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Tensors and Tensor Fields on Manifolds

o We suppose that V is a finite-dimensional vector space over RR.
o Let V* denote its dual space.
o V" is the space whose elements are linear functions from V to RR.

o Linear functions from V to R are called covectors.
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Tensors and Tensor Fields on Manifolds

o Suppose 0 € V* sothato: V — R.

o Then, for v € V, we denote the value of o on v by
o(v) or (v,o).

o Recall that addition and multiplication by scalars in V* are defined by
the equations

(01+02)(V) = 0'1(V)+0'2(V),
(ao)(v) = afa(v)).

o These give the values of o1 4+ 05 and ao, a € R, on an arbitrary
v € V, the right-hand operations taking place in R.
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Tensors and Tensor Fields on Manifolds

o Let F, : V — W be a linear map of vector spaces.

o It uniquely determines a dual linear map F* : W* — V* by the
prescription
(Fro)(v) = o(F(v)).
o This can be written, equivalently,

(v, F*(0)) = (Fu(v),0).

o When F, is injective, then F* is surjective.
o When F, is surjective, then F* is injective.
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Tensors and Tensor Fields on Manifolds

o Let ey,...,e, be a basis of V.

o There exists a unique dual basis

of V* such that

i N S 07 If’#]a
“’("J)_‘S'_{l, if i =],
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Tensors and Tensor Fields on Manifolds

o If v € V, then wl(v),...,w"(v) are exactly the components of v in
the basis eq, ..., e,,

v= Zu)j(v)ej.
j=1

o Indeed, if v =37, aje;,

W(v) = iaiei = ia;w"(e;) = &y
i=1 i=1
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Tensors and Tensor Fields on Manifolds

o Observe that in Fact (i), the definition of F* does not require the
choice of a basis.

o Therefore F* is naturally or canonically determined by F,.

o According to Fact (ii), the vector spaces V, V* have the same
dimension.

o Thus, they must be isomorphic.
o There is no natural isomorphism.

o However, the following Fact (iii) holds.
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Tensors and Tensor Fields on Manifolds

o There is a natural isomorphism of V onto (V*)* given by
v — (v,).
o That is, v is mapped to the linear function on V* whose value on any
oe V*is (v,o).
o Note that (v, o) is linear in each variable separately (with the other
fixed).
o This shows that:

o The dual of V* is V itself;
o Accounts for the name “dual” space;
o Validates the use of the symmetric notation

(v,0)
in preference to the functional notation o(v).
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Tensors and Tensor Fields on Manifolds

o Let M be a C* manifold and assume p € M.

o We denote by T;(M) the dual space to T,(M).

o Thus, o, € T;(M) is a linear mapping o, : T(M) — R.
o Its value on X, € T,(M) is denoted by o,(Xp) or (Xp,0p).
o Suppose Eiqp, ..., Enp is a basis of T,(M).

o There is a uniquely determined dual basis w} .., wp satisfying, by

Fhc
definition, ' .
wy(Ejp) = 6j-
o The components of o, relative to this basis are equal to the values of
op on the basis vectors Eyp, ..., Epp,

n
G = Zap(Eip)w;,.
i=1
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Tensors and Tensor Fields on Manifolds

o We have defined a vector field on M.

o Similarly, we may define a covector field.

o It is a (regular) function o, assigning to each p € M an element o, of
To(M).

o We denote such a function by o, A, .. ..

o We denote by op, Ap, ... its value at p.

o This is the element of T;(M) assigned to p.
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Tensors and Tensor Fields on Manifolds

o Let o be a covector field on M.

o Let X be a vector field on on an open subset U of M.
o Then o(X) defines a function on U.

o To each p € U we assign the number

a(X)(p) = op(Xp).

o We often write o(X,) for o,(X,) if o is a covector field.
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Tensors and Tensor Fields on Manifolds

Definition

A C'-covector field o on M, r > 0, is a function which assigns to each

p € M a covector o, € T;(M) in such a manner that for any coordinate
neighborhood U, ¢ with coordinate frames Ej, ..., E,, the functions o(E;),
i=1,...,n, are of class C" on U.

For convenience, “covector field” will mean C°-covector field.

o One may wish to avoid the use of local coordinates.

o In that case, the following (apparently stronger) regularity condition
could be used to replace the requirement of the definition.
Suppose that o assigns to each p € M an element o, of T;(M).
o is of class C", iff, for any C°-vector field X on an open subset W of
M, the function o(X) is of class C" on W.
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Tensors and Tensor Fields on Manifolds

o We show why the preceding equivalence holds.

o Take a covering of W by coordinate neighborhoods of M (whose
domains are in W).

o Let U, ¢ be such a neighborhood.
o Then, for some o/, which are C* on U,

X = Zo/E,.

o(X) = Zaia(E;).
o Thisis C" if o(E1),...,0(E,) are.
o Hence the condition given implies o(X) is of class C" on a collection
of open sets covering W.
o Soitis C" on W itself.

o The converse is obvious.
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Tensors and Tensor Fields on Manifolds

o Let Eq,..., E, be a field of (C°°) frames on an open set U C M.

o Consider the dual basis at each point of U.

o These define a field of dual bases w?,...,w" on U satisfying
w'(E) = 5J’
o We call this a field of coordinate coframes if E;, ..., E, are

coordinate frames.
o The wl,...,w" are of class C™ by the criterion just stated.

o Covector field o is of class C" if and only if, for each coordinate
neighborhood U, ¢, the components of ¢ relative to the coordinate
coframes are functions of class C" on U.

George Voutsadakis (LSSU)



Tensors and Tensor Fields on Manifolds

Let M be a manifold.
Recall that X(M) denotes the collection of all C* vector fields on M.

It is important to note that a C"-covector field defines a map of

©

©

©

(M) — C"(M).

©

This map is not only R-linear but even C"(M)-linear.
More precisely, suppose:

o f,g e C'(M)

o X and Y are vector fields on M.

o Then

©

o(fX +gY) = fo(X)+ go(Y),

since these functions are equal at each p € M.
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Tensors and Tensor Fields on Manifolds

o Let f be a C* function on M.
o f defines a C*-covector field, denoted df, by the formula

(Xp, dfy) = Xpf or  dfy(Xp) = Xpf.
o For a vector field X on M, this gives
df (X) = Xf,

a C*° function on M.
o This covector field df is called the differential of f.
o lts value at p, df,, is called the differential of f at p.
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Tensors and Tensor Fields on Manifolds

o In the case of an open set U C R", we verify that it coincides with
the usual notion of differential of a function in advanced calculus.

o In fact, it makes the notion of differential more precise.
o In this case, the coordinates x’ of a point of U are functions on U.

o By our definition, dx’ assigns to each vector X at p € U a number
Xpx', its ith component in the natural basis of R".

(9 i _aXi_ i
<wdx>—w—5f“

o In particular,

o So we see that dx!,..., dx" is exactly the field of coframes dual to
o) a
W, ceey W.
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Tensors and Tensor Fields on Manifolds

o Suppose f is a C* function on U.
o Then we may express df as a linear combination of dx!, ..., dx".

o We know that the coefficients in this combination, that is the

components of df, are given by df(%) — %.
o Thus we have o Y
_ 1 n
df— ﬁdx + -4 8XndX .
o Suppose a € U and X, € T,(R").
o Then X, has components, say, h',..., h" and geometrically X, is the

vector from a to a + h.

o We have

of
ox!

df(Xa) = Xof = (Z h"ai,.> f= Zh’(
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Tensors and Tensor Fields on Manifolds

o In particular, dx/(X,) = h'.
o That is, dx’ measures the change in the ith coordinate of a point
which moves from the initial to the terminal point of Xj.

o The preceding formula may thus be written

df(X,) = <%>adxl(Xa) 4+ 4 <§an>adx”(Xa).

o This gives us a very good definition of the differential of a function
fon UCR".
o df is a field of linear functions which, at each point a of the domain of
f, assigns to the vector X; a number.
o X, can be interpreted as the displacement of the n independent
variables from a, i.e., it has a as initial and a + h as terminal point.
o df(X,) approximates (linearly) the change in f between these points.
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Tensors and Tensor Fields on Manifolds

o Let F: M — N be a smooth mapping and suppose p € M.

o Then, as we know, there is induced a linear map
Fy: TP(M) — TF(p)(N).

o We know that F, determines a linear map F* : T,’_i(p)(N) = T5(M),
given by the formula

F*(0r(p))(Xp) = 0r(p) (Fe(Xp))-

o In general, F, does not map vector fields on M to vector fields on N.

o It is surprising, then, that given any C"-covector field on N, F*
determines (uniquely) a covector field of the same class C" on M by
this formula.
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Tensors and Tensor Fields on Manifolds

Theorem

Let F: M — N be C* and let o be a covector field of class C" on N.
Then

F*(0r(p)(Xp) = oF(p) (F<(Xp))

defines a C"-covector field on M.

o Let o be a covector field on N.
By definition, for any p € M, there is exactly one image point F(p).
It is, thus, clear that F*(o) is defined uniquely at each point of M.

Suppose that, for pp € M, we take coordinate neighborhoods U, ¢ of
po and V¢ of F(pp), such that F(U) C V.

Denote the coordinates on U by (x!,...,x™).

Denote the coordinates on V by (y!,...,y").
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Tensors and Tensor Fields on Manifolds

o Then we may suppose the mapping F to be given in local coordinates
by

yi=fi(xt,...,x™), i=1,...,n.

Let the expression for o on V/, in the local coframes, at g € V be

n
Jq = Zai(q)a}qv
i=1

where G}, ..., @7 is the basis of T;(N) dual to the coordinate frames.
The functions a/(q) are of class C" on V/, by hypothesis.

Let p be any point on U and g = F(p) its image.

Using the formula defining F*, we see that

(F*(0))p(Eip) = ok () (Fx(Eip)) = D i F(p))& () (Fu(Epp)).
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Tensors and Tensor Fields on Manifolds

o We got
(F*(0))p(Eip) = > @i F(P))Bk () (Fe(Epp)).
However, we have prewously obtained the formula
Ayk ~

81 kF(p) g=A e
k=1

F(Ejp) =

the derivatives being evaluated at ¢(p) = (x'(p),...,x™(p)).
Using &/(E;) = (5J’ we obtain

n

(F MWt = Sl Fo) (55)
e(p

i=1

As p varies over U these expressions give the components of F*(o)
relative to w!,...,w™ on U, the coframes dual to Ei, ..., Ep,.
They are clearly of class C" at least, completing the proof.
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Tensors and Tensor Fields on Manifolds

Corollary

Using the notation above, suppose:

°oo=>", a;@' on V;

o F¥(o) =3, Bjw on U,
where a; and 3; are functions on V and U, respectively, and @', wl are the
coordinate coframes. Then:

o Fori=1,...,n,

*(~] ayi i
j=1
o Forj=1,....m,
~ dy'
B = c‘)J ;.
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Tensors and Tensor Fields on Manifolds

o The formulas
*(~i . ayi i .
F*(@") = . ﬁuﬂ, i=1,...,n,
j=1
give the relation of the bases.
o The formulas
~ dy'
8 J
i=1
give the relation of the components.
o Apply this directly to a map of an open subset of R™ into an open
subset of R".
o Then we get for F*(dy’) the formula

* i < 8yi J -
F(dy):ZWdX, I:].,...,n.
j=1
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Tensors and Tensor Fields on Manifolds

o Suppose we apply the above considerations to the diffeomorphism
@ : U— R" of a coordinate neighborhood U, v on M.

o Let V C R" denote (V).

o Let dx!,...,dx" be the differentials of the coordinates of R".
o 1 o a a a
o Thatis, dx*,...,dx" is the dual basis to 375,..., 7.7

o By definition, we have go;l(%) = E;.

