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Subsection 1

The Classical Fourier Transformation in L2
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The Fourier Transformation in L(IR")

o Fix Q to be R"” and write LP, 9, 9', etc. for LP(R"), 2(R"),
2'(R"), etc.
o For x=(x1,...,xp}», ¢ =({1,...,6n) R, let

n
x,& =) xié.
=1
o The Fourier transform of a function f € L' is a function Z(f)=f on
R" defined by
P() = f e IO f(x)dx, EeR".
o The Fourier transformation is the mapping
F o ft

defined, so far, on L1.
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Properties of the Fourier Transform

If fe Ll then, for all £€ R", |F(&)l < IIfl1.

o By definition,
7(6) = f %O £(x)dx.

So we have

IF(O) = | [e ™0 f(x)dx|
< [le "D (x)ldx
= [If(x)ldx
= |fll.
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The Riemann-Lebesgue Lemma

Lemma (Riemann-Lebesgue Lemma)
If f € L' is an integrable function, then |7(&)| — 0 as |£] — oo.
o We prove the lemma for n=1.

Assume, first, that f € CJ(R).
Starting from the definition and substituting y = x — % we get

Q) = JZuf(e™dx= [S,fly+B)ebieindy
— [S fly +F)e Yo dy.

So F(£) = J7% Fx)e- o= %, Flx + E)e o

Taking means, we get |f(§)| < %f_ I (x) - f(x+ )ldx.

By continuity, |f(x)—f(x+ E)| k=00

By the Lebesgue Dominated Convergence Theorem, |f(&)| — ey
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The Riemann-Lebesgue Lemma (Cont'd)

o Now suppose that fe Ll
The key result is that Cg is dense in L1.
So, given € >0, there exists g € C?, such that ||f —gll; <e.
Thus, using the preceding slide, we get

17 (&)l | [0, F(x)e™¢ dx|

| /%o (F(x) — g (x) +g(x))e™ x|

< 1S (F() —g(x))e ™ dxl+1 22, g(x)e™ ™ x|
< e+ [ g(x)e X dx]|

[§]—00
—

e+0.

Since € >0 was arbitrary, If(é)l —0 as [é] — oo.
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Properties of the Fourier Transform

Proposition

Let fel! and & — & in R".

(2) P& = F(0);

(b) f is bounded an continuous on R";

(c) F(&)—0as |¢] — oo.

(a) Suppose & is a sequence in R which converges to ¢&.

|f(€k f)l <f|f ”e—I(X fk) i(X,f)ldX_

Moreover, |e~ 08k — g=i(xd)| UG 0

By Lebesgue's Dominated Convergence Theorem, (&) — £(£).

(b) By a previous lemma and Part (a).
(c) By the preceding lemma.
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Remark on Integrability

o In general f may not be integrable.

: Consider the function

1 ifxe(-1,1)
f(X)_{ 0, otherwise

We have over R
f&) = [ e ™f(x)dx
= Jhe*dx
_ %e—ixf L
= _A(e )

2siné
= T

This function is not in L.
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The Inverse Fourier Transform

o When fell,

f(X) fei(cf,x> )?(f)df

" (@)
almost everywhere.
o The right-hand side is continuous.

o If we assume that f, besides being integrable, is also continuous, then
the equality holds everywhere.
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The Fourier Transform as a Map From L! To C%

o Suppose f,ge L1,
o We have the linearity property

F(af +bg)=af +bg, a,beC.

o Let C2 be the Banach space of continuous functions on R” which
tend to 0 at oo, equipped with the norm

11l =1flo =sup{lf(x)I: x e R"}.
o The Fourier transformation & satisfies the inequality
17 (F)ll = 1Flo < Il
o It is therefore an injective, continuous linear map from L! to CO.
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Preparing for an Extension to Distributions

o Suppose f,ge Ll
o Then g is bounded.

o Sofgell.
o By Fubini's Theorem,
JF()g(x)dx = [f(x)[g(§)e” ™ dgdx
= [8(&)[f(x)e” ™D dxde.
Therefore,

| feoreax= [ e@F(@de.
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|dea of the Extension of &

o We would like to extend the definition of the Fourier transformation
from L to 9.

o Viewing f as a distribution and g as a test function, we may consider
applying the formula
(f,g)=«(f,8).

@ Here we run into some problems.

o Suppose g in 2. Then g is analytic. So it cannot have compact
support unless it is identically zero.
This indicates that 2 is too small as a space of test functions.
Equivalently, 2’ is too large for the purpose of extension.

o Suppose g is taken in &. Then it may not be integrable. As a
consequence, its Fourier transform may not exist.
So it would seem that & is too big as a space of test functions.

Thus, a new space of test functions larger than 2 and smaller than &
seems to be suitable for an extension of the Fourier transformation.
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Constraints on a Space of Test Functions

o An appropriate test function space, call it X, should meet certain
conditions in order to serve our purpose.
(1) X should be a subspace of C* in order that the distributions in X’
have derivatives of all orders;
(1) The Fourier transformation should be “well behaved” on X, in the
sense that it maps X onto itself;
(1) Since 0xF (b)) = —iF (xxp), X should be closed under multiplication by
polynomials.

o With these conditions, we should also choose X as small as possible,
in order that X’ be as large as possible.
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Subsection 2

Tempered Distributions
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Rapidly Decreasing Functions

o A function ¢ € C* is said to be rapidly decreasing if

sup [x%0Pp(x)| < oo,

xelR"

for all pairs of multi-indices a and B.

o This is equivalent to the condition that

lim [x%0Pp(x)I=0.

[x]—o00
o It is also equivalent to the condition that

sup sup (1+|x|2)’"|6ﬁ¢(x)| < oo, for all me INg.

|Bl=mxeR"
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The Space of Rapidly Decreasing Functions

o We use .# to denote the set of all rapidly decreasing functions.

o # is a linear space under the usual operations of addition and
multiplication by scalars.

1

o A function in . approaches 0 as |x| — oo faster than any power of P

: An example of a function in & is e I,
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The Topology on &

o For any ¢ € &, we define the seminorms
Pap(®) = sup Ix“Pp(x)l,
xeR"

with @, € INZ.

o The countable family {p,s} defines a Hausdorff, locally convex,
topology on .% which is metrizable and complete.

o With this topology, .# is, therefore, a Fréchet space.

o A sequence (¢x) converges to 0 in . if and only if x¥8P¢p;(x) — 0
uniformly on R" as k — co.

o If ¢ is in &, then x%0P¢ is in .#, for any pair a,peNg.
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Inclusion Relations Between 9,.%#,&

Theorem

The topological vector spaces &, # and & are related by 2 €. € &, with
continuous injection. Moreover, 9 is a dense subspace of . and % is a
dense subspace of &.

o The inclusion relations clearly hold between &, and & as sets.

