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Integration on Manifolds Integration on Rn and Domains

Subsection 1

Integration on Rn and Domains
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Integration on Manifolds Integration on Rn and Domains

Sets of Content Zero and of Measure Zero

Let A be a subset of Rn.

We say that A has (n-dimensional) Jordan content zero, c(A) = 0,
if for any ε > 0, there exists a finite collection of cubes C1, . . . ,Cs

which cover A and the sum of whose volumes is less than ε,

s∑

i=1

volCi < ε.

We say that A has Lebesgue measure zero, m(A) = 0, if, for ε > 0,
there exists a countable set of cubes covering A, with

∞∑

i=1

volCi < ε.
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Integration on Manifolds Integration on Rn and Domains

Content Zero versus Measure Zero

These are not equivalent concepts.

It is easy to see that the subset of rational numbers in R has measure
zero but not content zero.

We have c(A) = 0 implies m(A) = 0.

Moreover, if A is compact, the converse also holds.

More generally, m(A) = 0 if and only if A is a countable union of sets
of content zero.
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Integration on Manifolds Integration on Rn and Domains

Domains of Integration in Rn

Definition

A bounded subset D of Rn is said to be a domain of integration if its
boundary BdD has content zero.
A function f on R

n is said to be almost continuous if the set of points at
which it fails to be continuous has content zero.

The most obvious example of a domain of integration is a cube, or an
n-ball.

The usual domains of integration in R
2 or R3, bounded by piecewise

differentiable curves or surfaces, are also examples.
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Integration on Manifolds Integration on Rn and Domains

Integrability of Bounded and Almost Continuous Functions

Theorem

Let D be a domain of integration in R
n and let f be a real-valued function

on D. Suppose that f is bounded and almost continuous on D. Then the
Riemann integral ∫

D

fdv

exists.

We shall refer to a function with these properties as integrable on D.

To say that the integral exists means, of course, that it is a limit of
approximating sums in the usual sense.

The proof is essentially the same as that which is at least outlined in
every calculus book.
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Integration on Manifolds Integration on Rn and Domains

Basic Properties of Domains

Let D,D1 and D2 denote domains of integration in R
n.

Let f , g be bounded almost continuous functions on R
n.

It is not too difficult to show that the following sets are also domains
of integration:

D, the closure of D;
◦

D, the interior of D;
D1 ∪ D2;
D1 ∩ D2;
D1 − D2.
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Integration on Manifolds Integration on Rn and Domains

Basic Properties of the Riemann Integral

We further have the following standard properties.

If c(D) = 0, then ∫

D

fdv = 0.

The following equations holds
∫

D1∪D2

fdv =

∫

D1

fdv +

∫

D2

fdv −
∫

D1∩D2

fdv .

For all a, b ∈ R,
∫

D

(af + bg)dv = a

∫

D

fdv + b

∫

D

gdv .

If f ≥ 0 on D and c(D) 6= 0, then
∫

D

fdv ≥ 0.

Equality holds iff f = 0 at every point at which it is continuous.
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Integration on Manifolds Integration on Rn and Domains

Characteristic Functions and Integration

Recall that the characteristic function kA of a subset A of a space
X is defined to be

kA(x) =

{
1, if x ∈ A,
0, if x 6∈ A.

Therefore kA is bounded and its discontinuities are exactly the set
BdA of boundary points of A.

In particular, if D is a domain of integration, we have c(BdD) = 0 so
that kD is integrable.

If D ′ is a domain of integration, D ′ ⊇ D, then

∫

D′

kD fdv =

∫

D

fdv .
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Integration on Manifolds Integration on Rn and Domains

Volumes

Thus, if f on R
n is bounded, has compact support, and is almost

continuous, then we define
∫
Rn fdv unambiguously by

∫

Rn

fdv =

∫

D

fdv ,

using any domain of integration D such that D ⊇ suppf .

Definition

Let D be any domain of integration. Then we define the volume of D,
volD, by

volD =

∫

Rn

kDdv =

∫

D

kDdv .
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Integration on Manifolds Integration on Rn and Domains

The Mean Value Property

The following property is an easy consequence of the definitions:

(inf
D

f )volD ≤
∫

D

fdv ≤ (sup
D

f )volD.

When D is connected and f is continuous, we obtain the mean value

property ∫

D

fdv = f (a)volD,

for some point a ∈ D.
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Integration on Manifolds Integration on Rn and Domains

A Version of Fubini’s Theorem

The following theorem, a special case of Fubini’s theorem, justifies
the usual evaluation of multiple integrals by repeated single
integrations of functions of one variable (iterated integrals).

Theorem

Suppose f is a continuous function on the domain of integration

D = {x ∈ R
n : ai ≤ x i ≤ bi , i = 1, . . . , n}.

Then ∫

D

fdv =

∫ bn

an
· · ·
∫ b1

a1
f (x1, . . . , xn)dx1 · · · dxn,

the expression on the right denoting repeated single integrations.
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Integration on Manifolds Integration on Rn and Domains

Change of Variables

Let G : U → U ′ be a diffeomorphism of U ⊆ R
n onto U ′ ⊆ R

n.

Let ∆G be the determinant of its Jacobian.

Let G be given by coordinate functions

y i = y i(x), i = 1, . . . , n.

Then

∆G = det

(
∂y i

∂x j

)
.
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Integration on Manifolds Integration on Rn and Domains

Change of Variables (Cont’d)

A function f ′ on U ′ determines a function on U,

f = f ′ ◦ G .
We have the following relation between their integrals.

Theorem (Change of Variables)

Suppose D ⊆ U and D ′ = G (D) ⊆ U ′ are domains of integration.
Suppose, also, that f ′ is integrable on D ′.
Let f = f ′ ◦ G , that is,

f (x1, . . . , xn) = f ′(g1(x), . . . , gn(x)).

Then f is integrable on D and

∫

D′

f ′(y)dv ′ =

∫

D

f ′(G (x))|∆G |dv =

∫

D

f (x)|∆G |dv .
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Integration on Manifolds Integration on Rn and Domains

Example

Let

D =
{
(ρ, θ, ϕ) : 0 < a ≤ ρ ≤ b, 0 ≤ θ ≤ π

2
,
π

4
≤ ϕ ≤ π

2

}
.

Let D ′ be the first quadrant region of xyz-space:

Between the spheres with center at the origin and radii a and b;
Outside the inverted cone z2 = x2 + y2.
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Integration on Manifolds Integration on Rn and Domains

Example (Cont’d)

Let G be given by the coordinate functions

x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ.

Given f ′(x , y , z) = x2 + y2 + z2, then f = f ′ ◦ G is

f (ρ, θ, ϕ) = f ′(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) = ρ2.

Also

∆ =

∣∣∣∣∣∣∣

∂x
∂ρ

∂x
∂θ

∂x
∂ϕ

∂y
∂ρ

∂y
∂θ

∂y
∂ϕ

∂z
∂ρ

∂z
∂θ

∂z
∂ϕ

∣∣∣∣∣∣∣
= |ρ2 sinϕ|.

So ∫

D′

(x2 + y2 + z2)dxdydz =

∫

D

ρ2|ρ2 sinϕ|dρdϕdθ.
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Integration on Manifolds Integration on Rn and Domains

Images of Sets of Content Zero

Recall that a set is relatively compact if its closure is compact.

Lemma

Let A be a relatively compact subset of Rn of content zero. Let

F : A → R
m, n ≤ m,

be a C 1 mapping. Then F (A) has content zero.

By definition F is C 1 on an open set U ⊇ A.

Choose an open set V ⊇ A, such that V is a compact subset of U.

Let

K = sup
x∈V

∣∣∣∣
∂f i

∂x j

∣∣∣∣

be a bound of the derivatives on V of the coordinate functions of F .
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Integration on Manifolds Integration on Rn and Domains

Images of Sets of Content Zero (Cont’d)

Choose δ1, 0 < δ1 ≤ 1, so that every cube of side δ1 whose center is
in A lies inside V .

By the Mean Value Theorem, for any x in a cube of side δ1 and
center a ∈ A,

‖F (x)− F (a)‖ <
√
nmK‖x − a‖.

Take 0 < δ < δ1.

Consider a cube C of side δ and center a ∈ A.

C must map into a cube C ′ of center F (a) and side length less than
or equal to

√
nmKδ.
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Integration on Manifolds Integration on Rn and Domains

Images of Sets of Content Zero (Cont’d)

Thus, F (C ) lies in a cube C ′ whose volume satisfies

volC ′ ≤ (
√
nmKδ)m (δ < δ1 ≤ 1)

= (nm)m/2Kmδm−nδn

≤ kvolC . (volC = δn)

where k = Km(nm)m/2 is independent of a ∈ A.

From this, it follows at once that, given any ε > 0, we may cover
F (A) with a finite number of cubes C ′

1, . . . ,C
′
s whose total volume is

less than ε.

We need only cover A with cubes C1, . . . ,Cs whose:

Volume is less than ε
k
;

Side is less than δ1.

This shows that the content of F (A) is zero.
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Integration on Manifolds Integration on Rn and Domains

Sets of Zero Content and Zero Measure in Manifolds

Definition

A relatively compact subset A ⊆ M is said to have content zero, written
c(A) = 0, if it is the union of a finite number of subsets

A = A1 ∪ · · · ∪ As ,

each of which lies in a coordinate neighborhood Ui , ϕi , such that, in R
n,

c(ϕi (Ai)) = 0, i = 1, . . . , s.

An arbitrary subset B ⊆ M is said to have measure zero, written
m(B) = 0, if B is the union of a countable collection of subsets
B =

⋃∞
i=1 Bi , such that each Bi has content zero.
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Integration on Manifolds Integration on Rn and Domains

Properties of Sets of Zero Content or Zero Measure

Corollary

Suppose A ⊆ M has content (respectively, measure) zero.
Let

F : M → N

be a C 1 map with dimM ≤ dimN.
Then F (A) has content (respectively, measure) zero.
In particular, this holds if F is a diffeomorphism.

This is an obvious application of the preceding lemma to the
definition.
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Integration on Manifolds Integration on Rn and Domains

Domains of Integration in Manifolds

If M is a manifold, D ⊆ M is a domain of integration if D is
relatively compact and the boundary of D has content zero,
c(BdD) = 0.

Theorem

If D is a domain of integration in M, so are its closure and its interior.
Finite unions and intersections of domains of integration are domains of
integration. Finally, the image of a domain of integration under a
dfffeomorphism is a domain of integration.

These are all immediate consequences of the definition and of the
corresponding statements for:

Subsets of content zero;
Domains of integration in R

n.

For the last statement we must note that a diffeomorphism takes
boundary points to boundary points.
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Integration on Manifolds A Generalization to Manifolds

Subsection 2

A Generalization to Manifolds
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Integration on Manifolds A Generalization to Manifolds

Oriented Manifolds Revisited

Suppose that M is an oriented manifold and dimM = n.

By definition, this means that there is a C∞ n-form

Ω

on M which is not zero at any point of M.

{Ω} is a basis of
∧n(M).

That is, any other n-form ω is given by

ω = f Ω,

where f is a function on M.

Since Ω is C∞, ω will have the differentiability class of f .
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Integration on Manifolds A Generalization to Manifolds

Integrable Functions on a Manifold

Definition

A function f on M is integrable if:

It is bounded;

Has compact support (vanishes outside a compact set);

Is almost continuous (that is, continuous except possibly on a set of
content zero).

An n-form ω on M, in the very general sense of a function assigning to
each p ∈ M an element ωp of

∧n(Tp(M)), is said to be integrable if

ω = f Ω,

where f is an integrable function (we are not requiring ω to be C∞ or
even C 1).
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Integration on Manifolds A Generalization to Manifolds

Integrable Functions on a Manifold (Remark)

The definition of integrable n-form does not depend on the particular
Ω we use.

Any other Ω̃ giving the orientation is of the form Ω̃ = gΩ, where g is
a positive C∞ function on M.

Thus,

f Ω =
f

g
Ω̃.

If f has compact support, is bounded, and is almost continuous, then
the same will be true of f

g
.

We denote by
∧n

0(M) the set of integrable n-forms.

Like
∧n(M), it is a vector space over R.

Moreover, it is closed under multiplication by continuous or integrable
functions on M.
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Integration on Manifolds A Generalization to Manifolds

Definition of Integral of ω ∈ ∧n
0(M)

A subset Q ⊆ M is called a cube of M if it lies in the domain of an
associated, oriented, coordinate neighborhood U, ϕ and

ϕ(Q) = C = {x ∈ R
n : 0 ≤ x i ≤ 1, i = 1, . . . , n},

the unit cube of Rn.

Thus a cube is a compact set and is coordinatized in a definite way.

We first define the integral over M of any ω ∈ ∧n
0(M) whose support

lies interior to some cube Q.
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Integration on Manifolds A Generalization to Manifolds

Definition of Integral of ω ∈ ∧n
0(M) (Cont’d)

Let U, ϕ be the coordinate neighborhood associated with Q.

Suppose
ϕ−1∗(ω) = f (x)dx1 ∧ · · · ∧ dxn

represents ω in the local coordinates.

Then f is bounded and almost continuous on C .

So
∫
C
fdv is defined.

We define ∫

M

ω =

∫

C

fdv .
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Integration on Manifolds A Generalization to Manifolds

Independence of Choice of Cube

We must show that the value of this integral is independent of the
particular cube we have used.

Suppose Q ′ is another cube containing suppω.

Let U ′, ϕ′ be the associated coordinate neighborhood.

We denote the local coordinates for this neighborhood by

y1, . . . , yn.

Suppose that
ϕ′−1∗(ω) = f ′(y)dy1 ∧ · · · ∧ dyn

represents ω on ϕ′(U ′).
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Integration on Manifolds A Generalization to Manifolds

Independence of Choice of Cube (Cont’d)

Consider the diffeomorphism

G = ϕ′ ◦ ϕ−1 : ϕ(U ∩ U ′) → ϕ′(U ∩ U ′).

Let ∆G be the determinant of its Jacobian matrix.

∆G is positive, since the neighborhoods are oriented.

By the rules for change of components of an n-form, we have

f (x) = f ′(G (x))∆G .

On the other hand, since Q,Q ′ are domains of integration.

Therefore, so are Q ∩Q ′ and its images D = ϕ(Q ∩Q ′) and
D ′ = ϕ′(Q ∩ Q ′), which lie in the unit cube of the x-coordinate space
and the y -coordinate space, respectively.
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Integration on Manifolds A Generalization to Manifolds

Independence of Choice of Cube (Cont’d)

Now suppω ⊆ Q ∩ Q ′.

So suppf ⊆ D and suppf ′ ⊆ D ′.

Therefore∫

C

f (x)dv =

∫

D

f (x)dv and

∫

C ′

f ′(y)dv ′ =

∫

D′

f ′(y)dv ′.

According to the Change of Variable Theorem, since D ′ = G (C ),
∫

D′

f ′(y)dv ′ =

∫

D

f ′(G (x))|∆G |dv .

However, ∆G > 0 so that |∆G | = ∆G .

So, by the formula for change of components, the integral on the
right must equal ∫

D

f (x)dv .

This shows that
∫
M
ω is uniquely determined for every integrable ω

which vanishes outside of some cube.
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Integration on Manifolds A Generalization to Manifolds

Linearity Property

We note, in particular, the following linearity property.

Suppose ω1, ω2 vanish outside a cube Q.

Then, for all real numbers a1, a2,

∫

M

a1ω1 + a2ω2 = a1

∫

M

ω1 + a2

∫

M

ω2.
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Integration on Manifolds A Generalization to Manifolds

Integral of Integrable n-Forms

Suppose that ω is an arbitrary integrable n-form.

Let K = suppω.

Choose a finite covering of K by the interiors
◦
Q1, . . . ,

◦
Qs of cubes

Q1, . . . ,Qs associated with coordinate neighborhoods U1, ϕ1, . . .,
Us , ϕs , respectively.

The open sets M − K ,
◦
Q1, . . . ,

◦
Qs cover M.

Take a suitable partition of unity {fi} subordinate to this covering.

We may assume that:

For j > s, fj = 0 on K ;

For j = 1, . . . , s, suppfj ⊆
◦

Q j , the interior of the cube Qj .
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Integration on Manifolds A Generalization to Manifolds

Integral of Integrable n-Forms (Cont’d)

Since
∑

fj ≡ 1, we have

ω = f1ω + · · ·+ fsω.

Each fj has its support on the interior
◦
Q j of the cube Q.

So each of the integrals ∫

M

fjω

is defined.

We define ∫

M

ω =

∫

M

f1ω + · · ·+
∫

M

fsω.
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Integration on Manifolds A Generalization to Manifolds

Independence of Covering and Functions

Let Q ′
1, . . . ,Q

′
r be another set of cubes whose interiors cover K .

Choose again a partition of unity {gk} such that:

suppgk ⊆
◦

Q ′
k , k = 1, . . . , r ;

gk = 0 on K for k > r .

Then ∑

i ,k

figk ≡
∑

i

fi
∑

k

gk ≡ 1.

Moreover, for fixed k , 1 ≤ k ≤ r , we have

suppfigk ⊆ Q ′
k .
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Integration on Manifolds A Generalization to Manifolds

Independence of Covering and Functions (Cont’d)

By the linearity of the integral with respect to forms with support in
the same cube,

∫

M

gkω =

∫

M

f1gkω + · · · +
∫

M

fsgkω.

We compute
∫
M
ω using this second covering by cubes.

We have ∫

M

ω =

r∑

k=1

∫

M

gkω =

r∑

k=1

s∑

i=1

∫

M

figkω.

By a symmetric argument, the sum on the right is also equal to

s∑

i=1

∫

M

fiω.

Hence, both choices assign the same value to
∫
M
ω.
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Integration on Manifolds A Generalization to Manifolds

Properties of Integrals

Theorem

The process just defined assigns to each integrable n-form ω on an
oriented manifold M a real number

∫
M
ω.

