
Introduction to Descriptive Complexity

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) Descriptive Complexity December 2024 1 / 71



Outline

1 Background in Logic
Introduction and Preliminary Definitions
Ordering and Arithmetic
FO(BIT) = FO(PLUS,TIMES)
Isomorphism
First-Order Queries

George Voutsadakis (LSSU) Descriptive Complexity December 2024 2 / 71



Background in Logic Introduction and Preliminary Definitions

Subsection 1

Introduction and Preliminary Definitions

George Voutsadakis (LSSU) Descriptive Complexity December 2024 3 / 71



Background in Logic Introduction and Preliminary Definitions

Vocabulary

A vocabulary

τ = ⟨Ra1
1 , . . . ,R

ar
r , c1, . . . , cs , f

r1
1 , . . . , f

rt
t ⟩

is a tuple consisting of relation symbols, constant symbols and
function symbols.

Ri is a relation symbol of arity ai ;
cj is a constant symbol;
fk is a function symbol of arity rk .

Examples:

τg = ⟨E
2, s, t⟩, the vocabulary of graphs with specified source and

terminal nodes;
τs = ⟨≤

2,S1⟩, the vocabulary of binary strings.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 4 / 71



Background in Logic Introduction and Preliminary Definitions

Structures

A structure with vocabulary τ is a tuple

A = ⟨∣A∣,RA1 , . . . ,R
A
r , c

A
1 , . . . , c

A
s , f

A
1 , . . . , f

A
t ⟩

whose universe is the nonempty set ∣A∣.

For each relation symbol Ri of arity ai in τ , A has a relation RAi of
arity ai defined on ∣A∣, i.e., RAi ⊆ ∣A∣ai .
For each constant symbol cj ∈ τ , A has a specified element of its
universe cAj ∈ ∣A∣.

For each function symbol fk ∈ τ , f
A
k is a total function from ∣A∣rk to ∣A∣.

A vocabulary without function symbols is called a relational

vocabulary.

In this notes, unless otherwise stated, all vocabularies are relational.

The notation ∥A∥ denotes the cardinality of the universe of A.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 5 / 71



Background in Logic Introduction and Preliminary Definitions

Finite Structures

Define STRUC[τ] to be the set of finite structures of vocabulary τ .

Example: Consider the graph G = ⟨V G ,EG ,1,3⟩ defined by

V G = {0,1,2,3,4},
EG = {(1,2), (3,0), (3, 1), (3, 2), (3, 4), (4,0)}.

It is a structure of vocabulary τg .

It consists of a directed graph with two
specified vertices s and t.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 6 / 71



Background in Logic Introduction and Preliminary Definitions

Example

Consider the τg -structures G and H depicted below.

G has five vertices and six edges.

The graph H on the right is isomorphic but not equal to G .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 7 / 71



Background in Logic Introduction and Preliminary Definitions

Another Example

Consider the binary string

w = “01101”.

We can code w as the structure

Aw = ⟨{0,1, . . . ,4},≤,{1,2,4}⟩
of vocabulary τs .

≤ represents the usual ordering on 0,1, . . . ,4.
Relation Sw = {1,2,4} represents the positions where w is one.

Relation symbols of arity one, such as Sw , are sometimes called
monadic or unary.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 8 / 71



Background in Logic Introduction and Preliminary Definitions

Relational Databases

A relational database is exactly a finite relational structure.

Running Example: Consider a genealogical database

B0 = ⟨U0,F0,P0,S0⟩,
where:

U0 is a finite set of people, U0 = {Abraham, Isaac,Rebekah,Sarah, . . .};
F0 is a monadic relation that is true of the female elements of U0,
F0 = {Sarah,Rebekah, . . .};
P0 is the binary relation for parent
P0 = {(Abraham, Isaac), (Sarah, Isaac), . . .};
S0 is the binary relation for spouse
S0 = {(Abraham,Sarah), (Isaac,Rebekah), . . .}.

Thus, B0 is a structure of vocabulary ⟨F 1,P2,S2⟩.
George Voutsadakis (LSSU) Descriptive Complexity December 2024 9 / 71



Background in Logic Introduction and Preliminary Definitions

First Order Languages

For any vocabulary τ , define the first-order language L(τ) to be the
set of formulas built up from:

The relation and constant symbols of τ ;
The logical relation symbol =;
The boolean connectives ∧,¬;
Variables: VAR = {x , y , z , . . .};
The quantifier ∃.

Other connectives (e.g., ∨,→, . . .) and the quantifier ∀, when they
appear, will be taken to be abbreviations.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 10 / 71



Background in Logic Introduction and Preliminary Definitions

Bound and Free Variables

We say that an occurrence of a variable v in ϕ is bound if it lies
within the scope of a quantifier (∃v) or (∀v).
Otherwise, the occurrence of v is free.

Variable v is free in ϕ iff it has a free occurrence in ϕ.

Example: The free variables in the following formula are x and y :

α ≡ [(∃y)(y + 1 = x)] ∧ x < y .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 11 / 71



Background in Logic Introduction and Preliminary Definitions

Metalogical Symbols

We use the symbol “≡” to define or denote equivalence of formulas.

In a similar way we sometimes use “⇔” to indicate that two
previously defined formulas or conditions are equivalent.

