George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) **[Differential Geometry](#page-202-0)** December 2024 1/203

1 [Tensors and Tensor Fields on Manifolds](#page-2-0)

- **[Tangent Covectors](#page-2-0)**
- [Bilinear Forms and The Riemannian Metric](#page-31-0)
- [Riemannian Manifolds as Metric Spaces](#page-48-0)
- [Partitions of Unity](#page-66-0)
- **o** [Tensor Fields](#page-92-0)
- o [Multiplication of Tensors](#page-119-0)
- [Orientation of Manifolds and the Volume Element](#page-155-0)
- **o** [Exterior Differentiation](#page-178-0)

Subsection 1

Dual Space and Covectors

- \bullet We suppose that **V** is a finite-dimensional vector space over R.
- Let V^* denote its dual space.
- V^* is the space whose elements are linear functions from V to \mathbb{R} .
- \bullet Linear functions from \boldsymbol{V} to \boldsymbol{R} are called **covectors**.

Notation

- Suppose $\sigma \in V^*$ so that $\sigma: V \to \mathbb{R}$.
- Then, for $v \in V$, we denote the value of σ on v by

$$
\sigma(\mathbf{v})
$$
 or $\langle \mathbf{v}, \sigma \rangle$.

Recall that addition and multiplication by scalars in V^* are defined by the equations

$$
(\sigma_1 + \sigma_2)(\mathbf{v}) = \sigma_1(\mathbf{v}) + \sigma_2(\mathbf{v}),
$$

$$
(\alpha \sigma)(\mathbf{v}) = \alpha(\sigma(\mathbf{v})).
$$

These give the values of $\sigma_1 + \sigma_2$ **and** $\alpha\sigma$ **,** $\alpha \in \mathbb{R}$ **, on an arbitrary** $v \in V$, the right-hand operations taking place in R.

Linear Algebra Fact (i)

- Let $F_*: V \to W$ be a linear map of vector spaces.
- It uniquely determines a dual linear map $F^*: \mathcal{W}^* \to \mathcal{V}^*$ by the prescription

$$
(F^*\sigma)(\mathbf{v})=\sigma(F_*(\mathbf{v})).
$$

This can be written, equivalently,

$$
\langle \mathbf{v}, F^*(\sigma) \rangle = \langle F_*(\mathbf{v}), \sigma \rangle.
$$

- When F_* is injective, then F^* is surjective.
- When F_* is surjective, then F^* is injective.

Linear Algebra Fact (ii)

- Let e_1, \ldots, e_n be a basis of V .
- There exists a unique dual basis

$$
\omega^1,\ldots,\omega^n
$$

of V^* such that

$$
\omega^i(\mathbf{v}_j) = \delta^i_j = \begin{cases} 0, & \text{if } i \neq j, \\ 1, & \text{if } i = j. \end{cases}
$$

Linear Algebra Fact (ii) (Cont'd)

If $v \in V$, then $\omega^1(v), \ldots, \omega^n(v)$ are exactly the components of v in the basis e_1, \ldots, e_n

$$
\mathbf{v}=\sum_{j=1}^n\omega^j(\mathbf{v})\mathbf{e}_j.
$$

Indeed, if $\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{e}_i$,

$$
\omega^j(\mathbf{v}) = \omega^j\left(\sum_{i=1}^n \alpha_i \mathbf{e}_i\right) = \sum_{i=1}^n \alpha_i \omega^j(\mathbf{e}_i) = \alpha_j.
$$

Linear Algebra Facts (Cont'd)

- Observe that in Fact (i), the definition of F^* does not require the choice of a basis.
- Therefore F^* is naturally or canonically determined by F_* .
- According to Fact (ii), the vector spaces \boldsymbol{V} , \boldsymbol{V}^* have the same dimension.
- Thus, they must be isomorphic.
- There is no natural isomorphism.
- However, the following Fact (iii) holds.

Linear Algebra Fact (iii)

There is a natural isomorphism of \bm{V} onto $(\bm{V}^*)^*$ given by

$$
\textbf{v} \rightarrow \langle \textbf{v}, \cdot \rangle.
$$

- That is, \bm{v} is mapped to the linear function on \bm{V}^* whose value on any $\sigma \in V^*$ is $\langle v, \sigma \rangle$.
- Note that $\langle v, \sigma \rangle$ is linear in each variable separately (with the other fixed).
- **Q** This shows that:
	- The dual of V^* is V itself;
	- Accounts for the name "dual" space;
	- Validates the use of the symmetric notation

```
\langle v, \sigma \rangle
```
in preference to the functional notation $\sigma(\mathbf{v})$.

Covectors on Manifolds

- Let M be a C^{∞} manifold and assume $p \in M$.
- We denote by $T^*_\rho(M)$ the dual space to $T_\rho(M).$
- Thus, $\sigma_p \in T^*_p(M)$ is a linear mapping $\sigma_p : T_p(M) \to \mathbb{R}$.
- **Its value on** $X_p \in T_p(M)$ **is denoted by** $\sigma_p(X_p)$ **or** $\langle X_p, \sigma_p \rangle$ **.**
- Suppose E_{1p}, \ldots, E_{np} is a basis of $T_p(M)$.
- There is a uniquely determined dual basis $\omega_{\bm p}^1,\dots,\omega_{\bm p}^n$ satisfying, by definition,

$$
\omega_p^i(E_{jp})=\delta_j^i.
$$

 \circ The components of σ_{p} relative to this basis are equal to the values of σ_p on the basis vectors E_{1p}, \ldots, E_{np} ,

$$
\sigma_p = \sum_{i=1}^n \sigma_p(E_{ip}) \omega_p^i.
$$

Covector Fields on Manifolds

- We have defined a vector field on M.
- Similarly, we may define a **covector field**.
- **I** It is a (regular) function σ , assigning to each $p \in M$ an element σ_p of $\mathcal{T}_p^*(M)$.
- We denote such a function by σ, λ, \ldots
- \bullet We denote by $\sigma_p, \lambda_p, \ldots$ its value at p.
- This is the element of $T^*_{p}(M)$ assigned to p .

Vector and Covector Fields on Manifolds

- \bullet Let σ be a covector field on M.
- \bullet Let X be a vector field on on an open subset U of M.
- Then $\sigma(X)$ defines a function on U.
- \circ To each $p \in U$ we assign the number

$$
\sigma(X)(p)=\sigma_p(X_p).
$$

 \bullet We often write $\sigma(X_p)$ for $\sigma_p(X_p)$ if σ is a covector field.

Covector Fields

Definition

A C^r-covector field σ on M, $r \ge 0$, is a function which assigns to each $p \in M$ a covector $\sigma_p \in T^*_p(M)$ in such a manner that for any coordinate neighborhood U, φ with coordinate frames E_1, \ldots, E_n , the functions $\sigma(E_i)$, $i = 1, \ldots, n$, are of class C^r on U . For convenience, "covector field" will mean C^{∞} -covector field.

- One may wish to avoid the use of local coordinates.
- In that case, the following (apparently stronger) regularity condition could be used to replace the requirement of the definition.

Suppose that σ assigns to each $p \in M$ an element σ_p of $T^*_p(M)$. σ is of class C', iff, for any C^{∞} -vector field X on an open subset W of M, the function $\sigma(X)$ is of class C^r on W.

Covector Fields (Cont'd)

- We show why the preceding equivalence holds.
- \bullet Take a covering of W by coordinate neighborhoods of M (whose domains are in W).
- Let U, φ be such a neighborhood.
- Then, for some α^i , which are C^∞ on U ,

$$
X=\sum \alpha^i E_i.
$$

 \bullet Thus, on U.

$$
\sigma(X)=\sum \alpha^i \sigma(E_i).
$$

- This is C^r if $\sigma(E_1), \ldots, \sigma(E_n)$ are.
- Hence the condition given implies $\sigma(X)$ is of class C^r on a collection of open sets covering W .
- So it is C^r on W itself.
- o The converse is obvious.

Field of Coframes

- Let E_1, \ldots, E_n be a field of (C^{∞}) frames on an open set $U \subseteq M$.
- \bullet Consider the dual basis at each point of U.
- These define a field of dual bases ω^1,\ldots,ω^n on U satisfying

$$
\omega^i(E_j)=\delta^i_j.
$$

- \bullet We call this a field of **coordinate coframes** if E_1, \ldots, E_n are coordinate frames.
- The ω^1,\ldots,ω^n are of class C^∞ by the criterion just stated.
- Covector field σ is of class C^r if and only if, for each coordinate neighborhood U, φ , the components of σ relative to the coordinate coframes are functions of class C^r on U .

Remark

- Let M be a manifold.
- Recall that $\mathfrak{X}(M)$ denotes the collection of all C^{∞} vector fields on M.
- It is important to note that a C^r -covector field defines a map of

$$
\mathfrak{X}(M)\to C^r(M).
$$

- This map is not only R-linear but even $C^{r}(M)$ -linear.
- More precisely, suppose:
	- $f, g \in C^{r}(M);$
	- \bullet X and Y are vector fields on M.

Then

$$
\sigma(fX+gY)=f\sigma(X)+g\sigma(Y),
$$

since these functions are equal at each $p \in M$.

Example: Differential Covector Field

- Let f be a C^{∞} function on M.
- f defines a C^{∞} -covector field, denoted df, by the formula

$$
\langle X_p, df_p \rangle = X_p f
$$
 or $df_p(X_p) = X_p f$.

 \bullet For a vector field X on M, this gives

$$
df(X)=Xf,
$$

a C^{∞} function on M

- \bullet This covector field df is called the **differential of** f.
- Its value at p, df_p , is called the **differential of** f at p.

- In the case of an open set $U \subseteq \mathbb{R}^n$, we verify that it coincides with the usual notion of differential of a function in advanced calculus.
- In fact, it makes the notion of differential more precise.
- In this case, the coordinates x^i of a point of U are functions on U . \bullet
- By our definition, dx^i assigns to each vector X at $p \in U$ a number $X_p x^i$, its *i*th component in the natural basis of $\mathbb{R}^n.$
- o In particular,

$$
\left\langle \frac{\partial}{\partial x^j}, dx^i \right\rangle = \frac{\partial x^i}{\partial x^j} = \delta^i_j.
$$

So we see that $d\mathsf{x}^1,\ldots,d\mathsf{x}^n$ is exactly the field of coframes dual to ∂ $\frac{\partial}{\partial x^1},\ldots,\frac{\partial}{\partial x^n}.$

Example (Cont'd)

- Suppose f is a C^{∞} function on U.
- Then we may express df as a linear combination of $dx^{1}, \ldots, dx^{n}.$
- We know that the coefficients in this combination, that is the components of df, are given by df $(\frac{\partial}{\partial x})$ $\frac{\partial}{\partial x^i}$) = $\frac{\partial f}{\partial x^i}$.
- **o** Thus we have

$$
df = \frac{\partial f}{\partial x^1} dx^1 + \cdots + \frac{\partial f}{\partial x^n} dx^n.
$$

- Suppose $a \in U$ and $X_a \in \mathcal{T}_a(\mathbb{R}^n)$.
- Then X_a has components, say, h^1,\ldots,h^n and geometrically X_a is the vector from a to $a + h$.
- We have

$$
df(X_a) = X_a f = \left(\sum h^i \frac{\partial}{\partial x^i}\right) f = \sum h^i \left(\frac{\partial f}{\partial x^i}\right)_a.
$$

Example (Cont'd)

- In particular, $dx^{i}(X_{a}) = h^{i}$.
- \bullet That is, dx' measures the change in the *i*th coordinate of a point which moves from the initial to the terminal point of X_a .
- The preceding formula may thus be written

$$
df(X_a) = \left(\frac{\partial f}{\partial x^1}\right)_a dx^1(X_a) + \cdots + \left(\frac{\partial f}{\partial x^n}\right)_a dx^n(X_a).
$$

- **This gives us a very good definition of the differential of a function** f on $\mathbf{U} \subseteq \mathbb{R}^n$.
	- \bullet df is a field of linear functions which, at each point a of the domain of f, assigns to the vector X_a a number.
	- \circ X₂ can be interpreted as the displacement of the *n* independent variables from a, i.e., it has a as initial and $a + h$ as terminal point.
	- o $df(X_a)$ approximates (linearly) the change in f between these points.

Covector Fields and Mappings

- Let $F : M \to N$ be a smooth mapping and suppose $p \in M$.
- Then, as we know, there is induced a linear map

$$
F_*: T_p(M) \to T_{F(p)}(N).
$$

We know that $\bar{F_*}$ determines a linear map $\bar{F^*}$: $\bar{T_F^*}$ $\tau^*_{F(p)}(N) \to \tau^*_p(M)$, given by the formula

$$
F^*(\sigma_{F(p)})(X_p)=\sigma_{F(p)}(F_*(X_p)).
$$

In general, F_* **does not map vector fields on M to vector fields on N.**

It is surprising, then, that given any C^r -covector field on N, F^* determines (uniquely) a covector field of the same class C^r on M by this formula.

Covector Field Determined by a Mapping

Theorem

Let $F : M \to N$ be C^{∞} and let σ be a covector field of class C^r on N . Then

$$
F^*(\sigma_{F(p)})(X_p) = \sigma_{F(p)}(F_*(X_p))
$$

defines a C^r -covector field on M .

 \circ Let σ be a covector field on N.

By definition, for any $p \in M$, there is exactly one image point $F(p)$. It is, thus, clear that $F^*(\sigma)$ is defined uniquely at each point of M. Suppose that, for $p_0 \in M$, we take coordinate neighborhoods U, φ of p_0 and V, ψ of $F(p_0)$, such that $F(U) \subseteq V$.

Denote the coordinates on U by (x^1, \ldots, x^m) .

Denote the coordinates on V by (y^1, \ldots, y^n) .

Covector Field Determined by a Mapping (Cont'd)

• Then we may suppose the mapping F to be given in local coordinates by

$$
y^i = f^i(x^1, \ldots, x^m), \quad i = 1, \ldots, n.
$$

Let the expression for σ on V, in the local coframes, at $q \in V$ be

$$
\sigma_q = \sum_{i=1}^n \alpha_i(q)\widetilde{\omega}_q^i,
$$

where $\widetilde{\omega}^1_q,\ldots,\widetilde{\omega}^n_q$ is the basis of $\mathcal{T}_q^*(N)$ dual to the coordinate frames. The functions $\alpha ^{i}(q)$ are of class C^{r} on $V.$ by hypothesis. Let p be any point on U and $q = F(p)$ its image. Using the formula defining F^* , we see that

$$
(F^*(\sigma))_p(E_{jp})=\sigma_{F(p)}(F_*(E_{jp}))=\sum \alpha_i(F(p))\widetilde{\omega}_{F(p)}^i(F_*(E_{jp})).
$$

Covector Field Determined by a Mapping (Cont'd)

We got

$$
(F^*(\sigma))_p(E_{jp})=\sum \alpha_i(F(p))\widetilde{\omega}_{F(p)}^i(F_*(E_{jp})).
$$

However, we have previously obtained the formula

$$
F_*(E_{jp})=\sum_{k=1}^n\frac{\partial y^k}{\partial x^j}\widetilde{E}_{k}F_{(p)},\quad j=1,\ldots,m,
$$

the derivatives being evaluated at $\varphi(\rho)=(\mathsf{x}^1(\rho),\ldots,\mathsf{x}^{\mathsf{m}}(\rho)).$ Using $\widetilde{\omega}^i(\widetilde{E}_j) = \delta^i_j$, we obtain

$$
(F^*(\sigma))_p(E_{jp})=\sum_{i=1}^n\alpha_i(F(p))\left(\frac{\partial y^i}{\partial x^j}\right)_{\varphi(p)}
$$

As p varies over U these expressions give the components of $F^*(\sigma)$ relative to ω^1,\ldots,ω^m on $\,U$, the coframes dual to $E_1,\ldots,E_m.$ They are clearly of class C^r at least, completing the proof.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 25/203

.

Corollary

Using the notation above, suppose:

$$
\begin{aligned}\n\circ \sigma &= \sum_{i=1}^{n} \alpha_i \widetilde{\omega}^i \text{ on } V; \\
\circ \ F^*(\sigma) &= \sum_{j=1}^{m} \beta_j \omega^j \text{ on } U,\n\end{aligned}
$$

where α_i and β_j are functions on V and U , respectively, and $\widetilde{\omega}^i, \omega^j$ are the coordinate coframes. Then:

• For
$$
i = 1, ..., n
$$
,
$$
F^*(\widetilde{\omega}^i) = \sum_{j=1}^m \frac{\partial y^i}{\partial x^j} \omega^j;
$$

$$
\beta_j = \sum_{i=1}^n \frac{\partial y^i}{\partial x^j} \alpha_i.
$$

 \bullet For $i = 1, \ldots, m$,

A Special Case

o The formulas

$$
F^*(\widetilde{\omega}^i)=\sum_{j=1}^m\frac{\partial y^i}{\partial x^j}\omega^j,\quad i=1,\ldots,n,
$$

give the relation of the bases.

o The formulas

$$
\beta_j=\sum_{i=1}^n\frac{\partial y^i}{\partial x^j}\alpha_i, \quad j=1,\ldots,m,
$$

give the relation of the components.

- Apply this directly to a map of an open subset of \mathbb{R}^m into an open subset of \mathbb{R}^n .
- Then we get for $F^*(dy^i)$ the formula

$$
F^*(dy^i)=\sum_{j=1}^m\frac{\partial y^i}{\partial x^j}dx^j,\quad i=1,\ldots,n.
$$

Remark

- Suppose we apply the above considerations to the diffeomorphism $\varphi: U \to \mathbb{R}^n$ of a coordinate neighborhood U, φ on M.
- Let $V \subseteq \mathbb{R}^n$ denote $\varphi(U)$.
- Let dx^1, \ldots, dx^n be the differentials of the coordinates of \mathbb{R}^n .
- That is, dx^1, \ldots, dx^n is the dual basis to $\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}.$
- By definition, we have $\varphi_*^{-1}(\frac{\partial}{\partial x})$ $\frac{\partial}{\partial x^i}$) = E_i.
- Hence, $\varphi_*(E_i) = \frac{\partial}{\partial x^i}$, for each *i*.
- Further, the definition of F_* above gives for $\varphi_*(d\mathrm{x}^i)$

$$
\langle E_j, \varphi_*(dx^i) \rangle = \langle \varphi_*(E_j), dx^i \rangle = \delta_j^i.
$$

It follows that $\varphi_*(d\mathsf{x}^i)=\omega^i,\,i=1,\ldots,n,$ the field of coframes on $\mathsf{\mathcal{U}}$ dual to the coordinate frames E_1, \ldots, E_n .

Notation

- There is a potential source of confusion in notation.
- The coordinates x^1, \ldots, x^n can be considered as functions on $U.$
- As such, they have differentials dx^{i} defined by

$$
\langle X, dx^i \rangle = Xx^i,
$$

the *i*th component of X in the coordinate frames.

