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Integration on Manifolds

Subsection 1
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Integration on Manifolds

o Let A be a subset of R".

o We say that A has (n-dimensional) Jordan content zero, c(A) =0,
if for any € > 0, there exists a finite collection of cubes G, ..., G
which cover A and the sum of whose volumes is less than ¢,

S
Z volC; < e.
i=1

o We say that A has Lebesgue measure zero, m(A) = 0, if, for ¢ > 0,
there exists a countable set of cubes covering A, with

o0

ZVO|C/ <e.

i=1

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

©

These are not equivalent concepts.

©

It is easy to see that the subset of rational numbers in R has measure
zero but not content zero.

We have c(A) = 0 implies m(A) = 0.

Moreover, if A is compact, the converse also holds.

©

©

©

More generally, m(A) = 0 if and only if A is a countable union of sets
of content zero.
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Integration on Manifolds

Definition
A bounded subset D of R” is said to be a domain of integration if its

boundary BdD has content zero.
A function f on R" is said to be almost continuous if the set of points at

which it fails to be continuous has content zero.

o The most obvious example of a domain of integration is a cube, or an
n-ball.

o The usual domains of integration in R? or R3, bounded by piecewise
differentiable curves or surfaces, are also examples.
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Integration on Manifolds

Theorem

Let D be a domain of integration in IR” and let f be a real-valued function
on D. Suppose that f is bounded and almost continuous on D. Then the

Riemann integral
/ fdv
D

o We shall refer to a function with these properties as integrable on D.

exists.

o To say that the integral exists means, of course, that it is a limit of
approximating sums in the usual sense.

o The proof is essentially the same as that which is at least outlined in
every calculus book.

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

o Let D, D; and D, denote domains of integration in R".

o Let f, g be bounded almost continuous functions on R".

o It is not too difficult to show that the following sets are also domains
of integration:
D, the closure of D;

D, the interior of D;
D1 U Dz;
D1 n Dz;
Dy — Ds.

©

© 06 o0 o
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Integration on Manifolds

o We further have the following standard properties.

o If ¢(D) =0, then
/ fdv = 0.
D

o The following equations holds

/ fdv:/ fdv-l—/ fdv—/ fdv.
D1UD; D, D, D1ND;

o For all a,b € R,

/(af+bg)dv=a/ fdv—i—b/ gdv.
D D D
o If f >0o0n D and ¢(D) # 0, then

/ fdv > 0.
D

Equality holds iff f = 0 at every point at which it is continuous.
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Integration on Manifolds

o Recall that the characteristic function k4 of a subset A of a space
X is defined to be

1, ifxeA,
ka(x) _{ 0, ifx¢A

o Therefore ky is bounded and its discontinuities are exactly the set
BdA of boundary points of A.

o In particular, if D is a domain of integration, we have ¢(BdD) = 0 so
that kp is integrable.

o If D" is a domain of integration, D’ D D, then
/ kpfdv = / fdv.
7 D
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Integration on Manifolds

o Thus, if f on R" is bounded, has compact support, and is almost
continuous, then we define fR,, fdv unambiguously by

/ fdv:/ fdv,
o D

using any domain of integration D such that D D suppf.

Let D be any domain of integration. Then we define the volume of D,

volD, by
voID:/ dev:/ kpdv.
(o D
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Integration on Manifolds

o The following property is an easy consequence of the definitions:
(inf f)volD < / fdv < (sup f)volD.
D D D

o When D is connected and f is continuous, we obtain the mean value
property

/ fdv = f(a)volD,
D

for some point a € D.
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Integration on Manifolds

o The following theorem, a special case of Fubini's theorem, justifies
the usual evaluation of multiple integrals by repeated single
integrations of functions of one variable (iterated integrals).

Suppose f is a continuous function on the domain of integration

D={xeR":a <x'<b,i=1,...,n}

b" bt
/fdv:/ / f(x, ..., x")dxt - dx",
D an al

the expression on the right denoting repeated single integrations.

Then
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Integration on Manifolds

o Let G: U — U’ be a diffeomorphism of U C R" onto U’ C R".
o Let AG be the determinant of its Jacobian.

o Let G be given by coordinate functions

yvi=yi(x), i=1,...,n

o (O

o Then
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Integration on Manifolds

o A function f’ on U’ determines a function on U,
f=1f0G.
o We have the following relation between their integrals.

Theorem (Change of Variables)

Suppose D C U and D' = G(D) C U’ are domains of integration.
Suppose, also, that ' is integrable on D’.
Let f = f' o G, that is,

Then f is integrable on D and
/ f’(y)dv’=/ f’(G(x))\AG|dv=/ F(x)|AG]dv.
D’ D D
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Integration on Manifolds

o Let

D={(p0,0):0<a<p<b0<h< T, Z<p<

b

NS

T
4

A2

L4

w2 8

(]

o Let D’ be the first quadrant region of xyz-space:

o Between the spheres with center at the origin and radii a and b;
o Outside the inverted cone z? = x? + y2.
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Integration on Manifolds

o Let G be given by the coordinate functions
X =psinpcosf, y=psinpsinf, z= pcosy.
o Given f'(x,y,z) = x> +y?>+ 2% then f = f 0 G is

f(p,0, ) = f'(psinpcos b, psingsin b, pcos ) = p°.

o Also
ox  Ox Ox
: i
— 9y 9y Oy | _ |2
A= 5, 90 Do = |p“singp|.
9z 09z 0z
op 00 Op
o So

/ (x2+y2+22)dxdydz=/pzlpzsinwldpdwﬂ
’ D
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Integration on Manifolds

o Recall that a set is relatively compact if its closure is compact.

Lemma

Let A be a relatively compact subset of R"” of content zero. Let

F:A—=R™ n<m,
be a C! mapping. Then F(A) has content zero.

o By definition F is C! on an open set U D A.
Choose an open set V D A, such that V is a compact subset of U.
Let )
1

K = sup i

xeV

be a bound of the derivatives on V of the coordinate functions of F.
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Integration on Manifolds

o Choose d1, 0 < 91 < 1, so that every cube of side 9; whose center is
in A lies inside V.

By the Mean Value Theorem, for any x in a cube of side §; and
center a € A,

[F(x) — F(a)ll < vVnmK]||x — a]|.
Take 0 < § < 47.
Consider a cube C of side § and center a € A.

C must map into a cube C’ of center F(a) and side length less than
or equal to /nmKJ9.
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Integration on Manifolds

o Thus, F(C) lies in a cube C" whose volume satisfies

vol C’

<

<

(v/nmK4)™

((5<(51§1)

(nm)m/2Km6m—n5n
kvolC. (volC = 4")

where k = K™(nm)™/? is independent of a € A.

From this, it follows at once that, given any € > 0, we may cover

F(A) with a finite number of cubes Cj,.

less than €.

.., C, whose total volume is

We need only cover A with cubes (1, ..., Cs whose:

o Volume is less than £

o Side is less than d7.

i

This shows that the content of F(A) is zero.
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Integration on Manifolds

A relatively compact subset A C M is said to have content zero, written
c(A) =0, if it is the union of a finite number of subsets

each of which lies in a coordinate neighborhood U;, ¢;, such that, in R",
c(pi(A))) =0, i=1,...,s.

An arbitrary subset B C M is said to have measure zero, written
m(B) = 0, if B is the union of a countable collection of subsets
B = U‘,’il B;, such that each B; has content zero.
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Integration on Manifolds

Corollary

Suppose A C M has content (respectively, measure) zero.
Let

F:M—=>N

be a C! map with dimM < dim/N.
Then F(A) has content (respectively, measure) zero.
In particular, this holds if F is a diffeomorphism.

o This is an obvious application of the preceding lemma to the
definition.
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Integration on Manifolds

o If M is a manifold, D C M is a domain of integration if D is

relatively compact and the boundary of D has content zero,
c(BdD) = 0.

Theorem

If D is a domain of integration in M, so are its closure and its interior.
Finite unions and intersections of domains of integration are domains of
integration. Finally, the image of a domain of integration under a
dfffeomorphism is a domain of integration.

o These are all immediate consequences of the definition and of the
corresponding statements for:

o Subsets of content zero;
o Domains of integration in R".

For the last statement we must note that a diffeomorphism takes
boundary points to boundary points.
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Integration on Manifolds

Subsection 2
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Integration on Manifolds

o Suppose that M is an oriented manifold and dimM = n.

o By definition, this means that there is a C*° n-form
Q

on M which is not zero at any point of M.
o {Q} is a basis of A\"(M).
o That is, any other n-form w is given by

w = fQ,
where f is a function on M.

o Since Q is C*°, w will have the differentiability class of f.
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Integration on Manifolds

Definition
A function f on M is integrable if:
o It is bounded;
o Has compact support (vanishes outside a compact set);

o Is almost continuous (that is, continuous except possibly on a set of
content zero).

An n-form w on M, in the very general sense of a function assigning to
each p € M an element wp, of A"(T,(M)), is said to be integrable if

w = fQQ,

where f is an integrable function (we are not requiring w to be C* or
even C1).
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Integration on Manifolds

o The definition of integrable n-form does not depend on the particular
Q we use.

o Any other Q giving the orientation is of the form Q= g%, where g is
a positive C* function on M.
o Thus,
f~
fQ=-Q.
g
o If f has compact support, is bounded, and is almost continuous, then
the same will be true of éfr.
o We denote by A\j(M) the set of integrable n-forms.
o Like A\"(M), it is a vector space over R.

o Moreover, it is closed under multiplication by continuous or integrable
functions on M.
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Integration on Manifolds

o A subset @ C M is called a cube of M if it lies in the domain of an
associated, oriented, coordinate neighborhood U, ¢ and

o(Q)=C={xeR":0<x'<1,i=1,...,n}

the unit cube of R".
o Thus a cube is a compact set and is coordinatized in a definite way.

o We first define the integral over M of any w € A{(M) whose support
lies interior to some cube Q.
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Integration on Manifolds

o Let U, ¢ be the coordinate neighborhood associated with Q.

o Suppose
0 ¥ (w) = F(x)dxI A--- A dx"

represents w in the local coordinates.

o Then f is bounded and almost continuous on C.

o So [ fdv is defined.
o We define
/wz/ fdv.
M c
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Integration on Manifolds

o We must show that the value of this integral is independent of the
particular cube we have used.

o Suppose @’ is another cube containing suppw.
o Let U, ¢’ be the associated coordinate neighborhood.

o We denote the local coordinates for this neighborhood by

o Suppose that
(W) = F(y)dyt Ao Ady”

represents w on ¢'(U’).
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Integration on Manifolds

o Consider the diffeomorphism
G=¢ opl:ipUnU)—JWUNU).

o Let AG be the determinant of its Jacobian matrix.
o AG is positive, since the neighborhoods are oriented.

o By the rules for change of components of an n-form, we have
f(x) = f(G(x))AG.

o On the other hand, since Q, Q" are domains of integration.

o Therefore, so are Q N Q' and its images D = p(Q N Q) and
D' = ¢'(QN Q'), which lie in the unit cube of the x-coordinate space
and the y-coordinate space, respectively.
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Integration on Manifolds

o Now suppw C QN Q.
o So suppf C D and suppf’ C D’.
o Therefore

/f(x)dv:/ f(x)dv and F(y)dv' = F(y)dv'.
C D c’ D’

o According to the Change of Variable Theorem, since D' = G(C),

/, F(y)dv = /D F(G(x))|AG|dv.

o However, AG > 0 so that |AG| = AG.
o So, by the formula for change of components, the integral on the

right must equal
/ f(x)dv.
D

o This shows that wa is uniquely determined for every integrable w

which vanishes outside of some cube.
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Integration on Manifolds

o We note, in particular, the following linearity property.
o Suppose wi,ws vanish outside a cube Q.

o Then, for all real numbers a;, a»,

/a1w1+a2w2=a1/w1+a2/w2.
M M M

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

o Suppose that w is an arbitrary integrable n-form.

o Let K = suppw.

o Choose a finite covering of K by the interiors (031, cee COQS of cubes
@1, - .., Qs associated with coordinate neighborhoods Uy, ¢1, ...,
Us, @s, respectively.

o The open sets M — K, 61,...,55 cover M.

o Take a suitable partition of unity {f;} subordinate to this covering.

o We may assume that:

o Forj>s, fi=0o0n K;
o Forj=1,...,s, suppf; g(ij, the interior of the cube Q.
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Integration on Manifolds

o Since Y fj =1, we have

w=fiw+- -+ fuw.

o
o Each f; has its support on the interior Q; of the cube Q.

o
M

/w:/ flw-l-----l-/ fsw.
M M M
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o We define



Integration on Manifolds

o Let Q,..., Q/ be another set of cubes whose interiors cover K.
o Choose again a partition of unity {gx} such that:

o suppgk CQ'y, k=1,...,r;
o gk=0o0n K for k >r.

o Then
D fig=) iy a=1
i,k ik

o Moreover, for fixed k, 1 < k < r, we have

suppfigk C Q.
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Integration on Manifolds

o By the linearity of the integral with respect to forms with support in

the same cube,
/gkw=/ flgkw—i-"'-l-/ fsgkw.
M M M

o We compute wa using this second covering by cubes.

r r IS}
Jo=3 [ aw=33 [ fow
% k=1"M k=1i=1"M
o By a symmetric argument, the sum on the right is also equal to

S
; /M fiw.

o Hence, both choices assign the same value to [}, w.

o We have
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Integration on Manifolds

Theorem

The process just defined assigns to each integrable n-form w on an
oriented manifold M a real number [, w.
We have the following properties:

If —M denotes the same underlying manifold, with opposite

orientation, then
/ W= / w.
-M M

The mapping w — [, w is an R-linear mapping on A\g(M), that is,
for all a1,a; € R and all wy,w> € Ag(M),

/alwl—l—agwg:al/wl—i-ag/wg.
M M M
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Integration on Manifolds

Theorem (Cont'd)

Let Q2 be a nowhere vanishing n-form giving the orientation of M.

If w= gQ, with g > 0, then
/ g2 >0,
M

and equality holds if and only if g = 0, wherever it is continuous.
Let F: My — M, be a diffeomorphism and w € Ag(M>).

