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Background in Complexity Preliminary Definitions

Subsection 1

Preliminary Definitions
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Background in Complexity Preliminary Definitions

Turing Machines and Conventions

We assume familiarity with the Turing machine.

We survey computational complexity theory.

We write M(w) ↓ to mean that Turing machine M accepts input w .

We write L(M) to denote the language accepted by M,

L(M) = {w ∈ {0,1}∗ ∶M(w) ↓}.

Instead of just accepting or rejecting, Turing machines may compute
functions from binary strings to binary strings.

We use T (w) to denote the binary string that Turing machine T

leaves on its write-only output tape when it is started with the binary
string w on its input tape.

If T does not halt on input w , then T (w) is undefined.
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Background in Complexity Preliminary Definitions

Encoding of Structures as Boolean Strings

Everything that a Turing machine does may be thought of as a query
from binary strings to binary strings.

In order to make Descriptive Complexity rich and flexible it is useful
to consider queries that use other vocabularies.

To relate such queries to Turing machine complexity, we fix a scheme
that encodes the structures of vocabulary τ as boolean strings.

To do this, for each τ , we define an encoding query,

binτ ∶ STRUC[τ]→ STRUC[τs].
where τs = ⟨S1⟩ is the vocabulary of boolean strings.

The details of the encoding are not important.

It is important, however, to know that, for each τ , binτ and its
inverse are first-order queries.
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Background in Complexity Preliminary Definitions

The Binary Encoding

Consider the vocabulary

τ = ⟨Ra1
1 , . . . ,R

ar
r , c1, . . . , cs⟩.

Let
A = ⟨{0,1, . . . ,n − 1},RA

1 , . . . ,R
A
r , c

A
1 , . . . , c

A
s ⟩

be an ordered structure of vocabulary τ .

The relation RA
i is a subset of ∣A∣ai .

We encode this relation as a binary string

binA(Ri)
of length nai , where “1” in a given position indicates that the
corresponding tuple is in RA

i .

For each constant cAj , its number is encoded as a binary string

binA(cj)
of length ⌈log n⌉.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 6 / 78



Background in Complexity Preliminary Definitions

The Binary Encoding (Cont’d)

The binary encoding of the structure A is then just the concatenation
of the bit strings encoding its relations and constants,

binτ(A) = binA(R1)binA(R2)⋯binA(Rr)binA(c1)⋯binA(cs).
We do not need any separators between the various relations and
constants because the vocabulary τ and the length of binτ(A)
determines where each section belongs.

Observe that the length of binτ(A) is given by

n̂τ = ∥binτ (A)∥
= na1 +⋯+ nar + s⌈log n⌉.
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Background in Complexity Preliminary Definitions

Conventions Concerning the Encoding

We do not bother to include any numeric predicates or constants in
binτ (A) since they can be easily recomputed.

However, the coding binτ(A) does presuppose an ordering on the
universe.

There is no way to code a structure as a string without an ordering.

Since a structure determines its vocabulary, in the sequel we usually
write bin(A) ∶= binτ(A) for the binary encoding of A ∈ STRUC[τ].
We view bin as the union of binτ over all vocabularies τ .

In the special case where τ includes no input relations symbols, we
pretend that there is a unary relation symbol that is always false.

Example: If τ = ∅, then bin(A) = 0∥A∥.

We do this to insure that the size of bin(A) is at least as large as ∥A∥.
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Background in Complexity Preliminary Definitions

Length of Input and Coding

When τ = τs , the map binτ maps strings to strings.

In this case, binτ is the identity map and, thus, n̂τs = n.

In complexity theory, n is usually reserved for the length of the input.

Here, we use n to denote the size of the input structure, n = ∥A∥.
When the inputs are structures of vocabulary τ , the length of the
input is n̂τ .

For the case of binary strings, these two sizes coincide (n̂τs = n).

When τ is understood, we write n̂ for n̂τ .

Observe that n and n̂ are always polynomially related.

There are two requirements of a coding function such as “bin”.

First, it must be computationally very easy to encode and decode.
Secondly, the coding must be fairly space efficient.
E.g., coding in unary would not be acceptable.
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Background in Complexity Preliminary Definitions

Computing a Query

Definition

Let I ∶ STRUC[σ]→ STRUC[τ] be a query. Let T be a Turing machine.
Suppose that, for all A ∈ STRUC[σ],

T (bin(A)) = bin(I(A)).
STRUC[σ] I

✲ STRUC[τ]

STRUC[τs]
binσ

❄

T
✲ STRUC[τs]

binτ
❄

Then we say that T computes I .
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Background in Complexity Preliminary Definitions

Time and Space Complexity

DTIME[t(n)] denotes the set of boolean queries that are computable
by a deterministic multi-tape Turing machine in O(t(n)) steps for
inputs of universe size n.

NTIME[t(n)] denotes the set of boolean queries that are computable
by a nondeterministic multi-tape Turing machine in O(t(n)) steps for
inputs of universe size n.

DSPACE[s(n)] denotes the set of boolean queries that are
computable by a deterministic multi-tape Turing machine using
O(s(n)) work tape cells for inputs of universe size n.

NSPACE[s(n)] denotes the set of boolean queries that are
computable by a nondeterministic multi-tape Turing machine using
O(s(n)) work tape cells for inputs of universe size n.
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Background in Complexity Preliminary Definitions

Complexity Classes

We assume that the reader is familiar with the following classical
complexity classes.