- In particular, $\langle E_j, dx^i \rangle = E_j x^i = \delta_j^i$.
- So dx^1, \ldots, dx^n are dual to E_1, \ldots, E_n .
- Therefore $dx^i = \omega^i$, $i = 1, \ldots, n$.
- Combining this with the formula above gives $dx^{i} = \varphi^{*}(dx^{i})$. \bullet
- This is nonsense, unless we are careful to distinguish x^i as (coordinate) function on $U \subseteq M$, on the left, from x^i as (coordinate) function on $\varphi(U) = V \subseteq \mathbb{R}^n$, on the right.

Example

- We may apply the theorem to obtain examples of covector fields on a submanifold M of a manifold N.
- Let $i : M \rightarrow N$ be the inclusion map.
- Suppose σ is a covector field on N.
- Then $i^*(\sigma)$ is a covector field on M called the restriction of σ to M.
- It is often denoted σ_M or simply σ .
- Recall that, for each $p \in M$, $T_p(M)$ is identified with a subspace of $T_p(N)$ by the isomorphism i_* .
- So we have for $X_p \in T_p(M)$

$$
\sigma_M(X_p) = (i^*\sigma)(X_p) = \sigma(i_*(X_p)) = \sigma(X_p).
$$

The last equality is the identification.

Example (Cont'd)

- As an example, let $M \subseteq \mathbb{R}^n$.
- Let σ be a covector field on \mathbb{R}^n , for example take $\sigma = dx^1$.
- Then σ restricts to a covector field σ_M on M.
- Note that in this example dx^1 is never zero as a covector field on \mathbb{R}^n .
- \bullet But on M it is zero at any point p at which the tangent hyperplane $T_p(M)$ is orthogonal to the x^1 -axis.

Subsection 2

Bilinear Forms

- Let V be a vector space over R .
- \bullet A bilinear form on V is defined to be a map

$$
\Phi:\bm{V}\times\bm{V}\rightarrow\mathbb{R}
$$

that is linear in each variable separately.

• That is, for $\alpha, \beta \in \mathbb{R}$ and **v**, **v**₁, **v**₂, **w**, **w**₁, **w**₂ \in **V**,

$$
\Phi(\alpha \mathbf{v}_1 + \beta \mathbf{v}_2, \mathbf{w}) = \alpha \Phi(\mathbf{v}_1, \mathbf{w}) + \beta \Phi(\mathbf{v}_2, \mathbf{w}),
$$

$$
\Phi(\mathbf{v}, \alpha \mathbf{w}_1 + \beta \mathbf{w}_2) = \alpha \Phi(\mathbf{v}, \mathbf{w}_1) + \beta \Phi(\mathbf{v}, \mathbf{w}_2).
$$

- A similar definition may be made for a map Φ of a pair of vector spaces $V \times W$ over R.
- Note that the map assigning to each pair $\mathbf{v} \in \mathbf{V}$, $\sigma \in \mathbf{V}^*$ a number $\langle v, \sigma \rangle$, as discussed in the preceding section, is an example.

Bilinear Forms and Matrices

- Bilinear forms on \boldsymbol{V} are completely determined by their n^2 values on \bullet a basis e_1, \ldots, e_n of V.
- Suppose $\alpha_{ij} = \Phi(e_i, e_j)$, $1 \le i, j \le n$, are given.
- Let ${\bm v}=\sum \lambda^i{\bm e}_i, \ {\bm w}=\sum \mu^j{\bm e}_j$ be any pair of vectors in ${\bm V}.$
- Bilinearity requires that

$$
\Phi(\mathbf{v}, \mathbf{w}) = \sum_{i,j=1}^n \alpha_{ij} \lambda^i \mu^j.
$$

- Conversely, let an $n \times n$ matrix $A = (\alpha_{ii})$ of real numbers be given.
- Then the formula just given determines a bilinear form Φ.
- \bullet Thus, there is a one-to-one correspondence between $n \times n$ matrices and bilinear forms on V once a basis e_1, \ldots, e_n is chosen.
- The numbers α_{ii} are called the components of Φ relative to the basis.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 34/203

Symmetric and Skew-Symmetric Forms

• A bilinear form, or function, is called symmetric if

$$
\Phi(\mathbf{v},\mathbf{w})=\Phi(\mathbf{w},\mathbf{v}).
$$

o It is called skew-symmetric if

$$
\Phi(\mathbf{v},\mathbf{w})=-\Phi(\mathbf{w},\mathbf{v}).
$$

- \bullet It is easily seen that, regardless of the basis chosen, these correspond, respectively, to:
	- Symmetric matrices of components,

$$
A^{\mathcal{T}}=A;
$$

Skew-symmetric matrices of components,

$$
A^T=-A.
$$

Positive Definite Forms and Inner Products

A symmetric form is called **positive definite** if

$$
\Phi(\bm{v},\bm{v})\geq 0
$$

and equality holds if and only if $v = 0$.

- \bullet In this case we often call Φ an inner product on V.
- A vector space with an inner product is called a **Euclidean vector** space, since Φ allows us to define:
	- The length of a vector,

$$
\|\mathbf{v}\|=\sqrt{\Phi(\mathbf{v},\mathbf{v})}.
$$

• The angle between vectors.
Field of Bilinear Forms

Definition

A field Φ of C^r-bilinear forms, $r \geq 0$, on a manifold M consists of a function assigning to each point p of M a bilinear form Φ_p on $T_p(M)$. That is, a bilinear mapping

$$
\Phi_p: T_p(M) \times T_p(M) \to \mathbb{R},
$$

such that for any coordinate neighborhood U, φ the functions

$$
\alpha_{ij}=\Phi(E_i,E_j),
$$

defined by Φ and the coordinate frames E_1,\ldots,E_n are of class $C^r.$ Unless otherwise stated, bilinear forms will be C^{∞} . To simplify notation we usually write $\Phi(X_p, Y_p)$ for $\Phi_p(X_p, Y_p)$.

Remarks

The n^2 functions

$$
\alpha_{ij}=\Phi(E_i,E_j)
$$

on U are called the **components of** Φ **in the coordinate** neighborhood U, φ .

- \bullet Let Φ be a function assigning to each $p \in M$ a bilinear form.
- Then Φ is of class C^r if and only if for every pair of vector fields X,Y on an open set U of M , the function $\Phi(X, Y)$ is C^r on U .
- \bullet Φ is $C^{\infty}(U)$ -bilinear as well as R-bilinear.
- \circ That is, for $f \in C^{\infty}(U)$,

$$
\Phi(fX, Y) = f\Phi(X, Y) = \Phi(X, fY).
$$

Induced Mappings of Bilinear Forms

- Let $F_*: W \to V$ be a linear map of vector spaces.
- \bullet Let Φ be a bilinear form on V.
- Then the formula

$$
(F^*\Phi)(\bm{v},\bm{w})=\Phi(F_*(\bm{v}),F_*(\bm{w}))
$$

defines a bilinear form $F^*\Phi$ on W .

- We have the following properties:
	- (i) If Φ is symmetric, then $F^*\Phi$ is symmetric.
		- If Φ is skew-symmetric, then $F^*\Phi$ is skew-symmetric.
	- (ii) If Φ is symmetric, positive definite, and F_* is injective, then $F^*\Phi$ is symmetric, positive definite.
- \bullet The latter applies to the identity map i_{*} of a subspace W into V.
- In this case $i^*\Phi$ is just restriction of Φ to W :

$$
(i^*\Phi)(\mathbf{v},\mathbf{w})=\Phi(i_*\mathbf{v},i_*\mathbf{w})=\Phi(\mathbf{v},\mathbf{w}).
$$

Relation Between Components

- Let $F : M \to N$ be a C^{∞} map.
- \bullet Suppose that Φ is a field of bilinear forms on N.
- Then, just as in the case of covectors, this defines a field of bilinear forms $F^*\Phi$ on M by the formula for $(F^*\Phi)_p$ at every $p\in M$,

$$
(F^*\Phi)(X_p, Y_p) = \Phi(F_*(X_p), F_*(Y_p)).
$$

Theorem

Let $F: M \to N$ be a C^{∞} map and Φ a bilinear form of class C^r on N. Then $F^*\Phi$ is a C^r -bilinear form on M. Moreover, if Φ is symmetric (skew-symmetric), then $F^*\Phi$ is symmetric (skew-symmetric).

 \bullet Suppose U, φ is a coordinate neighborhood of p, V, ψ is a coordinate neighborhood of $F(p)$, such that

$$
F(U)\subseteq V.
$$

Relation Between Components (Cont'd)

• We may write

$$
\beta_{ij}(p) = (F^*\Phi)_p(E_{ip}, E_{jp}) = \Phi(F_*(E_{ip}), F_*(E_{jp})).
$$

Applying a previous theorem, we have

$$
\beta_{ij}(p) = \sum_{s,t=1}^n \frac{\partial y^s}{\partial x^i} \frac{\partial y^t}{\partial x^j} \Phi(\widetilde{E}_{sF(p)}, \widetilde{E}_{tF(p)}).
$$

This gives a formula for the matrix of components (β_{ij}) of $F^*\Phi$ at p in terms of the matrix (α_{st}) of Φ at $F(p)$,

$$
\beta_{ij}=\sum_{s,t=1}^n\frac{\partial y^s}{\partial x^i}\frac{\partial y^t}{\partial x^j}\alpha_{st}(F(p)),\quad 1\leq i,j\leq m.
$$

The functions β_{ij} , thus defined, are of class C^r at least on $\mathsf{U}.$ The statements about symmetry and skew-symmetry are obvious consequences of Property (i), mentioned above.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 41/203

Immersions and Positive Definite Forms

Corollary

If F is an immersion and Φ is a positive definite, symmetric form, then $F^*\Phi$ is a positive definite, symmetric bilinear form.

We must check that $F^*\Phi$ is positive definite at each $p\in M.$ Let X_p be any vector tangent to M at p. Then

$$
F^*\Phi(X_p, X_p) = \Phi(F_*(X_p), F_*(X_p)) \geq 0.
$$

Moreover, equality holds only if $F_*(X_p) = 0$. However, F is an immersion.

So we have

$$
F_*(X_p) = 0 \quad \text{if and only if} \quad X_p = 0.
$$

Riemannian Manifolds

Definition

A manifold M on which there is defined a field of symmetric, positive definite, bilinear forms Φ is called a Riemannian manifold and Φ the Riemannian metric.

We shall assume always that Φ is of class C^{∞} .

Example

• The simplest example is \mathbb{R}^n with its natural inner product

$$
\Phi_a(X_a, Y_a) = \sum_{i=1}^n \alpha^i \beta^i,
$$

where
$$
X = \sum \alpha^i \frac{\partial}{\partial x^i}
$$
 and $Y = \sum \beta^i \frac{\partial}{\partial x^i}$.

At each point we have

$$
\Phi\left(\frac{\partial}{\partial x^i},\frac{\partial}{\partial x^j}\right)=\delta_{ij}.
$$

- So the matrix of components of Φ, relative to the standard basis, is constant and equals I, the identity matrix.
- o It follows that Φ is C^{∞} .

More Examples

- Any imbedded or immersed sub manifold M of \mathbb{R}^n is endowed with a Riemannian metric from \mathbb{R}^n by virtue of the imbedding (or immersion) $F: M \to \mathbb{R}^n$.
- \bullet Thus, for example, a surface M in \mathbb{R}^3 has a Riemannian metric.
- The idea of the corollary in this case is very simple.
- Let $i : M \to \mathbb{R}^3$ be the identity.
- Let X_p, Y_p be tangent vectors to M at p.
- Then

$$
i^*\Phi(X_p, Y_p) = \Phi(i_*X_p, i_*Y_p) = \Phi(X_p, Y_p).
$$

More Examples (Cont'd)

We got

$$
i^*\Phi(X_p,Y_p)=\Phi(X_p,Y_p).
$$

- That is, we simply take the value of the form on X_p , Y_p considered as vectors in \mathbb{R}^3 , using our standard identification of $\mathcal{T}_\rho(M)$ with a subspace of $\mathcal{T}_p(\mathbb{R}^3)$.
- In particular S^2 , the unit sphere of \mathbb{R}^3 , has a Riemannian metric induced by the standard inner product in \mathbb{R}^3 .
- Let X_p, Y_p be tangent to S^2 at p .
- Then $\Phi(X_p, Y_p)$ is just their inner product in \mathbb{R}^3 .

First Fundamental Form

- Classical differential geometry deals with properties of surfaces in Euclidean space.
- The inner product Φ on the tangent space at each point of the surface, inherited from Euclidean space, is an essential element in the study of the geometry of the surface.
- **It is known as the first fundamental form of the surface.**

Properties of Bilinear Forms: Rank

 \bullet We define the rank of a form Φ on $\mathbf V$ to be the codimension of the subspace

$$
\boldsymbol{W} = \{ \boldsymbol{v} \in \boldsymbol{V} : \Phi(\boldsymbol{v}, \boldsymbol{w}) = 0, \text{ for all } \boldsymbol{w} \in \boldsymbol{V} \}.
$$

- \bullet That is, rank $\Phi = \dim V \dim W$.
- The following facts are often useful:
	- (iii) If Φ is a bilinear form on **V**, then the linear mapping $\varphi : \mathbf{V} \to \mathbf{V}^*$ defined by $\langle w, \varphi(v) \rangle = \Phi(w, v)$ is an isomorphism onto if and only if $rank\Phi = \dim V$.
	- (iv) Every bilinear form Φ may be written uniquely as the sum of a symmetric and a skew-symmetric bilinear form, namely,

$$
\Phi(\mathbf{v},\mathbf{w})=\frac{1}{2}[\Phi(\mathbf{v},\mathbf{w})+\Phi(\mathbf{w},\mathbf{v})]+\frac{1}{2}[\Phi(\mathbf{v},\mathbf{w})-\Phi(\mathbf{w},\mathbf{v})].
$$

(v) If a skew-symmetric form Φ has a rank equal to dim **V**, then dim **V** is an even number.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 48/203

Subsection 3

Importance of Riemannian Manifolds

- The importance of the Riemannian manifold derives from the fact that it makes the tangent space at each point into a Euclidean space, with inner product defined by $\Phi(X_p, Y_p)$.
- This enables us to define:
	- Angles between curves, that is, the angle between their tangent vectors X_p and Y_p at their point of intersection;
	- \bullet Lengths of curves on M.
- Thus we may study many questions concerning the geometry of these manifolds.
- This forms a large part of the classical differential geometry of surfaces in \mathbb{R}^3 .

Defining the Length of a Curve

o Let

$$
t\to p(t),\quad a\leq t\leq b,
$$

be a curve of class C^1 on a Riemannian manifold $M.$

 \bullet Then its length L is defined to be the value of the integral

$$
L = \int_{a}^{b} \left(\Phi \left(\frac{dp}{dt}, \frac{dp}{dt} \right) \right)^{1/2} dt.
$$

- The integrand is a function of t alone. \bullet
- \bullet So a more precise notation is to denote its value at each t by

$$
\Phi_{p(t)}\left(\frac{dp}{dt},\frac{dp}{dt}\right),\,
$$

where $\frac{dp}{dt} \in \mathcal{T}_{p(t)}(\mathcal{M})$ is the tangent vector to the curve at $p(t).$ This function is continuous, by the continuity of $\frac{dp}{dt}$ and Φ .

Independence of the Length from Parametrization

• The value of the integral

$$
L = \int_{a}^{b} \left(\Phi \left(\frac{dp}{dt}, \frac{dp}{dt} \right) \right)^{1/2} dt
$$

is independent of the parametrization.

• Consider a new parametrization

$$
t = f(s), \quad c \leq s \leq d.
$$

We have given the formula for change of parameter,

$$
\frac{dp}{ds} = \frac{dp}{dt}\frac{dt}{ds}.
$$

o So we obtain

$$
\int_c^d \left(\Phi\left(\frac{dp}{ds}, \frac{dp}{ds}\right) \right)^{1/2} ds = \int_a^b \left(\Phi\left(\frac{dp}{dt}, \frac{dp}{dt}\right) \left(\frac{dt}{ds}\right)^2 \right)^{1/2} \frac{ds}{dt} dt
$$

=
$$
\int_a^b \left(\Phi\left(\frac{dp}{dt}, \frac{dp}{dt}\right) \right)^{1/2} dt.
$$

Parametrization by the Length

- Consider the arc length along the curve from $p(a)$ to $p(t)$, which may be denoted by $s = L(t)$.
- It gives a new parameter by the formula

$$
s = L(t) = \int_a^t \left(\Phi \left(\frac{dp}{dt}, \frac{dp}{dt} \right) \right)^{1/2} dt.
$$

This implies

$$
\frac{ds}{dt} = \left(\Phi\left(\frac{dp}{dt}, \frac{dp}{dt}\right)\right)^{1/2}
$$

Equivalently, \bullet

$$
\left(\frac{ds}{dt}\right)^2 = \Phi\left(\frac{dp}{dt}, \frac{dp}{dt}\right).
$$

.

Parametrization by the Length (Cont'd)

• Let U, φ be a coordinate neighborhood with coordinate frames

$$
E_{1p},\ldots,E_{np}.
$$

- Within \mathcal{U},φ , with $\varphi(\pmb{\rho})=\varkappa=(\varkappa^1,\ldots,\varkappa^n),$ we have $\Phi(E_{in}, E_{in}) = g_{ii}(x)$.
- The curve is given by

$$
\varphi(p(t))=(x^1(t),\ldots,x^n(t)).
$$

 \circ So $L(t)$ becomes

$$
s = L(t) = \int_a^t \left(\sum g_{ij}(x(t)) \frac{dx^i}{dt} \frac{dx^j}{dt} \right)^{1/2} dt.
$$

So, in local coordinates, the Riemannian metric is abbreviated

$$
ds^2=\sum_{i,j=1}^ng_{ij}(x)dx^idx^j.
$$

The Case of \mathbb{R}^n

Consider \mathbb{R}^n , with its standard inner product.

Let

$$
p(t)=(x^1(t),\ldots,x^n(t)),\quad a\leq t\leq b,
$$

be a curve in \mathbb{R}^n .

o Then we have

$$
\Phi\left(\frac{\partial}{\partial x^i},\frac{\partial}{\partial x^j}\right)=\delta_{ij}.
$$

o Moreover,

$$
\frac{dp}{dt} = \sum_{i=1}^n \dot{x}^i(t) \frac{\partial}{\partial x^i}.
$$

So we have the familiar formula for arc length

$$
L = \int_{a}^{b} \left(\sum_{i=1}^{n} (\dot{x}^{i}(t))^{2} \right)^{1/2} dt.
$$

Connected Riemannian Manifolds as Metric Spaces

Let D^1 be the class of functions that are piecewise C^1 .

Theorem

A connected Riemannian manifold is a metric space with the metric

 $d(p,q) =$ infimum of the lengths of curves of class D^1 from p to q.

Its metric space topology and manifold topology agree.

