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Subsection 1

Tangent Covectors
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Dual Space and Covectors

We suppose that V is a finite-dimensional vector space over R.

Let V
∗ denote its dual space.

V
∗ is the space whose elements are linear functions from V to R.

Linear functions from V to R are called covectors.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Notation

Suppose σ ∈ V
∗ so that σ : V → R.

Then, for v ∈ V , we denote the value of σ on v by

σ(v ) or 〈v , σ〉.

Recall that addition and multiplication by scalars in V
∗ are defined by

the equations

(σ1 + σ2)(v ) = σ1(v) + σ2(v),

(ασ)(v ) = α(σ(v )).

These give the values of σ1 + σ2 and ασ, α ∈ R, on an arbitrary
v ∈ V , the right-hand operations taking place in R.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Linear Algebra Fact (i)

Let F∗ : V → W be a linear map of vector spaces.

It uniquely determines a dual linear map F ∗ : W ∗ → V
∗ by the

prescription
(F ∗σ)(v) = σ(F∗(v)).

This can be written, equivalently,

〈v ,F ∗(σ)〉 = 〈F∗(v), σ〉.

When F∗ is injective, then F ∗ is surjective.

When F∗ is surjective, then F ∗ is injective.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Linear Algebra Fact (ii)

Let e1, . . . , en be a basis of V .

There exists a unique dual basis

ω1, . . . , ωn

of V
∗ such that

ωi (v j) = δij =

{
0, if i 6= j ,

1, if i = j .
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Linear Algebra Fact (ii) (Cont’d)

If v ∈ V , then ω1(v), . . . , ωn(v) are exactly the components of v in
the basis e1, . . . , en,

v =

n∑

j=1

ωj(v)e j .

Indeed, if v =
∑n

i=1 αie i ,

ωj(v) = ωj

(
n∑

i=1

αie i

)
=

n∑

i=1

αiω
j(e i ) = αj .
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Linear Algebra Facts (Cont’d)

Observe that in Fact (i), the definition of F ∗ does not require the
choice of a basis.

Therefore F ∗ is naturally or canonically determined by F∗.

According to Fact (ii), the vector spaces V , V
∗ have the same

dimension.

Thus, they must be isomorphic.

There is no natural isomorphism.

However, the following Fact (iii) holds.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Linear Algebra Fact (iii)

There is a natural isomorphism of V onto (V ∗)∗ given by

v → 〈v , ·〉.

That is, v is mapped to the linear function on V
∗ whose value on any

σ ∈ V
∗ is 〈v , σ〉.

Note that 〈v , σ〉 is linear in each variable separately (with the other
fixed).

This shows that:

The dual of V
∗ is V itself;

Accounts for the name “dual” space;
Validates the use of the symmetric notation

〈v , σ〉

in preference to the functional notation σ(v ).
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Covectors on Manifolds

Let M be a C∞ manifold and assume p ∈ M.

We denote by T ∗

p (M) the dual space to Tp(M).

Thus, σp ∈ T ∗

p (M) is a linear mapping σp : Tp(M) → R.

Its value on Xp ∈ Tp(M) is denoted by σp(Xp) or 〈Xp, σp〉.
Suppose E1p , . . . ,Enp is a basis of Tp(M).

There is a uniquely determined dual basis ω1
p, . . . , ω

n
p satisfying, by

definition,
ωi
p(Ejp) = δij .

The components of σp relative to this basis are equal to the values of
σp on the basis vectors E1p, . . . ,Enp ,

σp =
n∑

i=1

σp(Eip)ω
i
p .
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Covector Fields on Manifolds

We have defined a vector field on M.

Similarly, we may define a covector field.

It is a (regular) function σ, assigning to each p ∈ M an element σp of
T ∗

p (M).

We denote such a function by σ, λ, . . ..

We denote by σp, λp , . . . its value at p.

This is the element of T ∗

p (M) assigned to p.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Vector and Covector Fields on Manifolds

Let σ be a covector field on M.

Let X be a vector field on on an open subset U of M.

Then σ(X ) defines a function on U.

To each p ∈ U we assign the number

σ(X )(p) = σp(Xp).

We often write σ(Xp) for σp(Xp) if σ is a covector field.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Covector Fields

Definition

A C r -covector field σ on M, r ≥ 0, is a function which assigns to each
p ∈ M a covector σp ∈ T ∗

p (M) in such a manner that for any coordinate
neighborhood U, ϕ with coordinate frames E1, . . . ,En, the functions σ(Ei ),
i = 1, . . . , n, are of class C r on U.
For convenience, “covector field” will mean C∞-covector field.

One may wish to avoid the use of local coordinates.

In that case, the following (apparently stronger) regularity condition
could be used to replace the requirement of the definition.

Suppose that σ assigns to each p ∈ M an element σp of T ∗

p (M).
σ is of class C r , iff, for any C∞-vector field X on an open subset W of
M , the function σ(X ) is of class C r on W .
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Covector Fields (Cont’d)

We show why the preceding equivalence holds.

Take a covering of W by coordinate neighborhoods of M (whose
domains are in W ).

Let U, ϕ be such a neighborhood.

Then, for some αi , which are C∞ on U,

X =
∑

αiEi .

Thus, on U,
σ(X ) =

∑
αiσ(Ei ).

This is C r if σ(E1), . . . , σ(En) are.

Hence the condition given implies σ(X ) is of class C r on a collection
of open sets covering W .

So it is C r on W itself.

The converse is obvious.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Field of Coframes

Let E1, . . . ,En be a field of (C∞) frames on an open set U ⊆ M.

Consider the dual basis at each point of U.

These define a field of dual bases ω1, . . . , ωn on U satisfying

ωi(Ej ) = δij .

We call this a field of coordinate coframes if E1, . . . ,En are
coordinate frames.

The ω1, . . . , ωn are of class C∞ by the criterion just stated.

Covector field σ is of class C r if and only if, for each coordinate
neighborhood U, ϕ, the components of σ relative to the coordinate
coframes are functions of class C r on U.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Remark

Let M be a manifold.

Recall that X(M) denotes the collection of all C∞ vector fields on M.

It is important to note that a C r -covector field defines a map of

X(M) → C r (M).

This map is not only R-linear but even C r (M)-linear.

More precisely, suppose:

f , g ∈ C r (M);
X and Y are vector fields on M .

Then
σ(fX + gY ) = f σ(X ) + gσ(Y ),

since these functions are equal at each p ∈ M.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Example: Differential Covector Field

Let f be a C∞ function on M.

f defines a C∞-covector field, denoted df , by the formula

〈Xp, dfp〉 = Xpf or dfp(Xp) = Xpf .

For a vector field X on M, this gives

df (X ) = Xf ,

a C∞ function on M.

This covector field df is called the differential of f .

Its value at p, dfp, is called the differential of f at p.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Example (The Case of Rn)

In the case of an open set U ⊆ Rn, we verify that it coincides with
the usual notion of differential of a function in advanced calculus.

In fact, it makes the notion of differential more precise.

In this case, the coordinates x i of a point of U are functions on U.

By our definition, dx i assigns to each vector X at p ∈ U a number
Xpx

i , its ith component in the natural basis of Rn.

In particular, 〈
∂

∂x j
, dx i

〉
=
∂x i

∂x j
= δij .

So we see that dx1, . . . , dxn is exactly the field of coframes dual to
∂
∂x1

, . . . , ∂
∂xn .
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Example (Cont’d)

Suppose f is a C∞ function on U.

Then we may express df as a linear combination of dx1, . . . , dxn.

We know that the coefficients in this combination, that is the
components of df , are given by df ( ∂

∂x i
) = ∂f

∂x i
.

Thus we have

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn.

Suppose a ∈ U and Xa ∈ Ta(R
n).

Then Xa has components, say, h1, . . . , hn and geometrically Xa is the
vector from a to a + h.

We have

df (Xa) = Xaf =

(∑
hi

∂

∂x i

)
f =

∑
hi
(
∂f

∂x i

)

a

.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Example (Cont’d)

In particular, dx i (Xa) = hi .

That is, dx i measures the change in the ith coordinate of a point
which moves from the initial to the terminal point of Xa.

The preceding formula may thus be written

df (Xa) =

(
∂f

∂x1

)

a

dx1(Xa) + · · ·+
(
∂f

∂xn

)

a

dxn(Xa).

This gives us a very good definition of the differential of a function
f on U ⊆ Rn.

df is a field of linear functions which, at each point a of the domain of
f , assigns to the vector Xa a number.
Xa can be interpreted as the displacement of the n independent
variables from a, i.e., it has a as initial and a+ h as terminal point.
df (Xa) approximates (linearly) the change in f between these points.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Covector Fields and Mappings

Let F : M → N be a smooth mapping and suppose p ∈ M.

Then, as we know, there is induced a linear map

F∗ : Tp(M) → TF (p)(N).

We know that F∗ determines a linear map F ∗ : T ∗

F (p)(N) → T ∗

p (M),
given by the formula

F ∗(σF (p))(Xp) = σF (p)(F∗(Xp)).

In general, F∗ does not map vector fields on M to vector fields on N.

It is surprising, then, that given any C r -covector field on N, F ∗

determines (uniquely) a covector field of the same class C r on M by
this formula.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Covector Field Determined by a Mapping

Theorem

Let F : M → N be C∞ and let σ be a covector field of class C r on N.
Then

F ∗(σF (p))(Xp) = σF (p)(F∗(Xp))

defines a C r -covector field on M.

Let σ be a covector field on N.

By definition, for any p ∈ M, there is exactly one image point F (p).

It is, thus, clear that F ∗(σ) is defined uniquely at each point of M.

Suppose that, for p0 ∈ M, we take coordinate neighborhoods U, ϕ of
p0 and V , ψ of F (p0), such that F (U) ⊆ V .

Denote the coordinates on U by (x1, . . . , xm).

Denote the coordinates on V by (y1, . . . , yn).
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Covector Field Determined by a Mapping (Cont’d)

Then we may suppose the mapping F to be given in local coordinates
by

y i = f i(x1, . . . , xm), i = 1, . . . , n.

Let the expression for σ on V , in the local coframes, at q ∈ V be

σq =
n∑

i=1

αi (q)ω̃
i
q,

where ω̃1
q, . . . , ω̃

n
q is the basis of T ∗

q (N) dual to the coordinate frames.

The functions αi (q) are of class C r on V , by hypothesis.

Let p be any point on U and q = F (p) its image.

Using the formula defining F ∗, we see that

(F ∗(σ))p(Ejp) = σF (p)(F∗(Ejp)) =
∑

αi (F (p))ω̃
i
F (p)(F∗(Ejp)).
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Covector Field Determined by a Mapping (Cont’d)

We got

(F ∗(σ))p(Ejp) =
∑

αi (F (p))ω̃
i
F (p)(F∗(Ejp)).

However, we have previously obtained the formula

F∗(Ejp) =

n∑

k=1

∂yk

∂x j
ẼkF (p), j = 1, . . . ,m,

the derivatives being evaluated at ϕ(p) = (x1(p), . . . , xm(p)).

Using ω̃i(Ẽj ) = δij , we obtain

(F ∗(σ))p(Ejp) =

n∑

i=1

αi (F (p))

(
∂y i

∂x j

)

ϕ(p)

.

As p varies over U these expressions give the components of F ∗(σ)
relative to ω1, . . . , ωm on U, the coframes dual to E1, . . . ,Em.

They are clearly of class C r at least, completing the proof.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Formulas for F ∗(σ)

Corollary

Using the notation above, suppose:

σ =
∑n

i=1 αi ω̃
i on V ;

F ∗(σ) =
∑m

j=1 βjω
j on U,

where αi and βj are functions on V and U, respectively, and ω̃i , ωj are the
coordinate coframes. Then:

For i = 1, . . . , n,

F ∗(ω̃i ) =
m∑

j=1

∂y i

∂x j
ωj ;

For j = 1, . . . ,m,

βj =

n∑

i=1

∂y i

∂x j
αi .
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Tensors and Tensor Fields on Manifolds Tangent Covectors

A Special Case

The formulas

F ∗(ω̃i) =
m∑

j=1

∂y i

∂x j
ωj , i = 1, . . . , n,

give the relation of the bases.

The formulas

βj =

n∑

i=1

∂y i

∂x j
αi , j = 1, . . . ,m,

give the relation of the components.
Apply this directly to a map of an open subset of Rm into an open
subset of Rn.

Then we get for F ∗(dy i ) the formula

F ∗(dy i ) =

m∑

j=1

∂y i

∂x j
dx j , i = 1, . . . , n.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Remark

Suppose we apply the above considerations to the diffeomorphism
ϕ : U → R

n of a coordinate neighborhood U, ϕ on M.

Let V ⊆ Rn denote ϕ(U).

Let dx1, . . . , dxn be the differentials of the coordinates of Rn.

That is, dx1, . . . , dxn is the dual basis to ∂
∂x1

, . . . , ∂
∂xn .

By definition, we have ϕ−1
∗

( ∂
∂x i

) = Ei .

Hence, ϕ∗(Ei ) =
∂
∂x i

, for each i .

Further, the definition of F∗ above gives for ϕ∗(dx
i )

〈Ej , ϕ∗(dx
i )〉 = 〈ϕ∗(Ej), dx

i 〉 = δij .

It follows that ϕ∗(dx
i ) = ωi , i = 1, . . . , n, the field of coframes on U

dual to the coordinate frames E1, . . . ,En.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Notation

There is a potential source of confusion in notation.

The coordinates x1, . . . , xn can be considered as functions on U.

As such, they have differentials dx i defined by

〈X , dx i 〉 = Xx i ,

the ith component of X in the coordinate frames.

In particular, 〈Ej , dx
i 〉 = Ejx

i = δij .

So dx1, . . . , dxn are dual to E1, . . . ,En.

Therefore dx i = ωi , i = 1, . . . , n.

Combining this with the formula above gives dx i = ϕ∗(dx i ).

This is nonsense, unless we are careful to distinguish x i as
(coordinate) function on U ⊆ M, on the left, from x i as (coordinate)
function on ϕ(U) = V ⊆ Rn, on the right.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Example

We may apply the theorem to obtain examples of covector fields on a
submanifold M of a manifold N.

Let i : M → N be the inclusion map.

Suppose σ is a covector field on N.

Then i∗(σ) is a covector field on M called the restriction of σ to M.

It is often denoted σM or simply σ.

Recall that, for each p ∈ M, Tp(M) is identified with a subspace of
Tp(N) by the isomorphism i∗.

