that completes the picture.
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Diffeomorphism Between Quotient and Manifold (Cont’d)

Theorem

The mapping F̃ : G → M, defined by

F̃ (g) = θ(g , a),

is C∞ and has rank equal to dimM everywhere on G . The isotropy group
H is a closed Lie subgroup. So G/H is a C∞ manifold. The mapping
F : G/H → M defined by

F (gH) = F̃ (g)

is a diffeomorphism. Moreover, for every g ∈ G ,

F ◦ λg = θg ◦ F .
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Example

Consider briefly some of the spaces associated with classical
geometries:

E
n, Euclidean space;

Pn(R), the space of real projective geometry;
H

2, the space of plane non-Euclidean geometry.

All of these were discovered and studied before Lie groups (or groups
of any kind) were invented.

However, in each case there is an underlying group, the group of
automorphisms of the geometry.

It is the group by which we can bring congruent figures into
congruence.

In fact each geometry studies precisely the objects and properties
which are invariant under the transformations expressed by the
actions of this group on the space.
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Example (Cont’d)

For E
n, or Rn, the group consists of all isometries (rigid motions),

that is, translations, rotations and reflections.

For Pn(R) it consists of the projective transformations.

For H
2 it is the group whose actions leave non-Euclidean distances

unchanged (“rigid” motions again!).

In each case the group is a Lie group and in each case it is transitive.

This means that the theorems above can be used as a sort of
underlying unifying principle of all these geometries.

Thus the study of any of these classical geometries can be reduced to
a study of Lie groups G and their subgroups H.
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Example

Consider the space E
n, identified with Rn.

We have seen that the group of its rigid motions is a group G which
is O(n)× V

n as a manifold.

However, its group product was defined by

(A, v)(B ,w) = (AB ,Aw + v).

Moreover, the action on Rn is given by

(A, v) · x = Ax + v .

George Voutsadakis (LSSU) Differential Geometry December 2024 242 / 275



Vector Fields on a Manifold Homogeneous Spaces

Example (Cont’d)

Another approach is the following.

We identify G with the (n + 1)× (n + 1) matrices of the form

g =




a11 · · · a1n v1
...

...
...

an1 · · · anm vn
0 · · · 0 1


 , A =




a11 · · · a1n
...

...
an1 · · · anm


 ∈ O(n).

We identify points x = (x1, . . . , xn) of Rn with the column vector

x̃ =




x1

...
xn

1


 = (x1, . . . , xn, 1)T .
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Example (Cont’d)

Then the action
θ(g , x) = gx̃ ,

the product of the matrices g and x̃ .

The subgroup H leaving the origin x = (0, . . . , 0) fixed is the set of all
of these matrices for which

v1 = · · · = vn = 0.

Hence, it is a closed Lie subgroup isomorphic to O(n).
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Example

The group G = Sl(n+ 1,R) acts transitively on Pn(R) as follows.

Let [x ] ∈ Pn(R).

Then [x ] is an equivalence class of nonzero elements

x = (x1, . . . , xn+1) ∈ Rn+1.

Given any g ∈ Sl(n+ 1,R), we define θ(g , [x ]) by

θ(g , [x ]) = [gx ],

where gx is the matrix product of g with x , an (n + 1)× 1 matrix.

This is a C∞ action and is transitive.

The isotropy subgroup H of [(1, 0, . . . , 0)] is the set of elements (aij)
of Sl(n+ 1,R) with a11 6= 0 and all other entries of the first column
equal to zero.

It can be shown that H is a closed Lie subgroup of G .
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The Grassman Manifolds Revisited

These ideas and the preceding theorem give a relatively simple method
for establishing that certain sets are C∞ manifolds in a natural way.

The best illustrations are the Grassman manifolds G (k , n) of k-planes
through the origin in Rn.

It was proved that these were manifolds, but the proof was quite
complicated and only sketched at some points.

We revisit the same result to illustrate the new approach.
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The Grassman Manifolds Revisited (Cont’d)

The group Gl(n,R) acting in the natural manner on Rn is transitive
on k-planes through the origin.

Let {v1, . . . , vn} be a linearly independent set of vectors.

There is a uniquely determined, nonsingular, linear transformation
taking it to any second linearly independent set

{w 1, . . . ,wn}.

Recall that each set of k linearly independent vectors can be
completed to a basis.

So, if Gl(n,R) is transitive on n-frames, it is also transitive on
k-frames.