0
Oxi!

o Further, the definition of F, above gives for o, (dx')

(B0 (dX)) = (2 (E}), ') = 6.

o Hence, p.(Ej) = for each I.

o It follows that o, (dx’) = w’, i =1,...,n, the field of coframes on U
dual to the coordinate frames Eq, ..., E,.
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Tensors and Tensor Fields on Manifolds

o There is a potential source of confusion in notation.

1

o The coordinates x*, ..., x" can be considered as functions on U.

o As such, they have differentials dx’ defined by
(X, dx") = Xx',

the ith component of X in the coordinate frames.
o In particular, (Ej, dx’) = Ejx' = (5J’
o So dx!,...,dx" are dual to Ei, ..., E,.
o Therefore dx' =w', i=1,...,n.
o Combining this with the formula above gives dx’ = ¢*(dx").

o This is nonsense, unless we are careful to distinguish x' as
(coordinate) function on U C M, on the left, from x' as (coordinate)
function on p(U) = V C R", on the right.
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Tensors and Tensor Fields on Manifolds

o We may apply the theorem to obtain examples of covector fields on a
submanifold M of a manifold N.

o Let i : M — N be the inclusion map.

o Suppose o is a covector field on N.

o Then i*(o) is a covector field on M called the restriction of o to M.
o It is often denoted oy or simply o.

o Recall that, for each p € M, T,(M) is identified with a subspace of
To(N) by the isomorphism i,.

o So we have for X, € T,(M)
om(Xp) = (iI"0)(Xp) = 0 (ix(Xp)) = a(Xp).
o The last equality is the identification.
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Tensors and Tensor Fields on Manifolds

As an example, let M C R".
Let o be a covector field on R”, for example take o = dx*.
Then o restricts to a covector field oy on M.

Note that in this example dx! is never zero as a covector field on R”.

© © 6 o o

But on M it is zero at any point p at which the tangent hyperplane
T,(M) is orthogonal to the x!-axis.
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Tensors and Tensor Fields on Manifolds

Subsection 2
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Tensors and Tensor Fields on Manifolds

o Let V be a vector space over R.

o A bilinear form on V is defined to be a map
d:VxV-=R

that is linear in each variable separately.

o Thatis, for o, 8 € R and v, vy, vy, w,wi,wy € V,

®(avy + fva,w) = ad(vi,w)+ BP(v2, w),
O(v,awi + fwy) = ad(v,wy) + SP(v, wo).
o A similar definition may be made for a map ® of a pair of vector
spaces V x W over R.
o Note that the map assigning to each pair v € V, 0 € V* a number

(v,0), as discussed in the preceding section, is an example.
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Tensors and Tensor Fields on Manifolds

o Bilinear forms on V are completely determined by their n® values on
a basis e1,...,e, of V.

o Suppose ajj = P(ej,e;), 1 <i,j < n, are given.
o Let v=> )e;, w=> /e; be any pair of vectors in V.

o Bilinearity requires that

n
(v, w) = Z A
ij=1

o Conversely, let an n x n matrix A = (jj) of real numbers be given.
o Then the formula just given determines a bilinear form ®.
o Thus, there is a one-to-one correspondence between n x n matrices

and bilinear forms on V once a basis e, ..., e, is chosen.
o The numbers «j; are called the components of ® relative to the

basis.
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Tensors and Tensor Fields on Manifolds

o A bilinear form, or function, is called symmetric if
d(v,w) = d(w,v).
o It is called skew-symmetric if
O(v,w) = —d(w,v).

o It is easily seen that, regardless of the basis chosen, these correspond,
respectively, to:

o Symmetric matrices of components,
AT = A

o Skew-symmetric matrices of components,
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Tensors and Tensor Fields on Manifolds

o A symmetric form is called positive definite if
d(v,v) >0

and equality holds if and only if v = 0.

o In this case we often call ¢ an inner product on V.

o A vector space with an inner product is called a Euclidean vector
space, since ¢ allows us to define:

o The length of a vector,
vl = v&(v, v).

o The angle between vectors.
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Tensors and Tensor Fields on Manifolds

Definition

A field ® of C’-bilinear forms, r > 0, on a manifold M consists of a
function assigning to each point p of M a bilinear form ®, on T,(M).
That is, a bilinear mapping

S, To(M) x To(M) = R,
such that for any coordinate neighborhood U, ¢ the functions
Qi = ¢(Eia Ej)a

defined by ® and the coordinate frames Ei, ..., E, are of class C".
Unless otherwise stated, bilinear forms will be C*°.
To simplify notation we usually write ®(X,, Y}) for ®,(X,, Yp).
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Tensors and Tensor Fields on Manifolds

o The n? functions
aj = O(Ej, Ej)
on U are called the components of ¢ in the coordinate
neighborhood U, .
o Let ® be a function assigning to each p € M a bilinear form.

o Then ® is of class C" if and only if for every pair of vector fields X, Y
on an open set U of M, the function ®(X,Y) is C" on U.

o ®is C*°(U)-bilinear as well as R-bilinear.
o Thatis, for f € C*(U),

O(FX, Y) = FO(X, Y) = &(X, fY).
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Tensors and Tensor Fields on Manifolds

Let F, : W — V be a linear map of vector spaces.

©

Let ® be a bilinear form on V.

©

Then the formula

©

(F*®)(v, w) = ®(Fi(v), F.(w))

defines a bilinear form F*® on W.
We have the following properties:
If ® is symmetric, then F*® is symmetric.
If ® is skew-symmetric, then F*® is skew-symmetric.
If ® is symmetric, positive definite, and F, is injective, then F*® is
symmetric, positive definite.

©

The latter applies to the identity map i, of a subspace W into V.
In this case i*® is just restriction of ® to W:

(IFP)(v,w) = ®(iyv, iw) = (v, w).

©

©
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Tensors and Tensor Fields on Manifolds

o Let F: M — N be a C* map.

o Suppose that © is a field of bilinear forms on N.

o Then, just as in the case of covectors, this defines a field of bilinear
forms F*® on M by the formula for (F*®), at every p € M,

(F*q’)(va Yp) = (D(F*(Xp)a F*(Yp))-

Theorem
Let F: M — N be a C° map and ¢ a bilinear form of class C" on N.

Then F*® is a C’-bilinear form on M. Moreover, if ® is symmetric
(skew-symmetric), then F*® is symmetric (skew-symmetric).

o Suppose U, ¢ is a coordinate neighborhood of p, V% is a coordinate
neighborhood of F(p), such that

F(U)C V.

George Voutsadakis (LSSU) Differential Geometry



Tensors and Tensor Fields on Manifolds

o We may write

B5(p) = (F*®)o(Eip, Epp) = S(Fu(Epp), Fu(Epp)).

Applying a previous theorem, we have

dy* Oyt
,Bij(,D): B a J (EsF(p EtF(p))

s,t=

This gives a formula for the matrix of components (3j;) of F*® at p
in terms of the matrix (as) of ® at F(p),

B ay*® 8y
Pi= 2. 5 0a®

s, t=1

The functions j3j;, thus defined, are of class C" at least on U.
The statements about symmetry and skew-symmetry are obvious
consequences of Property (i), mentioned above.
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Tensors and Tensor Fields on Manifolds

Corollary

If Fis an immersion and @ is a positive definite, symmetric form, then
F*® is a positive definite, symmetric bilinear form.

o We must check that F*® is positive definite at each p € M.
Let X, be any vector tangent to M at p.

Then
F*q’(Xanp) = ¢(F*(Xp), F*(Xp)) > 0.

Moreover, equality holds only if F.(X,) = 0.
However, F is an immersion.

So we have
Fi(Xp) =0 if and only if X, =0.
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Tensors and Tensor Fields on Manifolds

Definition
A manifold M on which there is defined a field of symmetric, positive
definite, bilinear forms ® is called a Riemannian manifold and ¢ the

Riemannian metric.
We shall assume always that ¢ is of class C*°.
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Tensors and Tensor Fields on Manifolds

o The simplest example is R"” with its natural inner product
n . .
q>a()<a7 Ya) = Z aI/BIa
i=1

whereX:Za"% and Y:Zﬁ"%.

o 0
? (aTaT) =0

o So the matrix of components of ®, relative to the standard basis, is
constant and equals /, the identity matrix.

o It follows that ® is C*°.

o At each point we have
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Tensors and Tensor Fields on Manifolds

o Any imbedded or immersed sub manifold M of R" is endowed with a
Riemannian metric from R” by virtue of the imbedding (or
immersion) F : M — R".

o Thus, for example, a surface M in R3 has a Riemannian metric.

o The idea of the corollary in this case is very simple.

o Let i : M — R3 be the identity.

o Let X,, Y, be tangent vectors to M at p.

o Then
i*®(Xp, Yp) = ®(iXp, ix Yp) = ®(Xp, Yp).
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Tensors and Tensor Fields on Manifolds

o We got
I O(Xp, Yp) = ©(Xp, Yp).

o That is, we simply take the value of the form on X, Y}, considered as
vectors in R3, using our standard identification of T,(M) with a
subspace of T,(IR3).

o In particular S?, the unit sphere of R3, has a Riemannian metric
induced by the standard inner product in R3.

o Let X,, Y, be tangent to S? at p.
o Then ®(X,, Y}) is just their inner product in R3.
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Tensors and Tensor Fields on Manifolds

o Classical differential geometry deals with properties of surfaces in
Euclidean space.

o The inner product ® on the tangent space at each point of the
surface, inherited from Euclidean space, is an essential element in the
study of the geometry of the surface.

o It is known as the first fundamental form of the surface.
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Tensors and Tensor Fields on Manifolds

o We define the rank of a form ® on V to be the codimension of the
subspace

W={veV: :d(v,w)=0, forallwe V}.

o Thatis, rank® =dimV —dimW.
o The following facts are often useful:

If ® is a bilinear form on V, then the linear mapping ¢ : V — V*
defined by (w, p(v)) = ®(w, v) is an isomorphism onto if and only if
rank® = dimV.

Every bilinear form ® may be written uniquely as the sum of a
symmetric and a skew-symmetric bilinear form, namely,

1 1
d(v,w) = E[d)(v, w) + d(w,v)] + E[GD(V, w) — d(w, v)].
If a skew-symmetric form ® has a rank equal to dimV, then dimV is

an even number.
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Tensors and Tensor Fields on Manifolds

Subsection 3
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Tensors and Tensor Fields on Manifolds

o The importance of the Riemannian manifold derives from the fact
that it makes the tangent space at each point into a Euclidean space,
with inner product defined by ®(X,, Y;).

o This enables us to define:

o Angles between curves, that is, the angle between their tangent vectors
Xp and Y, at their point of intersection;
o Lengths of curves on M.

o Thus we may study many questions concerning the geometry of these
manifolds.

o This forms a large part of the classical differential geometry of
surfaces in R3.
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Tensors and Tensor Fields on Manifolds

o Let
t—p(t), a<t<bh,

be a curve of class C! on a Riemannian manifold M.
o Then its length L is defined to be the value of the integral

b dp dp 1/2
= [(o(2.2)) e

o The integrand is a function of t alone.
o So a more precise notation is to denote its value at each t by

dp dp
(0}
P(t) <dt dt)
where % € Tp(¢)(M) is the tangent vector to the curve at p(t).

o This function is continuous, by the continuity of 2 and ®.
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o The value of the integral

b dp dp 1/2
L= S, — t
/3 ( (dt’dt)) ‘

is independent of the parametrization.
o Consider a new parametrization

t=17(s), c<s<d.

o We have given the formula for change of parameter,
dp dp dt

ds  dtds
o So we obtain

JE (@R BN = [ (O BAE g
I (o(, )2t
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o Consider the arc length along the curve from p(a) to p(t), which may
be denoted by s = L(t).

o It gives a new parameter by the formula

9= [ (o(2.2))
(t) . dt’ dt
ds_ (o0 dp\\7?
dt dt’ dt ’
2
d\? _, (db b
dt) dt’dt )’
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©

Let U, p be a coordinate neighborhood with coordinate frames
Y
Within U, ¢, with ¢(p) = x = (x,...,x"), we have
®(Eip, Ejp) = &ij(x)-

©

©

The curve is given by

p(p(t)) = (x*(t), .., x"(t)).