 \bullet Since M is arcwise connected, $d(p, q)$ is defined.

By definition $d(p, q)$ is symmetric and nonnegative.

A curve from p_1 to p_2 and a curve from p_2 to p_3 may be joined to give a curve from p_1 to p_3 .

The length of this curve is the sum of the lengths of the two curves.

It follows that the triangle inequality is satisfied.

• In order to complete the proof we need some inequalities. Let p be an arbitrary point of M. Let U, φ be a coordinate neighborhood, with $\varphi(p) = (0, \ldots, 0)$. Let $a > 0$ be a fixed real number with the property that

$$
\varphi(U)\supseteq \overline{B}_a(0),
$$

the closure of the open ball of radius a and center the origin of \mathbb{R}^n . Let x^1, \ldots, x^n denote the local coordinates.

Let $g_{ii}(x)$ the components of the metric tensor Φ as functions of these coordinates. These n^2 functions are:

- \circ C^{∞} in their dependence on the coordinates;
- The coefficients of a positive definite, symmetric matrix for each value of x in $\varphi(U)$.

• Consider the compact set defined by

$$
||x|| < r, \quad r \leq a,
$$

where $\overline{a}=(a^1,\ldots,a^n)$ is such that $\sum_{i=1}^n (a^i)^2=1$ By the properties of $g_{ij}(x)$, on this compact, the expression

$$
\left(\sum_{i,j=1}^n g_{ij}(x)\alpha^i\alpha^j\right)^{1/2}
$$

assumes a maximum value M_r and a minimum value $m_r > 0$. Let m, M denote the min and max corresponding to $r = a$. Then we have the inequalities

$$
0 < m \leq m_r \leq \left(\sum_{i,j=1}^n g_{ij}(x)\alpha^i\alpha^j\right)^{1/2} \leq M_r \leq M.
$$

Now let (β^1,\ldots,β^n) be any n real numbers, such that

$$
\left(\sum_{i=1}^n (\beta^i)^2\right)^{1/2} = b \neq 0.
$$

In the preceding, replace each α^i by $\frac{\beta^i}{b}$ $\frac{5}{b}$. Then, multiply the inequalities by b. We get, for every $x \in \overline{B}_r(0)$,

$$
0 \leq mb \leq m_r b \leq \left(\sum_{i,j=1}^n g_{ij}\beta^i\beta^j\right)^{1/2} \leq M_r b \leq Mb.
$$

Intermission: An Assumption Concerning \mathbb{R}^n

- Now we shall make the following assumption.
- If x, y are any points of \mathbb{R}^n with its standard Riemannian metric (as defined above), then the infimum of the lengths of all D^1 curves in \mathbb{R}^n from x to y is exactly the length of the line segment $\overline{\textbf{xy}}$.
- \bullet In other words, it is $||y x||$ the Euclidean distance from x to y.

Let $p(t)$, $a \le t \le b$, be a D^1 curve lying in $\varphi^{-1}(\overline{B}_r(0)) \subseteq U$ which runs from $p = p(a)$ to $q = p(b)$.

Let its length be

$$
L=\int_a^b\left[\sum_{i,j=1}^ng_{ij}(x(t))\dot{x}^i(t)\dot{x}^j(t)\right]^{1/2}dt.
$$

The last set of inequalities above and the assumption on \mathbb{R}^n imply that, for $p \neq q$,

$$
0 < m \|\varphi(q)\| < m_r \|\varphi(q)\| \leq L \\
\leq M_r \int_a^b \left[\sum_{i=1}^n (\dot{x}^i)^2 \right]^{1/2} dt \leq M \int_a^b \left[\sum_{i=1}^n (\dot{x}^i)^2 \right]^{1/2} dt.
$$

• We first use these inequalities to complete the proof that $d(p, q)$ is a metric on M.

Let q' be any point of M distinct from p .

Then, for some $r, 0 < r \le a$, q' lies outside of $\varphi^{-1}(B_r(0)) \subseteq U$.

Consider a curve of class D^1 from $p = p(0)$ to $q' = p(c)$,

$$
p(t), \quad 0 \leq t \leq c.
$$

Let L' be the length of $p(t)$, $0 \le t \le c$.

There is a first point $q = p(b)$ on the curve outside $\varphi^{-1}(B_r(0))$. That is, such that:

 $p(t)$ lies inside the neighborhood $\varphi^{-1}(B_r(0))$, for $0 \le t \le b$; $q = p(b)$ lies outside $\varphi^{-1}(B_r(0))$.

• q is the first point of the curve with $\|\varphi(q)\| = r$. Let L denote the length of the curve $p(t)$, $0 \le t \le b$. Then $L \leq L'$. It follows that $L' \ge L \ge mr$. But the curve was arbitrarily chosen. So we get $d(p, q) > mr$.

This means that if $q' \neq p$, then $d(p,q') \neq 0$. So $d(p, q)$ is a metric as claimed.

- We now show the equivalence of:
	- The metric topology on M ;
	- \bullet The manifold topology on M.

It is enough to compare the neighborhood systems at an arbitrary point p of M.

In fact, for the manifold topology, we need only consider the neighborhoods lying inside a single coordinate neighborhood U, φ . Thus, we must show that each neighborhood

$$
V_r=\varphi^{-1}(B_r(0))\subseteq U
$$

of the point p contains an ε -ball,

$$
S_{\varepsilon}(P)=\{q\in M:d(p,q)<\varepsilon\}.
$$

of the metric topology, and conversely.

- **•** This will follow from the inequalities we have obtained.
	- For, given $r \le a$, choose $\varepsilon > 0$ satisfying $\frac{\varepsilon}{m} < r$. Let q be any point of M, such that $d(p, q) < mr$. We see that $q \in V_r$, since, otherwise, $d(p,q) \ge mr$ as we have seen. But we have chosen $\varepsilon < mr$.

So we get
$$
S_{\varepsilon}(p) \subseteq V
$$
.

Conversely, suppose we consider some metric ball $S_{\varepsilon}(p)$ about p.

So $S_{\epsilon}(p)$ is a neighborhood of p in the metric topology.

Choose
$$
r > 0
$$
 so that $r < a$ and $r < \frac{\varepsilon}{M}$.

Let
$$
q \in V_r = \varphi^{-1}(B_r(0))
$$
.

Let (β^1,\ldots,β^n) denote the coordinates of q.

Let $p(t)$, $0 \le t \le b$, be the curve from p to q in V_r , defined by the coordinate functions $x^i(t)=\beta^i t.$

The length L of this curve is given by an integral which yields

$$
L=\int_0^1\left[\sum_{i,j=1}^ng_{ij}(t\beta)\beta^i\beta^j\right]^{1/2}dt\leq M_r\left[\sum_{i=1}^n(\beta^i)^2\right]^{1/2}\leq Mr<\varepsilon.
$$

Thus $d(p, q) < \varepsilon$ and $q \in S_{\varepsilon}(p)$. It follows that $\varphi^{-1}(B_r(0)) \subseteq S_{\varepsilon}(p)$.

That is, each metric neighborhood of p contains a manifold neighborhood of p (lying inside U).

This completes the proof of the theorem except for the unproved assertion about \mathbb{R}^n (theorem itself in \mathbb{R}^n).

Subsection 4

Locally Finite Coverings and Refinements

- A covering ${A_{\alpha}}$ of a manifold M by subsets is said to be **locally finite** if each $p \in M$ has a neighborhood U which intersects only a finite number of sets A_{α} .
- If $\{A_{\alpha}\}\$ and $\{B_{\beta}\}\$ are coverings of M, then $\{B_{\beta}\}\$ is called a **refinement** of $\{A_{\alpha}\}\$ if each $B_{\beta} \subseteq A_{\alpha}$, for some α .
- In these definitions we do not suppose the sets to be open.

Compactness

- Any manifold M is locally compact since it is locally Euclidean.
- It is also σ -**compact**, which means that it is the union of a countable number of compact sets.
- This follows from the local compactness and the existence of a countable basis P_1,P_2,\ldots such that each P_j is compact.
- A space with the property that every open covering has a locally finite refinement is called paracompact.
- It is a standard result of general topology that a locally compact Hausdorff space with a countable basis is paracompact.

Existence of Countable, Locally Finite Refinements

Lemma

Let $\{A_{\alpha}\}\$ be any covering of a manifold M of dimension n by open sets. Then there exists a countable, locally finite refinement $\{U_i, \varphi_i\}$, consisting of coordinate neighborhoods, with

$$
\varphi_i(U_i)=B_3^n(0), \quad i=1,2,3,\ldots,
$$

and such that

$$
V_i=\varphi^{-1}(B_1^n(0))\subseteq U_i
$$

also cover M.

 \bullet We begin with the countable basis of open sets $\{P_i\}, \overline{P}_i$ compact. Define a sequence of compact sets K_1, K_2, \ldots as follows.

Countable, Locally Finite Refinements (Cont'd)

• Let $K_1 = \overline{P}_1$.

Assume that K_1, \ldots, K_i have been defined.

Let r be the first integer such that

$$
K_i\subseteq \bigcup_{j=1}^r P_j.
$$

Define K_{i+1} by

$$
K_{i+1} = \overline{P}_1 \cup \overline{P}_2 \cup \cdots \cup \overline{P}_r = \overline{P_1 \cup \cdots \cup P_r}.
$$

Denote by K_{i+1} the interior of K_{i+1} . ◦ It contains K_i . For each $i = 1, 2, \ldots$, consider the open set $(K_{i+2} - K_{i-1}) \cap A_\alpha$. ◦

Countable, Locally Finite Refinements (Cont'd)

- Consider the open set (◦ $K_{i+2} - K_{i-1} \cap A_\alpha$. Around each p in this set choose a coordinate neighborhood $U_{p,\alpha}, \varphi_{p,\alpha}$ lying inside the set and such that: $\varphi_{p,\alpha}(p) = 0;$
	- $\varphi_{p,\alpha}(U_{p,\alpha})=B_3^n(0).$ Take $V_{p,\alpha} = \varphi_{p,\alpha}^{-1}(B_1^n(0)).$

Note that these are also interior to $(K_{i+2} - K_{i-1}) \cap A_\alpha$. ◦

Moreover allowing p, α to vary, a finite number of the collection of $V_{p,\alpha}$ covers $K_{i+1} - K_i$, a closed compact set.

Denote these by $V_{i,k}$ with k labeling the sets in this finite collection. For each $i = 1, 2, \ldots$, index k takes on just a finite number of values. Thus, the collection $V_{i,k}$ is denumerable.

Renumber these sets as V_1, V_2, \ldots

Denote by $U_1, \varphi_1, U_2, \varphi_2, \ldots$ the corresponding coordinate neighborhoods containing them.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 72/203
Countable, Locally Finite Refinements (Cont'd)

• The $U_1, \varphi_1, U_2, \varphi_2, \ldots$ satisfy the requirements of the conclusion.

For each $p \in M$, there is an index *i* such that $p \in K_{i-1}$. ◦

From the definition of U_j,V_j , it is clear that only a finite number of these neighborhoods meet $K_{i-1}.$ $\ddot{\circ}$

Therefore, $\{U_i\}$, and also $\{V_i\}$, are locally finite coverings refining the covering $\{A_{\alpha}\}.$

Remark: It is clear that it would be possible to replace the spherical neighborhoods $B_r^n(0)$ by cubical neighborhoods $C_r^n(0)$ in the lemma.

We shall call the refinement $\mathit{U_i},\mathit{V_i},\varphi_i$ obtained in this lemma a regular covering by spherical (or, when appropriate, cubical) coordinate neighborhoods subordinate to the open covering $\{A_{\alpha}\}.$

Partition of Unity on a Manifold

Recall that the support of a function f on a manifold M is the set \bullet

$$
\mathsf{supp}(f)=\overline{\{x\in M : f(x)=0\}}.
$$

 \bullet That is, the closure of the set on which f vanishes.

Definition

A C^{∞} partition of unity on M is a collection of C^{∞} functions $\{f_{\gamma}\},$ defined on M, with the following properties:

 (1) $f_{\gamma} \geq 0$ on M;

(2) $\{\text{supp}(f_\gamma)\}\$ form a locally finite covering of M;

(3)
$$
\sum_{\gamma} f_{\gamma}(x) = 1
$$
, for every $x \in M$.

- Note that, by virtue of Property (2), each point has a neighborhood on which only a finite number of the f_{γ} s are different from zero.
- \bullet It follows that the sum in Property (3) is a well-defined C^{∞} function on M.
- A partition of unity is said to be **subordinate to an open covering** ${A_{\alpha}}$ of M if, for each γ , there is an A_{α} , such that

 $supp(f_{\gamma}) \subseteq A_{\alpha}$.

Regular Coverings and Partitions of Unity

Theorem

Associated to each regular covering $\{U_i, V_i, \varphi_i\}$ of M , there is a partition of unity $\{f_i\}$, such that:

- $f_i > 0$ on $V_i = \varphi_i^{-1}(B_1(0));$
- $\mathsf{supp} f_i \subseteq \varphi_i^{-1}(\overline{B}_2(0)).$

In particular, every open covering ${A_{\alpha}}$ has a partition of unity which is subordinate to it.

- Exactly as in a previous theorem, we see that there is, for each i, a nonnegative C^{∞} function $\widetilde{g}(x)$ on \mathbb{R}^n which is:
	- Identically one on \overline{B}_1^n $\binom{1}{1}(0);$
	- Zero outside $B_2^n(0)$.

Regular Coverings and Partitions of Unity (Cont'd)

Q. Consider the function

$$
g_i = \left\{ \begin{array}{ll} \widetilde{g} \circ \varphi_i, & \text{on } U_i, \\ 0, & \text{on } M - U_i. \end{array} \right.
$$

Clearly g_i is C^{∞} on M. It has its support in $\varphi_i^{-1}(\overline{B}_2^n)$ $\binom{n}{2}(0)$). It is $+1$ on V_i . Finally, it is never negative.

Consider the functions

$$
f_i = \frac{g_i}{\sum_i g_i}, \quad i = 1, 2, \ldots.
$$

From the preceding properties and the fact that $\{V_i\}$ is a locally finite covering of M, we can see that the $\{f_i\}$ have the desired properties.

Existence of Riemannian Metrics

Theorem

It is possible to define a C^{∞} Riemannian metric on every C^{∞} Riemannian manifold.

Let $\{U_i, V_i, \varphi_i\}$ be a regular covering of M. Let f_i be an associated C^{∞} partition of unity as defined above. By hypothesis, $\varphi_i: U_i \to B_3^n(0)$ is a diffeomorphism. Let Ψ denote the usual Euclidean inner product on \mathbb{R}^n . Then the bilinear form ∗

$$
\Phi_i = \varphi_i^* \Psi
$$

defines a Riemannian metric on $\mathit{U}_{i}.$

Existence of Riemannian Metrics (Cont'd)

Taking into account that $f_i > 0$ on V_i , consider

 $f_i\Phi_i$.

- It is a Riemannian metric tensor on V_i ;
- It is symmetric on U_i ;
- It is zero outside $\varphi_i^{-1}(\overline{B}_2^n)$ $\binom{n}{2}(0)$).

Hence, it may be extended to a C^{∞} -symmetric bilinear form on all of M, which:

- Vanishes outside $\varphi_i^{-1}(\overline{B}_2^n)$ $_{2}^{\circ}(0)$);
- Is positive definite at every point of V_i .

It is easy to check that the sum of symmetric forms is symmetric.

Existence of Riemannian Metrics (Cont'd)

Therefore $\Phi = \sum f_i \Phi_i$ is symmetric, where Φ is defined by

$$
\Phi_p(X_p, Y_p) = \sum_{i=1}^{\infty} f_i(p) \Phi_i(X_p, Y_p), \quad p \in M.
$$

We have denoted by $f_i\Phi_i$ its extension to all of $M.$

Recall that the summation makes sense, since in a neighborhood of each $p \in M$ all but a finite number of terms are zero.

However, Φ is also positive definite.

For every *i*, $f_i \geq 0$ and each $p \in M$ is contained in at least one V_j . Then $f_i(p) > 0$.

So, if
$$
0 = \Phi_p(X_p, X_p) = \sum f_i(p)\Phi_i(X_p, X_p)
$$
, then $\Phi_j(X_p, X_p) = 0$.
This means $0 = \varphi_j^* \Psi(X_p, X_p) = \Psi(\varphi_{j*}(X_p), \varphi_{j*}(X_p))$.

However, Ψ is positive definite and φ is a diffeomorphism.

So this implies $X_p = 0$.

Now the proof is complete.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 80 / 203

Imbedding a Manifold in a Power of $\mathbb R$

Theorem

Any compact C^{∞} manifold M admits a C^{∞} imbedding as a submanifold of \mathbb{R}^N for sufficiently large N.

Let $\{U_i, V_i, \varphi_i\}$ be a finite regular covering of M.

Such a covering exists because of the compactness.

Recall that we have defined the associated partition of unity $\{f_i\}$ using functions $\{g_i\}$, where $g_i = 1$ on V_i .

We use here these C^{∞} functions $\{g_i\}$ on M rather than the (normalized) $\{f_i\}$.

Let $\varphi_i: U_i \to B_3^n(0)$ be the coordinate map. Consider the mapping

$$
g_i\varphi_i: \quad U_i \quad \to \quad B_3^n(0) \n p \quad \mapsto \quad (g_i(p)x^1(p), \ldots, g_i(p)x^n(p)).
$$

It is a C^{∞} map on U_i .

It takes everything outside $\varphi_i^{-1}(B_2^n(0))$ onto the origin.

It agrees with φ_i on V_i .

It may be extended to a C^{∞} mapping of M into $B_{3}^{n}(0)$ by letting it map all of $M - U_i$ onto the origin.

When we write $g_i\varphi_i$, we will mean this extension.

On V_i it is a diffeomorphism to $B_1^n(0)$.

So, on V_i , its Jacobian matrix has rank $n = \text{dim} M$.

• Let $i = 1, \ldots, k$ be the range of indices in our finite regular covering. Let $N = (n + 1)k$.

Define

$$
F: M \to \mathbb{R}^N \to \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{k} \times \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{k}
$$

by

$$
F(p)=(g_1(p)\varphi_1(p);\ldots;g_k(p)\varphi_k(p);g_1(p),\ldots,g_k(p)).
$$

Then F is clearly C^{∞} on M.

Moreover, in any local coordinates on M, the $N \times n$ Jacobian of F breaks up into:

- k blocks of size $n \times n$:
- \circ A $k \times n$ matrix.

So its rank is at most n.

Now, $p \in M$ implies $p \in V_i$, for some *i*.

Further, on V_i , $g_i \equiv 1$.

So $g_i\varphi_i \equiv \varphi_i$ and the matrix has rank *n*.

Thus, $F: M \to \mathbb{R}^N$ is a C^∞ immersion.

It suffices to show it is one-to-one, since then M is compact and a previous theorem applies.