So Gl(n,R) acts transitively on the set M = G (k , n) of k-planes
through 0.
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The Grassman Manifolds Revisited (Cont’d)

Suppose the isotropy subgroup H of some point of M, that is, a
k-plane through 0, is a closed Lie subgroup.

Then, by the theorem, Gl(n,R)/H is a C∞ manifold.

Moreover, it is in natural one-to-one correspondence with M.

Thus, we may take on M the topology and C∞ structure which
makes this correspondence a diffeomorphism.

So it suffices to show that H is in fact a closed Lie subgroup.
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The Grassman Manifolds Revisited (Cont’d)

Recall H is the isotropy group of some point of M = G (k , n), i.e., a k

plane through 0.

Consider such a k-plane of Rn spanned by the vectors

e1 = (1, 0, . . . , 0), . . . , ek = (0, . . . , 1, 0, . . . , 0).

It is carried onto itself by the subgroup H ⊆ Gl(n,R) consisting of
matrices of the form

h =

(
A C

0 B

)
,

where:

A ∈ Gl(k ,R);
B ∈ Gl(n − k ,R);
C is an arbitrary k × (n − k) matrix.

Therefore, the Grassmann manifold G (k , n) is indeed a C∞ manifold.
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Outline of the Method

This method is frequently used in practice to show that some rather
complicated objects can be endowed with the structure of a
differentiable manifold (uniquely, according to the theorem).

It may be summarized as follows:

Suppose G is a Lie group and G acts on a set X transitively in such a
way that the isotropy subgroup of some point a of X is a closed Lie
subgroup. Then there exists a (unique) C∞ structure on X such that
the action is C∞.

This principle as well as other results of this section are susceptible to
further refinements and weakening of hypotheses.
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The First Theorem

Theorem

Let G be a Lie group and H a closed Lie subgroup.
Then there exists a unique C∞-manifold structure on the space G/H,
satisfying the following properties:

(i) π is C∞;

(ii) Each g ∈ G is in the image σ(V ) of a C∞ section V , σ on G/H.

The natural action
λ : G × G/H → G/H,

described above, is a C∞ action of G on G/H with this structure.
Moreover, we have

dim(G/H) = dimG − dimH.

We now give the proof.
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Proof of the First Theorem

The topology on G/H is uniquely determined by the requirement that
π : G → G/H be open and continuous.

We show λ : G × G/H → G/H is a continuous action.

Let U be an open set of G/H.

We show that λ−1(U) is open.

Let W be the subset of G × G , such that every pair (g1, g2) ∈ W has
its product g1g2 in π−1(U), an open subset of G .

W is the inverse image of π−1(U) under the continuous mapping
(g1, g2) → g1g2.

So W is open.

The natural mapping of G × G → G × G/H given by
(g1, g2) → (g1, π(g2)) is open.

So it carries W onto an open set, which is exactly λ−1(U).
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Proof of the First Theorem (Cont’d)

We now need to use Frobenius’ theorem, which we apply to the
left-invariant distribution ∆, determined by ∆e = Te(H).

Denote by h the the Lie algebra of H, viewed as a subalgebra of g.

∆ has as a basis any basis of left-invariant vector fields in h.

Moreover, the integral manifolds of ∆ are exactly the left cosets gH,
as remarked previously.

It follows that there is a cubical neighborhood of e whose
intersections with the cosets gH are a union of slices.

To complete the proof we need a sharper result given by the following
lemma.
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Lemma Auxiliary to the Proof of the First Theorem

Lemma

If H is a Lie subgroup of G which is closed as a subset, then each coset
gH is a submanifold. Moreover, there is a cubical neighborhood U, ϕ of
any g ∈ G , such that, for each coset xH, either xH ∩ U is empty or a
single (connected) slice.

That H and each of its cosets is a submanifold is an immediate
consequence of the second part of the statement, which asserts, in
particular, that H and its cosets have the submanifold property.

We know each coset is an integral manifold of the distribution ∆.

So every g ∈ G has a cubical coordinate neighborhood with
ϕ(g) = Cm

ε (0), m = dimG , whose slices, determined by fixing the last
m − n coordinates (n = dimH = dim∆), are integral manifolds, each
an open set of a coset xH of H.
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Lemma (Cont’d)

We must now verify that U may be taken sufficiently small that each
coset xH ∩ U is empty or is a single slice.