So we have for Xp ∈ Tp(M)

σM(Xp) = (i∗σ)(Xp) = σ(i∗(Xp)) = σ(Xp).

The last equality is the identification.
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Tensors and Tensor Fields on Manifolds Tangent Covectors

Example (Cont’d)

As an example, let M ⊆ Rn.

Let σ be a covector field on Rn, for example take σ = dx1.

Then σ restricts to a covector field σM on M.

Note that in this example dx1 is never zero as a covector field on Rn.

But on M it is zero at any point p at which the tangent hyperplane
Tp(M) is orthogonal to the x1-axis.
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Tensors and Tensor Fields on Manifolds Bilinear Forms and The Riemannian Metric

Subsection 2

Bilinear Forms and The Riemannian Metric
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Tensors and Tensor Fields on Manifolds Bilinear Forms and The Riemannian Metric

Bilinear Forms

Let V be a vector space over R.

A bilinear form on V is defined to be a map

Φ : V × V → R

that is linear in each variable separately.

That is, for α, β ∈ R and v , v1, v2, w ,w 1,w2 ∈ V ,

Φ(αv1 + βv2,w) = αΦ(v1,w) + βΦ(v2,w),

Φ(v , αw 1 + βw2) = αΦ(v ,w 1) + βΦ(v ,w2).

A similar definition may be made for a map Φ of a pair of vector
spaces V × W over R.

Note that the map assigning to each pair v ∈ V , σ ∈ V
∗ a number

〈v , σ〉, as discussed in the preceding section, is an example.
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Tensors and Tensor Fields on Manifolds Bilinear Forms and The Riemannian Metric

Bilinear Forms and Matrices

Bilinear forms on V are completely determined by their n2 values on
a basis e1, . . . , en of V .

Suppose αij = Φ(e i , e j), 1 ≤ i , j ≤ n, are given.

Let v =
∑
λie i , w =

∑
µje j be any pair of vectors in V .

Bilinearity requires that

Φ(v ,w ) =

n∑

i ,j=1

αijλ
iµj .

Conversely, let an n× n matrix A = (αij) of real numbers be given.

Then the formula just given determines a bilinear form Φ.

Thus, there is a one-to-one correspondence between n× n matrices
and bilinear forms on V once a basis e1, . . . , en is chosen.

The numbers αij are called the components of Φ relative to the

basis.
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Tensors and Tensor Fields on Manifolds Bilinear Forms and The Riemannian Metric

Symmetric and Skew-Symmetric Forms

A bilinear form, or function, is called symmetric if

Φ(v ,w) = Φ(w , v).

It is called skew-symmetric if

Φ(v ,w ) = −Φ(w , v).

It is easily seen that, regardless of the basis chosen, these correspond,
respectively, to:

Symmetric matrices of components,

AT = A;

Skew-symmetric matrices of components,

AT = −A.
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Tensors and Tensor Fields on Manifolds Bilinear Forms and The Riemannian Metric

Positive Definite Forms and Inner Products

A symmetric form is called positive definite if

Φ(v , v) ≥ 0

and equality holds if and only if v = 0.

In this case we often call Φ an inner product on V .

A vector space with an inner product is called a Euclidean vector
space, since Φ allows us to define:

The length of a vector,

‖v‖ =
√
Φ(v , v).

The angle between vectors.
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Tensors and Tensor Fields on Manifolds Bilinear Forms and The Riemannian Metric

Field of Bilinear Forms

Definition

A field Φ of C r -bilinear forms, r ≥ 0, on a manifold M consists of a
function assigning to each point p of M a bilinear form Φp on Tp(M).
That is, a bilinear mapping

Φp : Tp(M)× Tp(M) → R,

such that for any coordinate neighborhood U, ϕ the functions

αij = Φ(Ei ,Ej),

defined by Φ and the coordinate frames E1, . . . ,En are of class C r .
Unless otherwise stated, bilinear forms will be C∞.
To simplify notation we usually write Φ(Xp,Yp) for Φp(Xp,Yp).
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Tensors and Tensor Fields on Manifolds Bilinear Forms and The Riemannian Metric

Remarks

The n2 functions
αij = Φ(Ei ,Ej )

on U are called the components of Φ in the coordinate

neighborhood U, ϕ.

Let Φ be a function assigning to each p ∈ M a bilinear form.

Then Φ is of class C r if and only if for every pair of vector fields X ,Y
on an open set U of M, the function Φ(X ,Y ) is C r on U.

Φ is C∞(U)-bilinear as well as R-bilinear.

That is, for f ∈ C∞(U),

Φ(fX ,Y ) = f Φ(X ,Y ) = Φ(X , fY ).
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Tensors and Tensor Fields on Manifolds Bilinear Forms and The Riemannian Metric

Induced Mappings of Bilinear Forms

Let F∗ : W → V be a linear map of vector spaces.

Let Φ be a bilinear form on V .

Then the formula

(F ∗Φ)(v ,w) = Φ(F∗(v),F∗(w))

defines a bilinear form F ∗Φ on W .
We have the following properties:
(i) If Φ is symmetric, then F ∗Φ is symmetric.

If Φ is skew-symmetric, then F ∗Φ is skew-symmetric.
(ii) If Φ is symmetric, positive definite, and F∗ is injective, then F ∗Φ is

symmetric, positive definite.

The latter applies to the identity map i∗ of a subspace W into V .

In this case i∗Φ is just restriction of Φ to W :

(i∗Φ)(v ,w ) = Φ(i∗v , i∗w) = Φ(v ,w).
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Tensors and Tensor Fields on Manifolds Bilinear Forms and The Riemannian Metric

Relation Between Components

Let F : M → N be a C∞ map.

Suppose that Φ is a field of bilinear forms on N.

Then, just as in the case of covectors, this defines a field of bilinear
forms F ∗Φ on M by the formula for (F ∗Φ)p at every p ∈ M,

(F ∗Φ)(Xp,Yp) = Φ(F∗(Xp),F∗(Yp)).

Theorem

Let F : M → N be a C∞ map and Φ a bilinear form of class C r on N.
Then F ∗Φ is a C r -bilinear form on M. Moreover, if Φ is symmetric
(skew-symmetric), then F ∗Φ is symmetric (skew-symmetric).

Suppose U, ϕ is a coordinate neighborhood of p, V , ψ is a coordinate
neighborhood of F (p), such that

F (U) ⊆ V .
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Relation Between Components (Cont’d)

We may write

βij(p) = (F ∗Φ)p(Eip ,Ejp) = Φ(F∗(Eip),F∗(Ejp)).

Applying a previous theorem, we have

βij(p) =

n∑

s,t=1

∂y s

∂x i
∂y t

∂x j
Φ(ẼsF (p), ẼtF (p)).

This gives a formula for the matrix of components (βij ) of F
∗Φ at p

in terms of the matrix (αst) of Φ at F (p),

βij =

n∑

s,t=1

∂y s

∂x i
∂y t

∂x j
αst(F (p)), 1 ≤ i , j ≤ m.

The functions βij , thus defined, are of class C r at least on U.

The statements about symmetry and skew-symmetry are obvious
consequences of Property (i), mentioned above.
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Immersions and Positive Definite Forms

Corollary

If F is an immersion and Φ is a positive definite, symmetric form, then
F ∗Φ is a positive definite, symmetric bilinear form.

We must check that F ∗Φ is positive definite at each p ∈ M.

Let Xp be any vector tangent to M at p.

Then
F ∗Φ(Xp,Xp) = Φ(F∗(Xp),F∗(Xp)) ≥ 0.

Moreover, equality holds only if F∗(Xp) = 0.

However, F is an immersion.

So we have
F∗(Xp) = 0 if and only if Xp = 0.
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Riemannian Manifolds

Definition

A manifold M on which there is defined a field of symmetric, positive
definite, bilinear forms Φ is called a Riemannian manifold and Φ the
Riemannian metric.
We shall assume always that Φ is of class C∞.

George Voutsadakis (LSSU) Differential Geometry December 2024 43 / 203



Tensors and Tensor Fields on Manifolds Bilinear Forms and The Riemannian Metric

Example

The simplest example is Rn with its natural inner product

Φa(Xa,Ya) =

n∑

i=1

αiβi ,

where X =
∑
αi ∂

∂x i
and Y =

∑
βi ∂

∂x i
.

At each point we have

Φ

(
∂

∂x i
,
∂

∂x j

)
= δij .

So the matrix of components of Φ, relative to the standard basis, is
constant and equals I , the identity matrix.

It follows that Φ is C∞.
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More Examples

Any imbedded or immersed sub manifold M of Rn is endowed with a
Riemannian metric from R

n by virtue of the imbedding (or
immersion) F : M → R

n.

Thus, for example, a surface M in R3 has a Riemannian metric.

The idea of the corollary in this case is very simple.

Let i : M → R
3 be the identity.

Let Xp,Yp be tangent vectors to M at p.

Then
i∗Φ(Xp,Yp) = Φ(i∗Xp, i∗Yp) = Φ(Xp,Yp).
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More Examples (Cont’d)

We got
i∗Φ(Xp,Yp) = Φ(Xp,Yp).

That is, we simply take the value of the form on Xp,Yp considered as
vectors in R3, using our standard identification of Tp(M) with a
subspace of Tp(R

3).

In particular S2, the unit sphere of R3, has a Riemannian metric
induced by the standard inner product in R3.

Let Xp,Yp be tangent to S2 at p.

Then Φ(Xp,Yp) is just their inner product in R
3.

George Voutsadakis (LSSU) Differential Geometry December 2024 46 / 203



Tensors and Tensor Fields on Manifolds Bilinear Forms and The Riemannian Metric

First Fundamental Form

Classical differential geometry deals with properties of surfaces in
Euclidean space.

The inner product Φ on the tangent space at each point of the
surface, inherited from Euclidean space, is an essential element in the
study of the geometry of the surface.

It is known as the first fundamental form of the surface.
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Properties of Bilinear Forms: Rank

We define the rank of a form Φ on V to be the codimension of the
subspace

W = {v ∈ V : Φ(v ,w ) = 0, for all w ∈ V }.

That is, rankΦ = dimV − dimW .

The following facts are often useful:

(iii) If Φ is a bilinear form on V , then the linear mapping ϕ : V → V
∗

defined by 〈w , ϕ(v )〉 = Φ(w , v) is an isomorphism onto if and only if
rankΦ = dimV .

(iv) Every bilinear form Φ may be written uniquely as the sum of a
symmetric and a skew-symmetric bilinear form, namely,

Φ(v ,w) =
1

2
[Φ(v ,w) + Φ(w , v)] +

1

2
[Φ(v ,w )− Φ(w , v)].

(v) If a skew-symmetric form Φ has a rank equal to dimV , then dimV is
an even number.
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Subsection 3

Riemannian Manifolds as Metric Spaces
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Importance of Riemannian Manifolds

The importance of the Riemannian manifold derives from the fact
that it makes the tangent space at each point into a Euclidean space,
with inner product defined by Φ(Xp,Yp).

This enables us to define:

Angles between curves, that is, the angle between their tangent vectors
Xp and Yp at their point of intersection;
Lengths of curves on M .

Thus we may study many questions concerning the geometry of these
manifolds.

This forms a large part of the classical differential geometry of
surfaces in R3.
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Defining the Length of a Curve

Let
t → p(t), a ≤ t ≤ b,

be a curve of class C 1 on a Riemannian manifold M.

Then its length L is defined to be the value of the integral

L =

∫ b

a

(
Φ

(
dp

dt
,
dp

dt

))1/2

dt.

The integrand is a function of t alone.

So a more precise notation is to denote its value at each t by

Φp(t)

(
dp

dt
,
dp

dt

)
,

where dp
dt

∈ Tp(t)(M) is the tangent vector to the curve at p(t).

This function is continuous, by the continuity of dp
dt

and Φ.
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Independence of the Length from Parametrization

The value of the integral

L =

∫ b

a

(
Φ

(
dp

dt
,
dp

dt

))1/2

dt

is independent of the parametrization.

Consider a new parametrization

t = f (s), c ≤ s ≤ d .

We have given the formula for change of parameter,

dp

ds
=

dp

dt

dt

ds
.

So we obtain
∫ d

c
(Φ(dp

ds
, dp
ds
))1/2ds =

∫ b

a
(Φ(dp

dt
, dp
dt
)(dt

ds
)2)1/2 ds

dt
dt

=
∫ b

a
(Φ(dp

dt
, dp
dt
))1/2dt.
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Parametrization by the Length

Consider the arc length along the curve from p(a) to p(t), which may
be denoted by s = L(t).

It gives a new parameter by the formula

s = L(t) =

∫ t

a

(
Φ

(
dp

dt
,
dp

dt

))1/2

dt.

This implies

ds

dt
=

(
Φ

(
dp

dt
,
dp

dt

))1/2

.

Equivalently, (
ds

dt

)2

= Φ

(
dp

dt
,
dp

dt

)
.
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Parametrization by the Length (Cont’d)

Let U, ϕ be a coordinate neighborhood with coordinate frames

E1p , . . . ,Enp .

Within U, ϕ, with ϕ(p) = x = (x1, . . . , xn), we have

Φ(Eip,Ejp) = gij (x).

The curve is given by

ϕ(p(t)) = (x1(t), . . . , xn(t)).

So L(t) becomes

s = L(t) =

∫ t

a

(∑
gij(x(t))

dx i

dt

dx j

dt

)1/2

dt.

So, in local coordinates, the Riemannian metric is abbreviated

ds2 =
n∑

i ,j=1

gij(x)dx
idx j .
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The Case of Rn

Consider Rn, with its standard inner product.

Let
p(t) = (x1(t), . . . , xn(t)), a ≤ t ≤ b,

be a curve in Rn.

Then we have

Φ

(
∂

∂x i
,
∂

∂x j

)
= δij .

Moreover,
dp

dt
=

n∑

i=1

ẋ i (t)
∂

∂x i
.

So we have the familiar formula for arc length

L =

∫ b

a

(
n∑

i=1

(ẋ i (t))2

)1/2

dt.
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Connected Riemannian Manifolds as Metric Spaces

Let D1 be the class of functions that are piecewise C 1.

Theorem

A connected Riemannian manifold is a metric space with the metric

d(p, q) = infimum of the lengths of curves of class D1 from p to q.

Its metric space topology and manifold topology agree.

Since M is arcwise connected, d(p, q) is defined.

By definition d(p, q) is symmetric and nonnegative.