We have the following properties:

(i) If −M denotes the same underlying manifold, with opposite
orientation, then ∫

−M

ω = −
∫

M

ω.

(ii) The mapping ω →
∫
M
ω is an R-linear mapping on

∧n
0(M), that is,

for all a1, a2 ∈ R and all ω1, ω2 ∈
∧n

0(M),

∫

M

a1ω1 + a2ω2 = a1

∫

M

ω1 + a2

∫

M

ω2.
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Integration on Manifolds A Generalization to Manifolds

Properties of Integrals (Cont’d)

Theorem (Cont’d)

(iii) Let Ω be a nowhere vanishing n-form giving the orientation of M.

If ω = gΩ, with g ≥ 0, then

∫

M

gΩ ≥ 0,

and equality holds if and only if g = 0, wherever it is continuous.

(iv) Let F : M1 → M2 be a diffeomorphism and ω ∈ ∧n
0(M2).

Then ∫

M1

F ∗ω = ±
∫

M2

ω,

with sign depending on whether F preserves or reverses orientation.
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Integration on Manifolds A Generalization to Manifolds

Proof of the Theorem

Because of the definition, we need to verify these properties only for
forms ω whose support lies in a cube Q associated with the oriented
coordinate neighborhood U, ϕ and coordinates x1, . . . , xn.

Suppose
ϕ−1∗(ω) = f (x)dx1 ∧ · · · ∧ dxn.

Then, by definition, ∫

M

ω =

∫

C

f (x)dv .

Suppose that the orientation of M is reversed.

Then the map ϕ assigning coordinates in U must be replaced by a
map ϕ′, such that the Jacobian of ϕ′ ◦ ϕ−1 has negative determinant.

For example, by interchanging the first and second variables.

f is the component of ω in the local coordinates.

So the interchange changes the sign of f .

Hence, it changes the sign of the integral.
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Integration on Manifolds A Generalization to Manifolds

Proof of the Theorem (Cont’d)

Property (ii) was previously noted.

It is a consequence of the corresponding property for the Riemann
integral on R

n.

Next, note that in (oriented) local coordinates

ϕ−1∗Ω = p(x)dx1 ∧ · · · ∧ dxn, p(x) > 0.

So ∫

M

gΩ =

∫

C

g(x)p(x)dv .

Now g(x)p(x) ≥ 0, and vanishes exactly where g(x) vanishes.

The assertion now follows from the corresponding property in R
n.

This proves Property (iii).
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Integration on Manifolds A Generalization to Manifolds

Proof of the Theorem (Cont’d)

Suppose F : M1 → M2 is a diffeomorphism preserving orientation.

Let ω on M2 have support in a cube Q associated with the coordinate
neighborhood U, ϕ.

Then Q ′ = F−1(Q) is a cube on M1 associated with

U ′ = F−1(U) and ϕ′ = ϕ ◦ F−1.

This cube contains the support of F ∗ω.

With respect to it, we have precisely the same expression

f (x)dx1 ∧ · · · ∧ dxn

for both ω and F ∗ω in local coordinates.
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Integration on Manifolds A Generalization to Manifolds

Proof of the Theorem (Cont’d)

Hence, ∫

M2

ω =

∫

M1

F ∗ω =

∫

C

fdv .

Assume, on the other hand, that F does not preserve orientation.

Then the equation ∫

M1

F ∗ω = −
∫

M2

ω

follows from the orientation-preserving case and Property (i).
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Integration on Manifolds A Generalization to Manifolds

Remark

Note that a special case of the definition above, namely M = R
n,

defines ∫

Rn

f (x1, . . . , xn)dx1 ∧ · · · ∧ dxn

for any bounded function f on R
n which has compact support and is

almost continuous.

We can also show that, if suppf ⊆ D, a domain of integration, then

∫

R

f (x)dx1 ∧ · · · ∧ dxn =

∫

D

f (x)dv ,

the usual Riemann integral.
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Volume Elements in Riemannian Manifolds

A volume element is, by definition, a nowhere vanishing n-form Ω
on M which is in that class which determines the orientation.

On an arbitrary oriented manifold there is such a form Ω.

It is determined only to within a multiple by a positive C∞ function.

This is not enough to define volumes.

We must have a unique Ω given, say, by the structure of M.

One case in which this occurs, according to a previous theorem, is on
an oriented Riemannian manifold M.

In this case there is a unique Ω whose value on any orthonormal
frame is +1.

We shall always use this Ω on the Riemannian manifold.

In this section, we shall discuss only the Riemannian case.

Then, using Ω and the characteristic function kD of a domain of
integration D we are able to parallel the theory for Rn.
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Integration in Riemannian Manifolds

Definition

Let D be a domain of integration on an oriented Riemannian manifold M.
Let kD be the characteristic function of D.
We define the volume of D, denoted by volD, by

volD =

∫

M

kDΩ.

If f is any integrable function on M, we define the integral of f over D,
denoted

∫
D
f , by ∫

D

f =

∫

M

fkDΩ.
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Integration in Riemannian Manifolds (Cont’d)

Definition (Cont’d)

When M is compact, we may take D = M and obtain

volM =

∫

M

Ω

and ∫

M

f =

∫

M

fΩ.

These integrals are defined, since kD is continuous except on BdD
which has content zero.
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Properties of the Integral

Lemma

With the preceding definitions the integral of f on a domain of integration
on M satisfies the following properties of the Riemann integral on R

n.

If c(D) = 0, then
∫
D
fdv = 0;∫

D1∪D2
fdv =

∫
D1

fdv +
∫
D2

fdv −
∫
D1∩D2

fdv ;
∫
D
(af + bg)dv = a

∫
D
fdv + b

∫
D
gdv , for all a, b ∈ R;

If f ≥ 0 on D and c(D) 6= 0, then

∫

D

fdv ≥ 0,

with equality iff f = 0 at every point at which it is continuous.

It is equal to the Riemann integral when M = R
n (with its standard

metric).
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Outline of the Steps

The lemma is a consequence of the definitions and of the
corresponding properties of the Riemann integral.

We choose a covering of D by the interiors of cubes.

We take a corresponding partition of unity as in the definition of
∫
M
ω.

We then show that it is possible to reduce the proof to verifying each
property for the special case in which ω = fΩ has its support in a
single cube.

In this case, the properties coincide with the properties of the integral
on R

n.

For the last statement we use a previous remark.
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Components of Riemannian Metric Tensor

Let U, ϕ be local coordinates.

Let E1, . . . ,En be coordinate frames.

Let Φ(X ,Y ) be a Riemannian metric tensor.

The matrix components Φ(Ei ,Ej ) on U are customarily denoted by

gij , i , j = 1, . . . , n.

The same symbols gij are frequently used to denote:
gij(p) = Φp(Eip,Ejp), the components considered as functions on
U ⊆ M ;
ĝij(x

1, . . . , xn) = gij(ϕ(p)), the components considered as the
corresponding functions on ϕ(U) ⊆ R

n.

In a previous section we found that the local expression for Ω on an
oriented neighborhood was

ϕ−1∗Ω =
√
gdx1 ∧ · · · ∧ dxn, g = det(gij ).
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Example

Let M be a surface in R
3 with the Riemannian metric induced by the

standard metric of R3.

Let U, ϕ be a coordinate neighborhood with coordinates (u, v).

Suppose ϕ(U) = W , an open subset of the uv -plane.

Let F = ϕ−1 so that F : W → M has image U.

Let the C∞-coordinate functions for the mapping be

F (u, v) = (f (u, v), g(u, v), h(u, v)).
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Example (Cont’d)

As in a previous example the coordinate frames E1,E2 on U are

E1 = F∗(
∂
∂u ) =

∂f
∂u

∂
∂x + ∂g

∂u
∂
∂y + ∂h

∂u
∂
∂z ,

E2 = F∗(
∂
∂v ) =

∂f
∂v

∂
∂x + ∂g

∂v
∂
∂y + ∂h

∂v
∂
∂z .

Hence we have

g11(u, v) = (∂f∂u )
2 + (∂g∂u )

2 + (∂h∂u )
2 = (E1,E1),

g12(u, v) = ∂f
∂u

∂f
∂v + ∂g

∂u
∂g
∂v + ∂h

∂u
∂h
∂v

= (E1,E2) = (E2,E1) = g21(u, v),

g22(u, v) = ( ∂f∂v )
2 + (∂g∂v )

2 + (∂h∂v )
2 = (E2,E2).
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Example (Cont’d)

These are denoted E ,F ,G , respectively, and we have then

ϕ−1∗Ω = F ∗Ω

= (g11g22 − g2
12)

1/2du ∧ dv

= (EG − F 2)1/2du ∧ dv .

Let D be a domain of integration on M such that D ⊆ U.

Let h be an integrable function on D.

Then ∫
D
h =

∫
D
hΩ

=
∫
ϕ(D) h(u, v)(EG − F 2)1/2du ∧ dv

=
∫
ϕ(D) h(u, v)(EG − F 2)1/2dudv .
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Example (Cont’d)

Suppose that ϕ is the (diffeomorphic) projection of an open set U of
M onto an open set W of the xy -plane, which we identify with the
parameter plane.

In this case F : W → U is given by

F (x , y) = (x , y , f (x , y)).

The graph of z = f (x , y) lying over W
is the subset U of M.

The coordinate frames are

E1 =
∂

∂x
+ fx

∂

∂z
and E2 =

∂

∂y
+ fy

∂

∂z
.
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Example (Cont’d)

So
E = 1 + f 2x , F = fx fy , G = 1 + f 2y .

Hence,

FΩ = (EG − F 2)1/2dx ∧ dy = (1 + f 2x + f 2y )
1/2dx ∧ dy .

Let D ⊆ U be a domain of integration.

Let A ⊆ W be its projection to the xy -plane.

Then for any integrable function h on M we have

∫

D

h =

∫

A

h(x , y , z)(1 + f 2x + f 2y )
1/2dxdy .

When h = 1, the value of this integral is the area of D (= volD).
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Example (Cont’d)

Suppose, for example, M = S2, the unit sphere.

Let U be the upper hemisphere and D = U.

Then
A = W = {(x , y) : x2 + y2 < 1}.

Moreover,
F (x , y) = (x , y , (1 − x2 − y2)1/2).

The area of U is

∫
U
Ω =

∫

A

(1− x2 − y2)−1/2dx ∧ dy

=

∫ +1

−1

∫ (1−y2)1/2

−(1−y2)1/2
(1− x2 − y2)−1/2dxdy

= 2π.
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Remark

Let M be a compact manifold.

In practice (or for theoretical purposes) one might hope that M could
be covered by a finite number of domains of integration D1, . . . ,Ds ,
such that:

(i) c(Di ∩Dj) = 0, i 6= j , i , j = 1, . . . , s;
(ii) Each Di lies in a coordinate neighborhood Ui , ϕi .

We use the fact that
∫

M

f =

∫

D1

f + · · ·+
∫

Ds

f .
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Remark (Cont’d)

It is then possible to evaluate each integral on the right separately as
an integral on ϕi (Di) ⊆ R

n.

Let f (x) denote the expression for f in local coordinates.

Let g = det(gij ).

Then we have

∫
Di

f =

∫

ϕi (Di )
f (x)

√
gdx1 ∧ · · · ∧ dxn

=

∫

ϕi (Di )
f (x)

√
gdv .

George Voutsadakis (LSSU) Differential Geometry December 2024 58 / 260



Integration on Manifolds A Generalization to Manifolds

Remark (Cont’d)

It can be shown that any differentiable manifold M (compact or not)
can be covered with a collection of domains of integration D1,D2, . . .,
each the diffeomorphic image of a simplex (for n = 2 a triangle, for
n = 3 a tetrahedron, and so on).

Moreover these domains in-
tersect in sets of content
zero. [This is part of a
theorem which asserts that
any C∞ manifold is trian-
gulable.]

When M is compact the number of Di is finite.

This is not a complete description of a triangulation, but it shows
that for both practical and theoretical purposes a technique of
evaluation of

∫
M
f or

∫
M
Ω is available.
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Subsection 3

Integration on Lie Groups
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Translations and Inner Automorphisms of Lie Groups

Let G be an arbitrary Lie group of dimension n.

Given a, b ∈ G , we denote by:
La left translation by a;
Rb right translation by b;
Ia = La ◦ Ra−1 the inner automorphism, Ia(x) = axa−1, of G .

These are C∞ mappings, with inverses

L−1
a = La−1 , R−1

a = Ra−1, I−1
a = Ia−1 .

Hence, they are diffeomorphisms.

So they induce R-linear mappings of X(G ) - the C∞-vector fields on
G - onto itself, which preserve the bracket operation.

However, on G our main interest is in the subspace g of X(G )
consisting of all left-invariant vector fields on G .

We have seen g is a Lie algebra, the Lie algebra of G , with respect to
the product [X ,Y ].
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Translations and Inner Automorphisms (Cont’d)

Given a, b ∈ G , we have, by associativity, a(xb) = (ax)b.

Thus, the left and right translations La and Rb commute.

From this we deduce that if X ∈ g, then Rb∗X ∈ g.

Moreover,
Lg∗(Rb∗X ) = Rb∗(Lg∗X ) = Rb∗X .

Similarly,
Ia∗X = La∗Ra−1∗X = Ra−1∗X ∈ g.

Thus Ia∗ : g → g.
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Translations and Inner Automorphisms (Cont’d)

Now Ia∗ is both a linear mapping and preserves the product,

Ia∗[X ,Y ] = [Ia∗X , Ia∗Y ].

So Ia∗ is an automorphism of the Lie algebra g.

Finally, note that Iab = Ia ◦ Ib.
So, by the chain rule,

Iab∗ = Ia∗ ◦ Ib∗.
Denote Ig∗ by Adg , for g any element of G .

Putting the preceding facts together, we have proved most of the
following:

The mapping of G into the group of all automorphisms of g defined by
g → Adg is a homomorphism.
Let Gl(g) denote the group of all nonsingular linear transformations of
g as a vector space. Then Ad : G → Gl(g) is C∞.
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Translations and Inner Automorphisms (Cont’d)

We prove and interpret the last statement.

In general, if V is a finite-dimensional vector space over R, then the
group Gl(V ) of all nonsingular linear transformations of V onto V is
isomorphic to Gl(n,R), n = dimV .

The isomorphism depends on the choice of a basis e1, . . . , en of V .

It is given by letting A ∈ Gl(V ) correspond to the matrix (αij )
defined by

A(e j) =

n∑

i=1

αije i , j = 1, . . . , n.
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Translations and Inner Automorphisms (Cont’d)

We take the topology and C∞ structure on Gl(V ) obtained by
identifying it with the Lie group Gl(n,R).

It may be shown that this C∞ structure is independent of the choice
of basis.

Suppose we choose a basis of g,

X1, . . . ,Xn.

Let the matrix corresponding in this way to Adg be

(αij(g)).

The last statement asserts that

g 7→ (αij(g))

is a C∞ mapping.
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Translations and Inner Automorphisms (Cont’d)

Note that Ig (e) = e.

Hence Ig∗ : Te(G ) → Te(G ).

Now g may be naturally identified with Te(G ) by identifying each
X ∈ g with its value Xe at e.

So we may think of Adg as a linear transformation on g - the
left-invariant vector fields - or on Te(G ).

On Te(G ), Adg coincides with the transformation induced by Ig
according to the definition.

Taking this point of view, the matrix (αij(g)) is a submatrix of the
Jacobian matrix, evaluated at (g , e), of the C∞ mapping of
G × G → G defined by

(g , x) 7→ gxg−1 = Ig (x).

Hence g 7→ (αij (g)) is C
∞.
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Representations of Lie Groups

Definition

A representation of a Lie group G on a vector space V is a Lie group
homomorphism of G into the group Gl(V ) of nonsingular linear
transformations of V onto V .
The degree (dimension) of the representation is the dimension of V .
A matrix representation of G of degree n is a Lie group homomorphism
of G into Gl(n,R).
The representation g 7→ Adg is called the adjoint representation of G .

We remark again that we interpret Adg both as a linear mapping on
g, the space of invariant vector fields, and on Te(G ), the tangent
space at the identity.

This is by virtue of the identification of g with Te(G ).

Adg is induced by the diffeomorphism Ig (x) = gxg−1 of G onto G .

George Voutsadakis (LSSU) Differential Geometry December 2024 67 / 260



Integration on Manifolds Integration on Lie Groups

Invariant Tensor Fields

Definition

A covariant tensor field Φ of order r on G is:

Left-invariant if L∗aΦag = Φg ;

Right-invariant if R∗
aΦga = Φg .

It is bi-invariant if it is both left- and right-invariant.

We remark that any left- (or right-) invariant covariant tensor field
Φ ∈ T r (G ) is necessarily C∞.

Let X1, . . . ,Xn be a basis of C∞ left- (right-) invariant vector fields.

Then Φ(Xi1, . . . ,Xir ) is constant - hence C∞ - on G for any
1 ≤ i1, . . . , ir ≤ n.

Therefore, the components of Φ with respect to a C∞-frame field are
C∞, and Φ is thus C∞.
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Existence of Invariant Tensor Fields

Lemma

Let Φe be a covariant tensor of order r on the tangent space Te(G ) at the
identity. Then there is a unique left-invariant tensor field and a unique
right-invariant tensor field coinciding at e with Φe . These two agree
everywhere on G . That is, Φe determines a bi-invariant tensor field if and
only if

(Adg)∗Φe = Φe , for all g ∈ G .

Let Φe be a covariant tensor on Te(G ).

For each g ∈ G , there exists a unique left translation Lg : G → G

which takes e to g .

Define Φ ∈ T r (G ) by
Φg = L∗g−1Φe .
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Existence of Invariant Tensor Fields (Cont’d)

We have

L∗aΦag = L∗a(L
∗
g−1a−1Φe) = L∗a ◦ L∗a−1 ◦ L∗g−1Φe = L∗g−1Φe .

Since this is just Φg , we see that Φ is left-invariant.

