
Introduction to Descriptive Complexity

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) Descriptive Complexity December 2024 1 / 46



Outline

1 Polynomial Space
Complete Problems for PSPACE
Partial Fixed Points
DSPACE[nk] = VAR[k + 1]
Using Second-Order Logic to Capture PSPACE

George Voutsadakis (LSSU) Descriptive Complexity December 2024 2 / 46



Polynomial Space Complete Problems for PSPACE

Subsection 1

Complete Problems for PSPACE

George Voutsadakis (LSSU) Descriptive Complexity December 2024 3 / 46



Polynomial Space Complete Problems for PSPACE

Completeness of QSAT for PSPACE

We know, by a previous theorem, that PSPACE is equal to alternating
polynomial time ATIME[nO(1)].
Recall QSAT, the quantified satisfiability problem.

Proposition

The quantified boolean satisfaction problem (QSAT) is complete for
PSPACE via first-order reductions.

By a previous proposition, QSAT is in ATIME[n].
Therefore, QSAT is in PSPACE.

To show completeness, let M be an alternating machine.

Suppose M makes nk moves for inputs of size n.

We know that M can be put in a normal form in which:
It writes down its nk alternating choices c = c1c2 . . . cnk ;
Then deterministically evaluates its input, using choice vector c .

Let the corresponding deterministic time nk machine be D.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 4 / 46



Polynomial Space Complete Problems for PSPACE

Completeness of QSAT for PSPACE (Cont’d)

We have that, for all inputs A,

M(bin(A)) ↓ ⇔ (∃c1)(∀c2)⋯(Qnk cnk )(D(c ,bin(A)) ↓).
D can be thought of as an NP machine.

By a previous theorem, there is a first-order reduction from the
language accepted by D to SAT.

Let f be the first-order query such that, for all c and A,

D(c ,bin(A)) ↓ ⇔ f (A) ∈ SAT.
Let the new boolean variables in f (A) be d1 . . . dt(n).

Then, finally, we have,

M(bin(A)) ↓ ⇔ “(∃c1)(∀c2)⋯(Qnk cnk )(∃d1 . . . dt(n))f (A)′′ ∈ QSAT.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 5 / 46



Polynomial Space Complete Problems for PSPACE

The Problem UPSPACE

The standard universal complete problem for PSPACE is

UPSPACE = {M#w#r
∶M accepts w using at most r tape cells}.

Theorem

UPSPACE is complete for PSPACE via first-order reductions.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 6 / 46



Polynomial Space Complete Problems for PSPACE

k-Local Graphs

Another complete problem for PSPACE is a generalization of REACH
to graphs with:

A polynomial-size description;
Exponentially many nodes.

Define a k-local graph to be a graph on vertex set {0,1}n , such
that:

For each vertex u, there is a unique next vertex v ;
Bit i of v is determined uniformly by bits i − k , i − k + 1, . . . , i + k of u.

Note that a k-local graph can be presented as a table of size 22k+1.

We wish to keep the tables size at most n so that they can be
encoded by a single unary input relation R .

So we insist that k ≤ ⌊ log n2 − 1⌋.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 7 / 46



Polynomial Space Complete Problems for PSPACE

REACHdℓ

Let A be a structure of vocabulary

τℓ = ⟨R1,S1,T 1⟩
consisting of three unary relations.

R encodes the transition relation;
S is the source node;
T is the terminal node.

Define boolean query REACHdℓ to be the set of structuresA ∈ STRUC[τℓ], such that

there is an RA path from SA to TA.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 8 / 46



Polynomial Space Complete Problems for PSPACE

Expressing REACHdℓ

Let unary relation variable A denote our present position.

To define the next move relation, we need, for each i , to:

Read the ⌊log n⌋ bits
w = A[[i − k . . . i + k]];

Apply R(w) to get bit i of A′.