Then
/ Ffw = :I:/ w,
My M,

with sign depending on whether F preserves or reverses orientation.
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Integration on Manifolds

o Because of the definition, we need to verify these properties only for
forms w whose support lies in a cube @ associated with the oriented
coordinate neighborhood U, ¢ and coordinates x!,..., x".

Suppose

o (W) = F(x)dxt A -+ A dX".

Then, by definition,
/w:/ f(x)dv.
M C

Suppose that the orientation of M is reversed.

Then the map ¢ assigning coordinates in U must be replaced by a
map ¢, such that the Jacobian of ¢/ o ¢! has negative determinant.
For example, by interchanging the first and second variables.

f is the component of w in the local coordinates.

So the interchange changes the sign of f.

Hence, it changes the sign of the integral.
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Integration on Manifolds

o Property (ii) was previously noted.

It is a consequence of the corresponding property for the Riemann
integral on R".

Next, note that in (oriented) local coordinates

O Q= p(x)dx* A--- Adx", p(x) > 0.

/ g = / x)p(x)dv.

Now g(x)p(x) > 0, and vanishes exactly where g(x) vanishes.
The assertion now follows from the corresponding property in R".

This proves Property (iii).
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Integration on Manifolds

o Suppose F : My — M, is a diffeomorphism preserving orientation.

Let w on M> have support in a cube @ associated with the coordinate
neighborhood U, .

Then @ = F~1(Q) is a cube on M; associated with
U=FU) and ¢ =poFL

This cube contains the support of F*w.

With respect to it, we have precisely the same expression
F(x)dxt A - A dx"

for both w and F*w in local coordinates.
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Integration on Manifolds

o Hence,

/ w:/ F*w:/fdv.
M; My C

Assume, on the other hand, that F does not preserve orientation.

/ F*wz—/ w
My M,

follows from the orientation-preserving case and Property (i).

Then the equation
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Integration on Manifolds

o Note that a special case of the definition above, namely M = R”,
defines

/ F(xt, ..., xM)dxt A A dx”

for any bounded function f on IR” which has compact support and is
almost continuous.

o We can also show that, if suppf C D, a domain of integration, then

/Rf(x)dxl Ao Adx" z/ f(x)dv,

D

the usual Riemann integral.
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Integration on Manifolds

o A volume element is, by definition, a nowhere vanishing n-form Q
on M which is in that class which determines the orientation.

o On an arbitrary oriented manifold there is such a form .

o It is determined only to within a multiple by a positive C° function.
o This is not enough to define volumes.

o We must have a unique €2 given, say, by the structure of M.

o One case in which this occurs, according to a previous theorem, is on
an oriented Riemannian manifold M.

o In this case there is a unique € whose value on any orthonormal
frame is +1.

o We shall always use this € on the Riemannian manifold.
o In this section, we shall discuss only the Riemannian case.

o Then, using Q and the characteristic function kp of a domain of
integration D we are able to parallel the theory for R".
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Integration on Manifolds

Let D be a domain of integration on an oriented Riemannian manifold M.

Let kp be the characteristic function of D.
We define the volume of D, denoted by volD, by

volD = / kpQ.
M

If f is any integrable function on M, we define the integral of f over D,

denoted [, f, by
/ f= / fkp .
D M
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Integration on Manifolds

Definition (Cont'd)

When M is compact, we may take D = M and obtain

and

o These integrals are defined, since kp is continuous except on BdD
which has content zero.
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Integration on Manifolds

Lemma

With the preceding definitions the integral of f on a domain of integration
on M satisfies the following properties of the Riemann integral on R".

o If ¢(D) =0, then [ fdv =0;

° fDlUDz fdv = fDl fdv—i—fD2 fdv—fDlnDz fdv;
o [p(af +bg)dv =a [, fdv+ b [, gdv, for all a,b € R;
o If f>0o0n D and ¢(D) # 0, then

/ fdv > 0,
D

with equality iff f = 0 at every point at which it is continuous.

It is equal to the Riemann integral when M = R" (with its standard
metric).
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Integration on Manifolds

o The lemma is a consequence of the definitions and of the
corresponding properties of the Riemann integral.

o We choose a covering of D by the interiors of cubes.
o We take a corresponding partition of unity as in the definition of wa.

o We then show that it is possible to reduce the proof to verifying each
property for the special case in which w = £ has its support in a
single cube.

o In this case, the properties coincide with the properties of the integral
on R".

o For the last statement we use a previous remark.
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© ©6 0 o

Let U, ¢ be local coordinates.

Let Eq,..., E, be coordinate frames.

Let ®(X, Y) be a Riemannian metric tensor.

The matrix components ®(E;, Ej) on U are customarily denoted by

g, Lj=1,...,n

The same symbols gj; are frequently used to denote:
o gii(p) = ®p(Ejp, Ejp), the components considered as functions on
UcC M;
o gi(xt,...,x") = gii(¢(p)), the components considered as the
corresponding functions on p(U) C R".
In a previous section we found that the local expression for €2 on an
oriented neighborhood was

e Q= Jgdx A Adx", g = det(g).
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Integration on Manifolds

Let M be a surface in R3 with the Riemannian metric induced by the
standard metric of R3.

Let U, ¢ be a coordinate neighborhood with coordinates (u, v).
Suppose p(U) = W, an open subset of the uv-plane.

Let F = ¢! so that F: W — M has image U.

Let the C°°-coordinate functions for the mapping be

F(u,v) = (f(u,v),g(u,v), h(u,v)).

©

© 06 0 o
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Integration on Manifolds

o As in a previous example the coordinate frames E;, E; on U are

_ 0y_09f0 , 989 4 0h O
B = F*(au) ~ Ou0x + Ou dy + Ou 0z
— 9\ _ of 9 g 0 oh 9
E2 = F(®)=mmtos T oo

o Hence we have

gu(uv) = (L2 +(%)2+ (5?2 = (&, E),
_ O9fOf |, dgdg . Ohoh
gu(u,v) = G T T a0
= (B, E)=(E, E)=g:1(u,v),
go(uv) = (E¢2+ (82 + (L) = (6 E).
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Integration on Manifolds

o These are denoted E, F, G, respectively, and we have then
e *Q = F*Q
= (8182 — 8%)"?du N dv
= (EG — F))Y2duAdv.

o Let D be a domain of integration on M such that D C U.
o Let h be an integrable function on D.

o Then
th = thQ
u,v = u/dv
Jopy M, V)(EG — F2)2dund
= Jopy hus v)(EG — F?)!/2dudv.
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Integration on Manifolds

o Suppose that ¢ is the (diffeomorphic) projection of an open set U of
M onto an open set W of the xy-plane, which we identify with the
parameter plane.

o In this case F : W — U is given by

F(x,y) = (x,y,f(x,y))-

The graph of z = f(x,y) lying over W
is the subset U of M.

o The coordinate frames are

LIS R N )

b= Ox Z oy 0z
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Integration on Manifolds

o So

o Hence,

F = (EG — F?)"2dx N dy = (1 + £2 + £2)2dx A dy.

o Let D C U be a domain of integration.
o Let A C W be its projection to the xy-plane.

o Then for any integrable function h on M we have

/ h= / h(x,y,z)(1 + £2 + fy2)1/2dxdy.
D A
o When h =1, the value of this integral is the area of D (= volD).
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Integration on Manifolds

o Suppose, for example, M = S2, the unit sphere.
o Let U be the upper hemisphere and D = U.
o Then
A=W ={(xy): x> +y?> <1}
o Moreover,
F(X7y) = (X7y7 (1 - X2 - y2)1/2).
o The area of U is
9 = /(1—x y2)~Y2dx A dy
+1 1 y2)1/2
= / / (1 — x% — y?)~Y2dxdy
1 y2)1/2
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Integration on Manifolds

o Let M be a compact manifold.

o In practice (or for theoretical purposes) one might hope that M could
be covered by a finite number of domains of integration D;, ..., Ds,
such that:

c(DinDj)=0,i#j,i,j=1,...,s;
Each D; lies in a coordinate neighborhood U;, ;.

o We use the fact that
/f:/ f+---+/ f.
M Dy Ds
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o It is then possible to evaluate each integral on the right separately as
an integral on ¢;(D;) C R".

o Let f(x) denote the expression for f in local coordinates.

o Let g = det(gy).

o Then we have

Moo= / f(x)y/Bdxt A -+ Adx"
' ©i(Dj)
— / f(x)\/gdv.
»i(D;)
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o It can be shown that any differentiable manifold M (compact or not)
can be covered with a collection of domains of integration Dy, D, .. .,
each the diffeomorphic image of a simplex (for n = 2 a triangle, for
n = 3 a tetrahedron, and so on).

o Moreover these domains in-
tersect in sets of content
zero. [This is part of a
theorem which asserts that
any C° manifold is trian-
gulable.]

o When M is compact the number of D; is finite.

o This is not a complete description of a triangulation, but it shows
that for both practical and theoretical purposes a technique of
evaluation of [,,f or [, is available.
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Subsection 3

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

o Let G be an arbitrary Lie group of dimension n.
o Given a, b € G, we denote by:
o L, left translation by a;
o Ry right translation by b;
o I, = L0 R,1 the inner automorphism, [,(x) = axa—?!, of G.

o These are C° mappings, with inverses
LY=L, RI'=R,1, Il1=11

o Hence, they are diffeomorphisms.

o So they induce R-linear mappings of X(G) - the C*-vector fields on
G - onto itself, which preserve the bracket operation.

o However, on G our main interest is in the subspace g of X(G)
consisting of all left-invariant vector fields on G.

o We have seen g is a Lie algebra, the Lie algebra of G, with respect to
the product [X, Y].
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o Given a,b € G, we have, by associativity, a(xb) = (ax)b.
o Thus, the left and right translations L, and Ry commute.
o From this we deduce that if X € g, then Rp. X € g.

o Moreover,
Lg«(RpsX) = Rps(LgsX) = RpiX.

o Similarly,
Ix X = Ly Ry, X = R,-1, X € g.

o Thus I,y : g — g.
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o Now /., is both a linear mapping and preserves the product,
L[ X, Y] = [l X, L Y.

o So /54 is an automorphism of the Lie algebra g.
o Finally, note that I,, = 1,0 /.
o So, by the chain rule,

/ab* = Iax © /b*-

o Denote /,. by Adg, for g any element of G.
o Putting the preceding facts together, we have proved most of the
following:
o The mapping of G into the group of all automorphisms of g defined by
g — Adg is a homomorphism.
o Let GI(g) denote the group of all nonsingular linear transformations of
g as a vector space. Then Ad : G — Gl(g) is C*.
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o We prove and interpret the last statement.

o In general, if V is a finite-dimensional vector space over R, then the
group GI/(V) of all nonsingular linear transformations of V onto V is
isomorphic to G/(n,R), n =dimV.

o The isomorphism depends on the choice of a basis eq,...,e, of V.
o It is given by letting A € GI(V) correspond to the matrix («jj)
defined by

n
A(ej):Za,-je,-, j:].,...,n.
i=1
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o We take the topology and C* structure on G/(V) obtained by
identifying it with the Lie group G/(n,R).

o It may be shown that this C* structure is independent of the choice
of basis.

o Suppose we choose a basis of g,
X1,y Xn.
o Let the matrix corresponding in this way to Adg be
(aji(g))-
o The last statement asserts that
g = (aji(g))

is a C*>° mapping.
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o Note that /,(e) = e.

o Hence Igy : Te(G) — Te(G).

o Now g may be naturally identified with T.(G) by identifying each
X € g with its value X, at e.

o So we may think of Adg as a linear transformation on g - the
left-invariant vector fields - or on T.(G).

o On T.(G), Adg coincides with the transformation induced by /,
according to the definition.

o Taking this point of view, the matrix (c;j(g)) is a submatrix of the
Jacobian matrix, evaluated at (g, €), of the C* mapping of
G x G — G defined by
(g,x) — gxg ' = Iz(x).

o Hence g — (wjj(g)) is C*=.
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Definition

A representation of a Lie group G on a vector space V is a Lie group
homomorphism of G into the group GI/(V) of nonsingular linear
transformations of V onto V.

The degree (dimension) of the representation is the dimension of V.
A matrix representation of G of degree n is a Lie group homomorphism
of G into GI(n, R).

The representation g — Adg is called the adjoint representation of G.

o We remark again that we interpret Adg both as a linear mapping on
g, the space of invariant vector fields, and on T¢(G), the tangent
space at the identity.

o This is by virtue of the identification of g with T.(G).
o Adg is induced by the diffeomorphism /;(x) = gxg~* of G onto G.
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A covariant tensor field ® of order r on G is:

o Left-invariant if L;¢,, = ®g;
o Right-invariant if R;®g, = ®,.
It is bi-invariant if it is both left- and right-invariant.

o We remark that any left- (or right-) invariant covariant tensor field
® € 77(G) is necessarily C™.

o Let Xi,..., X, be a basis of C* left- (right-) invariant vector fields.

o Then ¢(X,'1, PN ,X,',
1<i,...,ir <n.

o Therefore, the components of ® with respect to a C°°-frame field are
C*, and ® is thus C*°.

) is constant - hence C* - on G for any
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Lemma
Let @, be a covariant tensor of order r on the tangent space T.(G) at the
identity. Then there is a unique left-invariant tensor field and a unique
right-invariant tensor field coinciding at e with ®,. These two agree
everywhere on G. That is, ®. determines a bi-invariant tensor field if and
only if

(Adg)*®, = d,, forall geG.

o Let ®. be a covariant tensor on T.(G).
For each g € G, there exists a unique left translation Lz : G — G
which takes e to g.
Define € .77(G) by
g =L 1%
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o We have
L:q)ag = L:(szlaflq)e) = L: (¢] L:,1 (¢] LZ—*lq)e = LZ,1¢E.
Since this is just ®,, we see that ® is left-invariant.

Similarly, R*_,®, is a right-invariant tensor field.
g
If & is bi-invariant, then

(Adg)*®e = (Lg 0 Ry1)"®e = L3 0 RY 10 = .
Conversely, if this relation holds, then

L0 =L 1 0LioRI 10 =R, P

So the left- and right-invariant tensor fields determined by ®. agree
at every g € G.
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o It is immediate that an invariant field must be determined by its value
at anyone element, say e, of G.