Similarly, R∗
g−1Φe is a right-invariant tensor field.

If Φ is bi-invariant, then

(Adg)∗Φe = (Lg ◦ Rg−1)∗Φe = L∗g ◦ R∗
g−1Φe = Φe .

Conversely, if this relation holds, then

L∗g−1Φe = L∗g−1 ◦ L∗g ◦ R∗
g−1Φe = R∗

g−1Φe .

So the left- and right-invariant tensor fields determined by Φe agree
at every g ∈ G .
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Existence of Invariant Tensor Fields (Cont’d)

It is immediate that an invariant field must be determined by its value
at anyone element, say e, of G .

Corollary

Every Lie group has a left-invariant Riemannian metric and a left-invariant
volume element. In particular every Lie group is orientable.

Take any inner product Φe on Te(G ).

Apply the lemma to:

Φe ;
The volume element Ωe determined by Φe , with a choice of orientation
of Te(G).

We get a left-invariant Riemannian metric Φ and volume element Ω.
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The Case of Compact Connected Lie Groups

Theorem

An oriented, compact, connected Lie group G has a unique bi-invariant
volume element Ω, such that volG = 1.

Let Ω be a left-invariant volume element on G .

We claim that Ω is necessarily right-invariant also.

In order to prove this, it is enough to show that

(Adg)∗Ωe = Ωe , for all g ∈ G .

Let X1, . . . ,Xn be a basis of g.

Let Xie , i = 1, . . . , n, be the corresponding basis of Te(G ).

We have seen that

(Adg)Xj =

n∑

i=1

αij(g)Xi .

Also, g 7→ (αij(g)) defines a C∞ homomorphism of G → Gl(n,R).
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The Case of Compact Connected Lie Groups (Cont’d)

The linear transformation (Adg)∗ on
∧n(Te(G )), determined by Adg ,

acts on Ωe by
(Adg)∗Ωe = det(αij(g))Ωe .

By hypothesis, G is compact and connected.

The same applies to its image under the C∞-homomorphism

g → det(αij(g))

of G to R∗, the multiplicative group of nonzero real numbers.

However, the only compact connected subgroup of R∗ is {+1}, the
trivial group consisting of the identity.

Hence
det(αij (g)) = 1.

This shows that (Adg)∗Ωe = Ωe , for all g ∈ G .
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The Case of Compact Connected Lie Groups (Cont’d)

By the preceding lemma, this proves that Ω is bi-invariant.

Any other bi-invariant Ω must be of the form

λΩ, λ a positive constant.

But then

volG =

∫

G

λΩ = λ

∫

G

Ω.

Hence, it is possible to choose just one λ 6= 0, such that

volG = +1.

For the opposite orientation on G , we would have −Ω as the
corresponding unique bi-invariant volume element.
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Bi-Invariant Riemannian Metric

Corollary

On a compact connected Lie group G it is possible to define a bi-invariant
Riemannian metric Φ̃.

Let Φe be a symmetric, positive definite, bilinear form on Te(G ).

Let Ω be the bi-invariant volume element.

Given Xe ,Ye ∈ Te(G ), we define a function on G by

f (g) = ((Adg)∗Φe)(Xe ,Ye) = Φe((Adg)Xe , (Adg)Ye).

The last equality is just the usual definition of (Adg)∗.

Then define the bilinear form Φ̃e on Te(G ) by

Φ̃e(Xe ,Ye) =

∫

G

f (g)Ω.
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Bi-Invariant Riemannian Metric (Cont’d)

According to a previous lemma, Φ̃e determines a bi-invariant form if,
for every a ∈ G ,

(Ada)∗Φ̃e(Xe ,Ye) = Φ̃e(Xe ,Ye).

The left-hand term may be written Φ̃e((Ada)Xe , (Ada)Ye).

Applying the definition of Φ̃e to this expression, we find that

(Ada)∗Φ̃e(Xe ,Ye) =
∫
G
(Adg)∗Φe((Ada)Xe , (Ada)Ye)Ω

=
∫
G
(Adg)∗(Ada)∗Φe(Xe ,Ye)Ω

=
∫
G
(Ad(ag))∗Φe(Xe ,Ye)Ω.

This shows that

(Ada)∗Φ̃(Xe ,Ye) =

∫

G

f (Ra(g))Ω.
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Bi-Invariant Riemannian Metric (Cont’d)

On the other hand, Ia : G → G is a diffeomorphism.

Moreover, a previous theorem asserts that
∫

Ia(G)
f (g)Ω =

∫

G

f (Ra(g))R
∗
aΩ.

Since Ia(G ) = G and R∗
aΩ = Ω, we see that

(Ada)∗Φ̃(Xe ,Ye) =

∫

G

f (g)Ω = Φ̃(Xe ,Ye).

It follows that Φ̃ is a bi-invariant bilinear form on G .

It is symmetric and we can check that it is positive definite.

Since we do so in a more general case below, we will omit this
verification here.

Remark: When we use this Riemannian metric on G , we see that
both right and left translations are isometries, that is, they preserve
the Riemannian metric (and also its associated distance function).
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Representations and Invariant Inner Products

Let (ρ,V ) be a representation of G on a finite-dimensional real vector
space V , with

ρ : G → Gl(V ).

Suppose a basis is chosen in V .

This determines a C∞ homomorphism of G into Gl(n,R), n = dimV .

A special case is ρ = Ad with V = g.

Theorem

Let G be compact and connected and ρ a representation of G on V .
Then there is an inner product (u, v) on V , such that every ρ(g) leaves
the inner product invariant,

(ρ(g)u, ρ(g)v ) = (u, v).
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Representations and Invariant Inner Products (Cont’d)

Let Φ(u, v) be an arbitrary inner product on V .

Given a fixed u, v ∈ V , let

f (g) = Φ(ρ(g)u, ρ(g)v ).

This defines a C∞ function on G .

Then we define

(u, v) =

∫

G

f (g)Ω

with Ω denoting the bi-invariant volume element.

The linearity of the integral implies at once that (u, v) is bilinear.

It is clearly symmetric in u, v since the integrand is.

Moreover, (u, v) ≥ 0, and equality implies u = 0, since f (g) ≥ 0 on
G , with equality holding if and only if the integral vanishes.
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Representations and Invariant Inner Products (Cont’d)

Finally, for a ∈ G we have

(ρ(a)u, ρ(a)v) =
∫
G
Φ(ρ(g)ρ(a)u, ρ(g)ρ(a)v )Ω

=
∫
G
Φ(ρ(ga)u, ρ(ga)v )Ω

=
∫
G
f (ga)Ω.

But by the same argument as in the previous proof, this is equal to

∫

G

f (g)Ω = (u, v).

Note that, if we let ρ = Ad and V = g, we obtain the preceding
corollary as a special case.
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Matrix Representation

The preceding result could be stated by saying that each ρ(g) is an
isometry of the vector space V with the inner product (u, v).

Since the matrix of an isometry of V relative to an orthonormal basis
is an orthogonal matrix, we have the following corollary concerning
the representations of a compact group.

Corollary

Relative to a suitable basis of V , the matrices representing every ρ(g) are
orthogonal.
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Invariance, Irreducibility and Semisimplicity

We shall say that W ⊆ V is invariant if it is invariant for every linear
transformation ρ(g).

The representation is irreducible if V contains no nontrivial invariant
subspaces.

If each invariant subspace W has a complementary invariant
subspace W

′, such that

V = W ⊕ W
′,

then the representation is said to be semisimple.

In the case of a semisimple representation, it is easily verified that

V = W 1 ⊕ · · · ⊕ W r ,

where the W i are invariant irreducible subspaces.
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Semisimplicity and Decomposition

Corollary

If ρ is a representation of a compact connected Lie group G on a
finite-dimensional vector space V , then it is semisimple. Moreover

V = W 1 ⊕ · · · ⊕ W r ,

where:

For i 6= j , the subspaces are mutually orthogonal;

Each is a nontrivial irreducible subspace.

If V is irreducible, there is nothing to prove.

Suppose V contains a nontrivial invariant subspace W .

We show its orthogonal complement W
⊥ is also invariant.
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Semisimplicity and Decomposition (Cont’d)

Let V be a nontrivial invariant subspace W .

Consider its orthogonal complement W
⊥.

Let w ∈ W
⊥ and let v ∈ W .

Then
(ρ(g)v , ρ(g)w ) = (v ,w ) = 0.

Thus, ρ(g)w is orthogonal to ρ(g)v , for every v ∈ W .

Since ρ(g) is nonsingular, this means that ρ(g)w is orthogonal to
every element of W .

So it must be in W
⊥.

Hence V = W ⊕ W
⊥, a direct sum of complementary invariant

subspaces.

Repeated application of this argument gives the final statement.
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Example

There exist representations of noncompact connected groups which
do not have the property of complete reducibility.

As a result, they cannot leave an inner product invariant.

Consider, e.g., ρ : R → Gl(2,R) acting on V
2 defined by

ρ(t) =

(
1 t

0 1

)
.

ρ(t) acts on V
2, the space of all

(
x

y

)
, x , y ∈ R,

ρ(t)

(
x

y

)
=

(
1 t

0 1

)(
x

y

)
=

(
x + ty

y

)
.

The subspace

(
x

0

)
is invariant.

But it has no complementary invariant subspace.
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Subsection 4

Manifolds With Boundary
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Half-Spaces in Rn

Consider the closed half-space

Hn = {x = (x1, . . . , xn) ∈ R
n : xn ≥ 0},

with the relative topology of Rn.

Denote by ∂Hn the subspace defined by

∂Hn = {x ∈ Hn : xn = 0}.
Then ∂Hn is the same space whether considered as a subspace of Rn

or Hn.

It is called the boundary of Hn.

All of these spaces carry the metric topology derived from the metric
of Rn.

∂Hn is obviously homeomorphic to R
n−1 by the map

(x1, . . . , xn−1) → (x1, . . . , xn−1, 0).
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Diffeomorphisms Generalized

Recall that differentiability has been defined for functions and
mappings to R

m of arbitrary subsets of Rn.

We see that the notion of diffeomorphism applies at once to
(relatively) open subsets U,V of Hn.

U,V are diffeomorphic if there exists a one-to-one map F : U → V

(onto) such that F and F−1 are both C∞ maps.

This is broader than the earlier definition.

Here, U,V are not necessarily open subsets of Rn, but are in fact the
intersections of such sets with Hn.

If U,V ⊆ R
n − ∂Hn, then U and V are actually open in R

n.

In this case, this definition of diffeomorphism coincides with the
previous one.
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Diffeomorphisms and Boundaries

We show that if U ∩ ∂Hn 6= ∅, then:
V ∩ ∂Hn 6= ∅;
F (U ∩ ∂Hn) ⊆ V ∩ ∂Hn.

Similarly, F−1(V ∩ ∂Hn) ⊆ U ∩ ∂Hn.

In other words, diffeomorphisms on open sets of Hn take boundary
points to boundary points and interior points to interior points.

This follows at once from the Inverse Function Theorem, which
asserts that U − ∂Hn is open in R

n.

Hence, F must map it diffeomorphically onto an open subset of Rn.

But no open subset of Hn which contains a boundary point, that is, a
point of ∂Hn, can be open in R

n.

Thus,

F (U − ∂Hn) ⊆ V − ∂Hn and F−1(V − ∂Hn) ⊆ U − ∂Hn.

Since F and F−1 are one-to-one on U and V , the result follows.
George Voutsadakis (LSSU) Differential Geometry December 2024 89 / 260



Integration on Manifolds Manifolds With Boundary

Additional Properties of Diffeomorphisms

The sets U ∩ ∂Hn and V ∩ ∂Hn are open subsets of ∂Hn, a
submanifold of Rn diffeomorphic to R

n−1.

F ,F−1 restricted to these open sets in ∂Hn are diffeomorphisms.

Both F and F−1 can be extended to open sets U ′,V ′ of Rn having
the property that U = U ′ ∩ Hn and V = V ′ ∩ Hn.

These extensions will not be unique nor are the extensions in general
inverses throughout these larger domains.

However, the derivatives of F and F−1 on U and V are independent
of the extensions chosen and we may suppose that even on the
extended domains the Jacobians are of rank n.

These statements are immediate consequences of:

The definition of differentiability for arbitrary subsets of Rn;
The fact that the Jacobian of a C∞ mapping has its maximum rank on
an open subset of its domain.
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Manifolds With Boundary

Definition

A C∞ manifold with boundary is a Hausdorff space M with a countable
basis of open sets and a differentiable structure U in the following
(generalized) sense.
U = {Uα, ϕα} consists of a family of open subsets Uα of M each with a
homeomorphism ϕα onto an open subset of Hn (topologized as a subspace
of Rn) such that:

(1) The Uα cover M;

(2) If Uα, ϕα and Uβ, ϕβ are elements of U , then ϕβ ◦ ϕ−1
α and ϕα ◦ ϕ−1

β
are diffeomorphisms of ϕα(U ∩ V ), ϕβ(U ∩ V ), open subsets of Hn;

(3) U is maximal with respect to Properties (1) and (2).
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Examples of Manifolds With Boundary
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Boundary of M

The U, ϕ are coordinate neighborhoods on M.

If ϕ(p) ∈ ∂Hn in one coordinate system, then this holds for all
coordinate systems.

The collection of such points is called the boundary of M, denoted

∂M.

M − ∂M is a manifold (in the ordinary sense).

It is denoted by IntM.

If ∂M = ∅, then M is a manifold of the familiar type.

We call it a manifold without boundary when it is necessary to
make the distinction.
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Differentiable Structure on Boundary

Theorem

Let M be a C∞ manifold (of dimension n) with boundary.
Then the differentiable structure of M determines a C∞-differentiable
structure of dimension n− 1 on the subspace ∂M of M.
The inclusion i : ∂M → M is an imbedding.

For a coordinate neighborhood U, ϕ of M which contains points of

∂M, consider the coordinate neighborhood Ũ, ϕ̃ of ∂M, given by

Ũ = U ∩ ∂M ;
ϕ̃ = ϕ|U∩∂M .

The differentiable structure Ũ on ∂M is determined by the
coordinate neighborhoods Ũ, ϕ̃, where U, ϕ ranges over coordinate
neighborhoods of M containing points of ∂M.
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Differentiability

Differentiable functions, differentiable mappings, rank, and so on, may
now be defined on M exactly as before by using local coordinates.

By virtue of the C∞ compatibility of such coordinate systems these
concepts are independent of the choice of coordinates.

We also define Tp(M) at boundary points of M.

This could be done using derivations on C∞(p) as before, but to
avoid some slight complications we use an alternative definition.

First note that in the case of Hn ⊆ R
n, upon which manifolds with

boundary are modeled, we identify Tx(H
n) with Tx(R

n).

We may think of this identification as being given by the inclusion
mapping.

For x ∈ ∂Hn, this defines what we mean by Tx(H
n).
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Vectors and Components

Consider a general manifold M.

For p ∈ ∂M, we define a vector Xp ∈ Tp(M) to be an assignment, to
each coordinate neighborhood U, ϕ, of an n-tuple of numbers
(α1, . . . , αn), the U, ϕ components of Xp, satisfying the following
condition:

If (x1, . . . , xn) and (y1, . . . , yn) are coordinates around p in
neighborhoods U , ϕ and V , ψ, then the components (α1, . . . , αn) and
(β1, . . . , βn) relative to U and V are related by

βi =

n∑

j=1

(
∂y i

∂x j

)

ϕ(p)

αj , i = 1, . . . , n.

What this does is attach, to each p ∈ M, a Tp(M) such that each
coordinate system U, ϕ determines an isomorphism ϕ∗ taking Xp with
components (α1, . . . , αn) to the vector

∑
αi ( ∂

∂x i
) ∈ Tϕ(p)(H

n).
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Bases of Tangent Spaces

As before, let E1, . . . ,En will denote the basis determined by

ϕ∗(Ei ) =
∂

∂x i
, i = 1, . . . , n.

Having defined Tp(M) on ∂M [it is already known on IntM, which is
an ordinary manifold], we may extend all of our definitions and
theorems to manifolds with boundary.

In particular, exterior differential forms and the exterior calculus is still
valid on manifolds with boundary, without any essential change in the
definitions or proofs.
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Regular Domains

Definition

A regular domain D on a manifold M is a closed subset of M, with

nonempty interior
◦
D, such that if

p ∈ ∂D = D −
◦
D,

then p has a cubical coordinate neighborhood U, ϕ, such that:

ϕ(p) = (0, . . . , 0);

ϕ(U) = Cn
ε (0);

ϕ(U ∩D) = {x ∈ Cn
ε (0) : x

n ≥ 0} on ∂D.
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Prroperties of Regular Domains

Let M be a manifold and D a regular domain on M.

If D is compact, then it is a domain of integration on M.

We may check that D, with the topology and differentiable structure
induced by M, is a manifold with boundary.

All preceding examples can be seen to be of this type.

Hn and the closed unit ball B
n
are regular domains of M = R

n;
N × I is a regular domain of N ×R;
The set D obtained by removing from a manifold M a diffeomorphic
image of an open ball is a regular domain.
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Manifolds with Boundaries and Regular Domains

It is a fact, somewhat difficult to prove, that any manifold M with
boundary can be realized as a regular domain of a larger manifold M ′.

The basic idea is simple:
Take two copies of M , say M1 and M2;
“Glue” them together along their boundaries, while identifying
corresponding boundary points.

The resulting manifold is called the double of M.

It contains M as a regular domain.
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Orientability

Let M be a manifold with non-empty boundary.

M is orientable provided that it has a covering of coordinate
neighborhoods {Uα, ϕα} which are coherently oriented.

That is, if Uα ∩ Uβ 6= ∅, then ϕβ ◦ ϕ−1
α has positive Jacobian

determinant (or equivalently, preserves the natural orientation of Hn).