Let (¢pk) be a sequence in 2 which converges to 0. Then, there is a
compact set K <R", such that (¢x) lies in Dk and converges to 0 in
Pk. Hence, ¢y —0in &.

Let (¢pk) be a sequence in .# which converges to 0. Then, for any

a € INJ, 0%}y — 0 uniformly on every compact subset of R". This
means that (¢y) converges to 0 in &.

The first part of the theorem is now proved.

The second part follows from the simple observation that & is dense
in & as has already been shown.
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Density of % in LP

Tempered Distributions

Theorem

& is a dense subspace of LP, 1< p<oo, with the identity map from .# into
LP continuous.

o Let pe.#. Then (1+x|?)M¢ is in &, for any m>0. So ¢ € LP.
Let ¢px — 0 in . Then

sup (1+1x12)™|py(x)IP -0,

xeR"

for every m as k — oco. When m> 5 n (1+1xI?)~™ is integrable.
We then have

Ikl

J (L4 1x1P)Mpic (x) 1P (L + IxI7) ™ dx
M sup,ern (1 +1x12) ™y (x)1P.

I\

Therefore, ¢ — 0 in LP.

Since 9 is dense in LP, by a previous result, so is .&.
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Convolution of Functions in &

o The convolution ¢ * of any pair of functions ¢, w in & is well
defined in R and is in fact an . function.

To see this, note that the integral

(*y)(x fcbx y)w

is uniformly convergent in R". Therefore, we can write
sup [x*0P(pxy)(x)| < f sup [x*0P(x —y)llw(y)ldy
xeR" xeR"

< Mflw(y)ldy <oo.
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Tempered Distributions

o A previous theorem implies that the relation &' €./ <2’ must hold
between the topological dual spaces with the identity maps from &’ to
&' and from %' to 2’ continuous.

o Further, every locally integrable function f on R" defines a
distribution in @' by ¢ — [fd, p€D.

o For f to define a distribution in ' by ¢p— [f¢, ¢p €&, it must,
additionally, satisfy a growth condition at oo.

o f cannot grow faster than some power of x as |x| — oo, since,
otherwise, the integral [ f¢ will not be defined.

: The exponential function eX! does not define a distribution

in &'
o Loosely speaking, we can say that the elements of .’ are the
distributions of as |x| — oco.

o Hence they are called tempered distributions.
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Tempered Distributions Defined by Polynomials

(1) Any polynomial function f on R" defines a tempered distribution by
the formula

= [ F)px pes.

Indeed, let:

o k be the degree of the polynomial f;
° m> 5 (n+k)

Then we have

IA

IKF, )

flf x)|dx

M sup (1 +1x12)Mp(x)I,
xeR"

IA

with M = [[£(x)(1+[x2)"™|;.
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The same definitions and properties of convergence, differentiation,
translation and reflection in the origin which were given in 2’
apply to the elements of .#'.

o Since & is closed under multiplication by polynomials, we can define
the product of a polynomial P on R"” with a tempered
distribution by

PT(¢)=T(P¢), ¢e&L.

o This definition clearly extends to any C® function f with polynomial
growth at oo, i.e., an f € C* for which there is a positive integer m,
such that |x|~"0%f(x)| remains bounded as |x| — oo, for all a € INj.

o Thus, the linear space of multipliers of 2, which is C*, is also
“tempered” by a growth condition before it can serve as a linear space
of multipliers of .#'.

George Voutsadakis (LSSU) Theory of Distributions



Fourier Transforms and Tempered Distributions Tempered Distributions

& is a Subspace of [P, 1<p=<oo

(111) Suppose 1< p<oo and ¢pe.&.
Then for any positive integer m,

1p(x)] = (1+1x12)"™(1 + IxI?)™p(x)| < M(1 + |x|?)™"™,

where M = sup{(1+[x|?)™|¢p(x)| : x € R"}.
Now |¢|P is integrable if m> %g

Hence, & < LP.

Moreover, any ¢ € & is bounded on R".
So we also have &# < L.

Thus, &% is a subspace of LP, for 1 < p <oco.
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Extension from LP to &'

(V) We prove that LP <., for 1< p <oo.
Suppose f € LP and ¢ is any C* function with compact support K.

KE, o) = | [ F(x)p(x)dx]
= | [ p(x) Ik (x)f(x)dx|
T Miglol .

Thus, f defines a continuous linear functional on Cg° in the topology
induced by .#.

But C§° is dense in 7.
So f can be extended to a continuous linear functional of .#.

o More generally, any locally integrable function f, such that |x|~™|f(x)|
is bounded (almost everywhere) as |x| — oo, for some positive integer
m, defines a distribution in &#’.

George Voutsadakis (LSSU) Theory of Distributions July 2014 26 /110



Fourier Transforms and Tempered Distributions Tempered Distributions

Non-Necessity of the Boundedness Condition

o Consider the function f(x) = e*sin(e*), x € R.

Note that for no positive integer m, does x~"|f(x)| = x~™e*|sin(&¥)|
remain bounded as x — co.

Hence, f(x) cannot be dominated at co by a polynomial.
However, if ¢ € #(R), then

| [ f(x)p(x)dx]

| [ e¥sin(eX)p(x)dx|

[ ¢(x)d(=cos(eX))l

| [ cos (€)' (x)dx|
J1¢'(x)ldx
J@+x2)1¢' () gz dx
Msup (1+x3)I¢/(x)I.

IA

IA

Thus f defines a distribution in &'(R).
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Tempered Distributions as Derivatives

(v) The inclusion &' <.
o Clearly, 9 c &;
o Moreover, convergence in @ implies convergence in .
Thus, every tempered distribution is of finite order.

By a previous theorem, we conclude that every tempered distribution
is a derivative of some continuous function of polynomial growth.

o Consider again the tempered distribution e*sin(e*).
It is the first derivative of the bounded function —cos(e*).
o The powers x},x* and |x|* are examples of tempered distributions.

Each is dominated at +oo by |x|™, if m=ReA.

George Voutsadakis (LSSU) Theory of Distributions July 2014 28 /110



Fourier Transforms and Tempered Distributions Fourier Transform in %

Subsection 3

Fourier Transform in .%#
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Differentiation of Fourier Transforms

o Since .# < L!, the Fourier transform ¢ of any ¢ € . exists.

Moreover,

0B = o f &1 (x) dx

= %e‘“"’f)gb(x)dx
— ife'“x"f)xkgb(x)dx
= —iF(xkP).