©

So L(t) becomes

dx’ dx’
o So, in local coordinates, the Riemannian metric is abbreviated
ds? = Z gij(x)dx’ .

ij=1
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(]

Consider R", with its standard inner product.
o Let
p(t) = (<'(t),...,x"(t)), a<t<b,

be a curve in R".
o Then we have

o Moreover,

dp_ : of 0
E—Zx(t)axi.

i=1

©

So we have the familiar formula for arc length
b/ 1/2
L= / (Z(X"(t))2) dt.
2 \i=1
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o Let D! be the class of functions that are piecewise CI.

Theorem
A connected Riemannian manifold is a metric space with the metric

d(p, g) = infimum of the lengths of curves of class D! from p to g.

Its metric space topology and manifold topology agree.

o Since M is arcwise connected, d(p, q) is defined.
By definition d(p, g) is symmetric and nonnegative.
A curve from p; to po and a curve from p, to p3 may be joined to
give a curve from p; to ps.
The length of this curve is the sum of the lengths of the two curves.

It follows that the triangle inequality is satisfied.
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o In order to complete the proof we need some inequalities.
Let p be an arbitrary point of M.
Let U, ¢ be a coordinate neighborhood, with ¢(p) = (0,...,0).
Let a > 0 be a fixed real number with the property that

p(U) 2 Ea(O),

the closure of the open ball of radius a and center the origin of R".
Let x1,...,x" denote the local coordinates.

Let gjj(x) the components of the metric tensor ® as functions of
these coordinates. These n? functions are:

o C® in their dependence on the coordinates;
o The coefficients of a positive definite, symmetric matrix for each value
of x in p(U).
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o Consider the compact set defined by

IIx|| <r, r<a,

where a = (al,...,a") is such that >.7_ (a)2 =1
By the properties of gjj(x), on this compact, the expression
1/2

n
Z gii(x)a'o!
ij=1
assumes a maximum value M, and a minimum value m, > 0.
Let m, M denote the min and max corresponding to r = a.
Then we have the inequalities
1/2

n
O<m<m< Zg;j(x)aiaj <M, <M.
ij=1
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o Now let (B%,...,") be any n real numbers, such that

n 1/2
(Z(ﬂ’)z) =b#0.
i=1
In the preceding, replace each o' by %i.
Then, multiply the inequalities by b.
We get, for every x € B,(0),

1/2

n
0<mb<mb< () gB#| <Mb<Mb
ij=1
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o Now we shall make the following assumption.

o If x,y are any points of R” with its standard Riemannian metric (as
defined above), then the infimum of the lengths of all D! curves in
R" from x to y is exactly the length of the line segment Xy.

o In other words, it is ||y — x|| the Euclidean distance from x to y.
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o Let p(t), a<t < b, bea D! curve lying in ¢=1(B,(0)) C U which
runs from p = p(a) to g = p(b).
Let its length be

1/2

L:/ Zg,(x ()X (t)|  dt.

ij=1

The last set of inequalities above and the assumption on R"” imply
that, for p # q,

0 < mlle(q)ll < m.llo(q)l| < L
< M, [P [0 (322 de < M P [ (5)7) 2 d.
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o We first use these inequalities to complete the proof that d(p, q) is a
metric on M.

Let g’ be any point of M distinct from p.
Then, for some r, 0 < r < a, ¢’ lies outside of ¢~1(B,(0)) C U.
Consider a curve of class D! from p = p(0) to q’' = p(c),

p(t), 0<t<ec

Let L’ be the length of p(t), 0 <t < c.
There is a first point g = p(b) on the curve outside ¢~ 1(B,(0)).

That is, such that:
o p(t) lies inside the neighborhood ¢ ~1(B,(0)), for 0 < t < b;
o q = p(b) lies outside p~1(B,(0)).
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o q is the first point of the curve with ||¢(q)| = r.
Let L denote the length of the curve p(t), 0 <t < b.
Then L< L.
It follows that L' > L > mr.
But the curve was arbitrarily chosen.
So we get
d(p,q) > mr.
This means that if ¢’ # p, then d(p,q’) # 0.
So d(p, q) is a metric as claimed.
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o We now show the equivalence of:

o The metric topology on M;
o The manifold topology on M.

It is enough to compare the neighborhood systems at an arbitrary
point p of M.

In fact, for the manifold topology, we need only consider the
neighborhoods lying inside a single coordinate neighborhood U, .

Thus, we must show that each neighborhood
V. =¢(B(0) C U
of the point p contains an e-ball,
5:(P)={qeM:d(p,q) <e}.

of the metric topology, and conversely.
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o This will follow from the inequalities we have obtained.
For, given r < a, choose € > 0 satisfying = < r.
Let g be any point of M, such that d(p, q) < mr.
We see that g € V,, since, otherwise, d(p, q) > mr as we have seen.
But we have chosen € < mr.
So we get S.(p) C V.
Conversely, suppose we consider some metric ball S.(p) about p.
So S.(p) is a neighborhood of p in the metric topology.
Choose r > 0 so that r < aand r < .
Let g € V, = o~ (B(0)).
Let (B%,...,3") denote the coordinates of g.
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o Let p(t), 0 < t < b, be the curve from p to g in V,, defined by the
coordinate functions x'(t) = j3't.

The length L of this curve is given by an integral which yields
1 [ n 1/2 0 1/2
L= / Z gi(tB3)B' 3 dt < M, [Z(B’Y] < Mr<e.
0 [jj=1 i=1
Thus d(p,q) < e and g € S5.(p).
It follows that o ~%(B,(0)) C S.(p).
That is, each metric neighborhood of p contains a manifold
neighborhood of p (lying inside U).
This completes the proof of the theorem except for the unproved
assertion about R” (theorem itself in R").
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Subsection 4
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o A covering {A,} of a manifold M by subsets is said to be locally
finite if each p € M has a neighborhood U which intersects only a
finite number of sets A,.

o If {Ay} and {Bg} are coverings of M, then {Bg} is called a
refinement of {A,} if each B3 C A,, for some a.

o In these definitions we do not suppose the sets to be open.
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o Any manifold M is locally compact since it is locally Euclidean.

o It is also o-compact, which means that it is the union of a countable
number of compact sets.

o This follows from the local compactness and the existence of a
countable basis Py, P>, ... such that each P; is compact.

o A space with the property that every open covering has a locally finite
refinement is called paracompact.

o It is a standard result of general topology that a locally compact
Hausdorff space with a countable basis is paracompact.
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Lemma
Let {A,} be any covering of a manifold M of dimension n by open sets.
Then there exists a countable, locally finite refinement {U;, ¢;}, consisting
of coordinate neighborhoods, with

pi(Ui) = B3(0), i=1,23,...,

and such that
Vi = ¢ 1(B{(0)) C U;

also cover M.

o We begin with the countable basis of open sets {P;}, P; compact.
Define a sequence of compact sets K1, K>, ... as follows.
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o Let K1 = ﬁl.

Assume that Ki, ..., Kj have been defined.
Let r be the first integer such that

mgO&
j=1

Define Ki11 by

Kiy1=PiUP U UP, = LU UP,

o
Denote by K11 the interior of Kjij.
It contains K;.

For each i = 1,2, ..., consider the open set (K2 — Ki—1) N A,
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o Consider the open set (K12 — Ki—1) N A,.
Around each p in this set choose a coordinate neighborhood
Up,a, Pp,o lying inside the set and such that:
° ¥p,a(p) =0;
° ¢p,a(Upa) = B3(0).
Take Vjo = 950 (B1(0)).

Note that these are also interior to (K12 — Ki—1) N Aq.

Moreover allowing p, a to vary, a finite number of the collection of
V, o covers Ki11 — Kj, a closed compact set.

Denote these by V; , with k labeling the sets in this finite collection.
For each i = 1,2, ..., index k takes on just a finite number of values.
Thus, the collection V; j is denumerable.

Renumber these sets as Vi, Vs, .. ..

Denote by Ui, 1, Ua, o, ... the corresponding coordinate
neighborhoods containing them.
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o The Uy, 1, Us, o, ... satisfy the requirements of the conclusion.

]
For each p € M, there is an index i such that p € K;_;.

From the definition of U;, Vj, it is clear that only a finite number of
[e]

these neighborhoods meet K;_;.

Therefore, {U;}, and also {V;}, are locally finite coverings refining
the covering {A,}.

. It is clear that it would be possible to replace the spherical
neighborhoods B;(0) by cubical neighborhoods C/(0) in the lemma.

o We shall call the refinement U;, V;, ; obtained in this lemma a
regular covering by spherical (or, when appropriate, cubical)
coordinate neighborhoods subordinate to the open covering {Aa}.
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o Recall that the support of a function f on a manifold M is the set

supp(f) = {x € M : f(x) = 0}.

o That is, the closure of the set on which f vanishes.

Definition

A C* partition of unity on M is a collection of C*° functions {f,},
defined on M, with the following properties:

fy, >0 on M;
{supp(fy)} form a locally finite covering of M;
>, f(x) =1, for every x € M.
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o Note that, by virtue of Property (2), each point has a neighborhood
on which only a finite number of the f,s are different from zero.

o It follows that the sum in Property (3) is a well-defined C* function
on M.

o A partition of unity is said to be subordinate to an open covering
{An} of M if, for each ~, there is an A,, such that

supp(fy) C Aa.
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Theorem

Associated to each regular covering {U;, Vi, p;} of M, there is a partition
of unity {f;}, such that:

o f;>0o0n V; = ¢, 1(B1(0));
o suppf; C cpi_l(EZ(O)).
In particular, every open covering {A,} has a partition of unity which is
subordinate to it.
o Exactly as in a previous theorem, we see that there is, for each /, a
nonnegative C* function g(x) on R" which is:

o ldentically one on B;(0);
o Zero outside BJ(0).

George Voutsadakis (LSSU) Differential Geometry



Tensors and Tensor Fields on Manifolds

o Consider the function

goyi, on U
g':{o, on M — U
Clearly gi is C* on M.
It has its support in <pi_1(§g(0)).
It is +1 on V.
Finally, it is never negative.

Consider the functions

=S i=12,....