This is equivalent to the existence of a nowhere vanishing n-form Ω
on M.
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Orientability (Cont’d)

The proof of this equivalence is the same except that, when we speak
of a partition of unity on M associated to a regular covering

{Ui ,Vi , ϕi},

we limit ourselves to a regular covering by cubical coordinate
neighborhoods, concerning which we impose the following slight
restriction:

If Ui ∩ ∂M 6= ∅, then

ϕi (Ui ) = C n
3 (0) ∩ Hn and ϕi (Vi ) = C n

1 (0) ∩ Hn.

With this modified definition of regular covering we still have:

A regular covering (by definition locally finite) refining any open
covering {Aα} of M ;
An associated C∞ partition of unity {fi} on M .
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Induced Regular Covering of the Boundary

Consider those
Ui ,Vi , ϕi

of the regular covering that intersect ∂M.

They determine a regular covering

Ũi = Ui ∩ ∂M, Ṽi = Vi ∩ ∂M, ϕ̃i = ϕ|
Ũi

of ∂M.

Moreover, the associated partition of unity restricts to an associated
partition of unity on ∂M,

{f̃i = fi |∂M}.
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Induced Orientation of the Boundary

Theorem

Let M be an oriented manifold and suppose ∂M is not empty. Then ∂M is
orientable and the orientation of M determines an orientation of ∂M.

∂M is an (n − 1)-dimensional submanifold of M.

So its tangent space at each point may be identified with an
(n − 1)-dimensional subspace of Tp(M).

We denote this subspace by Tp(∂M).

We show that there is a distinction between the two half-spaces into
which Tp(∂M) divides Tp(M) which is independent of coordinates.

Suppose that U, ϕ and V , ψ are coordinate neighborhoods of p ∈ ∂M
with respective local coordinates

(x1, . . . , xn) and (y1, . . . , yn).
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Induced Orientation of the Boundary (Cont’d)

By our definitions of coordinates of boundary points, the last
coordinate xn or yn is equal to zero if the point in U or V ,
respectively, is on ∂M, and positive otherwise.

Let the change of coordinate functions be

y i = y i(x1, . . . , xn), i = 1, . . . , n.

Then we have
0 = yn(x1, . . . , xn−1, 0).

So, for every q ∈ U ∩ ∂M,

(
∂yn

∂x1

)

ϕ(q)

= · · · =
(

∂yn

∂xn−1

)

ϕ(q)

= 0.
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Induced Orientation of the Boundary (Cont’d)

It follows that the Jacobian matrix then has the form

D(ψ ◦ ϕ−1) =




∂y1

∂x1
· · · ∂yn−1

∂x1
0

...
...

...
∂y1

∂xn−1 · · · ∂yn−1

∂xn−1 0
∂y1

∂xn · · · ∂yn−1

∂xn
∂yn

∂xn




ϕ(q)

.

Since the Jacobian is nonsingular, ∂yn

∂xn 6= 0 at ϕ(q).

In fact, it must be positive.

Let ϕ(q) = (a1, a2, . . . , an−1, 0).

Consider f (t), defined by f (t) = yn(a1, . . . , an−1, t).

We have f (0) = 0 and f (t) > 0 in some interval 0 < t < δ.

Therefore, f ′(0) = (∂y
n

∂xn )ϕ(q) can certainly not be negative.

Therefore ∂yn

∂xn > 0 at ϕ(q) as claimed.
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Induced Orientation of the Boundary (Cont’d)

If U, ϕ and V , ψ are oriented neighborhoods of M, then the preceding
matrix has positive determinant.

So ∂yn

∂xn and the (n − 1)× (n − 1) minor determinant obtained by
striking out the last row and column has the same sign.

This minor is exactly the determinant of D(ψ̃ ◦ ϕ̃−1), the change of
coordinates from Ũ = U ∩ ∂M, ϕ̃ = ϕ|

Ũ
to Ṽ = V ∩ ∂M, ψ̃ = ψ|

Ṽ

on the submanifold ∂M.

Thus the neighborhoods on ∂M determined by oriented
neighborhoods on M are coherent.

It follows that they determine an orientation on ∂M.
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Remark I

Let q ∈ U ∩ V be a boundary point of M.

Let Xq ∈ Tq(M).

Suppose we express Xq in the coordinate frames of either U, ϕ or
V , ψ,

Xq = α1E1 + · · ·+ αn−1En−1 + αnEn

= β1F1 + · · ·+ βn−1Fn−1 + βnFn.

We saw that (
∂yn

∂xm

)

ϕ(q)

> 0.

It follows that αn and βn have the same sign.

This fact does not depend on the coordinates being oriented.
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Remark I (Cont’d)

It follows that the vectors of Tp(M)− Tp(∂M) fall into two classes.

Those whose last component is positive, which we call inward
pointing vectors at p ∈ ∂M ;
Those for which the last component is negative, which we call outward
pointing vectors.

Those for which the last component vanishes are tangent to ∂M.

Moreover, this classification is independent of the orientation of M.
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Remark II

We describe a special case of gluing two manifolds with identical
boundaries together along their boundaries.

Let M1,M2 be two manifolds (without boundary) of dimension n.

Let Ui , ϕi be coordinate neighborhoods of points pi ∈ Mi , i = 1, 2.

We suppose that in each case we have

ϕi (pi ) = (0, . . . , 0) and ϕi (Ui) = Bn
2 (0).

We set
Vi = ϕ−1

i (B1(0)).

Then M ′
i = Mi − Vi , i = 1, 2, is a manifold with boundary.

Indeed, one has
ϕi (∂M

′
i ) = Sn−1.

George Voutsadakis (LSSU) Differential Geometry December 2024 110 / 260



Integration on Manifolds Manifolds With Boundary

Remark II (Cont’d)

The manifold obtained by gluing M ′
1 to M ′

2 along the boundaries is
called the connected sum of M1 and M2, denoted M1#M2.

We would like to define M1#M2 without loss of differentiability.

So we actually remove only ϕ−1(B1/2(0)) from each Mi to get M ′′
i .

Then we identify points qi ∈ Ui − ϕ−1
i (B1/2(0)), i = 1, 2, whenever

ϕ1(q1) =
ϕ2(q2)

‖ϕ2(p2)‖2
.
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Remark II (Cont’d)

So q1 ∈ M ′′
1 and q2 ∈ M ′′

2 are identified if their images ϕ1(p1) and
ϕ2(p2) in R

n are “reflections” of one another in the unit sphere (lie
on the same ray and have reciprocal distance from the origin).

It turns out that any closed surface (compact 2-manifold) can be
obtained as:

The connected sum of copies of S2 and T 2 if it is orientable;
The connected sum of copies of P2 and T 2 if it is nonorientable.
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Subsection 5

Stokes’s Theorem for Manifolds With Boundary

George Voutsadakis (LSSU) Differential Geometry December 2024 113 / 260



Integration on Manifolds Stokes’s Theorem for Manifolds With Boundary

Setup

We consider an oriented manifold M with possibly nonempty
boundary ∂M, oriented by the orientation of M.

We consider only oriented coordinate neighborhoods U, ϕ.

If U ∩ ∂M 6= 0, then we denote by Ũ, ϕ̃ the corresponding
neighborhood on ∂M,

Ũ = U ∩ ∂M, ϕ̃ = ϕ|
Ũ
.

All of the concepts used in defining the integral extend to M, e.g., the
definitions of content zero, domain of integration, and so on.

In particular ∂M̃ has measure zero and, if compact, has content zero.

This follows from corresponding properties of ∂Hn.
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Cubes

A cube Q associated with U, ϕ is as before, unless U ∩ ∂M 6= ∅.
If U ∩ ∂M 6= ∅, then we assume that Q has a “face” on ∂M.

That is, we assume

ϕ(Q ∩ ∂M) = {x ∈ R
n : 0 ≤ x i ≤ 1 and xn ≡ 0}.

In this case we note two facts:

(a) Q̃ = Q ∩ ∂M is a cube of ∂M associated with Ũ , ϕ̃;
(b) The interior of Q has a different image in R

n than it has when
U ⊆ IntM , namely,

◦

Q = ϕ−1({x ∈ R
n : 0 < x i < 1, 1 ≤ i ≤ n − 1; 0 ≤ x < 1}).
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Integrals

Taking these modifications into account, the definition of

∫

M

Ω

is exactly as before.

The integral of an integrable n-form has the same properties as before.

Indeed, if M is a compact regular domain in a manifold N, then it is
necessarily a domain of integration in N and

∫

M

Ω =

∫

N

kMΩ.

So there is nothing new to define in this case!

The same comments apply to the integral over a Riemannian manifold
with boundary and to the definition of volM when M is compact.
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Notation for Stokes’ Theorem

Now suppose M is both oriented and compact.

Let ω be an (n − 1) form of class C 1 at least on M.

We have an important relation between:

The integral of dω over M ;
i∗ω, the restriction of ω to ∂M (i : ∂M → M the inclusion mapping).

To simplify the statement of the theorem we let ∂M̃ denote:

∂M , the boundary with the orientation induced by M , when n is even;
−∂M , the boundary with the opposite orientation, when n is odd.

Thus
∂M̃ = (−1)n∂M.
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Stokes’s Theorem

Theorem (Stokes’s Theorem)

Let M be an oriented compact manifold of dimension n and let ∂M have
the induced orientation. Then we have

∫

M

dω =

∫

∂M̃
i∗ω.

When ∂M = ∅, the integral over M vanishes.

According to our definitions, it is enough to establish the theorem for

an ω whose support is contained in the interior
◦
Q of a cube Q

associated to a coordinate neighborhood U, ϕ.

Suppose ω has its support in Q.

Let x1, . . . , xn be the local coordinates.
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Stokes’s Theorem (Cont’d)

We may suppose that, in these coordinates, ω is expressed as

ϕ−1∗(ω) =

n∑

j=1

(−1)j−1λjdx1 ∧ · · · ∧ dx j−1 ∧ dx j+1 ∧ · · · ∧ dxn.

Then we have

ϕ−1∗(dω) = dϕ−1∗(ω) =




n∑

j=1

∂λj

∂x j


 dx1 ∧ · · · ∧ dxn.

So

∫

M

dω =

∫

Q




n∑

j=1

∂λj

∂x j


 dv =

∑

j

∫ 1

0
· · ·
∫ 1

0

∂λj

∂x j
dx1 · · · dxn.

This follows from the definition of integration on M and the Iterated
Integral Theorem.
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Stokes’s Theorem (Cont’d)

We obtained

∫

M

dω =
∑

j

∫ 1

0
· · ·
∫ 1

0

∂λj

∂x j
dx1 · · · dxn.

On the right consider the jth summand only.

Integrate first with respect to the variable x j .

This gives an (n − 1)-fold iterated integral

∫ 1
0 · · ·

∫ 1
0 [λj (x1, . . . , x j−1, 1, x j+1, . . . , xn)

−λj(x1, . . . , x j−1, 0, x j+1, . . . , xn)]dx1 · · · d̂x j · · · dxn,

where d̂x j indicates that this differential is to be omitted.

Sum these (n − 1)-fold iterated integrals, for j = 1, . . . , n.
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Stokes’s Theorem (Cont’d)

The sum shows that, if supp(ω) ⊆
◦
Q, two cases can occur regarding∫

M
dω.
Q ∩ ∂M = ∅. In this case

ϕ(
◦

Q) = {x : 0 < x i < 1, i = 1, . . . , n};

Q ∩ ∂M 6= ∅. In this case,

ϕ(
◦

Q) = {x : 0 < x i < 1, i = 1, . . . , n− 1; 0 ≤ xn < 1}.

Consider the first case.

Using suppω ⊆
◦
Q, we see that λj = 0, if any x j = 0, 1.

Hence, each of the integrands above vanish and
∫
M
dω = 0.

On the other hand, suppω ⊆
◦
Q which has no points on ∂M.

So ω restricted to ∂M is the zero (n − 1)-form.

Thus,
∫
M
dω = 0 =

∫
∂M i∗ω and Stokes’s Theorem holds.

George Voutsadakis (LSSU) Differential Geometry December 2024 121 / 260



Integration on Manifolds Stokes’s Theorem for Manifolds With Boundary

Stokes’s Theorem (Cont’d)

In the second case we again have all of the integrands equal to zero
except the one corresponding to j = n. Therefore

∫

M

dω = −
∫ 1

0
· · ·
∫ 1

0
λn(x1, . . . , xn−1, 0)dx1 · · · dxn−1.

On the other hand, we may evaluate
∫
∂M i∗ω using the fact that i∗ω

has its support in Q̃ = Q ∩ ∂M.

To obtain an expression of i∗ω in local coordinates, we apply the
corresponding inclusion

i : (x1, . . . , xn−1) → (x1, . . . , xn−1, 0).

We note that i∗dxn = 0.
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Stokes’s Theorem (Cont’d)

So, in the local coordinates Ũ, ϕ̃, i∗ω collapses to

ϕ̃−1∗(i∗ω) = (−1)n−1λn(x1, . . . , xn−1, 0)dx1 ∧ · · · ∧ dxn−1.

This gives
∫

∂M
i∗ω = (−1)n−1

∫ 1

0
· · ·
∫ 1

0
λn(x1, . . . , xn−1, 0)dx1 · · · dxn−1.

We are considering the case where suppω ⊆
◦
Q and Q ∩ ∂M 6= ∅.

We find that ∫

M

dω = (−1)n
∫

∂M
i∗ω =

∫

±∂M
i∗ω,

with:
The right-hand integral over ∂M , when n is even;
The right-hand integral over −∂M , when n is odd.

That is, the right-hand integral is over ∂M̃ .
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Example: Green’s Theorem

Let M be a bounded regular domain of R2.

That is, M is the closure of a bounded open subset of the plane,
bounded by simple closed curves of class C∞.

For example, let M be a circular disk or annulus.

Then ∂M is the union of these curves.

In the example, a circle or a pair of concentric circles.

Let ω be a one-form of class C 1 on M.

Using the natural Cartesian coordinates, we have

ω = adx + bdy .

By definition of differentiability on arbitrary sets, a, b can be taken as
restrictions of C 1 functions on some open set containing M.

We have

dω =

(
∂b

∂x
− ∂a

∂y

)
dx ∧ dy .
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Example: Green’s Theorem (Cont’d)

By Stokes’s Theorem
∫

M

(
∂b

∂x
− ∂a

∂y

)
dx ∧ dy =

∫

∂M
adx + bdy .

According to a previous remark, the left-hand side is the ordinary
Riemann integral over the domain of integration M ⊆ R

2.

On the other hand, if we think of ∂M as a one-dimensional manifold
and cover it with (oriented) neighborhoods, it is clear that its value is
that of the usual line integral along a curve C (or curves Ci) oriented
so that as we traverse the curve the region is on the left.

Thus the equality above may be written
∫∫

M

(
∂b

∂x
− ∂a

∂y

)
dxdy =

∑

i

∫

Ci

adx + bdy ,

which is the usual statement of Green’s Theorem.
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Example: Divergence Theorem

Let M be a regular domain of R3.

That is, M is the closure of a bounded open set, bounded by closed
C∞ surfaces.

Examples are:

The ball of radius 1, which is bounded by the sphere S2;
The region interior to a torus T 2, obtained by rotating a circle around
a line exterior to it.

Consider the two-form

ω = Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy ,

where P ,Q,R are C 1 functions on some open set of R3 containing M.

We have

dω =

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx ∧ dy ∧ dz .
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Example: Divergence Theorem (Cont’d)

Stokes’s Theorem asserts that
∫

M

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx ∧ dy ∧ dz

=

∫

−∂M
Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy .

Translate these, respectively, into:

A Riemann integral over a domain;
A surface integral over the boundary.

Then we obtain the Divergence Theorem of Advanced Calculus.
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Example: Stokes’ Theorem of Advanced Calculus

Let M be a piece of surface imbedded in R
3 and bounded by smooth

simple closed curves.

For example, a sphere with one or more open circular disks removed.

Thus, ∂M consists of boundary circles.

Now dx , dy and dz may be considered, by restriction, as one-forms on
M or on ∂M.

So any one-form ω on M may be written

ω = Adx + Bdy + Cdz ,

where A,B and C are C 1 functions on M.

Then

dω =

(
∂C

∂y
− ∂B

∂z

)
dy ∧ dz +

(
∂A

∂z
− ∂C

∂x

)
dz ∧ dx

+

(
∂B

∂x
− ∂A

∂y

)
dx ∧ dy .
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Example: Stokes’ Theorem of Advanced Calculus (Cont’d)

In this case Stokes’s Theorem asserts that
∫

M

(
∂C

∂y
− ∂B

∂z

)
dy ∧ dz +

(
∂A

∂z
− ∂C

∂x

)
dz ∧ dx

+

(
∂B

∂x
− ∂A

∂y

)
dx ∧ dy =

∫

∂M
Adx + Bdy + Cdz .

The left integral can be converted to an ordinary surface integral over
the surface M in R

3.

The right integral can be converted to a line integral.

In this way, one obtains Stokes Theorem of Advanced Calculus.
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Deficiencies of the Version of Stokes’ Theorem

The version of Stokes’s Theorem proved above holds only for smooth
manifolds with smooth boundary.

Thus, for example, our proof does not even include the case of a
square in R

2 or an open set of R3 bounded by a polyhedron.

The difficulty in these cases is not so much with the analysis and
integration theory, as with:

Describing the regions of integration to be admitted;
Giving precise definitions of orientability and induced orientation of the
boundary.
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Generalizing Stokes’ Theorem

The search for reasonable domains of integration to validate Stokes’s
theorem usually leads to the concept of a simplicial or polyhedral
complex.

This is a space made up by fastening together along their faces a
number of simplices (line segments, triangles, tetrahedra, and their
generalizations) or more general polyhedra (cubes, for example).

It can be shown that any C∞ manifold M may be “triangulated”, i.e.,
it is homeomorphic (even with considerable smoothness) to such a
complex.

One infers that the integral over M becomes the sum of the integrals
over the pieces, which are images of simplices, cubes, or other
polyhedra as the case may be.