The second equality, where differentiation is carried inside the integral,
is justified by the uniform convergence of the integral as a function of

¢.
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Fourier Transforms of Derivatives

o We also have

FOAE) = [e D0 p(x)dx

ig‘kfe'“"’f)qb(x)dx

(intsgration by-parts)

iCkP(S).

o Using the notation Dy = —id), we have the relations
F(Drp) =517 (9),  F (i) = —DiF ().

o This process may be repeated any number of times, and with respect
to any index, giving, for all @ = (ay,...,a,) and D% = (-i)*19%,

Z(D¢) SIF (),
F(x%¢) = (-1)*DF(¢).
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The Fourier Transformation on &

The Fourier transformation is a continuous linear map from . into #.

o For any ¢ € % and a,f € IN], we have the relations

F (DY) =EF(p), F(x%)=(-1)""D F(¢p), D%=(-i)"5%

These imply
¢DPE) = ¢U(-1)PlF(xPg) = F(D(~x)P¢)
~ = [e ' *OD(=x)P¢(x)]dx;
E9DPH(E) < [ID¥[xP(x)]Idx

S+ 1x12)~™(1+xI?) "I D¥[xPp(x)]Idx.

We can choose m, so that [ (1+|x|?)""dx = M < co.

Then [E¥DPP(E)| < supyern (1+ Ix12) D [xPp(x)]IM.

But ¢ is in . So the right side is finite. Hence, ¢ is in .&.

Now % is linear and ¢ — 0 as ¢ — 0 in #. So & is continuous on ..
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Example: A Special Fourier Transform

We have

F (73] = (2m)n/2e 210,

o Let y(x)= e~z xeR".
For n=1, y satisfies the differential equation y'(x)+xy(x) =0, x € R.
Taking the Fourier transform on the left, using

F(D"P)=E"F(9),  F(x)=(-1)"DF(p), D= (~i)o°,

we obtain

Z(y'(x)) + F(xy(x))
¢Z(y(x)) + (=DZ(y(x)))
SY(6) +7'(S)-

F(r' (x) +xy(x))

Thus, £7(8)+(7)'(€) =0, e R.
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Example (Cont'd)

o We found &y(&) +(7)(¢) =0, {€R.
Its solution is given by y(¢) = ce 2%’
The initial condition gives ¢ =7(0) = /% e 2 dx = (2m)Y/2.
Therefore, 7(¢) = (2n)1/2e‘%52.

o Suppose, next, that n=1.

Then we can write

(&)

f]R"’ HZZI e_ixkfk e_%X’3 dx
a 1.2

= IR, Sl e 40 2 dix

= HZ:I ?(Ek)

= (27)2"e 1P,
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The Fourier Inversion Formula in &

If p €., then
#)=F @) = (2n) " [ 5O de.

o For any ¢,y €., we have, using Fubini's Theorem,

T w(x)e X dx = [[fe ¥ p(y)dyly(x)e’ ¥ dx
SO 'Yy (x)dx]dy
Jo(y)w(y —¢)dy

S +y)w(y)dy.

Furthermore, when ¥ €.% and € >0,

FW(e)y) = [ p(exdx= [ e—i<y'§>w(g)£ind¢ _ lu?(f]

En
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The Fourier Inversion Formula in ¥ (Cont'd)

o Using this, we get

Jb(x)y(ex)e e dx

SO +y)F (w(ex))(y)dy

= JeE+y)T(E)zdy
= f¢(é+y)¢(%)d(%)
= J¢E+en)iy)dy

Since these integrals are uniformly convergent, we can take the limit
as € — 0 inside the integral sign.

The result is y(0) [ ¢(x)e ¢ dx = ¢(&) [T (y)dy.
If we choose y(x)=e ~2IX then:

o w(0)=1. . -

o [(y)dy=(2m)2" [e 2" dy = (2m)".
So we get [P(x)e’ dx = p(&)(2m)".
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A Topological Isomorphism

o We showed that & is a continuous linear map from . into .#.
o We also showed that an inversion formula exists.

o Thus, the Fourier transformation defines a topological isomorphism
from # onto &.

o This means that it is a bijection from . to . which, in addition,
preserves:

o The algebraic properties of the linear space . (linearity);
o The topological properties of .# (homeomorphism).
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Properties of Fourier Transforms

o Recall that ¢y and ¢ * 1 are both in % when ¢, € .F.

If ¢,y €S, then:
() [ov=[ow;

(b) [¢w=(2n)"" [y, (Parseval’s Relation)

() F(pxy) =W

(d) F(pw)=(2n) "¢ .

(a) We get the conclusion from the following upon setting ¢ =0.

JJo(y)e " dyy(x)e e dx
Joly) [y (x)e V=4 dxdy
Soy)¥(y -¢)dy

Sy +&)W(y)dy.
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Properties of Fourier Transforms (b)

(b) We have

[ e X5 (x)dx
[P (x)dx
(27)"y (x)
(27)"y (x).

Now in Part (a), replace w by (27)~"% to get

<))

X

&3
I

(21)" [

(7)™ [$w

Joy.
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Properties of Fourier Transforms (c)

(¢) Using Fubini's Theorem, we get

Z(p=y)(©) J e (¢ xy)(x)dx
= [e [ p(y)w(x—y)dy]dx
= JoW)S e ey(x~y)dx]dy
=[S e "y Dy (n)dn]dy
= [eT Y ¢(y)dy [e "My (n)dy
= PE)P(8).
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Properties of Fourier Transforms (d)

(d) The inversion formula gives

o) (21)~" [ €O G(€)de = (2) " B(~x);
B(x) = (21)"¢(~x).

Using Part (c), we now get

@+3)E) = FUPD)E)
(27)7" [ € €X0p(x)P(x)
= (21)" [ e p(—x)w(~x)dx
(2)" [ e )y (x)dx
(27)"F (¢w)(6)-
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Example

o The equation F(¢p* ) = i can be used to construct two nonzero
functions ¢,y € &, such that ¢ xy =0.

Let ¢, wo #0 be in 9, such that suppgpo Nsuppy = 3.
Define ¢ = F~1(¢po) and w = F ().

Since ¢o,wo € S and Z is bijective, ¢ and ¥ are in &.
We now have

F(p*y)=F($)F(v) = powo=0.

This implies that ¢« =0.
@ On the other hand, suppose ¢ €.% and ¢ * ¢ =0.
Then 0= (¢ *¢) = [F(¢)]*.
So Z(¢)=0.
Therefore, ¢ =0.
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Subsection 4

Fourier Transform in .’
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Fourier Transform of a Distribution

For any T €., the Fourier transform % (T) = T is defined by

T(¢)=T(d), ¢eF.

o Note that:

o pe.F, for every pe.¥;
o The Fourier transformation is continuous on .%.