Bound variables are “dummy” variables and may be renamed to avoid
confusion.

Example: Consider the formula

α ≡ [(∃y)(y + 1 = x)] ∧ x < y .

It is equivalent to the formula

α′ ≡ [(∃z)(z + 1 = x)] ∧ x < y .

α′ also has free variables x and y .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 12 / 71



Background in Logic Introduction and Preliminary Definitions

Interpretations

We write A ⊧ ϕ to mean that A satisfies ϕ, i.e., that ϕ is true in A.

If ϕ contains free variables, they need to be interpreted.

An interpretation into A is a map

i ∶ V → ∣A∣,
where V is some finite subset of VAR.

For convenience, for every constant symbol c ∈ τ and any
interpretation i for A, we let i(c) = cA.

If τ has function symbols, then the definition of i extends to all terms
via the recurrence

i(fk(t1, . . . , trk )) = f Ak (i(t1), . . . , i(trk )).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 13 / 71



Background in Logic Introduction and Preliminary Definitions

Definition of Truth

Let A ∈ STRUC[τ] be a structure.

Let i be an interpretation into A whose domain includes all the
relevant free variables.

We inductively define whether a formula ϕ ∈ L(τ) is true in (A, i).
(A, i) ⊧ t1 = t2 ⇔ i(t1) = i(t2);

(A, i) ⊧ Rj(t1, . . . , taj ) ⇔ ⟨i(t1), . . . , i(taj )⟩ ∈ RAj ;

(A, i) ⊧ ¬ϕ ⇔ it is not the case that (A, i) ⊧ ϕ;
(A, i) ⊧ ϕ ∧ ψ ⇔ (A, i) ⊧ ϕ and (A, i) ⊧ ψ;
(A, i) ⊧ (∃x)ϕ ⇔ (there exists a ∈ ∣A∣)(A, i ,a/x) ⊧ ϕ,

where (i ,a/x)(y) = { i(y), if y ≠ x

a, if y = x

Write A ⊧ ϕ to mean that (A,∅) ⊧ ϕ.
George Voutsadakis (LSSU) Descriptive Complexity December 2024 14 / 71



Background in Logic Introduction and Preliminary Definitions

Abbreviations

We define the “for all” quantifier, ∀, as the dual of ∃ and the boolean
“or”, ∨, as the dual of ∧,

(∀x)ϕ ≡ ¬(∃x)¬ϕ; α ∨ β ≡ ¬(¬α ∧ ¬β).
It is convenient to introduce other abbreviations into our formulas.

“y ≠ z” is an abbreviation for “¬y = z”;
“α→ β” is an abbreviation for “¬α ∨ β”;
“α↔ β” is an abbreviation for “α → β ∧ β → α”.

Abbreviations are directly translatable into the real language.

They help critically in making formulas more readable.

Without abbreviations and the breaking of formulas into modular
descriptions, it would be impossible to communicate complicated
ideas in first-order logic.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 15 / 71



Background in Logic Introduction and Preliminary Definitions

Priority of Operations and Paremtheses

We use spacing and parentheses to make the order of operations clear.

Our convention for operator precedence is:

“¬” has highest precedence;
“∧” and “∨” come next;
“→” and “↔” are last;
Operators of equal precedence are evaluated left to right.

Example: The following two formulas are equivalent,

¬R(a)→ R(b) ∧ R(c)↔ R(d),
((¬R(a))→ (R(b) ∧R(c)))↔ R(d).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 16 / 71



Background in Logic Introduction and Preliminary Definitions

Sentences

A sentence is a formula with no free variables.

Every sentence ϕ ∈ L(τ) is either true or false in any structureA ∈ STRUCT[τ].
Example: Consider the following formula in the language of graphs,

ϕundir ≡ (∀x)(∀y)(¬E(x , x) ∧ (E(x , y) → E(y , x))).
It says that the graph in question is undirected and has no loops.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 17 / 71



Background in Logic Introduction and Preliminary Definitions

Examples in the Language of Graphs

Consider the formula

ϕout2 ≡ (∀x)(∃yz)(y ≠ z ∧ E(x , y) ∧ E(x , z)∧(∀w)(E(x ,w) → (w = y ∨w = z))).
It says that every vertex has exactly two edges leaving it.

Consider now the formula

ϕdeg2 ≡ ϕundir ∧ ϕout2.

It says that the graph in question is undirected, has no loops and is
regular of degree two, i.e., every vertex has exactly two neighbors.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 18 / 71



Background in Logic Introduction and Preliminary Definitions

Examples in the Language of Graphs (Cont’d)

Consider the following formulas.

ϕdist1 ≡ x = y ∨ E(x , y)
ϕdist2 ≡ (∃z)(ϕdist1(x , z) ∧ϕdist1(z , y));
ϕdist4 ≡ (∃z)(ϕdist2(x , z) ∧ϕdist2(z , y));
ϕdist8 ≡ (∃z)(ϕdist4(x , z) ∧ϕdist4(z , y));

⋮
They say that there is a path from x to y of length at most 1, 2, 4, 8,
. . ., respectively.

Note that these formulas have free variables x and y .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 19 / 71



Background in Logic Introduction and Preliminary Definitions

Free Variables and Substitutions

Formulas express properties about their free variables.

