Introduction to Differential Geometry

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU)

Differential Geometry

Tensors and Tensor Fields on Manifolds

- Tangent Covectors
- Bilinear Forms and The Riemannian Metric
- Riemannian Manifolds as Metric Spaces
- Partitions of Unity
- Tensor Fields
- Multiplication of Tensors
- Orientation of Manifolds and the Volume Element
- Exterior Differentiation

Subsection 1

Tangent Covectors

Dual Space and Covectors

- We suppose that \boldsymbol{V} is a finite-dimensional vector space over \mathbb{R} .
- Let **V**^{*} denote its dual space.
- V^* is the space whose elements are linear functions from V to \mathbb{R} .
- Linear functions from \boldsymbol{V} to \mathbb{R} are called **covectors**.

Notation

- Suppose $\sigma \in \mathbf{V}^*$ so that $\sigma : \mathbf{V} \to \mathbb{R}$.
- Then, for $\boldsymbol{v} \in \boldsymbol{V}$, we denote the value of σ on \boldsymbol{v} by

$$\sigma(\mathbf{v})$$
 or $\langle \mathbf{v}, \sigma \rangle$.

 Recall that addition and multiplication by scalars in V* are defined by the equations

$$\begin{aligned} (\sigma_1 + \sigma_2)(\boldsymbol{v}) &= \sigma_1(\boldsymbol{v}) + \sigma_2(\boldsymbol{v}), \\ (\alpha \sigma)(\boldsymbol{v}) &= \alpha(\sigma(\boldsymbol{v})). \end{aligned}$$

• These give the values of $\sigma_1 + \sigma_2$ and $\alpha \sigma$, $\alpha \in \mathbb{R}$, on an arbitrary $\boldsymbol{v} \in \boldsymbol{V}$, the right-hand operations taking place in \mathbb{R} .

Linear Algebra Fact (i)

- Let $F_*: \boldsymbol{V} \to \boldsymbol{W}$ be a linear map of vector spaces.
- It uniquely determines a dual linear map $F^*: \boldsymbol{W}^* \to \boldsymbol{V}^*$ by the prescription

$$(F^*\sigma)(\mathbf{v}) = \sigma(F_*(\mathbf{v})).$$

• This can be written, equivalently,

$$\langle \mathbf{v}, F^*(\sigma) \rangle = \langle F_*(\mathbf{v}), \sigma \rangle.$$

- When F_* is injective, then F^* is surjective.
- When F_* is surjective, then F^* is injective.

Linear Algebra Fact (ii)

- Let $\boldsymbol{e}_1, \ldots, \boldsymbol{e}_n$ be a basis of \boldsymbol{V} .
- There exists a unique dual basis

$$\omega^1,\ldots,\omega^n$$

of \boldsymbol{V}^* such that

$$\omega^{i}(\mathbf{v}_{j}) = \delta^{i}_{j} = \begin{cases} 0, & \text{if } i \neq j, \\ 1, & \text{if } i = j. \end{cases}$$

Linear Algebra Fact (ii) (Cont'd)

If *v* ∈ *V*, then ω¹(*v*),..., ωⁿ(*v*) are exactly the components of *v* in the basis *e*₁,..., *e_n*,

$$oldsymbol{v} = \sum_{j=1}^n \omega^j(oldsymbol{v})oldsymbol{e}_j.$$

• Indeed, if $\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{e}_i$,

$$\omega^{j}(\mathbf{v}) = \omega^{j}\left(\sum_{i=1}^{n} \alpha_{i} \mathbf{e}_{i}\right) = \sum_{i=1}^{n} \alpha_{i} \omega^{j}(\mathbf{e}_{i}) = \alpha_{j}.$$

Linear Algebra Facts (Cont'd)

- Observe that in Fact (i), the definition of F^* does not require the choice of a basis.
- Therefore F^* is **naturally** or **canonically** determined by F_* .
- According to Fact (ii), the vector spaces V, V* have the same dimension.
- Thus, they must be isomorphic.
- There is no natural isomorphism.
- However, the following Fact (iii) holds.

Linear Algebra Fact (iii)

• There is a natural isomorphism of $m{V}$ onto $(m{V}^*)^*$ given by

$$\mathbf{v} \to \langle \mathbf{v}, \cdot \rangle.$$

- That is, \boldsymbol{v} is mapped to the linear function on \boldsymbol{V}^* whose value on any $\sigma \in \boldsymbol{V}^*$ is $\langle \boldsymbol{v}, \sigma \rangle$.
- Note that $\langle \mathbf{v}, \sigma \rangle$ is linear in each variable separately (with the other fixed).
- This shows that:
 - The dual of **V**^{*} is **V** itself;
 - Accounts for the name "dual" space;
 - Validates the use of the symmetric notation

 $\langle \mathbf{v}, \sigma \rangle$

in preference to the functional notation $\sigma(\mathbf{v})$.

Covectors on Manifolds

- Let M be a C^{∞} manifold and assume $p \in M$.
- We denote by $T_p^*(M)$ the dual space to $T_p(M)$.
- Thus, $\sigma_{p} \in T_{p}^{*}(M)$ is a linear mapping $\sigma_{p} : T_{p}(M) \to \mathbb{R}$.
- Its value on $X_{\rho} \in T_{\rho}(M)$ is denoted by $\sigma_{\rho}(X_{\rho})$ or $\langle X_{\rho}, \sigma_{\rho} \rangle$.
- Suppose E_{1p}, \ldots, E_{np} is a basis of $T_p(M)$.
- There is a uniquely determined dual basis ω¹_p,..., ωⁿ_p satisfying, by definition,

$$\omega_p^i(E_{jp}) = \delta_j^i.$$

• The components of σ_p relative to this basis are equal to the values of σ_p on the basis vectors E_{1p}, \ldots, E_{np} ,

$$\sigma_p = \sum_{i=1}^n \sigma_p(E_{ip}) \omega_p^i.$$

Covector Fields on Manifolds

- We have defined a vector field on *M*.
- Similarly, we may define a covector field.
- It is a (regular) function σ , assigning to each $p \in M$ an element σ_p of $T_p^*(M)$.
- We denote such a function by σ, λ, \ldots
- We denote by $\sigma_p, \lambda_p, \ldots$ its value at p.
- This is the element of $T_p^*(M)$ assigned to p.

Vector and Covector Fields on Manifolds

- Let σ be a covector field on M.
- Let X be a vector field on on an open subset U of M.
- Then $\sigma(X)$ defines a function on U.
- To each $p \in U$ we assign the number

$$\sigma(X)(p) = \sigma_p(X_p).$$

• We often write $\sigma(X_p)$ for $\sigma_p(X_p)$ if σ is a covector field.

Covector Fields

Definition

A C^r -covector field σ on M, $r \ge 0$, is a function which assigns to each $p \in M$ a covector $\sigma_p \in T_p^*(M)$ in such a manner that for any coordinate neighborhood U, φ with coordinate frames E_1, \ldots, E_n , the functions $\sigma(E_i)$, $i = 1, \ldots, n$, are of class C^r on U. For convenience, "covector field" will mean C^∞ -covector field.

- One may wish to avoid the use of local coordinates.
- In that case, the following (apparently stronger) regularity condition could be used to replace the requirement of the definition.

Suppose that σ assigns to each $p \in M$ an element σ_p of $T_p^*(M)$. σ is of class C^r , iff, for any C^{∞} -vector field X on an open subset W of M, the function $\sigma(X)$ is of class C^r on W.

Covector Fields (Cont'd)

- We show why the preceding equivalence holds.
- Take a covering of W by coordinate neighborhoods of M (whose domains are in W).
- Let U, φ be such a neighborhood.
- Then, for some α^i , which are C^{∞} on U,

$$X=\sum \alpha^i E_i.$$

• Thus, on U,

$$\sigma(X) = \sum \alpha^i \sigma(E_i).$$

- This is C^r if $\sigma(E_1), \ldots, \sigma(E_n)$ are.
- Hence the condition given implies σ(X) is of class C^r on a collection of open sets covering W.
- So it is C^r on W itself.
- The converse is obvious.

Field of Coframes

- Let E_1, \ldots, E_n be a field of (C^{∞}) frames on an open set $U \subseteq M$.
- Consider the dual basis at each point of U.
- These define a field of dual bases $\omega^1, \ldots, \omega^n$ on U satisfying

$$\omega^i(E_j)=\delta^i_j.$$

- We call this a field of **coordinate coframes** if *E*₁,..., *E_n* are coordinate frames.
- The $\omega^1, \ldots, \omega^n$ are of class C^{∞} by the criterion just stated.
- Covector field σ is of class C^r if and only if, for each coordinate neighborhood U, φ, the components of σ relative to the coordinate coframes are functions of class C^r on U.

Remark

- Let *M* be a manifold.
- Recall that $\mathfrak{X}(M)$ denotes the collection of all C^{∞} vector fields on M.
- It is important to note that a C^r-covector field defines a map of

$$\mathfrak{X}(M) \to C^{r}(M).$$

- This map is not only \mathbb{R} -linear but even $C^{r}(M)$ -linear.
- More precisely, suppose:
 - $f,g \in C^r(M)$;
 - X and Y are vector fields on M.

Then

$$\sigma(fX+gY)=f\sigma(X)+g\sigma(Y),$$

since these functions are equal at each $p \in M$.

Example: Differential Covector Field

- Let f be a C^{∞} function on M.
- f defines a C^{∞} -covector field, denoted df, by the formula

$$\langle X_{\rho}, df_{\rho} \rangle = X_{\rho}f$$
 or $df_{\rho}(X_{\rho}) = X_{\rho}f$.

• For a vector field X on M, this gives

$$df(X) = Xf,$$

a C^{∞} function on M.

- This covector field *df* is called the **differential of** *f*.
- Its value at p, df_p , is called the **differential of** f at p.

Example (The Case of $\mathbb{R}^n)$

- In the case of an open set $U \subseteq \mathbb{R}^n$, we verify that it coincides with the usual notion of differential of a function in advanced calculus.
- In fact, it makes the notion of differential more precise.
- In this case, the coordinates x^i of a point of U are functions on U.
- By our definition, dx^i assigns to each vector X at $p \in U$ a number $X_p x^i$, its *i*th component in the natural basis of \mathbb{R}^n .
- In particular,

$$\left\langle \frac{\partial}{\partial x^j}, dx^i \right\rangle = \frac{\partial x^i}{\partial x^j} = \delta^i_j.$$

• So we see that dx^1, \ldots, dx^n is exactly the field of coframes dual to $\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}$.

Example (Cont'd)

- Suppose f is a C^{∞} function on U.
- Then we may express df as a linear combination of dx^1, \ldots, dx^n .
- We know that the coefficients in this combination, that is the components of df, are given by $df(\frac{\partial}{\partial x^i}) = \frac{\partial f}{\partial x^i}$.
- Thus we have

$$df = \frac{\partial f}{\partial x^1} dx^1 + \dots + \frac{\partial f}{\partial x^n} dx^n.$$

- Suppose $a \in U$ and $X_a \in T_a(\mathbb{R}^n)$.
- Then X_a has components, say, h^1, \ldots, h^n and geometrically X_a is the vector from a to a + h.
- We have

$$df(X_a) = X_a f = \left(\sum h^i \frac{\partial}{\partial x^i}\right) f = \sum h^i \left(\frac{\partial f}{\partial x^i}\right)_a.$$

Example (Cont'd)

- In particular, $dx^i(X_a) = h^i$.
- That is, dx^i measures the change in the *i*th coordinate of a point which moves from the initial to the terminal point of X_a .
- The preceding formula may thus be written

$$df(X_a) = \left(\frac{\partial f}{\partial x^1}\right)_a dx^1(X_a) + \dots + \left(\frac{\partial f}{\partial x^n}\right)_a dx^n(X_a).$$

- This gives us a very good definition of the differential of a function f on U ⊆ ℝⁿ.
 - df is a field of linear functions which, at each point *a* of the domain of *f*, assigns to the vector X_a a number.
 - X_a can be interpreted as the displacement of the *n* independent variables from *a*, i.e., it has *a* as initial and *a* + *h* as terminal point.
 - $df(X_a)$ approximates (linearly) the change in f between these points.

Covector Fields and Mappings

- Let $F: M \to N$ be a smooth mapping and suppose $p \in M$.
- Then, as we know, there is induced a linear map

$$F_*: T_p(M) \to T_{F(p)}(N).$$

• We know that F_* determines a linear map F^* : $T^*_{F(p)}(N) \to T^*_p(M)$, given by the formula

$$F^*(\sigma_{F(p)})(X_p) = \sigma_{F(p)}(F_*(X_p)).$$

• In general, F_* does not map vector fields on M to vector fields on N.

• It is surprising, then, that given any C^r-covector field on N, F^{*} determines (uniquely) a covector field of the same class C^r on M by this formula.

Covector Field Determined by a Mapping

Theorem

Let $F: M \to N$ be C^{∞} and let σ be a covector field of class C^r on N. Then

$$F^*(\sigma_{F(p)})(X_p) = \sigma_{F(p)}(F_*(X_p))$$

defines a C^r -covector field on M.

• Let σ be a covector field on N.

By definition, for any $p \in M$, there is exactly one image point F(p).

It is, thus, clear that $F^*(\sigma)$ is defined uniquely at each point of M.

Suppose that, for $p_0 \in M$, we take coordinate neighborhoods U, φ of p_0 and V, ψ of $F(p_0)$, such that $F(U) \subseteq V$.

Denote the coordinates on U by (x^1, \ldots, x^m) .

Denote the coordinates on V by (y^1, \ldots, y^n) .

Covector Field Determined by a Mapping (Cont'd)

• Then we may suppose the mapping *F* to be given in local coordinates by

$$y^i = f^i(x^1,\ldots,x^m), \quad i=1,\ldots,n.$$

Let the expression for σ on V, in the local coframes, at $q \in V$ be

$$\sigma_q = \sum_{i=1}^n \alpha_i(q) \widetilde{\omega}_q^i,$$

where $\widetilde{\omega}_q^1, \ldots, \widetilde{\omega}_q^n$ is the basis of $T_q^*(N)$ dual to the coordinate frames. The functions $\alpha^i(q)$ are of class C^r on V, by hypothesis. Let p be any point on U and q = F(p) its image. Using the formula defining F^* , we see that

$$(F^*(\sigma))_{\rho}(E_{j\rho}) = \sigma_{F(\rho)}(F_*(E_{j\rho})) = \sum \alpha_i(F(\rho))\widetilde{\omega}^i_{F(\rho)}(F_*(E_{j\rho})).$$

Covector Field Determined by a Mapping (Cont'd)

We got

$$(F^*(\sigma))_p(E_{jp}) = \sum \alpha_i(F(p))\widetilde{\omega}^i_{F(p)}(F_*(E_{jp})).$$

However, we have previously obtained the formula

$$F_*(E_{jp}) = \sum_{k=1}^n \frac{\partial y^k}{\partial x^j} \widetilde{E}_{kF(p)}, \quad j = 1, \dots, m,$$

the derivatives being evaluated at $\varphi(p) = (x^1(p), \dots, x^m(p))$. Using $\widetilde{\omega}^i(\widetilde{E}_j) = \delta^i_j$, we obtain

$$(F^*(\sigma))_p(E_{jp}) = \sum_{i=1}^n \alpha_i(F(p)) \left(\frac{\partial y^i}{\partial x^j}\right)_{\varphi(p)}$$

As p varies over U these expressions give the components of $F^*(\sigma)$ relative to $\omega^1, \ldots, \omega^m$ on U, the coframes dual to E_1, \ldots, E_m . They are clearly of class C^r at least, completing the proof.

George Voutsadakis (LSSU)

Formulas for $F^*(\sigma)$

Corollary

Using the notation above, suppose:

•
$$\sigma = \sum_{i=1}^{n} \alpha_i \widetilde{\omega}^i$$
 on V;
• $F^*(\sigma) = \sum_{i=1}^{m} \beta_j \omega^j$ on U,

where α_i and β_j are functions on V and U, respectively, and $\tilde{\omega}^i, \omega^j$ are the coordinate coframes. Then:

• For
$$i = 1, ..., n$$
,
 $F^*(\widetilde{\omega}^i) = \sum_{j=1}^m \frac{\partial y^j}{\partial x^j} \omega^j;$

For
$$j = 1, \dots, m$$
,
 $\beta_j = \sum_{i=1}^n \frac{\partial y^i}{\partial x^j} \alpha_i.$

A Special Case

The formulas

$$F^*(\widetilde{\omega}^i) = \sum_{j=1}^m \frac{\partial y^i}{\partial x^j} \omega^j, \quad i = 1, \dots, n,$$

give the relation of the bases.

The formulas

$$\beta_j = \sum_{i=1}^n \frac{\partial y^i}{\partial x^j} \alpha_i, \quad j = 1, \dots, m,$$

give the relation of the components.

- Apply this directly to a map of an open subset of \mathbb{R}^m into an open subset of \mathbb{R}^n .
- Then we get for $F^*(dy^i)$ the formula

$$F^*(dy^i) = \sum_{j=1}^m \frac{\partial y^i}{\partial x^j} dx^j, \quad i = 1, \dots, n.$$

Remark

- Suppose we apply the above considerations to the diffeomorphism $\varphi: U \to \mathbb{R}^n$ of a coordinate neighborhood U, φ on M.
- Let $V \subseteq \mathbb{R}^n$ denote $\varphi(U)$.
- Let dx^1, \ldots, dx^n be the differentials of the coordinates of \mathbb{R}^n .
- That is, dx^1, \ldots, dx^n is the dual basis to $\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}$.
- By definition, we have $\varphi_*^{-1}(\frac{\partial}{\partial x^i}) = E_i$.
- Hence, $\varphi_*(E_i) = \frac{\partial}{\partial x^i}$, for each *i*.
- Further, the definition of F_* above gives for $\varphi_*(dx^i)$

$$\langle E_j, \varphi_*(dx^i) \rangle = \langle \varphi_*(E_j), dx^i \rangle = \delta_j^i.$$

It follows that φ_{*}(dxⁱ) = ωⁱ, i = 1,..., n, the field of coframes on U dual to the coordinate frames E₁,..., E_n.

Notation

- There is a potential source of confusion in notation.
- The coordinates x^1, \ldots, x^n can be considered as functions on U.
- As such, they have differentials dx^i defined by

$$\langle X, dx^i \rangle = Xx^i,$$

the *i*th component of X in the coordinate frames.