Suppose $F(p) = F(q)$. Then $g_i(p) = g_i(q)$, $i = 1, ..., k$. This implies that $g_i(p)\varphi_i(p) = g_i(q)\varphi_i(q)$. But $g_i(p) \neq 0$, for some *i*. This means $\varphi_i(p) = \varphi_i(q)$ for that *i*. Since φ_i is one-to-one, we see that $\boldsymbol{p}=\boldsymbol{q}.$ Thus, F is indeed one-to-one.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 84/203

Remarks

- \bullet It is an obvious disadvantage of this theorem that N may be much larger than we would like it.
- In fact we have no way of giving an effective bound on it from this proof.
- We know, e.g., that it takes at least two coordinate neighborhoods to cover \mathcal{S}^2 (using stereographic projections from the north and south poles).
- Hence, $k = 2$ and $n = 2$, which give $N = 6$.
- So we get that S^2 may be imbedded in $\mathbb{R}^6.$
- This is obviously not the best possible!

Theorem

Let M be a C^{∞} manifold.

Let A be a compact subset of M, possibly empty.

Let g be a continuous function on M which is C^{∞} on A.

Let ε be a positive continuous function on M.

There exists a C^{∞} function h on M, such that:

$$
\circ \ g(p) = h(p), \text{ for every } p \in A;
$$

$$
\circ |g(p)-h(p)| < \varepsilon(p) \text{ on all of } M.
$$

In order to prove this we shall need a similar theorem for the case of a closed *n*-ball in \mathbb{R}^n .

Weierstraß Approximation Theorem

Lemma (Weierstraß Approximation Theorem)

Let f be a continuous function on a closed *n*-ball \overline{B}^n of \mathbb{R}^n and let $\varepsilon > 0.$ Then there is a polynomial function p on \mathbb{R}^n , such that

$$
|f(x)-p(x)|<\varepsilon\quad\text{on }\overline{B}^n.
$$

■ By hypothesis, g is C^{∞} in A.

By definition of C^{∞} function on an arbitrary subset of M, there is a C^{∞} extension g^* of $g|_A$ to an open set U which contains A.

There is no reason to believe that $g(p) = g^*(p)$ on U but not A.

However, we may replace g by a continuous \widetilde{g} on M, such that:

(i)
$$
|\widetilde{g}(p) - g(p)| < \frac{1}{2}\varepsilon(p);
$$

(ii)
$$
\widetilde{g} = g
$$
 on A;

 $\overline{\widetilde{g}}$ is $\overline{\mathsf{C}}^{\infty}$ on an open subset W of M which contains A.

Proof of the Theorem

• The procedure is as follows.

```
Take any U and g^* as above.
```
Use the compactness of A to choose an open set W containing A and such that two further requirements are met:

- \bullet W is compact and lies in U;
- $|g^*(p) g(p)| < \frac{1}{2} \varepsilon(p)$ on W .

Now g^* is C^{∞} on U, and, hence, continuous.

So there is no problem in finding such a set W .

Using a previous theorem, we define a nonnegative C^{∞} function σ which is $+1$ everywhere on \overline{W} and vanishes outside U.

Finally, we define
$$
\tilde{g} = \sigma g^* + (1 - \sigma)g
$$
.

Note that \widetilde{g} satisfies Conditions (i)-(iii).

- Choose a regular covering by spherical neighborhoods $\{U_i, V_i, \varphi_i\}$ subordinate to the open covering W, $M - A$ of M. Denote by $\{f_i\}$ the corresponding C^{∞} partition of unity. For every U_i on W, the function $f_i \tilde{g}$ is:
	- C^{∞} on U_i ;
	- Vanishes outside $\varphi_i^{-1}(\overline{B}_2^n)$ $\binom{n}{2}(0)$).

Thus, it can be extended to a C^{∞} function on M.

Denote the extended function also by $f_i\tilde{g}$.

Then, on M, we have

$$
\sum f_i \widetilde{g} \equiv \widetilde{g}.
$$

 \bullet Suppose $U_i \subseteq M - A$.

Then, on \overline{B}_2^n $\varphi_2^{\prime\prime}(0) \subseteq B_3^{\prime\prime}(0) = \varphi_i(U_i)$, we use the Weierstraß Approximation Theorem to obtain a polynomial function ρ_i , with

$$
|p_i(x)-\widetilde{g}\circ\varphi_i^{-1}(x)|<\frac{1}{2}\varepsilon_i,
$$

where $\varepsilon_i = \inf \varepsilon(p)$ on $\varphi_i^{-1}(\overline{B}_2^n)$ $_{2}^{\prime}(0)$). Each ε_i is defined, since \overline{B}_2^n $\binom{n}{2}(0)$ is compact. Let $q_i = p_i \circ \varphi_i$. For each i, let $f_i q_i$ be extended to a C^{∞} function on all of M, which vanishes outside U_i .

Denote the indices such that U_i is in $M - A$ by i'. Denote all other indices by i'' . Define $h(p)$ by

$$
h(p)=\sum_{i'}f_{i'}q_{i'}+\sum_{i''}f_{i''}\widetilde{g}.
$$

Each point has a neighborhood on which all but a finite number of summands vanish identically.

So h is well defined and C^{∞} on M.

Suppose $p \in A$. We know that:

$$
g = \widetilde{g} \text{ on } A;
$$

• Each
$$
f_{i'}(p) = 0
$$
 on A;

Each $f_{i'}(p) = 0$ on A;
 $\sum f_i \equiv 1$ everywhere on M.

So we obtain

$$
h(p) = \sum_{i''} f_{i''}(p)\widetilde{g}(p) = g(p).
$$

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 91/203

On the other hand we have, for $p \notin A$,

$$
|h(p) - \widetilde{g}(p)| = |\sum_{i'} f_{i'}(p) q_{i'}(p) + \sum_{i''} f''_{i}(p) \widetilde{g}(p) - \sum_{i} f_{i}(p) \widetilde{g}(p)|
$$

= $|\sum f_{i'}(p) (q_{i'}(p) - \widetilde{g}(p))|$.

Recall that $f_i > 0$ for all *i*. So, by the preceding, we obtain

$$
|h(p)-\widetilde{g}(p)|\leq \sum f_{i'}(p)|q_{i'}(p)-\widetilde{g}(p)|\leq \frac{1}{2}\varepsilon(p)\sum f_{i'}(p).
$$

But

$$
\sum f_{i'}(p) \leq \sum f_i(p) = 1.
$$

We deduce that

$$
\begin{array}{rcl} |h(p)-g(p)| & \leq & |h(p)-\widetilde{g}(p)| + |\widetilde{g}(p)-g(p)| \\ & < & \frac{1}{2}\varepsilon(p) + \frac{1}{2}\varepsilon(p) = \varepsilon(p). \end{array}
$$

Subsection 5

Tensors

Definition

Let V be a vector space over R .

A tensor Φ on V is by definition a multilinear map

$$
\Phi: \underbrace{\boldsymbol{V}\times \cdots \times \boldsymbol{V}}_{r}\times \underbrace{\boldsymbol{V}^{*}\times \cdots \times \boldsymbol{V}^{*}}_{s}\rightarrow \mathbb{R},
$$

where:

- V^* denotes the dual space to V ;
- o r its covariant order;
- s its contravariant order.

Tensors (Cont'd)

- \bullet By definition, a tensor Φ on V assigns to each r-tuple of elements of V and s-tuple of elements of V^* a real number.
- Moreover, if, for each $k, 1 \leq k \leq r + s$, we hold every variable except the kth fixed, then Φ satisfies the linearity condition

$$
\Phi(\mathbf{v}_1,\ldots,\alpha \mathbf{v}_k+\alpha' \mathbf{v}'_k,\ldots) = \alpha \Phi(\mathbf{v}_1,\ldots,\mathbf{v}_k,\ldots) + \alpha' \Phi(\mathbf{v}_1,\ldots,\mathbf{v}'_k,\ldots),
$$

for all $\alpha, \alpha' \in \mathbb{R}$, and $\boldsymbol{v}_k, \boldsymbol{v}'_k \in \boldsymbol{V}$ (or \boldsymbol{V}^* , respectively).

Examples of Tensors

- (i) For $r = 1$, $s = 0$, any $\varphi \in V^*$ is a tensor.
- (ii) For $r = 2$, $s = 0$, any bilinear form Φ on **V** is a tensor.
- (iii) The natural pairing of V and V^* , that is, $(v, \varphi) \rightarrow \langle \varphi, v \rangle$ for the case $r = 1$, $s = 1$ is a tensor.
- (iv) We have also noted that V and $(V^*)^*$ are naturally isomorphic. Suppose that they are identified. Then each $\mathbf{v}\in\mathbf{V}$ may be considered as a linear map of \mathbf{V}^* to $\mathbb{R}.$ So it may be viewed as a tensor with $r = 0$ and $s = 1$.

- For a fixed (r, s) we let $\mathcal{T}_{s}^{r}(\boldsymbol{V})$ be the collection of all tensors on \boldsymbol{V} of covariant order r and contravariant order s.
- We know that as functions from $\mathbf{V} \times \cdots \times \mathbf{V} \times \mathbf{V}^* \times \cdots \times \mathbf{V}^*$ to \mathbb{R} they may be added and multiplied by scalars (elements of \mathbb{R}).
- \bullet Indeed linear combinations of functions from any set to $\mathbb R$ are defined and are again functions from that set to R.
- With this addition and scalar multiplication $\mathcal{T}_{\mathsf{s}}^r(\boldsymbol{V})$ is a vector space.
- That is, if $\Phi_1, \Phi_2 \in \mathcal{T}_{s}^r(\mathbf{V})$ and $\alpha_1, \alpha_2 \in \mathbb{R}$, then $\alpha_1 \Phi_1 + \alpha_2 \Phi_2$, defined by

$$
(\alpha_1\Phi_1+\alpha_2\Phi_2)(\mathbf{v}_1,\mathbf{v}_2,\ldots)=\alpha_1\Phi_1(\mathbf{v}_1,\mathbf{v}_2,\ldots)+\alpha_2\Phi_2(\mathbf{v}_1,\mathbf{v}_2,\ldots)
$$

is multilinear, and, therefore, is in $\mathcal{T}^r_{\mathbf{s}}(\mathbf{V}).$

Thus $\mathcal{T}_{\mathsf{s}}^r(\mathsf{V})$ has a natural vector space structure.

The Vector Space Property

Theorem

With the natural definitions of addition and multiplication by elements of \mathbb{R} , the set $\mathcal{T}_{s}^{r}(\boldsymbol{V})$ of all tensors of order (r,s) on \boldsymbol{V} forms a vector space of dimension n^{r+s} .

• We consider the case $s = 0$ only, that is, covariant tensors of fixed order r, and we let $\mathcal{T}^r(\mathbf{V}) := \mathcal{T}_0^r(\mathbf{V}).$

Let e_1, \ldots, e_n be a basis of V.

Then $\Phi \in \mathcal{T}^r(\mathbf{V})$ is completely determined by its n^r values on the basis vectors.

To see this, suppose

$$
\mathbf{v}_i = \sum \alpha_i^j \mathbf{e}_j, \quad i = 1, \dots, r.
$$

The Vector Space Property (Cont'd)

By multilinearity, the value of Φ is given by the formula \bullet

$$
\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_r)=\sum_{j_1,\ldots,j_r}\alpha_{i_1}^{j_1}\alpha_{i_2}^{j_2}\cdots\alpha_{i_r}^{j_r}\Phi(\mathbf{e}_{j_1},\ldots,\mathbf{e}_{j_r}),
$$

the sum being over all $1 \leq j_1, \ldots, j_r \leq n$.

The n^r numbers $\{\Phi(\bm{e}_{j_1}, \ldots, \bm{e}_{j_r})\}$ are called the **components** of Φ in the basis e_1, \ldots, e_n .

We justify the terminology by showing that there is in fact a basis of $\mathcal{T}^r(\bm{V})$, determined by \bm{e}_1,\ldots,\bm{e}_n with respect to which these are components of Φ.

Let $\Omega^{j_1\cdots j_r}$ be that element of $\mathcal{T}^r(\bm{V})$ whose values on the basis vectors are given by

$$
\Omega^{j_1\cdots j_r}(\boldsymbol{e}_{k_1},\ldots,\boldsymbol{e}_{k_r})=\left\{\begin{array}{ll}1,& \text{if }k_i=j_i\text{ for }i=1,\ldots,r,\\0,& \text{if }k_i\neq j_i,\text{ for some }i.\end{array}\right.
$$

Its values on an arbitrary r-tuple $v_1, \ldots, v_r \in V$ is defined by

$$
\Omega^{j_1\cdots j_r}(\mathbf{v}_1,\ldots,\mathbf{v}_r)=\alpha_1^{j_1}\alpha_2^{j_2}\cdots\alpha_r^{j_r}.
$$

This definition is linear in the components of each \boldsymbol{v}_i . Therefore, $\Omega^{j_1\cdots j_r}$ is indeed a tensor.

The Vector Space Property (Cont'd)

We show that the n^r tensors so chosen are linearly independent. Suppose

$$
\sum_{j_1,\ldots,j_r}\gamma_{j_1\cdots j_r}\Omega^{j_1\cdots j_r}=0.
$$

Then, for any choice of the variables v_1, \ldots, v_r ,

$$
\sum_{j_1,\ldots,j_r}\gamma_{j_1\cdots j_r}\Omega^{j_1\cdots j_r}(\mathbf{v}_1,\ldots,\mathbf{v}_r)=0.
$$

Now substitute, in turn, each combination $\bm{e}_{k_1},\ldots,\bm{e}_{k_r}$ of basis elements as variables.

By the definition of the $\Omega^{j_1\cdots j_r}$, we see that every coefficient $\gamma_{k_1\cdots k_r}=0.$

The Vector Space Property (Cont'd)

 \bullet Finally, we show that every Φ is a linear combination of these tensors. Let

$$
\varphi_{j_1\cdots j_r}=\Phi(\boldsymbol{e}_{j_1},\ldots,\boldsymbol{e}_{j_r}).
$$

Consider the element

$$
\sum \varphi_{j_1\cdots j_r} \Omega^{j_1\cdots j_r}
$$

of $\mathcal{T}^r(\mathbf{V})$.

Apply again the definition of $\Omega^{j_1\cdots j_r}.$

We see that this tensor and Φ take the same values on every set of basis elements.

Hence, they must be equal.

An easy extension of the argument using both e_1, \ldots, e_n and its dual basis $\omega^1, \ldots, \omega^n$ of \boldsymbol{V}^* gives the general case $\mathcal{T}_{\boldsymbol{s}}^r(\boldsymbol{V})$.

Covariant Tensor Fields

Definition

A C^{∞} -covariant tensor field of order r on a C^{∞} manifold M is a function Φ which:

- Assigns to each $p \in M$ an element Φ_p of $\mathcal{T}^r(\mathcal{T}_p(M));$
- \bullet Has the additional property that, given any C^{∞} -vector fields X_1, \ldots, X_r on an open subset U of M,

$$
\Phi(X_1,\ldots,X_r)
$$

is a C^{∞} function on U.

We denote by $\mathcal{T}^{r}(M)$ the set of all C^{∞} -covariant tensor fields of order r on M.

Covariant Tensor Fields (Cont'd)

- \bullet A covariant tensor field of order r is not only R-linear but also $C^{\infty}(M)$ -linear in each variable.
- For example, let $f \in C^{\infty}(M)$.
- Then

$$
\Phi(X_1,\ldots, X_i,\ldots,X_r)=f\Phi(X_1,\ldots, X_i,\ldots,X_r).
$$

- **This holds at each p by the R-linearity of** Φ_p **.**
- Moreover, the two sides are equal if equality holds for each $p \in M$.
- \bullet In the same way, if $f \in C^{\infty}(U)$, U open in M , the equation holds for Φ_{U} , the restriction of Φ to U.

- Let U, φ be a coordinate neighborhood.
- Let E_1, \ldots, E_n be the coordinate frames.
- Then $\Phi \in \mathcal{T}^r(M)$ has components

$$
\Phi(E_{j_1},\ldots,E_{j_r}).
$$

- **•** These are functions on U whose values at each $p \in U$ are the components of Φ_p relative to the basis of $T_p(M)$ determined by E_1, \ldots, E_n .
- By hypothesis, all the components, as functions on the coordinate neighborhoods of some covering of M, are differentiable.
- This implies the differentiability of Φ.
- \circ Linear combinations of covariant tensors of order r (even with C^{∞} functions as coefficients) are again covariant tensor fields.
- So $\mathcal{T}^{r}(M)$ is a vector space over $\mathbb R$ [in fact a $\mathcal{C}^{\infty}(M)$ module].

Mappings and Covariant Tensors

- \bullet Consider a linear map of vector spaces $F_* : V \to W$.
- It induces a linear map $F^*:\mathcal{T}^r(\boldsymbol{\mathcal{W}})\to\mathcal{T}^r(\boldsymbol{\mathcal{V}})$ by the formula

$$
F^*\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_r)=\Phi(F_*(\mathbf{v}_1),\ldots,F_*(\mathbf{v}_r)).
$$

- Now suppose $F : M \to N$ is a C^{∞} -map.
- It induces a mapping $F^*:\mathcal{T}^r(\mathcal{N})\rightarrow \mathcal{T}^r(\mathcal{M})$, defined, for Φ on \mathcal{N} , by

$$
F^*\Phi_p(X_{1p},\ldots,X_{rp})=\Phi_{F(p)}(F_*(X_{1p}),\ldots,F_*(X_{rp})).
$$

- As we have seen, this is a special feature of covariant tensor fields.
- o Its analog does not hold for contravariant fields even for $\mathcal{T}_1(M) = \mathfrak{X}(M)$ (vector fields).
- We can show that \mathcal{F}^* maps $\mathcal{T}^r(N)$ to $\mathcal{T}^r(M)$ linearly.

Symmetry and Antisymmetry

Definition

Let V be a vector space. We say $\Phi \in \mathcal{T}^r(\mathcal{V})$ is symmetric if, for each $1 \leq i,j \leq r$,

$$
\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_r)=\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_r).
$$

We say Φ is skew or antisymmetric or alternating if, interchanging the *i*th and *j*th variables, $1 \le i, j \le r$, changes the sign,

$$
\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_r)=-\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_r).
$$

Alternating covariant tensors are often called exterior forms. A tensor field is symmetric (respectively, alternating) if it has this property at each point.

Summarizing Theorem

Theorem

Let $F : M \to N$ be a C^{∞} map of C^{∞} manifolds. Then each C^{∞} -covariant tensor field Φ on N determines a C^{∞} -covariant tensor field $F^*\Phi$ on M by the formula

$$
(F^*\Phi)_p(X_{1p},\ldots,X_{rp})=\Phi_p(F_*(X_{1p}),\ldots,F_*(X_{rp})).
$$

The map $F^*:\mathcal{T}^r(N)\to \mathcal{T}^r(M)$ so defined is linear.