Note that in the following:

logn can be computed, it being the largest r , such that BIT(max, r)
holds;
The additions are mod n, so we think of the n bits of A as being in a
loop.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 9 / 46



Polynomial Space Complete Problems for PSPACE

Expressing REACHdℓ (Cont’d)

In the following, we also let:
α(i ,w ,A) mean that the binary representation of w encodes bits
A[[i − k . . . i + k]],

α(i ,w ,A) ≡ (∃k .k = ⌊ log n
2

− 1⌋) (∀j .j ≤ ⌊log n⌋)
(A(i − k + j)↔ BIT(w , j)).

δ be the resulting edge relation on unary relations,

δ(A,A′) ≡ (∀i)(∃w)(α(i ,w ,A) ∧A′(i)↔ R(w)).

REACHdℓ in the language SO(monadic, DTC) - second-order logic
restricted to monadic relation variables, plus the deterministic
transitive closure operator - is

REACHdℓ ≡ (DTCAA′δ)(S ,T ).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 10 / 46



Polynomial Space Complete Problems for PSPACE

Completeness of REACHdℓ for PSPACE

Proposition

Problem REACHdℓ is complete for PSPACE via first-order reductions. In
fact, REACHdℓ remains complete when k is restricted to a fixed constant.

REACHdℓ is in PSPACE, and in fact in DSPACE[n].
The algorithm is the same as the one showing REACHd ∈ L.

We need n bits to record the current position.

We need another n bits to keep a counter to avoid looping.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 11 / 46



Polynomial Space Complete Problems for PSPACE

Completeness of REACHdℓ for PSPACE (Cont’d)

Let M0 be a linear-space Turing machine that accepts UPSPACE.

M0 has a fixed state set.

So we may encode its instantaneous description in a way that is
k-local for appropriate k , twice the log of the number of states
suffices.

Then a first-order reduction from UPSPACE to REACHdℓ:

Maps input string w to starting vertex S ;
Lets T be M0’s fixed accept ID;
Lets R be the encoding of M0’s fixed transition relation.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 12 / 46



Polynomial Space Partial Fixed Points

Subsection 2

Partial Fixed Points

George Voutsadakis (LSSU) Descriptive Complexity December 2024 13 / 46



Polynomial Space Partial Fixed Points

Monotonicity and Polynomiality of Fixed-Points

We saw that, for all polynomially bounded and parallel time
constructible t(n),

CRAM[t(n)] = IND[t(n)] = FO[t(n)].
A relation of arity k that is being defined has nk possible tuples.

Monotonicity implies that after a tuple is added to a relation it can
never be removed.

Thus, an inductive computation cannot make more than nk steps.

So monotone inductive definitions are polynomially bounded.

It follows that, when t(n) is super-polynomial, the theorem breaks
down for IND[t(n)].

George Voutsadakis (LSSU) Descriptive Complexity December 2024 14 / 46



Polynomial Space Partial Fixed Points

Introducing Iterative Definitions

We now generalize inductive definitions to iterative definitions in
which the requirement of monotonicity is removed.

Any tuple in a k-ary relation may be added or removed, depending on
the whole relation at the previous time step.

Thus, such an algorithm can usefully take no more than 2n
k

steps.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 15 / 46



Polynomial Space Partial Fixed Points

Iterative Definitions

Definition

Define lTER[t(n),arity k] to be the set of properties definable by iterating
the simultaneous first-order definitions of a set of c relations of arity k

t(n) times, for some constant c .
Let lTER[t(n)] be the set of boolean queries definable by O(t(n))
iterations, regardless of the arity,

lTER[t(n)] = ∞⋃
k=1

lTER[t(n),arity k].

After t(n) = 2cnk iterations, these relations will either reach a fixed point
or be in a cycle. Thus, define

lTER[arity k] = ∞⋃
c=1

ITER[2cnk ,arity k].
George Voutsadakis (LSSU) Descriptive Complexity December 2024 16 / 46



Polynomial Space Partial Fixed Points

Inductive and Iterative Definitions Coincide for Poly Time

Observe that lTER[t(n)] is exactly the generalization of IND[t(n)]
that removes the monotonicity requirement.