- In particular, $\langle E_j, dx^i \rangle = E_j x^i = \delta^i_j$.
- So dx^1, \ldots, dx^n are dual to E_1, \ldots, E_n .
- Therefore $dx^i = \omega^i$, $i = 1, \ldots, n$.
- Combining this with the formula above gives $dx^i = \varphi^*(dx^i)$.
- This is nonsense, unless we are careful to distinguish xⁱ as (coordinate) function on U ⊆ M, on the left, from xⁱ as (coordinate) function on φ(U) = V ⊆ ℝⁿ, on the right.

Example

- We may apply the theorem to obtain examples of covector fields on a submanifold *M* of a manifold *N*.
- Let $i: M \to N$ be the inclusion map.
- Suppose σ is a covector field on N.
- Then $i^*(\sigma)$ is a covector field on *M* called the **restriction** of σ to *M*.
- It is often denoted σ_M or simply σ .
- Recall that, for each $p \in M$, $T_p(M)$ is identified with a subspace of $T_p(N)$ by the isomorphism i_* .
- So we have for $X_{
 ho} \in T_{
 ho}(M)$

$$\sigma_M(X_p) = (i^*\sigma)(X_p) = \sigma(i_*(X_p)) = \sigma(X_p).$$

• The last equality is the identification.

Example (Cont'd)

- As an example, let $M \subseteq \mathbb{R}^n$.
- Let σ be a covector field on \mathbb{R}^n , for example take $\sigma = dx^1$.
- Then σ restricts to a covector field σ_M on M.
- Note that in this example dx^1 is never zero as a covector field on \mathbb{R}^n .
- But on M it is zero at any point p at which the tangent hyperplane $T_p(M)$ is orthogonal to the x^1 -axis.

Subsection 2

Bilinear Forms and The Riemannian Metric

Bilinear Forms

- Let \boldsymbol{V} be a vector space over \mathbb{R} .
- A bilinear form on V is defined to be a map

$$\Phi: \mathbf{V} \times \mathbf{V} \to \mathbb{R}$$

that is linear in each variable separately.

• That is, for $\alpha, \beta \in \mathbb{R}$ and $\boldsymbol{v}, \boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{w}, \boldsymbol{w}_1, \boldsymbol{w}_2 \in \boldsymbol{V}$,

$$\Phi(\alpha \mathbf{v}_1 + \beta \mathbf{v}_2, \mathbf{w}) = \alpha \Phi(\mathbf{v}_1, \mathbf{w}) + \beta \Phi(\mathbf{v}_2, \mathbf{w}),$$

$$\Phi(\mathbf{v}, \alpha \mathbf{w}_1 + \beta \mathbf{w}_2) = \alpha \Phi(\mathbf{v}, \mathbf{w}_1) + \beta \Phi(\mathbf{v}, \mathbf{w}_2).$$

- A similar definition may be made for a map Φ of a pair of vector spaces V × W over ℝ.
- Note that the map assigning to each pair $\boldsymbol{v} \in \boldsymbol{V}$, $\sigma \in \boldsymbol{V}^*$ a number $\langle \boldsymbol{v}, \sigma \rangle$, as discussed in the preceding section, is an example.

Bilinear Forms and Matrices

- Bilinear forms on V are completely determined by their n² values on a basis e₁,..., e_n of V.
- Suppose $\alpha_{ij} = \Phi(\boldsymbol{e}_i, \boldsymbol{e}_j)$, $1 \leq i, j \leq n$, are given.
- Let $\mathbf{v} = \sum \lambda^{j} \mathbf{e}_{i}$, $\mathbf{w} = \sum \mu^{j} \mathbf{e}_{j}$ be any pair of vectors in \mathbf{V} .
- Bilinearity requires that

$$\Phi(\mathbf{v},\mathbf{w}) = \sum_{i,j=1}^{n} \alpha_{ij} \lambda^{i} \mu^{j}.$$

- Conversely, let an $n \times n$ matrix $A = (\alpha_{ij})$ of real numbers be given.
- Then the formula just given determines a bilinear form Φ .
- Thus, there is a one-to-one correspondence between $n \times n$ matrices and bilinear forms on **V** once a basis e_1, \ldots, e_n is chosen.
- The numbers *α_{ij}* are called the **components** of Φ **relative to the basis**.

Symmetric and Skew-Symmetric Forms

• A bilinear form, or function, is called symmetric if

$$\Phi(\boldsymbol{v},\boldsymbol{w})=\Phi(\boldsymbol{w},\boldsymbol{v}).$$

• It is called skew-symmetric if

$$\Phi(\boldsymbol{v},\boldsymbol{w}) = -\Phi(\boldsymbol{w},\boldsymbol{v}).$$

- It is easily seen that, regardless of the basis chosen, these correspond, respectively, to:
 - Symmetric matrices of components,

$$A^T = A;$$

• Skew-symmetric matrices of components,

$$A^T = -A$$

Positive Definite Forms and Inner Products

• A symmetric form is called **positive definite** if

$$\Phi(\mathbf{v},\mathbf{v}) \geq 0$$

and equality holds if and only if $\mathbf{v} = 0$.

- In this case we often call Φ an **inner product** on **V**.
- A vector space with an inner product is called a Euclidean vector space, since Φ allows us to define:
 - The length of a vector,

$$\|\boldsymbol{v}\| = \sqrt{\Phi(\boldsymbol{v}, \boldsymbol{v})}.$$

• The angle between vectors.
Field of Bilinear Forms

Definition

A field Φ of C^r -bilinear forms, $r \ge 0$, on a manifold M consists of a function assigning to each point p of M a bilinear form Φ_p on $T_p(M)$. That is, a bilinear mapping

$$\Phi_p: T_p(M) \times T_p(M) \to \mathbb{R},$$

such that for any coordinate neighborhood U, φ the functions

$$\alpha_{ij}=\Phi(E_i,E_j),$$

defined by Φ and the coordinate frames E_1, \ldots, E_n are of class C^r . Unless otherwise stated, bilinear forms will be C^{∞} . To simplify notation we usually write $\Phi(X_p, Y_p)$ for $\Phi_p(X_p, Y_p)$.

Remarks

• The *n*² functions

$$\alpha_{ij} = \Phi(E_i, E_j)$$

on U are called the components of Φ in the coordinate neighborhood U, φ .

- Let Φ be a function assigning to each $p \in M$ a bilinear form.
- Then Φ is of class C^r if and only if for every pair of vector fields X, Y on an open set U of M, the function Φ(X, Y) is C^r on U.
- Φ is $C^{\infty}(U)$ -bilinear as well as \mathbb{R} -bilinear.
- That is, for $f \in C^{\infty}(U)$,

$$\Phi(fX,Y) = f\Phi(X,Y) = \Phi(X,fY).$$

Induced Mappings of Bilinear Forms

- Let $F_*: W \to V$ be a linear map of vector spaces.
- Let Φ be a bilinear form on V.
- Then the formula

$$(F^*\Phi)(\mathbf{v},\mathbf{w}) = \Phi(F_*(\mathbf{v}),F_*(\mathbf{w}))$$

defines a bilinear form $F^*\Phi$ on W.

- We have the following properties:
 - (i) If Φ is symmetric, then $F^*\Phi$ is symmetric.
 - If Φ is skew-symmetric, then $F^*\Phi$ is skew-symmetric.
 - (ii) If Φ is symmetric, positive definite, and F_* is injective, then $F^*\Phi$ is symmetric, positive definite.
- The latter applies to the identity map i_* of a subspace W into V.
- In this case $i^*\Phi$ is just restriction of Φ to W:

$$(i^*\Phi)(\boldsymbol{v},\boldsymbol{w}) = \Phi(i_*\boldsymbol{v},i_*\boldsymbol{w}) = \Phi(\boldsymbol{v},\boldsymbol{w}).$$

Relation Between Components

- Let $F: M \to N$ be a C^{∞} map.
- Suppose that Φ is a field of bilinear forms on N.
- Then, just as in the case of covectors, this defines a field of bilinear forms F^{*}Φ on M by the formula for (F^{*}Φ)_p at every p ∈ M,

$$(F^*\Phi)(X_p, Y_p) = \Phi(F_*(X_p), F_*(Y_p)).$$

Theorem

Let $F: M \to N$ be a C^{∞} map and Φ a bilinear form of class C^r on N. Then $F^*\Phi$ is a C^r -bilinear form on M. Moreover, if Φ is symmetric (skew-symmetric), then $F^*\Phi$ is symmetric (skew-symmetric).

Suppose U, φ is a coordinate neighborhood of p, V, ψ is a coordinate neighborhood of F(p), such that

$$F(U) \subseteq V.$$

Relation Between Components (Cont'd)

We may write

$$\beta_{ij}(p) = (F^*\Phi)_p(E_{ip}, E_{jp}) = \Phi(F_*(E_{ip}), F_*(E_{jp})).$$

Applying a previous theorem, we have

$$\beta_{ij}(p) = \sum_{s,t=1}^{n} \frac{\partial y^{s}}{\partial x^{i}} \frac{\partial y^{t}}{\partial x^{j}} \Phi(\widetilde{E}_{sF(p)}, \widetilde{E}_{tF(p)}).$$

This gives a formula for the matrix of components (β_{ij}) of $F^*\Phi$ at p in terms of the matrix (α_{st}) of Φ at F(p),

$$\beta_{ij} = \sum_{s,t=1}^{n} \frac{\partial y^s}{\partial x^i} \frac{\partial y^t}{\partial x^j} \alpha_{st}(F(p)), \quad 1 \le i,j \le m.$$

The functions β_{ij} , thus defined, are of class C^r at least on U. The statements about symmetry and skew-symmetry are obvious consequences of Property (i), mentioned above.

George Voutsadakis (LSSU)

Differential Geometry

Immersions and Positive Definite Forms

Corollary

If F is an immersion and Φ is a positive definite, symmetric form, then $F^*\Phi$ is a positive definite, symmetric bilinear form.

 We must check that F*Φ is positive definite at each p ∈ M. Let X_p be any vector tangent to M at p. Then

$$F^*\Phi(X_p,X_p)=\Phi(F_*(X_p),F_*(X_p))\geq 0.$$

Moreover, equality holds only if $F_*(X_p) = 0$. However, F is an immersion.

So we have

$$F_*(X_p) = 0$$
 if and only if $X_p = 0$.

Riemannian Manifolds

Definition

A manifold M on which there is defined a field of symmetric, positive definite, bilinear forms Φ is called a **Riemannian manifold** and Φ the **Riemannian metric**.

We shall assume always that Φ is of class C^{∞} .

Example

• The simplest example is \mathbb{R}^n with its natural inner product

$$\Phi_{a}(X_{a},Y_{a})=\sum_{i=1}^{n}\alpha^{i}\beta^{i},$$

where
$$X = \sum \alpha^{i} \frac{\partial}{\partial x^{i}}$$
 and $Y = \sum \beta^{i} \frac{\partial}{\partial x^{i}}$.

At each point we have

$$\Phi\left(\frac{\partial}{\partial x^i},\frac{\partial}{\partial x^j}\right) = \delta_{ij}.$$

- So the matrix of components of Φ, relative to the standard basis, is constant and equals *I*, the identity matrix.
- It follows that Φ is C^{∞} .

More Examples

- Any imbedded or immersed sub manifold M of ℝⁿ is endowed with a Riemannian metric from ℝⁿ by virtue of the imbedding (or immersion) F : M → ℝⁿ.
- Thus, for example, a surface M in \mathbb{R}^3 has a Riemannian metric.
- The idea of the corollary in this case is very simple.
- Let $i: M \to \mathbb{R}^3$ be the identity.
- Let X_p , Y_p be tangent vectors to M at p.
- Then

$$i^*\Phi(X_p, Y_p) = \Phi(i_*X_p, i_*Y_p) = \Phi(X_p, Y_p).$$

More Examples (Cont'd)

We got

$$i^*\Phi(X_p, Y_p) = \Phi(X_p, Y_p).$$

- That is, we simply take the value of the form on X_p , Y_p considered as vectors in \mathbb{R}^3 , using our standard identification of $T_p(M)$ with a subspace of $T_p(\mathbb{R}^3)$.
- In particular S², the unit sphere of R³, has a Riemannian metric induced by the standard inner product in R³.
- Let X_p , Y_p be tangent to S^2 at p.
- Then $\Phi(X_p, Y_p)$ is just their inner product in \mathbb{R}^3 .

First Fundamental Form

- Classical differential geometry deals with properties of surfaces in Euclidean space.
- The inner product Φ on the tangent space at each point of the surface, inherited from Euclidean space, is an essential element in the study of the geometry of the surface.
- It is known as the first fundamental form of the surface.

Properties of Bilinear Forms: Rank

 We define the rank of a form Φ on V to be the codimension of the subspace

$$\boldsymbol{W} = \{ \boldsymbol{v} \in \boldsymbol{V} : \Phi(\boldsymbol{v}, \boldsymbol{w}) = 0, \text{ for all } \boldsymbol{w} \in \boldsymbol{V} \}.$$

- That is, $\operatorname{rank} \Phi = \dim \boldsymbol{V} \dim \boldsymbol{W}$.
- The following facts are often useful:
 - (iii) If Φ is a bilinear form on \boldsymbol{V} , then the linear mapping $\varphi : \boldsymbol{V} \to \boldsymbol{V}^*$ defined by $\langle \boldsymbol{w}, \varphi(\boldsymbol{v}) \rangle = \Phi(\boldsymbol{w}, \boldsymbol{v})$ is an isomorphism onto if and only if rank $\Phi = \dim \boldsymbol{V}$.
 - (iv) Every bilinear form Φ may be written uniquely as the sum of a symmetric and a skew-symmetric bilinear form, namely,

$$\Phi(\boldsymbol{v},\boldsymbol{w}) = \frac{1}{2}[\Phi(\boldsymbol{v},\boldsymbol{w}) + \Phi(\boldsymbol{w},\boldsymbol{v})] + \frac{1}{2}[\Phi(\boldsymbol{v},\boldsymbol{w}) - \Phi(\boldsymbol{w},\boldsymbol{v})].$$

(v) If a skew-symmetric form Φ has a rank equal to dim \boldsymbol{V} , then dim \boldsymbol{V} is an even number.

George Voutsadakis (LSSU)

Subsection 3

Riemannian Manifolds as Metric Spaces

Importance of Riemannian Manifolds

- The importance of the Riemannian manifold derives from the fact that it makes the tangent space at each point into a Euclidean space, with inner product defined by $\Phi(X_p, Y_p)$.
- This enables us to define:
 - Angles between curves, that is, the angle between their tangent vectors X_p and Y_p at their point of intersection;
 - Lengths of curves on M.
- Thus we may study many questions concerning the geometry of these manifolds.
- This forms a large part of the classical differential geometry of surfaces in \mathbb{R}^3 .

Defining the Length of a Curve

Let

$$t \to p(t), \quad a \leq t \leq b,$$

be a curve of class C^1 on a Riemannian manifold M.

• Then its length L is defined to be the value of the integral

$$L = \int_{a}^{b} \left(\Phi\left(\frac{dp}{dt}, \frac{dp}{dt}\right) \right)^{1/2} dt$$

• The integrand is a function of *t* alone.

• So a more precise notation is to denote its value at each t by

$$\Phi_{p(t)}\left(\frac{dp}{dt},\frac{dp}{dt}\right),$$

where $\frac{dp}{dt} \in T_{p(t)}(M)$ is the tangent vector to the curve at p(t). • This function is continuous, by the continuity of $\frac{dp}{dt}$ and Φ .

Independence of the Length from Parametrization

The value of the integral

$$L = \int_{a}^{b} \left(\Phi\left(\frac{dp}{dt}, \frac{dp}{dt}\right) \right)^{1/2} dt$$

is independent of the parametrization.

• Consider a new parametrization

$$t=f(s), \quad c\leq s\leq d.$$

• We have given the formula for change of parameter,

$$\frac{dp}{ds} = \frac{dp}{dt}\frac{dt}{ds}.$$

So we obtain

$$\int_{c}^{d} \left(\Phi\left(\frac{dp}{ds}, \frac{dp}{ds}\right)\right)^{1/2} ds = \int_{a}^{b} \left(\Phi\left(\frac{dp}{dt}, \frac{dp}{dt}\right)\left(\frac{dt}{ds}\right)^{2}\right)^{1/2} \frac{ds}{dt} dt$$
$$= \int_{a}^{b} \left(\Phi\left(\frac{dp}{dt}, \frac{dp}{dt}\right)\right)^{1/2} dt.$$

Parametrization by the Length

- Consider the arc length along the curve from p(a) to p(t), which may be denoted by s = L(t).
- It gives a new parameter by the formula

$$s = L(t) = \int_{a}^{t} \left(\Phi\left(\frac{dp}{dt},\frac{dp}{dt}\right)\right)^{1/2} dt.$$

• This implies

$$\frac{ds}{dt} = \left(\Phi\left(\frac{dp}{dt}, \frac{dp}{dt}\right)\right)^{1/2}$$

Equivalently,

$$\left(\frac{ds}{dt}\right)^2 = \Phi\left(\frac{dp}{dt}, \frac{dp}{dt}\right)$$

Parametrization by the Length (Cont'd)

• Let U, φ be a coordinate neighborhood with coordinate frames

$$E_{1p},\ldots,E_{np}.$$

- Within U, φ , with $\varphi(p) = x = (x^1, \dots, x^n)$, we have $\Phi(E_{ip}, E_{jp}) = g_{ij}(x).$
- The curve is given by

$$\varphi(p(t)) = (x^1(t), \ldots, x^n(t)).$$

So L(t) becomes

$$s = L(t) = \int_a^t \left(\sum g_{ij}(x(t)) \frac{dx^i}{dt} \frac{dx^j}{dt} \right)^{1/2} dt.$$

So, in local coordinates, the Riemannian metric is abbreviated

$$ds^2 = \sum_{i,j=1}^n g_{ij}(x) dx^i dx^j.$$

The Case of \mathbb{R}^n

• Consider \mathbb{R}^n , with its standard inner product.

Let

$$p(t)=(x^1(t),\ldots,x^n(t)),\quad a\leq t\leq b,$$

be a curve in \mathbb{R}^n .

Then we have

$$\Phi\left(\frac{\partial}{\partial x^i},\frac{\partial}{\partial x^j}\right) = \delta_{ij}.$$

Moreover,

$$\frac{dp}{dt} = \sum_{i=1}^{n} \dot{x}^{i}(t) \frac{\partial}{\partial x^{i}}.$$

• So we have the familiar formula for arc length

$$L = \int_a^b \left(\sum_{i=1}^n (\dot{x}^i(t))^2\right)^{1/2} dt.$$

Connected Riemannian Manifolds as Metric Spaces

• Let D^1 be the class of functions that are piecewise C^1 .

Theorem

A connected Riemannian manifold is a metric space with the metric

 $d(p,q) = \text{infimum of the lengths of curves of class } D^1 \text{ from } p \text{ to } q.$

Its metric space topology and manifold topology agree.