Example: Consider a pair of vertices a, b in the universe of a graph G .

Then the meaning of

(G ,a/x ,b/y) ⊧ ϕdist8

is that the distance from a to b in G is at most 8.

Sometimes we will make the free variables in a formula explicit.

E.g., we may write ϕdist8(x , y) instead of just ϕdist8.

This offers the advantage of making substitutions more readable.

We can write ϕdist8(a,b) instead of ϕdist8(a/x ,b/y).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 20 / 71



Background in Logic Introduction and Preliminary Definitions

Examples in the Language of Arithmetic

Consider the language of arithmetic

τa = ⟨PLUS3,TIMES3,0,1,max⟩.
For n ∈N, consider the structure

An = ⟨{0,1, . . . ,n − 1},PLUSAn ,TIMESAn ,0,1,n − 1⟩,
where PLUS and TIMES are the arithmetic relations.

That is, for all i , j ,k < n:

An ⊧ PLUS(i , j ,k) iff i + j = k ;
An ⊧ TIMES(i , j ,k) iff i ⋅ j = k .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 21 / 71



Background in Logic Introduction and Preliminary Definitions

Examples in the Language of Arithmetic (Cont’d)

In L(τa) we may write a formula DIVIDES(x , y) that says “x divides
y” or, equivalently, “y is a multiple of x”.

DIVIDES(x , y) ≡ (∃z)TIMES(x , z , y).
Similarly, we may write a formula PRIME(x) that says that “x is a
prime number”.

PRIME(x) ≡ (x ≠ 1) ∧ (∀y)(DIVIDES(y , x) → y = 1 ∨ y = x).
Finally, via a formula p2(x), we may express that “x is a power of 2”.

p2(x) ≡ (∀y)(DIVIDES(y , x) ∧PRIME(y)→ y = 2).
Note that p2(x) exploits the fact that x is a power of 2 if and only if
2 is the only prime divisor of x .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 22 / 71



Background in Logic Introduction and Preliminary Definitions

Examples in the Language of Strings

Recall the language of strings

τs = ⟨≤,S1⟩.
S is a unary relation indicating the positions of “1”s.

The following formula in the language of strings uses the abbreviation
“x < y” to mean “x ≤ y ∧ x ≠ y”.

ϕno11 ≡ (∀x)(∀y)(∃z)((S(x) ∧ S(y) ∧ x < y)→ (x < z < y ∧¬S(z))).
It describes the set of strings that have no consecutive “1”s.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 23 / 71



Background in Logic Introduction and Preliminary Definitions

Examples in the Language of Strings (Cont’d)

Introduce the abbreviation “distinct”.

distinct(x1, . . . , xk) ≡ (x1 ≠ x2 ∧⋯∧ x1 ≠ xk ∧⋯ ∧ xk−1 ≠ xk).
The following formula uses the abbreviation “distinct”.

ϕfive1 ≡ (∃uvwxy)(distinct(u, v ,w , x , y) ∧ S(u) ∧ S(v)
∧ S(w) ∧ S(x) ∧ S(y)).

It says that the given string contains at least five “1”s.

Note that ϕfive1 uses five variables to say that there are five “1”s.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 24 / 71



Background in Logic Introduction and Preliminary Definitions

Examples in the Language of Strings (Cont’d)

Using the ordering relation, we can reduce the number of variables.

The following formula is equivalent to ϕfive1, but uses only two
variables:

(∃x)(S(x) ∧ (∃y)(x < y ∧ S(y) ∧ (∃x)(y < x ∧ S(x)∧(∃y)(x < y ∧ S(y) ∧ (∃x)y < x ∧ S(x))))).
A good way to think of this sentence is that we have two fingers and
are trying to count the number of “1”s in a string.

We put finger x down on the first “1”;
Then we put finger y down on the next “1” to the right;
Now we don’t need x anymore;
So we can move it to the next “1” to the right of y ;
⋮

George Voutsadakis (LSSU) Descriptive Complexity December 2024 25 / 71



Background in Logic Introduction and Preliminary Definitions

Example: Two Binary Strings

Let τab = ⟨≤2,A1,B1⟩ consist of:
An ordering relation;
Two monadic relation symbols A and B, each serving the same role as
the symbol S in τs .

Let A ∈ STRUC[τab], and let n = ∥A∥.
Then A is a pair of binary strings A, B , each of length n.

These binary strings represent natural numbers, where we think of:

Bit zero as most significant;
Bit n − 1 as least significant.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 26 / 71



Background in Logic Introduction and Preliminary Definitions

Example: Two Binary Strings (Cont’d)

A(i) is true iff bit i of A is “1”.

The following sentence expresses the ordering relation on such natural
numbers represented in binary.

LESS(A,B) ≡ (∃x)(B(x) ∧ ¬A(x) ∧ (∀y .y < x)(A(y) → B(y))).
The restricted quantifiers are abbreviations.

(∀x .α)ϕ ≡ (∀x)(α → ϕ);
(∃x .α)ϕ ≡ (∃x)(α ∧ ϕ).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 27 / 71



Background in Logic Introduction and Preliminary Definitions

Expressibility of Addition

Proposition

Addition of natural numbers, represented in binary, is first-order
expressible.