It now follows that T €.%’, for every T e,

George Voutsadakis (LSSU) Theory of Distributions July 2014 44 /110



Fourier Transforms and Tempered Distributions Fourier Transform in &/

Fourier Transform of a Distribution

o & can be considered a subspace of .#’.
The function v € .% corresponds to Ty €.%".
In this case R
Ty(@) = Ty($) =" Ty(9).
Hence, 7A'1,, = TVA,.
o F . — & is continuous in the (weak) topology of .#'.
This follows from the continuity of & : ¥ — .
Suppose Ty — T in &' and p € &.
Then
Tk(¢) = Tk(@) = T($) = T(¢).

Thus, if Tx— T in &', then Tx— T in &'
This means that & : ' — %' is continuous in the topology of #'.
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The Case of an L! Function

o Suppose f is an L! function. Then f is a C function.
Therefore, Tpe 7.
Hence, for any ¢p € &,

o) = [FO#©d

ffe"’“"()f(x)dx
[0 [e09(6)de
f Fx)B(x)dx

T ().

So, for all p €., Tr(¢) = T¢(P) = T#(¢) (i.e., the Fourier transform
of T, as a distribution, coincides with its transform as an L! function).

P(¢)d¢

dx
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The Fourier Transformation in &’

The Fourier transformation & from %' to %’ with the inversion formula

T=02n)"T, Tes,
is a topological isomorphism.

o We define the inverse Fourier transform of T € &%’ by

FHT)P)=T(FHP), ¢
Then &1 is also a continuous map from %' into &'.
Moreover, 1(T)(¢) = T(F(#)) = T(¢) = T(9).
Using equation ¢(x) = (27)"¢(~x), we get, for all p €.,
T(#)=T(9)= (2n)" T($) = (2m)" T(9).
Hence, T= (2n)"T, Te.s.
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Properties of the Fourier Transform in &’

o The definition of the Fourier transform of a tempered distribution by
duality carries the properties of the Fourier transformation in .# into

y/
o Recall the equations

F(D")=¢"F(¢), F(x"¢)=(-1)"D"F(¢), D=(-i)"5".

o Recall, also, that, for every T €.%’, multiplication of T by any
polynomial P has been defined by

PT(p)=T(Pp), ¢e&.

o Hence, we have, for every T €./,

F(D*T) EXF(T),
F(x*T) = (-1)4Drg(T).
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Example

o For any ¢p € &, we have
©0,¢) = 6,4) = $(0) = (1, .

Hence, & = 1.
We know that § = (27)"6 = (27)"6.
SoT=5= (27)"8.
o Now let @ e IN".
We know & (D¥T)=¢%%(T), F(x¥T)=(-1)¥DrZ(T).
Hence the results above may be generalized to
F(D%) = &9,
F(x¥) = (-1)“(27)"D%s.

George Voutsadakis (LSSU) Theory of Distributions July 2014 49 /110



Fourier Transforms and Tempered Distributions Fourier Transform in &/

Even and Odd Distributions

o A distribution T € 2’ is said to be:

o even ifj'= T, in the sense that T(¢) = T(¢), for every ¢ € 2;
o odd if T=—T, in the sense that T(¢)=—T(¢), for every p € 2.

o When T is an even distribution in %/, for any ¢ € &,
T(@)=T@)=T) =" T($)=T(9).

Therefore T is even.
Conversely, if T is even, we can also show that T is even.
o Similarly, T is odd if and only if T is odd.

o Taking into account T= (2n)"T, Tes, we also get

[ @r)"FYT), if Tiseven
& (T)‘{ —(n)"F-Y(T), if T is odd
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Example

o Let T=pv(L), xeR.
Cloim T is odd.
If € 2(R), then

TH = lim f 15(—x)dx
€=UJ|x|=¢

_“mfll Lp(x)dx

e—0

- (T)(P>-

George Voutsadakis (LSSU) Theory of Distributions July 2014 51 /110



Fourier Transforms and Tempered Distributions Fourier Transform in &/

Example (Cont'd)

: For T=pv(L), T=-2niH+mi.
We have
(xT,d)

(T, x¢py = I|mf| - d(x)dx

e—0

fcp(x)dx =(1,¢).

We conclude that xT = 1 Therefore, g(xT) =1=276.
But Z(xT)=-DT =i4L d{ Hence, ¢ d_f =-2mid.

This implies that T = —27iH + ¢, for some constant c.
But T is odd. So this constant satisfies —27i +c = —c. Thus,

T = —2niH +7i.
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Example (Cont'd)

o We saw that for T =pv(1), T= —2n/H+m
: We have F71(H) =16 2 pvi.
The expressions for H and % ~1(H) can now be derived.

_onif+2m2i6 = —2wiA+mit=T

2nT (since ?=(2n)"7')
= —2aT. (since T is odd)

Hence, ﬁznd—ipv%. On the other hand,

T 4T
—2miF Y H)+niF1(1)
—2miF Y (H) +mié.

Therefore,
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Subsection 5

Fourier Transform in L2
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L2 Norm and Inner Product

Let Q be an open subset of R".
L?(Q) is the Banach space of (Lebesgue) square integrable
complex functions on Q under the norm

e ©

1/2

IFll2 = UQV(X)Fdx

o The Schwarz inequality gives, for all f,g € L2(Q),

|f9 f(x)@dx

Consequently, the complex number

(f.8)= [ FOOB()ekx

< IIfll2llgll2.

©

is always finite.
o It is called the inner product of f,g in L.
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Some Properties and Remarks

o We have
(f,f)=f9|f(x)|2dx=||f||§.

o We use L? to denote L2(R").
o L, is not a subspace of L;.

So the definition (&) = [e % f(x)dx cannot be applied to all L2
functions.

o Suppose, on the other hand, that f e [1n[2.
Then f is also in 2.

So Parseval'’s relation gives

Ifll2 = (27)~"/2 )| Fl,.
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Plancherel's Theorem

o Parseval’s relation [ ¢y = (27)" [ iy, which was proved in ., will
now be shown to hold in L? as a subspace of ..

Theorem (Plancherel)

If fe L2 then fel? and

1Fll2 = (27)" 2| f |2

o When we set ¥ = ¢ in Parseval's relation, we obtain

Ipllz = (27) "2 Plla, Ppe .

(5 is dense in L2. Also, e c L2, Thus, & is also dense in L2.
Moreover, convergence in . implies convergence in L2,

So the preceding equation may be extended to L2.
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Parseval's Relation in L2

o Recall that, for all f,ge L2,
o (Parallelogram Law) ||f +gl3 = (f +g,f +g) = |IfI3+2Re(f,g) + I gll3;
o (Plancheret’s Theorem) ||7ll2 = (27)"/2||f]l>.

Corollary (Parseval’s Relation)
For all f,ge L2,

(F,8) = (27)"(f,g).
o We have (for real f,g)

2(f,2)

IF+213 - 17121212

(27)"If +gl3— (27) 11 £1I5 - (27)" I gll3
2m)"(If +gl3 - IfI3-llgl3)
(27)"2(f, g).