∆, integral manifolds, and so on, are invariant under left translation
by elements of G .

So it is enough to check this for the special case g = e.

Let U ′, ϕ′ be a cubical neighborhood of e, whose slices are cosets of
H, and such that U ′ ∩ H consists of a single slice.

It suffices to choose U ⊆ U ′ small enough that:

U−1U ⊆ U ′;
U , ϕ|U is also a cube.

Assume x , y ∈ U are on distinct slices of U but xH = yH.

Ly−1 is a diffeomorphism and carries slices into slices.

So y−1x and e are elements of U ′ ∩ H but lie on distinct slices.

This contradicts our assumption about U ′, so it cannot happen.
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Lemma (Existence of U ′, ϕ′)

Let V , ψ be a cubical neighborhood of e, ψ(V ) = Cm
ε (0), whose slices

S(an+1, . . . , am) = {q ∈ V : x j (q) = aj , j = n + 1, . . . ,m}

are integral manifolds.

We saw in the proof of a previous theorem that the collection of
distinct slices on H, that is, V ∩ H, is countable.

Hence, it corresponds to a countable set of points {(an+1, . . . , am)}
of the cube Cm−n

δ (0).

Restricting slightly to a closed cube V
′
= ψ−1(Cm

δ′ (0)), δ > δ′ > 0,
we may suppose this countable set is closed, for H is closed and
V

′
∩ H is closed.
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Lemma (Existence of U ′, ϕ′ Cont’d)

A closed countable subset of Rm−n must contain an isolated point.

It follows that H ∩ V ′ contains an isolated slice.

By translation invariance, we may assume this is the slice through e.

Then it is possible to choose ε′, δ′ > ε′ > 0, so that

ψ−1(Cm
ε′ (0)) = U ′, ϕ′ = ψ|U′

have exactly the property needed.

That is, H ∩ U ′ is a single slice and contains the identity e.

This U ′, ϕ′, as we have seen, enables us to complete the proof of the
lemma.
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Proof of First Theorem (Cont’d)

We restrict our discussion entirely to cubical neighborhoods U, ϕ of
the type described above, with ϕ(U) = Cm

ε (0).

We also suppose that, in the local coordinates

x1, . . . , xn, xn+1, . . . , xm,

the slices obtained by holding xn+1, . . . , xm fixed are the intersections
of cosets gH with V .

Let
A = {q ∈ U : x1(q) = · · · = xn(q) = 0}.

Let ψ′ : A → Cm−n
ε (0) ⊆ Rm−n be defined by

ψ′(q) = (xn+1(q), . . . , xm(q)).
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Proof of First Theorem (Cont’d)

A is a C∞ submanifold of G , contained in U.

In addition, ψ′ is a diffeomorphism.

By our choice of U, ϕ, we see that A meets each coset of H which
intersects U in exactly one point.

Therefore, π maps A homeomorphically onto an open subset V of
G/H.

We denote the inverse by σ.

Thus σ : V → G is a continuous section with σ(V ) = A.
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Proof of First Theorem (Cont’d)

Suppose that U, ϕ and Ũ, ϕ̃, as just chosen, are such that Ṽ = π(Ã)
and V = π(A) have common points.

The set V ∩ Ṽ is open.

Moreover, it can be verified that the corresponding subsets

W = σ(V ∩ Ṽ ) and W̃ = σ̃(V ∩ Ṽ )

are diffeomorphic with respect to the natural correspondences

σ̃ ◦ π : W → W̃ and σ ◦ π : W̃ → W .

We consider:

The collection of open sets V = π(A), over all U , ϕ of the type above;
The homeomorphisms ψ = ψ′ ◦ σ : V → Cm−n

ε (0).

It follows that they determine a C∞ structure of the type required by
the conclusions of the theorem.
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Proof of First Theorem (Cont’d)

The uniqueness follows from Requirements (i) and (ii).

Suppose we have two differentiable structures on G/H.

We show that the identity is a diffeomorphism.
Factor it locally into:

A section σ : V → G of the first structure;
A projection π, which is C∞, onto the second structure.

Thus, the identity is a C∞ mapping of G/H with structure one to
G/H with structure two, since this holds on each domain V .

The converse is also true.

So the structures agree.