Corollary

Every Lie group has a left-invariant Riemannian metric and a left-invariant
volume element. In particular every Lie group is orientable.

o Take any inner product ®, on T.(G).
Apply the lemma to:
o O

o The volume element Q. determined by ®., with a choice of orientation
of Te(G).

We get a left-invariant Riemannian metric ¢ and volume element 2.
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An oriented, compact, connected Lie group G has a unique bi-invariant
volume element €2, such that volG = 1.

o Let Q be a left-invariant volume element on G.
We claim that 2 is necessarily right-invariant also.
In order to prove this, it is enough to show that

(Adg)* Qe =Q., forall gegG.

Let Xi,...,X, be a basis of g.
Let Xie, i =1,...,n, be the corresponding basis of T¢(G).
We have seen that

(Adg)X; =D aj(g)X.
i=1

Also, g — (j(g)) defines a C* homomorphism of G — G/(n,R).
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o The linear transformation (Adg)* on A"(Te(G)), determined by Adg,
acts on Q. by

(Adg)*Qe = det(ajj(g)) 2.
By hypothesis, G is compact and connected.

The same applies to its image under the C°°-homomorphism

g — det(aji(g))

of G to R*, the multiplicative group of nonzero real numbers.

However, the only compact connected subgroup of R* is {+1}, the
trivial group consisting of the identity.

Hence
det(wji(g)) = 1.
This shows that (Adg)*Qe = Q., for all g € G.
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o By the preceding lemma, this proves that €2 is bi-invariant.

Any other bi-invariant  must be of the form

AQ, ) a positive constant.

voIG:/)\Q:)\/Q.
G G

Hence, it is possible to choose just one A # 0, such that

But then

volG = +1.

For the opposite orientation on G, we would have —€2 as the
corresponding unique bi-invariant volume element.
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Corollary

On a compact connected Lie group G it is possible to define a bi-invariant
Riemannian metric ®.

o Let &, be a symmetric, positive definite, bilinear form on T¢(G).
Let Q2 be the bi-invariant volume element.
Given Xe, Ye € T¢(G), we define a function on G by

f(g) = ((Adg)*q)e)(xe, Ye) = (De((Adg)Xea (Adg) Ye)'

The last equality is just the usual definition of (Adg)*.
Then define the bilinear form ®, on Te(G) by

El;e()<ea Ye) = /(; f(g)Q
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o According to a previous lemma, 66 determines a bi-invariant form if,
for every a € G,

(Ada) Do (Xe, Ye) = Pe(Xe, Ye).

The left-hand term may be written ®.((Ada)Xe, (Ada)Ye).
Applying the definition of ®, to this expression, we find that

(Ada)*®.(Xe, Ye) = fc (Adg)*P.((Ada)X., (Ada) Ye)Q2
=[5 (Adg)*(Ada)*d.(Xe, Ye)Q2
= [ (Ad(ag))* ®e(Xe, Ye)Q.

This shows that

(Ada) ®(Xe, Ye) = /G F(Ra(£)).

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

o On the other hand, I, : G — G is a diffeomorphism.
Moreover, a previous theorem asserts that

| fe= [ fre)R.
1:(G) G
Since I,(G) = G and RXQ = Q, we see that

(Ad2)'®(X,. Ye) = [ F(£)2 = B(X.. Vo).

It follows that ® is a bi-invariant bilinear form on G.

It is symmetric and we can check that it is positive definite.

Since we do so in a more general case below, we will omit this
verification here.

Remark: When we use this Riemannian metric on G, we see that
both right and left translations are isometries, that is, they preserve
the Riemannian metric (and also its associated distance function).

George Voutsadakis (LSSU)



Integration on Manifolds

Let (p, V) be a representation of G on a finite-dimensional real vector
space V, with

©

p:G— GI(V).

©

Suppose a basis is chosen in V.
This determines a C* homomorphism of G into G/(n,R), n =dimV.

©

A special case is p = Ad with V = g.

©

Theorem

Let G be compact and connected and p a representation of G on V.
Then there is an inner product (u, v) on V, such that every p(g) leaves
the inner product invariant,

(p(g)u, p(g)v) = (u,v).
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o Let ®(u, v) be an arbitrary inner product on V.
Given a fixed u,v € V, let

f(g) = ®(p(g)u,p(g)v).

This defines a C* function on G.

Then we define
(wv)= [ fe)2

with € denoting the bi-invariant volume element.

The linearity of the integral implies at once that (u, v) is bilinear.

It is clearly symmetric in u, v since the integrand is.

Moreover, (u,v) > 0, and equality implies u = 0, since f(g) > 0 on
G, with equality holding if and only if the integral vanishes.
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o Finally, for a € G we have

(p(a)u,p(a)v) = [ ®(p(g)p(a)u, p(g)p(a)v)2
= Jo®(p(ga)u, p(ga)v)Q
= fG f(ga)Q.

But by the same argument as in the previous proof, this is equal to

/ ()2 = (u,v).
G

o Note that, if we let p = Ad and V = g, we obtain the preceding
corollary as a special case.
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o The preceding result could be stated by saying that each p(g) is an
isometry of the vector space V with the inner product (u, v).

o Since the matrix of an isometry of V relative to an orthonormal basis
is an orthogonal matrix, we have the following corollary concerning
the representations of a compact group.

Corollary

Relative to a suitable basis of V/, the matrices representing every p(g) are
orthogonal.
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o We shall say that W C V is invariant if it is invariant for every linear
transformation p(g).

o The representation is irreducible if V contains no nontrivial invariant
subspaces.

o If each invariant subspace W has a complementary invariant
subspace W’, such that

V=WaWw,

then the representation is said to be semisimple.

o In the case of a semisimple representation, it is easily verified that
V=W %  -oW,,

where the W are invariant irreducible subspaces.
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Corollary

If p is a representation of a compact connected Lie group G on a
finite-dimensional vector space V/, then it is semisimple. Moreover

where:
o For i # j, the subspaces are mutually orthogonal;

o Each is a nontrivial irreducible subspace.

o If V is irreducible, there is nothing to prove.
Suppose V contains a nontrivial invariant subspace W.

We show its orthogonal complement W+ is also invariant.
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o Let V be a nontrivial invariant subspace W.
Consider its orthogonal complement W,
Let w e W' and let v € W.
Then
(n(g)v,p(g)w) = (v,w) = 0.

Thus, p(g)w is orthogonal to p(g)v, for every v € W.

Since p(g) is nonsingular, this means that p(g)w is orthogonal to
every element of W.

So it must be in W+,

Hence V = W & W, a direct sum of complementary invariant
subspaces.

Repeated application of this argument gives the final statement.
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o There exist representations of noncompact connected groups which
do not have the property of complete reducibility.

o As a result, they cannot leave an inner product invariant.
o Consider, e.g., p: R — GI(2,R) acting on V? defined by

p(t)=<(1, i)

o p(t) acts on V2, the space of all ( ; > x,y € R,

0 (3)=(01)(5)=(3")

o The subspace ( )5

o But it has no complementary invariant subspace.

> is invariant.
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Subsection 4
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o Consider the closed half-space
H" = {x = (x},...,x") € R": x" > 0},
with the relative topology of R".
o Denote by OH" the subspace defined by
OH" ={x € H" : x" = 0}.
o Then OH" is the same space whether considered as a subspace of R"
or H".

o It is called the boundary of H".

o All of these spaces carry the metric topology derived from the metric
of R".
o OH" is obviously homeomorphic to R"~! by the map

(<L x™h = (6L X" 0).
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o Recall that differentiability has been defined for functions and
mappings to R™ of arbitrary subsets of R".

o We see that the notion of diffeomorphism applies at once to
(relatively) open subsets U, V of H".

o U,V are diffeomorphic if there exists a one-to-one map F: U — V
(onto) such that F and F~1 are both C> maps.

o This is broader than the earlier definition.

o Here, U, V are not necessarily open subsets of R”, but are in fact the
intersections of such sets with H".

o If U,V CR"—9H", then U and V are actually open in R".

o In this case, this definition of diffeomorphism coincides with the
previous one.
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o We show that if UNAJH" # (), then:
o VNAH" # (;
o F(UNOH™) C V NoH".
o Similarly, F~}(V N OH") C U N OH".
o In other words, diffeomorphisms on open sets of H"” take boundary
points to boundary points and interior points to interior points.

o This follows at once from the Inverse Function Theorem, which
asserts that U — OH" is open in R".

o Hence, F must map it diffeomorphically onto an open subset of R".
o But no open subset of H” which contains a boundary point, that is, a
point of 9H", can be open in R".
o Thus,
F(U—-0H")CV —9H" and F}(V —0H")C U—9H".

o Since F and F~! are one-to-one on U and V, the result follows.
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o The sets UNOH" and V N AH" are open subsets of OH", a
submanifold of R" diffeomorphic to R" 1.

o F,F~! restricted to these open sets in H" are diffeomorphisms.

o Both F and F~! can be extended to open sets U’, V' of R" having
the property that U = U'NH" and V = V' N H".

o These extensions will not be unique nor are the extensions in general
inverses throughout these larger domains.

o However, the derivatives of F and F~! on U and V are independent
of the extensions chosen and we may suppose that even on the
extended domains the Jacobians are of rank n.

o These statements are immediate consequences of:

o The definition of differentiability for arbitrary subsets of R";
o The fact that the Jacobian of a C* mapping has its maximum rank on
an open subset of its domain.
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Definition
A C° manifold with boundary is a Hausdorff space M with a countable
basis of open sets and a differentiable structure %/ in the following
(generalized) sense.
U = {Uq, pa} consists of a family of open subsets U, of M each with a
homeomorphism ¢, onto an open subset of H" (topologized as a subspace
of R") such that:

The U, cover M,

If Uy, pa and Ug, pp are elements of %, then ¢go @z and @, 0 <p§1
are diffeomorphisms of o (U N V), ¢3(U N V), open subsets of H";

% is maximal with respect to Properties (1) and (2).
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o The U, ¢ are coordinate neighborhoods on M.

o If ¢(p) € OH" in one coordinate system, then this holds for all
coordinate systems.

o The collection of such points is called the boundary of M, denoted
oM.

o M — OM is a manifold (in the ordinary sense).
o It is denoted by IntM.
o If OM = (), then M is a manifold of the familiar type.

o We call it a manifold without boundary when it is necessary to
make the distinction.
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Theorem

Let M be a C*> manifold (of dimension n) with boundary.

Then the differentiable structure of M determines a C*-differentiable
structure of dimension n — 1 on the subspace OM of M.

The inclusion i : 9M — M is an imbedding.

o For a coordinate neighborhood U, ¢ of M which contains points of
OM, consider the coordinate neighborhood U, » of M, given by
o U = UnNnom,
° ¢ = ¢lunom-
o The differentiable structure~“2}von OM is determined by the
coordinate neighborhoods U, ¢, where U, ¢ ranges over coordinate
neighborhoods of M containing points of oM.
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o Differentiable functions, differentiable mappings, rank, and so on, may
now be defined on M exactly as before by using local coordinates.

o By virtue of the C® compatibility of such coordinate systems these
concepts are independent of the choice of coordinates.

o We also define T,(M) at boundary points of M.

o This could be done using derivations on C*°(p) as before, but to
avoid some slight complications we use an alternative definition.

o First note that in the case of H” C IR", upon which manifolds with
boundary are modeled, we identify T,(H") with T,(R").

o We may think of this identification as being given by the inclusion
mapping.
o For x € OH", this defines what we mean by T,(H").
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o Consider a general manifold M.

o For p € OM, we define a vector X, € T,(M) to be an assignment, to
each coordinate neighborhood U, ¢, of an n-tuple of numbers
(a,...,a"), the U, components of X, satisfying the following

condition:

If (xt,...,x") and (y!,...,y") are coordinates around p in
neighborhoods U, ¢ and V/, 1, then the components (a?,...,a") and
(B, ...,") relative to U and V are related by

i . dy’ i .
B_Z<8Xj>¢(p)a»’, i=1,...,n

Jj=1

o What this does is attach, to each p € M, a T,(M) such that each
coordinate system U, ¢ determines an isomorphism s taking X, with
components (al,...,a") to the vector 3 o (ax,) € Typ)(H").
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o As before, let Eq, ..., E, will denote the basis determined by
0 .
(p*(EI)ZW’ I=1,...,n.

o Having defined T,(M) on OM [it is already known on IntM, which is
an ordinary manifold], we may extend all of our definitions and
theorems to manifolds with boundary.

o In particular, exterior differential forms and the exterior calculus is still
valid on manifolds with boundary, without any essential change in the
definitions or proofs.
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A regular domain D on a manifold M is a closed subset of M, with
nonempty interior D, such that if
pedD=D-D,

then p has a cubical coordinate neighborhood U, ¢, such that:
° ¢(p) =(0,...,0);
o o(U) = ¢Z(0);
o p(UND)={xe CI(0):x">0} on aD.

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

Let M be a manifold and D a regular domain on M.

©

If D is compact, then it is a domain of integration on M.

©

We may check that D, with the topology and differentiable structure
induced by M, is a manifold with boundary.
All preceding examples can be seen to be of this type.

o H" and the closed unit ball B” are regular domains of M = R";

o N x [ is a regular domain of N x R;

o The set D obtained by removing from a manifold M a diffeomorphic
image of an open ball is a regular domain.