Theorem

For all polynomially-bounded t(n),
IND[t(n)] = lTER[t(n)].

We can make an iterative definition of a relation R inductive by
adding a time component.

We can simultaneously define the new values R ′(x , t + 1) and

R
′(x , t + 1) in terms of R ′(⋅, t) and R

′(⋅, t).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 17 / 46



Polynomial Space Partial Fixed Points

Example

The following iterative definition proves REACHdℓ ∈ ITER[arity 1].
In this definition, we simultaneously define:

Two booleans start and accept;
The relation P indicating our current position.

Recall that α(i ,w ,P) means that w encodes the relevant bits of P ,
P[[i − k . . . i + k]].

start′ ∶= false;

accept′ ∶= accept ∨ (∀x)(T (x)↔ P(x));
P ′(i) ∶= (start ∧ S(i)) ∨ (¬start ∧ accept ∧ P(i))∨ (¬start ∧ ¬accept ∧ (∃w)(α(i ,w ,P) ∧ R(w))).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 18 / 46



Polynomial Space Partial Fixed Points

Introducing the Partial Fixed Point

The iterative definitions in the preceding example were designed to
stop once T is reached.

In general, however, such iterative definitions do not have to reach a
fixed point, since they could cycle forever.

Thus, the appropriate generalization of the least fixed point operator
is called partial fixed point (PFP).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 19 / 46



Polynomial Space Partial Fixed Points

Partial Fixed Point

Definition (Partial Fixed Point)

Given an iterative, not necessarily monotone, definition

ϕ(Rk , x1, . . . , xk),
define its partial fixed point as follows. For any structure A,

(PFPR,x1...xkϕ)A = { (ϕA)r(∅), if (ϕA)r(∅) = (ϕA)r+1(∅),∅, if there is no such r .

The above definition defines all uses of partial fixed point, even if they
define a loop. In practice, we never need to write a looping iterative
definition.
Define FO(PFP) to be the closure of first -order logic under applications of
the partial fixed point operator.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 20 / 46



Polynomial Space Partial Fixed Points

Iteration of PFP

Theorem

For any parallel-time constructible t(n),
CRAM[t(n)] = ITER[t(n)] = FO[t(n)].

In particular, PSPACE = FO(PFP) = FO[2nO(1)].
CRAM[t(n)] ⊆ ITER[t(n)] has almost the same proof as that of
CRAM[t(n)] ⊆ IND[t(n)] for polynomially bounded t(n).
The only change is that before we kept track of the time t.

This allowed us to avoid keeping track of memory.

So, we obtained, as a corollary, that, for t(n) polynomially bounded,
having more than polynomial memory is not useful.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 21 / 46



Polynomial Space Partial Fixed Points

Iteration of PFP (Cont’d)

Now, we keep track of each of the polynomial memory locations in
our iterative definition, just as we keep track of all the registers of all
the processors.

The contents of a memory location at the next step is the same as it
was at the previous step, unless it was assigned at the previous step.

With this change, we no longer need to maintain the time variable,
and the proof goes through without further change.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 22 / 46



Polynomial Space Partial Fixed Points

Iteration of PFP (Cont’d)

The containment IND[t(n)] ⊆ FO[t(n)] depended on the fact that
the inductive definition was monotone and the following lemma:

An R-positive first-order formula ϕ can be written as

ϕ(R , x1, . . . , xk) ≡ (Q1z1.M1)⋯(Qszs .Ms)(∃x1 . . . xk .Ms+1)R(x1, . . . , xk),

where the Mi ’s are quantifier-free formulas in which R does not occur.