We use the well-known “carry-look-ahead” algorithm.

In order to express addition, we first express the carry bit,

ϕcarry(x) ≡ (∃y .x < y)[A(y) ∧ B(y) ∧ (∀z .x < z < y)(A(z) ∨ B(z))].
The formula ϕcarry(x) holds if:

There is a position y to the right of x where A(y) and B(y) are both
one (i.e., the carry is generated);
For all intervening positions z , at least one of A(z) and B(z) holds
(that is, the carry is propagated).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 28 / 71



Background in Logic Introduction and Preliminary Definitions

Expressibility of Addition (Cont’d)

Let ⊕ be an abbreviation for the commutative and associative
“exclusive or” operation.

We can express ϕadd as follows.

α⊕ β ≡ α↔ ¬β;

ϕadd(x) ≡ A(x)⊕ B(x)⊕ ϕcarry(x).
Note that the formula ϕadd(x) has the free variable x .

Thus, ϕadd is a description of n bits, one for each possible value of x .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 29 / 71



Background in Logic Introduction and Preliminary Definitions

Substructures

An important relation between two structures of the same type is that
one may be a substructure of the other.

A is a substructure of B if the universe of A is a subset of the universe
of B and the relations and constants on A are inherited from B.

Definition (Substructure)

Let A and B be structures of the same vocabulary

τ = ⟨Ra1
1 , . . . ,R

ar
r , c1, . . . , cs⟩.

We say that A is a substructure of B, written A ≤ B, iff the following
conditions hold:

1. ∣A∣ ⊆ ∣B∣;
2. For i = 1,2, . . . , r , RAi = RBi ∩ ∣A∣ai ;
3. For j = 1,2, . . . , s, cAj = cBj .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 30 / 71



Background in Logic Introduction and Preliminary Definitions

Example

A and B are substructures of G.
C is not a substructure of G for two reasons.

It does not contain the constant t;
The induced edge from vertex 1 to vertex 2 is missing.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 31 / 71



Background in Logic Introduction and Preliminary Definitions

Substructures and Restricted Quantification

Proposition

Let A ∈ STRUC[τ] be a structure. Let α(x) be a formula, such thatA ⊧ (∃x)α(x). Assume, also, that for every constant symbol c in τ ,A ⊧ α(c). Let B be the substructure of A with universe

∣B∣ = {a ∈ ∣A∣ ∶ A ⊧ α(a)}.
Let ϕ be a sentence in L(τ). Define the restriction of ϕ to α to be the
sentence ϕα, the result of changing every quantifier (∀y) or (∃y) in ϕ to
the restricted quantifier (∀y .α(y)) or (∃y .α(y)), respectively. Then

A ⊧ ϕα iff B ⊧ ϕ.

By induction, for all formulas ϕ(x) and all b ∈ ∣B∣,
(B,b) ⊧ ϕ iff (A,b) ⊧ ϕα and A ⊧ α(bi), for all i .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 32 / 71



Background in Logic Introduction and Preliminary Definitions

Universal and Existential Formulas

We say that ϕ is universal iff it can be written in prenex form, i.e.,
with all quantifiers at the beginning, using only universal quantifiers.

Similarly, we say that ϕ is existential iff it can be written in prenex
form with only existential quantifiers.

The following “preservation theorems” provide a good way of proving
that a formula is existential or universal.

Proposition

Let A ≤ B be structures and ϕ a first-order sentence.

1. Suppose ϕ is existential. If A ⊧ ϕ, then B ⊧ ϕ.

2. Suppose ϕ is universal. If B ⊧ ϕ, then A ⊧ ϕ.

By induction on the structure of ϕ.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 33 / 71



Background in Logic Ordering and Arithmetic

Subsection 2

Ordering and Arithmetic

George Voutsadakis (LSSU) Descriptive Complexity December 2024 34 / 71



Background in Logic Ordering and Arithmetic

Structures to Numbers to Words

Let A ∈ STRUC[τ] be an ordered structure.

Let n = ∥A∥.
Suppose the elements of ∣A∣ in increasing order are a0,a1, . . . ,an−1.

Then there is a 1:1 correspondence i ↦ ai , i = 0,1, . . . ,n − 1.

We usually identify the elements of the universe with the set of
natural numbers less than n.

In a computer these would be represented as ⌈log n⌉-bit words.

Moreover, the operations plus, times, and even picking out bit j of
such a word, would all be wired in.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 35 / 71



Background in Logic Ordering and Arithmetic

Numeric Relations

The following numeric relations are useful.

1. PLUS(i , j ,k), meaning i + j = k ;
2. TIMES(i , j ,k), meaning i⋅j = k ;
3. BIT(i , j), meaning bit j in the binary representation of i is 1.

In the definition of BIT we will take bit 0 to be the low order bit.

So we have BIT(i ,0) holds iff i is odd.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 36 / 71



Background in Logic Ordering and Arithmetic

Numeric Relations and Constants

We may use the successor relation SUC in lieu of, or in addition to, ≤.

SUC is first-order definable from ≤,

SUC(x , y) ≡ (x < y) ∧ (∀z)(¬(x < z ∧ z < y)).

The symbols ≤, PLUS, TIMES, BIT, SUC, 0, 1, max are called
numeric relation and constant symbols.

