
Introduction to the Theory of Distributions

George Voutsadakis1

1Mathematics and Computer Science

Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Theory of Distributions July 2014 1 / 110



Outline

1 Fourier Transforms and Tempered Distributions
The Classical Fourier Transformation in L2

Tempered Distributions
Fourier Transform in S

Fourier Transform in S
′

Fourier Transform in L2

Fourier Transform in E
′

The Cauchy-Riemann Operator
Fourier Transforms and Homogeneous Distributions

George Voutsadakis (LSSU) Theory of Distributions July 2014 2 / 110



Fourier Transforms and Tempered Distributions The Classical Fourier Transformation in L2

Subsection 1

The Classical Fourier Transformation in L2

George Voutsadakis (LSSU) Theory of Distributions July 2014 3 / 110



Fourier Transforms and Tempered Distributions The Classical Fourier Transformation in L2

The Fourier Transformation in L1(Rn)

Fix Ω to be Rn and write Lp, D, D
′, etc. for Lp(Rn), D(Rn),

D
′(Rn), etc.

For x = 〈x1, . . . ,xn〉,ξ= 〈ξ1, . . . ,ξn〉 ∈R
n, let

〈x ,ξ〉 =
n∑

j=1

xiξi .

The Fourier transform of a function f ∈ L1 is a function F (f )= f̂ on
Rn defined by

f̂ (ξ)=

∫
e−i〈x ,ξ〉f (x)dx , ξ ∈Rn

.

The Fourier transformation is the mapping

F : f 7→ f̂

defined, so far, on L1.
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Properties of the Fourier Transform

Lemma

If f ∈ L1, then, for all ξ ∈Rn, |f̂ (ξ)| ≤ ‖f ‖1.

By definition,

f̂ (ξ)=

∫
e−i〈x ,ξ〉f (x)dx .

So we have
|f̂ (ξ)| = |

∫
e−i〈x ,ξ〉f (x)dx |

≤
∫
|e−i〈x ,ξ〉||f (x)|dx

=
∫
|f (x)|dx

= ‖f ‖1.
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The Riemann-Lebesgue Lemma

Lemma (Riemann-Lebesgue Lemma)

If f ∈ L1 is an integrable function, then |f̂ (ξ)|→ 0 as |ξ|→∞.

We prove the lemma for n= 1.

Assume, first, that f ∈C 0
0 (R).

Starting from the definition and substituting y = x − π
ξ , we get

f̂ (ξ) =
∫∞

−∞ f (x)e−ixξdx =
∫∞

−∞ f (y + π
ξ )e

−iyξe−iπdy

= −
∫∞

−∞ f (y +
π
ξ )e

−iyξdy .

So f̂ (ξ)=
∫∞

−∞ f (x)e−ixξdx =−
∫∞

−∞ f (x + π
ξ )e

−ixξdx .

Taking means, we get |f̂ (ξ)| ≤ 1
2

∫∞

−∞ |f (x)− f (x + π
ξ
)|dx .

By continuity, |f (x)− f (x + π
ξ )|

|ξ|→∞
−→ 0.

By the Lebesgue Dominated Convergence Theorem, |f̂ (ξ)|
|ξ|→∞
−→ 0.
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The Riemann-Lebesgue Lemma (Cont’d)

Now suppose that f ∈ L1.

The key result is that C 0
0 is dense in L1.

So, given ε> 0, there exists g ∈C 0
0 , such that ‖f −g‖1 < ε.

Thus, using the preceding slide, we get

|f̂ (ξ)| = |
∫∞

−∞ f (x)e−ixξdx |

= |
∫∞

−∞ (f (x)−g(x)+g(x))e−ixξdx |

≤ |
∫∞

−∞ (f (x)−g(x))e−ixξdx |+ |
∫∞

−∞g(x)e−ixξdx |

≤ ε+|
∫∞

−∞g(x)e−ixξdx |

|ξ|→∞
−→ ε+0.

Since ε> 0 was arbitrary, |f̂ (ξ)|→ 0 as |ξ|→∞.
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Properties of the Fourier Transform

Proposition

Let f ∈ L1 and ξk → ξ in Rn.

(a) f̂ (ξk)→ f̂ (ξ);

(b) f̂ is bounded an continuous on Rn;

(c) f̂ (ξ)→ 0 as |ξ|→∞.

(a) Suppose ξk is a sequence in Rn which converges to ξ.

|f̂ (ξk)− f̂ (ξ)| ≤

∫
|f (x)||e−i〈x ,ξk 〉−e−i〈x ,ξ〉

|dx .

Moreover, |e−i〈x ,ξk 〉−e−i〈x ,ξ〉|
ξk→ξ
−→ 0.

By Lebesgue’s Dominated Convergence Theorem, f̂ (ξk)→ f̂ (ξ).

(b) By a previous lemma and Part (a).

(c) By the preceding lemma.
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Remark on Integrability

In general f̂ may not be integrable.

Example: Consider the function

f (x)=

{
1, if x ∈ (−1,1)
0, otherwise

.

We have over R

f̂ (ξ) =
∫∞

−∞ e−ixξf (x)dx

=
∫1
−1 e

−ixξdx

= −
1
iξ
e−ixξ |1

−1

= −
1
iξ(e

−iξ−e iξ)

=
2sinξ

ξ
.

This function is not in L1.
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The Inverse Fourier Transform

When f̂ ∈ L1,

f (x)=
1

(2π)n

∫
e i〈ξ,x〉 f̂ (ξ)dξ

almost everywhere.

The right-hand side is continuous.

If we assume that f , besides being integrable, is also continuous, then
the equality holds everywhere.
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The Fourier Transform as a Map From L1 To C 0
∞

Suppose f ,g ∈ L1.

We have the linearity property

F (af +bg)= af̂ +bĝ , a,b ∈C.

Let C 0
∞ be the Banach space of continuous functions on Rn which

tend to 0 at ∞, equipped with the norm

‖f ‖ = |f |0 = sup {|f (x)| : x ∈R
n

}.

The Fourier transformation F satisfies the inequality

‖F (f )‖= |f̂ |0 ≤ ‖f ‖1.

It is therefore an injective, continuous linear map from L1 to C 0
∞.

George Voutsadakis (LSSU) Theory of Distributions July 2014 11 / 110



Fourier Transforms and Tempered Distributions The Classical Fourier Transformation in L2

Preparing for an Extension to Distributions

Suppose f ,g ∈ L1.

Then ĝ is bounded.

So f ĝ ∈ L1.

By Fubini’s Theorem,

∫
f (x)ĝ(x)dx =

∫
f (x)

∫
g(ξ)e−i〈x ,ξ〉dξdx

=
∫
g(ξ)

∫
f (x)e−i〈x ,ξ〉dxdξ.

Therefore, ∫
f (x)ĝ (x)dx =

∫
g(ξ)f̂ (ξ)dξ.
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Idea of the Extension of F

We would like to extend the definition of the Fourier transformation
from L1 to D

′.

Viewing f as a distribution and g as a test function, we may consider
applying the formula

〈f̂ ,g〉 = 〈f , ĝ 〉.

Here we run into some problems.

Suppose g in D. Then ĝ is analytic. So it cannot have compact
support unless it is identically zero.
This indicates that D is too small as a space of test functions.
Equivalently, D

′ is too large for the purpose of extension.
Suppose g is taken in E . Then it may not be integrable. As a
consequence, its Fourier transform may not exist.
So it would seem that E is too big as a space of test functions.

Thus, a new space of test functions larger than D and smaller than E

seems to be suitable for an extension of the Fourier transformation.
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Constraints on a Space of Test Functions

An appropriate test function space, call it X , should meet certain
conditions in order to serve our purpose.

(i) X should be a subspace of C∞ in order that the distributions in X ′

have derivatives of all orders;
(ii) The Fourier transformation should be “well behaved” on X , in the

sense that it maps X onto itself;
(iii) Since ∂kF (φ)=−iF (xkφ), X should be closed under multiplication by

polynomials.

With these conditions, we should also choose X as small as possible,
in order that X ′ be as large as possible.
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Subsection 2

Tempered Distributions
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Rapidly Decreasing Functions

A function φ ∈C∞ is said to be rapidly decreasing if

sup
x∈Rn

|xα∂βφ(x)| <∞,

for all pairs of multi-indices α and β.

This is equivalent to the condition that

lim
|x |→∞

|xα∂βφ(x)| = 0.

It is also equivalent to the condition that

sup
|β|≤m

sup
x∈Rn

(1+|x |2)m|∂βφ(x)| <∞, for all m ∈N0.
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The Space of Rapidly Decreasing Functions

We use S to denote the set of all rapidly decreasing functions.

S is a linear space under the usual operations of addition and
multiplication by scalars.

A function in S approaches 0 as |x | →∞ faster than any power of 1
|x |

.

Example: An example of a function in S is e−|x |.
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The Topology on S

For any φ ∈S , we define the seminorms

pαβ(φ)= sup
x∈Rn

|xα∂βφ(x)|,

with α,β ∈Nn
0 .