Then we may reason by real and imaginary parts.
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Example

o Suppose f €. satisfies the following differential equation in R”,
where ¢ >0,

(-A+c)f=g.
If g€ L2, then we can show that f € L.

More generally, D;"f € L2, forall 0sm<2 1<ks<n.
We have

F[(-A+)f]=F[(D? +---+ D2+ c)f] = (2 +--- + &2 + ) F.
By hypothesis, (~A+c)f € L2. So (|&]>+c)f € L2. Hence

€12 +1
&2+ ¢

(€2 +1)f = (1€12 +¢c)f e 2.

With & = (&1,...,&n) €ERM, [E(IM < 1EP+1, 0sm=<2, 1<k<n.
This implies that 7(DJ"f) =¢Tf € 2. Hence, D"f € L2,
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Subsection 6

Fourier Transform in &’
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Analytic and Entire Functions

o Let f be defined on an open connected set Q in C".

o f is analytic in Q if, for all ke {1,...,n}, with z1,...,2zk_1, Zks 1.+, Zn
all fixed, the function

f(zk) = (21, Zk—1) Zk» Zk 41 -+ » Zn)
of the single variable z, is analytic on
{zx€C:z=(21,...,Zk-1,Zk» Zk+1,---» Zn) € Q}.

@ When f is analytic in C", it is called entire.
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Analytic Functions and Power Series

o As in the single variable theory, if f is analytic in Q, it has a power
series expansion about every point c € Q,

f(z)= ; aq(z—c)%,

valid for every point z in the open ball
1/2

B(c,r)={z€Q:|z—c|= <rj,

C 2
> lzic— ekl
k=1

for some positive number r.
@ The summation index a runs through INj.
o The a, are the Taylor coefficients

1
ag = aa;"f(c).
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The Cauchy-Riemann Equations

o Let f be defined on an open connected set Q in C".

o When z, = xx + iy, we shall use the notation

0z = %(axk_ia}’k);
0z, = 3(0x +idy,), k=1,..,n,

D
N
x
|

o The Cauchy-Riemann equations take the form

of . of ] _

= 1
Opf=c | i | =
Oxk IO)’k

f

Zk —2 0, k=1,...,n.

o When Q is an open subset of R”, we shall say that f is (real) analytic
in Q if it has a power series expansion about every point c € Q, with z
replaced by x € B(c,r) < R".

This is so if and only if the function f can be extended to an open
neighborhood of Q in C", where f is (complex) analytic.
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Analyticity of the Fourier Transform in &’

The Fourier transform of T €&’ is an analytic function in R"” given by

T(&) = Te(e™"™9).

Furthermore, the right-hand side may be extended as an analytic function
to C", known as the Fourier-Laplace transform of T.
o As a function of &, T, (e "%%) is in C*°.
Thus, it remains to show that the claimed equation holds in &#'.
By definition, for any ¢ € 2, we have T(¢)= T(¢).

If we consider ¢ as an element in &', then, by applying a previous
theorem to distributions with compact support:

(T = (T =Tu([e9(¢)d¢)
J Tx(e72)g(§)d¢ = (Tu(e7), .
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Analyticity of the Fourier Transform in &' (Cont'd)

o We got, by working with ¢ €9,
T(£) = Ti(e7*9).

But 2 is dense in #. So the equation holds in .%’.

By replacing & by { =&+ in, T may be extended into C.
There, it is also a C* function of (.

¢, T and a, T may be computed by differentiating e~/
The exponential function is entire.

Therefore, the same holds for T(¢).

Hence, T is analytic in R".
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Example

o Let T be a distribution in R, such that T(™ =§, for some m> 0.

Applying the Fourier transformation and taking into account
F(DOT)=¢“F(T), we get

(i&)"T =1.
This gives
-
(i)™

Now T is singular at &=0.
By the preceding theorem, T cannot have compact support.

In other words, any fundamental solution of the operator % in R
cannot have compact support.
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Example

o Suppose T is a distribution with compact support such that
(Tx,x%) =0, for every ar € INJ.
We prove that T =0, and thereby conclude that the set of all
polynomials in R" with constant coefficients is dense in C.
(1) By hypothesis, T €&’
By the theorem, T € &' can be extended as an analytic function f({)
in C", such that £({) = T (e "*%). For any a € N7,

0UF () = Tu(8F ™9 = (=) T (x*e™0).
At (=0, for all a e N7,
0% (0) = (=)' T, (x*) = 0.
But f is an entire function in C". So it is represented by the power
series f({)=XYq %O“f(g)(“ =0, for any (e C".
Thus f, and therefore T vanishes identically.

Since the Fourier transformation is injective in &/, T =0.
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Example (Cont'd)

(11) Let 2 be the set of all polynomials in R” with constant coefficients.
Assume that & is a proper subset of C.

By the Hahn-Banach theorem, there exists a nonzero continuous linear
functional T on C, such that

(T,Py=0, forevery Pe 2.

This implies, in particular, that T is a nonzero distribution with
compact support which satisfies (T,x%*) =0, for every o € IN".

However, this contradicts Part (i).
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Convolution of %’ by &’

Theorem
If €% and Toe€&', then T; % Tr e & and

g(T]_ * T2) =9(T2)g(7-1),
the right-hand side being a well-defined distribution because F(T,) is C°.

o Let p€ 2. By properties of convolution and preceding results:
o (T1x T2)(@) = (T1* T2 $)(0);
o (T2xd)(x) = Ta(rx¢p) is a C§° function.
Moreover, we have

(Tix T2x$)(0) = (T1,,(T2*P)(-y))
(le: IZ(T—}:/(/)))
(Th,, Ta(7y))

= (Ty,(T2xd)(y))-
Therefore (T1 * T2)(¢p) = T1(7'2 * ().
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Convolution of &’ by & (Cont'd)

o We found (T * T2)(¢) = To(T2*¢).
Let ¢ be in &.

Then 5 _
(T2x¢)(x) = T2(1xP) = To(T-x¢p)-

So To*¢is also in ..
This holds, since, if T, is of order m, then

sup [x%0P(Tox o)) <Mx sup  [x%Pp(x)l.
xeR" xeR"
|la+Bl<k |la+Bl<sk+m

Thus, Ty * T» is a continuous linear functional on .#.
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Convolution of &’ by & (Cont'd)

o We now compute its Fourier transform.
Let ¢ €.% so that ¢ is also in .&.

By a previous equation
(Ti* R)$) = TuT2+P);
(T2xd)(x) = Tao(1-xp) = To, (1-xP(y)) = T2, ($(x+))-
If ¢ €92, then we can write
To, (b(x+y)) = T (e O¢(&)de)

= fsz(e_i<y’£>)([)(f)e_i(x'£>df

= [ Ta(§)¢p(§)e "V de.
(T(€) = Tx(e7™9))
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Convolution of .’ by &' (Conclusion)

o Similarly, for ¢p €2,

(T T2) (@) = To (T2, (d(x+y)))
= T (J T2(&)p(é)e ™0 de)
= [T T2(O)e(&)dE
= T1iTa(o).