©

©
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o It is a fact, somewhat difficult to prove, that any manifold M with
boundary can be realized as a regular domain of a larger manifold M’.
o The basic idea is simple:
o Take two copies of M, say My and Mo;
o “Glue” them together along their boundaries, while identifying
corresponding boundary points.
o The resulting manifold is called the double of M.
o It contains M as a regular domain.
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o Let M be a manifold with non-empty boundary.

o M is orientable provided that it has a covering of coordinate
neighborhoods {U,, va} Which are coherently oriented.

o That'is, if Uy N Us # 0, then @50 ¢ ! has positive Jacobian
determinant (or equivalently, preserves the natural orientation of H").

o This is equivalent to the existence of a nowhere vanishing n-form Q
on M.
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o The proof of this equivalence is the same except that, when we speak
of a partition of unity on M associated to a regular covering

{Uia \/iasoi}a

we limit ourselves to a regular covering by cubical coordinate
neighborhoods, concerning which we impose the following slight
restriction:

If U;nOM # (B, then
ei(U)) = G(0)NH" and ;i(Vi) = C(0)NH".

o With this modified definition of regular covering we still have:

o A regular covering (by definition locally finite) refining any open
covering {Ay} of M;
o An associated C° partition of unity {f;} on M.
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o Consider those
Ui, Vi, i

of the regular covering that intersect M.

o They determine a regular covering

of OM.

o Moreover, the associated partition of unity restricts to an associated
partition of unity on OM,

{f; = filom}.

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

Let M be an oriented manifold and suppose OM is not empty. Then OM is
orientable and the orientation of M determines an orientation of M.

o OM is an (n — 1)-dimensional submanifold of M.

So its tangent space at each point may be identified with an
(n — 1)-dimensional subspace of T,(M).

We denote this subspace by T,(OM).

We show that there is a distinction between the two half-spaces into
which T,(0M) divides T,(M) which is independent of coordinates.

Suppose that U, ¢ and V4 are coordinate neighborhoods of p € OM
with respective local coordinates

(xY,...,x") and (yi,...,y").
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o By our definitions of coordinates of boundary points, the last
coordinate x” or y" is equal to zero if the point in U or V/,
respectively, is on M, and positive otherwise.

Let the change of coordinate functions be

Then we have
0=y"(x},...,x""1,0).

So, for every g € U N oM,
(8}/") o ( a}/n )
()Xl (q) ()Xn 1 (q)
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o It follows that the Jacobian matrix then has the form

ot
Ox1 Ox1
-1 : . :
D(w © SD ) = 8_)/ 8_)/" 1
oxn—1 7 Oxn—1 0
8y o 8y" 1 8y"
ox" ox" oxm @(q)

Since the Jacobian is nonsingular, & o - 0 at o(q).

In fact, it must be positive.

Let o(q) = (a%,a%,...,a"1,0).

Consider f(t), defined by f(t) = y"(a%,...,a" 1, t).

We have f(0) = 0 and f(t) > 0 in some interval 0 < t < .
Therefore, f’(O) (6x")</’(Q) can certainly not be negative.

Therefore 2 8x" > 0 at ¢(q) as claimed.
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o If U, and V1 are oriented neighborhoods of M, then the preceding
matrix has positive determinant.

So gﬁ: and the (n — 1) x (n — 1) minor determinant obtained by

striking out the last row and column has the same sign.

This minor is exactly the determinant of D(¢) o @1, the change of
coordinates from U= UNJIM, o = o[z to V=V NIM,y = |y
on the submanifold oM.

Thus the neighborhoods on M determined by oriented
neighborhoods on M are coherent.

It follows that they determine an orientation on M.
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o Let g € UN V be a boundary point of M.
o Let Xy € To(M).

o Suppose we express Xg in the coordinate frames of either U, ¢ or

V.9,
Xy = olEi+---+a" L E,_1 + a"E,

= /81F1+"'+Bn—1Fn—1+,8nFn-

(gym) > 0.
X7/ o(q)

o It follows that " and 5" have the same sign.

o We saw that

o This fact does not depend on the coordinates being oriented.
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o It follows that the vectors of T,(M) — T,(0M) fall into two classes.

o Those whose last component is positive, which we call inward
pointing vectors at p € oM,

o Those for which the last component is negative, which we call outward
pointing vectors.

o Those for which the last component vanishes are tangent to OM.

o Moreover, this classification is independent of the orientation of M.
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o We describe a special case of gluing two manifolds with identical
boundaries together along their boundaries.

o Let M;i, My be two manifolds (without boundary) of dimension n.
o Let U, p; be coordinate neighborhoods of points p; € M;, i =1, 2.

o We suppose that in each case we have

(p,'(p,') = (0, 000 ,0) and QO,'(U,') = Bé’(())
o We set
Vi = ¢;1(B1(0)).
o Then M/ = M; — V;, i = 1,2, is a manifold with boundary.

o Indeed, one has
goi(ﬁl\//,{) = sn1

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

o The manifold obtained by gluing M to M) along the boundaries is
called the connected sum of M; and M,, denoted My#M>.

o We would like to define M;# M, without loss of differentiability.
o So we actually remove only cp_l(El/z(O)) from each M; to get M.

o Then we identify points g; € U; — cpfl(§1/2(0)), i =1,2, whenever

©2(q2)

Sol(ql) = m
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o So g1 € M{ and g2 € MY are identified if their images ¢1(p1) and
w2(p2) in R™ are “reflections” of one another in the unit sphere (lie
on the same ray and have reciprocal distance from the origin).

o It turns out that any closed surface (compact 2-manifold) can be
obtained as:

o The connected sum of copies of S? and T2 if it is orientable;
o The connected sum of copies of P2 and T? if it is nonorientable.
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Subsection 5
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o We consider an oriented manifold M with possibly nonempty
boundary OM, oriented by the orientation of M.

o We consider only oriented coordinate neighborhoods U, .

o If UNOM # 0, then we denote by U, © the corresponding
neighborhood on dM,

U=UNoM,§ = y|g.

o All of the concepts used in defining the integral extend to M, e.g., the
definitions of content zero, domain of integration, and so on.

o In particular 9M has measure zero and, if compact, has content zero.

o This follows from corresponding properties of OH".
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o A cube Q associated with U, ¢ is as before, unless U N OM # ().
o If UNOM # (), then we assume that @ has a “face” on OM.
o That is, we assume

P(QNAIM)={xeR":0<x' <1andx"=0}.

In this case we note two facts:

6 = QN OM is a cube of OM associated with U, o,
The interior of @ has a different image in R"” than it has when
U C IntM, namely,

©

[e]

R=¢({xeR":0<x'<1,1<i<n-1;, 0<x<1}).
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o Taking these modifications into account, the definition of
/ Q
M

o The integral of an integrable n-form has the same properties as before.

is exactly as before.

o Indeed, if M is a compact regular domain in a manifold N, then it is
necessarily a domain of integration in N and

| a= [ weo
M N

o So there is nothing new to define in this case!

o The same comments apply to the integral over a Riemannian manifold
with boundary and to the definition of volM when M is compact.

George Voutsadakis (LSSU)



Integration on Manifolds

o Now suppose M is both oriented and compact.

o Let w be an (n — 1) form of class C! at least on M.
o We have an important relation between:

o The integral of dw over M,

o i*w, the restriction of w to M (i : M — M the inclusion mapping).
o To simplify the statement of the theorem we let OM denote:

o OM, the boundary with the orientation induced by M, when n is even;
o —0M, the boundary with the opposite orientation, when n is odd.

o Thus _
oM = (-1)"oM.
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Theorem (Stokes's Theorem)

Let M be an oriented compact manifold of dimension n and let M have
the induced orientation. Then we have

/dw=/~i*w.
M oM

When OM = (), the integral over M vanishes.

o According to our definitions, it is enough to establish the theorem for
]

an w whose support is contained in the interior @ of a cube @
associated to a coordinate neighborhood U, ¢.

Suppose w has its support in Q.
Let x!,...,x" be the local coordinates.

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

o We may suppose that, in these coordinates, w is expressed as

n
o (W) = Z:(—l)j_l)\jdx1 Ao ANddTEAdITEA A dX
j=1
Then we have
N
Y (dw) = dp™(w) = 8— dxt A A dx

oxJ
Jj=1

" ON ON n
/de—/Q j:1ﬁ dV—Z/ /8XJ "X.

This follows from the definition of integration on M and the lterated
Integral Theorem.
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o We obtained

1 18)\1
dw = / / —dx . dx".
/M zj: 0 0o OX

On the right consider the jth summand only.
Integrate first with respect to the variable x/.
This gives an (n — 1)-fold iterated integral

fol . --fol V(x, .o 1,0 xm)
M, 0, xT)]dx - dxd - d,

where dx/ indicates that this differential is to be omitted.

Sum these (n — 1)-fold iterated integrals, for j =1,...,n.
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o
o The sum shows that, if supp(w) C @, two cases can occur regarding

Jiy dw.
o QNAM = 0. In this case

p(Q)={x:0<x' <1,i=1,...,n}

o QNOM # . In this case,

Q) ={x:0<x<li=1,. n-1,0<x"<1}.
Consider the first case.
Using suppw C Q, we see that M =0, if any x/ =0, 1.
Hence, each of the integrands above vanish and fM dw = 0.

On the other hand, suppw C @ which has no points on M.
So w restricted to OM is the zero (n — 1)-form.
Thus, [,,dw=0= [,,, i*w and Stokes's Theorem holds.
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o In the second case we again have all of the integrands equal to zero
except the one corresponding to j = n. Therefore

1 1
/dw=_/ / N(xY, X" 0)dxt - dx L
M 0 0

On the other hand, we may evaluate faM i*w using the fact that i*w
has its support in @ = Q@ NIM.

To obtain an expression of i*w in local coordinates, we apply the
corresponding inclusion

it xS (3L x"0).
We note that i*dx” = 0.
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o So, in the local coordinates U, @, i*w collapses to
(W) = (=D)AL x™H 0)dxE A A dx™E

This gives

1 1
/ /*w=(—1)"—1/---/ A(xY, o X" 0)dxt - dx L
oM 0 0

We are considering the case where suppw C Q and Q N OM # 0.

We find that
/ dw = (—1)"/ fw= / i*w,
M oM +OM
with:

o The right-hand integral over M, when n is even;
o The right-hand integral over —OM, when n is odd.

That is, the right-hand integral is over OM.
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o Let M be a bounded regular domain of R?.

o That is, M is the closure of a bounded open subset of the plane,
bounded by simple closed curves of class C*°.

o For example, let M be a circular disk or annulus.

o Then OM is the union of these curves.

o In the example, a circle or a pair of concentric circles.

o Let w be a one-form of class C! on M.

o Using the natural Cartesian coordinates, we have

w = adx + bdy.

o By definition of differentiability on arbitrary sets, a, b can be taken as
restrictions of C! functions on some open set containing M.

o We have .
a

dw=|— —— | dxAdy.

v <3x 3y> x A dy

George Voutsadakis (LSSU)



Integration on Manifolds

o By Stokes's Theorem

/<@—%)dx/\dy:/ adx + bdy.
v \Ox Oy oM

o According to a previous remark, the left-hand side is the ordinary
Riemann integral over the domain of integration M C R2.

o On the other hand, if we think of M as a one-dimensional manifold
and cover it with (oriented) neighborhoods, it is clear that its value is
that of the usual line integral along a curve C (or curves C;) oriented
so that as we traverse the curve the region is on the left.

o Thus the equality above may be written

// (gx y>ddy Z/ adx + bdy,

which is the usual statement of Green’s Theorem.
George Voutsadakis (LSSU)



Integration on Manifolds

o Let M be a regular domain of R3.
o That is, M is the closure of a bounded open set, bounded by closed
C®° surfaces.

o Examples are:

o The ball of radius 1, which is bounded by the sphere s2
o The region interior to a torus T2, obtained by rotating a circle around
a line exterior to it.

o Consider the two-form
w = Pdy A\ dz+ Qdz A dx + Rdx A dy,

where P, Q, R are C! functions on some open set of R3 containing M.

o We have 0P 90 OR
dw = (a——i-a—y—l-g)dx/\dy/\dz.
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o Stokes's Theorem asserts that

oP 0Q OR
/I\/,(a‘i‘a—y—i-g)dx/\dy/\dz

/ Pdy N dz + Qdz A dx + Rdx A dy.
—oM

o Translate these, respectively, into:

o A Riemann integral over a domain;
o A surface integral over the boundary.

o Then we obtain the Divergence Theorem of Advanced Calculus

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

o Let M be a piece of surface imbedded in R3 and bounded by smooth
simple closed curves.

o For example, a sphere with one or more open circular disks removed.

o Thus, M consists of boundary circles.

o Now dx, dy and dz may be considered, by restriction, as one-forms on
M or on OM.

o So any one-form w on M may be written

w = Adx + Bdy + Cdz,

where A, B and C are C! functions on M.

o Then
oC OB 0A 0C
dw = (a—ya>dy/\d2+<§a)dz/\dx
0B 0A
98 _ oA d
<8x 8y> dx A dy
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o In this case Stokes's Theorem asserts that

oC 0B 0A 0C

ox Oy oM

o The left integral can be converted to an ordinary surface integral over
the surface M in R3.
o The right integral can be converted to a line integral.

o In this way, one obtains Stokes Theorem of Advanced Calculus.
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o The version of Stokes’s Theorem proved above holds only for smooth
manifolds with smooth boundary.

o Thus, for example, our proof does not even include the case of a
square in R? or an open set of R3 bounded by a polyhedron.

o The difficulty in these cases is not so much with the analysis and
integration theory, as with:

o Describing the regions of integration to be admitted;
o Giving precise definitions of orientability and induced orientation of the
boundary.