The strategy is then to reduce the theory (including Stokes’s
Theorem) to the case of polyhedral domains of Rn.
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Example: Line Integrals in a Manifold

Let [a, b] = {t ∈ R : a ≤ t ≤ b}.
Consider a C 1 mapping

F : [a, b] → M.

Its image is a C 1 curve S on M.

Let ω be a one-form on M.

We define
∫
S
ω by ∫

S

ω =

∫

[a,b]
F ∗ω.

This is called the line integral of ω along S .

In general, S is not a submanifold of M.
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Example: Line Integrals in a Manifold (Cont’d)

The right-hand side
∫
[a,b] F

∗ω is the integral of a one-form,

F ∗ω = f (t)dt, on a one-dimensional manifold with boundary.

Thus ∫

S

ω =

∫ b

a

f (t)dt.

Exactly as for line integrals in R
n, we may prove that the value of the

integral does not depend on the parameter as long as the orientation
of S is preserved.

Thus the integral of ω over an oriented C 1 curve S of M is defined.

A reverse orientation, i.e., traversing S in the opposite sense, changes
the sign of the integral,

∫

−S

ω = −
∫

S

ω.
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Line Integrals: A Generalization

Let S̃ be an oriented continuous and piecewise differentiable curve.

That is, S̃ is a union of curves S1,S2, . . . ,Sr such that each Si is C
1

and the terminal point of Si is the initial point of Si+1.

Then we define the integral over S̃ by

∫

S̃

ω =

r∑

i=1

∫

Si

ω.

This extends the definition of line integral on a manifold.

The definition reduces to the usual one when M = R
n.

In fact we could have used that as a starting point by:

Subdividing the curve S̃ on an arbitrary manifold into a finite union of
C 1 curves Si , each in a single coordinate neighborhood;
Evaluating the integral over each Si in local coordinates, i.e., in R

n.
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Example

Consider the special case ω = df , where f is a C∞ function on M

(this implies that dω = 0).

In this case the value of the line integral along the piecewise
differentiable curve S from p to q is given by

∫

S

df = f (q)− f (p).

In particular, it is independent of the path chosen.

Suppose p is held fixed.

Then f (q) is given, at each q, by adding f (p) to the value of the line
integral along any piecewise C 1 curve from p to q.

Thus, f is determined to within an additive constant by the line
integral (assuming M connected).
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Application on the Unit Square

We have a (line) integral of a one-form ω over an oriented piecewise
differentiable curve S̃ .

We can now state Stokes’s Theorem for a polygonal region Q of R2.

Such a region is bounded by an oriented piecewise linear (simple
closed) curve S̃ = ∂Q.

We carry this out for the unit square.

Theorem

Let ω be a C 1 one-form defined on

Q = {(x , y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

Let S̃ be the boundary of Q traversed in the counterclockwise sense. Then

∫

Q

dω =

∫

S̃

ω.
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Application on the Unit Square (Cont’d)

Let
ω = adx + bdy ,

where a, b vanish outside Q and are C 1 functions on Q.

Then, on Q,

dω =

(
∂b

∂x
− ∂a

∂y

)
dx ∧ dy .

By a previous remark,

∫
Q
dω =

∫ 1

0

∫ 1

0

(
∂b

∂x
− ∂a

∂y

)
dxdy

=

∫ 1

0
[b(1, y)− b(0, y)] dy −

∫ 1
0 [a(x , 1) − a(x , 0)] dx .

The orientation is that given by the standard coordinate system in R
2.
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Application on the Unit Square (Cont’d)

On the other hand, consider the integral over the boundary.

Note that:

dy = 0 on the horizontal sides;
dx = 0 on the vertical sides.

So we have

∫

S̃

ω =
4∑

i=1

∫

Si

adx + bdy

=

∫ 1

0
a(x , 0)dx +

∫ 1

0
b(1, y)dy

+

∫ 0

1
a(x , 1)dx +

∫ 0

1
b(0, y)dy .

Comparing the values of the integrals, shows that the theorem is true.
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Subsection 6

Homotopy of Mappings and The Fundamental Group
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Homotopy

Definition

Let F ,G be continuous mappings from a topological space X to a
topological space Y and let I = [0, 1], the unit interval.
Then F is homotopic to G if there is a continuous mapping (the
homotopy)

H : X × I → Y

which satisfies the conditions:

F (x) = H(x , 0) and G (x) = H(x , 1), for all x ∈ X .

If X and Y are manifolds and F ,G are C∞, we define a C∞ or smooth

homotopy by requiring that H be C∞ in addition to the conditions above.
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Remarks

We remark that
Ht(x) = H(x , t)

defines a one-parameter family of mappings

Ht : X → Y , 0 ≤ t ≤ 1,

such that
F = H0 and G = H1.

The formulation of the definition emphasizes the simultaneous
continuity in both variables t and x .
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The C∞ Case and Boundaries

If ∂X = ∅, then X × I is a regular domain of X ×R and is a manifold
with boundary.

Indeed, ∂(X × I ) = X × {0} ∪ X × {1}.
So C∞ is perfectly well defined.

If ∂X 6= ∅, then X × I is not a manifold with boundary [consider, e.g.,

X = B
2
1(0), the closed unit disk].

However, it is a reasonably nice domain of X ×R which is a manifold
(with nonempty boundary).

So only minor technical problems arise.

We remark however, that when both X and Y have nonempty
boundaries, there are cases in which it is natural to require that

Ht(∂X ) ⊆ ∂Y , for 0 ≤ t ≤ 1.
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Relative Homotopy

Suppose (X ,A) and (Y ,B) are pairs consisting of:

Spaces X and Y ;
Closed subspaces A ⊆ X and B ⊆ Y .

Consider continuous maps

F ,G : X → Y ,

such that:

F (A) ⊆ B;
G(A) ⊆ B.

F and G map the pair (X ,A) into the pair (Y ,B) continuously.
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Relative Homotopy (Cont’d)

We say that F and G are relatively homotopic if there exists a
continuous map

H : X × I → Y ,

such that:

H(A× I ) ⊆ B;
H(x , 0) ≡ F (x);
H(x , 1) ≡ G(x).

We have added to the original definition the requirement that

Ht(A) ⊆ B , for 0 ≤ t ≤ 1.

When A = ∅ = B , the definition reduces to the original one.

We will write F ∼ G to indicate that F and G are (relatively)
homotopic.
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The Equivalence Property

Theorem

Relative homotopy is an equivalence relation on the continuous maps of
(X ,A) into (Y ,B), for any topological spaces X and Y and closed
subspaces A and B , respectively.

Note that H(x , t) ≡ F (x) is a homotopy of F (x) with F (x).

So the relation ∼ is reflexive.

Let H(x , t) be a homotopy of F to G .

Then
H̃(x , t) = H(x , 1 − t)

is a homotopy of G to F .

So ∼ is symmetric as well.
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The Equivalence Property (Cont’d)

Finally, suppose that:

F1 ∼ F2 via a homotopy H1;
F2 ∼ F3 via a homotopy H2.

Then we define H(x , t), a homotopy of F1 and F3, by

H(x , t) =

{
H1(x , 2t), if 0 ≤ t ≤ 1

2 ,
H2(x , 2t − 1), if 1

2 ≤ t ≤ 1.

It is easily verified that H(x , t) is continuous.

Moreover, all these maps take A into B , for every t between 0 and 1
inclusive.

Finally, it can be shown that the constructed homotopies are C∞,
provided the given ones are C∞.
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Paths

A continuous map
f : I → M

of the interval I = [0, 1] into a manifold M is called a path, with:

f (0) its initial point;
f (1) its terminal point.

We shall consider homotopy classes of paths under the additional
restriction that the homotopy keep initial and terminal points fixed.

Formally, we require that H(t, 0) and H(t, 1) are constant functions.

This is exactly relative homotopy for (I , {0, 1}) and (X , {b, d}), with

b = f (0) and d = f (1).
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Loops

Given a manifold M, fix a basepoint b on M.

Consider the paths with b as initial point.

If b is also the terminal point, then the path is called a loop.

Thus a loop is a continuous map

f : I → M

such that f (0) = b = f (1).

We denote its homotopy class by

[f ],

meaning always relative homotopy.
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Simple Connectedness

Among the homotopy classes of loops is that of the constant loop

eb(s) = b, 0 ≤ s ≤ 1.

If this is the only homotopy class and M is connected, then we say M

is simply connected.

This means that every loop at b can be deformed over M to the
constant loop.

This property does not depend on the choice of b.

Moreover, it is equivalent to the statement that any closed curve
(continuous image of S1) may be continuously deformed to a point
on M.
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Product of Paths

Let M be a connected manifold.

Let f , g be paths on M with the terminal point f (1) coinciding with
the initial point g(0).

We may combine these to a single path h after readjusting the
parametrization.

In fact, consider the continuous map

h : I → M,

defined by

h(s) =

{
f (2s), if 0 ≤ s ≤ 1

2 ,
g(2s − 1), if 1

2 ≤ s ≤ 1.

It traverses the image of f followed by that of g .

We shall call this the product of f and g , denoted f ∗ g .
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Properties of the Product of Paths

The product of paths has the following properties with respect to
(relative) homotopy:
(i) f ∗ (g ∗ h) ∼ (f ∗ g) ∗ h;
(ii) Let f (1) = b = g(0) and suppose f = eb. Then

eb ∗ g ∼ g .

Similarly, if g = eb, then
f ∗ eb ∼ f ;

(iii) If f1 ∼ f2 and g1 ∼ g2, then

f1 ∗ g1 ∼ f2 ∗ g2;
(iv) If g(s) = f (1− s) and a = f (0), b = f (1), then

f ∗ g ∼ eb and g ∗ f ∼ ea;

(v) If F : M → N is continuous and f ′ = F ◦ f , g ′ = F ◦ g , then
(f ∗ g)′ = f ′ ∗ g ′.
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Verification of Property (ii)

By definition, we have:

eb ∗ g(s) = b, for s ∈ [0, 12 ];
eb ∗ g(s) = g(2s − 1), for s ∈ [ 12 , 1].

We wish to construct a homotopy H, showing that eb ∗ g ∼ g .

We use the idea captured in the figure.
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Verification of Property (ii) (Cont’d)

We use the idea captured in the figure.

Define H(s, t) in the following way:

H(s, t) =

{
b, if 0 ≤ s ≤ 1

2(1− t) and 0 ≤ t ≤ 1,
g(2s−1+t

1+t
), if 1

2(1− t) ≤ s ≤ 1.

The diagram shows how H : I × I → M
maps various portions of the unit square.

The shaded portion is mapped onto
b = g(0);
Each horizontal segment in the unshaded
part is mapped onto the image of g with
the parametrization modified
proportionately.
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The Fundamental Group of a Manifold

Theorem

Let π1(M, b) denote the homotopy classes of all loops at b ∈ M.
Then π1(M, b) is a group with product

[f ][g ] = [f ∗ g ].

If F : M → N is continuous, then F determines a homomorphism

F∗ : π1(M, b) → π1(N,F (b))

by
F∗[f ] = [F ◦ f ].
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The Fundamental Group of a Manifold (Cont’d)

Theorem (Cont’d)

If G is homotopic to F relative to the pairs (M, b) and (N,F (b)), then

F∗ = G∗.

When F is the identity mapping on M, F∗ is the identity isomorphism.
Finally, for compositions of continuous mappings,

(F ◦ G )∗ = F∗ ◦ G∗.
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The Fundamental Group of a Manifold (Cont’d)

Property (iii) assures us that [f ∗ g ] is independent of the
representatives f and g chosen from [f ] and [g ].

So the product is well defined.

By Property (i), the product is associative.

Property (ii) gives the existence of an identity [eb].

Property (iv) gives the existence of inverses.

Thus π1(M, b) is a group.

Property (v) shows that F : M → N induces a homomorphism F∗.

The last statement of the theorem is immediate from the definitions.

Finally, suppose H : M × I → N is a homotopy of F and G .

Then H(f (x), t) is a homotopy of F∗f = F ◦ f and G∗f = F ◦ g .
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Topological Invariance of Fundamental Group

Corollary

Suppose M1 and M2 are homeomorphic and b1, b2 correspond under the
homeomorphism. Then the mapping F∗ is an isomorphism of the
corresponding fundamental groups

π1(M1, b1) ∼= π1(M2, b2).

Let F : M1 → M2 be the homeomorphism.

Let G : M2 → M1 be its inverse.

By the last statement of the theorem,

F∗ ◦ G∗ and G∗ ◦ F∗

are the identity isomorphisms.

So F∗ and G∗ are isomorphisms.

George Voutsadakis (LSSU) Differential Geometry December 2024 157 / 260



Integration on Manifolds Homotopy of Mappings and The Fundamental Group

Contractibility

If the identity map of M to M is homotopic to the constant map of
M onto one of its points b, then M is said to be contractible (to b).

Example: Consider any open subset of Rn which is star-shaped with
respect to a point b.

Then
H(x , t) = (1− t)x + tb

is such a homotopy.

It follows that such a subset is contractible.
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Contractibility and Simple Connectedness

Corollary

If M is contractible to b, then π1(M, b) = {e}, the identity element alone.
It follows that M is simply connected.

Let f be a loop at b.

It is homotopic to the constant loop eb by

H(f (s), t), 0 ≤ s, t ≤ 1.

This shows that π1(M, b) = {1}.
From this, we can deduce simple connectedness.

We may also prove it directly from the definition using again the
mapping H.

There are simply connected spaces which are not contractible.

The sphere Sn, n > 1, is the simplest example.
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Integrals Along Differentiable Paths

Let M be a manifold and ω be a one-form on M.

Suppose p, q ∈ M.

Let S1,S2 be two piecewise differentiable paths of M from p to q.

It is natural to ask whether or not
∫

S1

ω =

∫

S2

ω.

In general they are not equal, even in very simple cases.

But the standard theorems of Advanced Calculus on independence of
path may be generalized to manifolds with essentially the same proofs.
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A Special Case

Theorem

Let ω be a one-form on a manifold M, such that dω = 0 everywhere.
Let S1,S2 be homotopic piecewise differentiable paths from p ∈ M to
q ∈ M. Then ∫

S1

ω =

∫

S2

ω.

Let S1 and S2 be C 1 curves homotopic by a differentiable mapping

H : I × I → M.

Then the result is a straightforward application of Stokes’s Theorem
for the unit square.
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A Special Case (Cont’d)

In the general case the (continuous) homotopy H of the piecewise
differentiable curves must be altered as follows.

First I × I is subdivided by vertical and horizontal lines so that:

It is differentiable on each boundary segment;
H carries each subrectangle Qij into a single coordinate neighborhood
U .

Then the techniques of a previous section are used to alter H
successively to a homotopy H̃ which is differentiable on each Qij .

From this point the proof follows the usual one of Advanced Calculus.

The new homotopy H̃ maps the edges of the square Q = I × I into
the paths S1, q,−S2, p, respectively, as we go around ∂Q
counterclockwise.
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A Special Case (Cont’d)

The images of the left and right vertical edges are the constant paths
p and q.

Since the line integral of ω over a constant path is zero, we have
∫

∂Q
H̃∗ω =

∫

S1

ω +

∫

−S2

ω =

∫

S1

ω −
∫

S2

ω.
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A Special Case (Cont’d)

On the other hand, we can check that, if we denote the oriented
squares of the subdivision by Qij , then line integrals over the same
path in opposite directions cancel out,

∫

∂Q
H̃∗ω =

∑

i ,j

∫

∂Qij

H̃∗ω.

By a previous theorem and remarks,
∫

∂Qij

H̃∗ω =

∫

Qij

dH̃∗ω.

Since dH̃∗ω = H̃∗dω = 0, we see that
∫

S1

ω −
∫

S2

ω = 0.
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Consequence

Corollary

Let ω be a C∞ one-form on a simply connected manifold M.
Suppose that dω = 0 everywhere. Then there is a C∞ function f on M,
such that

ω = df .

If f and g are two such functions, then f − g is constant.

We choose a fixed basepoint b ∈ M.

Define f at any p ∈ M by choosing a piecewise differentiable curve S

from b to p and setting

f (p) =

∫

S

ω.

The theorem assures us that this defines a function on M.

The remainder of the proof deals with purely local properties.
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Consequence (Cont’d)

We show that f is a C∞ function with the property that df = ω.

If we show the latter fact, it will follow that f is C∞, because we
have assumed ω to be C∞.

Changing the basepoint changes f by an additive constant, the value
of the integral of ω along the path between the old and new
basepoints.

Hence, it does not change df at all.

Therefore it is enough to show that df = ω at the basepoint.

Let U, ϕ be a coordinate neighborhood of the basepoint b.

We suppose that x1, . . . , xn are the local coordinates, such that:

ϕ(b) = (0, . . . , 0);
ϕ(U) = Bn

1 (0).
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Consequence (Cont’d)

Let f (x1, . . . , xn) denote the expression for f in local coordinates.

Denote ω in local coordinates by

ω = α1(x)dx
1 + · · · + αn(x)dx

n.

We have, by definition,

f (x) =

∫

C

α1(x)dx
1 + · · ·+ αn(x)dx

n,

the line integral along any path C from (0, . . . , 0) to (x1, . . . , xn).

We must show that, at x = (0, . . . , 0),

∂f

∂x j
= αj , j = 1, . . . , n.
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Consequence (Cont’d)

We must show that, at x = (0, . . . , 0),

∂f

∂x j
= αj , j = 1, . . . , n.

However, this is immediate from the definitions,

(
∂f

∂x j

)

0

= lim
h→0

1

h
(f (0, . . . , h, . . . , 0)− f (0, . . . , 0))

= lim
h→0

1

h

∫ h

0
αj (0, . . . , x

j , . . . , 0)dx j

= αj(0, . . . , 0).

For the last statement, note that d(f − g) = ω − ω = 0 so that
f − g = constant on the (connected) manifold M.
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Subsection 7

Applications of Differential Forms and de Rham Groups
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Closed and Exact k-Forms

Definition

A k-form ω on a manifold M (with possibly nonempty boundary) is said to
be closed if

dω = 0

everywhere.
It is said to be exact if there is a (k − 1)-form η, such that

dη = ω.