The countable family {pαβ} defines a Hausdorff, locally convex,
topology on S which is metrizable and complete.

With this topology, S is, therefore, a Fréchet space.

A sequence (φk) converges to 0 in S if and only if xα∂βφk(x)→ 0
uniformly on Rn as k →∞.

If φ is in S , then xα∂βφ is in S , for any pair α,β ∈Nn
0.
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Inclusion Relations Between D,S ,E

Theorem

The topological vector spaces D, S and E are related by D ⊆S ⊆ E , with
continuous injection. Moreover, D is a dense subspace of S and S is a
dense subspace of E .

The inclusion relations clearly hold between D,S and E as sets.

Let (φk) be a sequence in D which converges to 0. Then, there is a
compact set K ⊆Rn, such that (φk) lies in DK and converges to 0 in
DK . Hence, φk → 0 in S .

Let (φk) be a sequence in S which converges to 0. Then, for any
α ∈Nn

0 , ∂
αφk → 0 uniformly on every compact subset of Rn. This

means that (φk) converges to 0 in E .

The first part of the theorem is now proved.

The second part follows from the simple observation that D is dense
in E as has already been shown.
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Density of S in Lp

Theorem

S is a dense subspace of Lp, 1≤ p <∞, with the identity map from S into
LP continuous.

Let φ ∈S . Then (1+|x |2)mφ is in S , for any m> 0. So φ ∈ Lp.

Let φk → 0 in S . Then

sup
x∈Rn

(1+|x |2)m|φk(x)|
p
→ 0,

for every m as k →∞. When m> 1
2
n, (1+|x |2)−m is integrable.

We then have

‖φk‖
p
p =

∫
(1+|x |2)m|φk(x)|

p(1+|x |2)−mdx

≤ M supx∈Rn (1+|x |2)m|φk(x)|
p .

Therefore, φk → 0 in Lp.

Since D is dense in Lp, by a previous result, so is S .
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Convolution of Functions in S

The convolution φ∗ψ of any pair of functions φ,ψ in S is well
defined in Rn and is in fact an S function.

To see this, note that the integral

(φ∗ψ)(x)=

∫
φ(x −y)ψ(y)dy

is uniformly convergent in Rn. Therefore, we can write

sup
x∈Rn

|xα∂β(φ∗ψ)(x)| ≤

∫
sup
x∈Rn

|xα∂βφ(x −y)||ψ(y)|dy

≤ M

∫
|ψ(y)|dy <∞.
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Tempered Distributions

A previous theorem implies that the relation E
′ ⊆S

′ ⊆D
′ must hold

between the topological dual spaces with the identity maps from E
′ to

S
′ and from S

′ to D
′ continuous.

Further, every locally integrable function f on Rn defines a
distribution in D

′ by φ 7→
∫
f φ, φ ∈D.

For f to define a distribution in S
′ by φ 7→

∫
f φ, φ ∈S , it must,

additionally, satisfy a growth condition at ∞.

f cannot grow faster than some power of x as |x |→∞, since,
otherwise, the integral

∫
f φ will not be defined.

Example: The exponential function e |x | does not define a distribution
in S

′.

Loosely speaking, we can say that the elements of S
′ are the

distributions of polynomial growth as |x |→∞.

Hence they are called tempered distributions.
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Tempered Distributions Defined by Polynomials

(i) Any polynomial function f on Rn defines a tempered distribution by
the formula

〈f ,φ〉 =

∫
f (x)φ(x)x , φ ∈S .

Indeed, let:

k be the degree of the polynomial f ;
m> 1

2 (n+k).

Then we have

|〈f ,φ〉| ≤

∫
|f (x)φ(x)|dx

≤ M sup
x∈Rn

(1+|x |2)m|φ(x)|,

with M = ‖f (x)(1+|x |2)−m‖1.
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Multiplication of Distributions

(ii) The same definitions and properties of convergence, differentiation,
translation and reflection in the origin which were given in D

′

apply to the elements of S
′.

Since S is closed under multiplication by polynomials, we can define
the product of a polynomial P on Rn with a tempered

distribution by
PT (φ)=T (Pφ), φ ∈S .

This definition clearly extends to any C∞ function f with polynomial
growth at ∞, i.e., an f ∈C∞ for which there is a positive integer m,
such that |x |−m|∂αf (x)| remains bounded as |x |→∞, for all α ∈Nn

0.

Thus, the linear space of multipliers of D
′, which is C∞, is also

“tempered” by a growth condition before it can serve as a linear space
of multipliers of S

′.
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S is a Subspace of Lp, 1≤ p ≤∞

(iii) Suppose 1≤ p <∞ and φ ∈S .

Then for any positive integer m,

|φ(x)| = (1+|x |2)−m(1+|x |2)m|φ(x)| ≤M(1+|x |2)−m,

where M = sup {(1+|x |2)m|φ(x)| : x ∈Rn}.

Now |φ|p is integrable if m>
1
2
n
p .

Hence, S ⊆ Lp.

Moreover, any φ ∈S is bounded on Rn.

So we also have S ⊆ L∞.

Thus, S is a subspace of Lp, for 1≤ p ≤∞.
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Extension from Lp to S
′

(iv) We prove that Lp ⊆S
′, for 1≤ p ≤∞.

Suppose f ∈ Lp and φ is any C∞ function with compact support K .

|〈f ,φ〉| = |
∫
K f (x)φ(x)dx |

= |
∫
φ(x)IK (x)f (x)dx |

Hölder

≤ M |φ|0‖f ‖p.

Thus, f defines a continuous linear functional on C∞
0 in the topology

induced by S .

But C∞
0

is dense in S .

So f can be extended to a continuous linear functional of S .

More generally, any locally integrable function f , such that |x |−m|f (x)|
is bounded (almost everywhere) as |x |→∞, for some positive integer
m, defines a distribution in S

′.
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Non-Necessity of the Boundedness Condition

Consider the function f (x)= ex sin(ex ), x ∈R.

Note that for no positive integer m, does x−m|f (x)| = x−mex |sin(ex )|
remain bounded as x →∞.

Hence, f (x) cannot be dominated at ∞ by a polynomial.

However, if φ ∈S (R), then

|
∫
f (x)φ(x)dx | = |

∫
ex sin(ex )φ(x)dx |

= |
∫
φ(x)d(−cos(ex ))|

= |
∫
cos(ex )φ′(x)dx |

≤
∫
|φ′(x)|dx

=
∫
(1+x2)|φ′(x)| 1

1+x2 dx

≤ M sup(1+x2)|φ′(x)|.

Thus f defines a distribution in S
′(R).
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Tempered Distributions as Derivatives

(v) The inclusion S
′ ⊆D

′
F
.

Clearly, DF ⊆S ;
Moreover, convergence in DF implies convergence in S .

Thus, every tempered distribution is of finite order.

By a previous theorem, we conclude that every tempered distribution
is a derivative of some continuous function of polynomial growth.

Examples:

Consider again the tempered distribution ex sin(ex).
It is the first derivative of the bounded function −cos(ex ).
The powers xλ+ ,xλ− and |x |λ are examples of tempered distributions.
Each is dominated at ±∞ by |x |m, if m≥Reλ.
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Subsection 3

Fourier Transform in S
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Differentiation of Fourier Transforms

Since S ⊆ L1, the Fourier transform φ̂ of any φ ∈S exists.

Moreover,

∂k φ̂(ξ) = ∂k

∫
e−i〈x ,ξ〉φ(x)dx

=

∫
∂

∂ξk
e−i〈x ,ξ〉φ(x)dx

= − i

∫
e−i〈x ,ξ〉xkφ(x)dx

= − iF (xkφ).

The second equality, where differentiation is carried inside the integral,
is justified by the uniform convergence of the integral as a function of
ξ.
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Fourier Transforms of Derivatives

We also have

F (∂kφ)(ξ) =

∫
e−i〈x ,ξ〉∂kφ(x)dx

= iξk

∫
e−i〈x ,ξ〉φ(x)dx

(integration by-parts)
= iξk φ̂(ξ).

Using the notation Dk =−i∂k , we have the relations

F (Dkφ)= ξkF (φ), F (xkφ)=−DkF (φ).

This process may be repeated any number of times, and with respect
to any index, giving, for all α= (α1, . . . ,αn) and Dα = (−i)|α|∂α,

F (Dαφ) = ξαF (φ),

F (xαφ) = (−1)|α|Dα
F (φ).
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The Fourier Transformation on S

Theorem

The Fourier transformation is a continuous linear map from S into S .

For any φ ∈S and α,β ∈Nn
0 , we have the relations

F (Dαφ)= ξαF (φ), F (xαφ)= (−1)|α|Dα
F (φ), Dα

= (−i)|α|∂α.