Moreover, it takes symmetric tensors to symmetric tensors and alternating tensors to alternating tensors.
Some Additional Properties

- \bullet We may also extend to the case of arbitrary order r:
	- The formula for components of $F^*\Phi$ in terms of those of Φ ;
	- **The Jacobian of F in local coordinates.**
- The same method can also be used to derive formulas for change of components relative to a change of local coordinates.
- These formulas are essentially consequences of the multilinearity at each point of M.

Subspaces of Symmetric and Alternating Tensors

- Let $\Phi_1, \Phi_2 \in \mathcal{T}^r(\mathbf{V})$ be symmetric (respectively, alternating) covariant tensors of order r on V .
- **o** Then a linear combination

$$
\alpha \Phi_1 + \beta \Phi_2, \quad \alpha, \beta \in \mathbb{R},
$$

is also symmetric (respectively, alternating).

- Thus, the symmetric tensors in $\mathcal{T}^r(\boldsymbol{V})$ form a subspace which we denote by $\Sigma^r(\boldsymbol{V})$.
- The alternating tensors (exterior forms) also form a subspace $\bigwedge^r(\bm{V}).$
- These subspaces have only the 0-tensor in common.

• Let σ denote a permutation of $(1, \ldots, r)$, with

$$
(1,\ldots,r)\to(\sigma(1),\ldots,\sigma(r)).
$$

- We know that any such permutation is a product of transpositions, i.e., permutations interchanging just two elements.
- This representation is not unique.
- But the parity (evenness or oddness) of the number of factors is.

We let

 $sgn\sigma =$ $\sqrt{ }$ $\frac{1}{2}$ \mathbf{I} $+1, \;$ if σ is representable as the product of an even number of transpositions, -1 , otherwise.

Then, $\sigma \rightarrow$ **sgn** σ **is a well-defined map from the group of permutations** of r letters \mathfrak{S}_r to the multiplicative group of two elements ± 1 . o It is even a homomorphism, as can be checked from the definition.

Symmetric and Alternating Tensor Fields Revisited

- Now our original definitions may be restated in the following \bullet equivalent form.
- $\Phi \in \mathcal{T}^r(\mathcal{V})$ is symmetric if, for all $\mathsf{v}_1, \ldots, \mathsf{v}_r$ and permutation σ ,

$$
\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_r)=\Phi(\mathbf{v}_{\sigma(1)},\ldots,\mathbf{v}_{\sigma(r)});
$$

 Φ is alternating if, for all $\mathbf{v}_1, \ldots, \mathbf{v}_r$ and permutation σ , \bullet

$$
\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_r)=\text{sgn}\sigma\Phi(\mathbf{v}_{\sigma(1)},\ldots,\mathbf{v}_{\sigma(r)}).
$$

Definition

We define two linear transformations on the vector space $\mathcal{T}^r(\boldsymbol{V})$:

The symmetrizing mapping $\mathcal{S}: \mathcal{T}^r(\bm{V}) \rightarrow \mathcal{T}^r(\bm{V})$ by

$$
(\mathcal{S}\Phi)(\mathbf{v}_1,\ldots,\mathbf{v}_r)=\frac{1}{r!}\sum_{\sigma}\Phi(\mathbf{v}_{\sigma(1)},\ldots,\mathbf{v}_{\sigma(r)});
$$

The alternating mapping $\mathcal{A} : \mathcal{T}^r(\bm{V}) \to \mathcal{T}^r(\bm{V})$ by

$$
(\mathcal{A}\Phi)(\mathbf{v}_1,\ldots,\mathbf{v}_r)=\frac{1}{r!}\sum_{\sigma}\mathrm{sgn}\sigma\Phi(\mathbf{v}_{\sigma(1)},\ldots,\mathbf{v}_{\sigma(r)}).
$$

The summation is over all $\sigma \in \mathfrak{S}_r$, the group of all permutations of r letters.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 113 / 203

It is immediate that these maps are linear transformations on $\mathcal{T}^r(\boldsymbol{V})$. First note that $\Phi \to \Phi^{\sigma}$, defined by

$$
\Phi^{\sigma}(\mathbf{v}_1,\ldots,\mathbf{v}_r)=\Phi(\mathbf{v}_{\sigma(1)},\ldots,\mathbf{v}_{\sigma(r)}),
$$

is such a linear transformation;

Further, any linear combination of linear transformations of a vector space is again a linear transformation.

Properties of A and S

• We have the following properties of $\mathcal A$ and $\mathcal S$:

(i) A and S are projections, that is,

$$
\mathcal{A}^2 = \mathcal{A} \quad \text{and} \quad \mathcal{S}^2 = \mathcal{S};
$$

(ii) The following hold:

$$
\mathcal{A}(\mathcal{T}^r(\mathbf{V})) = \bigwedge^r(\mathbf{V}) \quad \text{and} \quad \mathcal{S}(\mathcal{T}^r(\mathbf{V})) = \Sigma^r(\mathbf{V});
$$

(iii) Φ is alternating if and only if $A\Phi = \Phi$; Φ is symmetric if and only if $S\Phi = \Phi$; (iv) If $F_* : V \to W$ is a linear map, then both A and S commute with $F^*: \mathcal{T}^r(\mathbf{W}) \to \mathcal{T}^r(\mathbf{V}).$

Proof of the Properties

• We check the properties for \mathcal{A} . The verification for S is similar.

They are also interrelated, so we will not take them in order. First note that if Φ is alternating, then the definition implies

$$
\Phi(\mathbf{v}_1,\ldots,\mathbf{v}_r)=\mathrm{sgn}\sigma\Phi(\mathbf{v}_{\sigma(1)},\ldots,\mathbf{v}_{\sigma(r)}).
$$

There are r! elements of \mathfrak{S}_r .

So, summing both sides over all $\sigma \in \mathfrak{S}_r$, gives

$$
\Phi = \mathcal{A}\Phi.
$$

Proof of the Properties (Cont'd)

 \bullet On the other hand, suppose we apply a permutation τ to the variables of $\mathcal{A} \Phi(\mathbf{v}_1, \dots, \mathbf{v}_r)$ for an arbitrary $\Phi \in \mathcal{T}^r(\mathcal{V})$. We obtain

$$
\mathcal{A}\Phi(\mathbf{v}_{\tau(1)},\ldots,\mathbf{v}_{\tau(r)})=\frac{1}{r!}\sum_{\sigma}\mathrm{sgn}\sigma\Phi(\mathbf{v}_{\sigma\tau(1)},\ldots,\mathbf{v}_{\sigma\tau(r)}).
$$

Now sgn is a homomorphism and sgn $\tau^2=1$.

So sgn $\sigma =$ sgn $\sigma \tau$ sgn τ .

From this equation we see that the right side is

$$
\frac{1}{r!} \operatorname{sgn} \tau \sum_{\sigma} \operatorname{sgn} \sigma \tau \Phi(\mathbf{v}_{\sigma \tau(1)}, \dots, \mathbf{v}_{\sigma \tau(r)}) = \operatorname{sgn} \tau \mathcal{A} \Phi(\mathbf{v}_1, \dots, \mathbf{v}_r).
$$

So AΦ is alternating. This shows that $\mathcal{A}(\mathcal{T}^r(\bm{V})) \subseteq \bigwedge^r(\bm{V}).$

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 117 / 203

Proof of the Properties (Cont'd)

 \circ Suppose Φ is alternating.

Then every term in the summation defining $A\Phi$ is equal. So AΦ = Φ. Thus $\mathcal A$ is the identity on $\bigwedge^r(\bm V)$ and $\mathcal A(\mathcal T^r(\bm V))\supseteq\bigwedge^r(\bm V).$ From these facts Properties (i)-(iii) for A follow. Now consider Property (iv). By the definition of F^* , we have

$$
F^*\Phi(\mathbf{v}_{\sigma(1)},\ldots,\mathbf{v}_{\sigma(r)})=\Phi(F_*(\mathbf{v}_{\sigma(1)}),\ldots,F_*(\mathbf{v}_{\sigma(r)})).
$$

Multiply both sides by sgn σ and sum over all σ . Using the linearity of F^* , we get $\mathcal{A}(F^*\Phi)(\mathbf{v}_1,\ldots,\mathbf{v}_r)$ on the left and $F^*(A\Phi)(\mathbf{v}_1,\ldots,\mathbf{v}_r)$ on the right.

Extension to Manifolds

- Both of these maps A and S can be immediately extended to mappings of tensor fields on manifolds.
- We merely apply them at each point.
- \bullet We then verify that both sides of each relation (i)-(iv) give C^{∞} functions which agree pointwise on every r-tuple of C^{∞} -vector fields.
- We summarize (without proof).

Theorem

Let M be a C^{∞} manifold. Let $\mathcal{T}^r(M)$ be the space of C^{∞} -covariant tensor fields of order r over M. The maps A and S are defined on $\mathcal{T}^r(M)$. Moreover, they satisfy Properties (i)-(iv). In the case of Property (iv), $F^* : \mathcal{T}^r(N) \to \mathcal{T}^r(M)$ denotes the linear map induced by a C^{∞} mapping $F : M \to N$.

Subsection 6

The Setup

- Let V be a vector space and M be a C^{∞} manifold.
- We saw that both $\mathcal{T}^r(\bm{V})$ and $\mathcal{T}^r(M)$ are vector spaces over $\mathbb{R}.$
- In the case of tensor fields, $\mathcal{T}^r(M)$ has also the structure of a \bullet $C^{\infty}(M)$ -module.
- We agree, by definition, that

$$
\mathcal{T}^0(\mathbf{V}) = \mathbb{R} \quad \text{and} \quad \mathcal{T}^0(M) = C^\infty(M).
$$

• Recall, next, that our viewpoint is to define tensors as:

- Functions to \mathbb{R} , a field, in the case of $\mathcal{T}^r(\mathbf{V})$;
- Functions to $C^{\infty}(M)$, an algebra, in the case of $\mathcal{T}^{r}(M)$.

In either case it is appropriate to discuss products of such functions.

Multiplication of Tensors on a Vector Space

- \bullet Let V be a vector space.
- Let $\varphi \in \mathcal{T}^r(\mathbf{V}), \psi \in \mathcal{T}^s(\mathbf{V})$ be tensors.
- Their product is linear in each of its $r + s$ variables.

Definition

The **product** of φ and ψ , denoted $\varphi \otimes \psi$ is a tensor of order $r + s$ defined by

$$
\varphi \otimes \psi(\mathbf{v}_1,\ldots,\mathbf{v}_r,\mathbf{v}_{r+1},\ldots,\mathbf{v}_{r+s}) = \varphi(\mathbf{v}_1,\ldots,\mathbf{v}_r)\psi(\mathbf{v}_{r+1},\ldots,\mathbf{v}_{r+s}).
$$

The right-hand side is the product of the values of φ and ψ . The product defines a mapping

$$
\begin{array}{rcl}\n\mathcal{T}^r(\mathbf{V})\times\mathcal{T}^s(\mathbf{V})&\to&\mathcal{T}^{r+s}(\mathbf{V});\\
(\varphi,\psi)&\to&\varphi\otimes\psi.\n\end{array}
$$

Properties of the Product

Theorem

The mapping $\mathcal{T}^r(\bm{V}) \times \mathcal{T}^s(\bm{V}) \to \mathcal{T}^{r+s}(\bm{V})$ just defined is bilinear and associative. If ω^1,\ldots,ω^n is a basis of $\boldsymbol{V}^* = \mathcal{T}^1(\boldsymbol{V})$, then $\{\omega^{i_1} \otimes \cdots \otimes \omega^{i_r}\}$ over all $1 \leq i_1, \ldots, i_r \leq n$ is a basis of $\mathcal{T}^r(\mathbf{V})$. Finally, if $F_* : \mathbf{W} \to \mathbf{V}$ is linear, then $F^*(\varphi \otimes \psi) = (F^*\varphi) \otimes (F^*\psi)$.

Each statement is proved by straightforward computation. For bilinearity, we must show that, if α, β are numbers, $\varphi_1,\varphi_2\in \mathcal{T}^r(\bm{V})$ and $\psi\in \mathcal{T}^s(\bm{V}),$ then

$$
(\alpha\varphi_1+\beta\varphi_2)\otimes\psi=\alpha(\varphi_1\otimes\psi)+\beta(\varphi_2\otimes\psi).
$$

Similarly for the second variable.

This is checked by evaluating each side on $r + s$ vectors of V. In fact basis vectors suffice because of linearity.

Properties of the Product (Cont'd)

For associativity, we must show \bullet

$$
(\varphi \otimes \psi) \otimes \theta = \varphi \otimes (\psi \otimes \theta).
$$

- The products on both sides being defined in the natural way. This is similarly verified.
- This allows us to drop the parentheses.

Next, we show that $\omega^{i_1} \otimes \cdots \otimes \omega^{i_r}$ form a basis. Let \bm{e}_1,\ldots,\bm{e}_n be the basis of \bm{V} dual to ω^1,\ldots,ω^n . Then the tensor $\Omega^{i_1\cdots i_r}$ previously defined is exactly $\omega^{i_1}\otimes\cdots\otimes\omega^{i_r}.$ This follows from the two definitions. First, we have

$$
\Omega^{i_1\cdots i_r}(\mathbf{e}_{j_1},\ldots,\mathbf{e}_{j_r})=\begin{cases} 0, & \text{if } (i_1,\ldots,i_r)\neq (j_1,\ldots,j_r),\\ 1, & \text{if } (i_1,\ldots,i_r)=(j_1,\ldots,j_r). \end{cases}
$$

Next, we see that

$$
\omega^{i_1} \otimes \cdots \otimes \omega^{i_r}(\mathbf{e}_{j_1}, \ldots, \mathbf{e}_{j_r}) = \omega^{i_1}(\mathbf{e}_{j_1}) \omega^{i_2}(\mathbf{e}_{j_2}) \cdots \omega^{i_r}(\mathbf{e}_{j_r}) \n= \delta^{i_1}_{j_1} \delta^{i_2}_{j_2} \cdots \delta^{i_r}_{j_r}.
$$

So both tensors have the same values on any set of r basis vectors. Therefore, they are equal.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 125 / 203

\n- Finally, let
$$
F_*: W \to V
$$
.
\n- Consider $w_1, \ldots, w_{r+s} \in W$.
\n- Then
\n

$$
(F^*(\varphi \otimes \psi))(\mathbf{w}_1, \dots, \mathbf{w}_{r+s})
$$

= $\varphi \otimes \psi(F_*(\mathbf{w}_1), \dots, F_*(\mathbf{w}_{r+s}))$
= $\varphi(F_*(\mathbf{w}_1), \dots, F_*(\mathbf{w}_r))\psi(F_*(\mathbf{w}_{r+1}), \dots, F_*(\mathbf{w}_{r+s}))$
= $(F^*\varphi) \otimes (F^*\psi)(\mathbf{w}_1, \dots, \mathbf{w}_{r+s}).$

This proves $F^*(\varphi \otimes \psi) = (F^*\varphi) \otimes (F^*\psi)$ and completes the proof.

Reformulation

- Consider the tensor spaces $\mathcal{T}^{0}(\mathbf{V}) = \mathbb{R}, \mathcal{T}^{1}(\mathbf{V}), \cdots, \mathcal{T}^{r}(\mathbf{V}), \ldots$
- Take the direct sum $\mathcal{T}(\boldsymbol{V})$ over R of all these tensor spaces,

$$
\mathcal{T}(\mathbf{V})=\mathcal{T}^0(\mathbf{V})\oplus\mathcal{T}^1(\mathbf{V})\oplus\cdots\oplus\mathcal{T}^r(\mathbf{V})\oplus\cdots.
$$

- We identify each $\mathcal{T}^r(\bm{V})$ with its (natural) isomorphic image in $\mathcal{T}(\bm{V})$.
- An element φ of $\mathcal{T}(\bm{V})$ is said to be of **order** r if it is in $\mathcal{T}^r(\bm{V})$.
- Every element $\widetilde{\varphi}$ of $\mathcal{T}(\mathbf{V})$ is the sum of a finite number of such φ , which we call its **components**.
- \circ Thus $\widetilde{\varphi} \in \mathcal{T}(\mathbf{V})$ may be written uniquely

$$
\widetilde{\varphi}=\varphi_1^{i_1}+\cdots+\varphi_n^{i_n},
$$

where $\varphi^{i_j} \in \mathcal{T}^{i_j}(\boldsymbol{V})$ and $i_1 < i_2 < \cdots < i_r$.

The Tensor Algebra

- If $\widetilde{\varphi}, \widetilde{\psi} \in \mathcal{T}(\mathbf{V})$, then they may be added componentwise.
- That is, by adding in $\mathcal{T}^r(\mathbf{V})$ any terms in $\mathcal{T}^r(\mathbf{V})$.
- They may be multiplied by:
	- Using ⊗;
	- Extending it to be distributive on all of $\mathcal{T}(\mathbf{V})$.
- \bullet This makes $\mathcal{T}(\mathbf{V})$ into an associative algebra over R.
- o It is called the tensor algebra.

Properties of the Tensor Algebra

- The tensor algebra $\mathcal{T}(\mathbf{V})$:
	- Contains $\mathbb{R} = \mathcal{T}^0(\mathbf{V});$
	- Has 1 as its unit;
	- o Is infinite-dimensional.
- The contents of the preceding theorem (even a little more) immediately yield the following properties:
	- $\mathcal{T}(\mathbf{V})$ (direct) is an associative algebra (with unit) over $\mathbb{R} = \mathcal{T}^0(\mathbf{V})$.
	- It is generated by $\mathcal{T}^0(\bm{V})$ and $\mathcal{T}^1(\bm{V}) = \bm{V}^*$, the dual space to \bm{V} .
	- Any linear mapping $F_* : \mathbf{W} \to \mathbf{V}$ of vector spaces induces a homomorphism $F^* : \mathcal{T}(\bm{V}) \to \mathcal{T}(\bm{W})$ which is:

 (i) The identity on \mathbb{R} ;

- (ii) The dual mapping $F^*: V^* \to W^*$ on $\mathcal{T}^1(V)$.
- Properties (i) and (ii) determine F^* uniquely on all of $\mathcal{T}(\bm{V})$.

Multiplication of Tensor Fields

- We turn to the case of tensor fields on a manifold M.
- Let $\varphi \in \mathcal{T}^r(M)$ and $\psi \in \mathcal{T}^s(M)$.
- Then we may define $\varphi \otimes \psi$ on M by defining it at each point using the definition for tensors on a vector space.
- That is, $(\varphi \otimes \psi)_p$ is defined to be the tensor

$$
(\varphi \otimes \psi)_{p} = \varphi_{p} \otimes \psi_{p}
$$

of order $r + s$ on the vector space $T_p(M)$.

 \circ Since this defines a covariant tensor of order $r + s$ on the tangent space at each point of M, it will define a tensor field, if it is C^{∞} .