We recall some facts about the operator d and apply them here.

We denote by Z k(M) the set of closed k-forms on M.

We denote by Bk(M) the set of exact k-forms on M.
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Properties of Closed and Exact Forms

Z k(M) is the kernel of the homomorphism

d :
k∧
(M) →

k+1∧
(M).

So it is a linear subspace of
∧k(M).

Bk(M) is the image of

d :
k−1∧

(M) →
k∧
(M).

So it is also a linear subspace.

We know that d2 = 0.

Therefore,
Bk(M) ⊆ Z k(M).

This allows us to form the quotient

Hk(M) := Z k(N)/Bk (M).
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The de Rham Groups

Definition

The de Rham group of dimension k of M is the quotient space

Hk(M) = Z k(M)/Bk(M).

If n = dimM, we denote by H∗(M) the direct sum

H∗(M) = H0(M)⊕ · · · ⊕ Hn(M).

Note that
H∗(M) = Z (M)/B(M),

where:
Z (M) is the kernel of d :

∧
(M) → ∧

(M) and the direct sum of the
Z k(M), k = 0, . . . , n;
B(M) is the image of d :

∧
(M) → ∧

(M) and the direct sum of the
Bk(M), k = 0, 1, . . . , n.

George Voutsadakis (LSSU) Differential Geometry December 2024 172 / 260



Integration on Manifolds Applications of Differential Forms and de Rham Groups

Properties of the de Rham Groups

Although called de Rham groups,

Hk(M), k = 0, . . . , n = dimM,

are actually vector spaces over R.

In fact, H∗(M) is an algebra, with the multiplication being that
naturally induced by the exterior product of differential forms.

This follows directly from the property of d asserting that when
ϕ ∈ ∧r (M), ψ ∈ ∧s(M), then

d(ϕ ∧ ψ) = dϕ ∧ ψ + (−1)rϕ ∧ dψ.

From this, it follows that Z (M) is an algebra containing B(M) as an
ideal.
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de Rham’s Theorem and Remarks

Theorem (de Rham’s Theorem)

There is a natural isomorphism of H∗(M) and the cohomology ring of M,
under which Hk(M) corresponds to the kth cohomology group.

This requires knowledge of Algebraic topology and cohomology
groups.

Among the consequences, we get:

Whenever M is compact the dimension of H∗(M) is finite;
H∗(M) and its algebra structure are topologically invariant.
That is, if M1 and M2 are homeomorphic, then H∗(M1) and H∗(M2)
are isomorphic as algebras.

The duality which appears in algebraic topology between homology
and cohomology groups of a space extends to a duality of homology
groups and de Rham groups via integration and Stokes’s Theorem.
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Mappings and de Rahm Groups

Lemma

A C∞ mapping F : M1 → M2 induces an algebra homomorphism

F ∗ : H∗(M2) → H∗(M1)

which carries Hk(M2) (linearly) into Hk(M1), for all k .
If F is the identity mapping on M, then

F ∗ : H∗(M) → H∗(M)

is the identity isomorphism.
Under composition of mappings we have

(G ◦ F )∗ = F ∗ ◦ G ∗.
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Mappings and de Rahm Groups (Cont’d)

It is a property of differential forms that a C∞ mapping F : M1 → M2

defines a corresponding homomorphism

F ∗ :
∧

(M2) →
∧

(M1).

We have F ∗d = dF ∗.

It follows that

F ∗(Z k(M2)) ⊆ Z k(M1) and F ∗(Bk(M2)) ⊆ Bk(M1).

Therefore, F ∗ induces a homomorphism, which we also denote by F ∗,

F ∗ : Hk(M2) → Hk(M1).

Now F ∗ is an algebra homomorphism on forms.

So F ∗ : H∗(M2) → H∗(M1) is also an algebra homomorphism.
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Diffeomorphisms and Isomorphisms

Corollary

If M1 and M2 are diffeomorphic manifolds, then H∗(M1) and H∗(M2) are
isomorphic rings.

Let F : M1 → M2 be a diffeomorphism and F−1 its inverse.

Then

F−1∗ ◦ F ∗ = (F ◦ F−1)∗ and F ∗ ◦ F−1∗ = (F−1 ◦ F )∗

are both the identity isomorphism.

Hence F ∗ is an isomorphism with inverse F−1∗.

George Voutsadakis (LSSU) Differential Geometry December 2024 177 / 260



Integration on Manifolds Applications of Differential Forms and de Rham Groups

The de Rham Group of Dimension Zero

Theorem

Let M be a C∞ manifold with a finite number r of components.
Then H0(M) = V

r , a vector space over R of dimension r .

∧0(M) consists of C∞-functions on M.

Z 0(M) consists of those functions f for which df = 0.

There are no forms of dimension less than zero.

So B0(M) = {0} and H0(M) = Z 0(M).

We have seen previously that

df = 0 iff f is constant on each component M1, . . . ,Mr .

Thus,
H0(M) ∼= {(a1, . . . , ar ) : ai ∈ R},

where (a1, . . . , ar ) corresponds to the function taking the constant
value ai on Mi , i = 1, . . . , r .
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Remark

Let {p} be a zero-dimensional manifold.

By the theorem,
H0({p}) ∼= R.

This determines the de Rham groups of a point space.

Since
∧k({p}) = 0,

Hk({p}) = 0, for k > 0.
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The First de Rahm Group

Theorem

If a compact manifold M, or manifold with boundary, is simply connected,
then

H1(M) = {0}.

Suppose ω is a closed one-form on M, that is,

dω = 0.

Then, there exists a function f on M, such that

df = ω.

Thus, ω is exact.

Since every closed one-form is exact, H1(M) = {0}.
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The n-th de Rham Group

Theorem

Let M be a compact orientable manifold of dimension n, with ∂M = ∅.
Then Hn(M) 6= {0}.

Let Ω be a volume element.
It is an n-form, which:

Is never zero at any point;
Gives the orientation of M .

By a previous theorem,
∫
M
Ω > 0.

Suppose Ω = dω, for some (n − 1)-form ω.

By Stokes’s Theorem, since ∂M = ∅,
∫

M

Ω =

∫

M

dω =

∫

∂M
ω = 0.

On the other hand dΩ = 0, since all (n + 1)-forms vanish on M.

Thus, Ω determines a nonzero class in Hn(M).
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Handling of Boundary Points

Let A ⊆ R
n be either an open set or the closure of an open set.

In the latter case we have in mind regular domains, cubes, simplices,
and so on.

Note that for either choice of A, I × A is the closure of an open set,
its own interior, in R×R

n = R
n+1.

By definition of differentiability of functions (in this instance its
components) on A, when A is not open, a C∞ k-form ω on A is the
restriction to A of a k-form ω̃ on an open set U, with A ⊆ U.

George Voutsadakis (LSSU) Differential Geometry December 2024 182 / 260



Integration on Manifolds Applications of Differential Forms and de Rham Groups

Handling of Boundary Points (Cont’d)

Our restrictions on A ensure that all derivatives of any C∞ function f

on A are defined at every p ∈ A independently of the open set U and
extension f̃ which may be needed to define them at boundary points.

This is a consequence of:

The continuity of all derivatives of f̃ on U ;
The fact that every p ∈ A is either an interior point - where the
derivatives are already defined without any f̃ - or the limit of interior
points.

It follows that for a C∞ form ω on A, dω is defined, even at
boundary points.
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The Homotopy Operator

Definition

The homotopy operator I is defined to be an R-linear operator from

k+1∧
(I × A) →

k∧
(A).

On monomials I is defined as follows:

If ω = α(t, x)dx i1 ∧ · · · ∧ dx ik+1, we set I ω = 0;

If ω = α(t, x)dt ∧ dx i1 ∧ · · · ∧ dx ik , we define I ω by

I ω =

(∫ 1

0
α(t, x)dt

)
dx i1 ∧ · · · ∧ dx ik .

Having been thus defined for monomials, we extend I to be R-linear on∧k+1(I × A) with values in
∧k(A).
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Remarks

We will denote by iy : A → I × A the natural injection

it(x) = (t, x).

Then
ωt = i∗ω.

In particular,
ω0 = i∗0ω and ω1 = i∗1ω.
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Properties of the Homotopy Operator

Lemma

The homotopy operator I :
∧k+1(I × A) → ∧k(A) in addition to being

R-linear has the following properties:

(i) It commutes with C∞ functions which are independent of t;

(ii) For all ω ∈ ∧k+1(I × A) it satisfies the relation

I dω + dI ω = ω1 − ω0.

Suppose f is independent of t.

Then we may consider it both as a function on I × A and on A.

Moreover, independence of t, allows f to be moved through the
integral sign in the definition of I .

Thus, I f ω = f I ω.
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Properties of the Homotopy Operator (Cont’d)

For the second property we must verify the equation directly.

All of d ,I , i∗0 and i∗1 are R-linear.

So it is enough to verify the equation for monomials.

First we consider the case where ω does not involve dt,

ω = α(t, x)dx i1 ∧ · · · ∧ dx ik+1 .

Then I ω = 0. So dIω = 0.

Also I dω is given by

I dω = (
∫ 1
0

∂α
∂t dt)dx

i1 ∧ · · · ∧ dx ik+1

= (α(1, x) − α(0, x))dx i1 ∧ · · · ∧ dx ik+1 .

But the right side is then exactly i∗1ω − i∗0ω = ω1 − ω0.

This establishes the equality for this case.
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Properties of the Homotopy Operator (Cont’d)

Now suppose that ω = α(t, x)dt ∧ dx i1 ∧ · · · ∧ dx ik .

Computing I dω, we see that

I dω = −
n∑

j=1

(∫ 1

0

∂α

∂x j
dt

)
dx j ∧ dx i1 ∧ · · · ∧ dx ik .

On the other hand using the Leibniz rule to differentiate under the
integral sign, we may compute dIω:

dI ω = d(
∫ 1
0 α(t, x)dt)dx

i1 ∧ · · · ∧ dx ik

=
∑n

j=1(
∫ 1
0

∂α
∂x j

dt)dx j ∧ dx i1 ∧ · · · ∧ dx ik .

Adding these expressions, we see that I dω + dI ω = 0.

On the other hand since i∗1dt = 0 = i∗0dt, we have
0 = i∗1ω − i∗0ω = ω1 − ω0.

Thus, in all cases, the identity in Part (ii) holds.
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Poincaré’s Lemma

Lemma (Poincaré’s Lemma)

Let A be a subset of Rn which is either open or is the closure of an open
set. If A is star-shaped, then

Hk(A) = {0}, for all k ≥ 1.

Hence, H∗(A) is isomorphic to the cohomology ring of a point.

We recall that A is star-shaped if it contains a point 0, such that, for
any p ∈ A, the segment 0p lies entirely in A.

By suitable choice of coordinates we may suppose that 0 is the origin.

We define H : I × A → A as

H(t, x1, . . . , xn) = (tx1, . . . , txn).

If ω is a k-form on A, then H∗ω is a k-form on I × A.
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Poincaré’s Lemma (Cont’d)

By definition of I , i0 : x → (0, x) and i1 : x → (1, x).

Therefore, H ◦ i0 : A → {0} and H ◦ i1 : A → A is the identity.

We apply I to
∧k(I × A), using the fact that

∧k({0}), a point
space, is trivial, for k ≥ 1.

We get

dI (H∗ω) + I d(H∗ω) = i∗1 (H
∗ω)− i∗0 (H

∗ω).

Suppose dω = 0. Then dH∗ω = 0.

So we have

dIH∗ω = (H ◦ i1)∗ω − (H ◦ i0)∗ω = ω.

Therefore, every closed k-form ω on A is exact, if k ≥ 1.

If k = 0, then we may use the fact that A is connected to see that
H0(A) ∼= R.
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Homotopic Maps and de Rham Homomorphisms

Theorem

Let M and N be compact manifolds and assume ∂M = ∅.
Let F and G be C∞ mappings of M into N which are C∞ homotopic.
Then the corresponding homomorphisms

F ∗,G ∗ : H∗(M) → H∗(N)

are equal.

We use our previously defined operator I .

We construct a similar operator I :
∧k+1(I ×M) → ∧k(M).

First we note that M may be covered by a finite collection of
coordinate neighborhoods, Ui , ϕi with

ϕi (Ui) = Bn
1 (0), n = dimM, i = 1, . . . , r ,

with a subordinate C∞ partition of unity {fi}, suppfi ⊆ Ui .
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Homotopic Maps and de Rham Homomorphisms (Cont’d)

Then any (k + 1)-form ω on I ×M can be written as a sum of forms,
with support in I × Ui ,

ω =
r∑

i=1

ωi , ωi = fiω.

We may consider fi , or any functions on M, as being also functions on
I ×M, which are independent of t.

We define I to be additive so that

I ω =
∑

I ωi .

This leaves only the problem of defining I on forms with support in
one of the neighborhoods I × Ui .
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Homotopic Maps and de Rham Homomorphisms (Cont’d)

When ω has support in a neighborhood I × U, where U, ϕ is a
coordinate neighborhood with ϕ(U) = Bn

1 (0), we proceed as follows.

Let ϕ̃ : I × U → I × Bn
1 (0) be defined by

ϕ̃(t, p) = (t, ϕ(p)).

Then define I ω on I × U, using our previous definition of I for
I × Bn

1 (0), by
I ω|U = ϕ̃∗(I (ϕ̃−1∗ω)),

the I on the right side being the operator defined earlier.

Further, let I ω = 0 on M − U.

This defines a C∞ k-form on M, the image of a (k + 1)-form on
I ×M.
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Homotopic Maps and de Rham Homomorphisms (Cont’d)

By a previous lemma for this form ω we have the relation

I dω + dI ω = ω1 − ω0.

Now I d + dI is an additive operator.

So, for an arbitrary ω ∈ ∧k+1(I ×M), we may apply the
decomposition ω =

∑
ωi to obtain

I dω + dIω = I d
∑
ωi + dI

∑
ωI

=
∑

I dωi +
∑

dI ωi

=
∑

I dωI +
∑

dIωi

=
∑

((ωi )1 − (ωi )0)

= ω1 − ω0.
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Homotopic Maps and de Rham Homomorphisms (Cont’d)

Finally, to complete the proof, we let ω be any closed k-form on N.

We must show that G ∗ω − F ∗ω is exact.

Now let H : M × I → M be the homotopy connecting F and G .

Then, letting it(p) = (t, p), as before, we have:

F (p) = H(p, 0) = H ◦ i0;
G (p) = H(p, 1) = H ◦ i1.

We know that dH∗ω = H∗dω = 0.

So we have

dIH∗ω = i∗1H
∗ω − i∗0H

∗ω = G ∗ω − F ∗ω.
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Incontractibility of Compact Orientable Manifolds

Intuition tells us that we cannot contract a sphere, or torus, over itself
to a single point.

Corollary

Let M be a compact orientable C∞ manifold (dimM > 0), with ∂M = ∅.
Then M is not contractible.

By the previous theorem, with M = N, if i is homotopic to the
constant map F : M → {p0}, then

i∗ = F ∗

as homomorphisms on the groups Hk(M).

i∗ is the identity isomorphism.

F ∗ is a homomorphism Hk(M) → Hk({p0}) which is {0}, for k ≥ 1.

This contradicts a previous theorem, if dimM > 0.
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Subsection 8

Further Applications of de Rham Groups
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Maps from the Closed Ball to its Boundary

Let Dn denote B
n

1(0), the closed unit ball in R
n.

Dn is a manifold with boundary, ∂Dn = Sn−1.

Lemma

There is no C∞ map F : Dn → ∂Dn which leaves ∂Dn pointwise fixed.

Suppose that there exists such a map F .

Let G denote the identity map of ∂Dn → Dn.

Then F ◦ G = I , the identity map of ∂Dn → ∂Dn.

This implies that G ∗ ◦ F ∗ = (F ◦ G )∗ induces the identity
isomorphism on H∗(∂Dn).
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Maps from the Closed Ball to its Boundary (Cont’d)

Therefore, the homomorphism

F ∗ : Hn−1(∂Dn) → Hn−1(Dn)

must be injective.

That is, kerF ∗ = {0}.
By Poincaré’s Lemma, Hn−1(Dn) = {0}.
Hence, kerF ∗ = Hn−1(∂Dn).

Therefore, Hn−1(∂Dn) = {0}.
However, ∂Dn = Sn−1 is an orientable and compact manifold without
boundary.

So we know that

Hn−1(∂Dn) = Hn−1(Sn−1) 6= {0}.

This contradiction implies that no such map F exists.
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The Brouwer Fixed Point Theorem

Theorem (Brouwer)

Let X be a topological space homeomorphic to Dn. Then any continuous
map F : X → X has a fixed point. That is, for each F , there is at least
one x0 ∈ X , such that

F (x0) = x0.

As a first step we note that it is enough to prove the theorem for Dn.

Let H : Dn → X be a homeomorphism.

Let F : X → X be any continuous mapping.

Suppose H−1 ◦ F ◦ H : Dn → Dn has a fixed point y0.

Then x0 = H(y0) is fixed by F .
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The Brouwer Fixed Point Theorem (Cont’d)

Moreover, even in the case of Dn, it is enough to establish the
property for C∞ maps F : Dn → Dn.

To see this, suppose every such C∞ map has a fixed point.

Assume there exists continuous G : Dn → Dn with no fixed point.

Then ‖G (x)− x‖ is bounded away from zero on the compact Dn.

We may find an ε > 0, such that

‖G (x)− x‖ > 3ε.

Using the Weierstraß Approximation Theorem, we approximate G to
within ε by a C∞ mapping G1,

‖G (x)− G1(x)‖ < ε, for all x ∈ Dn.
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The Brouwer Fixed Point Theorem (Cont’d)

However, the values G1(x) are not necessarily in Dn, for every x ∈ Dn.