These imply

ξαDβφ̂(ξ) = ξα(−1)|β|F (xβφ)=F (Dα(−x)βφ)

=
∫
e−i〈x ,ξ〉Dα[(−x)βφ(x)]dx ;

|ξαDβφ̂(ξ)| ≤
∫
|Dα[xβφ(x)]|dx

=
∫
(1+|x |2)−m(1+|x |2)m|Dα[xβφ(x)]|dx .

We can choose m, so that
∫
(1+|x |2)−mdx =M <∞.

Then |ξαDβφ̂(ξ)| ≤ supx∈Rn (1+|x |2)m|Dα[xβφ(x)]|M.

But φ is in S . So the right side is finite. Hence, φ̂ is in S .

Now F is linear and φ̂→ 0 as φ→ 0 in S . So F is continuous on S .
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Example: A Special Fourier Transform

Proposition

We have
F

(
e−

1
2 |x |

2
)
= (2π)n/2e−

1
2 |ξ|

2
.

Let γ(x)= e−
1
2 |x |

2
, x ∈Rn.

For n= 1, γ satisfies the differential equation γ′(x)+xγ(x)= 0, x ∈R.

Taking the Fourier transform on the left, using

F (Dαφ)= ξαF (φ), F (xαφ)= (−1)|α|Dα
F (φ), Dα

= (−i)|α|∂α,

we obtain

F (γ′(x)+xγ(x)) = F (γ′(x))+F (xγ(x))
= ξF (γ(x))+ (−DF (γ(x)))
= ξγ̂(ξ)+ γ̂′(ξ).

Thus, ξγ̂(ξ)+ (γ̂)′(ξ)= 0, ξ ∈R.
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Example (Cont’d)

We found ξγ̂(ξ)+ (γ̂)′(ξ)= 0, ξ ∈R.

Its solution is given by γ̂(ξ)= ce−
1
2 ξ

2
.

The initial condition gives c = γ̂(0)=
∫∞

−∞ e−
1
2x

2
dx = (2π)1/2.

Therefore, γ̂(ξ)= (2π)1/2e−
1
2 ξ

2
.

Suppose, next, that n≥ 1.

Then we can write

γ̂(ξ) =
∫
Rn

∏n
k=1

e−ixkξk e−
1
2x

2
k dx

=
∏n

k=1

∫∞

−∞ e−ixkξk−
1
2 x

2
k dxk

=
∏n

k=1
γ̂(ξk)

= (2π)
1
2ne−

1
2 |ξ|

2
.
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The Fourier Inversion Formula in S

Theorem

If φ ∈S , then

φ(x)=F
−1(φ̂)(x)= (2π)−n

∫
e i〈x ,ξ〉φ̂(ξ)dξ.

For any φ,ψ ∈S , we have, using Fubini’s Theorem,
∫
φ̂(x)ψ(x)e i〈ξ,x〉dx =

∫
[
∫
e−i〈y ,x〉φ(y)dy ]ψ(x)e i〈ξ,x〉dx

=
∫
φ(y)[

∫
e−i〈y−ξ,x〉ψ(x)dx ]dy

=
∫
φ(y)ψ̂(y −ξ)dy

=
∫
φ(ξ+y)ψ̂(y)dy .

Furthermore, when ψ ∈S and ε> 0,

F (ψ(εx))(y)=

∫
e−i〈y ,x〉ψ(εx)dx =

∫
e
−i

〈
y ,

ξ
ε

〉
ψ(ξ)

1

εn
dξ=

1

εn
ψ̂

(y
ε

)
.
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The Fourier Inversion Formula in S (Cont’d)

Using this, we get

∫
φ̂(x)ψ(εx)e i〈ξ,x〉dx =

∫
φ(ξ+y)F (ψ(εx))(y)dy

=
∫
φ(ξ+y)ψ̂(y

ε
) 1
εn
dy

=
∫
φ(ξ+y)ψ̂(y

ε
)d(y

ε
)

=
∫
φ(ξ+εy)ψ̂(y)dy .

Since these integrals are uniformly convergent, we can take the limit
as ε→ 0 inside the integral sign.

The result is ψ(0)
∫
φ̂(x)e i〈ξ,x〉dx =φ(ξ)

∫
ψ̂(y)dy .

If we choose ψ(x)= e−
1
2 |x |

2
, then:

ψ(0)= 1.∫
ψ̂(y)dy = (2π)

1
2n

∫
e−

1
2 |y |

2
dy = (2π)n.

So we get
∫
φ̂(x)e i〈ξ,x〉dx =φ(ξ)(2π)n.
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A Topological Isomorphism

We showed that F is a continuous linear map from S into S .

We also showed that an inversion formula exists.

Thus, the Fourier transformation defines a topological isomorphism

from S onto S .

This means that it is a bijection from S to S which, in addition,
preserves:

The algebraic properties of the linear space S (linearity);
The topological properties of S (homeomorphism).
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Properties of Fourier Transforms

Recall that φψ and φ∗ψ are both in S when φ,ψ ∈S .

Theorem

If φ,ψ ∈S , then:

(a)
∫
φ̂ψ=

∫
φψ̂;

(b)
∫
φψ= (2π)−n

∫
φ̂ψ̂; (Parseval’s Relation)

(c) F (φ∗ψ)= φ̂ψ̂;

(d) F (φψ)= (2π)−nφ̂∗ ψ̂.

(a) We get the conclusion from the following upon setting ξ= 0.
∫
φ̂(x)ψ(x)e i〈ξ,x〉dx =

∫∫
φ(y)e−i〈y ,x〉dyψ(x)e i〈ξ,x〉dx

=
∫
φ(y)

∫
ψ(x)e−i〈y−ξ,x〉dxdy

=
∫
φ(y)ψ̂(y −ξ)dy

=
∫
φ(y +ξ)ψ̂(y)dy .
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Properties of Fourier Transforms (b)

(b) We have
̂̂
ψ(ξ) =

∫
e−i〈ξ,x〉ψ̂(x)dx

=
∫
e i〈ξ,x〉ψ̂(x)dx

= (2π)nψ(x)

= (2π)nψ(x).

Now in Part (a), replace ψ by (2π)−nψ̂ to get

(2π)−n
∫
φ̂ψ̂ = (2π)−n

∫
φ

̂̂
ψ

= (2π)−n
∫
φ(2π)nψ

=
∫
φψ.
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Properties of Fourier Transforms (c)

(c) Using Fubini’s Theorem, we get

F (φ∗ψ)(ξ) =
∫
e−i〈ξ,x〉(φ∗ψ)(x)dx

=
∫
e−i〈ξ,x〉[

∫
φ(y)ψ(x −y)dy ]dx

=
∫
φ(y)[

∫
e−i〈ξ,x〉ψ(x −y)dx ]dy

=
∫
φ(y)[

∫
e−i〈ξ,y+η〉ψ(η)dη]dy

=
∫
e−i〈ξ,y 〉φ(y)dy

∫
e−i〈ξ,η〉ψ(η)dη

= φ̂(ξ)ψ̂(ξ).
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Properties of Fourier Transforms (d)

(d) The inversion formula gives

φ(x) = (2π)−n
∫
e i〈x ,ξ〉φ̂(ξ)dξ= (2π)−n ̂̂φ(−x);

̂̂φ(x) = (2π)nφ(−x).

Using Part (c), we now get

(φ̂∗ ψ̂)(ξ) = F
−1( ̂̂φ ̂̂ψ)(ξ)

= (2π)−n
∫
e i〈ξ,x〉 ̂̂φ(x) ̂̂ψ(x)dx

= (2π)n
∫
e i〈ξ,x〉φ(−x)ψ(−x)dx

= (2π)n
∫
e−i〈ξ,x〉φ(x)ψ(x)dx

= (2π)nF (φψ)(ξ).
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Example

The equation F (φ∗ψ)= φ̂ψ̂ can be used to construct two nonzero
functions φ,ψ ∈S , such that φ∗ψ= 0.

Let φ0,ψ0 6= 0 be in D, such that suppφ0∩ suppψ0 =;.

Define φ=F
−1(φ0) and ψ=F

−1(ψ0).

Since φ0,ψ0 ∈S and F is bijective, φ and ψ are in S .

We now have

F (φ∗ψ)=F (φ)F (ψ)=φ0ψ0 = 0.

This implies that φ∗ψ= 0.

On the other hand, suppose φ ∈S and φ∗φ= 0.

Then 0=F (φ∗φ)= [F (φ)]2.

So F (φ)= 0.

Therefore, φ= 0.

George Voutsadakis (LSSU) Theory of Distributions July 2014 42 / 110



Fourier Transforms and Tempered Distributions Fourier Transform in S
′

Subsection 4

Fourier Transform in S
′
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Fourier Transform of a Distribution

Definition

For any T ∈S
′, the Fourier transform F (T )= T̂ is defined by

T̂ (φ)=T (φ̂), φ ∈S .

Note that:

φ̂ ∈S , for every φ ∈S ;
The Fourier transformation is continuous on S .

It now follows that T̂ ∈S
′, for every T ∈S

′.
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Fourier Transform of a Distribution

S can be considered a subspace of S
′.