A curve from p1 to p2 and a curve from p2 to p3 may be joined to
give a curve from p1 to p3.

The length of this curve is the sum of the lengths of the two curves.

It follows that the triangle inequality is satisfied.
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Riemannian Manifolds as Metric Spaces (Cont’d)

In order to complete the proof we need some inequalities.

Let p be an arbitrary point of M.

Let U, ϕ be a coordinate neighborhood, with ϕ(p) = (0, . . . , 0).

Let a > 0 be a fixed real number with the property that

ϕ(U) ⊇ Ba(0),

the closure of the open ball of radius a and center the origin of Rn.

Let x1, . . . , xn denote the local coordinates.

Let gij(x) the components of the metric tensor Φ as functions of
these coordinates. These n2 functions are:

C∞ in their dependence on the coordinates;
The coefficients of a positive definite, symmetric matrix for each value
of x in ϕ(U).
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Riemannian Manifolds as Metric Spaces (Cont’d)

Consider the compact set defined by

‖x‖ < r , r ≤ a,

where a = (a1, . . . , an) is such that
∑n

i=1(a
i)2 = 1

By the properties of gij(x), on this compact, the expression



n∑

i ,j=1

gij (x)α
iαj




1/2

assumes a maximum value Mr and a minimum value mr > 0.

Let m,M denote the min and max corresponding to r = a.

Then we have the inequalities

0 < m ≤ mr ≤




n∑

i ,j=1

gij(x)α
iαj




1/2

≤ Mr ≤ M.
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Riemannian Manifolds as Metric Spaces (Cont’d)

Now let (β1, . . . , βn) be any n real numbers, such that

(
n∑

i=1

(βi )2

)1/2

= b 6= 0.

In the preceding, replace each αi by βi

b
.

Then, multiply the inequalities by b.

We get, for every x ∈ B r (0),

0 ≤ mb ≤ mrb ≤




n∑

i ,j=1

gijβ
iβj




1/2

≤ Mrb ≤ Mb.
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Intermission: An Assumption Concerning Rn

Now we shall make the following assumption.

If x , y are any points of Rn with its standard Riemannian metric (as
defined above), then the infimum of the lengths of all D1 curves in
R

n from x to y is exactly the length of the line segment xy .

In other words, it is ‖y − x‖ the Euclidean distance from x to y .
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Riemannian Manifolds as Metric Spaces (Cont’d)

Let p(t), a ≤ t ≤ b, be a D1 curve lying in ϕ−1(B r (0)) ⊆ U which
runs from p = p(a) to q = p(b).

Let its length be

L =

∫ b

a




n∑

i ,j=1

gij(x(t))ẋ
i (t)ẋ j(t)



1/2

dt.

The last set of inequalities above and the assumption on Rn imply
that, for p 6= q,

0 < m‖ϕ(q)‖ < mr‖ϕ(q)‖ ≤ L

≤ Mr

∫ b

a

[∑n
i=1(ẋ

i )2
]1/2

dt ≤ M
∫ b

a

[∑n
i=1(ẋ

i )2
]1/2

dt.
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Riemannian Manifolds as Metric Spaces (Cont’d)

We first use these inequalities to complete the proof that d(p, q) is a
metric on M.

Let q′ be any point of M distinct from p.

Then, for some r , 0 < r ≤ a, q′ lies outside of ϕ−1(Br (0)) ⊆ U.

Consider a curve of class D1 from p = p(0) to q′ = p(c),

p(t), 0 ≤ t ≤ c .

Let L′ be the length of p(t), 0 ≤ t ≤ c .

There is a first point q = p(b) on the curve outside ϕ−1(Br (0)).

That is, such that:

p(t) lies inside the neighborhood ϕ−1(Br (0)), for 0 ≤ t ≤ b;
q = p(b) lies outside ϕ−1(Br (0)).

George Voutsadakis (LSSU) Differential Geometry December 2024 62 / 203



Tensors and Tensor Fields on Manifolds Riemannian Manifolds as Metric Spaces

Riemannian Manifolds as Metric Spaces (Cont’d)

q is the first point of the curve with ‖ϕ(q)‖ = r .

Let L denote the length of the curve p(t), 0 ≤ t ≤ b.

Then L ≤ L′.

It follows that L′ ≥ L ≥ mr .

But the curve was arbitrarily chosen.

So we get
d(p, q) ≥ mr .

This means that if q′ 6= p, then d(p, q′) 6= 0.

So d(p, q) is a metric as claimed.
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Riemannian Manifolds as Metric Spaces (Cont’d)

We now show the equivalence of:

The metric topology on M ;
The manifold topology on M .

It is enough to compare the neighborhood systems at an arbitrary
point p of M.

In fact, for the manifold topology, we need only consider the
neighborhoods lying inside a single coordinate neighborhood U, ϕ.

Thus, we must show that each neighborhood

Vr = ϕ−1(Br (0)) ⊆ U

of the point p contains an ε-ball,

Sε(P) = {q ∈ M : d(p, q) < ε}.

of the metric topology, and conversely.
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Riemannian Manifolds as Metric Spaces (Cont’d)

This will follow from the inequalities we have obtained.

For, given r ≤ a, choose ε > 0 satisfying ε
m
< r .

Let q be any point of M, such that d(p, q) < mr .

We see that q ∈ Vr , since, otherwise, d(p, q) ≥ mr as we have seen.

But we have chosen ε < mr .

So we get Sε(p) ⊆ V .

Conversely, suppose we consider some metric ball Sε(p) about p.

So Sε(p) is a neighborhood of p in the metric topology.

Choose r > 0 so that r < a and r < ε
M
.

Let q ∈ Vr = ϕ−1(Br (0)).

Let (β1, . . . , βn) denote the coordinates of q.
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Riemannian Manifolds as Metric Spaces (Cont’d)

Let p(t), 0 ≤ t ≤ b, be the curve from p to q in Vr , defined by the
coordinate functions x i (t) = βi t.

The length L of this curve is given by an integral which yields

L =

∫ 1

0




n∑

i ,j=1

gij(tβ)β
iβj



1/2

dt ≤ Mr

[
n∑

i=1

(βi )2

]1/2
≤ Mr < ε.

Thus d(p, q) < ε and q ∈ Sε(p).

It follows that ϕ−1(Br (0)) ⊆ Sε(p).

That is, each metric neighborhood of p contains a manifold
neighborhood of p (lying inside U).

This completes the proof of the theorem except for the unproved
assertion about Rn (theorem itself in Rn).
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Subsection 4

Partitions of Unity
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Locally Finite Coverings and Refinements

A covering {Aα} of a manifold M by subsets is said to be locally

finite if each p ∈ M has a neighborhood U which intersects only a
finite number of sets Aα.

If {Aα} and {Bβ} are coverings of M, then {Bβ} is called a
refinement of {Aα} if each Bβ ⊆ Aα, for some α.

In these definitions we do not suppose the sets to be open.
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Compactness

Any manifold M is locally compact since it is locally Euclidean.

It is also σ-compact, which means that it is the union of a countable
number of compact sets.

This follows from the local compactness and the existence of a
countable basis P1,P2, . . . such that each P i is compact.

A space with the property that every open covering has a locally finite
refinement is called paracompact.

It is a standard result of general topology that a locally compact
Hausdorff space with a countable basis is paracompact.
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Existence of Countable, Locally Finite Refinements

Lemma

Let {Aα} be any covering of a manifold M of dimension n by open sets.
Then there exists a countable, locally finite refinement {Ui , ϕi}, consisting
of coordinate neighborhoods, with

ϕi (Ui) = Bn
3 (0), i = 1, 2, 3, . . . ,

and such that
Vi = ϕ−1(Bn

1 (0)) ⊆ Ui

also cover M.

We begin with the countable basis of open sets {Pi}, P i compact.

Define a sequence of compact sets K1,K2, . . . as follows.
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Countable, Locally Finite Refinements (Cont’d)

Let K1 = P1.

Assume that K1, . . . ,Ki have been defined.

Let r be the first integer such that

Ki ⊆
r⋃

j=1

Pj .

Define Ki+1 by

Ki+1 = P1 ∪ P2 ∪ · · · ∪ P r = P1 ∪ · · · ∪ Pr .

Denote by
◦

K i+1 the interior of Ki+1.

It contains Ki .

For each i = 1, 2, . . ., consider the open set (
◦

K i+2 − Ki−1) ∩ Aα.
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Countable, Locally Finite Refinements (Cont’d)

Consider the open set (
◦

K i+2 − Ki−1) ∩ Aα.
Around each p in this set choose a coordinate neighborhood
Up,α, ϕp,α lying inside the set and such that:

ϕp,α(p) = 0;
ϕp,α(Up,α) = Bn

3 (0).

Take Vp,α = ϕ−1
p,α(B

n
1 (0)).

Note that these are also interior to (
◦

K i+2 − Ki−1) ∩ Aα.

Moreover allowing p, α to vary, a finite number of the collection of
Vp,α covers Ki+1 − Ki , a closed compact set.

Denote these by Vi ,k with k labeling the sets in this finite collection.

For each i = 1, 2, . . ., index k takes on just a finite number of values.

Thus, the collection Vi ,k is denumerable.

Renumber these sets as V1,V2, . . ..

Denote by U1, ϕ1, U2, ϕ2, . . . the corresponding coordinate
neighborhoods containing them.
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Countable, Locally Finite Refinements (Cont’d)

The U1, ϕ1, U2, ϕ2, . . . satisfy the requirements of the conclusion.

For each p ∈ M, there is an index i such that p ∈
◦

K i−1.

From the definition of Uj ,Vj , it is clear that only a finite number of

these neighborhoods meet
◦

K i−1.

Therefore, {Ui}, and also {Vi}, are locally finite coverings refining
the covering {Aα}.
Remark: It is clear that it would be possible to replace the spherical
neighborhoods Bn

r (0) by cubical neighborhoods Cn
r (0) in the lemma.

We shall call the refinement Ui ,Vi , ϕi obtained in this lemma a
regular covering by spherical (or, when appropriate, cubical)
coordinate neighborhoods subordinate to the open covering {Aα}.
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Partition of Unity on a Manifold

Recall that the support of a function f on a manifold M is the set

supp(f ) = {x ∈ M : f (x) = 0}.

That is, the closure of the set on which f vanishes.

Definition

A C∞ partition of unity on M is a collection of C∞ functions {fγ},
defined on M, with the following properties:

(1) fγ ≥ 0 on M ;

(2) {supp(fγ)} form a locally finite covering of M ;

(3)
∑

γ
fγ(x) = 1, for every x ∈ M .
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Partition of Unity on a Manifold (Cont’d)

Note that, by virtue of Property (2), each point has a neighborhood
on which only a finite number of the fγs are different from zero.

It follows that the sum in Property (3) is a well-defined C∞ function
on M.

A partition of unity is said to be subordinate to an open covering

{Aα} of M if, for each γ, there is an Aα, such that

supp(fγ) ⊆ Aα.
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Regular Coverings and Partitions of Unity

Theorem

Associated to each regular covering {Ui ,Vi , ϕi} of M, there is a partition
of unity {fi}, such that:

fi > 0 on Vi = ϕ−1
i (B1(0));

suppfi ⊆ ϕ−1
i (B2(0)).

In particular, every open covering {Aα} has a partition of unity which is
subordinate to it.

Exactly as in a previous theorem, we see that there is, for each i , a
nonnegative C∞ function g̃(x) on Rn which is:

Identically one on B
n

1(0);
Zero outside Bn

2 (0).
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Regular Coverings and Partitions of Unity (Cont’d)

Consider the function

gi =

{
g̃ ◦ ϕi , on Ui ,

0, on M − Ui .

Clearly gi is C
∞ on M.

It has its support in ϕ−1
i (B

n

2(0)).

It is +1 on V i .

Finally, it is never negative.

Consider the functions

fi =
gi∑
i gi

, i = 1, 2, . . . .

From the preceding properties and the fact that {Vi} is a locally finite
covering of M, we can see that the {fi} have the desired properties.
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Existence of Riemannian Metrics

Theorem

It is possible to define a C∞ Riemannian metric on every C∞ Riemannian
manifold.

Let {Ui ,Vi , ϕi} be a regular covering of M.

Let fi be an associated C∞ partition of unity as defined above.

By hypothesis, ϕi : Ui → Bn
3 (0) is a diffeomorphism.

Let Ψ denote the usual Euclidean inner product on Rn.

Then the bilinear form
Φi = ϕ∗

i Ψ

defines a Riemannian metric on Ui .
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Existence of Riemannian Metrics (Cont’d)

Taking into account that fi > 0 on Vi , consider

fiΦi .

It is a Riemannian metric tensor on Vi ;
It is symmetric on Ui ;
It is zero outside ϕ−1

i (B
n

2(0)).

Hence, it may be extended to a C∞-symmetric bilinear form on all of
M, which:

Vanishes outside ϕ−1
i (B

n

2(0));
Is positive definite at every point of Vi .

It is easy to check that the sum of symmetric forms is symmetric.
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Existence of Riemannian Metrics (Cont’d)

Therefore Φ =
∑

fiΦi is symmetric, where Φ is defined by

Φp(Xp,Yp) =
∞∑

i=1

fi(p)Φi(Xp ,Yp), p ∈ M.

We have denoted by fiΦi its extension to all of M.

Recall that the summation makes sense, since in a neighborhood of
each p ∈ M all but a finite number of terms are zero.

However, Φ is also positive definite.

For every i , fi ≥ 0 and each p ∈ M is contained in at least one Vj .

Then fj(p) > 0.

So, if 0 = Φp(Xp,Xp) =
∑

fi(p)Φi (Xp,Xp), then Φj(Xp,Xp) = 0.

This means 0 = ϕ∗

j Ψ(Xp,Xp) = Ψ(ϕj∗(Xp), ϕj∗(Xp)).

However, Ψ is positive definite and ϕ is a diffeomorphism.

So this implies Xp = 0.

Now the proof is complete.
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Imbedding a Manifold in a Power of R

Theorem

Any compact C∞ manifold M admits a C∞ imbedding as a submanifold
of RN for sufficiently large N.

Let {Ui ,Vi , ϕi} be a finite regular covering of M.

Such a covering exists because of the compactness.

Recall that we have defined the associated partition of unity {fi}
using functions {gi}, where gi = 1 on Vi .

We use here these C∞ functions {gi} on M rather than the
(normalized) {fi}.
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Imbedding a Manifold (Cont’d)

Let ϕi : Ui → Bn
3 (0) be the coordinate map.