They depend only on the size of the universe.

The remainder of τ are the input relation and constant symbols.

The numeric relations and constants are not explicitly given in the
input, since they are easily computable as functions of the size of the
input.

Whenever any of the numeric relation or constant symbols occur,
they are required to have their standard meanings.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 37 / 71



Background in Logic Ordering and Arithmetic

Ordering Proviso

From now on, unless stated otherwise, we assume that the numeric
relations and constants:

≤,PLUS,TIMES,BIT,SUC,0,1,max

are present in all vocabularies.

When we define vocabularies, we do not explicitly mention or show
these symbols, unless they are not present.

We use the notation L(wo≤) to indicate language L without any of
the numeric relations.

We will write L(woBIT) to indicate language L, including ordering,
but not arithmetic, i.e., only the numeric relations ≤ and SUC and the
constants 0, 1, max are included.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 38 / 71



Background in Logic Ordering and Arithmetic

Boolean Constants Proviso

The following proviso eliminates the trivial, and sometimes annoying,
case of the structure with only one element.

This structure satisfies the equation 0 = 1.

Boolean Constants Proviso: From now on, we assume that all
structures have at least two elements.

In particular, we will assume that we have two unequal constants
denoted by 0 and 1.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 39 / 71



Background in Logic Ordering and Arithmetic

Boolean Variables

Next, we define what it means to have a boolean variable in a
first-order formula.

When we measure the number of first-order variables needed, we
discount the (bounded) number of boolean variables.

Definition

A boolean variable in a first-order formula is a variable that is restricted
to being either 0 or 1. Here 0 is identified with false and 1 is identified
with true. We typically use the letters b, c ,d , e for boolean variables.
We use the following abbreviations:

bool(b) ≡ b ≤ 1;

(∃b) ≡ (∃b.bool(b));

(∀b) ≡ (∀b.bool(b))

George Voutsadakis (LSSU) Descriptive Complexity December 2024 40 / 71



Background in Logic FO(BIT) = FO(PLUS,TIMES)

Subsection 3

FO(BIT) = FO(PLUS,TIMES)

George Voutsadakis (LSSU) Descriptive Complexity December 2024 41 / 71



Background in Logic FO(BIT) = FO(PLUS,TIMES)

Interdefinability of BIT and PLUS,TIMES

We prove that adding BIT to first-order logic is equivalent to adding
PLUS and TIMES.

We use the Bit Sum Lemma, which is interesting in its own right.

Theorem

Let τ be a vocabulary that includes ordering. Then:

1. If BIT ∈ τ , then PLUS and TIMES are first-order definable;

2. If PLUS,TIMES ∈ τ , then BIT is first-order definable.

1. We have seen that PLUS is expressible using BIT.

To prove that TIMES is expressible, we need the Bit Sum Lemma.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 42 / 71



Background in Logic FO(BIT) = FO(PLUS,TIMES)

The Bit Sum Lemma

Lemma (Bit Sum Lemma)

Let BSUM(x , y) be true iff y is equal to the number of ones in the binary
representation of x . BSUM is first-order expressible using ordering and
BIT.

The bit-sum problem is to add a column of log n 0’s and 1’s.

The idea is to keep a running sum.

The sum of log n 1’s requires at most log log n bits to record.

So we maintain running sums of log log n bits each.

With one existentially quantified variable, we can guess log n
log logn of

these.

Thus, to express BSUM(x , y) we existentially quantify s, the
log log n ⋅ log n

log log n bits of running sums.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 43 / 71



Background in Logic FO(BIT) = FO(PLUS,TIMES)

The Bit Sum Lemma (Cont’d)

In the following example, n = 216.

So x and y each have 16 bits.

We wish to assert BSUM(0110110110101101, 1010).

We would guess s = 0010010101111010 as our partial
sum bit string.

Next we say that for all i , i ≤ log n
log log n , running sum i ,

plus the number of 1’s in segment (i + 1) is equal to the
running sum (i + 1).

Thus, it suffices to express the bit sum of a segment of
length log log n.

We do this by keeping a running sum at every position.

This requires only log log log n ⋅ log log n bits.

Note this is less than log n for sufficiently large n.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 44 / 71



Background in Logic FO(BIT) = FO(PLUS,TIMES)

Interdefinability (Part 1 Cont’d)

We next show that TIMES is first-order expressible using BIT.

TIMES is equivalent to the addition of log n log n-bit numbers

A = A1 + A2 +⋯+ Alogn.

We split each Ai , into a sum of two numbers Ai = Bi + Ci , so that Bi

and Ci have blocks of log log n bits separated by log log n 0’s.

We compute the sum of the Bi ’s and of the Ci ’s.

In this way, we insure that no carries extend more than log log n bits.

Finally, we add the two sums with a single use of PLUS.

In the following, let ℓ = ⌈log log n⌉.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 45 / 71



Background in Logic FO(BIT) = FO(PLUS,TIMES)

Interdefinability (Part 1 Cont’d)

In this way, we have reduced the problem of adding log n log n-bit
numbers to that of adding log n log log n-bit numbers.

We can simultaneously guess the sums of each of the log log n
columns in a single variable c .

Using BSUM and a universal quantifier, we can verify that each
section of c is correct.