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

o The search for reasonable domains of integration to validate Stokes's
theorem usually leads to the concept of a simplicial or polyhedral
complex.

o This is a space made up by fastening together along their faces a
number of simplices (line segments, triangles, tetrahedra, and their
generalizations) or more general polyhedra (cubes, for example).

o It can be shown that any C°° manifold M may be “triangulated”, i.e.,
it is homeomorphic (even with considerable smoothness) to such a
complex.

o One infers that the integral over M becomes the sum of the integrals
over the pieces, which are images of simplices, cubes, or other
polyhedra as the case may be.

o The strategy is then to reduce the theory (including Stokes's
Theorem) to the case of polyhedral domains of R".
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o Let[a,b]={teR:a<t< b}
o Consider a C' mapping

F:lab] > M.

o Its image is a C! curve S on M.

o Let w be a one-form on M.

o We define [ w by
/w:/ Frw.
s [2,5]

o This is called the line integral of w along S.
o In general, S is not a submanifold of M.
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o The right-hand side f[a b F*w is the integral of a one-form,
F*w = f(t)dt, on a one-dimensional manifold with boundary.

o Thus .
/w:/ f(t)dt.
S a

o Exactly as for line integrals in R"”, we may prove that the value of the
integral does not depend on the parameter as long as the orientation
of S is preserved.

o Thus the integral of w over an oriented C! curve S of M is defined.

o A reverse orientation, i.e., traversing S in the opposite sense, changes

the sign of the integral,
/ w=— / w.
—S S
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o Let S be an oriented continuous and piecewise differentiable curve.

o That is, S is a union of curves $1,S5,...,S, such that each S; is C!
and the terminal point of S; is the initial point of S;4 1.

o Then we define the integral over S by

ke he

o This extends the definition of line integral on a manifold.
o The definition reduces to the usual one when M = R".

o In fact we could have used that as a starting point by:

o Subdividing the curve S on an arbitrary manifold into a finite union of
C! curves S;, each in a single coordinate neighborhood;
o Evaluating the integral over each S; in local coordinates, i.e., in R".
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o Consider the special case w = df, where f is a C* function on M
(this implies that dw = 0).

o In this case the value of the line integral along the piecewise
differentiable curve S from p to g is given by

| dr = fta) - (o)
S

o In particular, it is independent of the path chosen.
o Suppose p is held fixed.

o Then f(q) is given, at each g, by adding f(p) to the value of the line
integral along any piecewise C! curve from p to q.

o Thus, f is determined to within an additive constant by the line
integral (assuming M connected).
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o We have a (line) integral of a one-form w over an oriented piecewise
differentiable curve S.

o We can now state Stokes's Theorem for a polygonal region Q of R?.

o Such a region is bounded by an oriented piecewise linear (simple
closed) curve S = Q.

o We carry this out for the unit square.

Let w be a C! one-form defined on

Q={(xy):0<x<1,0<y<1}.

Let S be the boundary of @ traversed in the counterclockwise sense. Then

/de:/gw.
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o Let
w = adx + bdy,

where a, b vanish outside @ and are C! functions on Q.

Then, on Q,
dw = <@ _8_;) dx Ady.

By a previous remark,
Lrlrob  Oa
fodw = /0/0 (a—@) dxdy
1
= [ 161y~ O ey — f3 o 1) — o, O) .

The orientation is that given by the standard coordinate system in R2.
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o On the other hand, consider the integral over the boundary.
Note that:

o dy = 0 on the horizontal sides;
o dx = 0 on the vertical sides.

So we have

4
/vw = Z/S.adx + bdy (©, 1) 53 0,1
i=1 o

S
1 1
= a(x,0)dx -|—/ b(1,y)d
/O (x,0) A (L,y)dy 4 () .
0 0
-I—/ a(x,l)dx-l—/ b(0, y)dy.
1 1

0,01 3, (1,00 x

Comparing the values of the integrals, shows that the theorem is true.
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Subsection 6
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Definition

Let F, G be continuous mappings from a topological space X to a
topological space Y and let / = [0, 1], the unit interval.

Then F is homotopic to G if there is a continuous mapping (the
homotopy)

H: XxI—=Y

which satisfies the conditions:
F(x) = H(x,0) and G(x)= H(x,1), forall xe X.

If X and Y are manifolds and F, G are C*°, we define a C*° or smooth
homotopy by requiring that H be C* in addition to the conditions above.
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o We remark that
He(x) = H(x, t)

defines a one-parameter family of mappings
H: X =Y, 0<t<1,

such that
F:Ho and G:Hl.

o The formulation of the definition emphasizes the simultaneous
continuity in both variables t and x.
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o If 9X =0, then X x [ is a regular domain of X x R and is a manifold
with boundary.
Indeed, O(X x 1) = X x {0} UX x {1}.
So C* is perfectly well defined.

o If 9X # 0, then X x [ is not a manifold with boundary [consider, e.g.,
X = Ei(O), the closed unit disk].
However, it is a reasonably nice domain of X x R which is a manifold
(with nonempty boundary).
So only minor technical problems arise.

o We remark however, that when both X and Y have nonempty
boundaries, there are cases in which it is natural to require that

H(0X) C Y, for0<t<1.
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o Suppose (X, A) and (Y, B) are pairs consisting of:
o Spaces X and Y;
o Closed subspaces AC X and BC Y.

o Consider continuous maps
F.G: X =Y,

such that:
° F(A) C B;
o G(A) CB.

o F and G map the pair (X, A) into the pair (Y, B) continuously.
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o We say that F and G are relatively homotopic if there exists a
continuous map
H:XxI—=Y,

such that:
o H(AxI)C B;
o H(x,0) = F(x);
o H(x,1) = G(x).

o We have added to the original definition the requirement that
H:(A) C B, for0<t<1.

o When A = () = B, the definition reduces to the original one.

o We will write F ~ G to indicate that F and G are (relatively)
homotopic.
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Theorem

Relative homotopy is an equivalence relation on the continuous maps of
(X, A) into (Y, B), for any topological spaces X and Y and closed
subspaces A and B, respectively.

o Note that H(x,t) = F(x) is a homotopy of F(x) with F(x).
So the relation ~ is reflexive.
Let H(x,t) be a homotopy of F to G.
Then B
H(x,t) = H(x,1—t)
is a homotopy of G to F.

So ~ is symmetric as well.
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o Finally, suppose that:
o F; ~ F, via a homotopy H;
o F» ~ F3 via a homotopy H>.

Then we define H(x, t), a homotopy of F; and F3, by

H(x, t) = { Koot :

<t<i,
Ha(x, 2t — 1), <t<l

Ni= O

It is easily verified that H(x, t) is continuous.

Moreover, all these maps take A into B, for every t between 0 and 1
inclusive.

Finally, it can be shown that the constructed homotopies are C*°,
provided the given ones are C°.
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o A continuous map
f:l—-M

of the interval / = [0, 1] into a manifold M is called a path, with:
o f(0) its initial point;
o f(1) its terminal point.

o We shall consider homotopy classes of paths under the additional
restriction that the homotopy keep initial and terminal points fixed.

o Formally, we require that H(t,0) and H(t,1) are constant functions.
o This is exactly relative homotopy for (/,{0,1}) and (X, {b,d}), with

b=1f(0) and d=f(1).
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o Given a manifold M, fix a basepoint b on M.
o Consider the paths with b as initial point.
o If b is also the terminal point, then the path is called a loop.

o Thus a loop is a continuous map
f:l—-M

such that f(0) = b = f(1).

o We denote its homotopy class by

[f1,

meaning always relative homotopy.
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o Among the homotopy classes of loops is that of the constant loop
ep(s)=b, 0<s<1

o If this is the only homotopy class and M is connected, then we say M
is simply connected.

o This means that every loop at b can be deformed over M to the
constant loop.

o This property does not depend on the choice of b.

o Moreover, it is equivalent to the statement that any closed curve
(continuous image of S') may be continuously deformed to a point
on M.
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o Let M be a connected manifold.

o Let f, g be paths on M with the terminal point f(1) coinciding with
the initial point g(0).

o We may combine these to a single path h after readjusting the
parametrization.

o In fact, consider the continuous map

hil— M,
defined by
[ f(2s), ifOSsg%,
h(s)_{ g2s—1), ifl<s<1

o It traverses the image of f followed by that of g.
o We shall call this the product of f and g, denoted f * g.
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o The product of paths has the following properties with respect to
(relative) homotopy:

fx(gxh)~(fxg)x*h;
Let f(1) = b = g(0) and suppose f = e,. Then

epxg~g.
Similarly, if g = ep, then

fxep~f;
If i ~f and g1 ~ g», then

fix g1~ f x g;
If g(s) =f(1—s) and a= f(0), b= f(1), then
fxgr~e, and gxf ~ e,

If F: M — N is continuous and f' = Fo f, g’ = F o g, then

(Fxg) =fxg.
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o By definition, we have:
o ep*xg(s)=b, fors € [0,3];
o ep*g(s) =g(2s—1), for s € [3,1].

o We wish to construct a homotopy H, showing that e, x g ~ g.

o We use the idea captured in the figure.

(1,1

: ]
(0,0) g (1,0 s
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o We use the idea captured in the figure.

o Define H(s, t) in the following way:

[ b, if0<s<3(l-t)and0 <t <1,
H(S’t)—{ g(Zktt) ifl(1_f)<s<l

14+t

o The diagram shows how H: [/ x| — M
maps various portions of the unit square.

o The shaded portion is mapped onto
b= g(0);

o Each horizontal segment in the unshaded
part is mapped onto the image of g with
the parametrization modified
proportionately.
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Let m1(M, b) denote the homotopy classes of all loops at b € M.
Then 71 (M, b) is a group with product

[f]le] = [f * &l.

If F: M — N is continuous, then F determines a homomorphism

F.:m(M,b) — w1 (N, F(b))

F.lf] = [F o f].
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Theorem (Cont'd)

If G is homotopic to F relative to the pairs (M, b) and (N, F(b)), then

F. = G..

When F is the identity mapping on M, F, is the identity isomorphism.
Finally, for compositions of continuous mappings,

(FoG).=F.oG,.
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o Property (iii) assures us that [f * g] is independent of the
representatives f and g chosen from [f] and [g].

So the product is well defined.

By Property (i), the product is associative.

Property (ii) gives the existence of an identity [ep].

Property (iv) gives the existence of inverses.

Thus 7m1(M, b) is a group.

Property (v) shows that F : M — N induces a homomorphism F,.
The last statement of the theorem is immediate from the definitions.
Finally, suppose H : M x | — N is a homotopy of F and G.

Then H(f(x),t) is a homotopy of F.f = Fof and G.f = Fog.
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Corollary

Suppose M; and M, are homeomorphic and by, by correspond under the
homeomorphism. Then the mapping F, is an isomorphism of the
corresponding fundamental groups

m1(My, br) = w1 (Mo, by).

o Let F: My — M> be the homeomorphism.
Let G : My — Mj be its inverse.
By the last statement of the theorem,

F.o G, and G,oF,

are the identity isomorphisms.
So F, and G, are isomorphisms.
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o If the identity map of M to M is homotopic to the constant map of
M onto one of its points b, then M is said to be contractible (to b).

Example: Consider any open subset of R” which is star-shaped with
respect to a point b.

Then
H(x,t) =(1—t)x+tb

is such a homotopy.

It follows that such a subset is contractible.
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Corollary

If M is contractible to b, then m1(M, b) = {e}, the identity element alone.
It follows that M is simply connected.

o Let f be a loop at b.
It is homotopic to the constant loop e, by

H(f(s),t), 0<s,t<1.

This shows that w1 (M, b) = {1}.
From this, we can deduce simple connectedness.
We may also prove it directly from the definition using again the
mapping H.
o There are simply connected spaces which are not contractible.
o The sphere §", n > 1, is the simplest example.
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o Let M be a manifold and w be a one-form on M.
o Suppose p,q € M.
o Let 51,5, be two piecewise differentiable paths of M from p to gq.

o It is natural to ask whether or not

fo=[w
S1 S

o In general they are not equal, even in very simple cases.

o But the standard theorems of Advanced Calculus on independence of
path may be generalized to manifolds with essentially the same proofs.
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Theorem

Let w be a one-form on a manifold M, such that dw = 0 everywhere.
Let 51,5, be homotopic piecewise differentiable paths from p € M to

g € M. Then
fw=] o
S1 S

o Let S; and S, be C! curves homotopic by a differentiable mapping
H:IxI— M.

Then the result is a straightforward application of Stokes's Theorem
for the unit square.
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o In the general case the (continuous) homotopy H of the piecewise
differentiable curves must be altered as follows.
First | x [ is subdivided by vertical and horizontal lines so that:

o It is differentiable on each boundary segment;
o H carries each subrectangle Qj into a single coordinate neighborhood
U.

Then the techniques of a previous section are used to alter H
successively to a homotopy H which is differentiable on each Qj;.

From this point the proof follows the usual one of Advanced Calculus.

The new homotopy H maps the edges of the square @ =/ x I into
the paths Si, g, —S5, p, respectively, as we go around 0Q
counterclockwise.
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o The images of the left and right vertical edges are the constant paths

p and q.
'
(O, 1) (1, 1)
Ulo
nUl0] U0
‘\_,;0,:,-
0!1

(1,0 s

Since the line integral of w over a constant path is zero, we have

/ﬁ*wz/w—i—/ wz/w—/w.
o S -5 S1 S
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@ On the other hand, we can check that, if we denote the oriented
squares of the subdivision by Qj;, then line integrals over the same
path in opposite directions cancel out,

H'w =
Jao =2 7

By a previous theorem and remarks,

/ ﬁ*w:/ dH*w
0Qj Qi

u

Since dH*w = H*dw = 0, we see that

/w—/ w=0.
S1 S,
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Corollary

Let w be a C* one-form on a simply connected manifold M.
Suppose that dw = 0 everywhere. Then there is a C* function f on M,
such that

w = df.

If f and g are two such functions, then f — g is constant.
o We choose a fixed basepoint b € M.

Define f at any p € M by choosing a piecewise differentiable curve S
from b to p and setting
f(p) = / w.
S

The theorem assures us that this defines a function on M.
The remainder of the proof deals with purely local properties.
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o We show that f is a C* function with the property that df = w.

If we show the latter fact, it will follow that f is C°°, because we
have assumed w to be C*.

Changing the basepoint changes f by an additive constant, the value
of the integral of w along the path between the old and new
basepoints.

Hence, it does not change df at all.

Therefore it is enough to show that df = w at the basepoint.
Let U, p be a coordinate neighborhood of the basepoint b.

We suppose that x1,...,x" are the local coordinates, such that:

o ¢(b) = (0,...,0);
o p(U) = B{(0).
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o Let f(x!,...,x") denote the expression for f in local coordinates.

Denote w in local coordinates by
w=a(x)dx! + - + an(x)dx".