If the inductive definition ϕ closes in at most t(n) iterations, it
follows from that lemma that

LFP(ϕ) ≡ [(Q1z1.M1)⋯(Qszs .Ms)(∃x1 . . . xk .Ms+1)]t(n)false.
The quantifier-free formula after the iterated quantifier block can be
taken to be “false”, since the inductive definition can be evaluated
starting with the empty set and repeatedly applying ϕ.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 23 / 46



Polynomial Space Partial Fixed Points

Iteration of PFP (Cont’d)

Now, let
ϕ(R , x1, . . . , xk)

be a, not necessarily monotone, first-order formula.

Let b be a new boolean variable.

Let R ′ be an arity k + 1 relation symbol, where:

R ′(x ,0) will correspond to R(x);
R ′(x ,1) will correspond to ¬R(x).

We now generalize the iterative definition of ϕ to ϕ′ by replacing in
ϕ:

All occurrences of R(y) by R ′(y ,0);
All occurrences of ¬R(y) by R ′(y ,1).

We do the opposite for ¬ϕ

George Voutsadakis (LSSU) Descriptive Complexity December 2024 24 / 46



Polynomial Space Partial Fixed Points

Iteration of PFP (Cont’d)

As a result, we obtain

ϕ′(R ′, x ,b) ≡ (b = 0 ∧ ϕ) ∨ (b = 1 ∧ ¬ϕ).
Thus, ϕ′ is positive and a previous lemma applies.

Let QB be the resulting quantifier block, so that,

ϕ′(R ′, x ,b) ≡ [QB]R ′(x ,b).
If iterative definition ϕ closes in at most t(n) iterations, then

PFP(ϕ) ≡ [QB]t(n)(b = 1).
Here the quantifier-free formula is b = 1, corresponding to the initial
step of the iterative definition in which for all x , R ′(x ,0) is false and
R ′(x ,1) is true.

Thus, ITER[t(n)] ⊆ FO[t(n)], as desired.
The containment FO[t(n)] ⊆ CRAM[t(n)] goes through unchanged.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 25 / 46



Polynomial Space DSPACE[nk ] = VAR[k + 1]

Subsection 3

DSPACE[nk] = VAR[k + 1]

George Voutsadakis (LSSU) Descriptive Complexity December 2024 26 / 46



Polynomial Space DSPACE[nk ] = VAR[k + 1]

The Class FO-VAR[t(n), v]

Definition

A query is in class FO-VAR[t(n), v] iff it is in FO[t(n)] and the relevant
quantifier-block contains only v first-order variables - although it may
contain some constant number of additional boolean variables.
As in the definition of ITER[arity v], the truth assignment of all the

variables will cycle or stabilize after at most t(n) = 2cnv−1 iterations.
Thus,

VAR[v + 1] = ∞⋃
c=1

FO-VAR[2cnv , v + 1].

George Voutsadakis (LSSU) Descriptive Complexity December 2024 27 / 46



Polynomial Space DSPACE[nk ] = VAR[k + 1]

Accommodating Conjunctions and Disjunctions

Lemma

Suppose that we have two quantifier blocks with identical quantifiers in
identical order (ignoring any boolean quantifiers):

QB1 = [(Q1v1.M1)⋯(Qsvs .Ms)],
QB2 = [(Q1v1.N1)⋯(Qsvs .Ns)].

Then the conjunction and disjunction of these quantifier blocks may be
written in the same form.

The conjunction, for example, can be written with an extra,
universally quantified boolean variable:

[QB1]ϕ ∧ [QB2]ϕ ≡ [(∀b)(Q1v1.R1)⋯(Qsvs .Rs)]ϕ,
where,

Ri = (b = 0 ∧Mi) ∨ (b = 1 ∧Ni).
George Voutsadakis (LSSU) Descriptive Complexity December 2024 28 / 46



Polynomial Space DSPACE[nk ] = VAR[k + 1]

Number of Domain Variables

Theorem

For k = 1,2, . . .,

DSPACE[nk] = VAR[k + 1] = ITER[arity k].

The proof is accomplished using three lemmas proving the following
containments:

DSPACE[nk] ⊆ VAR[k + 1] ⊆ ITER[arity k] ⊆ DSPACE[nk].