Finally, we can add the log log n numbers in c .

We can do this by maintaining all the running sums, as in the last
paragraph of the proof of the Bit Sum Lemma.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 46 / 71



Background in Logic FO(BIT) = FO(PLUS,TIMES)

Interdefinability (Part 2)

2. We show BIT is first-order expressible using PLUS and TIMES.

We do this with a series of definitions.

First, recall p2(y), meaning that y is a power of 2.

Next, define BIT′(x , y) to mean, for some i , y = 2i and BIT(x , i),

BIT′(x , y) ≡ p2(y) ∧ (∃uv)(x = 2uy + y + v ∧ v < y).

Using BIT′ we can copy a sequence of bits.

For example, the following formula says that if y = 2i and z = 2j , then
bits i + j , . . . , i of x are the same as bits j , . . . ,0 of c .

COPY(x , y , z , c) ≡ (∀u.p2(u) ∧ u < z)(BIT′(x , yu)↔ BIT′(c ,u)).

Finally, to express BIT, we would like to express the relation 2i = y .

We express this using the following recurrence,

2i = y ⇔ (∃j)(∃z .2j = z)((i = 2j + 1 ∧ y = 2z2) ∨ (i = 2j ∧ y = z2)).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 47 / 71



Background in Logic FO(BIT) = FO(PLUS,TIMES)

Interdefinability (Part 2 Cont’d)

We can guess two variables, Y , I , that simultaneously include all but
a bounded number of the log i computations indicated by the
recurrence.

Namely all those such that i > 2 log i .

This is done as follows.

Place a “1” in positions i , j , etc., of Y .

Place the binary encoding of i starting at position i of I .

Place the binary encoding of j starting at position j of I and so on.

Using a universal quantifier we say that the variables Y and I encode
all the relevant and sufficiently large computations of the recurrence.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 48 / 71



Background in Logic FO(BIT) = FO(PLUS,TIMES)

Interdefinability (Part 2 Cont’d)

The following table shows the encodings Y and I for the proposition

215 = 32,768.

Note that I records:

The exponent 15, which is 1111 in binary, starting at position 15;
The exponent 7 which is 111 in binary, starting at position 7;
The exponent 3 which is 11 in binary, starting at position 3.

We skip the details of actually writing the relevant first-order formula.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 49 / 71



Background in Logic Isomorphism

Subsection 4

Isomorphism

George Voutsadakis (LSSU) Descriptive Complexity December 2024 50 / 71



Background in Logic Isomorphism

Isomorphism

Two structures are isomorphic iff they are identical except perhaps for
the names of the elements of their universes.

Definition (Isomorphism of Unordered Structures)

Let A and B be structures of vocabulary τ = ⟨Ra1
1 , . . . ,R

ar
r , c1, . . . , cs ⟩.

We say that A is isomorphic to B, written, A ≅ B, iff there is a map
f ∶ ∣A∣→ ∣B∣ with the following properties:

1. f is 1-1 and onto;

2. For every input relation symbol Ri and for every ai -tuple of elements of ∣A∣,
e1, . . . , eai ,

⟨e1, . . . , eai ⟩ ∈ R
A
i ⇔ ⟨f (e1), . . . , f (eai )⟩ ∈ R

B
i ;

3. For every input constant symbol ci , f (c
A
i ) = cBi .

The map f is called an isomorphism.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 51 / 71



Background in Logic Isomorphism

Example

Graphs G and H are isomorphic using the map that adds one mod 5
to the numbers of the vertices of G.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 52 / 71



Background in Logic Isomorphism

Remarks on Isomorphisms

Note that we have defined isomorphisms so that they need only
preserve the input symbols, not the ordering and other numeric
relations.

If we included the ordering relation, then

A ≅ B iff A = B.
To be completely precise, we should call the mapping f defined above
an “isomorphism of unordered structures” and say that A and B
are “isomorphic as unordered structures”.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 53 / 71



Background in Logic Isomorphism

Remarks on Isomorphisms (Cont’d)

Note also that, since “unordered string” does not make sense, neither
does the concept of isomorphism for strings.

By the definition, two strings would be isomorphic as unordered
structures iff they had the same number of each symbol.

Proposition

Suppose A and B are isomorphic. Then, for all sentences ϕ ∈ L(τ − {≤}),
A ⊧ ϕ iff B ⊧ ϕ.

One uses induction on the structure of a τ(wo≤)-formula ϕ(x).

More specifically, one shows that, for any assignment a,

(A,a) ⊧ ϕ iff (B, f (a)) ⊧ ϕ,
where f ∶ A → B is an isomorphism.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 54 / 71



Background in Logic First-Order Queries

Subsection 5

First-Order Queries

George Voutsadakis (LSSU) Descriptive Complexity December 2024 55 / 71



Background in Logic First-Order Queries

Queries

Definition

A query is any mapping

I ∶ STRUC[σ] → STRUC[τ]
from structures of one vocabulary to structures of another vocabulary, that
is polynomially bounded. That is, such that, there is a polynomial p, such
that, for all A ∈ STRUC[σ],

∥I(A)∥ ≤ p(∥A∥).
A boolean query is a map

Ib ∶ STRUC[σ]→ {0,1}.
A boolean query may also be thought of as a subset of STRUC[σ] - the
set of structures A for which I(A) = 1.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 56 / 71



Background in Logic First-Order Queries

Order-Independent or Generic Queries

An important subclass of queries are the order-independent queries.