We have, by definition,
f(x) = / a1 (x)dxt + -+ ap(x)dx”,
C

the line integral along any path C from (0,...,0) to (x*,...,x").
We must show that, at x = (0, ...,0),

of

W:@j’ _/=1,...,n.
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o We must show that, at x = (0,...,0),

of )
W:O{i j:].,...,n.
However, this is immediate from the definitions,
of 1
— = |lim=(f(0,... h,... — f(0,...
(5%). = Jm3(rO. s 0) = £(0.....0)
1 [h . .
—  lim= ) J J
’|1|_r110h/0 aj(0,...,x/,...,0)dx
= «(0,...,0).

For the last statement, note that d(f — g) = w — w = 0 so that
f — g = constant on the (connected) manifold M.
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Subsection 7
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Definition
A k-form w on a manifold M (with possibly nonempty boundary) is said to

be closed if
dw=020

everywhere.
It is said to be exact if there is a (k — 1)-form 7, such that

dn = w.

o We recall some facts about the operator d and apply them here.
o We denote by Z¥(M) the set of closed k-forms on M.
o We denote by B¥(M) the set of exact k-forms on M.
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o ZK(M) is the kernel of the homomorphism
k+1

k
d: A(M) = A\ (M).

o So it is a linear subspace of A\*(M).
o B¥(M) is the image of

k—1 k
d: \(M)— A\(M).
o So it is also a linear subspace.
o We know that d? = 0.
o Therefore,
BX(M) c ZK(m).
o This allows us to form the quotient
H5 (M) := ZX(N)/B*(M).
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The de Rham group of dimension k of M is the quotient space

HY (M) = ZK(M)/B¥(M).
If n=dimM, we denote by H*(M) the direct sum

H*(M) = HY (M) @ --- @ H"(M).

o Note that
H*(M) = Z2(M)/B(M),
where:
o Z(M) is the kernel of d : A(M) — A(M) and the direct sum of the
Zk(M), k=0,...,nm;
o B(M) is the image of d : A(M) — A(M) and the direct sum of the
BK(M), k =0,1,...,n.
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o Although called de Rham groups,
HY(M), k=0,...,n=dimM,

are actually vector spaces over R.

o In fact, H*(M) is an algebra, with the multiplication being that
naturally induced by the exterior product of differential forms.

o This follows directly from the property of d asserting that when
v € N'(M), ¥ € \°(M), then

dleAY)=do A+ (=1)"¢Adip.

o From this, it follows that Z(M) is an algebra containing B(M) as an
ideal.
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Theorem (de Rham'’s Theorem)

There is a natural isomorphism of H*(M) and the cohomology ring of M,
under which HX(M) corresponds to the kth cohomology group.

o This requires knowledge of Algebraic topology and cohomology
groups.
o Among the consequences, we get:
o Whenever M is compact the dimension of H*(M) is finite;
o H*(M) and its algebra structure are topologically invariant.
That is, if My and M, are homeomorphic, then H*(M;) and H*(M>)
are isomorphic as algebras.
o The duality which appears in algebraic topology between homology
and cohomology groups of a space extends to a duality of homology
groups and de Rham groups via integration and Stokes's Theorem.
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Lemma
A C* mapping F : M; — M, induces an algebra homomorphism

F*: H*(M2) = H*(Ml)

which carries H*(M,) (linearly) into HX(My), for all k.
If F is the identity mapping on M, then

F*: H*(M) — H*(M)

is the identity isomorphism.
Under composition of mappings we have

(GoF)*=F"oG".

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

o It is a property of differential forms that a C° mapping F : My — M,
defines a corresponding homomorphism

F*: A(M2) = A\(My).

We have F*d = dF*.
It follows that

F*(Z¥(My)) C Z¥(My) and F*(BX(M,)) C BX(My).
Therefore, F* induces a homomorphism, which we also denote by F*,
F* : HK(My) — H*(My).

Now F* is an algebra homomorphism on forms.
So F* : H*(My) — H*(Mjy) is also an algebra homomorphism.
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Corollary
If My and M, are diffeomorphic manifolds, then H*(M;) and H*(M>) are
isomorphic rings.

o Let F: My — M> be a diffeomorphism and F~! its inverse.
Then

FoF*=(FoF™')* and F*oF ™ =(FloF)

are both the identity isomorphism.

Hence F* is an isomorphism with inverse F~1*,
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Let M be a C* manifold with a finite number r of components.
Then HO(M) = V', a vector space over R of dimension r.

o A%(M) consists of C*-functions on M.
ZO%(M) consists of those functions f for which df = 0.
There are no forms of dimension less than zero.
So BO(M) = {0} and HO(M) = Z°(Mm).
We have seen previously that

df =0 iff f is constant on each component My,..., M,.
Thus,
HO(M) = {(alv °00 7ar) taj € ]R}v
where (a1, ..., a,) corresponds to the function taking the constant
value a;on M;, i=1,...,r.
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©

Let {p} be a zero-dimensional manifold.

©

By the theorem,
H({p}) = R.
This determines the de Rham groups of a point space.

Since A\“({p}) =0,

(+]

©

H%({p}) =0, for k > 0.
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If a compact manifold M, or manifold with boundary, is simply connected,
then

HY(M) = {0}.

o Suppose w is a closed one-form on M, that is,
dw = 0.
Then, there exists a function f on M, such that
df = w.

Thus, w is exact.

Since every closed one-form is exact, H*(M) = {0}.
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Let M be a compact orientable manifold of dimension n, with OM = ().
Then H"(M) # {0}.

o Let Q be a volume element.
It is an n-form, which:
o s never zero at any point;
o Gives the orientation of M.

By a previous theorem, [, Q > 0.
Suppose Q = dw, for some (n — 1)-form w.
By Stokes’s Theorem, since OM = (),

/Q:/dw:/ w=0.
M M oM

On the other hand d2 = 0, since all (n + 1)-forms vanish on M.
Thus, Q determines a nonzero class in H"(M).

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

o Let A C R" be either an open set or the closure of an open set.

o In the latter case we have in mind regular domains, cubes, simplices,
and so on.

o Note that for either choice of A, | x A is the closure of an open set,
its own interior, in R x R" = R,

o By definition of differentiability of functions (in this instance its
components) on A, when A is not open, a C* k-form w on A is the
restriction to A of a k-form @ on an open set U, with A C U.
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Our restrictions on A ensure that all derivatives of any C* function f
on A are defined at every p € A independently of the open set U and
extension f which may be needed to define them at boundary points.

o This is a consequence of:
o The continuity of all derivatives of f on U,
o The fact that every p € A is either an interior point - where the
derivatives are already defined without any f - or the limit of interior

points.
o It follows that for a C*° form w on A, dw is defined, even at

boundary points.
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The homotopy operator .# is defined to be an R-linear operator from

k+1

k
N U= A) = A(A).

On monomials .# is defined as follows:
o If w=a(t,x)dx™® A - Adxkt1, we set Sw = 0;
o If w=a(t,x)dt Adx® A - Adx’, we define Fw by

1 . .
Jw = (/ a(t,x)dt) dxt A Adxk.
0

Having been thus defined for monomials, we extend .# to be R-linear on
AL x A) with values in A¥(A).
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o We will denote by i, : A — | x A the natural injection

ir(x) = (¢, x).
o Then

o In particular,
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Lemma

The homotopy operator .# : A*™1(1 x A) — A¥(A) in addition to being
RR-linear has the following properties:

It commutes with C* functions which are independent of t;
For all w € A*™(/ x A) it satisfies the relation

Fdw+dIw=w; — wp.

o Suppose f is independent of t.
Then we may consider it both as a function on / X A and on A.

Moreover, independence of t, allows f to be moved through the
integral sign in the definition of .7.

Thus, £fw = fSw.

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

o For the second property we must verify the equation directly.
All of d, .7, iy and if are R-linear.
So it is enough to verify the equation for monomials.

First we consider the case where w does not involve dt,
w = a(t,x)dx® A - A dxir,

Then Yw =0. So dJw = 0.
Also .Zdw is given by

de = (fl 804 dt dX’l A A dXik+1
= (a(l,x) - OZ(O,X))dxil Ao A dxik,
But the right side is then exactly ifw — j[fw = w1 — wo.

This establishes the equality for this case.
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o Now suppose that w = a(t, x)dt A dx A --- A dxk.
Computing . dw, we see that

n

de:—z</o %dt) dxd A dx™ A A dxe

j=1
On the other hand using the Leibniz rule to differentiate under the
integral sign, we may compute d.%w:

dfw = d(fo1 aft, x)dt)dx® A --- A dx’
= YL 1(f01 gg dt)dx) A dx™ A - A dxk,

Adding these expressions, we see that Ydw + d.Zw = 0.
On the other hand since ij'dt = 0 = ijdt, we have
0=ijw— ijw=w; — wp.
Thus, in all cases, the identity in Part (ii) holds.
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Lemma (Poincaré's Lemma)

Let A be a subset of R"” which is either open or is the closure of an open
set. If A is star-shaped, then

HX(A) = {0}, forall k> 1.
Hence, H*(A) is isomorphic to the cohomology ring of a point.

o We recall that A is star-shaped if it contains a point 0, such that, for
any p € A, the segment Op lies entirely in A.

By suitable choice of coordinates we may suppose that 0 is the origin.
We define H:/ x A— A as

H(t, x1,. .. xp) = (txt, ..., tx™).

If wis a k-form on A, then H*w is a k-form on | x A.
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o By definition of .#, iy : x — (0,x) and i1 : x — (1,x).
Therefore, Hoip : A— {0} and Ho iy : A — A is the identity.

We apply .# to AX(I x A), using the fact that A({0}), a point
space, is trivial, for k > 1.

We get
dJ(H*w) + Ad(H'w) = i{ (H'w) — ig(H*w).
Suppose dw = 0. Then dH*w = 0.

So we have

dIHw=(Hoh)'w—(Hoi)'w=w.

Therefore, every closed k-form w on A is exact, if k > 1.
If Kk =0, then we may use the fact that A is connected to see that
HO(A) = R.
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Theorem

Let M and N be compact manifolds and assume OM = ().
Let F and G be C* mappings of M into N which are C* homotopic.
Then the corresponding homomorphisms

F*,G* : H*(M) — H*(N)
are equal.

o We use our previously defined operator .#.
We construct a similar operator .# : A*T1(1 x M) = AK(M).
First we note that M may be covered by a finite collection of
coordinate neighborhoods, U;, ¢; with
vi(Ui) = B{'(0), n=dimM, i=1,...,r,

with a subordinate C*° partition of unity {f;}, suppf; C U;.
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o Then any (k + 1)-form w on /| x M can be written as a sum of forms,
with support in [ x U;,

r
W) = g wi, w;i= fiw.
i=1

We may consider f;, or any functions on M, as being also functions on
I x M, which are independent of t.

We define .# to be additive so that
Jw= Z L w;.

This leaves only the problem of defining .# on forms with support in
one of the neighborhoods / x U;.
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o When w has support in a neighborhood / x U, where U, ¢ is a
coordinate neighborhood with ¢(U) = B{(0), we proceed as follows.

Let o : [ x U — I x B{(0) be defined by

o(t, p) = (t, (p))-
Then define #w on | x U, using our previous definition of .# for
I x B{(0), by
Fwly = (A (W),
the . on the right side being the operator defined earlier.
Further, let Yw =0o0on M — U.

This defines a C*> k-form on M, the image of a (k + 1)-form on
I x M.
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o By a previous lemma for this form w we have the relation
SFdw+dIw=w; — wp.

Now .Zd + d.# is an additive operator.
So, for an arbitrary w € /\k+1(l x M), we may apply the
decomposition w = > w; to obtain
Fdw+dIw = FdY wi+dI> w
= Y Jdwi+ > dFw;
= > Jdw + ) dIw;
= 2((wi)1 = (wi)o)

= w1 — Wwo.-
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o Finally, to complete the proof, we let w be any closed k-form on N.
We must show that G*w — F*w is exact.
Now let H: M x | — M be the homotopy connecting F and G.
Then, letting i:(p) = (¢, p), as before, we have:
F(p) = H(p,0)=Hoip;
G(p) = H(p,l) = HOil.
We know that dH*w = H*dw = 0.

So we have

dI9Hw=ifHw— ifH'w = G'w — Fw.
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o Intuition tells us that we cannot contract a sphere, or torus, over itself
to a single point.
Corollary

Let M be a compact orientable C* manifold (dimM > 0), with OM = 0.
Then M is not contractible.

o By the previous theorem, with M = N, if / is homotopic to the
constant map F : M — {po}, then

i* = F*

as homomorphisms on the groups HX(M).

i* is the identity isomorphism.

F* is a homomorphism H*(M) — HX({po}) which is {0}, for k > 1.
This contradicts a previous theorem, if dimM > 0.
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Subsection 8
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o Let D" denote B7(0), the closed unit ball in R”.
o D" is a manifold with boundary, 9D" = S"~1.

Lemma

There is no C* map F : D" — D" which leaves 9D" pointwise fixed.

o Suppose that there exists such a map F.
Let G denote the identity map of 9D" — D".
Then F o G = I, the identity map of 9D" — 9D".
This implies that G* o F* = (F o G)* induces the identity
isomorphism on H*(0D").
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o Therefore, the homomorphism
F*: H""(0D") — H"*(D")

must be injective.

That is, kerF* = {0}.

By Poincaré's Lemma, H"1(D") = {0}.

Hence, kerF* = H"~1(aD").

Therefore, H™1(dD") = {0}.

However, D" = S"~1 is an orientable and compact manifold without
boundary.

So we know that

H"Y(9D") = H"H(S"™) # {0}

This contradiction implies that no such map F exists.
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Theorem (Brouwer)

Let X be a topological space homeomorphic to D". Then any continuous
map F : X — X has a fixed point. That is, for each F, there is at least
one xg € X, such that

F(Xo) = X0-

o As a first step we note that it is enough to prove the theorem for D".
Let H: D" — X be a homeomorphism.
Let F : X — X be any continuous mapping.
Suppose H™1 o Fo H: D" — D" has a fixed point y.
Then xo = H(yo) is fixed by F.
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o Moreover, even in the case of D", it is enough to establish the
property for C*° maps F : D" — D".
To see this, suppose every such C° map has a fixed point.
Assume there exists continuous G : D" — D" with no fixed point.
Then ||G(x) — x|| is bounded away from zero on the compact D".