The function ψ ∈S corresponds to Tψ ∈S
′.

In this case
T̂ψ(φ)=Tψ(φ̂)

∫
φ̂ψ=

∫
φψ̂

= Tψ̂(φ).

Hence, T̂ψ =Tψ̂.

F :S ′ →S
′ is continuous in the (weak) topology of S

′.

This follows from the continuity of F :S →S .

Suppose Tk →T in S
′ and φ ∈S .

Then
T̂k(φ)=Tk(φ̂)→T (φ̂)= T̂ (φ).

Thus, if Tk →T in S
′, then T̂k → T̂ in S

′.

This means that F :S ′ →S
′ is continuous in the topology of S

′.
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The Case of an L1 Function

Suppose f is an L1 function. Then f̂ is a C 0
∞ function.

Therefore, Tf̂ ∈S
′.

Hence, for any φ ∈S ,

Tf̂ (φ) =

∫
f̂ (ξ)φ(ξ)dξ

=

∫[∫
e−i〈ξ,x〉f (x)dx

]
φ(ξ)dξ

=

∫
f (x)

[∫
e−i〈x ,ξ〉φ(ξ)dξ

]
dx

=

∫
f (x)φ̂(x)dx

= Tf (φ̂).

So, for all φ ∈S , T̂f (φ)=Tf (φ̂)=Tf̂ (φ) (i.e., the Fourier transform
of T , as a distribution, coincides with its transform as an L1 function).
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The Fourier Transformation in S
′

Theorem

The Fourier transformation F from S
′ to S

′ with the inversion formula

̂̂T = (2π)nT

̂
, T ∈S

′
,

is a topological isomorphism.

We define the inverse Fourier transform of T ∈S
′ by

F
−1(T )(φ)=T (F−1(φ)), φ ∈S .

Then F
−1 is also a continuous map from S

′ into S
′.

Moreover, F
−1(T̂ )(φ̂)= T̂ (F−1(φ̂))= T̂ (φ)=T (φ̂).

Using equation ̂̂φ(x)= (2π)nφ(−x), we get, for all φ ∈S ,

̂̂
T (φ)=T ( ̂̂φ)= (2π)nT (φ

̂
)= (2π)nT

̂
(φ).

Hence, ̂̂
T = (2π)nT

̂
, T ∈S

′.
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Properties of the Fourier Transform in S
′

The definition of the Fourier transform of a tempered distribution by
duality carries the properties of the Fourier transformation in S into
S

′.

Recall the equations

F (Dαφ)= ξαF (φ), F (xαφ)= (−1)|α|Dα
F (φ), Dα

= (−i)|α|∂α.

Recall, also, that, for every T ∈S
′, multiplication of T by any

polynomial P has been defined by

PT (φ)=T (Pφ), φ ∈S .

Hence, we have, for every T ∈S
′,

F (DαT ) = ξαF (T );
F (xαT ) = (−1)|α|Dα

F (T ).
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Example

For any φ ∈S , we have

〈δ̂,φ〉 = 〈δ, φ̂〉 = φ̂(0)= 〈1,φ〉.

Hence, δ̂= 1.

We know that ̂̂δ= (2π)nδ

̂
= (2π)nδ.

So 1̂=
̂̂δ= (2π)nδ.

Now let α ∈Nn.

We know F (DαT )= ξαF (T ), F (xαT )= (−1)|α|Dα
F (T ).

Hence the results above may be generalized to

F (Dαδ) = ξα,

F (xα) = (−1)|α|(2π)nDαδ.
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Even and Odd Distributions

A distribution T ∈D
′ is said to be:

even if T

̂
=T , in the sense that T (φ

̂
)=T (φ), for every φ ∈D;

odd if T

̂
=−T , in the sense that T (φ

̂
)=−T (φ), for every φ ∈D.

When T is an even distribution in S
′, for any φ ∈S ,

T̂ (φ

̂
)= �T (φ

̂
)=T (φ̂)

�
T even
= T (φ̂)= T̂ (φ).

Therefore T̂ is even.

Conversely, if T̂ is even, we can also show that T is even.

Similarly, T is odd if and only if T̂ is odd.

Taking into account ̂̂T = (2π)nT

̂
, T ∈S

′, we also get

F (T )=

{
(2π)nF−1(T ), if T is even
−(2π)nF−1(T ), if T is odd

.
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Example

Let T = pv( 1
x ), x ∈R.

Claim: T is odd.

If φ ∈D(R), then

〈T ,φ

̂
〉 = lim

ε→0

∫

|x |≥ε

1
xφ(−x)dx

= − lim
ε→0

∫

|x |≥ε

1
xφ(x)dx

= −〈T ,φ〉.
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Example (Cont’d)

Claim: For T = pv( 1
x
), T̂ =−2πiH +πi .

We have

〈xT ,φ〉 = 〈T ,xφ〉 = lim
ε→0

∫

|x |≥ε
φ(x)dx

=

∫
φ(x)dx = 〈1,φ〉.

We conclude that xT = 1. Therefore, F (xT )= 1̂= 2πδ.

But F (xT )= −DT̂ = i dT̂
dξ

. Hence, dT̂
dξ

=−2πiδ.

This implies that T̂ =−2πiH +c , for some constant c .

But T̂ is odd. So this constant satisfies −2πi +c =−c . Thus,

T̂ =−2πiH+πi .
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Example (Cont’d)

We saw that for T = pv( 1
x ), T̂ =−2πiH +πi .

Claim: We have F
−1(H)= 1

2
δ− 1

2πi pv 1
x .

The expressions for Ĥ and F
−1(H) can now be derived.

−2πi Ĥ +2π2iδ = −2πi Ĥ +πi 1̂=
̂̂T

= 2πT

̂
(since ̂̂T = (2π)nT

̂
)

= −2πT . (since T is odd)

Hence, Ĥ =πδ− ipv 1
x
. On the other hand,

T = F
−1(T̂ )

= −2πiF−1(H)+πiF−1(1)
= −2πiF−1(H)+πiδ.

Therefore,

F
−1(H)=

1

2
δ−

1

2πi
pv

1

x
.
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Subsection 5

Fourier Transform in L2
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L2 Norm and Inner Product

Let Ω be an open subset of Rn.

L2(Ω) is the Banach space of (Lebesgue) square integrable

complex functions on Ω under the norm

‖f ‖2 =

[∫

Ω

|f (x)|2dx

]1/2

.

The Schwarz inequality gives, for all f ,g ∈ L2(Ω),
∣∣∣∣
∫

Ω

f (x)g(x)dx

∣∣∣∣≤‖f ‖2‖g‖2.

Consequently, the complex number

(f ,g)=

∫

Ω

f (x)g(x)dx

is always finite.

It is called the inner product of f ,g in L2.
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Some Properties and Remarks

We have

(f , f )=

∫

Ω

|f (x)|2dx = ‖f ‖2
2.

We use L2 to denote L2(Rn).

L2 is not a subspace of L1.

So the definition f̂ (ξ)=
∫
e−i〈x ,ξ〉f (x)dx cannot be applied to all L2

functions.

Suppose, on the other hand, that f ∈ L1∩L2.

Then f̂ is also in L2.

So Parseval’s relation gives

‖f ‖2 = (2π)−n/2‖f̂ ‖2.
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Plancherel’s Theorem

Parseval’s relation
∫
φψ= (2π)−n

∫
φ̂ψ̂, which was proved in S , will

now be shown to hold in L2 as a subspace of S .

Theorem (Plancherel)

If f ∈ L2, then f̂ ∈ L2 and

‖f̂ ‖2 = (2π)n/2‖f ‖2.

When we set ψ=φ in Parseval’s relation, we obtain

‖φ‖2 = (2π)−n/2‖φ̂‖2, φ ∈S .

C∞
0

is dense in L2. Also, C∞
0

⊆S ⊆ L2. Thus, S is also dense in L2.

Moreover, convergence in S implies convergence in L2.

So the preceding equation may be extended to L2.
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Parseval’s Relation in L2

Recall that, for all f ,g ∈ L2,

(Parallelogram Law) ‖f +g‖2
2
= (f +g , f +g)= ‖f ‖2

2
+2Re(f ,g)+‖g‖2

2
;

(Plancheret’s Theorem) ‖f̂ ‖2 = (2π)n/2‖f ‖2.

Corollary (Parseval’s Relation)

For all f ,g ∈ L2,
(f̂ , ĝ)= (2π)n(f ,g).

We have (for real f ,g)

2(f̂ , ĝ) = ‖f̂ + ĝ‖2
2−‖f̂ ‖2

2−‖ĝ‖2
2

= (2π)n‖f +g‖2
2− (2π)n‖f ‖2

2− (2π)n‖g‖2
2

= (2π)n(‖f +g‖2
2−‖f ‖2

2−‖g‖2
2)

= (2π)n2(f ,g).

Then we may reason by real and imaginary parts.
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Example

Suppose f ∈S
′ satisfies the following differential equation in Rn,

where c > 0,
(−∆+c)f = g .