Consider the mapping

giϕi : Ui → Bn
3 (0)

p 7→ (gi (p)x
1(p), . . . , gi (p)x

n(p)).

It is a C∞ map on Ui .

It takes everything outside ϕ−1
i (Bn

2 (0)) onto the origin.

It agrees with ϕi on Vi .

It may be extended to a C∞ mapping of M into Bn
3 (0) by letting it

map all of M − Ui onto the origin.

When we write giϕi , we will mean this extension.

On Vi it is a diffeomorphism to Bn
1 (0).

So, on Vi , its Jacobian matrix has rank n = dimM.
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Imbedding a Manifold (Cont’d)

Let i = 1, . . . , k be the range of indices in our finite regular covering.

Let N = (n + 1)k .

Define
F : M → R

N → R
n × · · · ×Rn

︸ ︷︷ ︸
k

×R× · · · ×R︸ ︷︷ ︸
k

by

F (p) = (g1(p)ϕ1(p); . . . ; gk(p)ϕk(p); g1(p), . . . , gk(p)).

Then F is clearly C∞ on M.

Moreover, in any local coordinates on M, the N × n Jacobian of F
breaks up into:

k blocks of size n × n;
A k × n matrix.

So its rank is at most n.
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Imbedding a Manifold (Cont’d)

Now, p ∈ M implies p ∈ Vi , for some i .

Further, on Vi , gi ≡ 1.

So giϕi ≡ ϕi and the matrix has rank n.

Thus, F : M → R
N is a C∞ immersion.

It suffices to show it is one-to-one, since then M is compact and a
previous theorem applies.

Suppose F (p) = F (q).

Then gi (p) = gi (q), i = 1, . . . , k .

This implies that gi (p)ϕi (p) = gi (q)ϕi (q).

But gi (p) 6= 0, for some i .

This means ϕi (p) = ϕi (q) for that i .

Since ϕi is one-to-one, we see that p = q.

Thus, F is indeed one-to-one.
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Remarks

It is an obvious disadvantage of this theorem that N may be much
larger than we would like it.

In fact we have no way of giving an effective bound on it from this
proof.

We know, e.g., that it takes at least two coordinate neighborhoods to
cover S2 (using stereographic projections from the north and south
poles).

Hence, k = 2 and n = 2, which give N = 6.

So we get that S2 may be imbedded in R6.

This is obviously not the best possible!
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A “Smoothing” Theorem

Theorem

Let M be a C∞ manifold.
Let A be a compact subset of M, possibly empty.
Let g be a continuous function on M which is C∞ on A.
Let ε be a positive continuous function on M.
There exists a C∞ function h on M, such that:

g(p) = h(p), for every p ∈ A;

|g(p)− h(p)| < ε(p) on all of M.

In order to prove this we shall need a similar theorem for the case of a
closed n-ball in Rn.
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Weierstraß Approximation Theorem

Lemma (Weierstraß Approximation Theorem)

Let f be a continuous function on a closed n-ball B
n
of Rn and let ε > 0.

Then there is a polynomial function p on Rn, such that

|f (x)− p(x)| < ε on B
n
.

By hypothesis, g is C∞ in A.

By definition of C∞ function on an arbitrary subset of M, there is a
C∞ extension g∗ of g |A to an open set U which contains A.

There is no reason to believe that g(p) = g∗(p) on U but not A.

However, we may replace g by a continuous g̃ on M, such that:

(i) |g̃(p)− g(p)| < 1
2ε(p);

(ii) g̃ = g on A;
(iii) g̃ is C∞ on an open subset W of M which contains A.
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Proof of the Theorem

The procedure is as follows.

Take any U and g∗ as above.

Use the compactness of A to choose an open set W containing A and
such that two further requirements are met:

W is compact and lies in U ;
|g∗(p)− g(p)| < 1

2ε(p) on W .

Now g∗ is C∞ on U, and, hence, continuous.

So there is no problem in finding such a set W .

Using a previous theorem, we define a nonnegative C∞ function σ
which is +1 everywhere on W and vanishes outside U.

Finally, we define g̃ = σg∗ + (1− σ)g .

Note that g̃ satisfies Conditions (i)-(iii).
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Proof of the Theorem (Cont’d)

Choose a regular covering by spherical neighborhoods {Ui ,Vi , ϕi}
subordinate to the open covering W , M − A of M.

Denote by {fi} the corresponding C∞ partition of unity.

For every Ui on W , the function fi g̃ is:

C∞ on Ui ;
Vanishes outside ϕ−1

i (B
n

2(0)).

Thus, it can be extended to a C∞ function on M.

Denote the extended function also by fi g̃ .

Then, on M, we have ∑
fi g̃ ≡ g̃ .
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Proof of the Theorem (Cont’d)

Suppose Ui ⊆ M − A.

Then, on B
n

2(0) ⊆ Bn
3 (0) = ϕi (Ui), we use the Weierstraß

Approximation Theorem to obtain a polynomial function pi , with

|pi (x)− g̃ ◦ ϕ−1
i (x)| < 1

2
εi ,

where εi = inf ε(p) on ϕ−1
i (B

n

2(0)).

Each εi is defined, since B
n

2(0) is compact.

Let qi = pi ◦ ϕi .

For each i , let fiqi be extended to a C∞ function on all of M, which
vanishes outside Ui .
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Proof of the Theorem (Cont’d)

Denote the indices such that Ui is in M − A by i ′.
Denote all other indices by i ′′.
Define h(p) by

h(p) =
∑

i ′

fi ′qi ′ +
∑

i ′′

fi ′′ g̃ .

Each point has a neighborhood on which all but a finite number of
summands vanish identically.
So h is well defined and C∞ on M.
Suppose p ∈ A.
We know that:

g = g̃ on A;
Each fi ′(p) = 0 on A;∑

fi ≡ 1 everywhere on M .

So we obtain
h(p) =

∑

i ′′

fi ′′(p)g̃(p) = g(p).
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Proof of the Theorem (Cont’d)

On the other hand we have, for p 6∈ A,

|h(p)− g̃(p)| = |∑i ′ fi ′(p)qi ′(p) +
∑

i ′′ f
′′

i (p)g̃(p)
−∑i fi(p)g̃(p)|

= |∑ fi ′(p)(qi ′(p)− g̃(p))|.
Recall that fi ≥ 0 for all i .

So, by the preceding, we obtain

|h(p)− g̃(p)| ≤
∑

fi ′(p)|qi ′(p)− g̃(p)| ≤ 1

2
ε(p)

∑
fi ′(p).

But ∑
fi ′(p) ≤

∑
fi(p) = 1.

We deduce that

|h(p)− g(p)| ≤ |h(p)− g̃(p)|+ |g̃(p)− g(p)|
< 1

2ε(p) +
1
2ε(p) = ε(p).

George Voutsadakis (LSSU) Differential Geometry December 2024 92 / 203



Tensors and Tensor Fields on Manifolds Tensor Fields

Subsection 5

Tensor Fields
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Tensors

Definition

Let V be a vector space over R.
A tensor Φ on V is by definition a multilinear map

Φ : V × · · · × V︸ ︷︷ ︸
r

×V
∗ × · · · ×V

∗

︸ ︷︷ ︸
s

→ R,

where:

V
∗ denotes the dual space to V ;

r its covariant order;

s its contravariant order.
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Tensors (Cont’d)

By definition, a tensor Φ on V assigns to each r -tuple of elements of
V and s-tuple of elements of V

∗ a real number.

Moreover, if, for each k , 1 ≤ k ≤ r + s, we hold every variable except
the kth fixed, then Φ satisfies the linearity condition

Φ(v1, . . . , αv k + α′v ′

k , . . .)

= αΦ(v1, . . . , v k , . . .) + α′Φ(v1, . . . , v
′

k , . . .),

for all α,α′ ∈ R, and v k , v
′

k ∈ V (or V
∗, respectively).
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Examples of Tensors

(i) For r = 1, s = 0, any ϕ ∈ V
∗ is a tensor.

(ii) For r = 2, s = 0, any bilinear form Φ on V is a tensor.

(iii) The natural pairing of V and V
∗, that is, (v , ϕ) → 〈ϕ, v〉 for the

case r = 1, s = 1 is a tensor.

(iv) We have also noted that V and (V ∗)∗ are naturally isomorphic.

Suppose that they are identified.

Then each v ∈ V may be considered as a linear map of V
∗ to R.

So it may be viewed as a tensor with r = 0 and s = 1.
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Vector Space T r
s (V )

For a fixed (r , s) we let T r
s (V ) be the collection of all tensors on V

of covariant order r and contravariant order s.

We know that as functions from V × · · · × V × V
∗ × · · · × V

∗ to R
they may be added and multiplied by scalars (elements of R).

Indeed linear combinations of functions from any set to R are defined
and are again functions from that set to R.

With this addition and scalar multiplication T r
s (V ) is a vector space.

That is, if Φ1,Φ2 ∈ T r
s (V ) and α1, α2 ∈ R, then α1Φ1 + α2Φ2,

defined by

(α1Φ1 + α2Φ2)(v 1, v2, . . .) = α1Φ1(v1, v2, . . .) + α2Φ2(v1, v2, . . .)

is multilinear, and, therefore, is in T r
s (V ).

Thus T r
s (V ) has a natural vector space structure.
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The Vector Space Property

Theorem

With the natural definitions of addition and multiplication by elements of
R, the set T r

s (V ) of all tensors of order (r , s) on V forms a vector space
of dimension nr+s .

We consider the case s = 0 only, that is, covariant tensors of fixed
order r , and we let T r (V ) := T r

0 (V ).

Let e1, . . . , en be a basis of V .

Then Φ ∈ T r (V ) is completely determined by its nr values on the
basis vectors.

To see this, suppose

v i =
∑

α
j
ie j , i = 1, . . . , r .
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The Vector Space Property (Cont’d)

By multilinearity, the value of Φ is given by the formula

Φ(v1, . . . , v r ) =
∑

j1,...,jr

α
j1
i1
α
j2
i2
· · ·αjr

ir
Φ(e j1 , . . . , e jr ),

the sum being over all 1 ≤ j1, . . . , jr ≤ n.

The nr numbers {Φ(e j1, . . . , e jr )} are called the components of Φ in
the basis e1, . . . , en.

We justify the terminology by showing that there is in fact a basis of
T r (V ), determined by e1, . . . , en with respect to which these are
components of Φ.
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The Vector Space Property (Cont’d)

Let Ωj1···jr be that element of T r (V ) whose values on the basis
vectors are given by

Ωj1···jr (ek1 , . . . , ekr ) =

{
1, if ki = ji for i = 1, . . . , r ,
0, if ki 6= ji , for some i .

Its values on an arbitrary r -tuple v1, . . . , v r ∈ V is defined by

Ωj1···jr (v1, . . . , v r ) = α
j1
1 α

j2
2 · · ·αjr

r .

This definition is linear in the components of each v i .

Therefore, Ωj1···jr is indeed a tensor.
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The Vector Space Property (Cont’d)

We show that the nr tensors so chosen are linearly independent.

Suppose ∑

j1,...,jr

γj1···jrΩ
j1···jr = 0.

Then, for any choice of the variables v1, . . . , v r ,

∑

j1,...,jr

γj1···jrΩ
j1···jr (v1, . . . , v r ) = 0.

Now substitute, in turn, each combination ek1 , . . . , ekr of basis
elements as variables.

By the definition of the Ωj1···jr , we see that every coefficient
γk1···kr = 0.
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The Vector Space Property (Cont’d)

Finally, we show that every Φ is a linear combination of these tensors.

Let
ϕj1···jr = Φ(e j1, . . . , e jr ).

Consider the element ∑
ϕj1···jrΩ

j1···jr

of T r (V ).

Apply again the definition of Ωj1···jr .

We see that this tensor and Φ take the same values on every set of
basis elements.

Hence, they must be equal.

An easy extension of the argument using both e1, . . . , en and its dual
basis ω1, . . . , ωn of V

∗ gives the general case T r
s (V ).
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Covariant Tensor Fields

Definition

A C∞-covariant tensor field of order r on a C∞ manifold M is a
function Φ which:

Assigns to each p ∈ M an element Φp of T r (Tp(M));

Has the additional property that, given any C∞-vector fields
X1, . . . ,Xr on an open subset U of M,

Φ(X1, . . . ,Xr )

is a C∞ function on U.

We denote by T r (M) the set of all C∞-covariant tensor fields of order r
on M.
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Covariant Tensor Fields (Cont’d)

A covariant tensor field of order r is not only R-linear but also
C∞(M)-linear in each variable.

For example, let f ∈ C∞(M).

Then
Φ(X1, . . . , fXi , . . . ,Xr ) = fΦ(X1, . . . ,Xi , . . . ,Xr ).

This holds at each p by the R-linearity of Φp.

Moreover, the two sides are equal if equality holds for each p ∈ M.

In the same way, if f ∈ C∞(U), U open in M, the equation holds for
ΦU , the restriction of Φ to U.
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The Structure of T r(M)

Let U, ϕ be a coordinate neighborhood.

Let E1, . . . ,En be the coordinate frames.

Then Φ ∈ T r (M) has components

Φ(Ej1, . . . ,Ejr ).

These are functions on U whose values at each p ∈ U are the
components of Φp relative to the basis of Tp(M) determined by
E1, . . . ,En.

By hypothesis, all the components, as functions on the coordinate
neighborhoods of some covering of M, are differentiable.

This implies the differentiability of Φ.

Linear combinations of covariant tensors of order r (even with C∞

functions as coefficients) are again covariant tensor fields.

So T r (M) is a vector space over R [in fact a C∞(M) module].
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Mappings and Covariant Tensors

Consider a linear map of vector spaces F∗ : V → W .

It induces a linear map F ∗ : T r (W ) → T r (V ) by the formula

F ∗Φ(v1, . . . , v r ) = Φ(F∗(v1), . . . ,F∗(v r )).

Now suppose F : M → N is a C∞-map.

It induces a mapping F ∗ : T r (N) → T r (M), defined, for Φ on N, by

F ∗Φp(X1p , . . . ,Xrp) = ΦF (p)(F∗(X1p), . . . ,F∗(Xrp)).

As we have seen, this is a special feature of covariant tensor fields.

Its analog does not hold for contravariant fields even for
T1(M) = X(M) (vector fields).