Multiplication of Tensor Fields (Cont'd)

- Consider the product $\varphi \otimes \psi$, defined as above.
- According to the definition, in local coordinates the components of $\varphi \otimes \psi$ are the functions of the coordinate frame vectors

$$
\varphi \otimes \psi(E_{i_1},\ldots,E_{i_{r+s}})=\varphi(E_{i_1},\ldots,E_{i_r})\psi(E_{i_{r+1}},\ldots,E_{i_{r+s}})
$$

over the coordinate neighborhood.

- The right-hand side is the product of the components in local coordinates of φ and ψ .
- \circ These are two C^{∞} functions.
- o Thus, the left side is C^{∞} .
- \circ So $\varphi \otimes \psi$ is indeed a tensor field on M.

Multiplication of Tensors on Manifold

Theorem

The mapping

$$
\mathcal{T}^r(M)\times \mathcal{T}^s(M)\to \mathcal{T}^{r+s}(M)
$$

just defined is bilinear and associative.

If ω^1,\ldots,ω^n is a basis of $\mathcal{T}^1(M)$, then every element of $\mathcal{T}^r(M)$ is a linear combination with C^{∞} coefficients of

$$
\{\omega^{i_1}\otimes\cdots\otimes\omega^{i_r}:1\leq i_1,\ldots,i_r\leq n\}.
$$

If $F: N \to M$ is a C^{∞} mapping, $\varphi \in \mathcal{T}^r(M)$ and $\psi \in \mathcal{T}^s(M)$, then

$$
\digamma^*(\varphi \otimes \psi) = (\digamma^* \varphi) \otimes (\digamma^* \psi),
$$

tensor fields on N.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 132 / 203

Note on Proof

- Two tensor fields are equal if and only if they are equal at each point.
- So it is only necessary to see that these equations hold at each point. \bullet
- This follows at once from the definitions and the preceding theorem.

Tensors in Terms of Local Bases

- In general we do not have a globally defined basis of $\mathcal{T}^1(M)$. \bullet
- That is, there may not exist covector fields

$$
\omega^1,\ldots,\omega^n,
$$

which are a basis at each point.

- However, we do have a globally defined basis in \mathbb{R}^n .
- From this fact, the following corollary is obtained, by applying the theorem to a coordinate neighborhood V, θ of M.
- \bullet Let E_1, \ldots, E_n denote the coordinate frames.
- Let $\omega^1, \ldots, \omega^n$ be their duals.
- That is, we have

$$
E_i = \theta_*^{-1}\left(\frac{\partial}{\partial x^i}\right) \quad \text{and} \quad \omega^j = \theta^*(dx^j).
$$

Tensors in Terms of Local Bases (Cont'd)

Corollary

Each $\varphi \in \mathcal{T}^r(U)$, including the restriction to U of any covariant tensor field on M , has a unique expression of the form

$$
\varphi=\sum_{i_1}\cdots\sum_{i_r}a_{i_1\cdots i_r}\omega^{i_1}\otimes\cdots\otimes\omega^{i_r},
$$

where at each point of U ,

$$
a_{i_1\cdots i_r}=\varphi(E_{i_1},\ldots,E_{i_r})
$$

are the components of φ in the basis $\{\omega^{i_1} \otimes \cdots \otimes \omega^{i_r}\}.$ Moreover, the $a_{i_1\cdots i_r}$ are all C^∞ functions on U .

- For each $r > 0$ we have defined the subspace $\bigwedge^r (\bm{V}) \subseteq \mathcal{T}^r (\bm{V})$ consisting of alternating covariant tensors of order r.
- It is the image of $\mathcal{T}^r(\bm{V})$ under the linear mapping \mathcal{A} , the alternating mapping.
- We define $\textstyle{\bigwedge^{0}}(\boldsymbol{V})$ to be $\mathbb{R}.$ the field.
- Then $\bigwedge^0(\bm V) = \mathcal{T}^0(\bm V) = \mathbb{R}$ and $\bigwedge^1(\bm V) = \mathcal{T}^1(\bm V) = \bm V^*$, but $\bigwedge^r(\bm V)$ is properly contained in $\mathcal{T}^r(\mathbf{V})$ for $r > 1$.
- We see, therefore, that the direct sum $\bigwedge (\bm{V})$ of all the spaces $\bigwedge^r (\bm{V})$ is contained in $\mathcal{T}(\mathbf{V})$ as a subspace,

$$
\begin{aligned}\n\bigwedge(\mathbf{V}) &= \bigwedge^0(\mathbf{V}) \oplus \bigwedge^1(\mathbf{V}) \oplus \bigwedge^2(\mathbf{V}) \oplus \cdots \\
&\subsetneq \mathcal{T}^0(\mathbf{V}) \oplus \mathcal{T}^1(\mathbf{V}) \oplus \mathcal{T}^2(\mathbf{V}) \oplus \cdots = \mathcal{T}(\mathbf{V}).\n\end{aligned}
$$

Space of Alternating Tensors (Cont'd)

- Although $\bigwedge (\bm{V})$ is a subspace of $\mathcal{T}(\bm{V})$, it is not a subalgebra.
- Even if $\varphi \in \bigwedge^r (\bm{V})$ and $\psi \in \bigwedge^s (\bm{V})$, it may be shown that $\varphi \otimes \psi$ may fail to be an element of $\bigwedge^{r+s}(\bm V).$
- \bullet Thus the tensor product of alternating tensors on V is not, in general, an alternating tensor on V .
- On the other hand, we know that each tensor determines an alternating tensor, its image under \mathcal{A} .

Exterior Multiplication

Definition

The mapping from $\bigwedge^r(\bm{V})\times \bigwedge^s(\bm{V})\to \bigwedge^{r+s}(\bm{V})$ defined by

$$
(\varphi,\psi)\to \frac{(r+s)!}{r!s!}\mathcal{A}(\varphi\otimes\psi),
$$

is called the exterior product (or wedge product) of φ and ψ and is denoted by $\varphi \wedge \psi$.

Lemma

The exterior product is bilinear and associative.

Bilinearity is a consequence of the fact that the product is defined by \bullet composing the tensor product, a bilinear mapping from $\bigwedge^r(\bm{V})\times\bigwedge^s(\bm{V})$ to $\mathcal{T}^{r+s}(\bm{V})$, with a linear mapping $\frac{(r+s)!}{r!s!}\mathcal{A}$.

Exterior Multiplication (Cont'd)

• We now show that the product is associative. We first prove a property of the alternating mapping A . Suppose $\varphi \in \mathcal{T}^r(\mathbf{V}), \psi \in \mathcal{T}^s(\mathbf{V})$ and $\theta \in \mathcal{T}^t(\mathbf{V}).$ Then we show that

$$
\mathcal{A}(\varphi\otimes\psi\otimes\theta)=\mathcal{A}(\mathcal{A}(\varphi\otimes\psi)\otimes\theta)=\mathcal{A}(\varphi\otimes\mathcal{A}(\psi\otimes\theta)).
$$

For this purpose let:

- $\circ \mathfrak{S} = \mathfrak{S}_{r+s+t}$ denote the permutations of $(1, 2, \ldots, r+s+t)$;
- \circ \mathfrak{S}' denote the subgroup which leaves the last t integers fixed.

 \mathfrak{S}' is isomorphic to the permutation group \mathfrak{S}_{r+s} of $(1, 2, \ldots, r+s)$.

We have

$$
\mathcal{A}(\mathcal{A}(\varphi \otimes \psi) \otimes \theta)(\mathbf{v}_{1}, \ldots, \ldots, \mathbf{v}_{r+s+t})
$$
\n
$$
= \frac{1}{(r+s+t)!} \sum_{\sigma \in \mathfrak{S}} \operatorname{sgn}\sigma \mathcal{A}(\varphi \otimes \psi)(\mathbf{v}_{\sigma(1)}, \ldots, \mathbf{v}_{\sigma(r+s)})
$$
\n
$$
\cdot \theta(\mathbf{v}_{\sigma(r+s+1)}, \ldots, \mathbf{v}_{\sigma(r+s+t)})
$$
\n
$$
= \frac{1}{(r+s+t)!} \frac{1}{(r+s)!} \sum_{\sigma \in \mathfrak{S}} \sum_{\sigma' \in \mathfrak{S}'} \{ \operatorname{sgn}\sigma \sigma' \varphi(\mathbf{v}_{\sigma\sigma'(1)}, \ldots, \mathbf{v}_{\sigma\sigma'(r)})
$$
\n
$$
\cdot \psi(\mathbf{v}_{\sigma\sigma'(r+1)}, \ldots, \mathbf{v}_{\sigma\sigma'(r+s)}) \theta(\mathbf{v}_{\sigma\sigma'(r+s+1)}, \ldots, \mathbf{v}_{\sigma\sigma'(r+s+t)}) \},
$$

using the facts that:

$$
\circ \ \text{sgn}\sigma \text{sgn}\sigma' = \text{sgn}\sigma \sigma';
$$

 σ' is the identity on $r + s + 1, \ldots, r + s + t$.

Exterior Multiplication (Cont'd)

For each σ' , as σ runs through $\mathfrak S$ and we sum over the outer summation symbol, this expression is equal to

$$
\mathcal{A}(\varphi\otimes\psi\otimes\theta)(\mathbf{v}_1,\ldots,\mathbf{v}_{r+s+1}).
$$

Thus, the expression above reduces to

$$
\frac{1}{(r+s)!}\sum_{\sigma'\in \mathfrak{S}'}\mathcal{A}(\varphi\otimes \psi\otimes \theta),
$$

evaluated on $\mathbf{v}_1, \ldots, \mathbf{v}_{r+s+t}$. But there are $(r + s)!$ terms in the summation. So this gives

$$
\mathcal{A}(\varphi\otimes\psi\otimes\theta)=\mathcal{A}(\mathcal{A}(\varphi\otimes\psi)\otimes\theta).
$$

The second equality is proved in the same way.

Exterior Multiplication (Cont'd)

Let φ, ψ, θ be in the subspaces $\bigwedge^r(\bm{V}), \ \bigwedge^s(\bm{V}), \ \bigwedge^t(\bm{V}),$ respectively. Then, by definition, we have

$$
\varphi \wedge \psi = \frac{(r+s)!}{r!s!} \mathcal{A}(\varphi \otimes \psi)
$$

and

$$
(\varphi \wedge \psi) \wedge \theta = \frac{(r+s+t)!}{(r+s)!t!} \mathcal{A}((\varphi \wedge \psi) \otimes \theta).
$$

A similar expression can be obtained in the other order of associating terms.

From these expressions, we obtain the associativity of the exterior product

$$
(\varphi \wedge \psi) \wedge \theta = \varphi \wedge (\psi \wedge \theta).
$$

• The following relation allows us to write exterior products without parentheses.

Corollary

Let
$$
\varphi_i \in \bigwedge^{r_i} (\mathbf{V}), i = 1, ..., k
$$
. Then
\n
$$
\varphi_1 \wedge \varphi_2 \wedge \cdots \wedge \varphi_k
$$
\n
$$
= \frac{(r_1 + r_2 + \cdots + r_k)!}{r_1! r_2! \cdots r_k!} \mathcal{A}(\varphi_1 \otimes \varphi_2 \otimes \cdots \otimes \varphi_k).
$$

The Exterior or Grassman Algebra over V

• We define the product

$$
\bigwedge(\boldsymbol{V})\times\bigwedge(\boldsymbol{V})\to\bigwedge(\boldsymbol{V})
$$

simply by extending the exterior product to be bilinear, so that the distributive law holds.

• Suppose that
$$
\varphi, \psi \in \Lambda(V)
$$
.

o Then

$$
\varphi = \varphi_1 + \cdots + \varphi_k, \quad \varphi_i \in \bigwedge^{r_i} (\mathbf{V}),
$$

and

$$
\psi = \psi_1 + \cdots + \psi_\ell, \quad \psi_i \in \bigwedge^{\mathsf{s}_i}(\mathbf{V}).
$$

We define

$$
\varphi \wedge \psi = \sum_{i=1}^k \sum_{j=1}^\ell \varphi_i \wedge \psi_j.
$$
The Exterior or Grassman Algebra over V

Corollary

The set

$$
\bigwedge(\boldsymbol{V}) = \bigwedge^0(\boldsymbol{V}) \oplus \bigwedge^1(\boldsymbol{V}) \oplus \bigwedge^2(\boldsymbol{V}) \oplus \cdots,
$$

with the exterior product as defined above is an (associative) algebra over $\mathbb{R} = \bigwedge^0 (\mathbf{V}).$

The algebra \wedge (V) is called the exterior algebra or Grassman algebra over V.

Skew Commutativity

Lemma

If $\varphi \in \bigwedge^r(\bm{V})$ and $\psi \in \bigwedge^s(\bm{V}),$ then

$$
\varphi \wedge \psi = (-1)^{rs} \psi \wedge \varphi.
$$

• This is equivalent to showing that

$$
\mathcal{A}(\varphi\otimes\psi)=(-1)^{rs}\mathcal{A}(\psi\otimes\varphi).
$$

To prove this equality we note that

$$
\mathcal{A}(\varphi \otimes \psi)(\mathbf{v}_1, \ldots, \mathbf{v}_{r+s}) = \frac{1}{(r+s)!} \sum_{\sigma} \text{sgn}\sigma \varphi(\mathbf{v}_{\sigma(1)}, \ldots, \mathbf{v}_{\sigma(r)}) \psi(\mathbf{v}_{\sigma(r+1)}, \ldots, \mathbf{v}_{\sigma(r+s)}) = \frac{1}{(r+s)!} \sum_{\sigma} \text{sgn}\sigma \psi(\mathbf{v}_{\sigma(r+1)}, \ldots, \mathbf{v}_{\sigma(r+s)}) \varphi(\mathbf{v}_{\sigma(1)}, \ldots, \mathbf{v}_{\sigma(r)}).
$$

Skew Commutativity (Cont'd)

• Let τ be the permutation taking $(1, \ldots, s, s + 1, \ldots, r + s)$ to $(r + 1, \ldots, r + s, 1, \ldots, r).$

Then we may write

$$
\mathcal{A}(\varphi \otimes \psi)(\mathbf{v}_1, \dots, \mathbf{v}_{r+s})
$$
\n
$$
= \frac{1}{(r+s)!} \sum_{\sigma} \text{sgn}\sigma \text{sgn}\tau \psi(\mathbf{v}_{\sigma\tau(1)}, \dots, \mathbf{v}_{\sigma\tau(s)})
$$
\n
$$
\varphi(\mathbf{v}_{\sigma\tau(s+1)}, \dots, \mathbf{v}_{\sigma\tau(r+s)})
$$
\n
$$
= \text{sgn}\tau \mathcal{A}(\psi \otimes \varphi)(\mathbf{v}_1, \dots, \mathbf{v}_{r+s}).
$$

Now check that sgn $\tau = (-1)^{rs}$. So we get

$$
\varphi \wedge \psi = (-1)^{rs} \psi \wedge \varphi.
$$

Theorem

If $r > n = \dim V$, then

$$
\bigwedge^r(\bm{V})=\{0\}.
$$

For $0 \le r \le n$.

$$
\dim \bigwedge^r (\mathbf{V}) = \binom{n}{r}.
$$

Let ω^1,\ldots,ω^n be a basis of $\bigwedge^1(\bm{\mathsf{V}})$. Then the set

$$
\{\omega^{i_1}\wedge\cdots\wedge\omega^{i_r}:1\leq i_1
$$

is a basis of $\bigwedge^r(\bm{V})$. Finally, we have

$$
\dim \bigwedge (\bm{V}) = 2^n.
$$

• Let e_1, \ldots, e_n be any basis of V.

Let φ be an alternating covariant tensor of order $r > \dim V$. Then on any set of basis elements

$$
\varphi(\boldsymbol{e}_{i_1},\ldots,\boldsymbol{e}_{i_r})=0.
$$

This is because:

- Some variable \boldsymbol{e}_{i_k} is repeated;
- Interchanging two equal variables both changes the sign of φ on the set and leaves it unchanged.

Now all components of φ are zero.

So $\varphi = 0$. It follows that $\bigwedge^r (\mathbf{V}) = \{0\}.$

• Suppose that $0 \le r \le n$. Let ω^1,\ldots,ω^n be the basis of $\bm{V}^*=\bigwedge^1(\bm{V})$ dual to $\bm{e}_1,\ldots,\bm{e}_n.$ $\mathcal A$ maps $\mathcal T^r(\bm V)$ onto $\bigwedge^r(\bm V).$ So the image of the basis $\{\omega^{i_1}\otimes\cdots\otimes\omega^{i_r}\}$ of $\mathcal{T}^r(\bm{V})$ spans $\bigwedge^r(\bm{V}).$ We have

$$
r!{\cal A}(\omega^{i_1}\otimes\cdots\otimes\omega^{i_r})=\omega^{i_1}\wedge\cdots\wedge\omega^{i_r}.
$$

By the preceding lemma, permuting the order of i_1,\ldots,i_r leaves the right side unchanged, except for a possible change of sign. It follows that the set of $\binom{n}{r}$

 $\binom{n}{r}$ elements of the form

$$
\omega^{i_1}\wedge\cdots\wedge\omega^{i_r}, \quad 1\leq i_1 < i_2 < \cdots < i_r \leq n,
$$

span \bigwedge^r (*V*).

Moreover, these elements are independent.

Suppose that some linear combination of them is zero, say

$$
\sum_{i_1 < \cdots < i_r} \alpha_{i_1 \cdots i_r} \omega^{i_1} \wedge \cdots \wedge \omega^{i_r} = 0.
$$

Then its value on each set of r basis vectors must be zero. In particular, given $k_1 < \cdots < k_r$, we have

$$
0 = \left(\sum \alpha_{i_1\cdots i_r} \omega^{i_1} \wedge \cdots \wedge \omega^{i_r}\right) (\mathbf{e}_{k_1}, \ldots, \mathbf{e}_{k_r}).
$$

This becomes $\alpha_{k_1\cdots k_r} = 0$ by virtue of the formula of a previous corollary, combined with $\omega^{i}(\mathbf{e}_k) = \delta^{i}_{k}$, for $1 \leq i, k \leq n$.

By suitable choice of $k_1 < \cdots < k_r$, we see that each coefficient must be zero. Therefore the given set of elements of $\bigwedge^r(\bm{V})$ is linearly independent and a basis.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 151/203

• To complete the proof we note that

$$
\dim \bigwedge (\mathbf{V}) = \sum_{r=0}^n \dim \bigwedge^r (\mathbf{V}) = \sum_{r=0}^n {n \choose r} = 2^n.
$$

Theorem

Let V and W be finite-dimensional vector spaces and $F_* : W \to V$ a linear mapping. Then $F^*:\mathcal{T}(\bm V)\to \mathcal{T}(\bm W)$ takes $\bigwedge(\bm V)$ into $\bigwedge(\bm W)$ and is a homomorphism of these (exterior) algebras.

- The theorem is an immediate consequence of:
	- A previous asserted property of F^* ;
	- The fact that $A \circ F^* = F^* \circ A;$
	- The definition of exterior multiplication.