So we replace G1 by

F (x) = (1 + ε)−1G1(x).

Clearly, F (x) is defined and C∞ on Dn. Moreover, F (Dn) ⊆ Dn.
Since ‖G (x)‖ ≤ 1, it follows that, for all x ∈ Dn:

‖G1(x)‖ < 1 + ε;
‖F (x)‖ ≤ 1.

Thus F , maps Dn into Dn and is C∞.

For x ∈ Dn,

‖G (x)− F (x)‖ = ‖G (x)− (1 + ε)−1G1(x)‖
= (1 + ε)−1‖εG (x) + G (x)− G1(x)‖
≤ ε‖G (x)‖ + ‖G (x)− G1(x)‖
= 2ε.
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The Brouwer Fixed Point Theorem (Cont’d)

From these inequalities we obtain a contradiction to the assumption
that every C∞ map F : Dn → Dn leaves some point fixed.

Namely, for every x ∈ Dn we have

‖F (x)− x‖ = ‖(G (x) − x)− (G (x)− F (x))‖
≥ ‖G (x)− x‖ − ‖G (x)− F (x)‖
≥ 3ε− 2ε

= ε.

This contradiction shows that if every C∞ map of Dn to Dn has a
fixed point, then so must every continuous one.

The proof of the theorem is then completed by the following lemma.
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C∞ Maps of the Closed Unit Ball and Fixed Points

Lemma

If F : Dn → Dn is a C∞ map, then F has a fixed point.

Suppose F : Dn → Dn is C∞ and has no fixed point.

We use F to construct a C∞ map F̃ : Dn → ∂Dn which leaves ∂Dn

pointwise fixed.

Given x ∈ Dn, let F̃ (x) be the boundary
point obtained by extending the seg-
ment F (x)x past x to the boundary of
Dn.
Note, if x ∈ ∂Dn, then F̃ (x) = x .
In any case, F̃ (Dn) ⊆ ∂Dn.

To see that F̃ is C∞, we express F̃ explicitly using vectors in R
n.
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C∞ Maps of the Closed Unit (Cont’d)

Namely, we have
F̃ (x) = x + λu,

where:
x denotes the vector from (0, . . . , 0) to x = (x1, . . . , xn);
u is the unit vector directed from F (x) to x and lying on this segment,
more precisely,

u =
x − F (x)

‖x − F (x)‖ ;

λ = −(x , u) + [1− (x , x) + (x , u)2]1/2 denotes the length of the vector

on u with initial point x and terminal point F̃ (x) on ∂Dn.

Since F is C∞, it is easy to check that F̃ is C∞.

The scalar λ is the unique nonnegative number such that

‖x + λu‖ = 1.

Since F is C∞, u is C∞.

So wherever 1− (x , x) + (x ,u)2 > 0, then F̃ (x) is also C∞.
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C∞ Maps of the Closed Unit (Cont’d)

However, 1− (x , x) ≥ 0, with equality only if x ∈ Sn−1.

Moreover, (x ,u)2 ≥ 0, with equality only when u is orthogonal to x .

That is, when x − F (x) is orthogonal to x .

However, (x ,u) = 0 cannot occur when (x , x) = 1, that is, on a point
of Sn−1, since in this case F (x) would be exterior to Dn.

Thus, 1− (x , x) + (x ,u)2 > 0 on Dn and F̃ is C∞.

The existence of F̃ contradicts a previous lemma.

So F has a fixed point.
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The Antipodal Map of Sn−1

Theorem

If n is odd, then there is no C∞ homotopy between the antipodal map
A : Sn−1 → Sn−1 and the identity map of Sn−1.

The sphere is an orientable manifold.

In fact we may define the oriented orthonormal frames of Tx(S
n−1) at

each x ∈ Sn−1 in the following fashion.

Each x ∈ Sn−1 determines a unit vector x = 0x .

The elements of Tx(S
n−1) correspond to the vectors in the

orthogonal complement of x .

Let e1, . . . , en−1 be an orthonormal frame of Tx(S
n−1) in the

induced metric of Rn.

Then x , e1, . . . , en−1 is an orthonormal frame of Rn.

We use the natural parallelism to identify vectors at distinct points of
R

n.
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The Antipodal Map of Sn−1 (Cont’d)

Two frames, e1, . . . , en−1 and e
′
1, . . . , e

′
n at x will be said to have the

same orientation if the corresponding frames x , e1, . . . , en−1 and
x , e ′

1, . . . , e
′
n−1 do.

From the canonical orientation of Rn we obtain an orientation of
Sn−1 by choosing as oriented that class of frames for which
x , e1, . . . , en−1 is an oriented frame of Rn.

Let Ω be the unique (n − 1)-form on Sn−1 which takes the value +1
on all oriented orthonormal frames e1, . . . , en−1.
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The Antipodal Map of Sn−1 (Cont’d)

A : Sn−1 → Sn−1 is the restriction to Sn−1 of a linear, in fact an
orthogonal, map of Rn.

So its Jacobian is constant and just the map A itself.

Thus, under A, the frame e1, . . . , en−1 at x goes to the frame
−e1, . . . ,−en−1 at −x .

It is clear that this will be oriented according to our orientation of
Sn−1 if and only if n is even.

In that case, x , e1, . . . , en−1 and −x ,−e1, . . . ,−en−1 are coherently
oriented frames of Rn.

Therefore, A∗Ω = (−1)nΩ and, when n is odd, Ω = −A∗Ω.
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The Antipodal Map of Sn−1 (Cont’d)

Suppose there is a C∞ homotopy connecting A and the identity.

Then Ω− A∗Ω must be exact by a previous theorem.

But, by Stokes’s theorem, the integral over Sn−1 of an exact form is
zero.

This means that, when n is odd,

2

∫

Sn−1

Ω =

∫

Sn−1

(Ω− A∗Ω) = 0.

However, the volume element is positive.

So
∫
Sn−1 Ω = 0 is impossible.
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Non-Orientability of Pn(R)

Corollary

Real projective space Pn(R) is not orientable when n is even.

Suppose that Pn(R) is orientable.

We know that Sn is a (two-sheeted) covering manifold of Pn(R).

So Pn(R) can be obtained from Sn as the orbit space of the group of
two elements Z2 acting on Sn.

This action is obtained by letting the generator of Z2 correspond to
the antipodal map A.

Suppose Ω is a nowhere vanishing n-norm on Pn(R).

Let F : Sn → Pn(R) be the covering map.

Then F ∗Ω = Ω∗ is a nowhere vanishing n-form on Sn.

Moreover, since F ◦ A = F , we see that A∗Ω∗ = Ω∗.

But this, as we have seen above, is not possible if n + 1 is odd.

Thus, Pn(R) is not orientable when n is even.
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C∞ Vector Fields on Sn

Theorem

If n is even, then there does not exist a C∞-vector field X on Sn which is
not zero at some point.

We suppose that such a vector field exists.

We show that this implies that the antipodal map A and the identity
map I on Sn are C∞ homotopic.

Let X be a C∞-vector field on Sn such that X is never zero.

Then X
‖X‖ is a C∞-vector field of unit vectors.

So we may suppose to begin with that ‖X‖ = 1 on Sn.

If x is a point of Sn, let Xx be the corresponding vector of the field.

Treat Rn+1 as a vector space and think of x as a radius vector.

Then we have (x ,Xx) = 0 for every x .
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C∞ Vector Fields on Sn (Cont’d)

We define the homotopy H : Sn × I → Sn by

H(x , t) = (cos πt)x + (sinπt)Xx .

Then H(x , t) is C∞.

Moreover, ‖H(x , t)‖ ≡ 1.

So H(x , t) defines a map of Sn → Sn, for each t.

Thus, H(x , 0) ≡ x and H(x , 1) ≡ −x , as claimed.

However, the existence of such a homotopy when n is even
contradicts the previous proposition.

Therefore, in this case no such vector field exists.
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Remark

Consider the case when n is odd.

Consider the vector field Xx assigning to

x = (x1, x2, . . . , xn, xn+1) ∈ Sn

the unit vector

Xx = x2
∂

∂x1
− x1

∂

∂x2
+ · · · + xn+1 ∂

∂xn
− xn

∂

∂xn+1

orthogonal to x .

We have noted previously that X defines a nowhere vanishing field of
tangent vectors to Sn.

It follows that, in this case, A is homotopic to the identity.
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Invariant k-Forms

Suppose that G is a compact connected Lie group, e.g., SO(n).

Let θ : G ×M → M be an action of G on a compact manifold M.

θg denotes the diffeomorphism of M defined by

θg (p) = θ(g , p).

A covariant tensor ϕ on M, in particular an exterior differential form,
is said to be invariant if

θ∗gϕ = ϕ, for each g ∈ G .

We know that, for every form ϕ,

d(θ∗gϕ) = θ∗g (dϕ).

So if ϕ is invariant, dϕ is also.
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Invariant k-Forms (Cont’d)

Let
∧̃k

(M) denote the subspace of
∧k(M) which consists of all

invariant k-forms.

Then, as we have just seen,

d

(∧̃k

(M)

)
⊆
∧̃k+1

(M).

We define the set of closed invariant forms of degree k

Z̃ k(M) =

{
ϕ ∈

∧̃k

(M) : dϕ = 0

}
.

We also define the set of “invariantly exact” forms of degree k

B̃k(M) = d

(∧̃k−1

(M)

)
⊆ Z̃ k(M).
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Invariant de Rham Groups

Definition

The invariant de Rham groups of M, denoted by H̃k(M), are defined by

H̃k(M) = Z̃ k(M)/B̃k(M).

We note that the natural inclusion i of
∧̃k

(M) in
∧k(M) takes:

Z̃ k(M) into Z k(M);

B̃k(M) into Bk (M).

Hence, i induces a homomorphism

i∗ : H̃
k(M) → Hk(M).
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The Linear Operator P

In order to study the homomorphism

i∗ : H̃
k(M) → Hk(M),

we define an R-linear operator

P :

k∧
(M) →

∧̃k

(M).

Let

ϕ ∈
k∧
(M).

Let Ω denote the bi-invariant volume element for which vol(G ) = 1.

Define Pϕ by

Pϕ(X1, . . . ,Xk) =

∫

G

θ∗gϕ(X1, . . . ,Xk)Ω.
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Properties of P

Lemma

P takes a k-form to an invariant k-form, that is,

P

(
k∧
(M)

)
⊆
∧̃k

(M).

Moreover:

(i) If ϕ ∈ ∧̃k
(M), then Pϕ = ϕ;

(ii) dP = Pd .
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Properties of P (Cont’d)

It is easy to check that Pϕ ∈ ∧k(M) and in fact is G -invariant.

θ∗aPϕ(X1, . . . ,Xk) = Pϕ(θa∗X1, . . . , θa∗Xk)

=
∫
G
θ∗gϕ(θa∗X1, . . . , θa∗Xk)Ω

=
∫
G
θ∗a [θ

∗
gϕ(X1, . . . ,Xk)]Ω

=
∫
G
θ∗gaϕ(X1, . . . ,Xk)Ω

=
∫
G
θ∗gϕ(X1, . . . ,Xk)Ω.

The fact that Pϕ is C∞ and Property (ii) are consequences of the
Leibniz rule for differentiating under the integral sign.
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Properties of P (Cont’d)

If ϕ is G -invariant, then

θ∗gϕ = ϕ, for all g ∈ G .

More precisely at each p ∈ M,

θ∗gϕθ(g ,p)(X1p, . . . ,Xkp) = ϕp(X1p , . . . ,Xkp).

From this it follows that

Pϕ(X1, . . . ,Xk) =

∫

G

θ∗gϕ(X1, . . . ,Xk)Ω

= ϕ(X1, . . . ,Xk)

∫

G

Ω.

But we have
∫
G
Ω = 1.

So Pϕ = ϕ and Property (i) is established.

George Voutsadakis (LSSU) Differential Geometry December 2024 221 / 260



Integration on Manifolds Further Applications of de Rham Groups

Property of i∗

Theorem

The homomorphism i∗ : H̃
k(M) → Hk(M) is an isomorphism into for each

k = 0, 1, . . . , dimM.

Suppose that [ϕ̃] is an element of H̃k(M) and that ϕ̃ is a closed
invariant form on M belonging to the class [ϕ̃].

To see that i∗ is one-to-one, we show that, if ϕ̃ = dσ, σ ∈ ∧k−1(M),

then ϕ̃ is the image under d of an element of
∧̃k−1

(M).

That is, that, if ϕ̃ is exact, then it is “invariantly exact”.

This follows from the preceding lemma since Pσ ∈ ∧̃k−1
(M) and

ϕ̃ = Pϕ̃ = Pdσ = d(Pσ).

Remark: It is also true, but somewhat harder to prove directly, that i∗
is onto, that is, H̃k(M) is isomorphic to Hk(M), for all k .
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Bi-Invariant Tensors on Connected Lie Groups

Lemma

Let Φe be a covariant tensor of order r on Te(G ), where G is a connected
Lie group. If Adg∗Φe = Φe , that is, if Φe determines a bi-invariant tensor
on G , then for any X1, . . . ,Xr ,Z ∈ g, we have

r∑

i=1

Φ(X1, . . . , [Z ,Xi ], . . . ,Xr ) = 0.

Let Φ be the bi-invariant covariant tensor on G determined by Φe .

Suppose Z ∈ g is a left-invariant vector field on G .

We have seen that:
Z is complete;
The one-parameter group action θ : R × G → G which it determines is
given by right translations by the elements of a uniquely determined
one-parameter subgroup g(t) = exp tZ by the formula θt = Rg(t).
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Bi-Invariant Tensors on Connected Lie Groups (Cont’d)

We have previously established the following formula for C∞-vector
fields on a manifold,

[Z ,X ]p = lim
t→0

1

t
[θ−t∗Xθt(p) − Xp].

Suppose that p = e and that X is a left-invariant vector field.

Then [Z ,X ] is just the product in the Lie algebra g.

Identifying g with Te(G ), we may write

[Z ,X ] = lim
t→0

1

t
[Rg(−t)∗Xg(t) − Xe].
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Bi-Invariant Tensors on Connected Lie Groups (Cont’d)

By hypothesis, Φ is bi-invariant.

So
R∗
g(−t)Φ− Φ = 0.

Thus, for any X1, . . . ,Xr ∈ g,

Φ(R∗
g(−t)X1, . . . ,R

∗
g(−t)Xr )− Φ(X1, . . . ,Xr ) = 0.

Now we do the following:

Add and subtract

Φ(X1, . . . ,Xi−1,R
∗

g(−t)Xi , . . . ,R
∗

g(−t)Xr ), i = 1, . . . , r ;

Then multiply by 1
t
;

Finally, let t → 0.

The outcome is the formula of the lemma.
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Closedness of Bi-Invariant Forms on Lie Groups

Corollary

Every bi-invariant exterior form on a Lie group G is closed.

Let ω be an exterior differential r -form.

Suppose ω is left-invariant and X0,X1, . . . ,Xr are left-invariant.

Then

dω(X0, . . . ,Xr ) =
r∑

i=1

ω(X0, . . . , [Xi−1,Xi ], . . . ,Xr ).

We previously established this formula for r = 2.

The method of proof in the general case is the same.

The corollary is an immediate consequence.
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Bi-Invariant r -Forms on Compact, Connected, Lie Groups

Suppose that G acts on itself by both left and right translations.

Let G = M and K = G × G , the direct product of Lie groups.

Define θ : K ×M → M, for all x ∈ M = G and k = (g1, g2) ∈ K , by

θ(k , x) = g1xg2(= Rg2 ◦ Lg1(x)).

Then the K -invariant forms ϕ̃ on G are exactly the bi-invariant forms.
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Bi-Invariant r -Forms and de Rham Groups

Corollary

Each bi-invariant r -form on a compact, connected, Lie group G determines
a nonzero element of Hr (G ).

By the corollary, each ϕ̃ ∈ H̃r (G ), that is, each bi-invariant r -form, is
closed.

We know that if it is exact, then it must be of the form d σ̃, with σ̃
bi-invariant.

But then it is zero, by the corollary again, since d σ̃ = 0.
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Example

Consider any compact, connected, non-Abelian Lie group G .

For example, SO(n), the orthogonal matrix group (with elements of
determinant +1), for n ≥ 3.

We claim that H3(G ) 6= {0}.
We consider that the exterior three-form

ϕ(X ,Y ,Z ) = ([X ,Y ],Z )

on G , where (X ,Y ) denotes the bi-invariant inner product.
We have:

X ,Y ∈ g implies that [X ,Y ] is left-invariant;
Ad(g) is an automorphism of g .

It follows readily that ϕ is bi-invariant.
Further, we have:

[X ,Y ] = −[Y ,X ];
(X ,Y ) is symmetric.

These yield the alternating property of ϕ.
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Example (Cont’d)

By the preceding corollary, ϕ is closed and, if it is not zero, it
determines an element of H3(G ).

Suppose that ϕ = 0.

Then for all X ,Y ,Z ∈ g, we have

ϕ(X ,Y ,Z ) = ([X ,Y ],Z ) = 0.

In particular, we have ([X ,Y ], [X ,Y ]) = 0.

It follows that
[X ,Y ] = 0, for all X ,Y ∈ g.
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Example (Cont’d)

This means, according to a previous section, that the one-parameter
groups of G commute.

It follows that there is a neighborhood U of e which consists of
commuting elements.

By the connectedness of G , the elements of U generate G .

So G is commutative, contrary to assumption.

This means that ϕ determines a nonvanishing element [ϕ] of H3(G ).

George Voutsadakis (LSSU) Differential Geometry December 2024 231 / 260



Integration on Manifolds Covering Spaces and the Fundamental Group

Subsection 9

Covering Spaces and the Fundamental Group
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Covering Maps

Suppose that M is a manifold.

Let M̃ be a covering manifold.

Denote by F : M̃ → M the (C∞) covering mapping.