George Voutsadakis (LSSU) Descriptive Complexity December 2024 29 / 46



Polynomial Space DSPACE[nk ] = VAR[k + 1]

DSPACE[nk] ⊆ VAR[k + 1]

Lemma

DSPACE[nk] ⊆ VAR[k + 1].
Let M be a DSPACE[nk] Turing machine.

M’s work space consists of nk tape cells.

Each cell holds a symbol from some finite alphabet Σ.

The contents of M’s tape at time t + 1 is a deterministic, local
transformation of the contents at time t.

Namely, the contents of cell p at time t + 1 is a function of the
contents of cells p − 1,p,p + 1 at time t.

We write a logical formula Ct(x ,b) meaning that, after step t of M’s

computation, the cell at position x is b, where:

x = x1, . . . , xk is a k-tuple of variables ranging over {0, . . . ,n − 1};
b is a tuple of boolean variables coding an element of Σ.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 30 / 46



Polynomial Space DSPACE[nk ] = VAR[k + 1]

DSPACE[nk] ⊆ VAR[k + 1] (Cont’d)

The following is an iterative definition of Ct :

Ct+1(x ,b) = ⋁
⟨a−1,a0,a1⟩→b

(Ct(x − 1,a−1) ∧Ct(x ,a0) ∧Ct(x + 1,a1)).

The disjunction is over the finite set of quadruples (a−1,a0,a1,b),
such that the first three symbols lead to the fourth in one move of M.

This set of quadruples exactly represents M’s transition table.

We have already seen how to write C0 with k + 1 domain variables.

M accepts its input iff it eventually reaches its accept state.

Let true code the appropriate accept symbol.

Thus, M accepts its input iff eventually Ct(0, true) holds.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 31 / 46



Polynomial Space DSPACE[nk ] = VAR[k + 1]

DSPACE[nk] ⊆ VAR[k + 1] (Claim)

The lemma will be proved once we show the following

Claim

There is a quantifier block QB containing k + 1 domain variables, such
that the preceding equation may be rewritten as

Ct+1(x ,b) = [QB]Ct(x ,b).
The proof is purely symbol manipulation.

We first write quantifier blocks QB+ and QB− whose job it is to
replace x by x + 1 and x − 1 respectively.

That is, for any formula ϕ, we have,

ϕ(x + 1) ≡ [QB+]ϕ(x), ϕ(x − 1) ≡ [QB−]ϕ(x).
These quantifier blocks can be written with k + 1 domain variables.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 32 / 46



Polynomial Space DSPACE[nk ] = VAR[k + 1]

DSPACE[nk] ⊆ VAR[k + 1] (Claim Cont’d)

The idea is to add one to x by replacing xk with its successor, or, if
xk = max, by replacing xk by 0 and xk−1 by its successor, or, etc.

We existentially quantify a tuple of boolean variables, c , to guess for
which i , 1 ≤ i ≤ k , xi will be incremented.

For j > i , it must be that xj = max and x ′j = 0.

The form of the quantifier block will be as follows,

(∃c .P)(∃y .Nk)(∃xk .Mk)(∃y .Nk−1)(∃xk−1.Mk−1)⋯(∃y .N1)(∃x1.M1).
The quantifier-free conditions P , Ni and Mi are described next.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 33 / 46



Polynomial Space DSPACE[nk ] = VAR[k + 1]

DSPACE[nk] ⊆ VAR[k + 1] (Claim Cont’d)

The quantifier-free conditions P , Ni and Mi are as follows.

P ≡ ⋁k
i=1(c = i ∧ xi ≠ max∧xi+1 = xi+2 = ⋯ = xk);

Ni ≡ (i < c ∧ y = xk) ∨ (i = c ∧ SUC(xk , y))
∨ (i > c ∧ y = max);

Mi ≡ xi = y .

Thus, we have QB+,QB− and, trivially, QB0.

Observe that the desired QB of the claim is a positive boolean
combination of these three quantifier blocks.