• Since M is arcwise connected, d(p,q) is defined.

By definition d(p,q) is symmetric and nonnegative.

A curve from p_1 to p_2 and a curve from p_2 to p_3 may be joined to give a curve from p_1 to p_3 .

The length of this curve is the sum of the lengths of the two curves.

It follows that the triangle inequality is satisfied.

- In order to complete the proof we need some inequalities.
 Let p be an arbitrary point of M.
 Let U, φ be a coordinate neighborhood, with φ(p) = (0,...,0).
 - Let a > 0 be a fixed real number with the property that

$$\varphi(U) \supseteq \overline{B}_a(0),$$

the closure of the open ball of radius *a* and center the origin of \mathbb{R}^n . Let x^1, \ldots, x^n denote the local coordinates.

Let $g_{ij}(x)$ the components of the metric tensor Φ as functions of these coordinates. These n^2 functions are:

- C^{∞} in their dependence on the coordinates;
- The coefficients of a positive definite, symmetric matrix for each value of x in φ(U).

Consider the compact set defined by

$$\|x\| < r, \quad r \le a,$$

where $a = (a^1, ..., a^n)$ is such that $\sum_{i=1}^n (a^i)^2 = 1$ By the properties of $g_{ij}(x)$, on this compact, the expression

$$\left(\sum_{i,j=1}^n g_{ij}(x)\alpha^i\alpha^j\right)^{1/2}$$

assumes a maximum value M_r and a minimum value $m_r > 0$. Let m, M denote the min and max corresponding to r = a. Then we have the inequalities

$$0 < m \leq m_r \leq \left(\sum_{i,j=1}^n g_{ij}(x) \alpha^i \alpha^j\right)^{1/2} \leq M_r \leq M.$$

• Now let $(\beta^1, \ldots, \beta^n)$ be any *n* real numbers, such that

$$\left(\sum_{i=1}^n (\beta^i)^2\right)^{1/2} = b \neq 0.$$

In the preceding, replace each α^i by $\frac{\beta^i}{b}$. Then, multiply the inequalities by b. We get, for every $x \in \overline{B}_r(0)$,

$$0 \le mb \le m_rb \le \left(\sum_{i,j=1}^n g_{ij}\beta^i\beta^j\right)^{1/2} \le M_rb \le Mb.$$

Intermission: An Assumption Concerning \mathbb{R}^n

- Now we shall make the following assumption.
- If x, y are any points of Rⁿ with its standard Riemannian metric (as defined above), then the infimum of the lengths of all D¹ curves in Rⁿ from x to y is exactly the length of the line segment xy.
- In other words, it is ||y x|| the Euclidean distance from x to y.

Let p(t), a ≤ t ≤ b, be a D¹ curve lying in φ⁻¹(B_r(0)) ⊆ U which runs from p = p(a) to q = p(b).

Let its length be

$$L = \int_a^b \left[\sum_{i,j=1}^n g_{ij}(x(t)) \dot{x}^i(t) \dot{x}^j(t) \right]^{1/2} dt.$$

The last set of inequalities above and the assumption on \mathbb{R}^n imply that, for $p \neq q$,

$$0 < m \|\varphi(q)\| < m_r \|\varphi(q)\| \le L$$

$$\leq M_r \int_a^b \left[\sum_{i=1}^n (\dot{x}^i)^2\right]^{1/2} dt \le M \int_a^b \left[\sum_{i=1}^n (\dot{x}^i)^2\right]^{1/2} dt.$$

 We first use these inequalities to complete the proof that d(p,q) is a metric on M.

Let q' be any point of M distinct from p.

Then, for some r, $0 < r \le a$, q' lies outside of $\varphi^{-1}(B_r(0)) \subseteq U$.

Consider a curve of class D^1 from p = p(0) to q' = p(c),

$$p(t), \quad 0 \leq t \leq c.$$

Let L' be the length of p(t), $0 \le t \le c$.

There is a first point q = p(b) on the curve outside $\varphi^{-1}(B_r(0))$. That is, such that:

- p(t) lies inside the neighborhood $\varphi^{-1}(B_r(0))$, for $0 \le t \le b$;
- q = p(b) lies outside $\varphi^{-1}(B_r(0))$.

q is the first point of the curve with ||φ(q)|| = r. Let L denote the length of the curve p(t), 0 ≤ t ≤ b. Then L ≤ L'. It follows that L' ≥ L ≥ mr. But the curve was arbitrarily chosen. So we get

 $d(p,q) \geq mr.$

This means that if $q' \neq p$, then $d(p,q') \neq 0$. So d(p,q) is a metric as claimed.

- We now show the equivalence of:
 - The metric topology on *M*;
 - The manifold topology on *M*.

It is enough to compare the neighborhood systems at an arbitrary point p of M.

In fact, for the manifold topology, we need only consider the neighborhoods lying inside a single coordinate neighborhood U, φ . Thus, we must show that each neighborhood

$$V_r = \varphi^{-1}(B_r(0)) \subseteq U$$

of the point p contains an ε -ball,

$$S_{\varepsilon}(P) = \{q \in M : d(p,q) < \varepsilon\}.$$

of the metric topology, and conversely.

- This will follow from the inequalities we have obtained.
 For, given r ≤ a, choose ε > 0 satisfying ε/m < r.
 Let q be any point of M, such that d(p,q) < mr.
 We see that q ∈ V_r, since, otherwise, d(p,q) ≥ mr as we have seen.
 But we have chosen ε < mr.
 - So we get $S_{\varepsilon}(p) \subseteq V$.

Conversely, suppose we consider some metric ball $S_{\varepsilon}(p)$ about p.

So $S_{\varepsilon}(p)$ is a neighborhood of p in the metric topology.

Choose
$$r > 0$$
 so that $r < a$ and $r < \frac{\varepsilon}{M}$.
Let $q \in V_r = \varphi^{-1}(B_r(0))$.

Let
$$(eta^1,\ldots,eta^n)$$
 denote the coordinates of q

• Let p(t), $0 \le t \le b$, be the curve from p to q in V_r , defined by the coordinate functions $x^i(t) = \beta^i t$.

The length L of this curve is given by an integral which yields

$$L = \int_0^1 \left[\sum_{i,j=1}^n g_{ij}(t\beta)\beta^i\beta^j\right]^{1/2} dt \le M_r \left[\sum_{i=1}^n (\beta^i)^2\right]^{1/2} \le Mr < \varepsilon.$$

Thus $d(p,q) < \varepsilon$ and $q \in S_{\varepsilon}(p)$. It follows that $\varphi^{-1}(B_r(0)) \subseteq S_{\varepsilon}(p)$.

That is, each metric neighborhood of p contains a manifold neighborhood of p (lying inside U).

This completes the proof of the theorem except for the unproved assertion about \mathbb{R}^n (theorem itself in \mathbb{R}^n).

Subsection 4

Partitions of Unity

Locally Finite Coverings and Refinements

- A covering {A_α} of a manifold M by subsets is said to be locally finite if each p ∈ M has a neighborhood U which intersects only a finite number of sets A_α.
- If {A_α} and {B_β} are coverings of M, then {B_β} is called a refinement of {A_α} if each B_β ⊆ A_α, for some α.
- In these definitions we do not suppose the sets to be open.

Compactness

- Any manifold *M* is locally compact since it is locally Euclidean.
- It is also σ-compact, which means that it is the union of a countable number of compact sets.
- This follows from the local compactness and the existence of a countable basis P₁, P₂,... such that each P
 _i is compact.
- A space with the property that every open covering has a locally finite refinement is called **paracompact**.
- It is a standard result of general topology that a locally compact Hausdorff space with a countable basis is paracompact.

Existence of Countable, Locally Finite Refinements

Lemma

Let $\{A_{\alpha}\}\$ be any covering of a manifold M of dimension n by open sets. Then there exists a countable, locally finite refinement $\{U_i, \varphi_i\}$, consisting of coordinate neighborhoods, with

$$\varphi_i(U_i)=B_3^n(0), \quad i=1,2,3,\ldots,$$

and such that

$$V_i = \varphi^{-1}(B_1^n(0)) \subseteq U_i$$

also cover M.

We begin with the countable basis of open sets {P_i}, P
_i compact.
 Define a sequence of compact sets K₁, K₂,... as follows.

Countable, Locally Finite Refinements (Cont'd)

• Let $K_1 = \overline{P}_1$.

Assume that K_1, \ldots, K_i have been defined.

Let r be the first integer such that

$$K_i \subseteq \bigcup_{j=1}^r P_j.$$

Define K_{i+1} by

$$K_{i+1} = \overline{P}_1 \cup \overline{P}_2 \cup \cdots \cup \overline{P}_r = \overline{P_1 \cup \cdots \cup P_r}.$$

Denote by $\overset{\circ}{K}_{i+1}$ the interior of K_{i+1} . It contains K_i . For each i = 1, 2, ..., consider the open set $(\overset{\circ}{K}_{i+2} - K_{i-1}) \cap A_{\alpha}$.

Countable, Locally Finite Refinements (Cont'd)

- Consider the open set (K
 {i+2} − K{i-1}) ∩ A_α. Around each p in this set choose a coordinate neighborhood U_{p,α}, φ_{p,α} lying inside the set and such that:
 - $\varphi_{p,\alpha}(p) = 0;$ • $\varphi_{p,\alpha}(U_{p,\alpha}) = B_3^n(0).$ Take $V_{p,\alpha} = \varphi_{p,\alpha}^{-1}(B_1^n(0)).$

Note that these are also interior to $(\check{K}_{i+2} - K_{i-1}) \cap A_{\alpha}$.

Moreover allowing p, α to vary, a finite number of the collection of $V_{p,\alpha}$ covers $K_{i+1} - K_i$, a closed compact set.

Denote these by $V_{i,k}$ with k labeling the sets in this finite collection. For each i = 1, 2, ..., index k takes on just a finite number of values. Thus, the collection $V_{i,k}$ is denumerable.

Renumber these sets as V_1, V_2, \ldots

Denote by $U_1, \varphi_1, U_2, \varphi_2, \ldots$ the corresponding coordinate neighborhoods containing them.

George Voutsadakis (LSSU)

Differential Geometry
Countable, Locally Finite Refinements (Cont'd)

• The $U_1, \varphi_1, U_2, \varphi_2, \ldots$ satisfy the requirements of the conclusion.

For each $p \in M$, there is an index *i* such that $p \in \overset{\circ}{K}_{i-1}$.

From the definition of U_j , V_j , it is clear that only a finite number of these neighborhoods meet $\overset{\circ}{\kappa}_{i-1}$.

Therefore, $\{U_i\}$, and also $\{V_i\}$, are locally finite coverings refining the covering $\{A_{\alpha}\}$.

Remark: It is clear that it would be possible to replace the spherical neighborhoods $B_r^n(0)$ by cubical neighborhoods $C_r^n(0)$ in the lemma.

We shall call the refinement U_i, V_i, φ_i obtained in this lemma a regular covering by spherical (or, when appropriate, cubical) coordinate neighborhoods subordinate to the open covering {A_α}.

Partition of Unity on a Manifold

• Recall that the **support** of a function *f* on a manifold *M* is the set

$$\operatorname{supp}(f) = \overline{\{x \in M : f(x) = 0\}}.$$

• That is, the closure of the set on which f vanishes.

Definition

A C^{∞} partition of unity on M is a collection of C^{∞} functions $\{f_{\gamma}\}$, defined on M, with the following properties:

 $(1) \ f_{\gamma} \geq 0 \ \text{on} \ M;$

(2) {supp(f_{γ})} form a locally finite covering of *M*;

(3)
$$\sum_{\gamma} f_{\gamma}(x) = 1$$
, for every $x \in M$.

Partition of Unity on a Manifold (Cont'd)

- Note that, by virtue of Property (2), each point has a neighborhood on which only a finite number of the f_{γ} s are different from zero.
- It follows that the sum in Property (3) is a well-defined C^{∞} function on M.
- A partition of unity is said to be **subordinate to an open covering** $\{A_{\alpha}\}$ of M if, for each γ , there is an A_{α} , such that

 $\operatorname{supp}(f_{\gamma})\subseteq A_{lpha}.$

Regular Coverings and Partitions of Unity

Theorem

Associated to each regular covering $\{U_i, V_i, \varphi_i\}$ of M, there is a partition of unity $\{f_i\}$, such that:

- $f_i > 0$ on $V_i = \varphi_i^{-1}(B_1(0));$
- supp $f_i \subseteq \varphi_i^{-1}(\overline{B}_2(0)).$

In particular, every open covering $\{A_{\alpha}\}$ has a partition of unity which is subordinate to it.

- Exactly as in a previous theorem, we see that there is, for each *i*, a nonnegative C[∞] function g̃(x) on ℝⁿ which is:
 - Identically one on $\overline{B}_1^n(0)$;
 - Zero outside Bⁿ₂(0).

Regular Coverings and Partitions of Unity (Cont'd)

Consider the function

$$g_i = \begin{cases} \widetilde{g} \circ \varphi_i, & \text{on } U_i, \\ 0, & \text{on } M - U_i. \end{cases}$$

Clearly g_i is C^{∞} on M. It has its support in $\varphi_i^{-1}(\overline{B}_2^n(0))$. It is +1 on \overline{V}_i . Finally, it is never negative.

Consider the functions

$$f_i = \frac{g_i}{\sum_i g_i}, \quad i = 1, 2, \dots$$

From the preceding properties and the fact that $\{V_i\}$ is a locally finite covering of M, we can see that the $\{f_i\}$ have the desired properties.

Existence of Riemannian Metrics

Theorem

It is possible to define a C^{∞} Riemannian metric on every C^{∞} Riemannian manifold.

Let {U_i, V_i, φ_i} be a regular covering of M.
Let f_i be an associated C[∞] partition of unity as defined above.
By hypothesis, φ_i : U_i → Bⁿ₃(0) is a diffeomorphism.
Let Ψ denote the usual Euclidean inner product on ℝⁿ.
Then the bilinear form

$$\Phi_i = \varphi_i^* \Psi$$

defines a Riemannian metric on U_i .

Existence of Riemannian Metrics (Cont'd)

• Taking into account that $f_i > 0$ on V_i , consider

 $f_i \Phi_i$.

- It is a Riemannian metric tensor on V_i ;
- It is symmetric on U_i ;
- It is zero outside $\varphi_i^{-1}(\overline{B}_2^n(0))$.

Hence, it may be extended to a C^{∞} -symmetric bilinear form on all of M, which:

- Vanishes outside $\varphi_i^{-1}(\overline{B}_2^n(0));$
- Is positive definite at every point of V_i .

It is easy to check that the sum of symmetric forms is symmetric.

Existence of Riemannian Metrics (Cont'd)

• Therefore $\Phi = \sum f_i \Phi_i$ is symmetric, where Φ is defined by

$$\Phi_p(X_p, Y_p) = \sum_{i=1}^{\infty} f_i(p) \Phi_i(X_p, Y_p), \quad p \in M.$$

We have denoted by $f_i \Phi_i$ its extension to all of M.

Recall that the summation makes sense, since in a neighborhood of each $p \in M$ all but a finite number of terms are zero.

However, Φ is also positive definite.

For every *i*, $f_i \ge 0$ and each $p \in M$ is contained in at least one V_j . Then $f_i(p) > 0$.

So, if
$$0 = \Phi_p(X_p, X_p) = \sum f_i(p)\Phi_i(X_p, X_p)$$
, then $\Phi_j(X_p, X_p) = 0$.
This means $0 = \varphi_i^* \Psi(X_p, X_p) = \Psi(\varphi_{j*}(X_p), \varphi_{j*}(X_p))$.

However, Ψ is positive definite and φ is a diffeomorphism.

So this implies $X_p = 0$.

Now the proof is complete.

George Voutsadakis (LSSU)

Imbedding a Manifold in a Power of ${\mathbb R}$

Theorem

Any compact C^{∞} manifold M admits a C^{∞} imbedding as a submanifold of \mathbb{R}^N for sufficiently large N.

Let {U_i, V_i, φ_i} be a finite regular covering of M. Such a covering exists because of the compactness. Recall that we have defined the associated partition of unity {f_i} using functions {g_i}, where g_i = 1 on V_i. We use here these C[∞] functions {g_i} on M rather than the (normalized) {f_i}.

Imbedding a Manifold (Cont'd)

• Let $\varphi_i: U_i \to B_3^n(0)$ be the coordinate map. Consider the mapping

$$egin{array}{rcl} g_i arphi_i & U_i & o & B_3^n(0) \ p & \mapsto & (g_i(p) x^1(p), \dots, g_i(p) x^n(p)). \end{array}$$

It is a C^{∞} map on U_i .

It takes everything outside $\varphi_i^{-1}(B_2^n(0))$ onto the origin.

It agrees with φ_i on V_i .

It may be extended to a C^{∞} mapping of M into $B_3^n(0)$ by letting it map all of $M - U_i$ onto the origin.

When we write $g_i \varphi_i$, we will mean this extension.

On V_i it is a diffeomorphism to $B_1^n(0)$.

So, on V_i , its Jacobian matrix has rank $n = \dim M$.

mbedding a Manifold (Cont'd)

Let i = 1,..., k be the range of indices in our finite regular covering.
 Let N = (n + 1)k.

Define

$$F: M \to \mathbb{R}^N \to \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_k \times \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_k$$

by

$$F(p) = (g_1(p)\varphi_1(p);\ldots;g_k(p)\varphi_k(p);g_1(p),\ldots,g_k(p)).$$

Then *F* is clearly C^{∞} on *M*.

Moreover, in any local coordinates on M, the $N \times n$ Jacobian of F breaks up into:

- k blocks of size $n \times n$;
- A $k \times n$ matrix.

So its rank is at most n.

Imbedding a Manifold (Cont'd)

• Now, $p \in M$ implies $p \in V_i$, for some *i*. Further, on V_i , $g_i \equiv 1$.

So $g_i \varphi_i \equiv \varphi_i$ and the matrix has rank *n*.

Thus, $F: M \to \mathbb{R}^N$ is a C^{∞} immersion.

It suffices to show it is one-to-one, since then M is compact and a previous theorem applies.

Suppose F(p) = F(q). Then $g_i(p) = g_i(q)$, i = 1, ..., k. This implies that $g_i(p)\varphi_i(p) = g_i(q)\varphi_i(q)$. But $g_i(p) \neq 0$, for some *i*. This means $\varphi_i(p) = \varphi_i(q)$ for that *i*. Since φ_i is one-to-one, we see that p = q. Thus, *F* is indeed one-to-one.