Finally λ : G × G/H → G/H is C∞, since it may be written on the
domain V of a section as

λ(g , xH) = π(gσ(x)).
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The Second Theorem

Theorem

The mapping F̃ : G → M, defined by

F̃ (g) = θ(g , a),

is C∞ and has rank equal to dimM everywhere on G .
The isotropy group H is a closed Lie subgroup. So G/H is a C∞ manifold.
The mapping F : G/H → M defined by

F (gH) = F̃ (g)

is a diffeomorphism. Moreover, for every g ∈ G ,

F ◦ λg = θg ◦ F .
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Proof of the Second Theorem

By hypothesis, θ is C∞.

By definition, F̃ (g) = θ(g , a).

So F̃ : G → M is C∞.

Note that
F̃ ◦ Lg (x) = F̃ (gx) = θg ◦ F̃ (x).

Moreover, both Lg and θg are diffeomorphisms.

By the chain rule, the rank of F̃ is the same at every g ∈ G .

By a previous theorem, that F̃−1(a) = H is a closed submanifold and
satisfies the hypotheses of the preceding theorem.
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Proof of the Second Theorem (Cont’d)

At e we have F̃∗ : Te(G ) → Ta(M).

But each Xe ∈ Te(G ) is the tangent vector at t = 0 to the curve

g(t) = exp tX .

So the vector F̃∗(Xe) is the tangent vector to

F̃ (exp tX ) = θ(exp tX , a)

at a (which corresponds to t = 0).

θ restricted to g(t) = exp tX is an action of R on M.

By a previous theorem, F̃∗(Xe) is zero if and only if

θ(exp tX , a) = a, for all t.

George Voutsadakis (LSSU) Differential Geometry December 2024 264 / 275



Vector Fields on a Manifold Homogeneous Spaces

Proof of the Second Theorem (Cont’d)

That is, F̃∗(Xe) is zero iff exp tX ⊆ H.

Equivalently, X ∈ Te(H), the subspace of Te(G ) corresponding to the
subgroup H.

Hence,
kerF̃∗e = Te(H) = kerπ∗e .

As noted, dimkerF̃∗ is constant on G , as is dimkerπ∗.

Since F̃ is onto, it follows from a previous theorem that

dimM = dimG − dimH = dimG/H.

Now consider F : G/H → M.

Let q ∈ G/H.

Let V , σ be a section defined on a neighborhood V of q.

σ is C∞ and F |V = F̃ ◦ σ

So F is C∞ in a neighborhood of every point.
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Proof of the Second Theorem (Cont’d)

Hence F is C∞ on G/H.

F is one-to-one and onto from set-theoretic considerations.

If kerF∗ = {0}, that is, rankF = dimG/H = dimM everywhere, then
F must be a diffeomorphism.

Let q be any point of G/H and suppose q = π(g).

Using F̃ = F ◦ π and the chain rule, we see that
F̃∗ : Tg (G ) → T

F̃ (g)
(M) is given also by F∗ ◦ π∗.

But dimkerF̃∗ = dimkerπ∗.

So we must have dimkerF∗ = 0, as we wished to prove.

The fact that F ◦ λg = θg ◦ F was already noted.

By a previous theorem, λg is a diffeomorphism.

Finally, by hypothesis, θg is also a diffeomorphism.
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Subsection 10

Appendix: Partial Proof of Existence Theorem
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The Existence Theorem Revisited

Theorem (Existence Theorem for Ordinary Differential Equations)

Let U ⊆ Rn be an open set. For ε > 0, let Iε = (−ε, ε). Let

f i(t, x1, . . . , xn), i = 1, . . . , n,

be functions of class C r , r ≥ 1, on Iε × U.
Then, for each x ∈ U, there exists δ > 0 and a neighborhood V of x ,
V ⊆ U, such that:

(I) For each a = (a1, . . . , an) ∈ V there exists an n-tuple of C r functions
x(t) = (x1(t), . . . , xn(t)), defined on Iδ and mapping Iδ into U, which
satisfy the system of first-order differential equations

dx i

dt
= f i (t, x), i = 1, . . . , n,

and the initial conditions x i (0) = ai , i = 1, . . . , n.
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The Existence Theorem (Cont’d)

Theorem (Existence Theorem Cont’d)

For each a, the functions x(t) = (x1(t), . . . , xn(t)) are uniquely
determined, in the sense that any other functions x1(t), . . . , xn(t)
satisfying the same condition must agree with x(t) on their common
domain, which includes Iδ.