We can show that F ∗ maps T r (N) to T r (M) linearly.
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Symmetry and Antisymmetry

Definition

Let V be a vector space.
We say Φ ∈ T r (V ) is symmetric if, for each 1 ≤ i , j ≤ r ,

Φ(v1, . . . , v i , . . . , v j , . . . , v r ) = Φ(v1, . . . , v j , . . . , v i , . . . , v r ).

We say Φ is skew or antisymmetric or alternating if, interchanging the
ith and jth variables, 1 ≤ i , j ≤ r , changes the sign,

Φ(v1, . . . , v i , . . . , v j , . . . , v r ) = −Φ(v1, . . . , v j , . . . , v i , . . . , v r ).

Alternating covariant tensors are often called exterior forms.
A tensor field is symmetric (respectively, alternating) if it has this
property at each point.
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Summarizing Theorem

Theorem

Let F : M → N be a C∞ map of C∞ manifolds.
Then each C∞-covariant tensor field Φ on N determines a C∞-covariant
tensor field F ∗Φ on M by the formula

(F ∗Φ)p(X1p, . . . ,Xrp) = Φp(F∗(X1p), . . . ,F∗(Xrp)).

The map F ∗ : T r (N) → T r (M) so defined is linear.
Moreover, it takes symmetric tensors to symmetric tensors and alternating
tensors to alternating tensors.
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Some Additional Properties

We may also extend to the case of arbitrary order r :

The formula for components of F ∗Φ in terms of those of Φ;
The Jacobian of F in local coordinates.

The same method can also be used to derive formulas for change of
components relative to a change of local coordinates.

These formulas are essentially consequences of the multilinearity at
each point of M.
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Subspaces of Symmetric and Alternating Tensors

Let Φ1,Φ2 ∈ T r (V ) be symmetric (respectively, alternating)
covariant tensors of order r on V .

Then a linear combination

αΦ1 + βΦ2, α, β ∈ R,

is also symmetric (respectively, alternating).

Thus, the symmetric tensors in T r (V ) form a subspace which we
denote by Σr (V ).

The alternating tensors (exterior forms) also form a subspace
∧r (V ).

These subspaces have only the 0-tensor in common.

George Voutsadakis (LSSU) Differential Geometry December 2024 110 / 203



Tensors and Tensor Fields on Manifolds Tensor Fields

The Signum Homomorphism

Let σ denote a permutation of (1, . . . , r), with

(1, . . . , r) → (σ(1), . . . , σ(r)).

We know that any such permutation is a product of transpositions,
i.e., permutations interchanging just two elements.

This representation is not unique.

But the parity (evenness or oddness) of the number of factors is.

We let

sgnσ =





+1, if σ is representable as the product
of an even number of transpositions,

−1, otherwise.

Then, σ → sgnσ is a well-defined map from the group of permutations
of r letters Sr to the multiplicative group of two elements ±1.

It is even a homomorphism, as can be checked from the definition.
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Symmetric and Alternating Tensor Fields Revisited

Now our original definitions may be restated in the following
equivalent form.

Φ ∈ T r (V ) is symmetric if, for all v1, . . . , v r and permutation σ,

Φ(v1, . . . , v r ) = Φ(vσ(1), . . . , vσ(r));

Φ is alternating if, for all v1, . . . , v r and permutation σ,

Φ(v1, . . . , v r ) = sgnσΦ(vσ(1), . . . , vσ(r)).
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Symmetrization and Antisymmetrization

Definition

We define two linear transformations on the vector space T r (V ):

The symmetrizing mapping S : T r (V ) → T r (V ) by

(SΦ)(v1, . . . , v r ) =
1

r !

∑

σ

Φ(vσ(1), . . . , vσ(r));

The alternating mapping A : T r (V ) → T r (V ) by

(AΦ)(v 1, . . . , v r ) =
1

r !

∑

σ

sgnσΦ(vσ(1), . . . , vσ(r)).

The summation is over all σ ∈ Sr , the group of all permutations of r
letters.
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Linearity of A and S

It is immediate that these maps are linear transformations on T r (V ).

First note that Φ → Φσ, defined by

Φσ(v1, . . . , v r ) = Φ(vσ(1), . . . , vσ(r)),

is such a linear transformation;

Further, any linear combination of linear transformations of a vector
space is again a linear transformation.
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Properties of A and S

We have the following properties of A and S:
(i) A and S are projections, that is,

A2 = A and S2 = S;

(ii) The following hold:

A(T r (V )) =

r∧
(V ) and S(T r (V )) = Σr (V );

(iii) Φ is alternating if and only if AΦ = Φ;
Φ is symmetric if and only if SΦ = Φ;

(iv) If F∗ : V → W is a linear map, then both A and S commute with
F ∗ : T r (W ) → T r (V ).
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Proof of the Properties

We check the properties for A.

The verification for S is similar.

They are also interrelated, so we will not take them in order.

First note that if Φ is alternating, then the definition implies

Φ(v1, . . . , v r ) = sgnσΦ(vσ(1), . . . , vσ(r)).

There are r ! elements of Sr .

So, summing both sides over all σ ∈ Sr , gives

Φ = AΦ.
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Proof of the Properties (Cont’d)

On the other hand, suppose we apply a permutation τ to the
variables of AΦ(v1, . . . , v r ) for an arbitrary Φ ∈ T r (V ).

We obtain

AΦ(v τ(1), . . . , v τ(r)) =
1

r !

∑

σ

sgnσΦ(vστ(1), . . . , vστ(r)).

Now sgn is a homomorphism and sgnτ2 = 1.

So sgnσ = sgnστsgnτ .

From this equation we see that the right side is

1

r !
sgnτ

∑

σ

sgnστΦ(vστ(1), . . . , vστ(r)) = sgnτAΦ(v1, . . . , v r ).

So AΦ is alternating.

This shows that A(T r (V )) ⊆ ∧r (V ).
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Proof of the Properties (Cont’d)

Suppose Φ is alternating.

Then every term in the summation defining AΦ is equal.

So AΦ = Φ.

Thus A is the identity on
∧r (V ) and A(T r (V )) ⊇ ∧r (V ).

From these facts Properties (i)-(iii) for A follow.

Now consider Property (iv).

By the definition of F ∗, we have

F ∗Φ(vσ(1), . . . , vσ(r)) = Φ(F∗(vσ(1)), . . . ,F∗(vσ(r))).

Multiply both sides by sgnσ and sum over all σ.

Using the linearity of F ∗, we get A(F ∗Φ)(v1, . . . , v r ) on the left and
F ∗(AΦ)(v1, . . . , v r ) on the right.
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Extension to Manifolds

Both of these maps A and S can be immediately extended to
mappings of tensor fields on manifolds.

We merely apply them at each point.

We then verify that both sides of each relation (i)-(iv) give C∞

functions which agree pointwise on every r -tuple of C∞-vector fields.

We summarize (without proof).

Theorem

Let M be a C∞ manifold. Let T r (M) be the space of C∞-covariant
tensor fields of order r over M.
The maps A and S are defined on T r (M). Moreover, they satisfy
Properties (i)-(iv). In the case of Property (iv), F ∗ : T r (N) → T r (M)
denotes the linear map induced by a C∞ mapping F : M → N.
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Subsection 6

Multiplication of Tensors
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The Setup

Let V be a vector space and M be a C∞ manifold.

We saw that both T r (V ) and T r (M) are vector spaces over R.

In the case of tensor fields, T r (M) has also the structure of a
C∞(M)-module.

We agree, by definition, that

T 0(V ) = R and T 0(M) = C∞(M).

Recall, next, that our viewpoint is to define tensors as:

Functions to R, a field, in the case of T r (V );
Functions to C∞(M), an algebra, in the case of T r (M).

In either case it is appropriate to discuss products of such functions.
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Multiplication of Tensors on a Vector Space

Let V be a vector space.

Let ϕ ∈ T r (V ), ψ ∈ T s(V ) be tensors.

Their product is linear in each of its r + s variables.

Definition

The product of ϕ and ψ, denoted ϕ⊗ ψ is a tensor of order r + s defined
by

ϕ⊗ ψ(v 1, . . . , v r , v r+1, . . . , v r+s) = ϕ(v 1, . . . , v r )ψ(v r+1, . . . , v r+s).

The right-hand side is the product of the values of ϕ and ψ.
The product defines a mapping

T r (V )× T s(V ) → T r+s(V );
(ϕ,ψ) → ϕ⊗ ψ.
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Properties of the Product

Theorem

The mapping T r (V )× T s(V ) → T r+s(V ) just defined is bilinear and
associative. If ω1, . . . , ωn is a basis of V

∗ = T 1(V ), then {ωi1 ⊗ · · · ⊗ ωir}
over all 1 ≤ i1, . . . , ir ≤ n is a basis of T r (V ). Finally, if F∗ : W → V is
linear, then F ∗(ϕ⊗ ψ) = (F ∗ϕ)⊗ (F ∗ψ).

Each statement is proved by straightforward computation.

For bilinearity, we must show that, if α, β are numbers,
ϕ1, ϕ2 ∈ T r (V ) and ψ ∈ T s(V ), then

(αϕ1 + βϕ2)⊗ ψ = α(ϕ1 ⊗ ψ) + β(ϕ2 ⊗ ψ).

Similarly for the second variable.

This is checked by evaluating each side on r + s vectors of V .

In fact basis vectors suffice because of linearity.
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Properties of the Product (Cont’d)

For associativity, we must show

(ϕ⊗ ψ)⊗ θ = ϕ⊗ (ψ ⊗ θ).

The products on both sides being defined in the natural way.

This is similarly verified.

This allows us to drop the parentheses.
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Properties of the Product (Cont’d)

Next, we show that ωi1 ⊗ · · · ⊗ ωir form a basis.

Let e1, . . . , en be the basis of V dual to ω1, . . . , ωn.

Then the tensor Ωi1···ir previously defined is exactly ωi1 ⊗ · · · ⊗ ωir .

This follows from the two definitions.

First, we have

Ωi1···ir (e j1 , . . . , e jr ) =

{
0, if (i1, . . . , ir ) 6= (j1, . . . , jr ),
1, if (i1, . . . , ir ) = (j1, . . . , jr ).

Next, we see that

ωi1 ⊗ · · · ⊗ ωir (e j1 , . . . , e jr ) = ωi1(e j1)ω
i2(e j2) · · ·ωir (e jr )

= δi1j1δ
i2
j2
· · · δirjr .

So both tensors have the same values on any set of r basis vectors.

Therefore, they are equal.
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Properties of the Product (Cont’d)

Finally, let F∗ : W → V .

Consider w1, . . . ,w r+s ∈ W .

Then

(F ∗(ϕ⊗ ψ))(w 1, . . . ,w r+s)
= ϕ⊗ ψ(F∗(w1), . . . ,F∗(w r+s))

= ϕ(F∗(w 1), . . . ,F∗(w r ))ψ(F∗(w r+1), . . . ,F∗(w r+s))

= (F ∗ϕ)⊗ (F ∗ψ)(w 1, . . . ,w r+s).

This proves F ∗(ϕ⊗ ψ) = (F ∗ϕ)⊗ (F ∗ψ) and completes the proof.

George Voutsadakis (LSSU) Differential Geometry December 2024 126 / 203



Tensors and Tensor Fields on Manifolds Multiplication of Tensors

Reformulation

Consider the tensor spaces T 0(V ) = R,T 1(V ), · · · ,T r (V ), . . ..

Take the direct sum T (V ) over R of all these tensor spaces,

T (V ) = T 0(V )⊕ T 1(V )⊕ · · · ⊕ T r (V )⊕ · · · .

We identify each T r (V ) with its (natural) isomorphic image in T (V ).

An element ϕ of T (V ) is said to be of order r if it is in T r (V ).

Every element ϕ̃ of T (V ) is the sum of a finite number of such ϕ,
which we call its components.

Thus ϕ̃ ∈ T (V ) may be written uniquely

ϕ̃ = ϕi1
1 + · · ·+ ϕin

n ,

where ϕij ∈ T ij (V ) and i1 < i2 < · · · < ir .
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The Tensor Algebra

If ϕ̃, ψ̃ ∈ T (V ), then they may be added componentwise.

That is, by adding in T r (V ) any terms in T r (V ).

They may be multiplied by:

Using ⊗;
Extending it to be distributive on all of T (V ).

This makes T (V ) into an associative algebra over R.

It is called the tensor algebra.
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Properties of the Tensor Algebra

The tensor algebra T (V ):

Contains R = T 0(V );
Has 1 as its unit;
Is infinite-dimensional.

The contents of the preceding theorem (even a little more)
immediately yield the following properties:

T (V ) (direct) is an associative algebra (with unit) over R = T 0(V ).
It is generated by T 0(V ) and T 1(V ) = V

∗, the dual space to V .
Any linear mapping F∗ : W → V of vector spaces induces a
homomorphism F ∗ : T (V ) → T (W ) which is:

(i) The identity on R;
(ii) The dual mapping F

∗ : V
∗
→ W

∗ on T
1(V ).

Properties (i) and (ii) determine F ∗ uniquely on all of T (V ).
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Multiplication of Tensor Fields

We turn to the case of tensor fields on a manifold M.

Let ϕ ∈ T r (M) and ψ ∈ T s(M).

Then we may define ϕ⊗ ψ on M by defining it at each point using
the definition for tensors on a vector space.

That is, (ϕ⊗ ψ)p is defined to be the tensor

(ϕ⊗ ψ)p = ϕp ⊗ ψp

of order r + s on the vector space Tp(M).

Since this defines a covariant tensor of order r + s on the tangent
space at each point of M, it will define a tensor field, if it is C∞.
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Multiplication of Tensor Fields (Cont’d)

Consider the product ϕ⊗ ψ, defined as above.

According to the definition, in local coordinates the components of
ϕ⊗ ψ are the functions of the coordinate frame vectors

ϕ⊗ ψ(Ei1 , . . . ,Eir+s ) = ϕ(Ei1 , . . . ,Eir )ψ(Eir+1 , . . . ,Eir+s )

over the coordinate neighborhood.

The right-hand side is the product of the components in local
coordinates of ϕ and ψ.

These are two C∞ functions.

Thus, the left side is C∞.

So ϕ⊗ ψ is indeed a tensor field on M.
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Multiplication of Tensors on Manifold

Theorem

The mapping
T r (M)× T s(M) → T r+s(M)

just defined is bilinear and associative.
If ω1, . . . , ωn is a basis of T 1(M), then every element of T r (M) is a linear
combination with C∞ coefficients of

{ωi1 ⊗ · · · ⊗ ωir : 1 ≤ i1, . . . , ir ≤ n}.