Remarks

- It is an obvious disadvantage of this theorem that *N* may be much larger than we would like it.
- In fact we have no way of giving an effective bound on it from this proof.
- We know, e.g., that it takes at least two coordinate neighborhoods to cover S^2 (using stereographic projections from the north and south poles).
- Hence, k = 2 and n = 2, which give N = 6.
- So we get that S^2 may be imbedded in \mathbb{R}^6 .
- This is obviously not the best possible!

A "Smoothing" Theorem

Theorem

Let *M* be a C^{∞} manifold.

Let A be a compact subset of M, possibly empty.

Let g be a continuous function on M which is C^{∞} on A.

Let ε be a positive continuous function on M.

There exists a C^{∞} function *h* on *M*, such that:

•
$$g(p) = h(p)$$
, for every $p \in A$;

•
$$|g(p) - h(p)| < \varepsilon(p)$$
 on all of M .

In order to prove this we shall need a similar theorem for the case of a closed *n*-ball in Rⁿ.

Weierstraß Approximation Theorem

Lemma (Weierstraß Approximation Theorem)

Let f be a continuous function on a closed n-ball \overline{B}^n of \mathbb{R}^n and let $\varepsilon > 0$. Then there is a polynomial function p on \mathbb{R}^n , such that

$$|f(x)-p(x)|<\varepsilon$$
 on \overline{B}^n .

• By hypothesis, g is C^{∞} in A.

By definition of C^{∞} function on an arbitrary subset of M, there is a C^{∞} extension g^* of $g|_A$ to an open set U which contains A.

There is no reason to believe that $g(p) = g^*(p)$ on U but not A.

However, we may replace g by a continuous \tilde{g} on M, such that:

(i)
$$|\widetilde{g}(p) - g(p)| < \frac{1}{2}\varepsilon(p);$$

(ii) $\widetilde{g} = g$ on A;

(iii) \tilde{g} is C^{∞} on an open subset W of M which contains A.

Proof of the Theorem

• The procedure is as follows.

```
Take any U and g^* as above.
```

Use the compactness of A to choose an open set W containing A and such that two further requirements are met:

- W is compact and lies in U;
- $|g^*(p) g(p)| < \frac{1}{2}\varepsilon(p)$ on W.

Now g^* is C^{∞} on U, and, hence, continuous.

So there is no problem in finding such a set W.

Using a previous theorem, we define a nonnegative C^{∞} function σ which is +1 everywhere on \overline{W} and vanishes outside U.

Finally, we define
$$\tilde{g} = \sigma g^* + (1 - \sigma)g$$
.

Note that \tilde{g} satisfies Conditions (i)-(iii).

- Choose a regular covering by spherical neighborhoods {U_i, V_i, φ_i} subordinate to the open covering W, M − A of M.
 Denote by {f_i} the corresponding C[∞] partition of unity.
 For every U_i on W, the function f_i g̃ is:
 - C^{∞} on U_i ;
 - Vanishes outside $\varphi_i^{-1}(\overline{B}_2^n(0))$.

Thus, it can be extended to a C^{∞} function on M.

Denote the extended function also by $f_i \tilde{g}$.

Then, on M, we have

$$\sum f_i \widetilde{g} \equiv \widetilde{g}.$$

• Suppose $U_i \subseteq M - A$.

Then, on $\overline{B}_2^n(0) \subseteq B_3^n(0) = \varphi_i(U_i)$, we use the Weierstraß Approximation Theorem to obtain a polynomial function p_i , with

$$|p_i(x) - \widetilde{g} \circ \varphi_i^{-1}(x)| < \frac{1}{2}\varepsilon_i,$$

where $\varepsilon_i = \inf \varepsilon(p)$ on $\varphi_i^{-1}(\overline{B}_2^n(0))$. Each ε_i is defined, since $\overline{B}_2^n(0)$ is compact. Let $q_i = p_i \circ \varphi_i$. For each *i*, let $f_i q_i$ be extended to a C^∞ function on all of *M*, which vanishes outside U_i .

Denote the indices such that U_i is in M – A by i'.
 Denote all other indices by i''.
 Define h(p) by

$$h(p) = \sum_{i'} f_{i'}q_{i'} + \sum_{i''} f_{i''}\widetilde{g}.$$

Each point has a neighborhood on which all but a finite number of summands vanish identically.

So *h* is well defined and C^{∞} on *M*.

Suppose $p \in A$. We know that:

•
$$g = \widetilde{g}$$
 on A ;

• Each
$$f_{i'}(p) = 0$$
 on A;

• $\sum f_i \equiv 1$ everywhere on *M*.

So we obtain

$$h(p) = \sum_{i''} f_{i''}(p)\widetilde{g}(p) = g(p).$$

• On the other hand we have, for $p \not\in A$,

$$\begin{split} |h(p) - \widetilde{g}(p)| &= |\sum_{i'} f_{i'}(p) q_{i'}(p) + \sum_{i''} f_{i'}'(p) \widetilde{g}(p) \\ &- \sum_{i} f_{i}(p) \widetilde{g}(p)| \\ &= |\sum_{i'} f_{i'}(p) (q_{i'}(p) - \widetilde{g}(p))|. \end{split}$$

Recall that $f_i \ge 0$ for all i. So, by the preceding, we obtain

$$|h(p) - \widetilde{g}(p)| \leq \sum f_{i'}(p)|q_{i'}(p) - \widetilde{g}(p)| \leq \frac{1}{2}\varepsilon(p)\sum f_{i'}(p).$$

But

$$\sum f_{i'}(p) \leq \sum f_i(p) = 1.$$

We deduce that

$$egin{array}{ll} |h(p)-g(p)|&\leq |h(p)-\widetilde{g}(p)|+|\widetilde{g}(p)-g(p)|\ &< rac{1}{2}arepsilon(p)+rac{1}{2}arepsilon(p)=arepsilon(p). \end{array}$$

Subsection 5

Tensor Fields

Tensors

Definition

Let \boldsymbol{V} be a vector space over \mathbb{R} .

A **tensor** Φ on \boldsymbol{V} is by definition a multilinear map

$$\Phi:\underbrace{\boldsymbol{V}\times\cdots\times\boldsymbol{V}}_{r}\times\underbrace{\boldsymbol{V}^{*}\times\cdots\times\boldsymbol{V}^{*}}_{s}\to\mathbb{R}$$

where:

- V* denotes the dual space to V;
- r its covariant order;
- s its contravariant order.

Tensors (Cont'd)

- By definition, a tensor Φ on V assigns to each r-tuple of elements of V and s-tuple of elements of V* a real number.
- Moreover, if, for each k, 1 ≤ k ≤ r + s, we hold every variable except the kth fixed, then Φ satisfies the linearity condition

$$\Phi(\mathbf{v}_1,\ldots,\alpha\mathbf{v}_k+\alpha'\mathbf{v}'_k,\ldots)$$

= $\alpha\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_k,\ldots)+\alpha'\Phi(\mathbf{v}_1,\ldots,\mathbf{v}'_k,\ldots),$

for all $\alpha, \alpha' \in \mathbb{R}$, and $\boldsymbol{v}_k, \boldsymbol{v}'_k \in \boldsymbol{V}$ (or \boldsymbol{V}^* , respectively).

Examples of Tensors

- (i) For r = 1, s = 0, any $\varphi \in \mathbf{V}^*$ is a tensor.
- (ii) For r = 2, s = 0, any bilinear form Φ on V is a tensor.
- (iii) The natural pairing of \boldsymbol{V} and \boldsymbol{V}^* , that is, $(\boldsymbol{v}, \varphi) \rightarrow \langle \varphi, \boldsymbol{v} \rangle$ for the case r = 1, s = 1 is a tensor.
- (iv) We have also noted that V and (V*)* are naturally isomorphic. Suppose that they are identified. Then each v ∈ V may be considered as a linear map of V* to ℝ. So it may be viewed as a tensor with r = 0 and s = 1.

Vector Space $\mathcal{T}_s^r(V)$

- For a fixed (r, s) we let $\mathcal{T}_{s}^{r}(\mathbf{V})$ be the collection of all tensors on \mathbf{V} of covariant order r and contravariant order s.
- We know that as functions from V × ··· × V × V* × ··· × V* to R they may be added and multiplied by scalars (elements of R).
- Indeed linear combinations of functions from any set to $\mathbb R$ are defined and are again functions from that set to $\mathbb R.$
- With this addition and scalar multiplication $\mathcal{T}_s^r(V)$ is a vector space.
- That is, if $\Phi_1, \Phi_2 \in \mathcal{T}_s^r(\mathbf{V})$ and $\alpha_1, \alpha_2 \in \mathbb{R}$, then $\alpha_1 \Phi_1 + \alpha_2 \Phi_2$, defined by

$$(\alpha_1\Phi_1+\alpha_2\Phi_2)(\mathbf{v}_1,\mathbf{v}_2,\ldots)=\alpha_1\Phi_1(\mathbf{v}_1,\mathbf{v}_2,\ldots)+\alpha_2\Phi_2(\mathbf{v}_1,\mathbf{v}_2,\ldots)$$

is multilinear, and, therefore, is in $\mathcal{T}_s^r(\boldsymbol{V})$.

• Thus $\mathcal{T}_s^r(\boldsymbol{V})$ has a natural vector space structure.

The Vector Space Property

Theorem

With the natural definitions of addition and multiplication by elements of \mathbb{R} , the set $\mathcal{T}_s^r(\mathbf{V})$ of all tensors of order (r, s) on \mathbf{V} forms a vector space of dimension n^{r+s} .

We consider the case s = 0 only, that is, covariant tensors of fixed order r, and we let T^r(V) := T^r₀(V).

Let $\boldsymbol{e}_1, \ldots, \boldsymbol{e}_n$ be a basis of \boldsymbol{V} .

Then $\Phi \in \mathcal{T}^r(\mathbf{V})$ is completely determined by its n^r values on the basis vectors.

To see this, suppose

$$\mathbf{v}_i = \sum \alpha_i^j \mathbf{e}_j, \quad i = 1, \dots, r.$$

The Vector Space Property (Cont'd)

• By multilinearity, the value of Φ is given by the formula

$$\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_r)=\sum_{j_1,\ldots,j_r}\alpha_{j_1}^{j_1}\alpha_{j_2}^{j_2}\cdots\alpha_{j_r}^{j_r}\Phi(\mathbf{e}_{j_1},\ldots,\mathbf{e}_{j_r}),$$

the sum being over all $1 \leq j_1, \ldots, j_r \leq n$.

The n^r numbers $\{\Phi(\boldsymbol{e}_{j_1},\ldots,\boldsymbol{e}_{j_r})\}$ are called the **components** of Φ in the basis $\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n$.

We justify the terminology by showing that there is in fact a basis of $\mathcal{T}^r(\mathbf{V})$, determined by $\mathbf{e}_1, \ldots, \mathbf{e}_n$ with respect to which these are components of Φ .

The Vector Space Property (Cont'd)

Let Ω^{j₁...j_r} be that element of T^r(V) whose values on the basis vectors are given by

$$\Omega^{j_1\cdots j_r}(\boldsymbol{e}_{k_1},\ldots,\boldsymbol{e}_{k_r}) = \begin{cases} 1, & \text{if } k_i = j_i \text{ for } i = 1,\ldots,r, \\ 0, & \text{if } k_i \neq j_i, \text{ for some } i. \end{cases}$$

Its values on an arbitrary *r*-tuple $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_r \in \boldsymbol{V}$ is defined by

$$\Omega^{j_1\cdots j_r}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_r)=\alpha_1^{j_1}\alpha_2^{j_2}\cdots\alpha_r^{j_r}.$$

This definition is linear in the components of each \mathbf{v}_i . Therefore, $\Omega^{j_1\cdots j_r}$ is indeed a tensor.

• We show that the n^r tensors so chosen are linearly independent. Suppose

$$\sum_{j_1,\dots,j_r} \gamma_{j_1\dots j_r} \Omega^{j_1\dots j_r} = 0.$$

Then, for any choice of the variables v_1, \ldots, v_r ,

$$\sum_{j_1,\ldots,j_r}\gamma_{j_1\cdots j_r}\Omega^{j_1\cdots j_r}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_r)=0.$$

Now substitute, in turn, each combination $\boldsymbol{e}_{k_1}, \ldots, \boldsymbol{e}_{k_r}$ of basis elements as variables.

By the definition of the $\Omega^{j_1 \cdots j_r}$, we see that every coefficient $\gamma_{k_1\cdots k_r} = 0.$

The Vector Space Property (Cont'd)

 Finally, we show that every Φ is a linear combination of these tensors. Let

$$\varphi_{j_1\cdots j_r} = \Phi(\boldsymbol{e}_{j_1},\ldots,\boldsymbol{e}_{j_r}).$$

Consider the element

$$\sum \varphi_{j_1\cdots j_r} \Omega^{j_1\cdots j_r}$$

of $\mathcal{T}^r(\mathbf{V})$.

Apply again the definition of $\Omega^{j_1 \cdots j_r}$.

We see that this tensor and Φ take the same values on every set of basis elements.

Hence, they must be equal.

An easy extension of the argument using both e₁,..., e_n and its dual basis ω¹,..., ωⁿ of V^{*} gives the general case T^r_s(V).

Covariant Tensor Fields

Definition

A C^{∞} -covariant tensor field of order r on a C^{∞} manifold M is a function Φ which:

- Assigns to each $p \in M$ an element Φ_p of $\mathcal{T}^r(\mathcal{T}_p(M))$;
- Has the additional property that, given any C^{∞} -vector fields X_1, \ldots, X_r on an open subset U of M,

$$\Phi(X_1,\ldots,X_r)$$

is a C^{∞} function on U.

We denote by $\mathcal{T}^r(M)$ the set of all C^{∞} -covariant tensor fields of order r on M.

Covariant Tensor Fields (Cont'd)

- A covariant tensor field of order r is not only \mathbb{R} -linear but also $C^{\infty}(M)$ -linear in each variable.
- For example, let $f \in C^{\infty}(M)$.
- Then

$$\Phi(X_1,\ldots,fX_i,\ldots,X_r)=f\Phi(X_1,\ldots,X_i,\ldots,X_r).$$

- This holds at each p by the \mathbb{R} -linearity of Φ_p .
- Moreover, the two sides are equal if equality holds for each $p \in M$.
- In the same way, if $f \in C^{\infty}(U)$, U open in M, the equation holds for Φ_U , the restriction of Φ to U.

The Structure of $\mathcal{T}^r(M)$

- Let U, φ be a coordinate neighborhood.
- Let E_1, \ldots, E_n be the coordinate frames.
- Then $\Phi \in \mathcal{T}^r(M)$ has components

$$\Phi(E_{j_1},\ldots,E_{j_r}).$$

- These are functions on U whose values at each p ∈ U are the components of Φ_p relative to the basis of T_p(M) determined by E₁,..., E_n.
- By hypothesis, all the components, as functions on the coordinate neighborhoods of some covering of *M*, are differentiable.
- This implies the differentiability of Φ.
- Linear combinations of covariant tensors of order r (even with C^{∞} functions as coefficients) are again covariant tensor fields.
- So $\mathcal{T}^r(M)$ is a vector space over \mathbb{R} [in fact a $C^{\infty}(M)$ module].

Mappings and Covariant Tensors

- Consider a linear map of vector spaces $F_*: \mathbf{V} \to \mathbf{W}$.
- It induces a linear map $F^*:\mathcal{T}^r(oldsymbol{W}) o\mathcal{T}^r(oldsymbol{V})$ by the formula

$$F^*\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_r)=\Phi(F_*(\mathbf{v}_1),\ldots,F_*(\mathbf{v}_r)).$$

- Now suppose $F: M \to N$ is a C^{∞} -map.
- It induces a mapping $F^* : \mathcal{T}^r(N) \to \mathcal{T}^r(M)$, defined, for Φ on N, by

$$F^*\Phi_p(X_{1p},\ldots,X_{rp})=\Phi_{F(p)}(F_*(X_{1p}),\ldots,F_*(X_{rp})).$$

- As we have seen, this is a special feature of covariant tensor fields.
- Its analog does not hold for contravariant fields even for $\mathcal{T}_1(M) = \mathfrak{X}(M)$ (vector fields).
- We can show that F^* maps $\mathcal{T}^r(N)$ to $\mathcal{T}^r(M)$ linearly.

Symmetry and Antisymmetry

Definition

Let \boldsymbol{V} be a vector space. We say $\Phi \in \mathcal{T}^r(\boldsymbol{V})$ is symmetric if, for each $1 \leq i, j \leq r$,

$$\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_r)=\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_r).$$

We say Φ is **skew** or **antisymmetric** or **alternating** if, interchanging the *i*th and *j*th variables, $1 \le i, j \le r$, changes the sign,

$$\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_r) = -\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_r).$$

Alternating covariant tensors are often called **exterior forms**. A tensor field is **symmetric** (respectively, **alternating**) if it has this property at each point.

Summarizing Theorem

Theorem

Let $F: M \to N$ be a C^{∞} map of C^{∞} manifolds. Then each C^{∞} -covariant tensor field Φ on N determines a C^{∞} -covariant tensor field $F^*\Phi$ on M by the formula

$$(F^*\Phi)_{\rho}(X_{1\rho},\ldots,X_{r\rho})=\Phi_{\rho}(F_*(X_{1\rho}),\ldots,F_*(X_{r\rho})).$$

The map $F^*: \mathcal{T}^r(N) \to \mathcal{T}^r(M)$ so defined is linear. Moreover, it takes symmetric tensors to symmetric tensors and alternating tensors to alternating tensors.
Some Additional Properties

- We may also extend to the case of arbitrary order r:
 - The formula for components of $F^*\Phi$ in terms of those of Φ ;
 - The Jacobian of F in local coordinates.
- The same method can also be used to derive formulas for change of components relative to a change of local coordinates.
- These formulas are essentially consequences of the multilinearity at each point of *M*.

- Let $\Phi_1, \Phi_2 \in \mathcal{T}^r(\mathbf{V})$ be symmetric (respectively, alternating) covariant tensors of order r on V.
- Then a linear combination

$$\alpha \Phi_1 + \beta \Phi_2, \quad \alpha, \beta \in \mathbb{R},$$

is also symmetric (respectively, alternating).

- Thus, the symmetric tensors in $\mathcal{T}^r(\mathbf{V})$ form a subspace which we denote by $\Sigma^{r}(\mathbf{V})$.
- The alternating tensors (exterior forms) also form a subspace $\bigwedge^{r}(\mathbf{V})$.
- These subspaces have only the 0-tensor in common.