> 8

From the preceding properties and the fact that {V;} is a locally finite
covering of M, we can see that the {f;} have the desired properties.
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It is possible to define a C°° Riemannian metric on every C° Riemannian
manifold.

o Let {U;, Vj, i} be a regular covering of M.
Let f; be an associated C* partition of unity as defined above.
By hypothesis, ¢; : Ui — Bj(0) is a diffeomorphism.
Let W denote the usual Euclidean inner product on R".
Then the bilinear form
i =p;V

defines a Riemannian metric on U;.
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o Taking into account that f; > 0 on V;, consider
;.

o It is a Riemannian metric tensor on V;;
o It is symmetric on U;;

. . — —n
o It is zero outside ¢; *(B5(0)).

Hence, it may be extended to a C°°-symmetric bilinear form on all of
M, which:

o Vanishes outside gpi_l(Eg(O));
o lIs positive definite at every point of V;.

It is easy to check that the sum of symmetric forms is symmetric.
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o Therefore ® = > f;®; is symmetric, where ® is defined by
oo
Op(Xp, Vo) = D fi(P)Pi(Xp, Yp), P EM.
i=1

We have denoted by f;®; its extension to all of M.

Recall that the summation makes sense, since in a neighborhood of
each p € M all but a finite number of terms are zero.

However, @ is also positive definite.

For every i, f; > 0 and each p € M is contained in at least one V.
Then fj(p) > 0.

So, if 0 = ®,(Xp, Xp) =D fi(p)Pi(Xp, Xp), then ®;(X,, X,,) = 0.
This means 0 = @I W(Xp, Xp) = V()i (Xp), 9j«(Xp))-

However, V is positive definite and ¢ is a diffeomorphism.

So this implies X, = 0.

Now the proof is complete.
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Any compact C* manifold M admits a C* imbedding as a submanifold
of RN for sufficiently large N.

o Let {U;, Vi, pi} be a finite regular covering of M.
Such a covering exists because of the compactness.
Recall that we have defined the associated partition of unity {f;}
using functions {g;}, where g; =1 on V.
We use here these C*° functions {g;} on M rather than the
(normalized) {f;}.
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o Let ¢; : Ui — Bj(0) be the coordinate map.
Consider the mapping

givi: U — Bj(0)
p — (&i(p)x*(p).--,&(p)x"(p)).
It isa C* map on U;.
It takes everything outside ¢; *(B5(0)) onto the origin.
It agrees with ¢; on V.

It may be extended to a C°° mapping of M into BJ(0) by letting it
map all of M — U; onto the origin.

When we write gipj, we will mean this extension.
On V; it is a diffeomorphism to B'(0).
So, on V;, its Jacobian matrix has rank n = dimM.
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o Let i=1,...,k be the range of indices in our finite regular covering.
Let N = (n+ 1)k.
Define

F-M—=RY SR "x---xR"xRx---xR
% "

by

F(p) = (g1(p)e1(p); - - gk(P)ek(p); g1(P); - - - , gk (P))

Then F is clearly C*° on M.

Moreover, in any local coordinates on M, the N x n Jacobian of F
breaks up into:

o k blocks of size n x n;
o A k X n matrix.

So its rank is at most n.
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o Now, p € M implies p € V;, for some i.
Further, on V;, g = 1.
So gi¢; = ;i and the matrix has rank n.
Thus, F: M — RN is a C>® immersion.

It suffices to show it is one-to-one, since then M is compact and a
previous theorem applies.

Suppose F(p) = F(q).

Then gi(p) =gi(q), i=1,...,k.

This implies that gj(p)ei(p) = &i(q)»i(q).
But gi(p) # 0, for some i.

This means ¢;(p) = pi(q) for that i.
Since ; is one-to-one, we see that p = g.
Thus, F is indeed one-to-one.
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o It is an obvious disadvantage of this theorem that N may be much
larger than we would like it.

o In fact we have no way of giving an effective bound on it from this
proof.

o We know, e.g., that it takes at least two coordinate neighborhoods to
cover S? (using stereographic projections from the north and south
poles).

o Hence, k =2 and n = 2, which give N = 6.
o So we get that S2 may be imbedded in R®.

o This is obviously not the best possible!
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Theorem

Let M be a C*° manifold.

Let A be a compact subset of M, possibly empty.

Let g be a continuous function on M which is C* on A.
Let € be a positive continuous function on M.

There exists a C* function h on M, such that:

o g(p) = h(p), for every p € A;
o |g(p) — h(p)| < e(p) on all of M.

o In order to prove this we shall need a similar theorem for the case of a
closed n-ball in R".
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Lemma (WeierstraB Approximation Theorem)

Let f be a continuous function on a closed n-ball B” of R” and let £ > 0.
Then there is a polynomial function p on R", such that

1f(x) — p(x)| <& on B".

o By hypothesis, g is C*° in A.
By definition of C°° function on an arbitrary subset of M, there is a
C extension g* of g|a to an open set U which contains A.
There is no reason to believe that g(p) = g*(p) on U but not A.
However, we may replace g by a continuous g on M, such that:

8(p) — &(p)| < 3¢(p);
g=gonA
g is C on an open subset W of M which contains A.
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o The procedure is as follows.

Take any U and g* as above.

Use the compactness of A to choose an open set W containing A and
such that two further requirements are met:

o W is compact and lies in U;

o |g*(p) — &(p)| < 3¢(p) on W.
Now g* is C* on U, and, hence, continuous.
So there is no problem in finding such a set W.

Using a previous theorem, we define a nonnegative C* function o
which is +1 everywhere on W and vanishes outside U.

Finally, we define g = og* + (1 — 0)g.
Note that g satisfies Conditions (i)-(iii).
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o Choose a regular covering by spherical neighborhoods {U;, Vi, ¢;}
subordinate to the open covering W, M — A of M.

Denote by {f;} the corresponding C>° partition of unity.
For every U; on W, the function f;g is:

o C*® on U,';

o Vanishes outside gpfl(Eg(O)).
Thus, it can be extended to a C°° function on M.

Denote the extended function also by f;g.

Y fig=g

Then, on M, we have

George Voutsadakis (LSSU) Differential Geometry



Tensors and Tensor Fields on Manifolds

o Suppose U; C M — A.

Then, on B5(0) C B(0) = ¢;(U;), we use the WeierstraB
Approximation Theorem to obtain a polynomial function p;, with

- _ 1
|pi(x) — g o ; 1(X)| < 58:',

where ¢; = infe(p) on gpi_l(Eg(O)).
Each ¢; is defined, since B,(0) is compact.
Let gi = pi o ;.

For each /, let f;g; be extended to a C* function on all of M, which
vanishes outside U;.
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o Denote the indices such that U; isin M — A by /’.
Denote all other indices by /”.

Define h(p) by
o) = X oy + 3

Each point has a neighborhood on which all but a finite number of
summands vanish identically.
So h is well defined and C* on M.

Suppose p € A.
We know that:
o g=gonA;
o Each fi:(p) =0 on A;
o Y fi =1 everywhere on M.

So we obtain

h(p) = Z fir(p)&(P) = &(p)-
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o On the other hand we have, for p & A,

|h(p) —&(p)l = |2 fu(p)air(p) + 2 i £ (P)&(P)
— > fi(p)e(p)|
= | X fr(p)(ar(p) — &(P))I-
Recall that f; > 0 for all i.
So, by the preceding, we obtain

|h( (P <> fa(p)lai(p) g(/:>|<—8 )> fi(p)-

> filp) <> filp) =1.
We deduce that

|h(p) —g(pP)l < [h(p) —&(p)| + |g(p) — &(P)|
< 3¢(p) + 3e(p) = £(p)

But
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Subsection 5
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Definition
Let V be a vector space over R.
A tensor ® on V is by definition a multilinear map

P:Vx---xVxV x...x V"5 R,
b s

where:
o V* denotes the dual space to V;
o r its covariant order;

o s its contravariant order.
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o By definition, a tensor ® on V assigns to each r-tuple of elements of
V and s-tuple of elements of V* a real number.

o Moreover, if, for each k, 1 < k < r + s, we hold every variable except
the kth fixed, then ® satisfies the linearity condition

D(vi,...,avi+ V), ...)
=a®(vy, ..., Vi,...) +a/P(ve,..., V), ..,

for all o,/ € R, and vy, v| € V (or V*, respectively).
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Forr=1,5s=0, any ¢ € V* is a tensor.
For r =2, s =0, any bilinear form ® on V is a tensor.

The natural pairing of V and V*, that is, (v, ) — (p, v) for the
case r =1, s =1 is a tensor.

We have also noted that V and (V*)* are naturally isomorphic.
Suppose that they are identified.
Then each v € V may be considered as a linear map of V* to R.

So it may be viewed as a tensor with r =0 and s = 1.
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o For a fixed (r,s) we let 7/(V) be the collection of all tensors on V
of covariant order r and contravariant order s.

o We know that as functions from V x --- x V x V* x ... x V* to R
they may be added and multiplied by scalars (elements of R).

o Indeed linear combinations of functions from any set to R are defined
and are again functions from that set to R.

o With this addition and scalar multiplication 7, (V) is a vector space.

o Thatis, if ®1,®5 € T/ (V) and a1, a2 € R, then a3 ;1 + ax®,,
defined by

(a1d>1 + (XQCDQ)(VI, Vo, .. ) = a1d>1(v1, Vo,.. ) + a2q>2(V1, Vo,.. )

is multilinear, and, therefore, is in 7/ (V).

o Thus 7/ (V) has a natural vector space structure.
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Theorem

With the natural definitions of addition and multiplication by elements of
R, the set 7/ (V) of all tensors of order (r,s) on V forms a vector space
of dimension n"*s,

o We consider the case s = 0 only, that is, covariant tensors of fixed
order r, and we let 7"(V) := T, (V).
Let e1,..., e, be a basis of V.

Then ® € T"(V) is completely determined by its n" values on the
basis vectors.

To see this, suppose

Vi = E a/iej, i=1,...,r.
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o By multilinearity, the value of ® is given by the formula

P(vy,...,v,) = Z 0/,:10/1:5"'04{f¢(ej1=---791r)7

the sum being over all 1 < ji,...,jr < n.
The n" numbers {®(ej,...,e;)} are called the components of ¢ in
the basis eq, ..., e,.

We justify the terminology by showing that there is in fact a basis of
T"(V), determined by ey, ..., e, with respect to which these are
components of .
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o Let QU be that element of 77(V) whose values on the basis
vectors are given by

i 3 — i il
1°Jr _ ’ ! ! I 9ty
& (ekl""’ek’)_{ 0, if k; # j;, for some i.

Its values on an arbitrary r-tuple vy,...,v, € V is defined by
Qfl"'j’(v1, V) = a/lla/f . a{;.

This definition is linear in the components of each v;.

Therefore, QJ1Jr is indeed a tensor.
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o We show that the n" tensors so chosen are linearly independent.

Suppose
Z Yy YT = 0.
J1yeeeidir
Then, for any choice of the variables vy, ..., v,,
Z ’yjl...jrﬂjlmj'(vl, oo, v,)=0.
J1yeei
Now substitute, in turn, each combination ey, ..., ey of basis

elements as variables.
By the definition of the /1"J7, we see that every coefficient
Yy -ky = 0.
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o Finally, we show that every ® is a linear combination of these tensors.
Let
Phr-jr = q)(ejl? 000 g ejr)'

D i P

Consider the element

of T"(V).

Apply again the definition of QJtJr,

We see that this tensor and ¢ take the same values on every set of
basis elements.