Since 9 is dense in #, this equation holds for all p€ ..
But, for all ¢p € &,

(Ty* T2)(§) = Ty * Ta(h).

So ﬁ= ?17\—2.
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Example (Part (i))

(1) Let T,=21(6,+8_,), for some real number a.

To find the Fourier transform of T, we shall first compute &,.
We have, for all ¢ € 2(R),

©a¢) = Gad
o(a)

Je " p(x)dx
= (e—IaX,(p)_

Hence, 8,(¢) = e~
It follows that "
T.(8) = E(e"’a‘f +e%) = cos a.
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Example (Part (ii))

(11) We verify that
F(ToxTp)=F(T)F(Tp).
We use
(0ax0p)(x) = [0a(y)db(x—y)dy
= Op(x—a)
= raéb(x)
= 8a4b(x).

Now we get

Ta* Tb

(%(52 +0-5)) * (%(554 +0-5))
= 3(0arb+0_(arb)+0a-b+0_(ap))-
F(ToxTp) = 3z[2cos(a+b)é+2cos(a—b)¢]
= cosaécosbé
= F(T)F(Tp).
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Example (Part (iii))

(111) Now compute the Fourier transforms of sinx and cosx.

Z (cosx) Z (cos(1x))
= T
= 2ﬂ7_1
= 7!(51 +5_1)
= 71'(5_1 +51);
F(sinx) = F(-iDcosx)
= —iéF(cosx)
= —I'T[f((sl +5_1)
= i77.'(5-1—51).
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The Paley-Wiener-Schwartz Theorem

The Paley-Wiener-Schwartz Theorem

(i) If Te& and suppT € ixeR": |x| < r} = B(0,r), then there is a
constant M and a nonnegative integer N, such that

T =M@+1g)Ne™! cecn.

(11) Conversely, every entire function in C" satisfying the preceding
inequality is the Fourier-Laplace transform of a distribution with
support contained in B(0,r).

(i) If TeCg® and suppT < B(0,r), then, for every integer m =0, there is
a constant M,,, such that

IT() < Mp(1+17))"me ™™ e

(1v) Conversely, every entire function in C” satisfying the equation above,
for every me N is the Fourier-Laplace transform of a C5° function

with support contained in B(0,r).
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Proof of Paley-Wiener-Schwartz Theorem Part (i)

(i) Let K=suppT < B(0,r).
Let ¢ be a C§° function which equals 1 on a neighborhood of K.
Then we have T(¢) = T(y¢), for all pe&.
Now ¢ is in 2. By a previous theorem, T is of finite order on 2.

So there is an integer N =0 and a constant My, such that

IT(P) = 1T (y)l < Milwdly.

Suppose suppy = Kg2 K°2 K.
By Leibniz's formula, there exists M, > 0, such that

lyln < Masup{lo®¢(x)l : x € Ko, lal < Nj.

Since the inequality is true, for every Ko, such that Kj 2 K, it is holds
for K.
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Proof of Paley-Wiener-Schwartz Theorem (Part (i) Cont'd)

o Setting ¢(x) = "> and { =& +in, we obtain

sup{|0%e M| x e K, |a| < N}
sup {{[1®eXxm - x| < r,|al < N}
(1+1¢)N e,

sup{l0%¢p(x)l: xe K,lal = N}

INIA

Applying the preceding three inequalities, we get

IT©) | T (770
Mllwe_l(xv(>|N .
Mo My sup{|0%e™ 9| x € K, |a| < N}

M2M1(1 + ICI)Ne’”m('.

IN A IA
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Proof of Paley-Wiener-Schwartz Theorem Part (ii)

(i) Suppose T is a C§° function.
Then we can use #(D%p) =Y F (), to write, for any a € INJ,

*T(Q) = f e IO DET (x)dx.

Assume, moreover, that suppT in B(0,r).

Then the expression above yields
CET () < Me,

for some constant M.
From this, Part (ii) follows.
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Proof of Paley-Wiener-Schwartz Theorem Part (iii)

(111) Suppose that, for all m, there exists Mp,, such that
IT)l s Mp(1+12)" ™, e
Then the integral
()" f T(£)e' ™9 d¢

is absolutely convergent on R".

It clearly defines the inverse Fourier transform T(x) of T (¢).
Now, for a € INT,

o% T(X) = (—i)|a|(2n)—nf -’,‘-(f)faei(x,{)df

is also absolutely convergent.
We conclude that T is in C*.
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Proof of Paley-Wiener-Schwartz Theorem (Part (iii) Cont'd)

o We show, next, that T has compact support.
The preceding integrand extends to an entire function on C".
So we can use Cauchy’s Theorem with each variable (1,...,{, to shift
the integration from R" into C".
For any fixed ne R", we get

T(x)= @n)" [ T(g+ime < .

Using the hypothesis, with m=n+1,

|T(X)| (2n)_nMn+le_<X'n>+r|mf(l+|f|)_"_1d{
< Mem=&xm,

IA

Taking n = tx we get

| T ()1 < Me~tXI(r=Ix1),
Letting t — oo, we get T(x) =0, for all x€R", with |x|>r.
Therefore, the support of T must lie in B(0,r).
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Proof of Paley-Wiener-Schwartz Theorem Part (iv)

(iv) Let T(¢) be an entire function which satisfies
1T () < M(1+1¢)N e mel,

Then 'T'(E) has polynomial growth at co. So it lies in .#’.

Its inverse Fourier transform T must also be in .#".

We show, next, that suppT is compact.

We regularize T using the C* functions 3, A >0, satisfying
suppfa < B(0,1).

Now T3 =T % is in C*.

Its Fourier transform, according to a previous theorem, is 7A',1 = ﬁ,l T.

For each >0, T)(¢) extends to an analytic function on C”.
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Proof of Paley-Wiener-Schwartz Theorem (Part (iv) Cont'd)

o T satisfies, for some M and N =0,
1Tl = M@L+1g)Ne™ ¢e.
B, satisfies, for all m=0 and some M,
1BAO)| = Mi(1+1¢1)"meMme e,
So T, must satisfy, for m=0,1,2,... and { € C",
| TA(O)] < MMpp(1+1¢1)N-me(rA)iIme],

Choosing m greater than N, we see that T satisfies the hypothesis of
Part (iii) with r replaced by r+A.

So, by Part (i), suppTy < B(0,r + 7).