The Signum Homomorphism

• Let σ denote a permutation of $(1,\ldots,r)$, with

$$(1,\ldots,r) \rightarrow (\sigma(1),\ldots,\sigma(r)).$$

- We know that any such permutation is a product of transpositions, i.e., permutations interchanging just two elements.
- This representation is not unique.
- But the parity (evenness or oddness) of the number of factors is.
- We let

 ${\rm sgn}\sigma = \left\{ \begin{array}{ll} +1, & {\rm if}\;\sigma\;{\rm is\;representable\;as\;the\;product} \\ & {\rm of\;an\;even\;number\;of\;transpositions,} \\ -1, & {\rm otherwise.} \end{array} \right.$

Then, σ → sgnσ is a well-defined map from the group of permutations of r letters 𝔅_r to the multiplicative group of two elements ±1.
It is even a homomorphism, as can be checked from the definition.

Symmetric and Alternating Tensor Fields Revisited

- Now our original definitions may be restated in the following equivalent form.
- $\Phi \in \mathcal{T}^r(V)$ is symmetric if, for all v_1, \ldots, v_r and permutation σ ,

$$\Phi(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_r)=\Phi(\boldsymbol{v}_{\sigma(1)},\ldots,\boldsymbol{v}_{\sigma(r)});$$

• Φ is alternating if, for all $\mathbf{v}_1, \ldots, \mathbf{v}_r$ and permutation σ ,

$$\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_r) = \operatorname{sgn}_{\sigma} \Phi(\mathbf{v}_{\sigma(1)},\ldots,\mathbf{v}_{\sigma(r)}).$$

Symmetrization and Antisymmetrization

Definition

We define two linear transformations on the vector space $\mathcal{T}^r(\mathbf{V})$:

• The symmetrizing mapping $\mathcal{S}:\mathcal{T}^r(\boldsymbol{V})\to\mathcal{T}^r(\boldsymbol{V})$ by

$$(\mathcal{S}\Phi)(\mathbf{v}_1,\ldots,\mathbf{v}_r)=\frac{1}{r!}\sum_{\sigma}\Phi(\mathbf{v}_{\sigma(1)},\ldots,\mathbf{v}_{\sigma(r)});$$

• The alternating mapping $\mathcal{A}:\mathcal{T}^r(\boldsymbol{V})\to\mathcal{T}^r(\boldsymbol{V})$ by

$$(\mathcal{A}\Phi)(\mathbf{v}_1,\ldots,\mathbf{v}_r) = \frac{1}{r!}\sum_{\sigma} \operatorname{sgn} \sigma \Phi(\mathbf{v}_{\sigma(1)},\ldots,\mathbf{v}_{\sigma(r)}).$$

The summation is over all $\sigma \in \mathfrak{S}_r$, the group of all permutations of r letters.

Linearity of ${\mathcal A}$ and ${\mathcal S}$

It is immediate that these maps are linear transformations on *T^r(V)*.
 First note that Φ → Φ^σ, defined by

$$\Phi^{\sigma}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_r)=\Phi(\boldsymbol{v}_{\sigma(1)},\ldots,\boldsymbol{v}_{\sigma(r)}),$$

is such a linear transformation;

• Further, any linear combination of linear transformations of a vector space is again a linear transformation.

Properties of ${\mathcal A}$ and ${\mathcal S}$

• We have the following properties of ${\mathcal A}$ and ${\mathcal S}:$

(i) \mathcal{A} and \mathcal{S} are projections, that is,

$$\mathcal{A}^2 = \mathcal{A}$$
 and $\mathcal{S}^2 = \mathcal{S};$

(ii) The following hold:

$$\mathcal{A}(\mathcal{T}^r(oldsymbol{V})) = \bigwedge^r(oldsymbol{V}) \hspace{0.1 cm} ext{and} \hspace{0.1 cm} \mathcal{S}(\mathcal{T}^r(oldsymbol{V})) = \Sigma^r(oldsymbol{V});$$

(iii) Φ is alternating if and only if AΦ = Φ;
Φ is symmetric if and only if SΦ = Φ;
(iv) If F_{*} : V → W is a linear map, then both A and S commute with F^{*} : T^r(W) → T^r(V).

Proof of the Properties

We check the properties for A.
 The verification for S is similar.

They are also interrelated, so we will not take them in order. First note that if Φ is alternating, then the definition implies

$$\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_r) = \operatorname{sgn} \sigma \Phi(\mathbf{v}_{\sigma(1)},\ldots,\mathbf{v}_{\sigma(r)}).$$

There are r! elements of \mathfrak{S}_r .

So, summing both sides over all $\sigma \in \mathfrak{S}_r$, gives

$$\Phi = \mathcal{A}\Phi.$$

Proof of the Properties (Cont'd)

On the other hand, suppose we apply a permutation τ to the variables of AΦ(v₁,..., v_r) for an arbitrary Φ ∈ T^r(V).
 We obtain

$$\mathcal{A}\Phi(\boldsymbol{v}_{\tau(1)},\ldots,\boldsymbol{v}_{\tau(r)})=\frac{1}{r!}\sum_{\sigma}\mathrm{sgn}\sigma\Phi(\boldsymbol{v}_{\sigma\tau(1)},\ldots,\boldsymbol{v}_{\sigma\tau(r)}).$$

Now sgn is a homomorphism and $sgn\tau^2 = 1$. So $sgn\sigma = sgn\sigma\tau sgn\tau$.

From this equation we see that the right side is

$$\frac{1}{r!}\operatorname{sgn}\tau\sum_{\sigma}\operatorname{sgn}\sigma\tau\Phi(\boldsymbol{v}_{\sigma\tau(1)},\ldots,\boldsymbol{v}_{\sigma\tau(r)})=\operatorname{sgn}\tau\mathcal{A}\Phi(\boldsymbol{v}_{1},\ldots,\boldsymbol{v}_{r}).$$

So $\mathcal{A}\Phi$ is alternating. This shows that $\mathcal{A}(\mathcal{T}^r(\mathbf{V})) \subseteq \bigwedge^r(\mathbf{V})$.

Proof of the Properties (Cont'd)

Suppose Φ is alternating.

Then every term in the summation defining $\mathcal{A}\Phi$ is equal. So $\mathcal{A}\Phi = \Phi$. Thus \mathcal{A} is the identity on $\bigwedge^r(\mathbf{V})$ and $\mathcal{A}(\mathcal{T}^r(\mathbf{V})) \supseteq \bigwedge^r(\mathbf{V})$. From these facts Properties (i)-(iii) for \mathcal{A} follow. Now consider Property (iv). By the definition of F^* , we have

$$F^*\Phi(\boldsymbol{v}_{\sigma(1)},\ldots,\boldsymbol{v}_{\sigma(r)})=\Phi(F_*(\boldsymbol{v}_{\sigma(1)}),\ldots,F_*(\boldsymbol{v}_{\sigma(r)})).$$

Multiply both sides by sgn σ and sum over all σ .

Using the linearity of F^* , we get $\mathcal{A}(F^*\Phi)(\mathbf{v}_1, \ldots, \mathbf{v}_r)$ on the left and $F^*(\mathcal{A}\Phi)(\mathbf{v}_1, \ldots, \mathbf{v}_r)$ on the right.

Extension to Manifolds

- Both of these maps A and S can be immediately extended to mappings of tensor fields on manifolds.
- We merely apply them at each point.
- We then verify that both sides of each relation (i)-(iv) give C[∞] functions which agree pointwise on every *r*-tuple of C[∞]-vector fields.
- We summarize (without proof).

Theorem

Let M be a C^{∞} manifold. Let $\mathcal{T}^{r}(M)$ be the space of C^{∞} -covariant tensor fields of order r over M. The maps \mathcal{A} and \mathcal{S} are defined on $\mathcal{T}^{r}(M)$. Moreover, they satisfy Properties (i)-(iv). In the case of Property (iv), $F^{*}: \mathcal{T}^{r}(N) \to \mathcal{T}^{r}(M)$ denotes the linear map induced by a C^{∞} mapping $F: M \to N$.

Subsection 6

Multiplication of Tensors

The Setup

- Let \boldsymbol{V} be a vector space and M be a C^{∞} manifold.
- We saw that both $\mathcal{T}^r(\mathbf{V})$ and $\mathcal{T}^r(M)$ are vector spaces over \mathbb{R} .
- In the case of tensor fields, $\mathcal{T}^r(M)$ has also the structure of a $C^{\infty}(M)$ -module.
- We agree, by definition, that

$$\mathcal{T}^0(oldsymbol{V}) = \mathbb{R}$$
 and $\mathcal{T}^0(M) = C^\infty(M).$

- Recall, next, that our viewpoint is to define tensors as:
 - Functions to \mathbb{R} , a field, in the case of $\mathcal{T}^r(\mathbf{V})$;
 - Functions to $C^{\infty}(M)$, an algebra, in the case of $\mathcal{T}^{r}(M)$.

• In either case it is appropriate to discuss products of such functions.

Multiplication of Tensors on a Vector Space

- Let **V** be a vector space.
- Let $\varphi \in \mathcal{T}^r(\mathbf{V})$, $\psi \in \mathcal{T}^s(\mathbf{V})$ be tensors.
- Their product is linear in each of its r + s variables.

Definition

The **product** of φ and ψ , denoted $\varphi \otimes \psi$ is a tensor of order r + s defined by

$$\varphi \otimes \psi(\mathbf{v}_1,\ldots,\mathbf{v}_r,\mathbf{v}_{r+1},\ldots,\mathbf{v}_{r+s}) = \varphi(\mathbf{v}_1,\ldots,\mathbf{v}_r)\psi(\mathbf{v}_{r+1},\ldots,\mathbf{v}_{r+s}).$$

The right-hand side is the product of the values of φ and $\psi.$ The product defines a mapping

$$\begin{array}{rcl} \mathcal{T}^{r}(\boldsymbol{V}) \times \mathcal{T}^{s}(\boldsymbol{V}) & \rightarrow & \mathcal{T}^{r+s}(\boldsymbol{V}); \\ (\varphi, \psi) & \rightarrow & \varphi \otimes \psi. \end{array}$$

Properties of the Product

Theorem

The mapping $\mathcal{T}^{r}(\mathbf{V}) \times \mathcal{T}^{s}(\mathbf{V}) \to \mathcal{T}^{r+s}(\mathbf{V})$ just defined is bilinear and associative. If $\omega^{1}, \ldots, \omega^{n}$ is a basis of $\mathbf{V}^{*} = \mathcal{T}^{1}(\mathbf{V})$, then $\{\omega^{i_{1}} \otimes \cdots \otimes \omega^{i_{r}}\}$ over all $1 \leq i_{1}, \ldots, i_{r} \leq n$ is a basis of $\mathcal{T}^{r}(\mathbf{V})$. Finally, if $F_{*}: \mathbf{W} \to \mathbf{V}$ is linear, then $F^{*}(\varphi \otimes \psi) = (F^{*}\varphi) \otimes (F^{*}\psi)$.

Each statement is proved by straightforward computation.
 For bilinearity, we must show that, if α, β are numbers, φ₁, φ₂ ∈ T^r(V) and ψ ∈ T^s(V), then

$$(\alpha \varphi_1 + \beta \varphi_2) \otimes \psi = \alpha(\varphi_1 \otimes \psi) + \beta(\varphi_2 \otimes \psi).$$

Similarly for the second variable.

This is checked by evaluating each side on r + s vectors of V. In fact basis vectors suffice because of linearity.

Differential Geometry

Properties of the Product (Cont'd)

• For associativity, we must show

$$(\varphi \otimes \psi) \otimes \theta = \varphi \otimes (\psi \otimes \theta).$$

The products on both sides being defined in the natural way. This is similarly verified.

This allows us to drop the parentheses.

Properties of the Product (Cont'd)

 Next, we show that ω^{i₁} ⊗··· ⊗ ω^{i_r} form a basis. Let e₁,..., e_n be the basis of V dual to ω¹,..., ωⁿ. Then the tensor Ω^{i₁···i_r} previously defined is exactly ω^{i₁} ⊗··· ⊗ ω^{i_r}. This follows from the two definitions. First, we have

$$\Omega^{i_1\cdots i_r}(\boldsymbol{e}_{j_1},\ldots,\boldsymbol{e}_{j_r}) = \begin{cases} 0, & \text{if } (i_1,\ldots,i_r) \neq (j_1,\ldots,j_r), \\ 1, & \text{if } (i_1,\ldots,i_r) = (j_1,\ldots,j_r). \end{cases}$$

Next, we see that

$$egin{aligned} \omega^{i_1}\otimes\cdots\otimes\omega^{i_r}(oldsymbol{e}_{j_1},\ldots,oldsymbol{e}_{j_r})&=&\omega^{i_1}(oldsymbol{e}_{j_1})\omega^{i_2}(oldsymbol{e}_{j_2})\cdots\omega^{i_r}(oldsymbol{e}_{j_r})\ &=&\delta^{i_1}_{j_1}\delta^{i_2}_{j_2}\cdots\delta^{i_r}_{j_r}. \end{aligned}$$

So both tensors have the same values on any set of r basis vectors. Therefore, they are equal.

George Voutsadakis (LSSU)

Differential Geometry

Properties of the Product (Cont'd)

• Finally, let
$$F_*: \boldsymbol{W} \to \boldsymbol{V}$$
.
Consider $\boldsymbol{w}_1, \dots, \boldsymbol{w}_{r+s} \in \boldsymbol{W}$.
Then

$$(F^*(\varphi \otimes \psi))(\boldsymbol{w}_1, \dots, \boldsymbol{w}_{r+s}) = \varphi \otimes \psi(F_*(\boldsymbol{w}_1), \dots, F_*(\boldsymbol{w}_{r+s})) = \varphi(F_*(\boldsymbol{w}_1), \dots, F_*(\boldsymbol{w}_r))\psi(F_*(\boldsymbol{w}_{r+1}), \dots, F_*(\boldsymbol{w}_{r+s})) = (F^*\varphi) \otimes (F^*\psi)(\boldsymbol{w}_1, \dots, \boldsymbol{w}_{r+s}).$$

This proves $F^*(\varphi \otimes \psi) = (F^*\varphi) \otimes (F^*\psi)$ and completes the proof.

Reformulation

- Consider the tensor spaces $\mathcal{T}^0(\mathbf{V})=\mathbb{R}, \mathcal{T}^1(\mathbf{V}), \cdots, \mathcal{T}^r(\mathbf{V}), \ldots$
- Take the direct sum $\mathcal{T}(\mathbf{V})$ over \mathbb{R} of all these tensor spaces,

$$\mathcal{T}(\boldsymbol{V}) = \mathcal{T}^0(\boldsymbol{V}) \oplus \mathcal{T}^1(\boldsymbol{V}) \oplus \cdots \oplus \mathcal{T}^r(\boldsymbol{V}) \oplus \cdots$$

- We identify each $\mathcal{T}^{r}(\boldsymbol{V})$ with its (natural) isomorphic image in $\mathcal{T}(\boldsymbol{V})$.
- An element φ of $\mathcal{T}(\mathbf{V})$ is said to be of **order** r if it is in $\mathcal{T}^r(\mathbf{V})$.
- Every element φ̃ of T(V) is the sum of a finite number of such φ, which we call its components.
- Thus $\widetilde{arphi} \in \mathcal{T}(oldsymbol{V})$ may be written uniquely

$$\widetilde{\varphi} = \varphi_1^{i_1} + \dots + \varphi_n^{i_n},$$

where $\varphi^{i_j} \in \mathcal{T}^{i_j}(\boldsymbol{V})$ and $i_1 < i_2 < \cdots < i_r$.

The Tensor Algebra

- If $\widetilde{\varphi},\widetilde{\psi}\in\mathcal{T}(\boldsymbol{V})$, then they may be added componentwise.
- That is, by adding in $\mathcal{T}^r(\mathbf{V})$ any terms in $\mathcal{T}^r(\mathbf{V})$.
- They may be multiplied by:
 - Using \otimes ;
 - Extending it to be distributive on all of $\mathcal{T}(\mathbf{V})$.
- This makes $\mathcal{T}(\mathbf{V})$ into an associative algebra over \mathbb{R} .
- It is called the **tensor algebra**.

Properties of the Tensor Algebra

- The tensor algebra $\mathcal{T}(\mathbf{V})$:
 - Contains $\mathbb{R} = \mathcal{T}^0(\boldsymbol{V})$;
 - Has 1 as its unit;
 - Is infinite-dimensional.
- The contents of the preceding theorem (even a little more) immediately yield the following properties:
 - $\mathcal{T}(\mathbf{V})$ (direct) is an associative algebra (with unit) over $\mathbb{R} = \mathcal{T}^0(\mathbf{V})$.
 - It is generated by $\mathcal{T}^0(V)$ and $\mathcal{T}^1(V) = V^*$, the dual space to V.
 - Any linear mapping F_{*}: W → V of vector spaces induces a homomorphism F^{*}: T(V) → T(W) which is:

(i) The identity on \mathbb{R} ;

- (ii) The dual mapping $F^*: V^* \to W^*$ on $\mathcal{T}^1(V)$.
- Properties (i) and (ii) determine F^* uniquely on all of $\mathcal{T}(\mathbf{V})$.

Multiplication of Tensor Fields

- We turn to the case of tensor fields on a manifold M.
- Let $\varphi \in \mathcal{T}^r(M)$ and $\psi \in \mathcal{T}^s(M)$.
- Then we may define φ ⊗ ψ on M by defining it at each point using the definition for tensors on a vector space.
- That is, $(\varphi \otimes \psi)_p$ is defined to be the tensor

$$(\varphi \otimes \psi)_{p} = \varphi_{p} \otimes \psi_{p}$$

of order r + s on the vector space $T_p(M)$.

 Since this defines a covariant tensor of order r + s on the tangent space at each point of M, it will define a tensor field, if it is C[∞].

Multiplication of Tensor Fields (Cont'd)

- Consider the product $\varphi \otimes \psi$, defined as above.
- According to the definition, in local coordinates the components of $\varphi\otimes\psi$ are the functions of the coordinate frame vectors

$$\varphi \otimes \psi(\mathsf{E}_{i_1},\ldots,\mathsf{E}_{i_{r+s}}) = \varphi(\mathsf{E}_{i_1},\ldots,\mathsf{E}_{i_r})\psi(\mathsf{E}_{i_{r+1}},\ldots,\mathsf{E}_{i_{r+s}})$$

over the coordinate neighborhood.

- The right-hand side is the product of the components in local coordinates of φ and ψ .
- These are two C^{∞} functions.
- Thus, the left side is C^{∞} .
- So $\varphi \otimes \psi$ is indeed a tensor field on *M*.

Multiplication of Tensors on Manifold

Theorem

The mapping

$$\mathcal{T}^r(M) imes \mathcal{T}^s(M) o \mathcal{T}^{r+s}(M)$$

just defined is bilinear and associative.