These are called “generic” in database theory.

Definition

Let I be a query defined on STRUC[σ].
Then I is order-independent iff, for all structures A,B ∈ STRUC[σ],

A ≅ B implies I(A) ≅ I(B).
For boolean queries, I(A) ≅ I(B) translates to I(A) = I(B).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 57 / 71



Background in Logic First-Order Queries

Introducing First-Order Queries

The simplest kind of query is a first-order query.

Any first-order sentence ϕ ∈ L(τ) defines a boolean query Iϕ on
STRUC[τ], where

Iϕ(A) = 1 iff A ⊧ ϕ.

Example: Let DIAM[8] be the query on graphs that is true of a graph
iff its diameter is at most eight.

Recall the formula ϕdist8, with free variables x , y , expressing that
there is a path from x to y of length at most eight.

Then the query DIAM[8] is a first-order query given by

DIAM[8] ≡ (∀xy)ϕdist8.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 58 / 71



Background in Logic First-Order Queries

Example

Consider the query Iadd, which, given a pair of natural numbers
represented in binary, returns their sum.

This query is defined by the first order formula ϕadd encountered
previously.

More explicitly, let A = ⟨∣A∣,≤,A,B⟩
be any structure in STRUC[τab].
A is a pair of natural numbers, each of length n = ∥A∥ bits.

Their sum is given by Iadd(A) = ⟨∣A∣,S⟩, where
S = {a ∈ ∣A∣ ∶ (A,a/x) ⊧ ϕadd}.

The first-order query Iadd ∶ STRUC[τab]→ STRUC[τs] maps structureA to another structure with the same universe, i.e., ∣A∣ = ∣Iadd(A)∣.
George Voutsadakis (LSSU) Descriptive Complexity December 2024 59 / 71



Background in Logic First-Order Queries

First-Order Queries

Let σ and τ be any two vocabularies where

τ = ⟨Ra1
1 , . . . ,R

ar
r , c1, . . . , cs⟩.

Let k be a fixed natural number.

We want to define the notion of a first-order query,

I ∶ STRUC[σ]→ STRUC[τ].
I is given by an (r + s + 1)-tuple of formulas from L(σ),

ϕ0, ϕ1, . . . , ϕr , ψ1, . . . , ψs .

For each structure A ∈ STRUC[σ], these formulas describe a
structure I(A) ∈ STRUC[τ], defined as follows.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 60 / 71



Background in Logic First-Order Queries

First-Order Queries (Cont’d)

We have

I(A) = ⟨∣I(A)∣,R I(A)
1 , . . . ,R

I(A)
r , c

I(A)
1 , . . . , c

I(A)
s ⟩,

where:

The universe of I(A) is a first-order definable subset of ∣A∣k ,
∣I(A)∣ = {⟨b1, . . . ,bk⟩ ∶ A ⊧ ϕ0(b

1, . . . ,bk)};

Each relation R
I(A)
i

is a first-order definable subset of ∣I(A)∣ai ,
R

I(A)
i = {(⟨b11 , . . . ,b

k
1 ⟩, . . . , ⟨b

1
ai
, . . . ,bkai ⟩) ∈ ∣I(A)∣ai ∶ A ⊧ ϕi(b

1
1, . . . ,b

k
ai
)};

Each constant symbol c
I(A)
j

is a first-order definable element of ∣I(A)∣,
c
I(A)
j = the unique ⟨b1, . . . ,bk⟩ ∈ ∣I(A)∣ such that A ⊧ ψj(b

1, . . . ,bk).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 61 / 71



Background in Logic First-Order Queries

First-Order Queries (Cont’d)

When we need to be formal, we use the following conventions.

We let
a = max{ai ∶ 1 ≤ i ≤ r}

be the maximum among the arities of the relation symbols.
The free variables of ϕ0 are x11 , . . . , x

k
1 .

The free variables of ϕi be x11 , . . . , x
k
1 , . . . , x

1
ai
, . . . , xkai .

The free variables of ψj are x11 , . . . , x
k
1 .

If the formulas ψj have the property that for all A ∈ STRUC[σ],
∣{⟨b1, . . . ,bk⟩ ∈ ∣A∣k ∶ (A,b1/x11 , . . . ,bk/xk1 ) ⊧ ϕ0 ∧ ψj}∣ = 1,

then we write
I = λx11 ...xka

⟨ϕ0, . . . , ψs ⟩
and say that I is a k-ary first-order query from STRUC[σ] to
STRUC[τ].

George Voutsadakis (LSSU) Descriptive Complexity December 2024 62 / 71



Background in Logic First-Order Queries

Examples

It is often possible to name constant c
I(A)
j

explicitly as a k-tuple of

constants ⟨t1, . . . , tk⟩.
In this case, we may simply write this tuple in place of its
corresponding defining formula,

ψj ≡ x11 = t1 ∧⋯∧ xk1 = tk .