Hence, they must be equal.

o An easy extension of the argument using both es, ..., e, and its dual

basis wl,...,w" of V* gives the general case 7 (V).
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A C®°-covariant tensor field of order r on a C* manifold M is a
function ¢ which:

o Assigns to each p € M an element ®, of T"(T,(M));

o Has the additional property that, given any C°°-vector fields
Xi,...,X, on an open subset U of M,

O(Xi,...,X,)

is a C* function on U.

We denote by 7" (M) the set of all C*°-covariant tensor fields of order r
on M.
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o A covariant tensor field of order r is not only R-linear but also
C>°(M)-linear in each variable.

o For example, let f € C*(M).
o Then
O(Xy, ..., Xy, X)) =FO(Xe, ., Xiy oo, X ).
o This holds at each p by the R-linearity of ®,.
o Moreover, the two sides are equal if equality holds for each p € M.

o In the same way, if f € C*°(U), U open in M, the equation holds for
®y, the restriction of ¢ to U.
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o Let U, ¢ be a coordinate neighborhood.
o Let Eq,..., E, be the coordinate frames.
o Then ® € T"(M) has components

(..., E,).

o These are functions on U whose values at each p € U are the
components of ®, relative to the basis of T,(M) determined by
Sl 0005 (S

o By hypothesis, all the components, as functions on the coordinate
neighborhoods of some covering of M, are differentiable.

o This implies the differentiability of ®.

o Linear combinations of covariant tensors of order r (even with C*
functions as coefficients) are again covariant tensor fields.

o So T'(M) is a vector space over R [in fact a C°°(M) module].
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o Consider a linear map of vector spaces F, : V — W.
o It induces a linear map F* : T"(W) — T"(V) by the formula

F*o(vy,...,v.) = O(F(vy), ..., F(v))).

o Now suppose F : M — N is a C°°-map.
o It induces a mapping F*: T"(N) — T"(M), defined, for ® on N, by

F*®p(Xips- - s Xip) = Pr(py(Fe(Xap)s - - -, Fu(Xip))-

o As we have seen, this is a special feature of covariant tensor fields.

o lts analog does not hold for contravariant fields even for
Ti(M) = X(M) (vector fields).

o We can show that F* maps 7"(N) to 7" (M) linearly.

George Voutsadakis (LSSU)



Tensors and Tensor Fields on Manifolds

Definition

Let V be a vector space.
We say ® € T"(V) is symmetric if, for each 1 </, j <,

O(vy, .., Visoo Voo, V) = O(ve, v ).

We say ® is skew or antisymmetric or alternating if, interchanging the
ith and jth variables, 1 < i, < r, changes the sign,

O(vy,...,Viyoo V), ve) = =O(ve, v,V V).
Alternating covariant tensors are often called exterior forms.

A tensor field is symmetric (respectively, alternating) if it has this
property at each point.
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Theorem

Let F: M — N be a C* map of C* manifolds.
Then each C®°-covariant tensor field ® on N determines a C°°-covariant
tensor field F*® on M by the formula

(F*®)p(X1ps- - -, Xrp) = Pp(Fu(X1p), - - -, Fu(Xip)-
The map F*: T"(N) — T"(M) so defined is linear.

Moreover, it takes symmetric tensors to symmetric tensors and alternating
tensors to alternating tensors.
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o We may also extend to the case of arbitrary order r:

o The formula for components of F*® in terms of those of ®;
o The Jacobian of F in local coordinates.

o The same method can also be used to derive formulas for change of
components relative to a change of local coordinates.

o These formulas are essentially consequences of the multilinearity at
each point of M.
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o Let ®1,d5 € T"(V) be symmetric (respectively, alternating)
covariant tensors of order r on V.

o Then a linear combination
a¢1 F /8(])27 O‘vﬁ € Rv

is also symmetric (respectively, alternating).

o Thus, the symmetric tensors in 7"(V) form a subspace which we
denote by X"(V).

o The alternating tensors (exterior forms) also form a subspace A\"(V).

o These subspaces have only the O-tensor in common.
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o Let o denote a permutation of (1,...,r), with

1,....r) = (o(1),...,0(r)).

o We know that any such permutation is a product of transpositions,
i.e., permutations interchanging just two elements.

o This representation is not unique.

o But the parity (evenness or oddness) of the number of factors is.

o We let

+1, if o is representable as the product
sgno = of an even number of transpositions,
—1, otherwise.

o Then, 0 — sgno is a well-defined map from the group of permutations
of r letters &, to the multiplicative group of two elements +1.
o It is even a homomorphism, as can be checked from the definition.
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o Now our original definitions may be restated in the following
equivalent form.

o ® € T (V) is symmetric if, for all vyi,...,v, and permutation o,
¢(V1, S Vr) = ¢(V0(1), cocy Va(r));
o & is alternating if, for all v1,..., v, and permutation o,

CD(Vl, 500y Vr) = sgnafb(va(l), 500y Vo(r))'
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We define two linear transformations on the vector space 7"(V):

o The symmetrizing mapping S : 7" (V) — 7" (V) by
1
(S(D)(Vl, . V,) = F ZCD(VU(]_), cocyg Va(r));
o The alternating mapping A: 7" (V) — 7' (V) by

1
(AP)(v1,...,v,) = 0 ngnacb(va(l), e Vo(r)-

The summation is over all ¢ € &,, the group of all permutations of r
letters.

George Voutsadakis (LSSU) Differential Geometry



Tensors and Tensor Fields on Manifolds

o It is immediate that these maps are linear transformations on 7" (V).

o First note that ® — &7, defined by
CDU(Vl, <oy Vr) = ¢(VU(1), <y Va(r)),

is such a linear transformation;

o Further, any linear combination of linear transformations of a vector
space is again a linear transformation.
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o We have the following properties of A and S:
A and S are projections, that is,

A=A and S§*=S;

The following hold:

r

AT (V) = A(V) and S(T"(V)) = £'(V);

® is alternating if and only if A® = ©;

® is symmetric if and only if S® = ¢;

If F, : V — W is a linear map, then both A and S commute with
F:T"(W)— T"(V).
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o We check the properties for A.
The verification for S is similar.
They are also interrelated, so we will not take them in order.

First note that if ® is alternating, then the definition implies

‘D(Vl, coo g Vr) = sgnaq)(va(l), coo g Vo(r))'

There are r! elements of &,.

So, summing both sides over all ¢ € &,, gives

&= Ad.
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o On the other hand, suppose we apply a permutation 7 to the
variables of A®(vy,...,v,) for an arbitrary ® € T"(V).

We obtain

Aq)(vﬂ'(l)a coog T(r) | Z sgnad) Vor(1)s - VU‘T(I’))'

Now sgn is a homomorphism and sgn7? = 1.
So sgno = sgnoTsgnT.
From this equation we see that the right side is
1
et Z SgNoTO(Vyr(1)s - - -5 Vor(r)) = SENTAP(vy, ..., v
g

So A® is alternating.
This shows that A(7"(V)) C A" (V).
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o Suppose @ is alternating.
Then every term in the summation defining A® is equal.
So AP = .
Thus A is the identity on A"(V) and A(7T"(V)) 2 A"(V).
From these facts Properties (i)-(iii) for A follow.
Now consider Property (iv).

By the definition of F*, we have

F*q)(vo(l)v 000y Va(r)) = (D(F*(Va(l))a ooy F*(Va(r)))'

Multiply both sides by sgno and sum over all o.

Using the linearity of F*, we get A(F*®)(vy,...,v,) on the left and
F*(A®)(vy,...,v,) on the right.
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o Both of these maps A and S can be immediately extended to
mappings of tensor fields on manifolds.

o We merely apply them at each point.

o We then verify that both sides of each relation (i)-(iv) give C*>
functions which agree pointwise on every r-tuple of C®-vector fields.

o We summarize (without proof).

Theorem

Let M be a C*> manifold. Let 7"(M) be the space of C*°-covariant
tensor fields of order r over M.

The maps A and S are defined on 7"(M). Moreover, they satisfy
Properties (i)-(iv). In the case of Property (iv), F* : T"(N) — T"(M)
denotes the linear map induced by a C* mapping F : M — N.
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Subsection 6
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o Let V be a vector space and M be a C* manifold.
o We saw that both 7" (V) and 7" (M) are vector spaces over R.

o In the case of tensor fields, 7" (M) has also the structure of a
C>°(M)-module.

o We agree, by definition, that
TV)=R and TO(M)= C®(M).

o Recall, next, that our viewpoint is to define tensors as:

o Functions to R, a field, in the case of T"(V);
o Functions to C>°(M), an algebra, in the case of 7" (M).

o In either case it is appropriate to discuss products of such functions.
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o Let V be a vector space.
o Let p e T"(V), ¢ € T°(V) be tensors.
o Their product is linear in each of its r 4 s variables.

Definition
The product of ¢ and v, denoted ¢ ® % is a tensor of order r + s defined
by

2y Q[)(Vla e Ve Vi, Vr—l—s) = So(vla SO0K) Vr)w(vr—i-la SO0K) Vr+s)~

The right-hand side is the product of the values of ¢ and .
The product defines a mapping

T (V)xT(V) — T(Vv),
(o) = e
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Theorem

The mapping 7"(V) x T*(V) — T"**(V) just defined is bilinear and
associative. If wl, ..., w" is a basis of V* = T(V), then {w" ® --- @ w'}
over all 1 <ij,...,i, < nis a basis of T"(V). Finally, if F, : W — V is
linear, then F*(¢ ® ) = (F*p) ® (F*).

o Each statement is proved by straightforward computation.

For bilinearity, we must show that, if a;, 8 are numbers,
01,2 € T"(V) and ¥ € T5(V), then

(g1 + Bp2) ® Y = alp1 ® P) + B(p2 ® ).

Similarly for the second variable.
This is checked by evaluating each side on r + s vectors of V.

In fact basis vectors suffice because of linearity.
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o For associativity, we must show
(p@Y)®0=9p&(Y®0).

The products on both sides being defined in the natural way.
This is similarly verified.

This allows us to drop the parentheses.
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o Next, we show that w ® --- ® w'" form a basis.
Let ey,..., e, be the basis of V dual to w!,...,w".
Then the tensor Qr previously defined is exactly w ® - -- ® w'.
This follows from the two definitions.

First, we have

O, if(i17-"7il’)#(jla"'?.jr)a
v o . ) —
Qvr(ey, ... e5) = { 1, i (1yeeesir) = (oo o i)

Next, we see that

Wi Quwr(e,....e;) = wie;)w(ey) -wi(e;)
_ i s i
- 5.1'1 5]2 o 5]:‘

So both tensors have the same values on any set of r basis vectors.

Therefore, they are equal.
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o Finally, let F, : W — V.
Consider wy,...,w, s € W.
Then
(Fp@¥))(wi,...,wris)
=R YP(Fi(wi), ..., Fi(w,is))
— (W), oo Fe(W))VE(FuWri) . Fu(Wiss)
= (F*p) @ (F*¢Y)(w1,...,W,is).

This proves F*(¢ ® ©) = (F*¢) ® (F*) and completes the proof.
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o Consider the tensor spaces T°(V) = R, TY(V),--- , T"(V),....
o Take the direct sum T(V) over R of all these tensor spaces,

TV)=T(V)eT'(V)®---aoT (V)& .

o We identify each 7"(V) with its (natural) isomorphic image in 7T (V).
o An element ¢ of T(V) is said to be of order r if it is in 7" (V).

o Every element ¢ of T(V) is the sum of a finite number of such ¢,
which we call its components.

o Thus ¢ € T(V) may be written uniquely
=i+ tor,
where i € Ti(V)and iy < ip < -+ < .