The Exterior Algebra on Manifolds

• All of these ideas extend to alternating tensor fields on a C^{∞} manifold M.

Definition

An alternating covariant tensor field of order r on M will be called an exterior differential form of degree r (or sometimes simply r -form).

- The set $\bigwedge^r(M)$ of all such forms is a subspace of $\mathcal{T}^r(M)$.
- The following two theorems follow from preceding work.
- \bullet We let M, N be manifolds and F : $M \rightarrow N$ be a C^{∞} mapping.

The Exterior Algebra on Manifolds (Cont'd)

Theorem

Let $\bigwedge(M)$ denote the vector space over $\mathbb R$ of all exterior differential forms. Then for $\varphi \in \bigwedge^r (M)$ and $\psi \in \bigwedge^s (M)$ the formula

 $(\varphi \wedge \psi)_p = \varphi_p \wedge \psi_p$

defines an associative product satisfying

$$
\varphi \wedge \psi = (-1)^{rs} \psi \wedge \varphi.
$$

With this product, $\bigwedge(M)$ is an algebra over R.

We shall call $\bigwedge(M)$ the <mark>algebra of differential forms</mark> or **exterior** algebra on M.

The Exterior Algebra on Manifolds (Cont'd)

Theorem (Cont'd)

If $f \in C^{\infty}(M)$, we also have

$$
(f\varphi)\wedge\psi=f(\varphi\wedge\psi)=\varphi\wedge(f\psi).
$$

If ω^1,\ldots,ω^n is a field of coframes on M (or an open set U of $M)$, then the set

$$
\{\omega^{i_1}\wedge\cdots\wedge\omega^{i_r}:1\leq i_1
$$

is a basis of $\bigwedge^r(M)$ (or $\bigwedge^r(U)$, respectively).

Theorem

If $F:M\to N$ is a C^∞ mapping of manifolds, then $F^*:\bigwedge(N)\to\bigwedge(M)$ is an algebra homomorphism.

Subsection 7

[Orientation of Manifolds and the Volume Element](#page-155-0)

Orientation of Bases of Vector Spaces

- \bullet Let V be a vector space.
- Let $\{e_1, \ldots, e_n\}$, $\{f_1, \ldots, f_n\}$ be bases of V .
- **•** The bases are said to have the **same orientation** if the determinant of the matrix of coefficients expressing one basis in terms of the other is positive,

 $\mathsf{det}(\alpha_j^j)$ $'_{i}) > 0,$

where

$$
\boldsymbol{f}_i = \sum_{j=1}^n \alpha_i^j \mathbf{e}_j, \quad i = 1, \ldots, n.
$$

o It can be checked that:

- \bullet This is an equivalence relation on the set of all bases (or frames) of $\boldsymbol{V};$
- There are exactly two equivalence classes.

Oriented Vector Spaces

- \bullet Let V be a vector space.
- The equivalence of bases modulo orientation has exactly two equivalence classes.
- \bullet A choice of one of these is said to **orient** \boldsymbol{V} .

Definition

An **oriented vector space** is a vector space plus an equivalence class of allowable bases. The selected class consists of all those bases with the same orientation as a chosen one. The bases in this class will be called oriented or positively oriented bases or frames.

- Orientation is related to the choice of a basis Ω of $\bigwedge^n(\boldsymbol{V})$.
- Recall that dim $\bigwedge^n (\boldsymbol{V}) = \binom{n}{n}$ $\binom{n}{n} = 1.$
- So any nonzero element is a basis.

Lemma

Let $\Omega \neq 0$ be an alternating covariant tensor on V of order $n = \dim V$ and let e_1, \ldots, e_n be a basis of V. Then for any set of vectors v_1, \ldots, v_n with $\bm{v}_i = \sum \gamma_i^j$ $_{i}^{j}\bm{e}_{j}$, we have

$$
\Omega(\mathbf{v}_1,\ldots,\mathbf{v}_n)=\det(\gamma_j^i)\Omega(\mathbf{e}_1,\ldots,\mathbf{e}_n).
$$

 \circ This lemma says that up to a nonvanishing scalar multiple Ω is the determinant of the components of its variables.

Let $V = V^n$ be the space of *n*-tuples.

Let e_1, \ldots, e_n be the canonical basis.

The lemma assert that $\Omega(\mathbf{v}_1, \ldots, \mathbf{v}_n)$ is proportional to the determinant whose rows are v_1, \ldots, v_n .

The proof is a consequence of the definition of determinant. Suppose Ω and $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ are given.

Use the linearity and antisymmetry of Ω to write

$$
\Omega(\mathbf{v}_1,\ldots,\mathbf{v}_n) = \sum_{j_1,\ldots,j_n} \alpha^{j_1} \cdots \alpha^{j_n} \Omega(\mathbf{e}_{j_1},\ldots,\mathbf{e}_{j_n})
$$

\n
$$
= \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn} \sigma \alpha_1^{\sigma(1)} \cdots \alpha_n^{\sigma(n)} \Omega(\mathbf{e}_1,\ldots,\mathbf{e}_n)
$$

\n
$$
= \det(\alpha_j^j) \Omega(\mathbf{e}_1,\ldots,\mathbf{e}_n).
$$

The last equality is the standard definition of determinant (\mathfrak{S}_n is the symmetric group on n letters).

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 160 / 203

Using Bases to Determine Orientations

Corollary

A nonvanishing $\Omega \in \bigwedge^n(\boldsymbol{V})$ has the same sign (or opposite sign) on two bases if they have the same (respectively, opposite) orientation. Thus, choice of an $\Omega \neq 0$ determines an orientation of \boldsymbol{V} . Two such forms Ω_1, Ω_2 determine the same orientation if and only if

$$
\Omega_1=\lambda\Omega_2,\quad \lambda>0.
$$

 \circ From the formula of the lemma we see that Ω has the same sign on equivalent bases and opposite sign on inequivalent bases. If $\lambda > 0$, then $\lambda \Omega$ has the same sign on any basis as Ω does. The contrary holds if $\lambda < 0$.

Remark

- Suppose $\Omega \neq 0$.
- **Then** v_1, \ldots, v_n **are linearly independent if and only if**

$$
\Omega(\textbf{v}_1,\ldots,\textbf{v}_n)\neq 0.
$$

Note, also, that the formula of the lemma can be construed as a formula for change of component of Ω (there is just one component since dim $\bigwedge^n({\bm{V}}) = 1)$, when we change from the basis ${\bm{e}}_1,\ldots,{\bm{e}}_n$ of V to the basis v_1, \ldots, v_n .

Euclidean Vector Spaces

- \bullet Suppose V is a Euclidean vector space.
- \bullet So V has a positive definite inner product $\Phi(\mathbf{v}, \mathbf{w})$.
- Then, in orienting V, we may choose an orthonormal basis e_1, \ldots, e_n to determine the orientation.
- **Then, we may choose an n-form** Ω **whose value on** e_1, \ldots, e_n **is** $+1$ **.**
- Suppose $\boldsymbol{f}_i = \sum \alpha_i^j$ i^j **e**; is another orthonormal basis.
- Then

$$
\Omega(\boldsymbol{f}_1,\ldots,\boldsymbol{f}_n)=\det(\alpha_i^j)\Omega(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)=\pm 1,
$$

depending on whether f_1, \ldots, f_n is similarly or oppositely oriented.

- \bullet Thus, the value of Ω on any orthonormal basis is ± 1 .
- Ω is uniquely determined up to its sign by this property.
- \circ In this case, Ω may be given a geometric meaning when $n = 2$ or 3.
- $\Omega(\mathbf{v}_1, \mathbf{v}_2)$ or $\Omega(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is the area or volume, respectively, of the parallelogram or parallelepiped of which the given vectors are the sides from the origin.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 163/203

Orientable Manifolds

 \bullet To extend the concept of orientation to a manifold M we must try to orient each of the tangent spaces $T_p(M)$ in such a way that orientation of nearby tangent spaces agree.

Definition

We shall say that M is **orientable** if it is possible to define a C^{∞} n-form Ω on M which is not zero at any point. In this case, M is said to be **oriented** by the choice of $Ω$.

- \circ By the preceding corollary, any such Ω orients each tangent space.
- Of course any form $\Omega' = \lambda \Omega$, where $\lambda > 0$ is a C^{∞} function, would give M the same orientation.

Natural Orientation

 \mathbb{R}^n , with the form

$$
\widetilde{\Omega}=dx^1\wedge\cdots\wedge dx^n,
$$

is an example.

- This is known as the natural orientation of \mathbb{R}^n .
- It corresponds to the orientation of the frames \bullet

$$
\frac{\partial}{\partial x^1},\ldots,\frac{\partial}{\partial x^n}.
$$

If $U \subseteq \mathbb{R}^n$ is an open set, it is oriented by

$$
\widetilde{\Omega}_U=\widetilde{\Omega}|_U.
$$

Orientation-Preserving Diffeomorphisms

We say that a diffeomorphism $F: U \to V \subseteq \mathbb{R}^n$ is **orientation** preserving if

$$
\mathsf{F}^*\widetilde{\Omega}_V=\lambda\widetilde{\Omega}_U,
$$

where $\lambda > 0$ a C^{∞} function on U.

• More generally a diffeomorphism $F : M_1 \rightarrow M_2$ of manifolds oriented by Ω_1, Ω_2 , respectively, is **orientation-preserving** if

$$
\digamma^*\Omega_2=\lambda\Omega_1,
$$

where $\lambda > 0$ is a C^{∞} function on M.

Alternative Definition of Orientability

- A second, perhaps more natural definition of orientability can be given as follows.
- \bullet *M* is **orientable** if it can be covered with *coherently oriented* coordinate neighborhoods

$$
\{U_{\alpha},\varphi_{\alpha}\}.
$$

- These are neighborhoods such that, if $U_\alpha\cap U_\beta\neq\emptyset$, then $\varphi_\alpha\circ\varphi_\beta^{-1}$ $_{\beta}^{-1}$ is orientation-preserving.
- We will now see that this second definition is equivalent to the one given previously.

Equivalence of the Definitions

Theorem

A manifold M is orientable if and only if it has a covering $\{U_\alpha,\varphi_\alpha\}$ of coherently oriented coordinate neighborhoods.

 \bullet First suppose that M is orientable.

Let Ω be a nowhere vanishing *n*-form, determining the orientation. Choose any covering $\{U_{\alpha}, \varphi_{\alpha}\}\$ by coordinate neighborhoods. Let $x^1_\alpha,\ldots,x^n_\alpha$ be local coordinates, such that for Ω , restricted to U_α , we have the expression in local coordinates

$$
\varphi_{\alpha}^{-1} \mathfrak{D}_{U_{\alpha}} \lambda_{\alpha}(x) dx_{\alpha}^{1} \wedge \cdots \wedge dx_{\alpha}^{n}, \text{ with } \lambda_{\alpha} > 0.
$$

Equivalence of the Definitions (Cont'd)

Replacing coordinates (x^1, \ldots, x^n) by $(-x^1, \ldots, x^n)$, that is, \bullet changing the sign of one coordinate, changes the sign of λ . So we may easily choose coordinates so that the scalar function λ_{α} , component of $Ω$, is positive on $U_α$.

An easy computation, using a previous lemma and remark, shows that if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then on this set the formula for change of component is

$$
\lambda_\alpha {\rm det} \left(\frac{\partial x^i_\alpha}{\partial x^j_\beta} \right) = \lambda_\beta.
$$

Since $\lambda_{\alpha} > 0$ and $\lambda_{\beta} > 0$, the determinant of the Jacobian is positive. So the chosen coordinate neighborhoods are coherently oriented.

Equivalence of the Definitions (Converse)

Now suppose that M has a covering by coherently oriented coordinate neighborhoods $\{U_{\alpha}, \varphi_{\alpha}\}.$

We use a subordinate partition of unity $\{f_i\}$ to construct an *n*-form Ω on M which does not vanish at any point.

For each $i=1,2,\ldots$ we choose a coordinate neighborhood $\mathit{U}_{\alpha_i},\varphi_{\alpha_i}$ of the covering, such that $U_{\alpha_i} \supseteq {\sf supp} f_i$. These neighborhoods, which we relabel $\mathit{U}_{i},\varphi_{i},$ cover $\mathit{M}.$

If $U_i \cap U_i \neq \emptyset$, then, by assumption, the determinant of the Jacobian matrix of $\varphi_i\circ \varphi_j^{-1}$ is positive on $U_i\cap U_j.$

Define $\Omega \in \bigwedge^n(M)$ by

$$
\Omega=\sum_i f_i\varphi_i^*(dx_i^1\wedge\cdots\wedge dx_i^n),
$$

where each summand is extended to all of M by defining it to be zero outside the closed set supp $f_i.$

Let $p \in M$ be arbitrary.

We show that $\Omega_p \neq 0$.

Recall that $\{ \text{supp} f_i \}$ is locally finite.

So we may choose a coordinate neighborhood V, ψ of p which:

- Is coherently oriented to the U_i, φ_i ;
- Intersects only a finite number of the sets supp f_i , say for $i = i_1, \ldots, i_k$.

Let y^1, \ldots, y^n be the local coordinates in V.

Use the same formula as above on each summand to change components,

$$
\Omega_{p} = \sum_{j=1}^{k} f_{ij}(p) \varphi_{i_{j}}^{*}(dx_{i_{j}}^{1} \wedge \cdots \wedge d_{i_{j}}^{n})
$$
\n
$$
= \sum f_{i_{j}}(p) \det \left(\frac{\partial x_{i_{j}}^{k}}{\partial y^{e}}\right)_{\psi(p)} \psi^{*}(dy^{1} \wedge \cdots \wedge dy^{n}).
$$

Now each $f_{i_i} \geq 0$ on M.

Moreover, at least one of them is positive at p.

Finally, the Jacobian determinants are all positive.

This implies $\Omega_p \neq 0$ and, since p was arbitrary, Ω is never zero on M.

The Case of Riemannian Manifolds

- A Riemannian manifold has the special property that the tangent space $T_p(M)$ at every point p has an inner product.
- We apply our remarks about *n*-forms on a Euclidean vector space of dimension *n*.

Theorem

Let M be an orientable Riemannian manifold with Riemannian metric Φ. Corresponding to an orientation of M, there is a uniquely determined n-form Ω which:

- Gives the orientation;
- Has the value $+1$ on every oriented orthonormal frame.

The Case of Riemannian Manifolds (Cont'd)

It is clear from our earlier discussion that at each point $p \in M$, Ω_p is determined uniquely by the requirement that, on any oriented orthonormal basis F_{1p}, \ldots, F_{np} of $T_p(M)$, we have

$$
\Omega_p(F_{1p},\ldots,F_{np})=+1.
$$

Let U, φ be any coordinate neighborhood. Let E_1, \ldots, E_n be be coordinate frames. The functions

$$
g_{ij}(P)=\Phi_p(E_{ip},E_{jp}),\quad p\in U,
$$

define the components of Φ relative to these local coordinates. They are C^{∞} , by definition.

We derive an expression for the component $\Omega(E_1,\ldots,E_n)$ on U in terms of the matrix (g_{ii}) .

From this, it will be apparent that Ω is a C^{∞} *n*-form.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 174 / 203

The Case of Riemannian Manifolds (Cont'd)

• Choose at $p \in U$ any oriented, orthonormal basis F_{1p}, \ldots, F_{np} . Let the $n \times n$ matrix (α_i^k) denote the components of E_{1p}, \ldots, E_{np} with respect to this basis,

$$
E_{ip}=\sum_{k=1}^n\alpha_i^kF_{kp}, \quad i=1,\ldots,n.
$$

Now we have

$$
\Phi(F_{kp}, F_{ip}) = \delta_{ki}.
$$

Hence, we obtain, for $1 \le i, j \le n$,

$$
g_{ij}(P) = \Phi_p(E_{ip}, E_{jp}) = \left(\sum_k \alpha_i^k F_{kp}, \sum_{\ell} \alpha_j^{\ell} F_{\ell p}\right) = \sum_{k=1}^n \alpha_i^k \alpha_j^k.
$$

The equation $g_{ij}(p) = \sum_{k=1}^n \alpha_i^k \alpha_j^k$, $1 \le i, j \le n$, may be written as a matrix equation:

$$
(g_{ij}(p)) = A^T A,
$$

the product of the transpose of $A = (\alpha_i^k)$ with A itself. On the other hand:

 $\Omega_\rho(E_{1\rho},\ldots,E_{n\rho})=\det(\alpha_i^k)\Omega_\rho(F_{1\rho},\ldots,F_{n\rho}),$ by a previous lemma; $\Omega_p(F_{1p}, \ldots, F_{np}) = +1$, by our definitions.

Since det $(A^{\mathcal{T}}A)=(\mathsf{det}A)^2=\mathsf{det}(\mathcal{g}_{ij})$, this gives for the component of Ω in local coordinates

$$
\Omega_p(E_{1p},\ldots,E_{np})=(\det(g_{ij}(p)))^{1/2}.
$$

So the component is the square root of a positive C^{∞} function of $p \in U$. So it is itself a C^{∞} function on the local coordinate neighborhood U.

Since U, φ is arbitrary, Ω is a C^{∞} *n*-form on M.

Volume Element

- This form Ω is called the (natural) **volume element** of the oriented Riemannian manifold.
- We have just seen that in local coordinates we have the following expression for Ω:

$$
\varphi^{-1*}\Omega=\sqrt{g}dx^1\wedge\cdots\wedge dx^n,
$$

where $g(x) = det(g_{ii}(x))$ (we use the same notation for g_{ii} as functions on U and on $\varphi(U)$).

When $M = \mathbb{R}^n$, with the usual coordinates and metric, this becomes

$$
\Omega = dx^1 \wedge \cdots \wedge dx^n.
$$

In this case, as seen, the value of Ω_p on a set of vectors is the volume of the parallelepiped whose edges from p are these vectors.

Volume Element (Cont'd)

In particular, on the unit cube with vertex at p and sides \bullet

$$
\frac{\partial}{\partial x^1},\ldots,\frac{\partial}{\partial x^n},
$$

 Ω has the value $+1$.

- \bullet The existence of the form Ω on a Riemannian manifold will enable us to define the volume of suitable subsets of the manifold.
- Moreover, we will be able to extend to these manifolds the volume integrals defined in \mathbb{R}^n in integral calculus.