We may find an € > 0, such that
|G(x) — x|| > 3e.

Using the WeierstraB Approximation Theorem, we approximate G to
within € by a C* mapping Gy,

|G(x) — Gi(x)|| <e, forallxe D"
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o However, the values Gi(x) are not necessarily in D", for every x € D".
So we replace G; by

F(x)=(1+¢)"1Gi(x).

Clearly, F(x) is defined and C*> on D". Moreover, F(D") C D".
Since ||G(x)|| < 1, it follows that, for all x € D™
o |Gi(X)|| <1+¢;

o [[F(:) <1.
Thus F, maps D" into D" and is C*°.
For x € D",
16(x) = F()Il = [G(x) = (1 +e) G(x)

(1 +e)7HleG(x) + G(x) — Gu(x)]|
e[GO + 16 (x) — Gu(x)
2¢.

N
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o From these inequalities we obtain a contradiction to the assumption
that every C*° map F : D" — D" leaves some point fixed.

Namely, for every x € D" we have

IFO) —x[[ = [I(G(x) —x) = (G(x) = F(x))]]
> IG() = x|l = [IG(x) = F(
> 3e—2

This contradiction shows that if every C* map of D” to D" has a
fixed point, then so must every continuous one.

The proof of the theorem is then completed by the following lemma.

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

If F:D" — D" is a C* map, then F has a fixed point.

o Suppose F : D" — D" is C* and has no fixed point.

We use F to construct a C* map F : D" — OD" which leaves 9D"
pointwise fixed.

Given x € D", let F(x) be the boundary Fe
point obtained by extending the seg-
ment F(x)x past x to the boundary of
D".

Note, if x € 9D", then F(x) = x.

In any case, F(D") C OD".

To see that F is C°°, we express F explicitly using vectors in R".
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o Namely, we have _
F(x) = x+ Au,
where:
o x denotes the vector from (0,...,0) to x = (x,...,x");
o u is the unit vector directed from F(x) to x and lying on this segment,

more precisely,
X — F(x)

Tx=FGI
o A= —(x,u) 4+ [1 — (x,x) + (x, u)?]*/? denotes the length of the vector
on u with initial point x and terminal point F(x) on dD".
Since F is C*, it is easy to check that Fis C.
The scalar X is the unique nonnegative number such that

u=

|x + Aul| = 1.

Since F is C*, u is C*°. _
So wherever 1 — (x, x) + (x, u)? > 0, then F(x) is also C*.
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o However, 1 — (x,x) > 0, with equality only if x € S"~1.
Moreover, (x,u)? > 0, with equality only when u is orthogonal to x.
That is, when x — F(x) is orthogonal to x.

However, (x, u) = 0 cannot occur when (x,x) = 1, that is, on a point
of S"~1 since in this case F(x) would be exterior to D".

Thus, 1 — (x,x) + (x,u)2 > 0on D" and F is C®.
The existence of F contradicts a previous lemma.

So F has a fixed point.
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If nis odd, then there is no C* homotopy between the antipodal map
A:S" 1 — §"~1 and the identity map of S" 1.

o The sphere is an orientable manifold.
In fact we may define the oriented orthonormal frames of T,(S""1) at
each x € S"~1 in the following fashion.
Each x € S"~! determines a unit vector x = Ox.
The elements of T,(S"~!) correspond to the vectors in the
orthogonal complement of x.

Let e1,...,€,_1 be an orthonormal frame of T,(S""!) in the
induced metric of R".

Then x,eq,...,e,_1 is an orthonormal frame of R".
We use the natural parallelism to identify vectors at distinct points of
R".
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o Two frames, e1,...,e,_1 and €], ..., e} at x will be said to have the
same orientation if the corresponding frames x,e;,...,e,_1 and
/ /
x,e,...,e, ; do.

From the canonical orientation of R” we obtain an orientation of
S$"~1 by choosing as oriented that class of frames for which
X,€1,...,€p_1 is an oriented frame of R".

Let Q be the unique (n — 1)-form on S"~! which takes the value +1
on all oriented orthonormal frames eq,...,e,_1.
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o A:S" 1 5 §n—1 s the restriction to S"1 of a linear, in fact an
orthogonal, map of R".

So its Jacobian is constant and just the map A itself.

Thus, under A, the frame e;,...,e,_1 at x goes to the frame
—e1,...,—€n_1 at —x.

It is clear that this will be oriented according to our orientation of
S"1if and only if n is even.

In that case, x,e1,...,e,_1 and —x, —eq,...,—e,_1 are coherently
oriented frames of R".

Therefore, A*QQ = (—1)"Q and, when n is odd, Q = —A*Q.
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o Suppose there is a C*° homotopy connecting A and the identity.
Then Q — A*Q2 must be exact by a previous theorem.

But, by Stokes's theorem, the integral over S"~1 of an exact form is
zero.

This means that, when n is odd,

2/ Q= (Q— A*Q) = 0.
Sn—1 Sn—1

However, the volume element is positive.

So fs~—1 Q =0 is impossible.
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Corollary

Real projective space P"(R) is not orientable when n is even.

o Suppose that P"(R) is orientable.
We know that S” is a (two-sheeted) covering manifold of P"(RR).
So P"(RR) can be obtained from S" as the orbit space of the group of
two elements Z, acting on S”".
This action is obtained by letting the generator of Z, correspond to
the antipodal map A.
Suppose 2 is a nowhere vanishing n-norm on P"(R).
Let F: S" — P"(R) be the covering map.
Then F*Q = Q* is a nowhere vanishing n-form on S”".
Moreover, since F o A = F, we see that A*Q* = Q*.
But this, as we have seen above, is not possible if n+ 1 is odd.
Thus, P"(RR) is not orientable when n is even.
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If nis even, then there does not exist a C*°-vector field X on S” which is
not zero at some point.

o We suppose that such a vector field exists.

We show that this implies that the antipodal map A and the identity
map / on S” are C*° homotopic.

Let X be a C*-vector field on S” such that X is never zero.

Then ”§—” is a C*-vector field of unit vectors.

So we may suppose to begin with that || X|| =1 on S".

If x is a point of S”, let X, be the corresponding vector of the field.
Treat R"*! as a vector space and think of x as a radius vector.
Then we have (x, Xy) = 0 for every x.
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o We define the homotopy H : S” x | — S" by
H(x,t) = (cosmt)x + (sin mt)Xx.

Then H(x,t) is C.

Moreover, ||H(x, t)| = 1.

So H(x, t) defines a map of S” — S”, for each t.
Thus, H(x,0) = x and H(x,1) = —x, as claimed.

However, the existence of such a homotopy when n is even
contradicts the previous proposition.

Therefore, in this case no such vector field exists.
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o Consider the case when n is odd.
o Consider the vector field X, assigning to

x=(x1,x2%,... x",x") e s"
the unit vector
0 0 0 0
X =x2 2 a9 v 1 9 n 9
x Ox1 Ox2 Ox" Oxntl

orthogonal to x.

o We have noted previously that X defines a nowhere vanishing field of
tangent vectors to S".

o It follows that, in this case, A is homotopic to the identity.
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o Suppose that G is a compact connected Lie group, e.g., SO(n).
o Let #: G x M — M be an action of G on a compact manifold M.
o 0g denotes the diffeomorphism of M defined by

bz(p) = 0(g, p).

o A covariant tensor ¢ on M, in particular an exterior differential form,
is said to be invariant if

Oz = ¢, foreach ge G.
o We know that, for every form ¢,
d(0gp) = bg(d).

o So if ¢ is invariant, dy is also.
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~k
o Let A\ (M) denote the subspace of A¥(M) which consists of all
invariant k-forms.
o Then, as we have just seen,

~k ~k+1
d{A M)A (M)
o We define the set of closed invariant forms of degree k
. —~k
ZK(M) = {goe/\ (/\/l):dcp=0}.

o We also define the set of “invariantly exact” forms of degree k

—~k—1

B¥(M) = d (/\ (M)> c ZK(m).
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The invariant de Rham groups of M, denoted by Flk(M), are defined by

H (M) = ZK(M)/B¥(M).

~k
o We note that the natural inclusion i of A (M) in /\k(M) takes:
o ZK(M) into Z¥(M);
o B¥(M) into BK(M).

o Hence, i induces a homomorphism

i H(M) = HK(M).
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o In order to study the homomorphism
i - H*(M) = H*(M),

we define an RR-linear operator
k ~k
2 : \(M) = \ (M).

o Let

k
@ € /\(M)
o Let Q denote the bi-invariant volume element for which vol(G) = 1.
o Define Z¢ by

PoXs, - X) = [ O, X2
G
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Lemma

P takes a k-form to an invariant k-form, that is,

. (/k\(M)) TN

Moreover:
~k
If p € A (M), then Py = ¢;
dP = Ad.
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o It is easy to check that 2 € A¥(M) and in fact is G-invariant.

0:P0(X1,.... Xk) = Po(0uX,...,02Xk)
S 050(02:X1, . ., 02:.X1)Q2
S 031050(Xe, - .., Xe)IQ2
S O0(Xe, -, Xe)Q
= fG 9290()(17 o X)L

The fact that Py is C*>° and Property (ii) are consequences of the
Leibniz rule for differentiating under the integral sign.
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o If ¢ is G-invariant, then
Ozp =, forallgeG.
More precisely at each p € M,

92¢9(g,p)(X1pa o anp) = ¢P(X1p7 o anp)'

From this it follows that

‘@(p(xla"'axk) \/;.ez(p(X177Xk)Q

= QO(X]_,...,Xk)\/;Q.

But we have [ Q=1
So P¢ = ¢ and Property (i) is established.
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The homomorphism i : H*(M) — H¥(M) is an isomorphism into for each
k=0,1,...,dimM.

o Suppose that [#] is an element of H*(M) and that & is a closed
invariant form on M belonging to the class [¢].
To see that i, is one-to-one, we show that, if 5 = do, o € A"(M),

~ k-1
then @ is the image under d of an element of A\ (M).
That is, that, if ¢ is exact, then it is “invariantly exact”.

~k—1
This follows from the preceding lemma since Zo € A\ (M) and
o =Pp=Pdo=d(Ho).

Remark: It is also true, but somewhat harder to prove directly, that i
is onto, that is, H¥(M) is isomorphic to HX(M), for all k.
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Lemma

Let ®, be a covariant tensor of order r on T.(G), where G is a connected
Lie group. If Adg*®, = &, that is, if D, determines a bi-invariant tensor
on G, then for any Xi,...,X,,Z € g, we have

> o(Xy, ..., [Z,X],..., %) =0.
i=1

o Let ® be the bi-invariant covariant tensor on G determined by ®..
Suppose Z € g is a left-invariant vector field on G.
We have seen that:
o Z is complete;
o The one-parameter group action 6 : R x G — G which it determines is

given by right translations by the elements of a uniquely determined
one-parameter subgroup g(t) = exp tZ by the formula 0; = Rg(y).
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o We have previously established the following formula for C°°-vector
fields on a manifold,

o1
[2, X]p = lim [0t Xo.(p) — Xl

Suppose that p = e and that X is a left-invariant vector field.
Then [Z, X] is just the product in the Lie algebra g.
Identifying g with T¢(G), we may write

1
[Z,X] = lim ?[Rg(—t)* (t) — Xel-
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o By hypothesis, ® is bi-invariant.
So
R;(_t)cb —®=0.
Thus, for any Xi,..., X, € g,

q)(R;(_(_t)Xla ey R;(_t)Xr) — (D(X]_, O ,Xr) = O

Now we do the following:
o Add and subtract

q)(X]_, 000 ,Xifl, Rg*(ft)Xh ceay Rg*(ft)X’)7 i = ]., B ¢

o Then multiply by %;
o Finally, let t — 0.

The outcome is the formula of the lemma.
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Corollary

Every bi-invariant exterior form on a Lie group G is closed.

o Let w be an exterior differential r-form.
Suppose w is left-invariant and Xp, X1, ..., X, are left-invariant.
Then

r
dw(Xo, .- Xe) = Y w(Xo, .., [Xic1, Xil, .., Xp).
i=1

We previously established this formula for r = 2.
The method of proof in the general case is the same.

The corollary is an immediate consequence.
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o Suppose that G acts on itself by both left and right translations.
o Let G=M and K = G x G, the direct product of Lie groups.
o Define§: K x M — M, for all x ¢ M = G and k = (g1,82) € K, by

0(k, x) = 81x82(= Rg, © Lgy (x))-

o Then the K-invariant forms ¢ on G are exactly the bi-invariant forms.
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Corollary

Each bi-invariant r-form on a compact, connected, Lie group G determines
a nonzero element of H"(G).

o By the corollary, each ¢ € ﬁ’(G), that is, each bi-invariant r-form, is
closed.

We know that if it is exact, then it must be of the form do, with o
bi-invariant.

But then it is zero, by the corollary again, since do = 0.
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o Consider any compact, connected, non-Abelian Lie group G.

o For example, SO(n), the orthogonal matrix group (with elements of
determinant +1), for n > 3.

o We claim that H3(G) # {0}.

o We consider that the exterior three-form

p(X,Y,2) = (X, Y], 2)

on G, where (X, Y) denotes the bi-invariant inner product.
o We have:
o X,Y € g implies that [X, Y] is left-invariant;
o Ad(g) is an automorphism of g.
o It follows readily that ¢ is bi-invariant.
o Further, we have:
o [X,Y]=—[Y,X];
o (X,Y) is symmetric.
o These yield the alternating property of .
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o By the preceding corollary, ¢ is closed and, if it is not zero, it
determines an element of H3(G).

o Suppose that ¢ = 0.
o Then for all X,Y,Z € g, we have

o(X,Y,Z)=([X,Y],Z)=0.

o In particular, we have ([X, Y],[X, Y]) =0.

o It follows that
[X,Y]=0, forall X,Y €g.
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o This means, according to a previous section, that the one-parameter
groups of G commute.

o It follows that there is a neighborhood U of e which consists of
commuting elements.

o By the connectedness of G, the elements of U generate G.
o So G is commutative, contrary to assumption.

o This means that ¢ determines a nonvanishing element [¢] of H3(G).
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Subsection 9
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o Suppose that M is a manifold.
o Let M be a covering manifold.

o Denote by F : M — M the (C®°) covering mapping.

o If X is a topological space and G : X —+ M a ~

continuous mapping, then a continuous e T M
mapping G : X — M is said to cover G if L
~ X" F
FoG=G.
~ e
o We also say G is a lift of G. M

Example: If f : | — M is a path or loop, then f:l—>Misa path
which covers it, if Fo f(t) =f(t), for 0 <t <1.

o If a covering f of a given path f exists at all, then it is uniquely
determined by its value on a single point, say by 7(0).
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Lemma

If F: M — Misa covering and X is a connected space, then two

(continuous) mappings L _
Gl, G2 X > M

covering a continuous mapping G : X — M agree if they have the same
value at a single point xp € X.

o Let _ _
A={xe X:Gi(x) = G(x)}.