George Voutsadakis (LSSU)



Tensors and Tensor Fields on Manifolds

If 3,9 € T(V), then they may be added componentwise.
That is, by adding in 7"(V) any terms in 7"(V).
They may be multiplied by:

o Using ®;
o Extending it to be distributive on all of T(V).

©

©

©

©

This makes 7(V) into an associative algebra over R.

©

It is called the tensor algebra.
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o The tensor algebra T(V):

o Contains R = T°(V);

o Has 1 as its unit;

o Is infinite-dimensional.
o The contents of the preceding theorem (even a little more)

immediately yield the following properties:

T (V) (direct) is an associative algebra (with unit) over R = 7°(V).
It is generated by 7°(V) and T*(V) = V*, the dual space to V.
Any linear mapping F. : W — V of vector spaces induces a
homomorphism F* : T(V) — T(W) which is:

The identity on RR;

The dual mapping F* : V* — W* on T}(V).
Properties (i) and (ii) determine F* uniquely on all of 7(V).

©

© ©

©
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o We turn to the case of tensor fields on a manifold M.

o Let ¢ € T"(M) and ¥ € T°(M).

o Then we may define ¢ ® b on M by defining it at each point using
the definition for tensors on a vector space.

o Thatis, (¢ ® ©), is defined to be the tensor

(P ®Y)p = pp®@Yp

of order r 4 s on the vector space T,(M).

o Since this defines a covariant tensor of order r + s on the tangent
space at each point of M, it will define a tensor field, if it is C*.
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o Consider the product ¢ ® v, defined as above.

o According to the definition, in local coordinates the components of
© ® 1 are the functions of the coordinate frame vectors

e Q(Eys s Ei) = @(Eipy o EU(Ei s Bl

over the coordinate neighborhood.

o The right-hand side is the product of the components in local
coordinates of ¢ and .

o These are two C*° functions.
o Thus, the left side is C°.
o So ¢ ® 1 is indeed a tensor field on M.
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Theorem

The mapping
T (M) x T5(M) — T"(M)

just defined is bilinear and associative.
If wl,...,w" is a basis of T1(M), then every element of 7"(M) is a linear
combination with C*° coefficients of

{wi1®~~~®wi’ 1<, ..., i < n}.
If F: N— Misa C> mapping, ¢ € T"(M) and ¢ € T°(M), then
F*p @ 9) = (F*v) ® (F*9),
tensor fields on NV.
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o Two tensor fields are equal if and only if they are equal at each point.
o So it is only necessary to see that these equations hold at each point.

o This follows at once from the definitions and the preceding theorem.
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o In general we do not have a globally defined basis of 7(M).
o That is, there may not exist covector fields

which are a basis at each point.
o However, we do have a globally defined basis in R".

o From this fact, the following corollary is obtained, by applying the
theorem to a coordinate neighborhood V, 8 of M.

o Let Eq,..., E, denote the coordinate frames.
o Let wl,...,w" be their duals.
o That is, we have

E =01 (%) and W/ = 6% (d¥).
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Corollary

Each ¢ € T"(U), including the restriction to U of any covariant tensor
field on M, has a unique expression of the form

= Z e Zail---i,wil Q- ®wi’,
i i
where at each point of U,

ajy..jy = SO(Eila ..y Ei)

are the components of ¢ in the basis {W" ® --- @ w'}.
Moreover, the aj,...; are all C* functions on U.
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o For each r > 0 we have defined the subspace \"(V) C 7"(V)
consisting of alternating covariant tensors of order r.

o It is the image of 7"(V) under the linear mapping A, the alternating
mapping.

o We define A\°(V) to be R, the field.

o Then A\°(V) = T%(V) =R and A (V) = T(V) = V*, but \"(V)
is properly contained in 7"(V) for r > 1.

o We see, therefore, that the direct sum A (V) of all the spaces A\"(V)
is contained in 7 (V) as a subspace,

AWV = A (V)a AL (V)a N2(V) e -
CTUV)eTHV)STA(V)D - =T (V).
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o Although A(V) is a subspace of T(V), it is not a subalgebra.

o Evenif p € A"(V) and ¢ € A°(V), it may be shown that ¢ ® 1) may
fail to be an element of A" (V).

o Thus the tensor product of alternating tensors on V is not, in
general, an alternating tensor on V.

o On the other hand, we know that each tensor determines an
alternating tensor, its image under A.
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The mapping from A"(V) x A5(V) = A"7°(V) defined by

e.9) = T apmy)

is called the exterior product (or wedge product) of ¢ and ¢ and is
denoted by ¢ A .

Lemma

The exterior product is bilinear and associative.

o Bilinearity is a consequence of the fact that the product is defined by
composing the tensor product, a bilinear mapping from
A" (V) x A*(V) to T+5(V), with a linear mapping (==L A,
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o We now show that the product is associative.
We first prove a property of the alternating mapping A.
Suppose p € T"(V), v € T°(V) and 6 € T(V).
Then we show that

Alp® 9 ©0) = A(A(p @) ® 0) = Al ® A(Y @ 0)).

For this purpose let:

o 6 = &, syt denote the permutations of (1,2,...,r + s+ t);
o &’ denote the subgroup which leaves the last t integers fixed.

&’ is isomorphic to the permutation group &,45 of (1,2,...,r +s).
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o We have

A(A(p @) @0) (V1. o yevny Virsit)
= T Loes SBTA@ @ Y)(Vo(1)s - s Vo(rts))

: e(va(r—l—s-i-l)v °ocog Va(r+s+t))

- m (r—&s)! ZUEG ZJ’EG’{SgnO-UQP(VUU'(l)’ Tt VUU'(f))
: ¢(V00’(r+1)a ooy VUU’(r—l—s))e(Vaa’(r—i—s-l—l)a ooy VUU’(r—l—s—i—t))}a

using the facts that:
o sgnosgno’ = sgnoo’;
o o is the identityon r+s+1,...,r+s+t.
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o For each ¢/, as o runs through & and we sum over the outer
summation symbol, this expression is equal to

Alp @Y @0)(ve,. .., Vitsi1).

Thus, the expression above reduces to

> Alp @y ®0),

1
|
o 2,

evaluated on vy, ...,V it
But there are (r + s)! terms in the summation.

So this gives
Alp @9 ®0) = A(A(r @ ¢) ©0).

The second equality is proved in the same way.
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o Let ¢, 9,0 be in the subspaces A"(V), A°(V), A*(V), respectively.
Then, by definition, we have

r+s)!
pAY = ( , ,) Alp ®9)
rls!
and (rtstt)l
r+s+t)
A N)=—"—"— N 0).
(9 A9 N6 = 2 SEE Al A ) ©6)
A similar expression can be obtained in the other order of associating
terms.

From these expressions, we obtain the associativity of the exterior
product

(P APINO = A (Y NAD).
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o The following relation allows us to write exterior products without
parentheses.

Corollary

Let o; € A"(V), i=1,..., k. Then

WA WA}

n-+mn4+--+r)
=( )A(901®902®"'®90k)~
r1!r2!---rk!
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o We define the product

AWV) < A(V) = A\(V)

simply by extending the exterior product to be bilinear, so that the
distributive law holds.

o Suppose that ¢, € A(V).

o Then ;
p=p1+ -+, i€ NV,
and .
b=+, i€ \(V).
o We define

kK
PAY =D wi Ay

i=1 j=1
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Corollary
The set

0 1 2
AWV) = A\)e Av)e AV e,
with the exterior product as defined above is an (associative) algebra over

R=A%V).

o The algebra A\(V) is called the exterior algebra or Grassman
algebra over V.
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Lemma

If o € A"(V) and ¢ € A*(V), then

pAY=(=1)"P A

o This is equivalent to showing that
Al ®@¢) = (-1)"A(Y ® ).
To prove this equality we note that

Alp @) (va, .., Vrgs)
= ﬁ Zg Sgnago(va'(l)a ooo0g Va(r))¢(va(r+l)7 000y Va'(r+s))
= ﬁ > 6 S8NTY(Vo(rt1)s - - - 5 Vo(r+s))P(Va(1)s - - 5 Vo(r))-
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o Let 7 be the permutation taking (1,...,s,s+1,...,r+5s) to
(r+1,....r+s,1,...,r).
Then we may write

Al ®@Y)(vi ..., Vrys)
= (rTls)l Zo’ SgnUSgnT¢(VUT(1)7 000y VU‘T(S))
(p(VO'T(S-i-l)’ ooy VO'T(r+S))
=sgnTA(Y @ )(V1,..., Vrts).
Now check that sgnT = (—1)".

So we get
e A= (-1)"Y Ao
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If r > n=dimV, then

AV) = {0}.

For 0 <r <n, .
. n
dim /\(V) = (r)
Let w',...,w" be a basis of A*(V). Then the set
{Wh A AW 1< <ih<---<i <n}
is a basis of A"(V). Finally, we have
dim /\(V) =2".
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o Let e1,...,e, be any basis of V.
Let ¢ be an alternating covariant tensor of order r > dimV.

Then on any set of basis elements

o(ej,...,e;)=0.

This is because:

o Some variable e, is repeated;
o Interchanging two equal variables both changes the sign of ¢ on the set
and leaves it unchanged.

Now all components of ¢ are zero.
So v = 0.
It follows that A\"(V) = {0}.
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o Suppose that 0 < r < n.
Let wl,...,w" be the basis of V* = /\l(V) dual to ey, ..., e,.
A maps T"(V) onto \"(V).
So the image of the basis {w ® - -- ® wr} of T"(V) spans A\"(V).
We have ' ' ' '
AW ® - @w'") =w* A--- Aw".
By the preceding lemma, permuting the order of i, ..., i, leaves the
right side unchanged, except for a possible change of sign.

It follows that the set of () elements of the form
WIA- AW, 1< <b<---<i <n,
span A\"(V).
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o Moreover, these elements are independent.

Suppose that some linear combination of them is zero, say

E Wt A Aw' = 0.
<<y
Then its value on each set of r basis vectors must be zero.

In particular, given k3 < --- < k,, we have

0= <Z Qi W A A wi’> (€kys---s€k)-

This becomes o, ..., = 0 by virtue of the formula of a previous
corollary, combined with w(ex) = di, for 1 < i, k < n.

By suitable choice of k; < --- < k,, we see that each coefficient must
be zero. Therefore the given set of elements of A"(V) is linearly
independent and a basis.
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o To complete the proof we note that

dim \(V) = rz:%dim /\(V) - Z (':) ="

r=0

Theorem

Let V and W be finite-dimensional vector spaces and F, : W — V a
linear mapping. Then F*: T(V) — T (W) takes A(V) into A(W) and is
a homomorphism of these (exterior) algebras.

o The theorem is an immediate consequence of:

o A previous asserted property of F*;
o The fact that Ao F* = F* o A;
o The definition of exterior multiplication.
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o All of these ideas extend to alternating tensor fields on a C*
manifold M.

An alternating covariant tensor field of order r on M will be called an
exterior differential form of degree r (or sometimes simply r-form).

o The set \"(M) of all such forms is a subspace of 7" (M).
o The following two theorems follow from preceding work.
o We let M, N be manifolds and F : M — N be a C* mapping.
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Theorem

Let A(M) denote the vector space over R of all exterior differential forms.
Then for ¢ € A"(M) and ¢ € A\°(M) the formula

(P AY)p =p Ay
defines an associative product satisfying

o A= (1) A g.
With this product, A\(M) is an algebra over R.

o We shall call A(M) the algebra of differential forms or exterior
algebra on M.
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Theorem (Cont'd)

If £ € C>°(M), we also have

(Fo) A = f(o AY) = o A(F1h).