If $\omega^1, \ldots, \omega^n$ is a basis of $\mathcal{T}^1(M)$, then every element of $\mathcal{T}^r(M)$ is a linear combination with C^{∞} coefficients of

$$\{\omega^{i_1}\otimes\cdots\otimes\omega^{i_r}:1\leq i_1,\ldots,i_r\leq n\}.$$

If $F: N \to M$ is a C^{∞} mapping, $\varphi \in \mathcal{T}^r(M)$ and $\psi \in \mathcal{T}^s(M)$, then

$$F^*(\varphi \otimes \psi) = (F^*\varphi) \otimes (F^*\psi),$$

tensor fields on N.

George Voutsadakis (LSSU)

Note on Proof

- Two tensor fields are equal if and only if they are equal at each point.
- So it is only necessary to see that these equations hold at each point.
- This follows at once from the definitions and the preceding theorem.

Tensors in Terms of Local Bases

- In general we do not have a globally defined basis of $\mathcal{T}^1(M)$.
- That is, there may not exist covector fields

$$\omega^1,\ldots,\omega^n,$$

which are a basis at each point.

- However, we do have a globally defined basis in \mathbb{R}^n .
- From this fact, the following corollary is obtained, by applying the theorem to a coordinate neighborhood V, θ of M.
- Let E_1, \ldots, E_n denote the coordinate frames.
- Let $\omega^1, \ldots, \omega^n$ be their duals.
- That is, we have

$$E_i = heta_*^{-1} \left(rac{\partial}{\partial x^i}
ight)$$
 and $\omega^j = heta^*(dx^j).$

Tensors in Terms of Local Bases (Cont'd)

Corollary

Each $\varphi \in \mathcal{T}^r(U)$, including the restriction to U of any covariant tensor field on M, has a unique expression of the form

$$\varphi = \sum_{i_1} \cdots \sum_{i_r} a_{i_1 \cdots i_r} \omega^{i_1} \otimes \cdots \otimes \omega^{i_r},$$

where at each point of U,

$$a_{i_1\cdots i_r}=\varphi(E_{i_1},\ldots,E_{i_r})$$

are the components of φ in the basis $\{\omega^{i_1} \otimes \cdots \otimes \omega^{i_r}\}$. Moreover, the $a_{i_1 \cdots i_r}$ are all C^{∞} functions on U.

Space of Alternating Tensors

- For each r > 0 we have defined the subspace $\bigwedge^r (\mathbf{V}) \subseteq \mathcal{T}^r (\mathbf{V})$ consisting of alternating covariant tensors of order r.
- It is the image of T^r(V) under the linear mapping A, the alternating mapping.
- We define $\bigwedge^0(\mathbf{V})$ to be \mathbb{R} , the field.
- Then $\bigwedge^0(\mathbf{V}) = \mathcal{T}^0(\mathbf{V}) = \mathbb{R}$ and $\bigwedge^1(\mathbf{V}) = \mathcal{T}^1(\mathbf{V}) = \mathbf{V}^*$, but $\bigwedge^r(\mathbf{V})$ is properly contained in $\mathcal{T}^r(\mathbf{V})$ for r > 1.
- We see, therefore, that the direct sum ∧(V) of all the spaces ∧^r(V) is contained in T(V) as a subspace,

$$\begin{split} & \bigwedge(\boldsymbol{\mathcal{V}}) = \bigwedge^0(\boldsymbol{\mathcal{V}}) \oplus \bigwedge^1(\boldsymbol{\mathcal{V}}) \oplus \bigwedge^2(\boldsymbol{\mathcal{V}}) \oplus \cdots \\ & \subsetneq \mathcal{T}^0(\boldsymbol{\mathcal{V}}) \oplus \mathcal{T}^1(\boldsymbol{\mathcal{V}}) \oplus \mathcal{T}^2(\boldsymbol{\mathcal{V}}) \oplus \cdots = \mathcal{T}(\boldsymbol{\mathcal{V}}). \end{split}$$

Space of Alternating Tensors (Cont'd)

- Although $\bigwedge(V)$ is a subspace of $\mathcal{T}(V)$, it is not a subalgebra.
- Even if φ ∈ Λ^r(V) and ψ ∈ Λ^s(V), it may be shown that φ ⊗ ψ may fail to be an element of Λ^{r+s}(V).
- Thus the tensor product of alternating tensors on **V** is not, in general, an alternating tensor on **V**.
- On the other hand, we know that each tensor determines an alternating tensor, its image under A.

Exterior Multiplication

Definition

The mapping from $\bigwedge^r(m{V}) imes \bigwedge^s(m{V}) o \bigwedge^{r+s}(m{V})$ defined by

$$(\varphi,\psi) \rightarrow \frac{(r+s)!}{r!s!} \mathcal{A}(\varphi \otimes \psi),$$

is called the **exterior product** (or **wedge product**) of φ and ψ and is denoted by $\varphi \wedge \psi$.

Lemma

The exterior product is bilinear and associative.

• Bilinearity is a consequence of the fact that the product is defined by composing the tensor product, a bilinear mapping from $\bigwedge^{r}(\mathbf{V}) \times \bigwedge^{s}(\mathbf{V})$ to $\mathcal{T}^{r+s}(\mathbf{V})$, with a linear mapping $\frac{(r+s)!}{r!s!}\mathcal{A}$.

We now show that the product is associative.
 We first prove a property of the alternating mapping A.
 Suppose φ ∈ T^r(V), ψ ∈ T^s(V) and θ ∈ T^t(V).
 Then we show that

$$\mathcal{A}(\varphi\otimes\psi\otimes\theta)=\mathcal{A}(\mathcal{A}(\varphi\otimes\psi)\otimes\theta)=\mathcal{A}(\varphi\otimes\mathcal{A}(\psi\otimes\theta)).$$

For this purpose let:

- $\mathfrak{S} = \mathfrak{S}_{r+s+t}$ denote the permutations of $(1, 2, \dots, r+s+t)$;
- \mathfrak{S}' denote the subgroup which leaves the last *t* integers fixed.

 \mathfrak{S}' is isomorphic to the permutation group \mathfrak{S}_{r+s} of $(1, 2, \ldots, r+s)$.

We have

$$\begin{aligned} \mathcal{A}(\mathcal{A}(\varphi \otimes \psi) \otimes \theta)(\mathbf{v}_{1}, \dots, \mathbf{v}_{r+s+t}) \\ &= \frac{1}{(r+s+t)!} \sum_{\sigma \in \mathfrak{S}} \operatorname{sgn} \sigma \mathcal{A}(\varphi \otimes \psi)(\mathbf{v}_{\sigma(1)}, \dots, \mathbf{v}_{\sigma(r+s)}) \\ &\quad \cdot \theta(\mathbf{v}_{\sigma(r+s+1)}, \dots, \mathbf{v}_{\sigma(r+s+t)}) \\ &= \frac{1}{(r+s+t)!} \frac{1}{(r+s)!} \sum_{\sigma \in \mathfrak{S}} \sum_{\sigma' \in \mathfrak{S}'} \{\operatorname{sgn} \sigma \sigma' \varphi(\mathbf{v}_{\sigma \sigma'(1)}, \dots, \mathbf{v}_{\sigma \sigma'(r)}) \\ &\quad \cdot \psi(\mathbf{v}_{\sigma \sigma'(r+1)}, \dots, \mathbf{v}_{\sigma \sigma'(r+s)}) \theta(\mathbf{v}_{\sigma \sigma'(r+s+1)}, \dots, \mathbf{v}_{\sigma \sigma'(r+s+t)}) \}, \end{aligned}$$

using the facts that:

- $\operatorname{sgn}\sigma\operatorname{sgn}\sigma' = \operatorname{sgn}\sigma\sigma';$
- σ' is the identity on $r + s + 1, \ldots, r + s + t$.

• For each σ' , as σ runs through \mathfrak{S} and we sum over the outer summation symbol, this expression is equal to

$$\mathcal{A}(\varphi \otimes \psi \otimes \theta)(\mathbf{v}_1, \ldots, \mathbf{v}_{r+s+1}).$$

Thus, the expression above reduces to

$$rac{1}{(r+s)!}\sum_{\sigma'\in\mathfrak{S}'}\mathcal{A}(arphi\otimes\psi\otimes heta),$$

evaluated on v_1, \ldots, v_{r+s+t} . But there are (r + s)! terms in the summation. So this gives

$$\mathcal{A}(\varphi \otimes \psi \otimes \theta) = \mathcal{A}(\mathcal{A}(\varphi \otimes \psi) \otimes \theta).$$

The second equality is proved in the same way.

 Let φ, ψ, θ be in the subspaces Λ^r(V), Λ^s(V), Λ^t(V), respectively. Then, by definition, we have

$$\varphi \wedge \psi = \frac{(r+s)!}{r!s!} \mathcal{A}(\varphi \otimes \psi)$$

and

$$(\varphi \wedge \psi) \wedge heta = rac{(r+s+t)!}{(r+s)!t!} \mathcal{A}((\varphi \wedge \psi) \otimes heta).$$

A similar expression can be obtained in the other order of associating terms.

From these expressions, we obtain the associativity of the exterior product

$$(\varphi \wedge \psi) \wedge \theta = \varphi \wedge (\psi \wedge \theta).$$

General Associativity

• The following relation allows us to write exterior products without parentheses.

Corollary

Let
$$\varphi_i \in \bigwedge^{r_i} (\mathbf{V}), \ i = 1, \dots, k$$
. Then

$$\varphi_1 \wedge \varphi_2 \wedge \dots \wedge \varphi_k$$

$$= \frac{(r_1 + r_2 + \dots + r_k)!}{r_1! r_2! \cdots r_k!} \mathcal{A}(\varphi_1 \otimes \varphi_2 \otimes \dots \otimes \varphi_k).$$

The Exterior or Grassman Algebra over $oldsymbol{V}$

• We define the product

$$\bigwedge(\boldsymbol{\nu}) \times \bigwedge(\boldsymbol{\nu}) \to \bigwedge(\boldsymbol{\nu})$$

simply by extending the exterior product to be bilinear, so that the distributive law holds.

• Suppose that
$$arphi,\psi\inigwedge(oldsymbol{V})$$

Then

$$\varphi = \varphi_1 + \cdots + \varphi_k, \quad \varphi_i \in \bigwedge^{\prime_i} (\boldsymbol{V}),$$

and

$$\psi = \psi_1 + \cdots + \psi_\ell, \quad \psi_i \in \bigwedge^{\mathbf{s}_i} (\mathbf{V}).$$

• We define

$$\varphi \wedge \psi = \sum_{i=1}^{k} \sum_{j=1}^{\ell} \varphi_i \wedge \psi_j.$$
The Exterior or Grassman Algebra over V

Corollary

The set

$$\bigwedge(\boldsymbol{V}) = \bigwedge^{0}(\boldsymbol{V}) \oplus \bigwedge^{1}(\boldsymbol{V}) \oplus \bigwedge^{2}(\boldsymbol{V}) \oplus \cdots,$$

with the exterior product as defined above is an (associative) algebra over $\mathbb{R} = \bigwedge^0 (\mathbf{V}).$

• The algebra $\wedge(V)$ is called the **exterior algebra** or **Grassman** algebra over V.

Skew Commutativity

Lemma

If
$$\varphi \in \bigwedge^r (V)$$
 and $\psi \in \bigwedge^s (V)$, then

$$\varphi \wedge \psi = (-1)^{rs} \psi \wedge \varphi.$$

• This is equivalent to showing that

$$\mathcal{A}(\varphi \otimes \psi) = (-1)^{rs} \mathcal{A}(\psi \otimes \varphi).$$

To prove this equality we note that

$$\begin{aligned} \mathcal{A}(\varphi \otimes \psi)(\mathbf{v}_1, \dots, \mathbf{v}_{r+s}) \\ &= \frac{1}{(r+s)!} \sum_{\sigma} \operatorname{sgn} \sigma \varphi(\mathbf{v}_{\sigma(1)}, \dots, \mathbf{v}_{\sigma(r)}) \psi(\mathbf{v}_{\sigma(r+1)}, \dots, \mathbf{v}_{\sigma(r+s)}) \\ &= \frac{1}{(r+s)!} \sum_{\sigma} \operatorname{sgn} \sigma \psi(\mathbf{v}_{\sigma(r+1)}, \dots, \mathbf{v}_{\sigma(r+s)}) \varphi(\mathbf{v}_{\sigma(1)}, \dots, \mathbf{v}_{\sigma(r)}). \end{aligned}$$

Skew Commutativity (Cont'd)

• Let τ be the permutation taking $(1, \ldots, s, s+1, \ldots, r+s)$ to $(r+1, \ldots, r+s, 1, \ldots, r)$.

Then we may write

$$\mathcal{A}(\varphi \otimes \psi)(\mathbf{v}_1, \dots, \mathbf{v}_{r+s})$$

$$= \frac{1}{(r+s)!} \sum_{\sigma} \operatorname{sgn}\sigma \operatorname{sgn}\tau \psi(\mathbf{v}_{\sigma\tau(1)}, \dots, \mathbf{v}_{\sigma\tau(s)})$$

$$\varphi(\mathbf{v}_{\sigma\tau(s+1)}, \dots, \mathbf{v}_{\sigma\tau(r+s)})$$

$$= \operatorname{sgn}\tau \mathcal{A}(\psi \otimes \varphi)(\mathbf{v}_1, \dots, \mathbf{v}_{r+s}).$$

Now check that ${
m sgn} au=(-1)^{rs}.$ So we get

$$\varphi \wedge \psi = (-1)^{rs} \psi \wedge \varphi.$$

Dimension of $\bigwedge(V)$

Theorem

If $r > n = \dim \boldsymbol{V}$, then

$$\bigwedge^{r}(\boldsymbol{V})=\{0\}.$$

For $0 \leq r \leq n$,

$$\dim \bigwedge^r (\mathbf{V}) = \binom{n}{r}.$$

Let $\omega^1, \ldots, \omega^n$ be a basis of $\bigwedge^1(\mathbf{V})$. Then the set

$$\{\omega^{i_1} \wedge \cdots \wedge \omega^{i_r} : 1 \le i_1 < i_2 < \cdots < i_r \le n\}$$

is a basis of $\bigwedge^r (V)$. Finally, we have

$$\dim \bigwedge (\boldsymbol{V}) = 2^n.$$

Dimension of $\bigwedge(oldsymbol{V})$ (Cont'd)

• Let $\boldsymbol{e}_1, \ldots, \boldsymbol{e}_n$ be any basis of \boldsymbol{V} .

Let φ be an alternating covariant tensor of order $r > \dim V$. Then on any set of basis elements

$$\varphi(\boldsymbol{e}_{i_1},\ldots,\boldsymbol{e}_{i_r})=0.$$

This is because:

- Some variable e_{i_k} is repeated;
- Interchanging two equal variables both changes the sign of φ on the set and leaves it unchanged.

Now all components of φ are zero.

So $\varphi = 0$. It follows that $\bigwedge^{r} (\mathbf{V}) = \{0\}$.

Dimension of $\bigwedge(oldsymbol{V})$ (Cont'd)

Suppose that 0 ≤ r ≤ n. Let ω¹,..., ωⁿ be the basis of V* = Λ¹(V) dual to e₁,..., e_n. A maps T^r(V) onto Λ^r(V). So the image of the basis {ω^{i₁} ⊗ ··· ⊗ ω^{i_r}} of T^r(V) spans Λ^r(V). We have

$$r!\mathcal{A}(\omega^{i_1}\otimes\cdots\otimes\omega^{i_r})=\omega^{i_1}\wedge\cdots\wedge\omega^{i_r}.$$

By the preceding lemma, permuting the order of i_1, \ldots, i_r leaves the right side unchanged, except for a possible change of sign.

It follows that the set of $\binom{n}{r}$ elements of the form

$$\omega^{i_1} \wedge \cdots \wedge \omega^{i_r}, \quad 1 \leq i_1 < i_2 < \cdots < i_r \leq n,$$

span $\bigwedge^r (V)$.

Dimension of $\bigwedge(oldsymbol{V})$ (Cont'd)

Moreover, these elements are independent.
 Suppose that some linear combination of them is zero, say

$$\sum_{i_1 < \cdots < i_r} \alpha_{i_1 \cdots i_r} \omega^{i_1} \wedge \cdots \wedge \omega^{i_r} = 0.$$

Then its value on each set of r basis vectors must be zero. In particular, given $k_1 < \cdots < k_r$, we have

$$\mathbf{0} = \left(\sum \alpha_{i_1\cdots i_r} \omega^{i_1} \wedge \cdots \wedge \omega^{i_r}\right) (\boldsymbol{e}_{k_1}, \ldots, \boldsymbol{e}_{k_r}).$$

This becomes $\alpha_{k_1 \cdots k_r} = 0$ by virtue of the formula of a previous corollary, combined with $\omega^i(\boldsymbol{e}_k) = \delta_k^i$, for $1 \le i, k \le n$.

By suitable choice of $k_1 < \cdots < k_r$, we see that each coefficient must be zero. Therefore the given set of elements of $\bigwedge^r (\mathbf{V})$ is linearly independent and a basis.

George Voutsadakis (LSSU)

Dimension of $\bigwedge(V)$ (Cont'd)

To complete the proof we note that

$$\dim \bigwedge(\boldsymbol{V}) = \sum_{r=0}^{n} \dim \bigwedge^{r}(\boldsymbol{V}) = \sum_{r=0}^{n} \binom{n}{r} = 2^{n}.$$

Theorem

Let \boldsymbol{V} and \boldsymbol{W} be finite-dimensional vector spaces and $F_* : \boldsymbol{W} \to \boldsymbol{V}$ a linear mapping. Then $F^* : \mathcal{T}(\boldsymbol{V}) \to \mathcal{T}(\boldsymbol{W})$ takes $\bigwedge(\boldsymbol{V})$ into $\bigwedge(\boldsymbol{W})$ and is a homomorphism of these (exterior) algebras.

- The theorem is an immediate consequence of:
 - A previous asserted property of F*;
 - The fact that $\mathcal{A} \circ F^* = F^* \circ \mathcal{A}$;
 - The definition of exterior multiplication.

The Exterior Algebra on Manifolds

• All of these ideas extend to alternating tensor fields on a C^{∞} manifold M.

Definition

An alternating covariant tensor field of order r on M will be called an exterior differential form of degree r (or sometimes simply r-form).

- The set $\bigwedge^{r}(M)$ of all such forms is a subspace of $\mathcal{T}^{r}(M)$.
- The following two theorems follow from preceding work.
- We let M, N be manifolds and $F : M \to N$ be a C^{∞} mapping.