Then A is closed by continuity of 51 and 52.
We show that A is also open.
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o Let x € A.

Let U be a neighborhood of Gi(x) = Gy(x), such that F|y is a
diffeomorphism of U to M.

Then G; and G, must agree on the open set

V =G Y(U) N GTHU).
In fact, if y € V/, then, by hypothesis,
FoGi(y) = FoGly).

But Gi(y) and Gy(y) are in U.

Moreover, on U, F is one-to-one.

So Gl(y) = Gg(y).

Finally, since A is not empty and X is connected, A = X.
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Theorem

Let f:/ — M be a path in M with initial point b = 7(0).

Let F: M — M be a covering and_ b e F~1(b).

Then there is a unique path f in M with initial point f(O) = b.

o Uniqueness is a consequence of the previous proposition.
To prove existence, suppose

iR f 7(2%7.“'”) {
0:t0<t]_<<tn:1 / Elcr“mx// /

is any partition of / such that for each i/,
f([ti, ti+1]) lies in an admissible neigh-
borhood V; with respect to the cover-
ing. The existence of such a partition
follows from the compactness of / and
the continuity of f.
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o We let £(0) = b and let b € M AN
denote a point over b, that is, Iy il

Ber™ un/ /

F(b) = b.

Let U; be the unique connected
component of F~1(V}) containing b.

We define f(t), 0 <t < t;, by

f(t) = (FIUL) 7 (F(t)-

Then F(tl)g Uy N Uy, where U, is the unique component of F~1(V5)
containing f(t).

This allows us to define f(t) = (F|y,) " 1(f(t)), for t; <t < to.

So we can determine f on [to, t2].

We can continue in this fashion to define f on all of /.
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Theorem

Let f,g:/ — M be paths and H : | x | — M a (relative) homotopy of f
to g leaving endpoints fixed. Suppose f, ,&: 1 — M cover f,g and have
the same initial point. Then they have the same endpoint and there exists
a unique homotopy H : | x | — M of f to g covering H. Endpoints
remain fixed for H also.

o We define H: I x | — M using the previous theorem.
For each fixed t,

Hi(s) = H(s,t), 0<s<1,

is a path on M. N N
It lifts to a unique path H(s) on M with

H:(0) = £(0) = £(0),

the common initial point of f and g.
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o We let
H(s,t) = He(s).
This defines H : | x | — M, with the property that H = F o H.
But it is necessary to show that H is continuous.
Let to € I be chosen.
Take a partition of the line | x {tp} in | x | by

O=sp<s1<---<5s,=1,

such that each interval {(s, ) : s; < s < sj;1} is carried by H into an
admissible neighborhood V; on M.

Suppose ﬁ,-(s,-, to) have been defined at some stage.

This point of M determines unambiguously a component U; of
F~1(V;) covering V; and necessarily

Fii(s’ tO) - (F|U,')71(H(sv tO))7 Sj S S S Si+1-
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o However, by the continuity of H, there exists § > 0, such that, for
each i=0,1,2,...,n—1, the image H(Q;) C M of the cube
Qi={(s,t):s5i <s<sjr1,t0— 0 <t < ty+ d} liesin V; also.

Hence, on all of Q;,
He(s) = H(s, t) = (7]y) "2 (H(s, t)).

This shows that H is continuous on Q;.
This holds for each i =0,...,n— 1.

So H is continuous on a d-strip {(s, t) : |t — to| < 6} around the
segment | X {tp} C I x I.

But ty was arbitrarily chosen.

Hence, H is continuous on [ x /.
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o To complete the proof we notice that H, being continuous, takes
{1} x I into a connected set.

Namely, the set of terminal points of ﬁt(l), 0<t<1.

We have _
F(H(1,t)) = H(1,t) = f(1) = g(1).

As this is a single point, the connected set lies in the discrete set
m1(f(1)).

It is, therefore, a single point, as claimed.

We constructed H so that the initial points ﬁt(O), 0<t<1, areall
f(0).

The existence (as constructed) and uniqueness of H show that this
was the only possibility.

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

Corollary

If b€ M lies over b € M, then

F, : m1(M,b) — w1 (M, b)
is an injective isomorphism.

o We know F, is a homomorphism.

Using the previous theorem with F,g loops at B we see that
Fof~Fog implies f~ g.

This is equivalent to F, being injective.
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o Let I\711 and /\7’2 be coverings of a manifold M.

o Let the covering maps be Fi : I\71 — M and F> : /\7’2 — M.

o Then a homeomorphism G : l\~41 — I\712 such that F; = F, o G and
F» = F1 0 G~ is called an isomorphism of the coverings.

G =~

M,
PN

M

o In particular, an automorphism, that is, isomorphism, G : M — M is
exactly a covering transformation, as given previously.

o Using admissible neighborhoods, it is apparent that the
differentiability of F; and F» implies that of G and G1.

o We show that in a sense isomorphism classes of coverings of M are in
one-to-one correspondence with subgroups of the fundamental group.

M,
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Theorem

Let F; : M1 — M and F5 : M2 — M be coverings of the same manifold M.
Suppose that, for b € M, b1 € Ml, b2 € Mo, with Fl(bl) =b= Fz(bz)

we have . L
Fr.m1(My, b1) = Fauma(Ma, by).

Then there is exactly one isomorphism G : I\Zl — 1\772 taking El to Ez.

o Let pe /\7]1.
We define G(p) as follows.
Let f; be a path such that (0) = by and (1) = p.
Then the path f = F; o f1 on M has a unique lifting to a path f2 on
M, covering f and with initial point f2(0) bs.

We define G(p) = f2(1)
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o Of course we must show that:

o The definition is independent of the path )?1 chosen;
o G is continuous.

On the other hand, once these facts are proved, then, immediately
from the definition, we get that:

o F1 =F0G;
o G(b1) = bo;

o G is unique.
This definition is natural.
Let G have the properties required in the theorem.

Then it must take f1 to a path f2 oG on /\/12, such that:

° fzchoversf— 107‘1,
o fr 0 G runs from by to G(p).
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o Now suppose that fi and g1 are distinct paths on M from by to p.
Let f:Floflandg:Flogl.
Consider the loop f * g~ ! with

g l(s)=g(1—5s), 0<s<1.

This loop determines an element [f * g~] of F1*7r1(l\/11, by).
Hence, also the (same) element of Fa,ma(Ma, by).
In view of the preceding corollary, if we lift this to a path from by, its
terminal point will necessarily be by.
So the lifted paths f, and g on M, beginning at by both end at the
same point, that is, B
f(1) = g2(1).
It follows that, by using either E or g1, we obtain the same value for

G(p).
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o By the preceding argument, there is a one-to-one correspondence
between points of M;, i = 1,2, and equivalence classes (under relative
homotopy with endpoints fixed) of paths f on M issuing from b.

Let p e M.

Let [f] a homotopy class of paths from b to p.

[f] determines a point pjs of My which lies over p.
Indeed, the class [f] lifts to a class [f].

All curves of [f] issue from the point by.

We have just seen that they all have as terminal point pif.
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o Suppose we make this identification.
So we may let [f] denote pyf.

Then F; projects the class of paths [f] to the common terminal point
of its elements, that is, F1([f]) = f(1).

Similarly for F», 1\772.
The classes of loops at b correspond to the points over b.

That is, the elements of 71(M, b) are in one-to-one correspondence
with the points over b.
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o It is clear that G is one-to-one onto.
Moreover, G~! is described in a symmetrical way to G.
So G71is C.
Now let B = G(p1) € Mo.

Let V.4 be an admissible coordinate neighborhood of p = F;(p;) on
M, i =1,2, such that:

o Y(p) =0;
o $(V) = B(0) C R".

Suppose f is a path from b to p on M which lifts to paths f,-joining
b; to pjon M;, i =1,2.

Then we see that this path may be used in the definition of G as
described above.
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o Let g be an arbitrary point in V.
We have a radial path (in the local coordinates), say gg, from p to q.
Moreover, f; = f * g4 lifts to paths from B,- to g; in the component U,-
of F, (V) containing bi,i=1,2.
Thus, G(q1) = qo.
This description is unique and valid for every g € V.
So G : Uy — U, is one-to-one and onto.

In fact G may be described by
Glg, = (Ralg,) ™" o (Filg,)-

Thus, G|g is a diffeomorphism.

Since M, is covered by open sets of this type, G is differentiable.

This completes the proof.
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Corollary

z |
t

If F: M — M is a covering and M is simply connected, then the covering
transformations are simply transitive on each set F~(p).

If we fix b € M and b € M with F(b) = b, then these choices determine a
natural isomorphism

®:m(M,b) > T
of the fundamental group of M onto the group of covering transformations.

o Suppose that g1, q2 € F~1(p). B
We apply the preceding theorem with My = M, , Mo =M.
Note that because M is simply connected, 7r1(M qg)={1}, i=1,2.
Hence, F,(m1(M,q1)) = {1} = F, (7r1(l\~/l q2))-
We get a covering transformation G : M — M, with G(q1) = q2.
By a previous theorem, the group I of covering transformations must
be simply transitive on F~1(p), for each p € M.
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o We have fixed b € M and b € 7 1(b).
We may establish an isomorphism of 71 (M, b) and T as follows.
Let [g] € m1(M, b).
Let & be the lift of g € [f] to M determined by g(0) = b.
We have seen earlier that any two curves g, g» which are lifts of
curves of homotopic curves, in particular two loops of [g], with
g1(0) = b = g(0), must have the same terminal point b; and must
be homotopic (with endpoints fixed).
Since g is a loop, F(b) = b= F(by).
We let ®[g] € T be the covering transformation

b by = g(1).

This defines ® : (M, b) — T
We can check that ® is a homomorphism using the arguments of the
preceding theorem.
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o We show that & is one-to-one.
If ®[g] = 1, then Z(0) = b = &(1).
So g determines an element of 71 (M, b).
This group contains only the identity.
So g ~ e; by a homotopy H.
Then H=FoHis a homotopy of g to ep.
It follows that [g] = 1.

Hence, ® is one-to-one.
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o We show that & is onto.
Let Gy € F
Let by = Gy(b).
There is a path g from b to by.
We have F(b) = F[Gy(b)].
So, by definition of covering transformation, g = F o g is a loop at b.
It determines [g] € m1(M, b).
But the covering transformation G = ®([f]) agrees with Gy on b,

Gi(b) = by = G(b).

So we must have G = Gy, by a previous lemma.
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Theorem

Let M be a connected manifold and b a fixed point of M.
Then, corresponding to each subgroup H C m1(M, b), there is a covering
F: M — M, such that, for some b € F~1(b), we have

Fimi(M, b) = H.
F and M are unique to within isomorphism.

o The uniqueness is just the previous theorem.
Its proof also indicates how the space must be constructed.
The points of M will consist of equivalence classes of paths from b.

Two such paths f, g are equivalent if and only if:

o f(1) = g(1);
o [fxg~1] € H, where g~! denotes the path g~*(s) = g(1 — s),
0<s<1.

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

o Since H is a subgroup, the preceding relation is an equivalence.
We denote it by f ~ g.
We denote by {f} the equivalence class of f (or point of M).
The projection map F : M — M is defined by

F({f})=1f(1), foranyf € {f}.

Let {f} € M and p = £(1).
Let V, 4 be a coordinate neighborhood of p on M, with:
° Y(p) =0;
o (V) = B{(0), the open n-ball.
For each g € V, there is a unique path g, from p to g corresponding
to a radial line in (V).
Then g — {f x g4} defines a map 8¢ : V — M.
For all g in V,

Fobr(q) = F{fogg}="roge(l)=gq.
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o Suppose h is a path from b to g also.
Assume that h # f, that is, {ho f1} & H.
Then it is easy to see that

07(V) N Op(V) = 0.

Indeed, assume, for some g € V, we have {f x g4} = {h* gq}.
But hen [f * gg * (h* gg) 1] = [f x h~!] is an element of H.
This contradicts the assumption.

We may now check that the sets 0¢(V), with coordinate maps ¢ o F,
define a manifold structure on M.

Moreover, his structure makes F : M — M a covering, with {V, ¢} as
admissible neighborhoods.
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o Finally, we must establish that F.(m1(M, b)) = H, where b = {ep},
the point of M determined by the constant path at b.

Suppose that f(t), 0 < t <1, is a loop at b with [f] € H.
Then £(0) = f(1) = b.
We define a one-parameter family f; of paths from b by

fi(s) = f(st), 0<s,t<1.

Let

F(t) = {fi(s)}-
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o Then

is a path on I\7l with
F(F(1) = fi(1) = (2).

Hence, f covers f and is a loop at b.

We can check, using methods similar to those used above, that this
actually determines an isomorphism F, of 71 (M, b) onto H.

This completes the proof.

George Voutsadakis (LSSU) Differential Geometry



Integration on Manifolds

o If we take H = {1} we have a very important corollary.

Corollary

Every connected manifold M has a simply connected covering which is
unique to within isomorphism.

Choice of b € F~1(b), for b € M, determines an isomorphism of 71(M, b)
onto I the group of covering transformations.

Then M/T is diffeomorphic to M, that is, M is the orbit space of its
fundamental group acting properly discontinuously on its universal
covering M.
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