If w!,...,w" is a field of coframes on M (or an open set U of M), then
the set

{Wh A AW 1< <ih<---<i <n}
is a basis of A"(M) (or A"(U), respectively).

If F: M — Nisa C> mapping of manifolds, then F* : A(N) — A(M) is
an algebra homomorphism.
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Subsection 7
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o Let V be a vector space.

o Let {e1,...,en}, {f1,...,f,} be bases of V.

o The bases are said to have the same orientation if the determinant
of the matrix of coefficients expressing one basis in terms of the other

is positive, '
det(a}) > 0,

where
n

f,'= O[{:ej, i=1,...,n.
Jj=1
o It can be checked that:

o This is an equivalence relation on the set of all bases (or frames) of V;
o There are exactly two equivalence classes.
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o Let V be a vector space.

o The equivalence of bases modulo orientation has exactly two
equivalence classes.

o A choice of one of these is said to orient V.

Definition
An oriented vector space is a vector space plus an equivalence class of
allowable bases. The selected class consists of all those bases with the
same orientation as a chosen one. The bases in this class will be called
oriented or positively oriented bases or frames.
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o Orientation is related to the choice of a basis Q of A"(V).
o Recall that dim A"(V) = (7) = 1.

o So any nonzero element is a basis.

Lemma

Let ©2 £ 0 be an alternating covariant tensor on V of order n = dimV and
let e1,...,e, be a basis of V. Then for any set of vectors vy,..., v, with

vi=. 7 ej, we have

Q(vy,...,vp) = det(fyj)Q(el, co,€n).

o This lemma says that up to a nonvanishing scalar multiple Q is the
determinant of the components of its variables.
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o Let V = V" be the space of n-tuples.

Let e1,..., e, be the canonical basis.
The lemma assert that Q(vi,...,v,) is proportional to the
determinant whose rows are vi,...,v,.

o The proof is a consequence of the definition of determinant.
Suppose Q and vq,..., v, are given.
Use the linearity and antisymmetry of 2 to write

Qvi,...,vy) = Zjl,...,j,, ajl"'ajnﬂ(ejlv---aejn)
> s, sgnaoff(l) - alMQey, ... en)
= det(c})Qeq, . .., en).

The last equality is the standard definition of determinant (&, is the
symmetric group on n letters).
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Corollary

A nonvanishing Q € A\"(V) has the same sign (or opposite sign) on two
bases if they have the same (respectively, opposite) orientation.

Thus, choice of an €2 # 0 determines an orientation of V.

Two such forms €1, £, determine the same orientation if and only if

Q= )\QQ, A> 0.

o From the formula of the lemma we see that Q has the same sign on
equivalent bases and opposite sign on inequivalent bases.

If A > 0, then AQ has the same sign on any basis as Q2 does.
The contrary holds if A < 0.
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o Suppose Q2 # 0.
o Then vi,...,v, are linearly independent if and only if

Q(vl,...,v,,) ;AO

o Note, also, that the formula of the lemma can be construed as a
formula for change of component of Q (there is just one component
since dim A"(V) = 1), when we change from the basis ey, ..., e, of
V to the basis vi,..., v,.
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o Suppose V is a Euclidean vector space.
o So V has a positive definite inner product (v, w).

o Then, in orienting V, we may choose an orthonormal basis e, ..., e,
to determine the orientation.

o Then, we may choose an n-form Q whose value on ey, ..., e, is +1.

o Suppose f; = Zoz{:ej is another orthonormal basis.

o Then

© 0 0 ©

Q(fy,...,F,) =det(cd)Qey,. .., e,) = £1,
depending on whether f1,..., f, is similarly or oppositely oriented.
Thus, the value of Q on any orthonormal basis is +1.

Q is uniquely determined up to its sign by this property.

In this case, 2 may be given a geometric meaning when n = 2 or 3.
Q(v1,vy) or Q(v1, va, v3) is the area or volume, respectively, of the
parallelogram or parallelepiped of which the given vectors are the
sides from the origin.
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o To extend the concept of orientation to a manifold M we must try to
orient each of the tangent spaces T,(M) in such a way that
orientation of nearby tangent spaces agree.

Definition
We shall say that M is orientable if it is possible to define a C*° n-form 2
on M which is not zero at any point. In this case, M is said to be
oriented by the choice of Q.

o By the preceding corollary, any such £ orients each tangent space.

o Of course any form Q' = A\Q, where A > 0 is a C* function, would
give M the same orientation.
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o R", with the form

is an example.
o This is known as the natural orientation of R".

o It corresponds to the orientation of the frames

9 9
OxI T axn

o If UC R" is an open set, it is oriented by

Qu=Q|u.
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o We say that a diffeomorphism F : U — V C R" is orientation

preserving if B B
F*Qy = \Qy,

where A > 0 a C* function on U.

o More generally a diffeomorphism F : M; — M, of manifolds oriented
by 1,5, respectively, is orientation-preserving if

F*Q = A\,

where A > 0 is a C*° function on M.
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o A second, perhaps more natural definition of orientability can be
given as follows.

o M is orientable if it can be covered with coherently oriented
coordinate neighborhoods

{Ua, 0a}-

o These are neighborhoods such that, if Uy N Uz # 0, then ¢, o cpgl is
orientation-preserving.

o We will now see that this second definition is equivalent to the one
given previously.
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A manifold M is orientable if and only if it has a covering {U,, ¢q} of
coherently oriented coordinate neighborhoods.

o First suppose that M is orientable.
Let Q2 be a nowhere vanishing n-form, determining the orientation.

Choose any covering { Uy, ©a} by coordinate neighborhoods.
Let x.,...,x" be local coordinates, such that for Q, restricted to U,,
we have the expression in local coordinates

O Qu Aa(X)dXE A Adx?, with A, > 0.
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o Replacing coordinates (x!,...,x") by (—x!,...,x"), that is,
changing the sign of one coordinate, changes the sign of .

So we may easily choose coordinates so that the scalar function A,,
component of €, is positive on UL,.

An easy computation, using a previous lemma and remark, shows that
if Uy N Ug # 0, then on this set the formula for change of component

1S ]
Nadet [ 22) 5,
o

Since A\, > 0 and A\g > 0, the determinant of the Jacobian is positive.

So the chosen coordinate neighborhoods are coherently oriented.
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o Now suppose that M has a covering by coherently oriented coordinate
neighborhoods {U,, ¢a }-

We use a subordinate partition of unity {f;} to construct an n-form Q
on M which does not vanish at any point.

For each i =1,2,... we choose a coordinate neighborhood U,,, ¢q;
of the covering, such that U,, 2 suppf;. These neighborhoods, which
we relabel U, pj, cover M.

If Uin U; # (), then, by assumption, the determinant of the Jacobian
matrix of ¢; o gpjfl is positive on U; N U;.
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o Define Q € A"(M) by

Q= Z flgp;k(dxll ARERRA dxin)7

where each summand is extended to all of M by defining it to be zero
outside the closed set suppf;.

Let p € M be arbitrary.

We show that 2, # 0.

Recall that {suppf;} is locally finite.

So we may choose a coordinate neighborhood V1) of p which:

o s coherently oriented to the U;, ¢;;
o Intersects only a finite number of the sets suppf;, say for i = iy,. .., ik.
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o Let y! ..., y" be the local coordinates in V.

Use the same formula as above on each summand to change
components,

k * n
Q = X ﬁj(P)Wij(dXi} ARRRRA dij)
Oxk

— Sheke (1) wrleyt A ndy)
¥(p)

Now each f,-j >0on M.
Moreover, at least one of them is positive at p.
Finally, the Jacobian determinants are all positive.

This implies £, # 0 and, since p was arbitrary, €2 is never zero on M.
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o A Riemannian manifold has the special property that the tangent
space T,(M) at every point p has an inner product.

o We apply our remarks about n-forms on a Euclidean vector space of
dimension n.

Theorem

Let M be an orientable Riemannian manifold with Riemannian metric ®.

Corresponding to an orientation of M, there is a uniquely determined
n-form  which:

o Gives the orientation;

o Has the value +1 on every oriented orthonormal frame.
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o It is clear from our earlier discussion that at each point p € M, €, is
determined uniquely by the requirement that, on any oriented
orthonormal basis Fip, ..., Fpp of Tp(M), we have

OBy e - - o e = =FL

Let U, p be any coordinate neighborhood.
Let Eq,..., E, be be coordinate frames.
The functions
8ij(P) = ®p(Ejp, Ejp), pe U,
define the components of ® relative to these local coordinates.
They are C*°, by definition.
We derive an expression for the component Q(Ei,...,E,) on U in
terms of the matrix (gj;).
From this, it will be apparent that Q is a C* n-form.
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o Choose at p € U any oriented, orthonormal basis Fip, ..., Fpp.

Let the n X n matrix (aff) denote the components of Eqp, ..., Eyp

with respect to this basis,

n
Ep=)Y ofFip, i=1...,n.
Now we have
O(Fup, Fip) = Oki-

Hence, we obtain, for 1 <i,j <n,

gi(P) = ®,(Ejp, Epp) Za ka,Zoz Fip | = ) _af
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o The equation gj(p) = >_j_; oferf, 1 < i,j < n, may be written as a
matrix equation:
(g5(p)) = AT A,

the product of the transpose of A = (aX) with A itself.

On the other hand:
o Qu(Eip,-- ., Enp) = det(aX)Q,(Fip, - - -, Fap), by a previous lemma;
o Qp(Fip; - -, Fnp) = +1, by our definitions.

Since det(AT A) = (detA)? = det(g;), this gives for the component of
2 in local coordinates

Qp(Erp, - - - Enp) = (det(gyi(p)))"/>.

So the component is the square root of a positive C* function of
p € U. So it is itself a C* function on the local coordinate
neighborhood U.

Since U, ¢ is arbitrary, Q is a C*° n-form on M.
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o This form Q is called the (natural) volume element of the oriented
Riemannian manifold.

o We have just seen that in local coordinates we have the following
expression for :

e Q= Jgdxt Ao Adx”,

where g(x) = det(gjj(x)) (we use the same notation for gj as
functions on U and on ¢(U)).

o When M = RR", with the usual coordinates and metric, this becomes
Q=dx! A Adx".

o In this case, as seen, the value of 2, on a set of vectors is the volume
of the parallelepiped whose edges from p are these vectors.
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o In particular, on the unit cube with vertex at p and sides

0 0

OxL7 T gxn’
2 has the value +1.

o The existence of the form €2 on a Riemannian manifold will enable us
to define the volume of suitable subsets of the manifold.

o Moreover, we will be able to extend to these manifolds the volume
integrals defined in R" in integral calculus.
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Subsection 8
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o Let U be an open subset of a manifold M.
o We shall denote by 6 the restriction of an exterior form on M to U.
o Of course Oy = i*0, i : U — M being the inclusion map.

o Let U,y be a coordinate neighborhood, with x!,...,x" as coordinate
functions on U, i.e.,

o(q) = (x(q),...,x"(q)).

o Then the differentials of these functions dx!,. .., dx":

o Are linearly independent elements of A*(U);
o Constitute a C*° field of coframes on U.

o It follows that they, with 1, generate A(U) over C*°(U).

o Equivalently, C*°(U) = A°(U) and A\'(U) generate the algebra
A(U) over R.
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o Thus, locally every k-form € on M has a unique representation on U

Oy = Z a,-l...,-kdxh VANEERAN dXi", aj...i, € COO(U),

i< <i

the sum over all sets of indices such that 1 < i3 < i < -+ < i, < n.

o Define bj,...;, for all values of the indices so as:
o To change sign whenever two indices are permuted;
o Toequal aj,...j,, if i <+ < .
o The we get the representation
1 i i
the summation being over all values of the indices.
o The use of dx!,...,dx", rather than w!,... w", is to emphasize that

the dx’ are differentials of functions on U C M.
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Theorem

Let M be any C* manifold. Let (M) be the algebra of exterior
differential forms on M. Then there exists a unique R-linear map

dw = \(M) = A\(M),

such that:
If f € A°(M) = C>°(M), then dyf = df, the differential of f;
For € A"(M), o € \°(M),

dM(H A 0’) =dyf No + (-1)’9/\ dyo;
42, =0,

o We give the proof in a series of steps.
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Suppose that dy; exists.
Let g, fL,...,f" € C®(M).
Properties (1)-(3) imply that, for § = g df' A--- A df", we must have

dyd = dg Adft A - A dFT.