The Exterior Algebra on Manifolds (Cont'd)

Theorem

Let $\bigwedge(M)$ denote the vector space over \mathbb{R} of all exterior differential forms. Then for $\varphi \in \bigwedge^r(M)$ and $\psi \in \bigwedge^s(M)$ the formula

 $(\varphi \wedge \psi)_{p} = \varphi_{p} \wedge \psi_{p}$

defines an associative product satisfying

$$\varphi \wedge \psi = (-1)^{rs} \psi \wedge \varphi.$$

With this product, $\bigwedge(M)$ is an algebra over \mathbb{R} .

• We shall call $\bigwedge(M)$ the algebra of differential forms or exterior algebra on M.

The Exterior Algebra on Manifolds (Cont'd)

Theorem (Cont'd)

If $f \in C^{\infty}(M)$, we also have

$$(f\varphi) \wedge \psi = f(\varphi \wedge \psi) = \varphi \wedge (f\psi).$$

If $\omega^1, \ldots, \omega^n$ is a field of coframes on M (or an open set U of M), then the set

$$\{\omega^{i_1} \wedge \cdots \wedge \omega^{i_r} : 1 \le i_1 < i_2 < \cdots < i_r \le n\}$$

is a basis of $\bigwedge^r(M)$ (or $\bigwedge^r(U)$, respectively).

Theorem

If $F : M \to N$ is a C^{∞} mapping of manifolds, then $F^* : \bigwedge(N) \to \bigwedge(M)$ is an algebra homomorphism.

Subsection 7

Orientation of Manifolds and the Volume Element

Orientation of Bases of Vector Spaces

- Let **V** be a vector space.
- Let $\{\boldsymbol{e}_1, \ldots, \boldsymbol{e}_n\}$, $\{\boldsymbol{f}_1, \ldots, \boldsymbol{f}_n\}$ be bases of \boldsymbol{V} .
- The bases are said to have the **same orientation** if the determinant of the matrix of coefficients expressing one basis in terms of the other is positive,

$$\det(\alpha_i^j) > 0,$$

where

$$\boldsymbol{f}_i = \sum_{j=1}^n \alpha_i^j \boldsymbol{e}_j, \quad i = 1, \dots, n.$$

- It can be checked that:
 - This is an equivalence relation on the set of all bases (or frames) of V;
 - There are exactly two equivalence classes.

Oriented Vector Spaces

- Let **V** be a vector space.
- The equivalence of bases modulo orientation has exactly two equivalence classes.
- A choice of one of these is said to **orient** V.

Definition

An **oriented vector space** is a vector space plus an equivalence class of allowable bases. The selected class consists of all those bases with the same orientation as a chosen one. The bases in this class will be called **oriented** or **positively oriented** bases or frames.

Orientation and Bases of $\bigwedge^n(V)$

- Orientation is related to the choice of a basis Ω of $\bigwedge^{n}(\mathbf{V})$.
- Recall that dim $\bigwedge^n (\mathbf{V}) = \binom{n}{n} = 1$.
- So any nonzero element is a basis.

Lemma

Let $\Omega \neq 0$ be an alternating covariant tensor on \boldsymbol{V} of order $n = \dim \boldsymbol{V}$ and let $\boldsymbol{e}_1, \ldots, \boldsymbol{e}_n$ be a basis of \boldsymbol{V} . Then for any set of vectors $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ with $\boldsymbol{v}_i = \sum \gamma_i^j \boldsymbol{e}_j$, we have

$$\Omega(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n) = \det(\gamma_i^i)\Omega(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n).$$

• This lemma says that up to a nonvanishing scalar multiple Ω is the determinant of the components of its variables.

Orientation and Bases of $\bigwedge^n(V)$ (Cont'd)

• Let $\boldsymbol{V} = \boldsymbol{V}^n$ be the space of *n*-tuples.

Let $\boldsymbol{e}_1, \ldots, \boldsymbol{e}_n$ be the canonical basis.

The lemma assert that $\Omega(\mathbf{v}_1, \dots, \mathbf{v}_n)$ is proportional to the determinant whose rows are $\mathbf{v}_1, \dots, \mathbf{v}_n$.

The proof is a consequence of the definition of determinant.
 Suppose Ω and v₁,..., v_n are given.

Use the linearity and antisymmetry of $\boldsymbol{\Omega}$ to write

$$\begin{aligned} \Omega(\mathbf{v}_1, \dots, \mathbf{v}_n) &= \sum_{j_1, \dots, j_n} \alpha^{j_1} \cdots \alpha^{j_n} \Omega(\mathbf{e}_{j_1}, \dots, \mathbf{e}_{j_n}) \\ &= \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn} \sigma \alpha_1^{\sigma(1)} \cdots \alpha_n^{\sigma(n)} \Omega(\mathbf{e}_1, \dots, \mathbf{e}_n) \\ &= \operatorname{det}(\alpha_i^j) \Omega(\mathbf{e}_1, \dots, \mathbf{e}_n). \end{aligned}$$

The last equality is the standard definition of determinant (\mathfrak{S}_n is the symmetric group on *n* letters).

George Voutsadakis (LSSU)

Using Bases to Determine Orientations

Corollary

A nonvanishing $\Omega \in \bigwedge^n(\mathbf{V})$ has the same sign (or opposite sign) on two bases if they have the same (respectively, opposite) orientation. Thus, choice of an $\Omega \neq 0$ determines an orientation of \mathbf{V} . Two such forms Ω_1, Ω_2 determine the same orientation if and only if

$$\Omega_1 = \lambda \Omega_2, \quad \lambda > 0.$$

From the formula of the lemma we see that Ω has the same sign on equivalent bases and opposite sign on inequivalent bases.
 If λ > 0, then λΩ has the same sign on any basis as Ω does.
 The contrary holds if λ < 0.

Remark

- Suppose $\Omega \neq 0$.
- Then v_1, \ldots, v_n are linearly independent if and only if

$$\Omega(\mathbf{v}_1,\ldots,\mathbf{v}_n)\neq 0.$$

• Note, also, that the formula of the lemma can be construed as a formula for change of component of Ω (there is just one component since dim $\bigwedge^n(\mathbf{V}) = 1$), when we change from the basis $\mathbf{e}_1, \ldots, \mathbf{e}_n$ of \mathbf{V} to the basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Euclidean Vector Spaces

- Suppose V is a Euclidean vector space.
- So **V** has a positive definite inner product $\Phi(\mathbf{v}, \mathbf{w})$.
- Then, in orienting **V**, we may choose an orthonormal basis e_1, \ldots, e_n to determine the orientation.
- Then, we may choose an *n*-form Ω whose value on $\boldsymbol{e}_1, \ldots, \boldsymbol{e}_n$ is +1.
- Suppose $f_i = \sum \alpha_i^j e_j$ is another orthonormal basis.
- Then

$$\Omega(\boldsymbol{f}_1,\ldots,\boldsymbol{f}_n) = \det(\alpha_i^j)\Omega(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n) = \pm 1,$$

depending on whether f_1, \ldots, f_n is similarly or oppositely oriented.

- Thus, the value of Ω on any orthonormal basis is ± 1 .
- Ω is uniquely determined up to its sign by this property.
- In this case, Ω may be given a geometric meaning when n = 2 or 3.
- Ω(v₁, v₂) or Ω(v₁, v₂, v₃) is the area or volume, respectively, of the parallelogram or parallelepiped of which the given vectors are the sides from the origin.

George Voutsadakis (LSSU)

Orientable Manifolds

 To extend the concept of orientation to a manifold M we must try to orient each of the tangent spaces T_p(M) in such a way that orientation of nearby tangent spaces agree.

Definition

We shall say that M is **orientable** if it is possible to define a C^{∞} *n*-form Ω on M which is not zero at any point. In this case, M is said to be **oriented** by the choice of Ω .

- By the preceding corollary, any such Ω orients each tangent space.
- Of course any form $\Omega' = \lambda \Omega$, where $\lambda > 0$ is a C^{∞} function, would give M the same orientation.

Natural Orientation

• \mathbb{R}^n , with the form

$$\widetilde{\Omega} = dx^1 \wedge \cdots \wedge dx^n,$$

is an example.

- This is known as the **natural orientation** of \mathbb{R}^n .
- It corresponds to the orientation of the frames

$$\frac{\partial}{\partial x^1},\ldots,\frac{\partial}{\partial x^n}.$$

• If $U \subseteq \mathbb{R}^n$ is an open set, it is oriented by

$$\widetilde{\Omega}_U = \widetilde{\Omega}|_U.$$

Orientation-Preserving Diffeomorphisms

• We say that a diffeomorphism $F: U \to V \subseteq \mathbb{R}^n$ is orientation preserving if

$$F^*\widetilde{\Omega}_V = \lambda \widetilde{\Omega}_U,$$

where $\lambda > 0$ a C^{∞} function on U.

 More generally a diffeomorphism F : M₁ → M₂ of manifolds oriented by Ω₁, Ω₂, respectively, is **orientation-preserving** if

$$F^*\Omega_2 = \lambda \Omega_1,$$

where $\lambda > 0$ is a C^{∞} function on M.

Alternative Definition of Orientability

- A second, perhaps more natural definition of orientability can be given as follows.
- *M* is **orientable** if it can be covered with *coherently oriented* coordinate neighborhoods

$$\{U_{\alpha},\varphi_{\alpha}\}.$$

- These are neighborhoods such that, if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ is orientation-preserving.
- We will now see that this second definition is equivalent to the one given previously.

Equivalence of the Definitions

Theorem

A manifold M is orientable if and only if it has a covering $\{U_{\alpha}, \varphi_{\alpha}\}$ of coherently oriented coordinate neighborhoods.

• First suppose that *M* is orientable.

Let Ω be a nowhere vanishing *n*-form, determining the orientation. Choose any covering $\{U_{\alpha}, \varphi_{\alpha}\}$ by coordinate neighborhoods. Let $x_{\alpha}^{1}, \ldots, x_{\alpha}^{n}$ be local coordinates, such that for Ω , restricted to U_{α} , we have the expression in local coordinates

$$\varphi_{\alpha}^{-1*}\Omega_{U_{\alpha}}\lambda_{\alpha}(x)dx_{\alpha}^{1}\wedge\cdots\wedge dx_{\alpha}^{n}, \text{ with } \lambda_{\alpha}>0.$$

Equivalence of the Definitions (Cont'd)

Replacing coordinates (x¹,...,xⁿ) by (-x¹,...,xⁿ), that is, changing the sign of one coordinate, changes the sign of λ.
 So we may easily choose coordinates so that the scalar function λ_α, component of Ω, is positive on U_α.

An easy computation, using a previous lemma and remark, shows that if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then on this set the formula for change of component is

$$\lambda_{\alpha} \det \left(\frac{\partial x_{\alpha}^{i}}{\partial x_{\beta}^{j}} \right) = \lambda_{\beta}.$$

Since $\lambda_{\alpha} > 0$ and $\lambda_{\beta} > 0$, the determinant of the Jacobian is positive. So the chosen coordinate neighborhoods are coherently oriented.

Equivalence of the Definitions (Converse)

 Now suppose that *M* has a covering by coherently oriented coordinate neighborhoods {U_α, φ_α}.

We use a subordinate partition of unity $\{f_i\}$ to construct an *n*-form Ω on *M* which does not vanish at any point.

For each i = 1, 2, ... we choose a coordinate neighborhood $U_{\alpha_i}, \varphi_{\alpha_i}$ of the covering, such that $U_{\alpha_i} \supseteq \operatorname{supp} f_i$. These neighborhoods, which we relabel U_i, φ_i , cover M.

If $U_i \cap U_j \neq \emptyset$, then, by assumption, the determinant of the Jacobian matrix of $\varphi_i \circ \varphi_i^{-1}$ is positive on $U_i \cap U_j$.

Equivalence of the Definitions (Converse Cont'd)

• Define $\Omega \in \bigwedge^n(M)$ by

$$\Omega = \sum_i f_i \varphi_i^* (dx_i^1 \wedge \cdots \wedge dx_i^n),$$

where each summand is extended to all of M by defining it to be zero outside the closed set supp f_i .

Let $p \in M$ be arbitrary.

We show that $\Omega_p \neq 0$.

Recall that $\{supp f_i\}$ is locally finite.

So we may choose a coordinate neighborhood V, ψ of p which:

- Is coherently oriented to the U_i, φ_i ;
- Intersects only a finite number of the sets supp f_i , say for $i = i_1, \ldots, i_k$.

Equivalence of the Definitions (Converse Cont'd)

• Let y^1, \ldots, y^n be the local coordinates in V.

Use the same formula as above on each summand to change components,

$$\begin{array}{lll} \Omega_p & = & \sum_{j=1}^k f_{ij}(p) \varphi_{i_j}^*(dx_{i_j}^1 \wedge \cdots \wedge d_{i_j}^n) \\ & = & \sum f_{i_j}(p) {\rm det} \left(\frac{\partial x_{i_j}^k}{\partial y^\ell} \right)_{\psi(p)} \psi^*(dy^1 \wedge \cdots \wedge dy^n). \end{array}$$

Now each $f_{i_i} \ge 0$ on M.

Moreover, at least one of them is positive at p.

Finally, the Jacobian determinants are all positive.

This implies $\Omega_p \neq 0$ and, since p was arbitrary, Ω is never zero on M.

The Case of Riemannian Manifolds

- A Riemannian manifold has the special property that the tangent space $T_p(M)$ at every point p has an inner product.
- We apply our remarks about *n*-forms on a Euclidean vector space of dimension *n*.

Theorem

Let M be an orientable Riemannian manifold with Riemannian metric Φ . Corresponding to an orientation of M, there is a uniquely determined *n*-form Ω which:

- Gives the orientation;
- Has the value +1 on every oriented orthonormal frame.

The Case of Riemannian Manifolds (Cont'd)

• It is clear from our earlier discussion that at each point $p \in M$, Ω_p is determined uniquely by the requirement that, on any oriented orthonormal basis F_{1p}, \ldots, F_{np} of $T_p(M)$, we have

$$\Omega_p(F_{1p},\ldots,F_{np})=+1.$$

Let U, φ be any coordinate neighborhood. Let E_1, \ldots, E_n be be coordinate frames. The functions

$$g_{ij}(P) = \Phi_p(E_{ip}, E_{jp}), \quad p \in U,$$

define the components of Φ relative to these local coordinates. They are C^{∞} , by definition.

We derive an expression for the component $\Omega(E_1, \ldots, E_n)$ on U in terms of the matrix (g_{ij}) .

From this, it will be apparent that Ω is a C^{∞} *n*-form.

George Voutsadakis (LSSU)

The Case of Riemannian Manifolds (Cont'd)

 Choose at p ∈ U any oriented, orthonormal basis F_{1p},..., F_{np}. Let the n × n matrix (α^k_i) denote the components of E_{1p},..., E_{np} with respect to this basis,

$$E_{ip} = \sum_{k=1}^{n} \alpha_i^k F_{kp}, \quad i = 1, \dots, n.$$

Now we have

$$\Phi(F_{kp},F_{ip})=\delta_{ki}.$$

Hence, we obtain, for $1 \le i, j \le n$,

$$g_{ij}(P) = \Phi_p(E_{ip}, E_{jp}) = \left(\sum_k \alpha_i^k F_{kp}, \sum_\ell \alpha_j^\ell F_{\ell p}\right) = \sum_{k=1}^n \alpha_i^k \alpha_j^k.$$

The Case of Riemannian Manifolds (Cont'd)

• The equation $g_{ij}(p) = \sum_{k=1}^{n} \alpha_i^k \alpha_j^k$, $1 \le i, j \le n$, may be written as a matrix equation:

$$(g_{ij}(p)) = A^T A,$$

the product of the transpose of $A = (\alpha_i^k)$ with A itself. On the other hand:

Ω_p(E_{1p},..., E_{np}) = det(α^k_i)Ω_p(F_{1p},..., F_{np}), by a previous lemma;
 Ω_p(F_{1p},..., F_{np}) = +1, by our definitions.

Since $det(A^T A) = (det A)^2 = det(g_{ij})$, this gives for the component of Ω in local coordinates

$$\Omega_{\rho}(E_{1\rho},\ldots,E_{n\rho})=(\det(g_{ij}(\rho)))^{1/2}.$$

So the component is the square root of a positive C^{∞} function of $p \in U$. So it is itself a C^{∞} function on the local coordinate neighborhood U.

Since U, φ is arbitrary, Ω is a C^{∞} *n*-form on *M*.

Volume Element

- This form Ω is called the (natural) **volume element** of the oriented Riemannian manifold.
- We have just seen that in local coordinates we have the following expression for Ω:

$$\varphi^{-1*}\Omega = \sqrt{g} dx^1 \wedge \cdots \wedge dx^n,$$

where $g(x) = \det(g_{ij}(x))$ (we use the same notation for g_{ij} as functions on U and on $\varphi(U)$).

• When $M = \mathbb{R}^n$, with the usual coordinates and metric, this becomes

$$\Omega = dx^1 \wedge \cdots \wedge dx^n.$$

 In this case, as seen, the value of Ω_p on a set of vectors is the volume of the parallelepiped whose edges from p are these vectors.

Volume Element (Cont'd)

• In particular, on the unit cube with vertex at p and sides

$$\frac{\partial}{\partial x^1},\ldots,\frac{\partial}{\partial x^n},$$

 Ω has the value +1.

- The existence of the form Ω on a Riemannian manifold will enable us to define the volume of suitable subsets of the manifold.
- Moreover, we will be able to extend to these manifolds the volume integrals defined in Rⁿ in integral calculus.

Subsection 8

Exterior Differentiation

Local Representations of *k*-Forms

- Let U be an open subset of a manifold M.
- We shall denote by θ_U the restriction of an exterior form on M to U.
- Of course $\theta_U = i^* \theta$, $i : U \to M$ being the inclusion map.
- Let U, φ be a coordinate neighborhood, with x¹,...,xⁿ as coordinate functions on U, i.e.,

$$\varphi(q) = (x^1(q), \ldots, x^n(q)).$$

- Then the differentials of these functions dx^1, \ldots, dx^n :
 - Are linearly independent elements of $\bigwedge^1(U)$;
 - Constitute a C^{∞} field of coframes on U.
- It follows that they, with 1, generate $\bigwedge(U)$ over $C^{\infty}(U)$.
- Equivalently, $C^{\infty}(U) = \bigwedge^{0}(U)$ and $\bigwedge^{1}(U)$ generate the algebra $\bigwedge(U)$ over \mathbb{R} .
Local Representations of *k*-Forms (Cont'd)

• Thus, locally every k-form θ on M has a unique representation on U

$$heta_U = \sum_{i_1 < \cdots < i_k} \mathsf{a}_{i_1 \cdots i_k} \mathsf{d} \mathsf{x}^{i_1} \wedge \cdots \wedge \mathsf{d} \mathsf{x}^{i_k}, \quad \mathsf{a}_{i_1 \cdots i_k} \in \mathcal{C}^\infty(U),$$

the sum over all sets of indices such that $1 \le i_1 < i_2 < \cdots < i_k \le n$. • Define $b_{i_1 \cdots i_k}$ for all values of the indices so as:

- To change sign whenever two indices are permuted;
- To equal $a_{i_1 \cdots i_k}$, if $i_1 < \cdots < i_k$.
- The we get the representation

$$\theta_U = \sum \frac{1}{k!} b_{i_1 \cdots i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k},$$

the summation being over all values of the indices.