If g ∈ L2, then we can show that f ∈ L2.

More generally, Dm
k
f ∈ L2, for all 0≤m≤ 2, 1≤ k ≤ n.

We have

F [(−∆+c)f ]=F [(D2
1 +·· ·+D2

n +c)f ]= (ξ2
1+·· ·+ξ2

n+c)f̂ .

By hypothesis, (−∆+c)f ∈ L2. So (|ξ|2+c)f̂ ∈ L2. Hence

(|ξ|2+1)f̂ =
|ξ|2+1

|ξ|2+c
(|ξ|2+c)f̂ ∈ L2

.

With ξ= (ξ1, . . . ,ξn) ∈R
n, |ξk |

m ≤ |ξ|2+1, 0≤m≤ 2, 1≤ k ≤ n.

This implies that F (Dm
k
f )= ξm

k
f̂ ∈ L2. Hence, Dm

k
f ∈ L2.
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Subsection 6

Fourier Transform in E
′
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Analytic and Entire Functions

Let f be defined on an open connected set Ω in Cn.

f is analytic in Ω if, for all k ∈ {1, . . . ,n}, with z1, . . . ,zk−1,zk+1, . . . ,zn
all fixed, the function

fk(zk)= f (z1, . . . ,zk−1,zk ,zk+1, . . . ,zn)

of the single variable zk is analytic on

{zk ∈C : z = (z1, . . . ,zk−1,zk ,zk+1, . . . ,zn) ∈Ω}.

When f is analytic in Cn, it is called entire.
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Analytic Functions and Power Series

As in the single variable theory, if f is analytic in Ω, it has a power
series expansion about every point c ∈Ω,

f (z)=
∑
α
aα(z −c)α,

valid for every point z in the open ball

B(c ,r)=



z ∈Ω : |z −c | =

[
n∑

k=1

|zk −ck |
2

]1/2

< r



 ,

for some positive number r .

The summation index α runs through Nn
0 .

The aα are the Taylor coefficients

aα =
1

α!
∂αz f (c).
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The Cauchy-Riemann Equations

Let f be defined on an open connected set Ω in Cn.

When zk = xk + iyk , we shall use the notation

∂zk =
1
2
(∂xk − i∂yk );

∂zk = ∂zk =
1
2
(∂xk + i∂yk ), k = 1, . . . ,n,

The Cauchy-Riemann equations take the form

∂zk f =
1

2

[
∂f

∂xk
+ i

∂f

∂yk

]
= 0, k = 1, . . . ,n.

When Ω is an open subset of Rn, we shall say that f is (real) analytic
in Ω if it has a power series expansion about every point c ∈Ω, with z

replaced by x ∈B(c ,r)⊆Rn.

This is so if and only if the function f can be extended to an open
neighborhood of Ω in Cn, where f is (complex) analytic.
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Analyticity of the Fourier Transform in E
′

Theorem

The Fourier transform of T ∈ E
′ is an analytic function in Rn given by

T̂ (ξ)=Tx(e
−i〈x ,ξ〉).

Furthermore, the right-hand side may be extended as an analytic function
to Cn, known as the Fourier-Laplace transform of T .

As a function of ξ, Tx(e
−i〈x ,ξ〉) is in C∞.

Thus, it remains to show that the claimed equation holds in S
′.

By definition, for any φ ∈D, we have T̂ (φ)=T (φ̂).

If we consider φ as an element in E
′, then, by applying a previous

theorem to distributions with compact support:

〈T̂ (ξ),φ〉 = 〈Tx , φ̂〉 =Tx(
∫
e−i〈ξ,x〉φ(ξ)dξ)

=
∫
Tx(e

−i〈ξ,x〉)φ(ξ)dξ= 〈Tx(e
−i〈ξ,x〉),φ〉.
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Analyticity of the Fourier Transform in E
′ (Cont’d)

We got, by working with φ ∈D,

T̂ (ξ)=Tx(e
−i〈x ,ξ〉).

But D is dense in S . So the equation holds in S
′.

By replacing ξ by ζ= ξ+ iη, T̂ may be extended into Cn.

There, it is also a C∞ function of ζ.

∂ζk T̂ and ∂ζk T̂ may be computed by differentiating e−i〈x ,ζ〉.

The exponential function is entire.

Therefore, the same holds for T̂ (ζ).

Hence, T̂ is analytic in Rn.
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Example

Let T be a distribution in R, such that T (m) = δ, for some m> 0.

Applying the Fourier transformation and taking into account
F (DαT )= ξαF (T ), we get

(iξ)mT̂ = 1.

This gives

T̂ =
1

(iξ)m
.

Now T̂ is singular at ξ= 0.

By the preceding theorem, T cannot have compact support.

In other words, any fundamental solution of the operator dm

dxm in R

cannot have compact support.
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Example

Suppose T is a distribution with compact support such that
〈Tx ,xα〉 = 0, for every α ∈Nn

0.

We prove that T = 0, and thereby conclude that the set of all
polynomials in Rn with constant coefficients is dense in C∞.

(i) By hypothesis, T ∈ E
′.

By the theorem, T̂ ∈ E
′ can be extended as an analytic function f (ζ)

in Cn, such that f (ζ)=Tx(e
−i〈x ,ζ〉). For any α ∈Nn

0 ,

∂αf (ζ)=Tx(∂
α
ζ e

−i〈x ,ζ〉)= (−i)|α|Tx(x
αe−i〈x ,ζ〉).

At ζ= 0, for all α ∈Nn
0 ,

∂αf (0)= (−i)|α|Tx(x
α)= 0.

But f is an entire function in Cn. So it is represented by the power
series f (ζ)=

∑
α

1
α!∂

αf (0)ζα = 0, for any ζ ∈Cn.

Thus f , and therefore T̂ vanishes identically.

Since the Fourier transformation is injective in S
′, T = 0.
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Example (Cont’d)

(ii) Let P be the set of all polynomials in Rn with constant coefficients.

Assume that P is a proper subset of C∞.

By the Hahn-Banach theorem, there exists a nonzero continuous linear
functional T on C∞, such that

〈T ,P〉 = 0, for every P ∈P .

This implies, in particular, that T is a nonzero distribution with
compact support which satisfies 〈T ,xα〉 = 0, for every α ∈Nn.

However, this contradicts Part (i).
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Convolution of S
′ by E

′

Theorem

If T1 ∈S
′ and T2 ∈ E

′, then T1∗T2 ∈S
′ and

F (T1∗T2)=F (T2)F (T1),

the right-hand side being a well-defined distribution because F (T2) is C∞.

Let φ ∈D. By properties of convolution and preceding results:
(T1∗T2)(φ)= (T1∗T2∗φ

̂
)(0);

(T2∗φ

̂
)(x)=T2(τxφ) is a C∞

0
function.

Moreover, we have

(T1∗T2∗φ

̂
)(0) = 〈T1y ,(T2∗φ

̂
)(−y)〉

= 〈T1y ,T2(τ−yφ)〉

= 〈T1y ,T

̂
2(τyφ

̂
)〉

= 〈T1y ,(T

̂
2∗φ)(y)〉.

Therefore (T1∗T2)(φ)=T1(T

̂
2∗φ).
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Convolution of S
′ by E

′ (Cont’d)

We found (T1∗T2)(φ)=T1(T

̂
2∗φ).

Let φ be in S .

Then
(T

̂
2∗φ)(x)=T

̂
2(τxφ

̂
)=T2(τ−xφ).

So T

̂
2∗φ is also in S .

This holds, since, if T2 is of order m, then

sup
x∈Rn

|α+β|≤k

|xα∂β(T

̂
2∗φ)(x)| ≤Mk sup

x∈Rn

|α+β|≤k+m

|xα∂βφ(x)|.

Thus, T1∗T2 is a continuous linear functional on S .
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Convolution of S
′ by E

′ (Cont’d)

We now compute its Fourier transform.

Let φ ∈S so that φ̂ is also in S .

By a previous equation

(T1∗T2)(φ̂) = T1(T

̂
2∗ φ̂);

(T

̂
2∗ φ̂)(x) = T2(τ−x φ̂)=T2y (τ−x φ̂(y))=T2y (φ̂(x +y)).

If φ ∈D, then we can write

T2y (φ̂(x +y)) = T2y (
∫
e−i〈x+y ,ξ〉φ(ξ)dξ)

=
∫
T2y (e

−i〈y ,ξ〉)φ(ξ)e−i〈x ,ξ〉dξ

=
∫
T̂2(ξ)φ(ξ)e

−i〈x ,ξ〉dξ.

(T̂ (ξ)=Tx(e
−i〈x ,ξ〉))
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Convolution of S
′ by E

′ (Conclusion)

Similarly, for φ ∈D,

(T1∗T2)(φ̂) = T1x (T2y (φ̂(x +y)))

= T1x (
∫
T̂2(ξ)φ(ξ)e

−i〈x ,ξ〉dξ)

=
∫
T̂1(ξ)T̂2(ξ)φ(ξ)dξ

= T̂1T̂2(φ).