If F : N → M is a C∞ mapping, ϕ ∈ T r (M) and ψ ∈ T s(M), then

F ∗(ϕ⊗ ψ) = (F ∗ϕ)⊗ (F ∗ψ),

tensor fields on N.
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Note on Proof

Two tensor fields are equal if and only if they are equal at each point.

So it is only necessary to see that these equations hold at each point.

This follows at once from the definitions and the preceding theorem.
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Tensors in Terms of Local Bases

In general we do not have a globally defined basis of T 1(M).

That is, there may not exist covector fields

ω1, . . . , ωn,

which are a basis at each point.

However, we do have a globally defined basis in Rn.

From this fact, the following corollary is obtained, by applying the
theorem to a coordinate neighborhood V , θ of M.

Let E1, . . . ,En denote the coordinate frames.

Let ω1, . . . , ωn be their duals.

That is, we have

Ei = θ−1
∗

(
∂

∂x i

)
and ωj = θ∗(dx j).

George Voutsadakis (LSSU) Differential Geometry December 2024 134 / 203



Tensors and Tensor Fields on Manifolds Multiplication of Tensors

Tensors in Terms of Local Bases (Cont’d)

Corollary

Each ϕ ∈ T r (U), including the restriction to U of any covariant tensor
field on M, has a unique expression of the form

ϕ =
∑

i1

· · ·
∑

ir

ai1···irω
i1 ⊗ · · · ⊗ ωir ,

where at each point of U,

ai1···ir = ϕ(Ei1 , . . . ,Eir )

are the components of ϕ in the basis {ωi1 ⊗ · · · ⊗ ωir }.
Moreover, the ai1···ir are all C∞ functions on U.

George Voutsadakis (LSSU) Differential Geometry December 2024 135 / 203



Tensors and Tensor Fields on Manifolds Multiplication of Tensors

Space of Alternating Tensors

For each r > 0 we have defined the subspace
∧r (V ) ⊆ T r (V )

consisting of alternating covariant tensors of order r .

It is the image of T r (V ) under the linear mapping A, the alternating
mapping.

We define
∧0(V ) to be R, the field.

Then
∧0(V ) = T 0(V ) = R and

∧1(V ) = T 1(V ) = V
∗, but

∧r (V )
is properly contained in T r (V ) for r > 1.

We see, therefore, that the direct sum
∧
(V ) of all the spaces

∧r (V )
is contained in T (V ) as a subspace,

∧
(V ) =

∧0(V )⊕∧1(V )⊕∧2(V )⊕ · · ·
( T 0(V )⊕ T 1(V )⊕ T 2(V )⊕ · · · = T (V ).

George Voutsadakis (LSSU) Differential Geometry December 2024 136 / 203



Tensors and Tensor Fields on Manifolds Multiplication of Tensors

Space of Alternating Tensors (Cont’d)

Although
∧
(V ) is a subspace of T (V ), it is not a subalgebra.

Even if ϕ ∈ ∧r (V ) and ψ ∈ ∧s(V ), it may be shown that ϕ⊗ψ may
fail to be an element of

∧r+s(V ).

Thus the tensor product of alternating tensors on V is not, in
general, an alternating tensor on V .

On the other hand, we know that each tensor determines an
alternating tensor, its image under A.
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Exterior Multiplication

Definition

The mapping from
∧r (V )×∧s(V ) → ∧r+s(V ) defined by

(ϕ,ψ) → (r + s)!

r !s!
A(ϕ⊗ ψ),

is called the exterior product (or wedge product) of ϕ and ψ and is
denoted by ϕ ∧ ψ.

Lemma

The exterior product is bilinear and associative.

Bilinearity is a consequence of the fact that the product is defined by
composing the tensor product, a bilinear mapping from∧r (V )×∧s(V ) to T r+s(V ), with a linear mapping (r+s)!

r !s! A.
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Exterior Multiplication (Cont’d)

We now show that the product is associative.

We first prove a property of the alternating mapping A.

Suppose ϕ ∈ T r (V ), ψ ∈ T s(V ) and θ ∈ T t(V ).

Then we show that

A(ϕ⊗ ψ ⊗ θ) = A(A(ϕ⊗ ψ)⊗ θ) = A(ϕ⊗A(ψ ⊗ θ)).

For this purpose let:

S = Sr+s+t denote the permutations of (1, 2, . . . , r + s + t);
S

′ denote the subgroup which leaves the last t integers fixed.

S
′ is isomorphic to the permutation group Sr+s of (1, 2, . . . , r + s).
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Exterior Multiplication (Cont’d)

We have

A(A(ϕ⊗ ψ)⊗ θ)(v1, . . . , . . . , v r+s+t)

= 1
(r+s+t)!

∑
σ∈S sgnσA(ϕ⊗ ψ)(vσ(1), . . . , vσ(r+s))

· θ(vσ(r+s+1), . . . , vσ(r+s+t))

= 1
(r+s+t)!

1
(r+s)!

∑
σ∈S

∑
σ′∈S′{sgnσσ′ϕ(vσσ′(1), . . . , vσσ′(r))

· ψ(vσσ′(r+1), . . . , vσσ′(r+s))θ(vσσ′(r+s+1), . . . , vσσ′(r+s+t))},

using the facts that:

sgnσsgnσ′ = sgnσσ′;
σ′ is the identity on r + s + 1, . . . , r + s + t.
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Exterior Multiplication (Cont’d)

For each σ′, as σ runs through S and we sum over the outer
summation symbol, this expression is equal to

A(ϕ⊗ ψ ⊗ θ)(v1, . . . , v r+s+1).

Thus, the expression above reduces to

1

(r + s)!

∑

σ′∈S′

A(ϕ⊗ ψ ⊗ θ),

evaluated on v1, . . . , v r+s+t .

But there are (r + s)! terms in the summation.

So this gives

A(ϕ⊗ ψ ⊗ θ) = A(A(ϕ⊗ ψ)⊗ θ).

The second equality is proved in the same way.
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Exterior Multiplication (Cont’d)

Let ϕ,ψ, θ be in the subspaces
∧r (V ),

∧s(V ),
∧t(V ), respectively.

Then, by definition, we have

ϕ ∧ ψ =
(r + s)!

r !s!
A(ϕ⊗ ψ)

and

(ϕ ∧ ψ) ∧ θ = (r + s + t)!

(r + s)!t!
A((ϕ ∧ ψ)⊗ θ).

A similar expression can be obtained in the other order of associating
terms.

From these expressions, we obtain the associativity of the exterior
product

(ϕ ∧ ψ) ∧ θ = ϕ ∧ (ψ ∧ θ).
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General Associativity

The following relation allows us to write exterior products without
parentheses.

Corollary

Let ϕi ∈
∧ri (V ), i = 1, . . . , k . Then

ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕk

=
(r1 + r2 + · · ·+ rk)!

r1!r2! · · · rk !
A(ϕ1 ⊗ ϕ2 ⊗ · · · ⊗ ϕk).
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The Exterior or Grassman Algebra over V

We define the product
∧

(V )×
∧

(V ) →
∧

(V )

simply by extending the exterior product to be bilinear, so that the
distributive law holds.

Suppose that ϕ,ψ ∈ ∧(V ).

Then

ϕ = ϕ1 + · · ·+ ϕk , ϕi ∈
ri∧
(V ),

and

ψ = ψ1 + · · ·+ ψℓ, ψi ∈
si∧
(V ).

We define

ϕ ∧ ψ =

k∑

i=1

ℓ∑

j=1

ϕi ∧ ψj .
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The Exterior or Grassman Algebra over V

Corollary

The set
∧

(V ) =

0∧
(V )⊕

1∧
(V )⊕

2∧
(V )⊕ · · · ,

with the exterior product as defined above is an (associative) algebra over
R =

∧0(V ).

The algebra
∧
(V ) is called the exterior algebra or Grassman

algebra over V .
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Skew Commutativity

Lemma

If ϕ ∈ ∧r (V ) and ψ ∈ ∧s(V ), then

ϕ ∧ ψ = (−1)rsψ ∧ ϕ.

This is equivalent to showing that

A(ϕ⊗ ψ) = (−1)rsA(ψ ⊗ ϕ).

To prove this equality we note that

A(ϕ⊗ ψ)(v 1, . . . , v r+s)

= 1
(r+s)!

∑
σ sgnσϕ(vσ(1), . . . , vσ(r))ψ(vσ(r+1), . . . , vσ(r+s))

= 1
(r+s)!

∑
σ sgnσψ(vσ(r+1), . . . , vσ(r+s))ϕ(vσ(1), . . . , vσ(r)).

George Voutsadakis (LSSU) Differential Geometry December 2024 146 / 203



Tensors and Tensor Fields on Manifolds Multiplication of Tensors

Skew Commutativity (Cont’d)

Let τ be the permutation taking (1, . . . , s, s + 1, . . . , r + s) to
(r + 1, . . . , r + s, 1, . . . , r).

Then we may write

A(ϕ⊗ ψ)(v 1, . . . , v r+s)

= 1
(r+s)!

∑
σ sgnσsgnτψ(vστ(1), . . . , vστ(s))

ϕ(vστ(s+1), . . . , vστ(r+s))

= sgnτA(ψ ⊗ ϕ)(v 1, . . . , v r+s).

Now check that sgnτ = (−1)rs .

So we get
ϕ ∧ ψ = (−1)rsψ ∧ ϕ.
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Dimension of
∧
(V )

Theorem

If r > n = dimV , then
r∧
(V ) = {0}.

For 0 ≤ r ≤ n,

dim
r∧
(V ) =

(
n

r

)
.

Let ω1, . . . , ωn be a basis of
∧1(V ). Then the set

{ωi1 ∧ · · · ∧ ωir : 1 ≤ i1 < i2 < · · · < ir ≤ n}

is a basis of
∧r (V ). Finally, we have

dim
∧

(V ) = 2n.
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Dimension of
∧
(V ) (Cont’d)

Let e1, . . . , en be any basis of V .

Let ϕ be an alternating covariant tensor of order r > dimV .

Then on any set of basis elements

ϕ(e i1 , . . . , e ir ) = 0.

This is because:

Some variable e ik is repeated;
Interchanging two equal variables both changes the sign of ϕ on the set
and leaves it unchanged.

Now all components of ϕ are zero.

So ϕ = 0.

It follows that
∧r (V ) = {0}.
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Dimension of
∧
(V ) (Cont’d)

Suppose that 0 ≤ r ≤ n.

Let ω1, . . . , ωn be the basis of V
∗ =

∧1(V ) dual to e1, . . . , en.

A maps T r (V ) onto
∧r (V ).

So the image of the basis {ωi1 ⊗ · · · ⊗ ωir} of T r (V ) spans
∧r (V ).

We have
r !A(ωi1 ⊗ · · · ⊗ ωir ) = ωi1 ∧ · · · ∧ ωir .

By the preceding lemma, permuting the order of i1, . . . , ir leaves the
right side unchanged, except for a possible change of sign.

It follows that the set of
(
n
r

)
elements of the form

ωi1 ∧ · · · ∧ ωir , 1 ≤ i1 < i2 < · · · < ir ≤ n,

span
∧r (V ).
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Dimension of
∧
(V ) (Cont’d)

Moreover, these elements are independent.

Suppose that some linear combination of them is zero, say

∑

i1<···<ir

αi1···irω
i1 ∧ · · · ∧ ωir = 0.

Then its value on each set of r basis vectors must be zero.

In particular, given k1 < · · · < kr , we have

0 =
(∑

αi1···irω
i1 ∧ · · · ∧ ωir

)
(ek1 , . . . , ekr ).

This becomes αk1···kr = 0 by virtue of the formula of a previous
corollary, combined with ωi (ek) = δik , for 1 ≤ i , k ≤ n.

By suitable choice of k1 < · · · < kr , we see that each coefficient must
be zero. Therefore the given set of elements of

∧r (V ) is linearly
independent and a basis.
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Dimension of
∧
(V ) (Cont’d)

To complete the proof we note that

dim
∧

(V ) =
n∑

r=0

dim
r∧
(V ) =

n∑

r=0

(
n

r

)
= 2n.

Theorem

Let V and W be finite-dimensional vector spaces and F∗ : W → V a
linear mapping. Then F ∗ : T (V ) → T (W ) takes

∧
(V ) into

∧
(W ) and is

a homomorphism of these (exterior) algebras.

The theorem is an immediate consequence of:

A previous asserted property of F ∗;
The fact that A ◦ F ∗ = F ∗ ◦ A;
The definition of exterior multiplication.
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The Exterior Algebra on Manifolds

All of these ideas extend to alternating tensor fields on a C∞

manifold M.

Definition

An alternating covariant tensor field of order r on M will be called an
exterior differential form of degree r (or sometimes simply r -form).

The set
∧r (M) of all such forms is a subspace of T r (M).

The following two theorems follow from preceding work.

We let M,N be manifolds and F : M → N be a C∞ mapping.
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The Exterior Algebra on Manifolds (Cont’d)

Theorem

Let
∧
(M) denote the vector space over R of all exterior differential forms.

Then for ϕ ∈ ∧r (M) and ψ ∈ ∧s(M) the formula

(ϕ ∧ ψ)p = ϕp ∧ ψp

defines an associative product satisfying

ϕ ∧ ψ = (−1)rsψ ∧ ϕ.

With this product,
∧
(M) is an algebra over R.

We shall call
∧
(M) the algebra of differential forms or exterior

algebra on M.
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The Exterior Algebra on Manifolds (Cont’d)

Theorem (Cont’d)

If f ∈ C∞(M), we also have

(f ϕ) ∧ ψ = f (ϕ ∧ ψ) = ϕ ∧ (f ψ).

If ω1, . . . , ωn is a field of coframes on M (or an open set U of M), then
the set

{ωi1 ∧ · · · ∧ ωir : 1 ≤ i1 < i2 < · · · < ir ≤ n}
is a basis of

∧r (M) (or
∧r (U), respectively).

Theorem

If F : M → N is a C∞ mapping of manifolds, then F ∗ :
∧
(N) → ∧

(M) is
an algebra homomorphism.

George Voutsadakis (LSSU) Differential Geometry December 2024 155 / 203



Tensors and Tensor Fields on Manifolds Orientation of Manifolds and the Volume Element

Subsection 7

Orientation of Manifolds and the Volume Element
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Orientation of Bases of Vector Spaces

Let V be a vector space.

Let {e1, . . . , en}, {f 1, . . . , f n} be bases of V .