Since Ty — T as A —0,

suppT <((B(0,r+A): A >0} =B(0,r).
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Subsection 7

The Cauchy-Riemann Operator
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Fourier Transformation with Respect to Some Variables

o Suppose T € #'(R™ xR"), with ny +ny = n.

o The Fourier transform % (T) of T with respect to xe R™ is
defined, for all ¢ € S (R™ xR"), by

(F1(T), ) =(T,F1(P)).

o Z1(¢p) is well defined by the integral formula
FGCN©= [ e Og(xy)dx, EeR™, yeR™
n

o F1(d(-,y))(€) is also denoted by ¢(¢,y).
o It lies in #(R™ x R").
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Partial Differentiation

o Given Te S (R™ xR™), #1(T)e S (R™ xR").
: If 87 is a partial differential operator in y € R™, then

F1(00T) =0 (T).
We have, for all ¢ € #(R™ x R™),

(affT,gl(qb))
= (-1)UT.3F(9)
= ()T, 71 (350
= (-1)NF(T),054)
= (0591(7_)4[)).

We note that the commutation of 1 with 87 on #(R™ x R") is
based on the linearity and continuity of ;.
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Example

o Consider the differential operator in R of order m with constant
coefficients
m
L= Z Cka.
k=0
If ue&'(R) satisfies Lu =0, then, upon transformation,

m
Lu:Z

Hence, G(¢) =0 except possibly at the zeros of the polynomial
cotcié+-+cmém.

But u has compact support.
So T is continuous. Thus, & must vanish in all R.
It follows that the ordinary differential equation Lu=0 has only the

0 o o o ’
trivial solution in &
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Example

o Consider the differential operator in R" of order m with constant
coefficients

L= ) cuD

lal=m
Let ue %' be a solution of Lu=0.
The application of the Fourier transformation gives

0=F(Y caD) = (Y. cat®)i = P(&)d,

where P(¢) is the polynomial ¥ |g41<mca®.

Suppose P(¢) =0 only when &=0. Then suppii < {0}.

By a previous theorem, U=} 4<k 320%0, for some k.

By taking the inverse Fourier transform, u =Y 4 1<k bax®.

Thus, the only solution of Lu=0 in &' for this type of operator is a
polynomial. In other words, the fundamental solution of L in %’ is
unique up to an additive polynomial.
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The Cauchy-Riemann Operator

o Consider the Cauchy-Riemann operator in R?,

- 1
0= 5(61 aF iaz).

The polynomial
. 1. .
P(i&) = 5/(61 +i&7)
vanishes only at ¢ =0.

So this operator is an example of the preceding slide.

lts fundamental solution in %'(IR?) is unique up to an additive
polynomial.

But every entire function f satisfies 8f =0 in R2.

Hence, the fundamental solution of @ in 2'(IR?) is unique up to an
additive entire function.
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Example

o We show that ”12 = m is a fundamental solution of the

Cauchy—Rlemann operator in the plane.
Since L. =1e [l (R?), 1 defines a distribution in R?.

Tzl = loc

For any ¢ € @(]Rz),

()=~ (30) - 2 (2 2o

We change to polar coordinates. Let ¢(r,0) = ¢(x, ).

Recall that -2 e —cosG——ﬁa% a(i/ —sin96¥ar+c°r59%.
Therefore, we obtain
_1 2n a(p a(P
-, e’ e’ drdo.
< z > f reid or r 00 | ™"
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Example (Cont'd)

o With ¢(r,0) = ¢(x,y),

ORI

By Fubini's Theorem,

0¢> )
10 10
ar r 30 rdrd@.

_ 2w poo L~ o) 271

(o) = 3[ [ oot [ Fooo
= —1[-21(0)]—0, since (r,27)=3b(r,0)
= 7'[([)(0)

Therefore, 5(ﬂ—1z) =94.

It follows that any fundamental solution E of 8 in 2'(IR?) is of the
form E(z) =L + h(z), where h is an entire function in C.
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Subsection 8

Fourier Transforms and Homogeneous Distributions
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Dualizing a Linear Mapping

Let A be a linear mapping from R" to R".

Let F(IR") be the linear space of complex functions on R".
We define the map A*: F(R") — F(R") by

AN*f(x)=f(Ax), feF(R").
o A* is also linear. For all f,ge F(R") and a,b€ C,

A*(af + bg)(x) (af + bg)(Ax)
aN*f(x)+bA*g(x)

(aA*f + bA* g)(x).

©

A may be represented by a real nx n matrix, determined by the basis
that we choose for R".

o It is nonsingular if the null space of A is {0} <R". In this case:

o The determinant detA is nonzero.

o The inverse map A1 exists and is a linear map from R” to R".
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Continuity of A*

. If A is nonsingular, then A* maps % continuously onto .#.
Let ¢,y be functions in . Then

[wanpax
[wreaty)gdzdy

[vm)ant ow)dy.

Ny, )

This shows that

* _ 1 —1x
W.e) = <w’ deta] ¢>'

Now note that Ide—ltAlA‘l*¢> isin &, if ¢pisin &.
So the function ¥ in the preceding equation may be extended by
continuity from ¥ to .#'.

George Voutsadakis (LSSU) Theory of Distributions July 2014 94 /110



Fourier Transforms and Tempered Distributions | Fourier Transforms and Homogeneous Distributions

Inverse of A*

o We have, for every f € F(R"),

f(x) f(A"TAX)
A*f(A1x)

= AA ().

Therefore,
A—l* = A*_l-
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The Fourier Transform of the Dual

o For any ¢ €.#, we have (denoting by AT the transpose of A)

F(NP)E) = [e“Xp(Ax)dx
= [N () ghdy
= [Ny ) g dy
= G d(ATE).
Thus,
K= tAI( ATTY'h, pe
Now ZA* and IGIetAI(A'lT) & are equal and continuous on &.

So they may be extended by continuity to #’ to obtain

AT = AT, Tes
IdetAI( ) .
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Reflection Operator

o Consider the reflection operator
Ax=-x, xeR".

It is linear and continuous, for any t € R.
If Te2', then A*T is the distribution defined by

* _ 1 —1x
(A T,¢>—<T,—|detA|A ¢>, s

In this case we have:
o detA =(-1)"
° A_1= .
So we get
1

I(=1)"

(N*T, ) = <T, A*</>>=(T,q7>)=<7',qb).
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Scaling Operators

o A more general example is the transformation
Ax=tx, xeR".