Now suppose that M is covered by a single coordinate neighborhood
U, ¢ with coordinate functions x%, ..., x".

The above remark and linearity imply that dy, must be given by
dm (Z ay. dxT A A dxi’> = Z daj..i AdxT A Adx”,

where " Ba;
daj,..; = :

j=1

and the summation isover 1 < i3 <ip < --- < i, < n.
Therefore, if defined at all, dy; is unique in this case.
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o Conversely, suppose dy is defined by this sum.
Then it is linear and trivially satisfies Properties (1) and (3).
To check Property (2) it is enough to consider forms

0 =adx A---Adx" and o= bdxt A A dx.
The general statement is then a consequence of linearity.
dm[(adx™ A - Adxin) A (bdxt A -+ A dx®)]
= dy(ab)(dx A--- Adxr) A (dxt A - A dx)
= [(dma)b + a(dyb)] A (dx™ A -+ Adx™) A (dxt A --- A dx)
= (dya Adx A~ Adxir) A (bdxt A -+ A dxb)
+ (=1)"(adx® A--- AdxT) A (db A dxt A - A dx).
The (—1)" is due to the fact that
db AdxT A - Adx"™ = (=1)"dx" A--- Adx" A db.
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Suppose dy : A(M) — A(M), with Properties (1)-(3) is defined.
Let U C M be a coordinate neighborhood on M.
Suppose its coordinate functions are x1, ..., x".

According to Step (A),

du = \(U) = A\U)

is uniquely defined.

We will show that, for any 8 € A(M), the restriction of dyf to U is
equal to dy applied to 6 restricted to U,

(dmb)u = dybu.
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o We may suppose that § € \"(M) and that
Ou =" ay.idx" Ao AdxF, ay € C(U).

Suppose p is an arbitrary point of U.

Apply a previous corollary to an open set W, p € W and W € U.
We find a neighborhood V of p, with V C W, and C functions
yl,...,y"and bj,..; on M, which:

o Vanish outside W;

o Are identical to x1,...,x", respectively, on V.

Define o € \"(M) by
o= by.jdy" A--- Ady".

Then o is an r-form on M which:
o Vanishes outside W
o Is identical to 8 on V.
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o Now let g be a C*° function on M which:

o Has the value +1 at p;
o |s zero outside V.

The r-form g(6 — o) vanishes everywhere on M as does dg A (0 — o).
Therefore, using (A),

gdub = gduo =g » _ daj..i, Ady* A+ Ady".
On V we have
Z daj..i, Ndy™ A--- Ady'" = Z dajy..ap N dXT A A dx

So at the point p, where g(p) =1, dyf = dyfy.
Since p is arbitrary, this holds throughout U.
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Suppose dy : A(M) — A(M) satisfying Properties (1)-(3) exists.
We show that it is unique.

Let {Uq, @a} be a covering of M by coordinate neighborhoods.
By Step (A), each dy, exists.

By Step (B), for any 8 € A(M), we have, for any U,,

(dmf)u, = du,bu,,-

Every p € M lies in a neighborhood U,,.
So this would determine dy, completely.
On the other hand, we may use this formula to define dy.

To do so we must verify that, if p € U, N Ug, then dy0 is uniquely
determined at p.
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o Let U= UaﬂUg.
o We apply Steps (A) and (B) to U, an open subset and coordinate
neighborhood with coordinate map g cut down to U.

We obtain
(du.Ou,)u = dubu = (dus0u,)u-

Therefore, (dy0)u, is determined on every U, in such a manner that
(dmb)u, = (dmb)u, on points common to U, and Ug.

This determines dyy.
Properties (1)-(3) hold on each U,.

Moreover, the other operations of exterior algebra commute with
restriction.

Thatis, ( ANo)y =0y Aoy, and so on.
So dy has the required properties as an operator on A\(M).
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o Since dy is uniquely defined for every C*° manifold M, we can drop
the subscript M and use d to denote all of these operators.

o We know from the above proof that d commutes with restriction of
differential forms to coordinate neighborhoods.

o We investigate how it behaves relative to a C*>° mapping F : M — N.

o Any such mapping, as we know, induces a homomorphism

F*: A(NV) — A(M).

o The following theorem gives the relation between F* and d.
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F* and d commute, thatis, F*od = d o F*.

o We know that:
o Both F* and d are R-linear;
o The equality F*(d¢) = d(F*) holds on M, if it holds locally.

By the facts concerning d, determined above, it suffices to establish
the theorem for pairs V1, U, 0 of coordinate neighborhoods on M,
N, respectively, such that F(V) C U.

Let m = dimM and n=dimN and x!,...,x™ and y!,...,y" be the
coordinate functions on V, U, respectively.

Let y/ = yJ(x!,...,x™), j=1,...,n, give F in local coordinates.
Then it is enough to establish F* o d = d o F* on forms of type

© = a(x)dxt A - A dxk,

since any other forms are sums of such forms.
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o We proceed by induction on the degree of the forms.
Consider a forms a(x) of degree zero, i.e., a C* function.
For X, € T,(M), we have

F*(da)(Xp) = da(F.Xp)
(FiXp)a
Xp(aoF)
Xo(F*a)

= d(Fra)(Xp).

Therefore, F*(da) = d(F*a).
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o Suppose the theorem to be true for all forms of degree less than k.
Let ¢ be a k-form of the type above.
Let o1 = adx™ and o = dx Ao A dxi.
So ¢ = 1 A o, with both @1 and ¢, of degree less than k.
Moreover, since d2 = 0, we have dyr = 0.
Thus,

d(F*(p1 ANg2)) = d[(Fre1) A (Fre2)]
(dF*p1) A (F*p2) — (F*p1) A (dF*¢2)
F*(dp1) A F*p2
F*(dp1 A p2)
= F*d(p1 A p2).

George Voutsadakis (LSSU) Differential Geometry



Tensors and Tensor Fields on Manifolds

o On a vector space V of dimension n, a k-dimensional subspace D
may be determined in either of two equivalent ways:
By giving a basis ey, ..., e, of D;
By giving n — k linearly independent elements of V*, say ok+1 ... "
which are zero on D.

o In fact we may extend ey, ..., e, to a basis ey, ..., e, of V so that

QKT ... " is part of a dual basis ¢!, ..., " of V*.
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Lemma

Let w € AY(M) and X, Y € X(M). Then we have

dw(X, Y) = Xw(Y) — Yw(X) — w([X, Y]).

o It is enough to prove that it is true locally, say in a coordinate
neighborhood of each point.
In any such neighborhood with coordinates x!,. .., x",

n
W = E a,-dx’.
i=1

The equation of the lemma holds for all w if it holds for every w of
the form fdg, where f, g are C* functions on the neighborhood.
Suppose, then, that w = fdg.

Let X, Y be C*-vector fields.
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o We evaluate both sides of the equation of the lemma separately.

We get
dw(X,Y) = df Adg(X,Y)
= df(X)dg(Y) — dg(X)df(Y)
= (Xf)(Yg) — (Xg)(YT);
o Moreover,

Xw(Y) = Yw(X) —w([X,Y])
= X(fdg(Y)) — Y(fdg(X)) — fdg([X, Y])
= X(f(Yg)) — Y(f(Xg)) — f(XYg — YXg)
= (XF)(Yg) — (Xg)(Y¥)
after cancelation.

This proves the lemma.
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Theorem

Let A be a C* distribution of dimension k on M, dimM = n.
Then A is involutive if and only if, in a neighborhood V' of each p € M,
there exist n — k linearly independent one-forms **1 pk+2 " which
vanish on A and satisfy the condition

n
dp" = Z 95/\#, r=k+1,...,n,
l=k+1

for suitable 1-forms 6.

o This may be considered a sort of dual statement to our earlier
condition on A in terms of the existence of a local basis Xi,..., X\ at
each point.
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o Suppose a distribution A is given.
Consider an arbitrary point.
Let V be a neighborhood.

In V, a local basis Xi,..., X, of A can be completed to a field of
frames

Let
8017“‘580kagpk+15"'580n
be the uniquely determined dual field of coframes.
Then *t1. ... " vanish on Xy, ..., X, and hence on A.
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o Now consider the expressions

n
[Xi, X1 = cjiXe.
i=1
giving [Xj, Xj| as linear combinations of the basis.
The distribution A is involutive if and only if, in the preceding
expressions, we have

cf=0, 1<ij<k k+1<(<n
Using the preceding lemma and recalling that ¢/ (X;) is constant for
1 <i,j < n, we compute dp”,
de"(Xi, X;) = —¢"([X, Xj])
= =Yg (X)

= —c, 1<ij,r<n.

U’
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o On the other hand

1 n
dgp’:EZbgtgos/\gpt, 1<r<n,
s,t

where b, are uniquely determined if we assume bl, = —b.
Hence,
do"(Xi, X)) = 5 2. bhle®(Xi)et (X)) — ot (Xi)e®(X))]
1pr r
§(bij - bji)
= b,;
From this we have bfj = —c,-J’-.
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o So the system is involutive if and only if, for each r > k,
n k n 1
: . ;
do= Y 33 bt Y Mg At
i=k+1 | i=1 j=k+1

That is, the terms involving b; with 1 < j,j < k and r > k, vanish.
Taking the terms in {} as 6, we have completed the proof.

George Voutsadakis (LSSU) Differential Geometry



Tensors and Tensor Fields on Manifolds

o We can state the preceding theorem in a more elegant way if we
introduce the concept of an ideal of A\(M).

Definition

An ideal of A\(M) is a subspace Z which has the property that whenever
p €T and 0 € \(M), then
pNOeT.

- Let Z be a subspace of A\'(M), that is, a collection of
one-forms closed under addition and multiplication by real numbers.

Then the set
NMAT={0rp:peT}

is an ideal, the ideal generated by 7.
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o Now suppose A is a distribution on M.

o Suppose, also, that Z is the collection of 1-forms ¢ on M which
vanish on A, that is, for each p € M,

op(Xp) =0, forall X, € A,

o 7 is a subspace.
o In fact, if f € C*°(M) and ¢ € Z, then fp € T.
o The we have the following characterization.

o A is in involution if and only if
dI ={dyp:p €1}
is in the ideal generated by f.
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