The bases are said to have the same orientation if the determinant
of the matrix of coefficients expressing one basis in terms of the other
is positive,

det(αj
i ) > 0,

where

f i =
n∑

j=1

α
j
ie j , i = 1, . . . , n.

It can be checked that:

This is an equivalence relation on the set of all bases (or frames) of V ;
There are exactly two equivalence classes.
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Oriented Vector Spaces

Let V be a vector space.

The equivalence of bases modulo orientation has exactly two
equivalence classes.

A choice of one of these is said to orient V .

Definition

An oriented vector space is a vector space plus an equivalence class of
allowable bases. The selected class consists of all those bases with the
same orientation as a chosen one. The bases in this class will be called
oriented or positively oriented bases or frames.
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Orientation and Bases of
∧n(V )

Orientation is related to the choice of a basis Ω of
∧n(V ).

Recall that dim
∧n(V ) =

(
n
n

)
= 1.

So any nonzero element is a basis.

Lemma

Let Ω 6= 0 be an alternating covariant tensor on V of order n = dimV and
let e1, . . . , en be a basis of V . Then for any set of vectors v1, . . . , v n with
v i =

∑
γ
j
i e j , we have

Ω(v1, . . . , vn) = det(γij )Ω(e1, . . . , en).

This lemma says that up to a nonvanishing scalar multiple Ω is the
determinant of the components of its variables.
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Orientation and Bases of
∧n(V ) (Cont’d)

Let V = V
n be the space of n-tuples.

Let e1, . . . , en be the canonical basis.

The lemma assert that Ω(v1, . . . , vn) is proportional to the
determinant whose rows are v1, . . . , vn.

The proof is a consequence of the definition of determinant.

Suppose Ω and v1, . . . , vn are given.

Use the linearity and antisymmetry of Ω to write

Ω(v1, . . . , vn) =
∑

j1,...,jn
αj1 · · ·αjnΩ(e j1 , . . . , e jn)

=
∑

σ∈Sn
sgnσα

σ(1)
1 · · ·ασ(n)n Ω(e1, . . . , en)

= det(αj
i )Ω(e1, . . . , en).

The last equality is the standard definition of determinant (Sn is the
symmetric group on n letters).
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Using Bases to Determine Orientations

Corollary

A nonvanishing Ω ∈ ∧n(V ) has the same sign (or opposite sign) on two
bases if they have the same (respectively, opposite) orientation.
Thus, choice of an Ω 6= 0 determines an orientation of V .
Two such forms Ω1,Ω2 determine the same orientation if and only if

Ω1 = λΩ2, λ > 0.

From the formula of the lemma we see that Ω has the same sign on
equivalent bases and opposite sign on inequivalent bases.

If λ > 0, then λΩ has the same sign on any basis as Ω does.

The contrary holds if λ < 0.
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Remark

Suppose Ω 6= 0.

Then v1, . . . , vn are linearly independent if and only if

Ω(v1, . . . , vn) 6= 0.

Note, also, that the formula of the lemma can be construed as a
formula for change of component of Ω (there is just one component
since dim

∧n(V ) = 1), when we change from the basis e1, . . . , en of
V to the basis v1, . . . , vn.

George Voutsadakis (LSSU) Differential Geometry December 2024 162 / 203



Tensors and Tensor Fields on Manifolds Orientation of Manifolds and the Volume Element

Euclidean Vector Spaces

Suppose V is a Euclidean vector space.

So V has a positive definite inner product Φ(v ,w).

Then, in orienting V , we may choose an orthonormal basis e1, . . . , en

to determine the orientation.

Then, we may choose an n-form Ω whose value on e1, . . . , en is +1.

Suppose f i =
∑
α
j
ie j is another orthonormal basis.

Then
Ω(f 1, . . . , f n) = det(αj

i )Ω(e1, . . . , en) = ±1,

depending on whether f 1, . . . , f n is similarly or oppositely oriented.

Thus, the value of Ω on any orthonormal basis is ±1.

Ω is uniquely determined up to its sign by this property.

In this case, Ω may be given a geometric meaning when n = 2 or 3.

Ω(v1, v2) or Ω(v1, v2, v3) is the area or volume, respectively, of the
parallelogram or parallelepiped of which the given vectors are the
sides from the origin.
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Orientable Manifolds

To extend the concept of orientation to a manifold M we must try to
orient each of the tangent spaces Tp(M) in such a way that
orientation of nearby tangent spaces agree.

Definition

We shall say that M is orientable if it is possible to define a C∞ n-form Ω
on M which is not zero at any point. In this case, M is said to be
oriented by the choice of Ω.

By the preceding corollary, any such Ω orients each tangent space.

Of course any form Ω′ = λΩ, where λ > 0 is a C∞ function, would
give M the same orientation.
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Natural Orientation

R
n, with the form

Ω̃ = dx1 ∧ · · · ∧ dxn,

is an example.

This is known as the natural orientation of Rn.

It corresponds to the orientation of the frames

∂

∂x1
, . . . ,

∂

∂xn
.

If U ⊆ Rn is an open set, it is oriented by

Ω̃U = Ω̃|U .
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Orientation-Preserving Diffeomorphisms

We say that a diffeomorphism F : U → V ⊆ Rn is orientation
preserving if

F ∗Ω̃V = λΩ̃U ,

where λ > 0 a C∞ function on U.

More generally a diffeomorphism F : M1 → M2 of manifolds oriented
by Ω1,Ω2, respectively, is orientation-preserving if

F ∗Ω2 = λΩ1,

where λ > 0 is a C∞ function on M.
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Alternative Definition of Orientability

A second, perhaps more natural definition of orientability can be
given as follows.

M is orientable if it can be covered with coherently oriented

coordinate neighborhoods

{Uα, ϕα}.

These are neighborhoods such that, if Uα ∩ Uβ 6= ∅, then ϕα ◦ ϕ−1
β is

orientation-preserving.

We will now see that this second definition is equivalent to the one
given previously.
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Equivalence of the Definitions

Theorem

A manifold M is orientable if and only if it has a covering {Uα, ϕα} of
coherently oriented coordinate neighborhoods.

First suppose that M is orientable.

Let Ω be a nowhere vanishing n-form, determining the orientation.

Choose any covering {Uα, ϕα} by coordinate neighborhoods.

Let x1α, . . . , x
n
α be local coordinates, such that for Ω, restricted to Uα,

we have the expression in local coordinates

ϕ−1∗
α ΩUα

λα(x)dx
1
α ∧ · · · ∧ dxnα, with λα > 0.
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Equivalence of the Definitions (Cont’d)

Replacing coordinates (x1, . . . , xn) by (−x1, . . . , xn), that is,
changing the sign of one coordinate, changes the sign of λ.

So we may easily choose coordinates so that the scalar function λα,
component of Ω, is positive on Uα.

An easy computation, using a previous lemma and remark, shows that
if Uα ∩ Uβ 6= ∅, then on this set the formula for change of component
is

λαdet

(
∂x iα

∂x
j
β

)
= λβ.

Since λα > 0 and λβ > 0, the determinant of the Jacobian is positive.

So the chosen coordinate neighborhoods are coherently oriented.
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Equivalence of the Definitions (Converse)

Now suppose that M has a covering by coherently oriented coordinate
neighborhoods {Uα, ϕα}.
We use a subordinate partition of unity {fi} to construct an n-form Ω
on M which does not vanish at any point.

For each i = 1, 2, . . . we choose a coordinate neighborhood Uαi
, ϕαi

of the covering, such that Uαi
⊇ suppfi . These neighborhoods, which

we relabel Ui , ϕi , cover M.

If Ui ∩ Uj 6= ∅, then, by assumption, the determinant of the Jacobian
matrix of ϕi ◦ ϕ−1

j is positive on Ui ∩ Uj .

George Voutsadakis (LSSU) Differential Geometry December 2024 170 / 203



Tensors and Tensor Fields on Manifolds Orientation of Manifolds and the Volume Element

Equivalence of the Definitions (Converse Cont’d)

Define Ω ∈ ∧n(M) by

Ω =
∑

i

fiϕ
∗

i (dx
1
i ∧ · · · ∧ dxni ),

where each summand is extended to all of M by defining it to be zero
outside the closed set suppfi .

Let p ∈ M be arbitrary.

We show that Ωp 6= 0.

Recall that {suppfi} is locally finite.

So we may choose a coordinate neighborhood V , ψ of p which:

Is coherently oriented to the Ui , ϕi ;
Intersects only a finite number of the sets suppfi , say for i = i1, . . . , ik .
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Equivalence of the Definitions (Converse Cont’d)

Let y1, . . . , yn be the local coordinates in V .

Use the same formula as above on each summand to change
components,

Ωp =
∑k

j=1 fij(p)ϕ
∗

ij
(dx1ij ∧ · · · ∧ dn

ij
)

=
∑

fij (p)det

(
∂xkij
∂yℓ

)

ψ(p)

ψ∗(dy1 ∧ · · · ∧ dyn).

Now each fij ≥ 0 on M.

Moreover, at least one of them is positive at p.

Finally, the Jacobian determinants are all positive.

This implies Ωp 6= 0 and, since p was arbitrary, Ω is never zero on M.
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The Case of Riemannian Manifolds

A Riemannian manifold has the special property that the tangent
space Tp(M) at every point p has an inner product.

We apply our remarks about n-forms on a Euclidean vector space of
dimension n.

Theorem

Let M be an orientable Riemannian manifold with Riemannian metric Φ.
Corresponding to an orientation of M, there is a uniquely determined
n-form Ω which:

Gives the orientation;

Has the value +1 on every oriented orthonormal frame.
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The Case of Riemannian Manifolds (Cont’d)

It is clear from our earlier discussion that at each point p ∈ M, Ωp is
determined uniquely by the requirement that, on any oriented
orthonormal basis F1p , . . . ,Fnp of Tp(M), we have

Ωp(F1p, . . . ,Fnp) = +1.

Let U, ϕ be any coordinate neighborhood.

Let E1, . . . ,En be be coordinate frames.

The functions
gij(P) = Φp(Eip,Ejp), p ∈ U,

define the components of Φ relative to these local coordinates.

They are C∞, by definition.

We derive an expression for the component Ω(E1, . . . ,En) on U in
terms of the matrix (gij ).

From this, it will be apparent that Ω is a C∞ n-form.
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The Case of Riemannian Manifolds (Cont’d)

Choose at p ∈ U any oriented, orthonormal basis F1p, . . . ,Fnp.

Let the n × n matrix (αk
i ) denote the components of E1p , . . . ,Enp

with respect to this basis,

Eip =

n∑

k=1

αk
i Fkp , i = 1, . . . , n.

Now we have
Φ(Fkp ,Fip) = δki .

Hence, we obtain, for 1 ≤ i , j ≤ n,

gij(P) = Φp(Eip ,Ejp) =

(
∑

k

αk
i Fkp,

∑

ℓ

αℓjFℓp

)
=

n∑

k=1

αk
i α

k
j .

George Voutsadakis (LSSU) Differential Geometry December 2024 175 / 203



Tensors and Tensor Fields on Manifolds Orientation of Manifolds and the Volume Element

The Case of Riemannian Manifolds (Cont’d)

The equation gij(p) =
∑n

k=1 α
k
i α

k
j , 1 ≤ i , j ≤ n, may be written as a

matrix equation:
(gij(p)) = ATA,

the product of the transpose of A = (αk
i ) with A itself.

On the other hand:
Ωp(E1p, . . . ,Enp) = det(αk

i )Ωp(F1p, . . . ,Fnp), by a previous lemma;
Ωp(F1p , . . . ,Fnp) = +1, by our definitions.

Since det(ATA) = (detA)2 = det(gij), this gives for the component of
Ω in local coordinates

Ωp(E1p , . . . ,Enp) = (det(gij (p)))
1/2.

So the component is the square root of a positive C∞ function of
p ∈ U. So it is itself a C∞ function on the local coordinate
neighborhood U.

Since U, ϕ is arbitrary, Ω is a C∞ n-form on M.
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Volume Element

This form Ω is called the (natural) volume element of the oriented
Riemannian manifold.

We have just seen that in local coordinates we have the following
expression for Ω:

ϕ−1∗Ω =
√
gdx1 ∧ · · · ∧ dxn,

where g(x) = det(gij(x)) (we use the same notation for gij as
functions on U and on ϕ(U)).

When M = Rn, with the usual coordinates and metric, this becomes

Ω = dx1 ∧ · · · ∧ dxn.

In this case, as seen, the value of Ωp on a set of vectors is the volume
of the parallelepiped whose edges from p are these vectors.
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Volume Element (Cont’d)

In particular, on the unit cube with vertex at p and sides

∂

∂x1
, . . . ,

∂

∂xn
,

Ω has the value +1.

The existence of the form Ω on a Riemannian manifold will enable us
to define the volume of suitable subsets of the manifold.

Moreover, we will be able to extend to these manifolds the volume
integrals defined in Rn in integral calculus.
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Subsection 8

Exterior Differentiation
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Local Representations of k-Forms

Let U be an open subset of a manifold M.

We shall denote by θU the restriction of an exterior form on M to U.

Of course θU = i∗θ, i : U → M being the inclusion map.

Let U, ϕ be a coordinate neighborhood, with x1, . . . , xn as coordinate
functions on U, i.e.,

ϕ(q) = (x1(q), . . . , xn(q)).

Then the differentials of these functions dx1, . . . , dxn:

Are linearly independent elements of
∧1

(U);
Constitute a C∞ field of coframes on U .

It follows that they, with 1, generate
∧
(U) over C∞(U).

Equivalently, C∞(U) =
∧0(U) and

∧1(U) generate the algebra∧
(U) over R.
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Local Representations of k-Forms (Cont’d)

Thus, locally every k-form θ on M has a unique representation on U

θU =
∑

i1<···<ik

ai1···ikdx
i1 ∧ · · · ∧ dx ik , ai1···ik ∈ C∞(U),

the sum over all sets of indices such that 1 ≤ i1 < i2 < · · · < ik ≤ n.

Define bi1···ik for all values of the indices so as:
To change sign whenever two indices are permuted;
To equal ai1···ik , if i1 < · · · < ik .

The we get the representation

θU =
∑ 1

k!
bi1···ikdx

i1 ∧ · · · ∧ dx ik ,

the summation being over all values of the indices.

The use of dx1, . . . , dxn, rather than ω1, . . . , ωn, is to emphasize that
the dx i are differentials of functions on U ⊆ M.