(II) These functions being uniquely determined by a = (a1, . . . , an) for
every a ∈ V , we write them

x i (t, a1, . . . , an), i = 1, . . . , n.

They are of class C r in all variables and, thus, determine a C r map of
Iδ × V → U.
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Partial Proof of Part I

We are given n functions f i (t, x) defined and of class C r on an open
subset Iε × U ⊆ R×Rn, with Iε = {−ε < t < ε, ε > 0}.

We must show that, for each x ∈ U, there is a neighborhood V and a
δ > 0, such that, for each a ∈ V , there exist unique functions x i (t),
−δ < t < δ, satisfying

dx i

dt
= f i(t, x(t)) and x i(0) = ai , i = 1, . . . , n.

Suppose x i(t), i = 1, . . . , n, are continuous functions defined for
|t| < δ and they satisfy

x i (t) = ai +

∫ t

0
f i (τ, x(τ))dτ .
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Partial Proof of Part I (Cont’d)

By the Fundamental Theorem of Calculus, they are of class C 1 at
least and satisfy the required conditions.

By the first condition above, it follows that they must be of class
C r+1 at least, since their derivatives are of class C r .

We may write this set of integral equations for x1(t), . . . , xn(t) as an
equation in n-tuples

x(t) = a +

∫ t

0
f (τ, x(τ))dτ .

For a given x0 ∈ U, we choose:

r , 0 < r < 1, such that B3r (x0) ⊆ U ;
An ε′, satisfying ε > ε′ > 0, so that I ε′ ⊆ Iε.

Thus, the functions f i (t, x) are of class C r , r ≥ 1, on the compact
set I ε′ × B3r (x0).
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Partial Proof of Part I (Cont’d)

Therefore, both the given functions f i and their derivatives are
bounded on I ε′ × B3r (x0).

It follows that we may choose M > 1 such that:

M ≥ sup ‖f (t, x)‖;
M‖x − y‖ ≥ ‖f (t, x)− f (t, y)‖, for all t ∈ I ε, and x , y ∈ B3r (x0).

The last inequality results from the Mean Value Theorem and the
continuity of the derivatives.

Choose a positive δ, such that δ < r
M2 .

We shall prove the theorem with this δ and with V = Br (x0), which
we denote by Br here.
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Partial Proof of Part I (Cont’d)

Let a ∈ B r .

Let F be the collection of all continuous maps

ϕ(t) = (ϕ1(t), . . . , ϕn(t))

of I δ into B2r (a) satisfying ϕ(0) = a.

By virtue of the preceding comments, it is enough to show that, there
is a unique member of this collection satisfying

ϕ = L(ϕ) = a +

∫ t

0
f (τ, ϕ(τ))dτ .

This will be done by:

Proving that L : F → F is a contracting mapping on a complete
metric space;
Applying the Contracting Mapping Theorem.
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Partial Proof of Part I (Cont’d)

(1) F is a complete metric space with

d(ϕ,ψ) = sup
t∈I δ

‖ϕ(t) − ψ(t)‖.

Indeed, this is the topology of uniform convergence of continuous
functions on a compact space.

(2) If ϕ ∈ F , then L(ϕ) ∈ F so that L maps F to F .

It is clear that L(ϕ) is continuous. In fact, it is at least C 1.

When t = 0, the function L(ϕ) has the value a.

It is only necessary to check that if |t| ≤ δ, then ‖L(ϕ)(t) − a‖ ≤ 2r .

This results from

‖L(ϕ)(t) − a‖ = ‖
∫ t

0 f (τ, ϕ(τ))dτ‖

≤
∫ t

0 ‖f (τ, ϕ(τ))‖dτ

≤ Mδ < r
M
< r .
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Partial Proof of Part I (Cont’d)

(3) Finally, L is contracting.

Let ϕ,ψ ∈ F :

‖L(ϕ) − L(ψ)‖ ≤
∫ t

0 ‖f (τ, ϕ(τ)) − f (τ, ψ(τ))‖dτ

≤ δM supt∈I δ ‖ϕ(t)− ψ(t)‖

≤ δMd(ϕ,ψ) = r
M
d(ϕ,ψ).

But r < 1 and M > 1.

So we have

‖L(ϕ) − L(ψ)‖ ≤ kd(ϕ,ψ), where 0 < k < 1.

By the contracting mapping theorem there is a unique ϕ(t) satisfying
the conditions.
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