Since D is dense in S , this equation holds for all φ ∈S .

But, for all φ ∈S ,

(T1∗T2)(φ̂)= áT1∗T2(φ).

So áT1∗T2 = T̂1T̂2.
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Example (Part (i))

(i) Let Ta =
1
2
(δa+δ−a), for some real number a.

To find the Fourier transform of Ta, we shall first compute δ̂a.

We have, for all φ ∈D(R),

〈δ̂a,φ〉 = 〈δa, φ̂〉

= φ̂(a)

=
∫
e−ixaφ(x)dx

= 〈e−iax ,φ〉.

Hence, δ̂a(ξ)= e−iaξ.

It follows that

T̂a(ξ)=
1

2
(e−iaξ+e iaξ)= cosaξ.
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Example (Part (ii))

(ii) We verify that
F (Ta∗Tb)=F (Ta)F (Tb).

We use
(δa ∗δb)(x) =

∫
δa(y)δb(x −y)dy

= δb(x −a)
= τaδb(x)
= δa+b(x).

Now we get

Ta∗Tb = (1
2
(δa+δ−a))∗ (

1
2
(δa+δ−a))

=
1
4
(δa+b+δ−(a+b)+δa−b +δ−(a−b)).

So
F (Ta ∗Tb) =

1
4
[2cos(a+b)ξ+2cos(a−b)ξ]

= cosaξcosbξ
= F (Ta)F (Tb).
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Example (Part (iii))

(iii) Now compute the Fourier transforms of sinx and cosx .

F (cosx) = F (cos(1x))

=
̂̂
T1

= 2πT

̂
1

= π(δ

̂
1+δ

̂
−1)

= π(δ−1+δ1);

F (sinx) = F (−iD cosx)
= − iξF (cosx)
= − iπξ(δ1+δ−1)
= iπ(δ−1−δ1).
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The Paley-Wiener-Schwartz Theorem

The Paley-Wiener-Schwartz Theorem

(i) If T ∈ E
′ and suppT ⊆ {x ∈Rn : |x | ≤ r } =B(0,r), then there is a

constant M and a nonnegative integer N, such that

|T̂ (ζ)| ≤M(1+|ζ|)Ner |Imζ|
, ζ ∈Cn

.

(ii) Conversely, every entire function in Cn satisfying the preceding
inequality is the Fourier-Laplace transform of a distribution with
support contained in B(0,r).

(iii) If T ∈C∞
0

and suppT ⊆B(0,r), then, for every integer m≥ 0, there is
a constant Mm, such that

|T̂ (ζ)| ≤Mm(1+|ζ|)−mer |Imζ|
, ζ ∈Cn

.

(iv) Conversely, every entire function in Cn satisfying the equation above,
for every m ∈N0 is the Fourier-Laplace transform of a C∞

0 function

with support contained in B(0,r).
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Proof of Paley-Wiener-Schwartz Theorem Part (i)

(i) Let K = suppT ⊆B(0,r).

Let ψ be a C∞
0 function which equals 1 on a neighborhood of K .

Then we have T (φ)=T (ψφ), for all φ ∈ E .

Now ψφ is in D. By a previous theorem, T is of finite order on D.

So there is an integer N ≥ 0 and a constant M1, such that

|T (φ)| = |T (ψφ)| ≤M1|ψφ|N .

Suppose suppψ=K0 ⊇K ◦ ⊇K .

By Leibniz’s formula, there exists M2 > 0, such that

|ψφ|N ≤M2sup{|∂αφ(x)| : x ∈K0, |α| ≤N}.

Since the inequality is true, for every K0, such that K ◦
0 ⊇K , it is holds

for K .
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Proof of Paley-Wiener-Schwartz Theorem (Part (i) Cont’d)

Setting φ(x)= e−i〈x ,ζ〉 and ζ= ξ+ iη, we obtain

sup {|∂αφ(x)| : x ∈K , |α| ≤N} = sup {|∂αe−i〈x ,ξ+iη〉| : x ∈K , |α| ≤N}

≤ sup {|ζ||α|e〈x ,η〉 : |x | ≤ r , |α| ≤N}

≤ (1+|ζ|)N er |η|.

Applying the preceding three inequalities, we get

|T̂ (ζ)| = |Tx (e
−i〈x ,ζ〉)|

≤ M1|ψe
−i〈x ,ζ〉|N

≤ M2M1 sup {|∂αe−i〈x ,ζ〉| : x ∈K , |α| ≤N}

≤ M2M1(1+|ζ|)Ner |Imζ|.
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Proof of Paley-Wiener-Schwartz Theorem Part (ii)

(ii) Suppose T is a C∞
0

function.

Then we can use F (Dαφ)= ξαF (φ), to write, for any α ∈Nn
0 ,

ζαT̂ (ζ)=

∫
e−i〈x ,ζ〉DαT (x)dx .

Assume, moreover, that suppT in B(0,r).

Then the expression above yields

|ζαT̂ (ζ)| ≤Mer |η|,

for some constant M.

From this, Part (ii) follows.
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Proof of Paley-Wiener-Schwartz Theorem Part (iii)

(iii) Suppose that, for all m, there exists Mm, such that

|T̂ (ζ)| ≤Mm(1+|ζ|)−mer |Imζ|
, ζ ∈Cn

.

Then the integral

(2π)−n
∫
T̂ (ξ)e i〈x ,ξ〉dξ

is absolutely convergent on Rn.

It clearly defines the inverse Fourier transform T (x) of T̂ (ξ).

Now, for α ∈Nn
0 ,

∂αT (x)= (−i)|α|(2π)−n
∫
T̂ (ξ)ξαe i〈x ,ξ〉dξ

is also absolutely convergent.

We conclude that T is in C∞.
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Proof of Paley-Wiener-Schwartz Theorem (Part (iii) Cont’d)

We show, next, that T has compact support.

The preceding integrand extends to an entire function on Cn.
So we can use Cauchy’s Theorem with each variable ζ1, . . . ,ζn to shift
the integration from Rn into Cn.

For any fixed η ∈Rn, we get

T (x)= (2π)−n
∫
T̂ (ξ+ iη)e i〈x ,ξ+iη〉dξ.

Using the hypothesis, with m= n+1,

|T (x)| ≤ (2π)−nMn+1e
−〈x ,η〉+r |η|

∫
(1+|ξ|)−n−1dξ

≤ Mer |η|−〈x ,η〉.

Taking η= tx we get

|T (x)| ≤Me−t|x |(r−|x |).

Letting t →∞, we get T (x)= 0, for all x ∈Rn, with |x | > r .

Therefore, the support of T must lie in B(0,r).
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Proof of Paley-Wiener-Schwartz Theorem Part (iv)

(iv) Let T̂ (ζ) be an entire function which satisfies

|T̂ (ζ)| ≤M(1+|ζ|)N er |Imζ|
.

Then T̂ (ξ) has polynomial growth at ∞. So it lies in S
′.

Its inverse Fourier transform T must also be in S
′.

We show, next, that suppT is compact.

We regularize T using the C∞ functions βλ, λ> 0, satisfying
suppβλ ⊆B(0,λ).

Now Tλ =T ∗βλ is in C∞.

Its Fourier transform, according to a previous theorem, is T̂λ = β̂λT̂ .

For each λ> 0, T̂λ(ξ) extends to an analytic function on Cn.
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Proof of Paley-Wiener-Schwartz Theorem (Part (iv) Cont’d)

T̂ satisfies, for some M and N ≥ 0,

|T̂ (ζ)| ≤M(1+|ζ|)Ner |Imζ|
, ζ ∈Cn

.

βλ satisfies, for all m≥ 0 and some Mm,

|β̂λ(ζ)| ≤Mm(1+|ζ|)−meλ|Imζ|
, ζ ∈Cn

.

So T̂λ must satisfy, for m= 0,1,2, . . . and ζ ∈Cn,

|T̂λ(ζ)| ≤MMm(1+|ζ|)N−me(r+λ)|Imζ|
.

Choosing m greater than N, we see that T̂k satisfies the hypothesis of
Part (iii) with r replaced by r +λ.

So, by Part (iii), suppTλ ⊆B(0,r +λ).

Since Tλ →T as λ→ 0,

suppT ⊆
⋂

{B(0,r +λ) :λ> 0} =B(0,r).
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Subsection 7

The Cauchy-Riemann Operator
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Fourier Transformation with Respect to Some Variables

Suppose T ∈S
′(Rn1 ×Rn2), with n1+n2 = n.

The Fourier transform F1(T ) of T with respect to x ∈Rn1 is
defined, for all φ ∈S (Rn1 ×Rn2), by

〈F1(T ),φ〉 = 〈T ,F1(φ)〉.

F1(φ) is well defined by the integral formula

F1(φ(·,y))(ξ)=

∫

Rn1

e−i〈x ,ξ〉φ(x ,y)dx , ξ ∈Rn1 , y ∈R
n2 .