It follows from one of the preceding lemmas that QB exists and has
k + 1 domain variables, as desired.

This completes the proof of the claim and, thus, of the lemma.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 34 / 46



Polynomial Space DSPACE[nk ] = VAR[k + 1]

VAR[k + 1] ⊆ ITER[arity k]

Lemma

VAR[k + 1] ⊆ ITER[arity k].
Here we have a quantifier block of the form

QB = [(Q1xi1 .M1)(B1)⋯(Qrxir .Mr)(Br)],
where:

ij ∈ {1, . . . ,k + 1}, for j = 1, . . . , r ;
The Mj are quantifier-free;
The Bj are blocks of boolean quantifiers over boolean variables
{b1, . . . ,bc}.

We can convert the iteration of QB into an iterative definition of
relations as follows.

Let Rs,t be a set of k-ary relation symbols, for 1 ≤ s ≤ r .

Let t ∈ {0,1}{1,...,c}.
Thus, t specifies an assignment to all the boolean variables.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 35 / 46



Polynomial Space DSPACE[nk ] = VAR[k + 1]

VAR[k + 1] ⊆ ITER[arity k] (Cont’d)

Intuitively, the iterative definition for the Rs,t ’s is given as follows:

Rs,t(x1, . . . , x̂is , . . . , xk+1) ≡(Qsxis .Ms)(Bs)Rs+1,t′(x1, . . . , x̂is+1 , . . . , xk+1).
Here 1 is added to s modulo r .

R(x1, . . . , x̂i , . . . , xk+1) means that the variable xi is omitted.

In the formula the variable to be quantified next is safely omitted.

This is why arity k suffices.

The above formula is a bit misleading in that we must write out
boolean quantifier block Bs .

For example, the formula (∀bj)Rs+1,t′(x) would be expanded to

Rs+1,(t∣bj=0)(x) ∧Rs+1,(t∣bj=1)(x).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 36 / 46



Polynomial Space DSPACE[nk ] = VAR[k + 1]

ITER[arity k] ⊆ DSPACE[nk]

Lemma

ITER[arity k] ⊆ DSPACE[nk].
This last inclusion is obvious because O[nk] bits suffice to record the
current meaning of the bounded number of relations of arity k .

Each bit of each relation in the next iteration may then be computed
by evaluating a fixed first-order formula.

This can be done in DSPACE[log n].
So, it can certainly be done in DSPACE[nk].
This completes the proof of the theorem.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 37 / 46



Polynomial Space Using Second-Order Logic to Capture PSPACE

Subsection 4

Using Second-Order Logic to Capture PSPACE

George Voutsadakis (LSSU) Descriptive Complexity December 2024 38 / 46



Polynomial Space Using Second-Order Logic to Capture PSPACE

SO[t(n)]

Definition

A set S ⊆ STRUC[τ] is a member of SO[t(n)] iff there exist:

Quantifier-free formulas Mi , 0 ≤ i ≤ k , from L(τ);
A tuple of constants C ;

A quantifier block

QB = [(Q1Z1.M1)⋯(QkZk .Mk)],
such that, for all A ∈ STRUC[τ],

A ∈ S iff A ⊧ ([QB]t(∥A∥)M0)(C).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 39 / 46



Polynomial Space Using Second-Order Logic to Capture PSPACE

SO[t(n)] (Cont’d)

Definition (Cont’d)

The only difference between SO[t(n)] and FO[t(n)] is that some of the
variables Zi may be relation variables Sai

i
, and the corresponding constant

Ci must be either an input or numeric relation, or a boolean.
Here:

false denotes the empty relation;

true denotes the full relations of appropriate arity.

Define
SO(arity a)[t(n)]

to be the restriction of SO[t(n)] allowing quantification only of relations
of arity a or less.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 40 / 46



Polynomial Space Using Second-Order Logic to Capture PSPACE

SO with Transitive Closure (Lemma)

Lemma

Let SO(arity a)(TC) be the language SO(arity a) extended by the
transitive closure operator. Any formula Φ ∈ SO(arity a)(TC) can be
written in the normal form

Φ ≡ (TCAa
1...A

a
k
,x1...xr ,A

′a
1 ...A

′a
k
,x ′1...x

′
r
α)(false, true),

where α is quantifier-free.