If X is a topological space and G : X → M a
continuous mapping, then a continuous
mapping G̃ : X → M̃ is said to cover G if

F ◦ G̃ = G .

We also say G̃ is a lift of G .

M̃

X
......

......
......

.....G̃ ✲

M

F

❄G ✲

Example: If f : I → M is a path or loop, then f̃ : I → M̃ is a path
which covers it, if F ◦ f̃ (t) = f (t), for 0 ≤ t ≤ 1.

If a covering f̃ of a given path f exists at all, then it is uniquely
determined by its value on a single point, say by f (0).

George Voutsadakis (LSSU) Differential Geometry December 2024 233 / 260



Integration on Manifolds Covering Spaces and the Fundamental Group

Coverings of a Continuous Mapping

Lemma

If F : M̃ → M is a covering and X is a connected space, then two
(continuous) mappings

G̃1, G̃2 : X → M̃

covering a continuous mapping G : X → M agree if they have the same
value at a single point x0 ∈ X .

Let
A = {x ∈ X : G̃1(x) = G̃2(x)}.

Then A is closed by continuity of G̃1 and G̃2.

We show that A is also open.
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Coverings of a Continuous Mapping (Cont’d)

Let x ∈ A.

Let U be a neighborhood of G̃1(x) = G̃2(x), such that F |U is a
diffeomorphism of U to M.

Then G1 and G2 must agree on the open set

V = G̃−1
1 (U) ∩ G̃−1

2 (U).

In fact, if y ∈ V , then, by hypothesis,

F ◦ G̃1(y) = F ◦ G̃2(y).

But G̃1(y) and G̃2(y) are in U.

Moreover, on U, F is one-to-one.

So G̃1(y) = G̃2(y).

Finally, since A is not empty and X is connected, A = X .
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Coverings of Paths

Theorem

Let f : I → M be a path in M with initial point b = f (0).
Let F : M̃ → M be a covering and b̃ ∈ F−1(b).
Then there is a unique path f̃ in M̃ with initial point f̃ (0) = b̃.

Uniqueness is a consequence of the previous proposition.

To prove existence, suppose

0 = t0 < t1 < · · · < tn = 1

is any partition of I such that for each i ,
f ([ti , ti+1]) lies in an admissible neigh-
borhood Vi with respect to the cover-
ing. The existence of such a partition
follows from the compactness of I and
the continuity of f .
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Coverings of Paths (Cont’d)

We let f (0) = b and let b̃ ∈ M̃

denote a point over b, that is,

F (b̃) = b.

Let U1 be the unique connected
component of F−1(V1) containing b̃.

We define f (t), 0 ≤ t ≤ t1, by

f̃ (t) = (F |U1)
−1(f (t)).

Then f̃ (t1) ∈ U1 ∩U2, where U2 is the unique component of F−1(V2)
containing f̃ (t1).

This allows us to define f (t) = (F |U2
)−1(f (t)), for t1 ≤ t ≤ t2.

So we can determine f̃ on [t0, t2].

We can continue in this fashion to define f̃ on all of I .
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Lifting Homotopy Paths

Theorem

Let f , g : I → M be paths and H : I × I → M a (relative) homotopy of f
to g leaving endpoints fixed. Suppose f̃ , g̃ : I → M̃ cover f , g and have
the same initial point. Then they have the same endpoint and there exists
a unique homotopy H̃ : I × I → M̃ of f̃ to g̃ covering H. Endpoints
remain fixed for H̃ also.

We define H̃ : I × I → M̃ using the previous theorem.

For each fixed t,

Ht(s) = H(s, t), 0 ≤ s ≤ 1,

is a path on M.

It lifts to a unique path H̃t(s) on M̃ with

H̃t(0) = f̃ (0) = g̃(0),

the common initial point of f̃ and g̃ .
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Lifting Homotopy Paths (Cont’d)

We let
H̃(s, t) = H̃t(s).

This defines H̃ : I × I → M̃, with the property that H = F ◦ H̃.

But it is necessary to show that H̃ is continuous.

Let t0 ∈ I be chosen.

Take a partition of the line I × {t0} in I × I by

0 = s0 < s1 < · · · < sn = 1,

such that each interval {(s, t0) : si ≤ s ≤ si+1} is carried by H into an
admissible neighborhood Vi on M.

Suppose H̃i (si , t0) have been defined at some stage.

This point of M̃ determines unambiguously a component Ui of
F−1(Vi) covering Vi and necessarily

H̃i (s, t0) = (F |Ui
)−1(H(s, t0)), si ≤ s ≤ si+1.
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Lifting Homotopy Paths (Cont’d)

However, by the continuity of H, there exists δ > 0, such that, for
each i = 0, 1, 2, . . . , n − 1, the image H(Qi ) ⊆ M of the cube
Qi = {(s, t) : si ≤ s ≤ si+1, t0 − δ ≤ t ≤ t0 + δ} lies in Vi also.

Hence, on all of Qi ,

H̃t(s) = H̃(s, t) = (π|Ui
)−1(H(s, t)).

This shows that H̃ is continuous on Qi .

This holds for each i = 0, . . . , n − 1.

So H̃ is continuous on a δ-strip {(s, t) : |t − t0| < δ} around the
segment I × {t0} ⊆ I × I .

But t0 was arbitrarily chosen.

Hence, H̃ is continuous on I × I .
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Lifting Homotopy Paths (Cont’d)

To complete the proof we notice that H̃ , being continuous, takes
{1} × I into a connected set.

Namely, the set of terminal points of H̃t(1), 0 ≤ t ≤ 1.

We have
F (H̃(1, t)) = H(1, t) = f (1) = g(1).

As this is a single point, the connected set lies in the discrete set
π−1(f (1)).

It is, therefore, a single point, as claimed.

We constructed H̃ so that the initial points H̃t(0), 0 ≤ t ≤ 1, are all
f̃ (0).

The existence (as constructed) and uniqueness of H̃ show that this
was the only possibility.
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Lifting Homotopy Paths (Cont’d)

Corollary

If b̃ ∈ M̃ lies over b ∈ M, then

F∗ : π1(M̃, b̃) → π1(M, b)

is an injective isomorphism.

We know F∗ is a homomorphism.

Using the previous theorem with f̃ , g̃ loops at b̃, we see that

F ◦ f̃ ∼ F ◦ g̃ implies f̃ ∼ g̃ .

This is equivalent to F∗ being injective.
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Covering Isomorphisms

Let M̃1 and M̃2 be coverings of a manifold M.

Let the covering maps be F1 : M̃1 → M and F2 : M̃2 → M.

Then a homeomorphism G : M̃1 → M̃2 such that F1 = F2 ◦ G and
F2 = F1 ◦ G−1 is called an isomorphism of the coverings.

M̃1
G

✲ M̃2

M
✛

F 2
F
1 ✲

In particular, an automorphism, that is, isomorphism, G : M̃ → M̃ is
exactly a covering transformation, as given previously.

Using admissible neighborhoods, it is apparent that the
differentiability of F1 and F2 implies that of G and G−1.

We show that in a sense isomorphism classes of coverings of M are in
one-to-one correspondence with subgroups of the fundamental group.
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Subgroups and Covering Isomorphisms

Theorem

Let F1 : M̃1 → M and F2 : M̃2 → M be coverings of the same manifold M.
Suppose that, for b ∈ M, b̃1 ∈ M̃1, b̃2 ∈ M̃2, with F1(b̃1) = b = F2(b̃2),
we have

F1∗π1(M̃1, b̃1) = F2∗π2(M̃2, b̃2).

Then there is exactly one isomorphism G : M̃1 → M̃2 taking b̃1 to b̃2.

Let p̃ ∈ M̃1.

We define G (p̃) as follows.

Let f̃1 be a path such that f̃1(0) = b̃1 and f̃1(1) = p̃.

Then the path f = F1 ◦ f̃1 on M has a unique lifting to a path f̃2 on
M̃2 covering f and with initial point f̃2(0) = b̃2.

We define G (p̃) = f̃2(1).
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Subgroups and Covering Isomorphisms (Cont’d)

Of course we must show that:

The definition is independent of the path f̃1 chosen;
G is continuous.

On the other hand, once these facts are proved, then, immediately
from the definition, we get that:

F1 = F2 ◦ G ;
G(b̃1) = b̃2;
G is unique.

This definition is natural.

Let G have the properties required in the theorem.

Then it must take f̃1 to a path f̃2 ◦ G on M̃2, such that:

f̃2 ◦ G covers f = F1 ◦ f̃1;
f̃2 ◦ G runs from b̃2 to G(p̃).
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Subgroups and Covering Isomorphisms (Cont’d)

Now suppose that f̃1 and g̃1 are distinct paths on M̃1 from b̃1 to p̃.

Let f = F1 ◦ f̃1 and g = F1 ◦ g̃1.
Consider the loop f ∗ g−1 with

g−1(s) = g(1 − s), 0 ≤ s ≤ 1.

This loop determines an element [f ∗ g−1] of F1∗π1(M̃1, b̃1).

Hence, also the (same) element of F2∗π2(M̃2, b̃2).

In view of the preceding corollary, if we lift this to a path from b̃2, its
terminal point will necessarily be b̃2.

So the lifted paths f̃2 and g̃2 on M̃2 beginning at b̃2 both end at the
same point, that is,

f̃2(1) = g̃2(1).

It follows that, by using either f̃1 or g̃1, we obtain the same value for
G (p̃).
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By the preceding argument, there is a one-to-one correspondence
between points of M̃i , i = 1, 2, and equivalence classes (under relative
homotopy with endpoints fixed) of paths f on M issuing from b.

Let p ∈ M.

Let [f ] a homotopy class of paths from b to p.

[f ] determines a point p̃[f ] of M̃1 which lies over p.

Indeed, the class [f ] lifts to a class [f̃ ].

All curves of [f̃ ] issue from the point b̃1.

We have just seen that they all have as terminal point p̃[f ].
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Subgroups and Covering Isomorphisms (Cont’d)

Suppose we make this identification.

So we may let [f ] denote p̃[f ].

Then F1 projects the class of paths [f ] to the common terminal point
of its elements, that is, F1([f ]) = f (1).

Similarly for F2, M̃2.

The classes of loops at b correspond to the points over b.

That is, the elements of π1(M, b) are in one-to-one correspondence
with the points over b.

George Voutsadakis (LSSU) Differential Geometry December 2024 248 / 260



Integration on Manifolds Covering Spaces and the Fundamental Group
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It is clear that G is one-to-one onto.

Moreover, G−1 is described in a symmetrical way to G .

So G−1 is C∞.

Now let p̃2 = G (p̃1) ∈ M̃2.

Let V , ψ be an admissible coordinate neighborhood of p = Fi (p̃i) on
M, i = 1, 2, such that:

ψ(p) = 0;
ψ(V ) = Bn

1 (0) ⊆ R
n.

Suppose f is a path from b to p on M which lifts to paths f̃i joining
b̃i to p̃i on M̃i , i = 1, 2.

Then we see that this path may be used in the definition of G as
described above.
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Let q be an arbitrary point in V .

We have a radial path (in the local coordinates), say gq, from p to q.

Moreover, fq = f ∗ gq lifts to paths from b̃i to q̃i in the component Ũi

of F−1
i (V ) containing b̃i , i = 1, 2.

Thus, G (q1) = q2.

This description is unique and valid for every q ∈ V .

So G : Ũ1 → Ũ2 is one-to-one and onto.

In fact G may be described by

G |
Ũ1

= (F2|Ũ2
)−1 ◦ (F1|Ũ1

).

Thus, G |
Ũ1

is a diffeomorphism.

Since M̃1 is covered by open sets of this type, G is differentiable.

This completes the proof.
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Simply Connected Coverings

Corollary

If F : M̃ → M is a covering and M̃ is simply connected, then the covering
transformations are simply transitive on each set F−1(p).
If we fix b̃ ∈ M̃ and b ∈ M with F (b̃) = b, then these choices determine a
natural isomorphism

Φ : π1(M, b) → Γ̃

of the fundamental group of M onto the group of covering transformations.

Suppose that q1, q2 ∈ F−1(p).

We apply the preceding theorem with M1 = M̃, M2 = M̃.

Note that because M̃ is simply connected, π1(M̃, qi ) = {1}, i = 1, 2.

Hence, F∗(π1(M̃, q1)) = {1} = F∗(π1(M̃, q2)).

We get a covering transformation G : M̃ → M̃, with G (q1) = q2.

By a previous theorem, the group Γ̃ of covering transformations must
be simply transitive on F−1(p), for each p ∈ M.
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We have fixed b ∈ M and b̃ ∈ π−1(b).

We may establish an isomorphism of π1(M, b) and Γ̃ as follows.

Let [g ] ∈ π1(M, b).

Let g̃ be the lift of g ∈ [f ] to M̃ determined by g̃(0) = b̃.

We have seen earlier that any two curves g̃1, g̃2 which are lifts of
curves of homotopic curves, in particular two loops of [g ], with
g̃1(0) = b̃ = g̃2(0), must have the same terminal point b̃1 and must
be homotopic (with endpoints fixed).

Since g is a loop, F (b̃) = b = F (b̃1).

We let Φ[g ] ∈ Γ̃ be the covering transformation

b̃ 7→ b̃1 = g̃(1).

This defines Φ : π1(M, b) → Γ̃.

We can check that Φ is a homomorphism using the arguments of the
preceding theorem.
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Simply Connected Coverings (Cont’d)

We show that Φ is one-to-one.

If Φ[g ] = 1, then g̃(0) = b̃ = g̃(1).

So g̃ determines an element of π1(M̃, b̃).

This group contains only the identity.

So g̃ ∼ e
b̃
by a homotopy H̃.

Then H = F ◦ H̃ is a homotopy of g to eb.

It follows that [g ] = 1.

Hence, Φ is one-to-one.
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Simply Connected Coverings (Cont’d)

We show that Φ is onto.

Let G1 ∈ Γ̃.

Let b̃1 = G1(b̃).

There is a path g̃ from b̃ to b̃1.

We have F (b̃) = F [G1(b̃)].

So, by definition of covering transformation, g = F ◦ g̃ is a loop at b.

It determines [g ] ∈ π1(M, b).

But the covering transformation G = Φ([f ]) agrees with G1 on b̃,

G1(b̃) = b̃1 = G (b̃).

So we must have G = G1, by a previous lemma.

George Voutsadakis (LSSU) Differential Geometry December 2024 254 / 260



Integration on Manifolds Covering Spaces and the Fundamental Group

Subgroups of Fundamental Group and Coverings

Theorem

Let M be a connected manifold and b a fixed point of M.
Then, corresponding to each subgroup H ⊆ π1(M, b), there is a covering
F : M̃ → M, such that, for some b̃ ∈ F−1(b), we have

F∗π1(M, b) = H.

F and M are unique to within isomorphism.

The uniqueness is just the previous theorem.

Its proof also indicates how the space must be constructed.

The points of M̃ will consist of equivalence classes of paths from b.

Two such paths f , g are equivalent if and only if:
f (1) = g(1);
[f ∗ g−1] ∈ H , where g−1 denotes the path g−1(s) = g(1− s),
0 ≤ s ≤ 1.
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Subgroups of Fundamental Group and Coverings (Cont’d)

Since H is a subgroup, the preceding relation is an equivalence.

We denote it by f ≈ g .

We denote by {f } the equivalence class of f (or point of M̃).

The projection map F : M̃ → M is defined by

F ({f }) = f (1), for any f ∈ {f }.
Let {f } ∈ M̃ and p = f (1).
Let V , ψ be a coordinate neighborhood of p on M, with:

ψ(p) = 0;
ψ(V ) = Bn

1 (0), the open n-ball.

For each q ∈ V , there is a unique path gq from p to q corresponding
to a radial line in ψ(V ).

Then q → {f ∗ gq} defines a map θf : V → M̃.

For all q in V ,

F ◦ θf (q) = F{f ◦ gq} = f ◦ gq(1) = q.
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Suppose h is a path from b to q also.

Assume that h 6≈ f , that is, {h ◦ f −1} 6∈ H.

Then it is easy to see that

θf (V ) ∩ θh(V ) = ∅.

Indeed, assume, for some q ∈ V , we have {f ∗ gq} = {h ∗ gq}.
But hen [f ∗ gq ∗ (h ∗ gq)−1] = [f ∗ h−1] is an element of H.

This contradicts the assumption.

We may now check that the sets θf (V ), with coordinate maps ψ ◦ F ,
define a manifold structure on M̃.

Moreover, his structure makes F : M̃ → M a covering, with {V , ψ} as
admissible neighborhoods.
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Subgroups of Fundamental Group and Coverings (Cont’d)

Finally, we must establish that F∗(π1(M̃ , b̃)) = H, where b̃ = {eb},
the point of M̃ determined by the constant path at b.

Suppose that f(t), 0 ≤ t ≤ 1, is a loop at b with [f ] ∈ H.

Then f (0) = f (1) = b.

We define a one-parameter family ft of paths from b by

ft(s) = f (st), 0 ≤ s, t ≤ 1.

Let
f̃ (t) = {ft(s)}.
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Subgroups of Fundamental Group and Coverings (Cont’d)

Then
f̃ (t), 0 ≤ t ≤ 1,

is a path on M̃, with

F (f̃ (t)) = ft(1) = f (t).

Hence, f̃ covers f and is a loop at b̃.

We can check, using methods similar to those used above, that this
actually determines an isomorphism F∗ of π1(M̃, b̃) onto H.

This completes the proof.
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Connected Manifold As Orbit Space of Fundamental Group

If we take H = {1} we have a very important corollary.

Corollary

Every connected manifold M has a simply connected covering which is
unique to within isomorphism.
Choice of b̃ ∈ F−1(b), for b ∈ M, determines an isomorphism of π1(M, b)
onto Γ̃ the group of covering transformations.
Then M̃/Γ̃ is diffeomorphic to M, that is, M is the orbit space of its
fundamental group acting properly discontinuously on its universal
covering M̃.
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