F1(φ(·,y))(ξ) is also denoted by φ̂(ξ,y).

It lies in S (Rn1 ×Rn2).
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Partial Differentiation

Given T ∈S
′(Rn1 ×Rn2), F1(T ) ∈S

′(Rn1 ×Rn2).

Claim: If ∂αy is a partial differential operator in y ∈Rn2 , then

F1(∂
α
yT )= ∂αyF1(T ).

We have, for all φ ∈S (Rn1 ×Rn2),

〈F1(∂
α
yT ),φ〉 = 〈∂αyT ,F1(φ)〉

= (−1)|α|〈T ,∂αyF1(φ)〉

= (−1)|α|〈T ,F1(∂
α
yφ)〉

= (−1)|α|〈F1(T ),∂αyφ〉

= 〈∂αyF1(T ),φ〉.

We note that the commutation of F1 with ∂αy on S (Rn1 ×Rn2) is
based on the linearity and continuity of F1.
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Example

Consider the differential operator in R of order m with constant
coefficients

L=

m∑

k=0

ckD
k

.

If u ∈ E
′(R) satisfies Lu = 0, then, upon transformation,

0=F (Lu)=
m∑

k=0

ckξ
k û.

Hence, û(ξ)= 0 except possibly at the zeros of the polynomial

c0+c1ξ+·· ·+cmξm.

But u has compact support.

So û is continuous. Thus, û must vanish in all R.

It follows that the ordinary differential equation Lu = 0 has only the
trivial solution in E

′.
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Example

Consider the differential operator in Rn of order m with constant
coefficients

L=
∑

|α|≤m

cαD
α

.

Let u ∈S
′ be a solution of Lu = 0.

The application of the Fourier transformation gives

0=F (
∑

cαD
αu)= (

∑
cαξ

α)û =P(ξ)û,

where P(ξ) is the polynomial
∑

|α|≤m cαξ
α.

Suppose P(ξ)= 0 only when ξ= 0. Then suppû ⊆ {0}.

By a previous theorem, û =
∑

|α|≤k aα∂
αδ, for some k .

By taking the inverse Fourier transform, u =
∑

|α|≤k bαx
α.

Thus, the only solution of Lu = 0 in S
′ for this type of operator is a

polynomial. In other words, the fundamental solution of L in S
′ is

unique up to an additive polynomial.
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The Cauchy-Riemann Operator

Consider the Cauchy-Riemann operator in R2,

∂=
1

2
(∂1+ i∂2).

The polynomial

P(iξ)=
1

2
i(ξ1+ iξ2)

vanishes only at ξ= 0.

So this operator is an example of the preceding slide.

Its fundamental solution in S
′(R2) is unique up to an additive

polynomial.

But every entire function f satisfies ∂f = 0 in R2.

Hence, the fundamental solution of ∂ in D
′(R2) is unique up to an

additive entire function.
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Example

We show that 1
πz =

1
π(x+iy )

is a fundamental solution of the

Cauchy-Riemann operator in the plane.

Since 1
|z | =

1
r ∈ L

1
loc
(R2), 1

z defines a distribution in R2.

For any φ ∈D(R2),

〈
∂
1

z
,φ

〉
= −

〈
1

z
,∂φ

〉
= −

1

2

∫

R2

1

x + iy

(
∂φ

∂x
+ i

∂φ

∂y

)
dxdy .

We change to polar coordinates. Let φ̃(r ,θ)=φ(x ,y).

Recall that ∂
∂x = cosθ ∂

∂r −
sinθ
r

∂
∂θ , ∂

∂y = sinθ ∂
∂r +

cosθ
r

∂
∂θ .

Therefore, we obtain

〈
∂
1

z
,φ

〉
=−

1

2

∫2π

0

∫∞

0

1

re iθ

[
e iθ

∂φ̃

∂r
+
i

r
e iθ

∂φ̃

∂θ

]
rdrdθ.
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Example (Cont’d)

With φ̃(r ,θ)=φ(x ,y),

〈
∂
1

z
,φ

〉
=−

1

2

∫2π

0

∫∞

0

1

re iθ

[
e iθ

∂φ̃

∂r
+
i

r
e iθ

∂φ̃

∂θ

]
rdrdθ.

By Fubini’s Theorem,

〈
∂ 1
z

,φ
〉

= −
1
2

∫2π

0

∫∞

0

∂φ̃
∂r
drdθ− 1

2
i

∫∞

0

1
r

∫2π

0

∂φ̃
dθ

dθdr

= −
1
2
[−2πφ̃(0)]−0, since φ̃(r ,2π)= φ̃(r ,0)

= πφ(0).

Therefore, ∂( 1
πz
)=δ.

It follows that any fundamental solution E of ∂ in D
′(R2) is of the

form E (z)= 1
πz +h(z), where h is an entire function in C.
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Subsection 8

Fourier Transforms and Homogeneous Distributions
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Dualizing a Linear Mapping

Let Λ be a linear mapping from Rn to Rn.

Let F (Rn) be the linear space of complex functions on Rn.

We define the map Λ
∗ : F (Rn)→F (Rn) by

Λ
∗f (x)= f (Λx), f ∈F (Rn).

Λ
∗ is also linear. For all f ,g ∈F (Rn) and a,b ∈C,

Λ
∗(af +bg)(x) = (af +bg)(Λx)

= aΛ∗f (x)+bΛ∗g(x)
= (aΛ∗f +bΛ∗g)(x).

Λ may be represented by a real n×n matrix, determined by the basis
that we choose for Rn.

It is nonsingular if the null space of Λ is {0} ⊆Rn. In this case:
The determinant detΛ is nonzero.
The inverse map Λ

−1 exists and is a linear map from R
n to R

n.
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Continuity of Λ∗

Claim: If Λ is nonsingular, then Λ
∗ maps S continuously onto S .

Let φ,ψ be functions in S . Then

〈Λ∗ψ,φ〉 =

∫
ψ(Λx)φ(x)dx

=

∫
ψ(y)φ(Λ−1y) 1

|detΛ|
dy

=

∫
ψ(y) 1

|detΛ|
Λ

−1∗φ(y)dy .

This shows that

〈Λ
∗ψ,φ〉 =

〈
ψ,

1

|detΛ|
Λ

−1∗φ

〉
.

Now note that 1
|detΛ|

Λ
−1∗φ is in S , if φ is in S .

So the function ψ in the preceding equation may be extended by
continuity from S to S

′.
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Inverse of Λ∗

We have, for every f ∈F (Rn),

f (x) = f (Λ−1
Λx)

= Λ
∗f (Λ−1x)

= Λ
∗
Λ

−1∗(x).

Therefore,
Λ

−1∗
=Λ

∗−1
.

George Voutsadakis (LSSU) Theory of Distributions July 2014 95 / 110



Fourier Transforms and Tempered Distributions Fourier Transforms and Homogeneous Distributions

The Fourier Transform of the Dual

For any φ ∈S , we have (denoting by Λ
T the transpose of Λ)

F (Λ∗φ)(ξ) =
∫
e−i〈ξ,x〉φ(Λx)dx

=
∫
e−i〈ξ,Λ−1y 〉φ(y) 1

|detΛ|
dy

=
∫
e−i〈Λ

−1T ξ,y 〉φ(y) 1
|detΛ|

dy

=
1

|detΛ|
φ̂(Λ−1T ξ).

Thus,

�Λ∗φ=
1

|detΛ|
(Λ−1T )∗φ̂, φ ∈S .

Now FΛ
∗ and 1

|detΛ|
(Λ−1T )∗F are equal and continuous on S .

So they may be extended by continuity to S
′ to obtain

�Λ∗T =
1

|detΛ|
(Λ−1T )∗T̂ , T ∈S

′
.
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Reflection Operator

Consider the reflection operator

Λx =−x , x ∈R
n

.

It is linear and continuous, for any t ∈R.

If T ∈D
′, then Λ

∗T is the distribution defined by

〈Λ
∗T ,φ〉 =

〈
T ,

1

|detΛ|
Λ

−1∗φ

〉
, φ ∈D.

In this case we have:
detΛ= (−1)n;
Λ
−1 =Λ.

So we get

〈Λ
∗T ,φ〉 =

〈
T ,

1

|(−1)n|
Λ

∗φ

〉
= 〈T ,φ

̂
〉 = 〈T

̂
,φ〉.
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Scaling Operators

A more general example is the transformation

Λtx = tx , x ∈R
n

.

It is linear and continuous, for any t ∈R, but singular when t = 0.

If T ∈D
′ and t 6= 0, then Λ

∗
tT is the distribution defined by

〈Λ
∗
tT ,φ〉 =

〈
T ,

1

|detΛt |
Λ

−1∗
t φ

〉
, φ ∈D.

In this case we have:
detΛt = tn;
Λ
−1 =Λ1/t .

So we get

〈Λ
∗
tT ,φ〉 =

〈
T ,

1

tn
Λ

∗

1/tφ

〉
.
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Homogeneous Functions and Distributions

Let d be a complex number.