Subsection 8

Local Representations of k-Forms

- \bullet Let U be an open subset of a manifold M.
- We shall denote by θ_U the restriction of an exterior form on M to U.
- Of course $\theta_U = i^*\theta$, $i: U \to M$ being the inclusion map.
- Let $\mathcal U,\varphi$ be a coordinate neighborhood, with x^1,\ldots,x^n as coordinate functions on U, i.e.,

$$
\varphi(q)=(x^1(q),\ldots,x^n(q)).
$$

- Then the differentials of these functions dx^1, \ldots, dx^n :
	- Are linearly independent elements of $\bigwedge^1(U);$
	- Constitute a C^{∞} field of coframes on U.
- It follows that they, with 1, generate $\bigwedge(U)$ over $C^\infty(U).$
- Equivalently, $C^{\infty}(U)=\bigwedge^{0}(U)$ and $\bigwedge^{1}(U)$ generate the algebra $\overline{\bigwedge(U)}$ over $\overline{\mathbb{R}}$.
Local Representations of k-Forms (Cont'd)

• Thus, locally every k-form θ on M has a unique representation on U

$$
\theta_U=\sum_{i_1<\cdots
$$

the sum over all sets of indices such that $1 \leq i_1 < i_2 < \cdots < i_k \leq n$. Define $b_{i_1\cdots i_k}$ for all values of the indices so as:

- To change sign whenever two indices are permuted;
- To equal $a_{i_1\cdots i_k}$, if $i_1 < \cdots < i_k$.
- The we get the representation

$$
\theta_{\mathbf{U}}=\sum \frac{1}{k!}b_{i_1\cdots i_k}dx^{i_1}\wedge \cdots \wedge dx^{i_k},
$$

the summation being over all values of the indices.

The use of dx^{1},\ldots,dx^{n} , rather than $\omega^{1},\ldots,\omega^{n}$, is to emphasize that the dx^i are differentials of functions on $U \subseteq M$.

Operator d_M

Theorem

Let M be any C^∞ manifold. Let $\bigwedge(M)$ be the algebra of exterior differential forms on M . Then there exists a unique $\mathbb R$ -linear map

$$
d_M:\bigwedge(M)\to\bigwedge(M),
$$

such that:

(1) If $f \in \bigwedge^0 (M) = C^{\infty}(M)$, then $d_M f = df$, the differential of f ; (2) For $\theta \in \bigwedge^r (M)$, $\sigma \in \bigwedge^s (M)$,

$$
d_M(\theta\wedge\sigma)=d_M\theta\wedge\sigma+(-1)^r\theta\wedge d_M\sigma;
$$

(3) $d_M^2 = 0$.

We give the proof in a series of steps.

Operator d_M (Step (A))

 (A) Suppose that d_M exists. Let $g, f^1, \ldots, f^r \in C^{\infty}(M)$. Properties (1)-(3) imply that, for $\theta = g \, df^1 \wedge \cdots \wedge df^r$, we must have

$$
d_M\theta = dg \wedge df^1 \wedge \cdots \wedge df^r.
$$

Now suppose that M is covered by a single coordinate neighborhood U, φ with coordinate functions x^1, \ldots, x^n .

The above remark and linearity imply that d_M must be given by

$$
d_M\left(\sum a_{i_1\cdots i_r}dx^{i_1}\wedge\cdots\wedge dx^{i_r}\right)=\sum da_{i_1\cdots i_r}\wedge dx^{i_1}\wedge\cdots\wedge dx^{i_r},
$$

where

$$
da_{i_1\cdots i_r} = \sum_{j=1}^n \frac{\partial a_{i_1\cdots i_r}}{\partial x^j} dx^j
$$

and the summation is over $1 \leq i_1 < i_2 < \cdots < i_r \leq n$. Therefore, if defined at all, d_M is unique in this case.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 183/203

• Conversely, suppose d_M is defined by this sum. Then it is linear and trivially satisfies Properties (1) and (3). To check Property (2) it is enough to consider forms

$$
\theta = adx^{i_1} \wedge \cdots \wedge dx^{i_r} \quad \text{and} \quad \sigma = bdx^{j_1} \wedge \cdots \wedge dx^{j_s}.
$$

The general statement is then a consequence of linearity.

$$
d_M[(adx^{i_1}\wedge\cdots\wedge dx^{i_r})\wedge (bdx^{j_1}\wedge\cdots\wedge dx^{j_s})]
$$

= $d_M(ab)(dx^{i_1}\wedge\cdots\wedge dx^{i_r})\wedge (dx^{j_1}\wedge\cdots\wedge dx^{j_s})$
= $[(d_Ma)b + a(d_Mb)]\wedge (dx^{i_1}\wedge\cdots\wedge dx^{i_s})\wedge (dx^{j_1}\wedge\cdots\wedge dx^{j_s})$
= $(d_Ma\wedge dx^{i_1}\wedge\cdots\wedge dx^{i_r})\wedge (bdx^{j_1}\wedge\cdots\wedge dx^{j_s})$
+ $(-1)^r(adx^{i_1}\wedge\cdots\wedge dx^{i_r})\wedge (db\wedge dx^{j_1}\wedge\cdots\wedge dx^{j_s}).$

The $(-1)^r$ is due to the fact that

$$
db \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_r} = (-1)^r dx^{i_1} \wedge \cdots \wedge dx^{i_r} \wedge db.
$$

Operator d_M (Step (B))

(B) Suppose $d_M : \bigwedge (M) \to \bigwedge (M)$, with Properties (1)-(3) is defined. Let $U \subseteq M$ be a coordinate neighborhood on M. Suppose its coordinate functions are $x^1, \ldots, x^n.$ According to Step (A),

$$
d_U:\bigwedge(U)\to\bigwedge(U)
$$

is uniquely defined.

We will show that, for any $\theta \in \bigwedge(M)$, the restriction of $d_M\theta$ to U is equal to d_U applied to θ restricted to U,

$$
(d_M\theta)_U=d_U\theta_U.
$$

We may suppose that $\theta \in \bigwedge^r(M)$ and that

$$
\theta_U=\sum a_{i_1\cdots i_r}dx^{i_1}\wedge\cdots\wedge dx^{i_r},\quad a_{i_1\cdots i_r}\in C^\infty(U).
$$

Suppose p is an arbitrary point of U .

Apply a previous corollary to an open set W, $p \in W$ and $W \in U$. We find a neighborhood V of p, with $V \subseteq W$, and C^{∞} functions y^1, \ldots, y^n and $b_{i_1 \cdots i_r}$ on M, which:

- Vanish outside W:
- Are identical to x^1, \ldots, x^n , respectively, on V.

Define $\sigma \in \bigwedge^r(M)$ by

$$
\sigma=\sum b_{i_1\cdots i_r}dy^{i_1}\wedge\cdots\wedge dy^{i_r}.
$$

Then σ is an r-form on M which:

- Vanishes outside W;
- \circ Is identical to θ on V .

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 186 / 203

Operator d_M (Step (B) Cont'd)

• Now let g be a C^{∞} function on M which:

- Has the value $+1$ at p;
- \circ Is zero outside V.

The r-form $g(\theta - \sigma)$ vanishes everywhere on M as does $dg \wedge (\theta - \sigma)$. Therefore, using (A),

$$
gd_M\theta = gd_M\sigma = g\sum da_{i_1\cdots i_r}\wedge dy^{i_1}\wedge\cdots\wedge dy^{i_r}.
$$

On V we have

$$
\sum da_{i_1\cdots i_r}\wedge dy^{i_1}\wedge\cdots\wedge dy^{i_r}=\sum da_{i_1\cdots a_r}\wedge dx^{i_1}\wedge\cdots\wedge dx^{i_r}.
$$

So at the point p, where $g(p) = 1$, $d_M\theta = d_U\theta_U$. Since p is arbitrary, this holds throughout U .

Operator d_M (Step (C))

(C) Suppose $d_M : \bigwedge(M) \to \bigwedge(M)$ satisfying Properties (1)-(3) exists. We show that it is unique.

Let $\{U_\alpha,\varphi_\alpha\}$ be a covering of M by coordinate neighborhoods. By Step (A), each $d_{U_{\alpha}}$ exists. By Step (B), for any $\theta \in \bigwedge(M)$, we have, for any U_α ,

$$
(d_M\theta)_{U_{\alpha}}=d_{U_{\alpha}}\theta_{U_{\alpha}}.
$$

Every $p \in M$ lies in a neighborhood U_{α} .

So this would determine d_M completely.

On the other hand, we may use this formula to define d_M .

To do so we must verify that, if $p \in U_\alpha \cap U_\beta$, then $d_M\theta$ is uniquely determined at p.

Operator d_M (Step (C) Cont'd)

- Let $U = U_\alpha \cap U_\beta$.
- \bullet We apply Steps (A) and (B) to U, an open subset and coordinate neighborhood with coordinate map φ_β cut down to U.

We obtain

$$
(d_{U_{\alpha}}\theta_{U_{\alpha}})_{U}=d_{U}\theta_{U}=(d_{U_{\beta}}\theta_{U_{\beta}})_{U}.
$$

Therefore, $(d_M\theta)_{U_{\alpha}}$ is determined on every U_{α} in such a manner that $(d_M\theta)_{U_{\alpha}}=(d_M\theta)_{U_{\beta}}$ on points common to U_{α} and $U_{\beta}.$ This determines d_M .

Properties (1)-(3) hold on each U_{α} .

Moreover, the other operations of exterior algebra commute with restriction.

That is,
$$
(\theta \wedge \sigma)U = \theta U \wedge \sigma U
$$
, and so on.

So d_M has the required properties as an operator on $\bigwedge(M).$

Notation

- \bullet Since d_M is uniquely defined for every C^{∞} manifold M, we can drop the subscript M and use d to denote all of these operators.
- \bullet We know from the above proof that d commutes with restriction of differential forms to coordinate neighborhoods.
- \bullet We investigate how it behaves relative to a C^{∞} mapping $F : M \to N$.
- Any such mapping, as we know, induces a homomorphism

$$
F^*: \bigwedge(N) \to \bigwedge(M).
$$

The following theorem gives the relation between F^* and d .

Mappings and Differential Operators

Theorem

F^* and d commute, that is, $F^* \circ d = d \circ F^*$.

We know that:

- Both F^* and d are R-linear;
- The equality $F^*(d\varphi) = d(F^*\varphi)$ holds on M, if it holds locally.

By the facts concerning d , determined above, it suffices to establish the theorem for pairs V, ψ, U, θ of coordinate neighborhoods on M, N, respectively, such that $F(V) \subset U$. Let $m = \text{dim}M$ and $n = \text{dim}N$ and x^1, \ldots, x^m and y^1, \ldots, y^n be the

coordinate functions on V, U , respectively. Let $y^j = y^j(x^1, \ldots, x^m)$, $j = 1, \ldots, n$, give F in local coordinates. Then it is enough to establish $F^* \circ d = d \circ F^*$ on forms of type

$$
\varphi = a(x)dx^{i_1} \wedge \cdots \wedge dx^{i_k},
$$

since any other forms are sums of such forms.

Mappings and Differential Operators (Cont'd)

• We proceed by induction on the degree of the forms. Consider a forms $a(x)$ of degree zero, i.e., a C^{∞} function. For $X_p \in T_p(M)$, we have

$$
F^*(da)(X_p) = da(F_*X_p)
$$

= $(F_*X_p)a$
= $X_p(a \circ F)$
= $X_p(F^*a)$
= $d(F^*a)(X_p).$

Therefore, $F^*(da) = d(F^*a)$.

Mappings and Differential Operators (Cont'd)

 \bullet Suppose the theorem to be true for all forms of degree less than k. Let φ be a *k*-form of the type above. Let $\varphi_1 = adx^{i_1}$ and $\varphi_2 = dx^{i_2} \wedge \cdots \wedge dx^{i_k}$. So $\varphi = \varphi_1 \wedge \varphi_2$, with both φ_1 and φ_2 of degree less than k. Moreover, since $d^2 = 0$, we have $d\varphi_2 = 0$. Thus,

$$
d(F^*(\varphi_1 \wedge \varphi_2)) = d[(F^*\varphi_1) \wedge (F^*\varphi_2)]
$$

\n
$$
= (dF^*\varphi_1) \wedge (F^*\varphi_2) - (F^*\varphi_1) \wedge (dF^*\varphi_2)
$$

\n
$$
= F^*(d\varphi_1) \wedge F^*\varphi_2
$$

\n
$$
= F^*(d\varphi_1 \wedge \varphi_2)
$$

\n
$$
= F^*d(\varphi_1 \wedge \varphi_2).
$$

Defining a Subspace

- \bullet On a vector space V of dimension n, a k-dimensional subspace D may be determined in either of two equivalent ways:
	- By giving a basis e_1, \ldots, e_k of D;
	- (ii) By giving $n k$ linearly independent elements of \boldsymbol{V}^* , say $\varphi^{k+1}, \ldots, \varphi^n$ which are zero on **D**.
- **In fact we may extend** e_1, \ldots, e_k **to a basis** e_1, \ldots, e_n **of V so that** $\varphi^{k+1},\ldots,\varphi^{\textit{n}}$ is part of a dual basis $\varphi^1,\ldots,\varphi^{\textit{n}}$ of $\boldsymbol{V}^*.$

Lemma

Let $\omega \in \bigwedge^1(M)$ and $X, Y \in \mathfrak{X}(M)$. Then we have

$$
d\omega(X,Y)=X\omega(Y)-Y\omega(X)-\omega([X,Y]).
$$

If is enough to prove that it is true locally, say in a coordinate neighborhood of each point.

In any such neighborhood with coordinates x^1, \ldots, x^n ,

$$
\omega=\sum_{i=1}^n a_i dx^i.
$$

The equation of the lemma holds for all ω if it holds for every ω of the form fdg, where f, g are C^{∞} functions on the neighborhood. Suppose, then, that $\omega = f dg$. Let X, Y be C^{∞} -vector fields.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 195/203

We evaluate both sides of the equation of the lemma separately. We get

$$
d\omega(X, Y) = df \wedge dg(X, Y)
$$

= df(X)dg(Y) - dg(X)df(Y)
= (Xf)(Yg) - (Xg)(Yf);

Moreover, \bullet

$$
X\omega(Y) - Y\omega(X) - \omega([X, Y])
$$

= $X(fdg(Y)) - Y(fdg(X)) - fdg([X, Y])$
= $X(f(Yg)) - Y(f(Xg)) - f(XYg - YXg)$
= $(Xf)(Yg) - (Xg)(Yf)$

after cancelation. This proves the lemma.

George Voutsadakis (LSSU) [Differential Geometry](#page-0-0) December 2024 196/203

Involutiveness of a Distribution

Theorem

Let Δ be a C^{∞} distribution of dimension k on M, dim $M = n$. Then Δ is involutive if and only if, in a neighborhood V of each $p \in M$, there exist $n - k$ linearly independent one-forms $\varphi^{k+1}, \varphi^{k+2}, \ldots, \varphi^n$ which vanish on Δ and satisfy the condition

$$
d\varphi^r=\sum_{\ell=k+1}^n\theta_\ell^r\wedge\varphi^\ell,\quad r=k+1,\ldots,n,
$$

for suitable 1-forms θ_{ℓ}^{r} .

This may be considered a sort of dual statement to our earlier condition on Δ in terms of the existence of a local basis X_1, \ldots, X_k at each point.

• Suppose a distribution Δ is given.

Consider an arbitrary point.

Let V be a neighborhood.

In V, a local basis X_1, \ldots, X_k of Δ can be completed to a field of frames

$$
X_1,\ldots,X_k,\ldots,X_n.
$$

Let

$$
\varphi^1,\ldots,\varphi^k,\varphi^{k+1},\ldots,\varphi^n
$$

be the uniquely determined dual field of coframes. Then $\varphi^{k+1}, \ldots, \varphi^n$ vanish on X_1, \ldots, X_k and hence on $\Delta.$

• Now consider the expressions

$$
[X_i,X_j]=\sum_{i=1}^n c_{ij}^{\ell}X_{\ell},
$$

giving $[X_i,X_j]$ as linear combinations of the basis. The distribution Δ is involutive if and only if, in the preceding expressions, we have

$$
c_{ij}^{\ell}=0, \quad 1\leq i,j\leq k, \quad k+1\leq \ell\leq n.
$$

Using the preceding lemma and recalling that $\varphi^i(\mathsf{X}_j)$ is constant for $1 \leq i,j \leq n$, we compute $d\varphi^r$,

$$
d\varphi^{r}(X_{i},X_{j}) = -\varphi^{r}([X_{i},X_{j}])
$$

=
$$
-\sum_{\ell=1}^{n} c_{ij}^{\ell} \varphi^{r}(X_{\ell})
$$

=
$$
-c_{ij}^{r}, \quad 1 \leq i,j,r \leq n.
$$

On the other hand

$$
d\varphi^r = \frac{1}{2} \sum_{s,t}^n b_{st}^r \varphi^s \wedge \varphi^t, \quad 1 \leq r \leq n,
$$

where b_{st}^r are uniquely determined if we assume $b_{st}^r = -b_{ts}^r$. Hence,

$$
d\varphi^{r}(X_{i},X_{j}) = \frac{1}{2}\sum_{s,t}b'_{st}[\varphi^{s}(X_{i})\varphi^{t}(X_{j}) - \varphi^{t}(X_{i})\varphi^{s}(X_{j})]
$$

\n
$$
= \frac{1}{2}(b'_{ij} - b'_{ji})
$$

\n
$$
= b'_{ij}.
$$

From this we have $b_{ij}^r = -c_{ij}^r$.

• So the system is involutive if and only if, for each $r > k$,

$$
d\varphi^r=\sum_{i=k+1}^n\left\{\sum_{i=1}^kb_{i\ell}^r\varphi^i+\sum_{j=k+1}^n\frac{1}{2}b_{j\ell}^r\varphi^j\right\}\wedge\varphi^\ell.
$$

That is, the terms involving b_{ij}^r , with $1\leq i,j\leq k$ and $r>k$, vanish. Taking the terms in $\{\}$ as θ_ℓ^r , we have completed the proof.

Ideals

We can state the preceding theorem in a more elegant way if we introduce the concept of an ideal of $\bigwedge (M)$.

Definition

An ideal of $\bigwedge(M)$ is a subspace ${\mathcal I}$ which has the property that whenever $\varphi \in \mathcal{I}$ and $\theta \in \bigwedge(M)$, then

$$
\varphi \wedge \theta \in \mathcal{I}.
$$

Example: Let $\mathcal I$ be a subspace of $\bigwedge^1(M)$, that is, a collection of one-forms closed under addition and multiplication by real numbers. Then the set

$$
\bigwedge(M) \wedge \mathcal{I} = \{ \theta \wedge \varphi : \varphi \in \mathcal{I} \}
$$

is an ideal, the ideal generated by I .

Rephrasing the Theorem in Terms of Ideals

- Now suppose Δ is a distribution on M. \bullet
- Suppose, also, that $\mathcal I$ is the collection of 1-forms φ on M which vanish on Δ , that is, for each $p \in M$,

$$
\varphi_p(X_p) = 0, \quad \text{for all } X_p \in \Delta_p.
$$

- \circ *T* is a subspace.
- In fact, if $f \in C^{\infty}(M)$ and $\varphi \in \mathcal{I}$, then $f \varphi \in \mathcal{I}$. \bullet
- **The we have the following characterization.**
- ∆ is in involution if and only if

$$
d\mathcal{I} = \{d\varphi : \varphi \in \mathcal{I}\}
$$

is in the ideal generated by f .