George Voutsadakis (LSSU) Differential Geometry December 2024 181 / 203



Tensors and Tensor Fields on Manifolds Exterior Differentiation

Operator dM

Theorem

Let M be any C∞ manifold. Let
∧
(M) be the algebra of exterior

differential forms on M. Then there exists a unique R-linear map

dM :
∧

(M) →
∧

(M),

such that:

(1) If f ∈ ∧0(M) = C∞(M), then dM f = df , the differential of f ;

(2) For θ ∈ ∧r (M), σ ∈ ∧s(M),

dM(θ ∧ σ) = dMθ ∧ σ + (−1)r θ ∧ dMσ;

(3) d2
M = 0.

We give the proof in a series of steps.
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Operator dM (Step (A))

(A) Suppose that dM exists.

Let g , f 1, . . . , f r ∈ C∞(M).

Properties (1)-(3) imply that, for θ = g df 1 ∧ · · · ∧ df r , we must have

dMθ = dg ∧ df 1 ∧ · · · ∧ df r .

Now suppose that M is covered by a single coordinate neighborhood
U, ϕ with coordinate functions x1, . . . , xn.

The above remark and linearity imply that dM must be given by

dM

(∑
ai1···irdx

i1 ∧ · · · ∧ dx ir
)
=
∑

dai1···ir ∧ dx i1 ∧ · · · ∧ dx ir ,

where
dai1···ir =

n∑

j=1

∂ai1···ir
∂x j

dx j

and the summation is over 1 ≤ i1 < i2 < · · · < ir ≤ n.

Therefore, if defined at all, dM is unique in this case.
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Operator dM (Step (A) Cont’d)

Conversely, suppose dM is defined by this sum.

Then it is linear and trivially satisfies Properties (1) and (3).

To check Property (2) it is enough to consider forms

θ = adx i1 ∧ · · · ∧ dx ir and σ = bdx j1 ∧ · · · ∧ dx js .

The general statement is then a consequence of linearity.

dM [(adx i1 ∧ · · · ∧ dx ir ) ∧ (bdx j1 ∧ · · · ∧ dx js )]

= dM(ab)(dx i1 ∧ · · · ∧ dx ir ) ∧ (dx j1 ∧ · · · ∧ dx js )

= [(dMa)b + a(dMb)] ∧ (dx i1 ∧ · · · ∧ dx is ) ∧ (dx j1 ∧ · · · ∧ dx js )

= (dMa ∧ dx i1 ∧ · · · ∧ dx ir ) ∧ (bdx j1 ∧ · · · ∧ dx js )

+ (−1)r (adx i1 ∧ · · · ∧ dx ir ) ∧ (db ∧ dx j1 ∧ · · · ∧ dx js ).

The (−1)r is due to the fact that

db ∧ dx i1 ∧ · · · ∧ dx ir = (−1)rdx i1 ∧ · · · ∧ dx ir ∧ db.
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Operator dM (Step (B))

(B) Suppose dM :
∧
(M) → ∧

(M), with Properties (1)-(3) is defined.

Let U ⊆ M be a coordinate neighborhood on M.

Suppose its coordinate functions are x1, . . . , xn.

According to Step (A),

dU :
∧

(U) →
∧

(U)

is uniquely defined.

We will show that, for any θ ∈ ∧(M), the restriction of dMθ to U is
equal to dU applied to θ restricted to U,

(dMθ)U = dUθU .
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Operator dM (Step (B) Cont’d)

We may suppose that θ ∈ ∧r (M) and that

θU =
∑

ai1···irdx
i1 ∧ · · · ∧ dx ir , ai1···ir ∈ C∞(U).

Suppose p is an arbitrary point of U.

Apply a previous corollary to an open set W , p ∈ W and W ∈ U.

We find a neighborhood V of p, with V ⊆ W , and C∞ functions
y1, . . . , yn and bi1···ir on M, which:

Vanish outside W ;
Are identical to x1, . . . , xn, respectively, on V .

Define σ ∈ ∧r (M) by

σ =
∑

bi1···irdy
i1 ∧ · · · ∧ dy ir .

Then σ is an r -form on M which:
Vanishes outside W ;
Is identical to θ on V .
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Operator dM (Step (B) Cont’d)

Now let g be a C∞ function on M which:

Has the value +1 at p;
Is zero outside V .

The r -form g(θ − σ) vanishes everywhere on M as does dg ∧ (θ − σ).

Therefore, using (A),

gdMθ = gdMσ = g
∑

dai1···ir ∧ dy i1 ∧ · · · ∧ dy ir .

On V we have

∑
dai1···ir ∧ dy i1 ∧ · · · ∧ dy ir =

∑
dai1···ar ∧ dx i1 ∧ · · · ∧ dx ir .

So at the point p, where g(p) = 1, dMθ = dUθU .

Since p is arbitrary, this holds throughout U.
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Operator dM (Step (C))

(C) Suppose dM :
∧
(M) → ∧

(M) satisfying Properties (1)-(3) exists.

We show that it is unique.

Let {Uα, ϕα} be a covering of M by coordinate neighborhoods.

By Step (A), each dUα
exists.

By Step (B), for any θ ∈ ∧(M), we have, for any Uα,

(dMθ)Uα
= dUα

θUα
.

Every p ∈ M lies in a neighborhood Uα.

So this would determine dM completely.

On the other hand, we may use this formula to define dM .

To do so we must verify that, if p ∈ Uα ∩ Uβ, then dMθ is uniquely
determined at p.
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Operator dM (Step (C) Cont’d)

Let U = Uα ∩ Uβ.

We apply Steps (A) and (B) to U, an open subset and coordinate
neighborhood with coordinate map ϕβ cut down to U.

We obtain
(dUα

θUα
)U = dUθU = (dUβ

θUβ
)U .

Therefore, (dMθ)Uα
is determined on every Uα in such a manner that

(dMθ)Uα
= (dMθ)Uβ

on points common to Uα and Uβ.

This determines dM .

Properties (1)-(3) hold on each Uα.

Moreover, the other operations of exterior algebra commute with
restriction.

That is, (θ ∧ σ)U = θU ∧ σU , and so on.

So dM has the required properties as an operator on
∧
(M).

George Voutsadakis (LSSU) Differential Geometry December 2024 189 / 203



Tensors and Tensor Fields on Manifolds Exterior Differentiation

Notation

Since dM is uniquely defined for every C∞ manifold M, we can drop
the subscript M and use d to denote all of these operators.

We know from the above proof that d commutes with restriction of
differential forms to coordinate neighborhoods.

We investigate how it behaves relative to a C∞ mapping F : M → N.

Any such mapping, as we know, induces a homomorphism

F ∗ :
∧

(N) →
∧

(M).

The following theorem gives the relation between F ∗ and d .
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Mappings and Differential Operators

Theorem

F ∗ and d commute, that is, F ∗ ◦ d = d ◦ F ∗.

We know that:
Both F ∗ and d are R-linear;
The equality F ∗(dϕ) = d(F ∗ϕ) holds on M , if it holds locally.

By the facts concerning d , determined above, it suffices to establish
the theorem for pairs V , ψ, U, θ of coordinate neighborhoods on M,
N, respectively, such that F (V ) ⊆ U.

Let m = dimM and n = dimN and x1, . . . , xm and y1, . . . , yn be the
coordinate functions on V ,U, respectively.

Let y j = y j(x1, . . . , xm), j = 1, . . . , n, give F in local coordinates.

Then it is enough to establish F ∗ ◦ d = d ◦ F ∗ on forms of type

ϕ = a(x)dx i1 ∧ · · · ∧ dx ik ,

since any other forms are sums of such forms.
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Mappings and Differential Operators (Cont’d)

We proceed by induction on the degree of the forms.

Consider a forms a(x) of degree zero, i.e., a C∞ function.

For Xp ∈ Tp(M), we have

F ∗(da)(Xp) = da(F∗Xp)

= (F∗Xp)a

= Xp(a ◦ F )
= Xp(F

∗a)

= d(F ∗a)(Xp).

Therefore, F ∗(da) = d(F ∗a).
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Mappings and Differential Operators (Cont’d)

Suppose the theorem to be true for all forms of degree less than k .

Let ϕ be a k-form of the type above.

Let ϕ1 = adx i1 and ϕ2 = dx i2 ∧ · · · ∧ dx ik .

So ϕ = ϕ1 ∧ ϕ2, with both ϕ1 and ϕ2 of degree less than k .

Moreover, since d2 = 0, we have dϕ2 = 0.

Thus,

d(F ∗(ϕ1 ∧ ϕ2)) = d [(F ∗ϕ1) ∧ (F ∗ϕ2)]

= (dF ∗ϕ1) ∧ (F ∗ϕ2)− (F ∗ϕ1) ∧ (dF ∗ϕ2)

= F ∗(dϕ1) ∧ F ∗ϕ2

= F ∗(dϕ1 ∧ ϕ2)

= F ∗d(ϕ1 ∧ ϕ2).
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Defining a Subspace

On a vector space V of dimension n, a k-dimensional subspace D

may be determined in either of two equivalent ways:

(i) By giving a basis e1, . . . , ek of D;
(ii) By giving n − k linearly independent elements of V

∗, say ϕk+1, . . . , ϕn

which are zero on D.

In fact we may extend e1, . . . , ek to a basis e1, . . . , en of V so that
ϕk+1, . . . , ϕn is part of a dual basis ϕ1, . . . , ϕn of V

∗.
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An Auxiliary Lemma

Lemma

Let ω ∈ ∧1(M) and X ,Y ∈ X(M). Then we have

dω(X ,Y ) = Xω(Y )− Yω(X )− ω([X ,Y ]).

It is enough to prove that it is true locally, say in a coordinate
neighborhood of each point.

In any such neighborhood with coordinates x1, . . . , xn,

ω =

n∑

i=1

aidx
i .

The equation of the lemma holds for all ω if it holds for every ω of
the form fdg , where f , g are C∞ functions on the neighborhood.

Suppose, then, that ω = fdg .

Let X ,Y be C∞-vector fields.
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An Auxiliary Lemma

We evaluate both sides of the equation of the lemma separately.

We get

dω(X ,Y ) = df ∧ dg(X ,Y )

= df (X )dg(Y )− dg(X )df (Y )

= (Xf )(Yg)− (Xg)(Yf );

Moreover,

Xω(Y )− Yω(X )− ω([X ,Y ])

= X (fdg(Y ))− Y (fdg(X ))− fdg([X ,Y ])

= X (f (Yg))− Y (f (Xg))− f (XYg − YXg)

= (Xf )(Yg)− (Xg)(Yf )

after cancelation.

This proves the lemma.
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Involutiveness of a Distribution

Theorem

Let ∆ be a C∞ distribution of dimension k on M, dimM = n.
Then ∆ is involutive if and only if, in a neighborhood V of each p ∈ M,
there exist n − k linearly independent one-forms ϕk+1, ϕk+2, . . . , ϕn which
vanish on ∆ and satisfy the condition

dϕr =
n∑

ℓ=k+1

θrℓ ∧ ϕℓ, r = k + 1, . . . , n,

for suitable 1-forms θrℓ .

This may be considered a sort of dual statement to our earlier
condition on ∆ in terms of the existence of a local basis X1, . . . ,Xk at
each point.
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Involutiveness of a Distribution (Cont’d)

Suppose a distribution ∆ is given.

Consider an arbitrary point.

Let V be a neighborhood.

In V , a local basis X1, . . . ,Xk of ∆ can be completed to a field of
frames

X1, . . . ,Xk , . . . ,Xn.

Let
ϕ1, . . . , ϕk , ϕk+1, . . . , ϕn

be the uniquely determined dual field of coframes.

Then ϕk+1, . . . , ϕn vanish on X1, . . . ,Xk and hence on ∆.
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Involutiveness of a Distribution (Cont’d)

Now consider the expressions

[Xi ,Xj ] =

n∑

i=1

cℓijXℓ,

giving [Xi ,Xj ] as linear combinations of the basis.

The distribution ∆ is involutive if and only if, in the preceding
expressions, we have

cℓij = 0, 1 ≤ i , j ≤ k , k + 1 ≤ ℓ ≤ n.

Using the preceding lemma and recalling that ϕi (Xj) is constant for
1 ≤ i , j ≤ n, we compute dϕr ,

dϕr (Xi ,Xj) = − ϕr ([Xi ,Xj ])

= −∑n
ℓ=1 c

ℓ
ijϕ

r (Xℓ)

= − c rij , 1 ≤ i , j , r ≤ n.
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Involutiveness of a Distribution (Cont’d)

On the other hand

dϕr =
1

2

n∑

s,t

brstϕ
s ∧ ϕt , 1 ≤ r ≤ n,

where brst are uniquely determined if we assume brst = −brts .

Hence,

dϕr (Xi ,Xj) = 1
2

∑
s,t b

r
st [ϕ

s(Xi )ϕ
t(Xj)− ϕt(Xi )ϕ

s(Xj)]

= 1
2(b

r
ij − brji)

= brij .

From this we have brij = −c rij .
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Involutiveness of a Distribution (Cont’d)

So the system is involutive if and only if, for each r > k ,

dϕr =

n∑

i=k+1





k∑

i=1

briℓϕ
i +

n∑

j=k+1

1

2
brjℓϕ

j



 ∧ ϕℓ.

That is, the terms involving brij , with 1 ≤ i , j ≤ k and r > k , vanish.

Taking the terms in {} as θrℓ , we have completed the proof.
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Ideals

We can state the preceding theorem in a more elegant way if we
introduce the concept of an ideal of

∧
(M).

Definition

An ideal of
∧
(M) is a subspace I which has the property that whenever

ϕ ∈ I and θ ∈ ∧(M), then
ϕ ∧ θ ∈ I.

Example: Let I be a subspace of
∧1(M), that is, a collection of

one-forms closed under addition and multiplication by real numbers.

Then the set ∧
(M) ∧ I = {θ ∧ ϕ : ϕ ∈ I}

is an ideal, the ideal generated by I.
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Rephrasing the Theorem in Terms of Ideals

Now suppose ∆ is a distribution on M.

Suppose, also, that I is the collection of 1-forms ϕ on M which
vanish on ∆, that is, for each p ∈ M,

ϕp(Xp) = 0, for all Xp ∈ ∆p .

I is a subspace.

In fact, if f ∈ C∞(M) and ϕ ∈ I, then f ϕ ∈ I.
The we have the following characterization.

∆ is in involution if and only if

dI = {dϕ : ϕ ∈ I}

is in the ideal generated by f .
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