A function f on Rn is homogeneous of degree d if

f (tx)= td f (x).

A distribution T is homogeneous of degree d if

Λ
∗
tT = tdT , for any t > 0.
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Homogeneous Functions vs. Homogeneous Distributions

Claim: The two definitions coincide when the function is locally
integrable in Rn, in the sense that Λ

∗
t f = td f if and only if

f (tx)= td f (x) a.e.

We have, for all φ ∈D,

〈Λ∗
t f ,φ〉 = 〈f ,

1
tn
Λ

∗

1/t
φ〉

=
∫
f (x) 1

tn
φ(x

t
)dx

=
∫
f (ty)φ(y)dy .

Suppose, first, f (tx)= td f (x) a.e..

Then 〈Λ∗
t f ,φ〉 =

∫
td f (y)φ(y)dy = 〈td f ,φ〉.

So Λ
∗
t f = td f .

Conversely, assume Λ
∗
t f = td f .

Then, for all φ ∈D,
∫
f (ty)φ(y)dy =

∫
td f (y)φ(y)dy .

Hence, by a previous result, f (ty)= td f (y) a.e..
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Example

(i) Let {T1, . . . ,Tm} be a set of nonzero distributions in Rn, such that Tk ,
1≤ k ≤m, is homogeneous of real degree dk and dk 6= dj , if k 6= j .

Claim: The set {T1, . . . ,Tm} is linearly independent over C.

Let a1T1+·· ·+amTm = 0. Without loss of generality, assume that
d1 > d2 > ·· · > dm. For any φ ∈D, we have

0=

〈
Λ

∗
t

m∑

k=1

akTk ,φ

〉
=

m∑

k=1

ak〈Λ
∗
tTk ,φ〉 =

m∑

k=1

akt
dk 〈Tk ,φ〉.

If the coefficients ak do not all vanish, let i ≥ 1 be the smallest integer
for which ai 6= 0.

If i =m, then 〈Tm,φ〉 = 0. So Tm = 0, a contradiction.
If 1≤ i <m, then ai 〈Ti ,φ〉+

∑m
k=i

ak t
dk−di 〈Tk ,φ〉 = 0, for all t > 0 and

φ ∈D. Letting t →∞, we obtain ai 〈Ti ,φ〉 = 0. But ai 6= 0. Hence,
Ti = 0, again a contradiction.
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Example

(ii) We show that ∂αδ is homogeneous of degree −n−|α|.

We have, for all φ ∈D,

〈Λ∗
t ∂

αδ,φ〉 = 〈∂αδ,
1
tnΛ

∗

1/t
φ〉

=
1
tn
〈∂αδ,φ(x

t
)〉

= (−1)|α| 1
tn
〈δ,∂αφ(x

t
)〉

= (−1)|α| 1
tn

1
t |α|

(∂αφ)(0)

= 1
tn+|α|

〈∂αδ,φ〉.

Therefore,

Λ
∗
t ∂

αδ=
1

tn+|α|
∂αδ.

In view of Part (i), we conclude that the distributions δ,δ′, . . . ,δ(m) on
R are linearly independent.
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Example

For λ≥ 0 we show that

xλ+ = xλH, x ∈R,

is homogeneous of degree λ.

We have
〈Λ∗

t x
λ
+ ,φ〉 = 〈xλ+ ,

1
tΛ

∗

1/t
φ〉

=
1
t

∫∞

0 xλφ(xt )dx

=
1
t

∫∞

0 tλyλφ(y)tdy

= 〈tλxλ+ ,φ〉.

Hence
Λ

∗
t x

λ
+ = tλxλ+ .
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Derivatives and Transforms of Homogeneous Distributions

Theorem

If T ∈S
′ is homogeneous of degree d , then ∂kT is homogeneous of degree

d −1 and T̂ is homogeneous of degree −n−d .

Let φ ∈S be homogeneous of degree d and t be a positive number.
Then, by the chain rule, ∂k [φ(tx)]= t(∂kφ)(tx). Hence,

Λ
∗
t (∂kφ)(x)= (∂kφ)(tx)=

1

t
∂k [φ(tx)]= td−1(∂kφ)(x).

This means that ∂kφ is homogeneous of degree d −1.

To obtain the result for T ∈S
′, suppose the degree of T is d .

We first note that, for all φ ∈S ,

∂k(Λ
∗
t φ)(x)= ∂k [φ(tx)]= t(∂kφ)(tx)= tΛ∗

t (∂kφ)(x).
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Derivatives and Transforms of Homogeneous Distributions

Keeping in mind Λ
−1
t =Λ1/t , we get

Λ
∗
t ∂kT (φ) = ∂kT

(
1

|detΛt |
Λ

−1∗
t φ

)

= −T (|detΛ1/t |∂kΛ
∗

1/t
φ)

= −
1
tT (|detΛ1/t |Λ

∗

1/t
∂kφ)

= −
1
tΛ

∗
tT (∂kφ)

=
1
t ∂kΛ

∗
tT (φ)

= td−1∂kT (φ).

Thus ∂kT has degree d −1.

Using the relations detΛt = tn and Λ
T
t =Λt ,

�Λ∗
tT =

1

|detΛ|
(Λ−1T )∗T̂ =

1

tn
Λ

∗

1/t T̂ , T ∈S
′
.

If T is homogeneous of degree d , td T̂ =
1
tnΛ

∗

1/t
T̂ . So Λ

∗
t T̂ =

1
tn+d

T̂ .
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Example

Consider the function

f (z)=
1

z
=

1

x + iy
.

It is locally integrable in the plane.

Clearly, |f (z)| < 1 when |z | > 1.

Hence, f defines a tempered distribution in R2.

We compute its Fourier transform.

F (zf )=F (1)= ̂̂δ= (2π)2δ

̂
= (2π)2δ.

Recalling the operator ∂= 1
2
( ∂
∂ξ + i ∂

∂η), we have,

F (zf ) = F (xf )+ iF (yf )= i ∂
∂ξ f̂ −

∂
∂η f̂

= i( ∂
∂ξ + i ∂

∂η)f̂ = 2i∂f̂ .

Therefore, i f̂
2π2 is a fundamental solution of the operator ∂.
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Example (Cont’d)

By a previous example,

i

2π
f̂ (ζ)=

1

ζ
+h(ζ),

where h is an entire function.

But f is homogeneous of degree −1 in R2.

By the theorem, f̂ is homogeneous of degree −2+1=−1.

If h is not identically 0, it must also have degree −1.

Hence,

h(tζ)=
h(ζ)

t
, t > 0.

This becomes unbounded as t→ 0.

Thus, h= 0.

So

F

(
1

z

)
= f̂ (ζ)=−

2πi

ζ
.
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Orthogonal Transformations

A linear transformation Λ :Rn →Rn is said to be orthogonal if

Λ
T
=Λ

−1
.

If Λ is orthogonal, then so is Λ
−1 and detΛ=±1.

Claim: The transformation Λ is orthogonal if and only if it is
norm-preserving.

An orthogonal transformation Λ satisfies, for all x ∈Rn,

|Λx |2 = 〈Λx ,Λx〉 = 〈x ,Λ
T
Λx〉 = 〈x ,x〉 = |x |2.

Thus, |Λx | = |x |.

Conversely, suppose |Λx | = |x |, for all x ∈Rn.

Then Λ
T
Λ= identity. This implies that Λ is orthogonal.
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Invariance

A distribution T ∈D
′ is invariant under the transformation

Λ :Rn →Rn if
Λ

∗T =T .

A function f :Rn →C is called rotation-invariant, or spherically

symmetric, if there exists a function g : [0,∞)→C, such that

f (x)= g(|x |), for all x ∈Rn.

Claim: A function is rotation invariant if and only if it is invariant
under orthogonal transformations.

Suppose f is rotation-invariant. Then

Λ
∗f (x)= f (Λx)= g(|Λx |)= g(|x |)= f (x).

So f is invariant under any orthogonal transformation Λ.

Conversely, a rotation in Rn is an orthogonal transformation.

George Voutsadakis (LSSU) Theory of Distributions July 2014 109 / 110



Fourier Transforms and Tempered Distributions Fourier Transforms and Homogeneous Distributions

Invariance of the Fourier Transform

Theorem

If T ∈S
′ is invariant under orthogonal transformations, then T̂ is also

invariant under orthogonal transformations.

Suppose Λ is an orthogonal transformation.

If T is any distribution in S
′, then

�Λ∗T =
1

|detΛ|
(Λ−1T )∗T̂ =Λ

∗T̂ .

Consequently,

Λ
∗T =T if and only if �Λ∗T = T̂ if and only if Λ

∗T̂ = T̂ .

When a distribution is represented by a rotation-invariant function, the
distribution is also said to be rotation-invariant.

The theorem implies that if T ∈S
′ is rotation invariant and T̂ is a

function, then T̂ is also rotation invariant.
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