 The use of dx¹,..., dxⁿ, rather than ω¹,..., ωⁿ, is to emphasize that the dxⁱ are differentials of functions on U ⊆ M.

Operator d_M

Theorem

Let M be any C^{∞} manifold. Let $\bigwedge(M)$ be the algebra of exterior differential forms on M. Then there exists a unique \mathbb{R} -linear map

$$d_M: \bigwedge(M) \to \bigwedge(M),$$

such that:

(1) If $f \in \bigwedge^0(M) = C^{\infty}(M)$, then $d_M f = df$, the differential of f; (2) For $\theta \in \bigwedge^r(M)$, $\sigma \in \bigwedge^s(M)$,

$$d_{\mathcal{M}}(\theta \wedge \sigma) = d_{\mathcal{M}}\theta \wedge \sigma + (-1)^{r}\theta \wedge d_{\mathcal{M}}\sigma;$$

(3) $d_M^2 = 0.$

• We give the proof in a series of steps.

Operator d_M (Step (A))

(A) Suppose that d_M exists. Let $g, f^1, \ldots, f^r \in C^{\infty}(M)$. Properties (1)-(3) imply that, for $\theta = g \ df^1 \wedge \cdots \wedge df^r$, we must have

$$d_M\theta=dg\wedge df^1\wedge\cdots\wedge df^r.$$

Now suppose that M is covered by a single coordinate neighborhood U, φ with coordinate functions x^1, \ldots, x^n .

The above remark and linearity imply that d_M must be given by

$$d_M\left(\sum a_{i_1\cdots i_r}dx^{i_1}\wedge\cdots\wedge dx^{i_r}\right)=\sum da_{i_1\cdots i_r}\wedge dx^{i_1}\wedge\cdots\wedge dx^{i_r},$$

where

$$da_{i_1\cdots i_r} = \sum_{j=1}^n \frac{\partial a_{i_1\cdots i_r}}{\partial x^j} dx^j$$

and the summation is over $1 \le i_1 < i_2 < \cdots < i_r \le n$. Therefore, if defined at all, d_M is unique in this case.

George Voutsadakis (LSSU)

Differential Geometry

Operator d_M (Step (A) Cont'd)

Conversely, suppose d_M is defined by this sum.
 Then it is linear and trivially satisfies Properties (1) and (3).
 To check Property (2) it is enough to consider forms

$$heta = \mathsf{adx}^{i_1} \wedge \cdots \wedge \mathsf{dx}^{i_r} \quad ext{and} \quad \sigma = \mathsf{bdx}^{j_1} \wedge \cdots \wedge \mathsf{dx}^{j_s}.$$

The general statement is then a consequence of linearity.

$$\begin{aligned} &d_{M}[(adx^{i_{1}} \wedge \dots \wedge dx^{i_{r}}) \wedge (bdx^{j_{1}} \wedge \dots \wedge dx^{j_{s}})] \\ &= d_{M}(ab)(dx^{i_{1}} \wedge \dots \wedge dx^{i_{r}}) \wedge (dx^{j_{1}} \wedge \dots \wedge dx^{j_{s}}) \\ &= [(d_{M}a)b + a(d_{M}b)] \wedge (dx^{i_{1}} \wedge \dots \wedge dx^{i_{s}}) \wedge (dx^{j_{1}} \wedge \dots \wedge dx^{j_{s}}) \\ &= (d_{M}a \wedge dx^{i_{1}} \wedge \dots \wedge dx^{i_{r}}) \wedge (bdx^{j_{1}} \wedge \dots \wedge dx^{j_{s}}) \\ &+ (-1)^{r}(adx^{i_{1}} \wedge \dots \wedge dx^{i_{r}}) \wedge (db \wedge dx^{j_{1}} \wedge \dots \wedge dx^{j_{s}}). \end{aligned}$$

The $(-1)^r$ is due to the fact that

$$db \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_r} = (-1)^r dx^{i_1} \wedge \cdots \wedge dx^{i_r} \wedge db.$$

Operator d_M (Step (B))

 (B) Suppose d_M : ∧(M) → ∧(M), with Properties (1)-(3) is defined. Let U ⊆ M be a coordinate neighborhood on M.
 Suppose its coordinate functions are x¹,...,xⁿ.
 According to Step (A),

$$d_U: \bigwedge(U) \to \bigwedge(U)$$

is uniquely defined.

We will show that, for any $\theta \in \bigwedge(M)$, the restriction of $d_M \theta$ to U is equal to d_U applied to θ restricted to U,

$$(d_M\theta)_U=d_U\theta_U.$$

Operator d_M (Step (B) Cont'd)

• We may suppose that $heta \in \bigwedge^r(M)$ and that

$$heta_U = \sum a_{i_1 \cdots i_r} dx^{i_1} \wedge \cdots \wedge dx^{i_r}, \quad a_{i_1 \cdots i_r} \in C^\infty(U).$$

Suppose p is an arbitrary point of U.

Apply a previous corollary to an open set W, $p \in W$ and $\overline{W} \in U$. We find a neighborhood V of p, with $V \subseteq W$, and C^{∞} functions y^1, \ldots, y^n and $b_{i_1 \cdots i_r}$ on M, which:

- Vanish outside *W*;
- Are identical to x^1, \ldots, x^n , respectively, on V.

Define $\sigma \in \bigwedge^r(M)$ by

$$\sigma = \sum b_{i_1 \cdots i_r} dy^{i_1} \wedge \cdots \wedge dy^{i_r}.$$

Then σ is an *r*-form on *M* which:

- Vanishes outside *W*;
- Is identical to θ on V.

Operator d_M (Step (B) Cont'd)

- Now let g be a C^{∞} function on M which:
 - Has the value +1 at *p*;
 - Is zero outside V.

The *r*-form $g(\theta - \sigma)$ vanishes everywhere on *M* as does $dg \wedge (\theta - \sigma)$. Therefore, using (A),

$$gd_M \theta = gd_M \sigma = g \sum da_{i_1 \cdots i_r} \wedge dy^{i_1} \wedge \cdots \wedge dy^{i_r}.$$

On V we have

$$\sum da_{i_1\cdots i_r} \wedge dy^{i_1} \wedge \cdots \wedge dy^{i_r} = \sum da_{i_1\cdots a_r} \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_r}.$$

So at the point p, where g(p) = 1, $d_M \theta = d_U \theta_U$. Since p is arbitrary, this holds throughout U.

Operator d_M (Step (C))

(C) Suppose $d_M : \bigwedge(M) \to \bigwedge(M)$ satisfying Properties (1)-(3) exists. We show that it is unique.

Let $\{U_{\alpha}, \varphi_{\alpha}\}$ be a covering of M by coordinate neighborhoods. By Step (A), each $d_{U_{\alpha}}$ exists. By Step (B), for any $\theta \in \bigwedge(M)$, we have, for any U_{α} ,

$$(d_M\theta)_{U_{lpha}}=d_{U_{lpha}} heta_{U_{lpha}}.$$

Every $p \in M$ lies in a neighborhood U_{α} .

So this would determine d_M completely.

On the other hand, we may use this formula to define d_M .

To do so we must verify that, if $p \in U_{\alpha} \cap U_{\beta}$, then $d_M \theta$ is uniquely determined at p.

Operator d_M (Step (C) Cont'd)

- Let $U = U_{\alpha} \cap U_{\beta}$.
- We apply Steps (A) and (B) to U, an open subset and coordinate neighborhood with coordinate map φ_β cut down to U.

We obtain

$$(d_{U_{\alpha}}\theta_{U_{\alpha}})_U=d_U\theta_U=(d_{U_{\beta}}\theta_{U_{\beta}})_U.$$

Therefore, $(d_M\theta)_{U_{\alpha}}$ is determined on every U_{α} in such a manner that $(d_M\theta)_{U_{\alpha}} = (d_M\theta)_{U_{\beta}}$ on points common to U_{α} and U_{β} . This determines d_M .

Properties (1)-(3) hold on each U_{α} .

Moreover, the other operations of exterior algebra commute with restriction.

That is,
$$(\theta \wedge \sigma)_U = \theta_U \wedge \sigma_U$$
, and so on.

So d_M has the required properties as an operator on $\bigwedge(M)$.

Notation

- Since d_M is uniquely defined for every C^{∞} manifold M, we can drop the subscript M and use d to denote all of these operators.
- We know from the above proof that *d* commutes with restriction of differential forms to coordinate neighborhoods.
- We investigate how it behaves relative to a C^{∞} mapping $F: M \to N$.
- Any such mapping, as we know, induces a homomorphism

$$F^*: \bigwedge(N) \to \bigwedge(M).$$

• The following theorem gives the relation between F^* and d.

Mappings and Differential Operators

Theorem

F^* and d commute, that is, $F^* \circ d = d \circ F^*$.

We know that:

- Both F^* and d are \mathbb{R} -linear;
- The equality $F^*(d\varphi) = d(F^*\varphi)$ holds on M, if it holds locally.

By the facts concerning d, determined above, it suffices to establish the theorem for pairs V, ψ, U, θ of coordinate neighborhoods on M, N, respectively, such that $F(V) \subseteq U$. Let $m = \dim M$ and $n = \dim N$ and x^1, \ldots, x^m and y^1, \ldots, y^n be the coordinate functions on V, U, respectively. Let $y^j = y^j(x^1, \ldots, x^m), j = 1, \ldots, n$, give F in local coordinates.

Then it is enough to establish $F^* \circ d = d \circ F^*$ on forms of type

$$\varphi = a(x) dx^{i_1} \wedge \cdots \wedge dx^{i_k},$$

since any other forms are sums of such forms.

George Voutsadakis (LSSU)

Differential Geometry

Mappings and Differential Operators (Cont'd)

We proceed by induction on the degree of the forms.
 Consider a forms a(x) of degree zero, i.e., a C[∞] function.
 For X_p ∈ T_p(M), we have

$$F^*(da)(X_p) = da(F_*X_p)$$

= $(F_*X_p)a$
= $X_p(a \circ F)$
= $X_p(F^*a)$
= $d(F^*a)(X_p).$

Therefore, $F^*(da) = d(F^*a)$.

Mappings and Differential Operators (Cont'd)

Suppose the theorem to be true for all forms of degree less than k. Let φ be a k-form of the type above. Let φ₁ = adx^{i₁} and φ₂ = dx^{i₂} ∧ · · · ∧ dx^{i_k}. So φ = φ₁ ∧ φ₂, with both φ₁ and φ₂ of degree less than k. Moreover, since d² = 0, we have dφ₂ = 0. Thus,

$$d(F^*(\varphi_1 \land \varphi_2)) = d[(F^*\varphi_1) \land (F^*\varphi_2)]$$

= $(dF^*\varphi_1) \land (F^*\varphi_2) - (F^*\varphi_1) \land (dF^*\varphi_2)$
= $F^*(d\varphi_1) \land F^*\varphi_2$
= $F^*(d\varphi_1 \land \varphi_2)$
= $F^*d(\varphi_1 \land \varphi_2).$

Defining a Subspace

- On a vector space V of dimension n, a k-dimensional subspace D may be determined in either of two equivalent ways:
 - (i) By giving a basis $\boldsymbol{e}_1, \ldots, \boldsymbol{e}_k$ of \boldsymbol{D} ;
 - (ii) By giving n k linearly independent elements of V^* , say $\varphi^{k+1}, \ldots, \varphi^n$ which are zero on D.
- In fact we may extend $\boldsymbol{e}_1, \ldots, \boldsymbol{e}_k$ to a basis $\boldsymbol{e}_1, \ldots, \boldsymbol{e}_n$ of \boldsymbol{V} so that $\varphi^{k+1}, \ldots, \varphi^n$ is part of a dual basis $\varphi^1, \ldots, \varphi^n$ of \boldsymbol{V}^* .

An Auxiliary Lemma

Lemma

Let $\omega \in \bigwedge^1(M)$ and $X, Y \in \mathfrak{X}(M)$. Then we have

$$d\omega(X,Y) = X\omega(Y) - Y\omega(X) - \omega([X,Y]).$$

 It is enough to prove that it is true locally, say in a coordinate neighborhood of each point.

In any such neighborhood with coordinates x^1, \ldots, x^n ,

$$\omega = \sum_{i=1}^n \mathsf{a}_i \mathsf{d} \mathsf{x}^i.$$

The equation of the lemma holds for all ω if it holds for every ω of the form fdg, where f, g are C^{∞} functions on the neighborhood. Suppose, then, that $\omega = fdg$. Let X, Y be C^{∞} -vector fields.

An Auxiliary Lemma

• We evaluate both sides of the equation of the lemma separately. We get

$$d\omega(X,Y) = df \wedge dg(X,Y)$$

= $df(X)dg(Y) - dg(X)df(Y)$
= $(Xf)(Yg) - (Xg)(Yf);$

Moreover,

$$\begin{aligned} X\omega(Y) - Y\omega(X) - \omega([X, Y]) \\ &= X(fdg(Y)) - Y(fdg(X)) - fdg([X, Y]) \\ &= X(f(Yg)) - Y(f(Xg)) - f(XYg - YXg) \\ &= (Xf)(Yg) - (Xg)(Yf) \end{aligned}$$

after cancelation.

This proves the lemma.

George Voutsadakis (LSSU)

Involutiveness of a Distribution

Theorem

Let Δ be a C^{∞} distribution of dimension k on M, dimM = n. Then Δ is involutive if and only if, in a neighborhood V of each $p \in M$, there exist n - k linearly independent one-forms $\varphi^{k+1}, \varphi^{k+2}, \ldots, \varphi^n$ which vanish on Δ and satisfy the condition

$$d\varphi^r = \sum_{\ell=k+1}^n \theta^r_\ell \wedge \varphi^\ell, \quad r=k+1,\ldots,n,$$

for suitable 1-forms θ_{ℓ}^{r} .

 This may be considered a sort of dual statement to our earlier condition on Δ in terms of the existence of a local basis X₁,..., X_k at each point.

• Suppose a distribution Δ is given.

Consider an arbitrary point.

Let V be a neighborhood.

In V, a local basis X_1, \ldots, X_k of Δ can be completed to a field of frames

$$X_1,\ldots,X_k,\ldots,X_n.$$

Let

$$\varphi^1, \ldots, \varphi^k, \varphi^{k+1}, \ldots, \varphi^n$$

be the uniquely determined dual field of coframes. Then $\varphi^{k+1}, \ldots, \varphi^n$ vanish on X_1, \ldots, X_k and hence on Δ .

Now consider the expressions

$$[X_i, X_j] = \sum_{i=1}^n c_{ij}^\ell X_\ell,$$

giving $[X_i, X_j]$ as linear combinations of the basis. The distribution Δ is involutive if and only if, in the preceding expressions, we have

$$c_{ij}^\ell = 0, \quad 1 \leq i,j \leq k, \quad k+1 \leq \ell \leq n.$$

Using the preceding lemma and recalling that $\varphi^i(X_j)$ is constant for $1 \le i, j \le n$, we compute $d\varphi^r$,

$$egin{array}{rll} darphi^r(X_i,X_j)&=&-arphi^r([X_i,X_j])\ &=&-\sum_{\ell=1}^n c_{\ell j}^\ell arphi^r(X_\ell)\ &=&-c_{i j}^r, \quad 1\leq i,j,r\leq n. \end{array}$$

On the other hand

$$d\varphi^{r} = rac{1}{2}\sum_{s,t}^{n}b_{st}^{r}\varphi^{s}\wedge\varphi^{t}, \quad 1\leq r\leq n,$$

where b_{st}^r are uniquely determined if we assume $b_{st}^r = -b_{ts}^r$. Hence,

$$d\varphi^{r}(X_{i}, X_{j}) = \frac{1}{2} \sum_{s,t} b_{st}^{r} [\varphi^{s}(X_{i})\varphi^{t}(X_{j}) - \varphi^{t}(X_{i})\varphi^{s}(X_{j})]$$

$$= \frac{1}{2} (b_{ij}^{r} - b_{ji}^{r})$$

$$= b_{ij}^{r}.$$

From this we have $b_{ij}^r = -c_{ij}^r$.

• So the system is involutive if and only if, for each r > k,

$$d arphi^r = \sum_{i=k+1}^n \left\{ \sum_{i=1}^k b^r_{i\ell} arphi^i + \sum_{j=k+1}^n rac{1}{2} b^r_{j\ell} arphi^j
ight\} \wedge arphi^\ell.$$

That is, the terms involving b_{ij}^r , with $1 \le i, j \le k$ and r > k, vanish. Taking the terms in $\{\}$ as θ_{ℓ}^r , we have completed the proof.

Ideals

• We can state the preceding theorem in a more elegant way if we introduce the concept of an ideal of $\bigwedge(M)$.

Definition

An **ideal** of $\bigwedge(M)$ is a subspace \mathcal{I} which has the property that whenever $\varphi \in \mathcal{I}$ and $\theta \in \bigwedge(M)$, then

$$\varphi \wedge \theta \in \mathcal{I}.$$

Example: Let \mathcal{I} be a subspace of $\bigwedge^1(M)$, that is, a collection of one-forms closed under addition and multiplication by real numbers. Then the set

$$\bigwedge(M) \land \mathcal{I} = \{\theta \land \varphi : \varphi \in \mathcal{I}\}$$

is an ideal, the ideal generated by \mathcal{I} .

Rephrasing the Theorem in Terms of Ideals

- Now suppose Δ is a distribution on M.
- Suppose, also, that \mathcal{I} is the collection of 1-forms φ on M which vanish on Δ , that is, for each $p \in M$,

$$\varphi_p(X_p) = 0$$
, for all $X_p \in \Delta_p$.

- \mathcal{I} is a subspace.
- In fact, if $f \in C^{\infty}(M)$ and $\varphi \in \mathcal{I}$, then $f\varphi \in \mathcal{I}$.
- The we have the following characterization.
- Δ is in involution if and only if

$$d\mathcal{I} = \{d\varphi : \varphi \in \mathcal{I}\}$$

is in the ideal generated by f.