The proof follows the strategy of the proof showing that every
formula in FO(TC) is equivalent to a single application of transitive
closure to a quantifier-free formula, ϕ ≡ (TCα)(0,max).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 41 / 46



Polynomial Space Using Second-Order Logic to Capture PSPACE

SO with Transitive Closure

Proposition

SO(arity a)(TC) ⊆ SO(arity a)[na].
Let Φ ∈ SO(arity a)(TC).
We may assume that Φ is in the form asserted by the lemma.

We construct a second-order quantifier block similar to the first-order
quantifier block, as done previously for transitive closure.

Recall that, for transitive closure, ϕtc ≡ [QBtc]R(x , y), where
QBtc ≡ (∀z .M1)(∃z)(∀uv .M2)(∃xy .M3),

where,
M1 ≡ ¬(x = y ∨ E(x , y)),
M2 ≡ (u = x ∧ v = z) ∨ (u = z ∧ v = y),
M3 ≡ (x = u ∧ y = v).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 42 / 46



Polynomial Space Using Second-Order Logic to Capture PSPACE

SO with Transitive Closure (Cont’d)

The difference here is that the expression A = A′ is no longer
quantifier-free.

We must replace it by

∀z .((A1(z)↔ A′1(z)) ∧⋯∧ (Ak(z)↔ A′k(z))).
We abbreviate this by

∀z .(A(z)↔ A′(z)).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 43 / 46



Polynomial Space Using Second-Order Logic to Capture PSPACE

SO with Transitive Closure (Cont’d)

The new quantifier block is as follows:

QBSO(TC) ≡ (∀z .N1)(∃B)(∃C D)(∀z)(∃b.N2)(∃A A′)(∀z)(∃b.N3),
where

N1 ≡ ¬((A(z)↔ A′(z)) ∨ α(A,A′)),
N2 ≡ (b ∧C(z)↔ A(z) ∧D(z)↔ B(z))∨

(¬b ∧ C(z)↔ B(z) ∧D(z)↔ A′(z)),
N3 ≡ (A(z)↔ C(z) ∧A′↔ D(z)).

Finally, the length of the relevant α-path can be at most 2kn
a

.

It follows that,

Φ ≡ [QBSO(TC)]kna(false)[false/A, true/A′].

George Voutsadakis (LSSU) Descriptive Complexity December 2024 44 / 46



Polynomial Space Using Second-Order Logic to Capture PSPACE

Space and Second-Order Complexity

The following theorem summarizes the relationship between:

Deterministic and nondeterministic space;
Second-order descriptive complexity.

Theorem

For k = 1,2, . . .:

1. DSPACE[nk] = SO(arity k)(DTC);

2. NSPACE[nk ] = SO(arity k)(TC).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 45 / 46



Polynomial Space Using Second-Order Logic to Capture PSPACE

Descriptive Characterizations of PSPACE

Corollary

We have the following descriptive characterizations of PSPACE:

PSPACE = FO(PFP) = FO[2nO(1)]
= SO(TC) = SO(DTC) = SO[nO(1)].

From a parallel point of view, we have already seen that SO[t(n)] is
equal to CRAM-PROC[t(n),2nO(1)].
This suggests that there is a striking tradeoff in parallel time versus
hardware.

Corollary

PSPACE = CRAM-PROC[2nO(1) ,nO(1)] = CRAM-PROC[nO(1),2nO(1)].
George Voutsadakis (LSSU) Descriptive Complexity December 2024 46 / 46


	Outline
	Polynomial Space
	Complete Problems for PSPACE
	Partial Fixed Points
	DSPACE[nk] = VAR[k+1]
	Using Second-Order Logic to Capture PSPACE