As another example, in a 3-ary query I , the numerical constants 0, 1
and max will be mapped to the following:

0I(A) = ⟨0,0,0⟩; 1I(A) = ⟨0,0,1⟩; maxI(A) = ⟨max,max,max⟩.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 63 / 71



Background in Logic First-Order Queries

Terminology and Notation

A first-order query is one of the following types:

Boolean, and, thus, defined by a first-order sentence;
A k-ary first-order query, for some k .

We denote by
FO

the set of first-order boolean queries.

We denote by
Q(FO)

the set of all first-order queries.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 64 / 71



Background in Logic First-Order Queries

Example

Consider the genealogical database of a previous example.

Consider the following pair of formulas.

ϕsibling(x , y) ≡ (∃fm)(x ≠ y ∧ f ≠ m ∧P(f , x)
∧P(f , y) ∧P(m, x) ∧ P(m, y));

ϕaunt(x , y) ≡ (∃ps(P(p, y) ∧ ϕsibling(p, s)
∧(s = x ∨ S(x , s)))) ∧ F (x).

They define a unary query

Isa = λxy ⟨true, ϕsibling, ϕaunt⟩
from genealogical databases to structures of vocabulary⟨SIBLING2,AUNT2⟩.
We will see that many queries of interest are not first-order.

One such example is the ancestor query on genealogical databases.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 65 / 71



Background in Logic First-Order Queries

Example

The first-order query

Iadd ∶ STRUC[τab]→ STRUC[τs]
is a unary query, i.e., k = 1, given by

Iadd = λxy⟨true, ϕadd⟩.
In this case, ϕ0 = true means that the universe of Iadd(A) is equal to
the universe of A.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 66 / 71



Background in Logic First-Order Queries

Example

Consider the binary first-order query from graphs to graphs

I = λx ,y ,x ′,y ′⟨true, α, ⟨0,0⟩, ⟨max,max⟩⟩,
where

α(x , y , x ′, y ′) ≡ (x = x ′ ∧ E(y , y ′)) ∨ (SUC(x , y) ∧ x ′ = y ′ = y).
Part of the meaning of this query is that, given a structureA ∈ STRUC[τg ], with n = ∥A∥, we have:

∣I(A)∣ = {⟨i , j⟩ ∶ i , j ∈ ∣A∣};
s I(A) = ⟨0,0⟩;
t I(A) = ⟨n − 1,n − 1⟩.

We can show that I satisfies the property that, for all undirected
graphs G ,

G is connected iff t is reachable from s in I(G).
George Voutsadakis (LSSU) Descriptive Complexity December 2024 67 / 71



Background in Logic First-Order Queries

Closure of First Order Queries under Composition

The set of first-order queries is closed under composition.

Proposition

Let
I1 ∶ STRUC[σ]→ STRUC[τ]

be a k-ary first-order query. Let

I2 ∶ STRUC[τ]→ STRUC[ν]
be an m-ary first-order query. Then

I2 ○ I1 ∶ STRUC[σ]→ STRUC[ν]
is an mk-ary first-order query.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 68 / 71



Background in Logic First-Order Queries

Remark

If I is a first-order query on ordered structures, then it must include
first-order definitions of the numeric relations and constants.

Unless we state otherwise, the ordering on I(A) will be the
lexicographic ordering of k-tuples ≤k inherited from A.

This is defined inductively by

≤1 = ≤;

⟨x1, . . . , xk⟩ ≤k ⟨y1, . . . , yk⟩ ≡ x1 < y1 ∨ (x1 = y1∧⟨x2, . . . , xk⟩ ≤k−1 ⟨y2, . . . , yk⟩).
For the first-order queries used here, we usually limit ourselves to the
case that ϕ0 ≡ true.

If this is not the case, we must express the new numeric relations
explicitly.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 69 / 71



Background in Logic First-Order Queries

Definitions of Numeric Relations and Constants

Let I be a first-order query on ordered structures.

The successor and bit relations must be defined.
1. We must give the formulas defining 0, 1, and max, the minimum,

second, and maximum elements, respectively, of the new universe
under the lexicographical ordering.

If ϕ0 ≡ true, then these are just k-tuples of constants:

0
I(A) = ⟨0, . . . ,0⟩; 1

I(A) = ⟨0, . . . ,0,1⟩; max
I(A) = ⟨max, . . . ,max⟩.

In the more general case, we use quantifiers to say that the given

element is the minimum, second, maximum in the lexicographical

ordering.

2. Assuming that ϕ0 ≡ true, we can write a quantifier-free formula
defining the new SUC relation.

3. Assuming that ϕ0 ≡ true, we can write the formula defining the new
BIT relation.

We have seen that BIT suffices to define PLUS and TIMES.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 70 / 71



Background in Logic First-Order Queries

Remark

Without the assumption that ϕ0 ≡ true, BIT need not be first-order
definable in the image structures.

Example: Suppose σ = τs and let

ϕ0(x) ≡ S(x).
The parity of the universe of I(A) is not first-order expressible in A.

If BIT were definable in I(A), then so would the parity of its universe.

For this reason, when we define first-order reductions, we restrict our
attention to very simple formulas ϕ0 that define the universe of the
image structure.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 71 / 71


	Outline
	Background in Logic
	Introduction and Preliminary Definitions
	Ordering and Arithmetic
	FO(BIT) = FO(PLUS, TIMES)
	Isomorphism
	First-Order Queries