It is linear and continuous, for any t € R, but singular when t =0.
If Te2' and t#0, then A{ T is the distribution defined by

* _ 1 —1x*
(At T,¢>—<T, |detAt|At ¢>’ (pE@'

In this case we have:

(4] detAt = tn;
o ATl=Aq,.
So we get

" Los
(At T: (,b) = <Ty FAl/t¢> .
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Homogeneous Functions and Distributions

o Let d be a complex number.
o A function f on R" is homogeneous of degree d if

f(tx) = t7f(x).
o A distribution T is homogeneous of degree d if

AT=tIT, forany t>0.
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Homogeneous Functions vs. Homogeneous Distributions

: The two definitions coincide when the function is locally
integrable in R”, in the sense that A} f = t?f if and only if
f(tx) =t9f(x) a.e
We have, for all p €9,

(Atf, )

fs AL ®
ff( X) 7 (%) dx
Jf(ty)p(y)dy.

Suppose, first, f(tx) =tIf(x) a.e

Then (AFf,¢) = [tF(y)p(y)dy = (t9f, ).

So Aff =tdf.

Conversely, assume A} f = t9f.

Then, for all p€2, [f(ty)p(y)dy = [tf(y)p(y)dy.
Hence, by a previous result, f(ty) = tf(y) a.e..
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Example

(1) Let {T1,..., T} be a set of nonzero distributions in R”, such that Ty,
1< k< m, is homogeneous of real degree dy and d # d;, if k# .

: The set {Ty,..., Ty} is linearly independent over C.

Let a1 Ty +-+-+am Tm=0. Without loss of generality, assume that
di>dr>--->dy. Forany ¢ €2, we have

0= <A§‘ PED Tk,¢> =Y aAi T = Y at™ (T, ).
k=1 k=1

k=1

If the coefficients a, do not all vanish, let i =1 be the smallest integer
for which a; #0.
o If i=m, then (T, ¢y=0. So T,, =0, a contradiction.
o If 1<i<m, then a,-(T,-,d))+):;(”=,.aktdk‘d"<Tk,(/>) =0, for all t>0 and
PpeD. Letting t — oo, we obtain a;(T;,¢)=0. But a; #0. Hence,
T; =0, again a contradiction.
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Example

(11) We show that %8 is homogeneous of degree —n—|al.
We have, for all p€ 9,

(A;095,¢) (090, 55 A} 1)

= 50%6,¢(%))

= (-1)155,0%(%))
= (-1)&7(0%¢)(0)
= w096, ¢).

Therefore, .
A;0%6 = ——0%6.

n+|a|

In view of Part (i), we conclude that the distributions §,5’,...,8(™ on
R are linearly independent.

George Voutsadakis (LSSU) Theory of Distributions July 2014 102 /110



Fourier Transforms and Tempered Distributions | Fourier Transforms and Homogeneous Distributions

Example

o For A =0 we show that
xf:x’lH, xeR,

is homogeneous of degree A.

We have
Wixh,¢) = (L EAS 0
= L oxre(X)dx
= 1 [etryre(y)tdy
= (t"x}, ).
Hence

* A _ A A
ANixy =t7x;.
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Derivatives and Transforms of Homogeneous Distributions

If Te.%" is homogeneous of degree d, then 0, T is homogeneous of degree
d—1 and T is homogeneous of degree —n—d.

o Let ¢p € # be homogeneous of degree d and t be a positive number.
Then, by the chain rule, dx[¢p(tx)] = t(dk¢p)(tx). Hence,

A7 (k) (x) = (0kp)(tx) = %ak[¢>(fx)] = t971(0k) ().

This means that d,¢ is homogeneous of degree d —1.

o To obtain the result for T €.%’, suppose the degree of T is d.
We first note that, for all p € &,

k(A P)(x) = Ok[p(x)] = t(kp)(tx) = tA; (Okp)(x)-
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Derivatives and Transforms of Homogeneous Distributions

o Keeping in mind A;l = A1/t we get

A3k T(¢) 0 T(ldTlAlA—lw)
= = T(ldetAy/¢0xA] )
= % T(|detA1/t|A1/tak¢)
= —§A;T(0x9)
= (0kA[T(9)
= t9719, T(¢).

Thus 0, T has degree d —1.
Using the relations detA; = t" and AT = At,

A-LT) /
A;T |d tAI( ) 1/tT Tes.
If T is homogeneous of degree d, th— L Ai‘/tT. So A} T= t,,+d T.
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Example

o Consider the function "

X+iy

flz)===

It is locally integrable in the plane.

Clearly, |f(z)l <1 when |z| > 1.

Hence, f defines a tempered distribution in R?.
We compute its Fourier transform.

gr(zf) = F(1) =6 = (21)25 = (21)25.

Recalling the operator 9 2(65 +Ian) we have,

ZF(zf)

(xf)+/9(yf)—/aif 6if
(a§+/an)f 2idf.

Therefore, —fz is a fundamental solution of the operator 4.
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Example (Cont'd)

o By a previous example,

I = 1
Zf(() =E+h(5)r

where h is an entire function.

But f is homogeneous of degree —1 in R?.

By the theorem, f is homogeneous of degree —2+1 = —1.
If his not identically 0, it must also have degree —1.

Hence,
h(t{) = @ t>0.
This becomes unbounded as t — 0.
Thus, h=0.
So

#(z)-fo--=.
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Orthogonal Transformations

o A linear transformation A:R" — R" is said to be orthogonal if
AT =A1

o If A is orthogonal, then so is A~ and detA = +1.

: The transformation A is orthogonal if and only if it is
norm-preserving.

An orthogonal transformation A satisfies, for all x e R",

IAx|2 = (Ax, Ax) = (x, AT Ax) = (x,x) = |x|2.

Thus, |Ax]| = |x].
Conversely, suppose |Ax| = |x]|, for all xeR".
Then AT A = identity. This implies that A is orthogonal.

George Voutsadakis (LSSU) Theory of Distributions July 2014 108 /110



Fourier Transforms and Tempered Distributions | Fourier Transforms and Homogeneous Distributions

[nvariance

o A distribution T € 2’ is invariant under the transformation
A:R"—>R"if
ANT=T.
o A function f:RR" — C is called rotation-invariant, or spherically
symmetric, if there exists a function g:[0,00) — C, such that

f(x)=g(Ixl), forall xe R".

. A function is rotation invariant if and only if it is invariant
under orthogonal transformations.

Suppose f is rotation-invariant. Then
AN f(x) =f(Ax) =g(IAx]) = g(Ix]) = f(x).

So f is invariant under any orthogonal transformation A.
Conversely, a rotation in R" is an orthogonal transformation.
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Invariance of the Fourier Transform

If T e is invariant under orthogonal transformations, then T is also
invariant under orthogonal transformations.

o Suppose A is an orthogonal transformation.
If T is any distribution in %', then
— 1
AT =
|detA|

(AT T=A"T.
Consequently,

A*T=T ifandonlyif A*T=T ifandonlyif A*T=T.

o When a distribution is represented by a rotation-invariant function, the
distribution is also said to be rotation-invariant.

o The theorem implies that if T € .5’ is rotation invariant and T is a

function, then T is also rotation invariant.
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