L = DSPACE[logn];
NL = NSPACE[log n];
P = polynomial time = ⋃∞k=1DTIME[nk ];
NP = nondeterministic polynomial time = ⋃∞k=1NTIME[nk ];
PSPACE = polynomial space = ⋃∞k=1DSPACE[nk] = ⋃∞k=1NSPACE[nk ];
EXPTIME = exponential time = ⋃∞k=1DTIME[2nk ].

To talk about space s(n), for s(n) < n̂, the Turing machine is
assumed to have:

A read-only input tape of length n̂;
Some number of work tapes of total length O(s(n)).
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Background in Complexity Preliminary Definitions

Queries Computable in a Class C

To consider only boolean queries, as ordinarily done in the definitions
of complexity classes as sets of decision problems, we adopt

Definition (Q(C), the Queries Computable in C)

Let I ∶ STRUC[σ]→ STRUC[τ] be a query. We say that I is computable

in C iff the boolean query Ib is an element of C, where

Ib = {(A, i ,a) ∶ The ith bit of bin(I(A)) is “a”}.
Let Q(C) be the set of all queries computable in C,

Q(C) = C ∪ {I ∶ Ib ∈ C}.
For each of the above resources (deterministic and nondeterministic
time and space) there is a hierarchy theorem saying that more of the
given resource enables us to compute more boolean queries.
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Background in Complexity Preliminary Definitions

Space and Time Constructibility

We say that a function s ∶ N→N is space constructible

(respectively, time constructible) iff there is a deterministic Turing
machine running in space O(s(n)) (respectively, time O(s(n))) that
on input 0n, i.e., n in unary, computes s(n) in binary.

This is the same thing as saying that s ′ ∈ Q(DSPACE[s(n)]),
respectively s ′ ∈ Q(DTIME[s(n)]), where s ′ is the function that on
input 0n computes s(n) in binary.

Every reasonable function is constructible, as is every function one
finds in our discussion.

Many theorems need the assumption that the time and space bounds
in question are constructible.
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Background in Complexity Preliminary Definitions

The Space Hierarchy Theorem

The Space Hierarchy Theorem

For all space constructible s(n) ≥ log n, if

lim
n→∞

t(n)
s(n) = 0,

then DSPACE[t(n)] is strictly contained in DSPACE[s(n)].
This is a diagonalization argument, but one has to be careful.

On input M, the diagonalization program:

Marks off s(∣M ∣) tape cells;
Simulates machine M on input M .

If M(M) exceeds the given space or loops, then it should accept.

Otherwise, do the opposite of what M would do.
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Background in Complexity Preliminary Definitions

Class Relations

When comparing different resources, we are able to prove much less.

For example, by Savitch’s Theorem, for s(n) ≥ log n,

DSPACE[s(n)] ⊆ NSPACE[s(n)] ⊆ DSPACE[(s(n))2];
However, we know only the trivial relationships between
nondeterministic and deterministic time,

DTIME[t(n)] ⊆ NTIME[t(n)] ⊆ DTIME[2O(t(n))].
Consider the following series of containments:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE.

It follows from Savitch’s Theorem and the Space Hierarchy Theorem
that NL is not equal to PSPACE;
No other inequalities, including that L is not equal to NP, are known.
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Background in Complexity Reductions and Complete Problems

Subsection 2

Reductions and Complete Problems
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Background in Complexity Reductions and Complete Problems

Introducing Oracle Turing Machines and Reducibility

Let A and B be boolean queries that may be difficult to compute.

An oracle for B is a mythical device that, when given a structure B,
will answer in unit time whether or not B satisfies query B .

We say that A is Turing reducible to B if it is easy to compute
query A given an oracle for B .
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Background in Complexity Reductions and Complete Problems

Oracle Turing Machines

Definition (Oracle Turing Machine)

An oracle Turing machine is a Turing machine equipped with an extra
tape called the query tape.
Let M be an oracle Turing machine and B be any boolean query.
MB denotes the oracle Turing machine M equipped with an oracle for B .
MB may write on its query tape like any other tape.
At any time, MB may enter the “query state”.
Assume that the string

w = bin(A)
is written on the query tape when MB enters the query state.
At the next step, on the query tape, there will appear a:

{ “1”, if A ∈ B ,
“0”, otherwise.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 19 / 78



Background in Complexity Reductions and Complete Problems

Turing Reducibility

Obviously, MB may answer any membership question

“Does A satisfy B?”

in linear time, the time to copy the string bin(A) to its query tape.

Definition (Cont’d)

Let A, B be two boolean queries. Let C be a complexity class.
We say that A is C-Turing reducible to B if there exists an oracle Turing
machine M, such that:

MB runs in complexity class C;

L(MB) = A.

We denote this by A ≤TC B , where “T” stands for Turing reduction.
An important example is polynomial-time Turing reduction, ≤TP .
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Background in Complexity Reductions and Complete Problems

Example

Define the boolean query CLIQUE to be the set of pairs ⟨G ,k⟩, such
that G is a graph, having a complete subgraph of size k .

The vocabulary for CLIQUE is τgk = ⟨E 2,k⟩.
We can identify the universe of a structure A ∈ STRUC[τgk] with the
set {0,1, . . . ,n − 1}, where n = ∥A∥ is the number of vertices of A.

The constant k also represents a number between 0 and n − 1.

We will see later that CLIQUE is an NP-complete problem.

Define the query MAX-CLIQUE(G) to be the size of a largest clique
in graph G .

We show that the boolean version of MAX-CLIQUE is polynomial
time Turing reducible to CLIQUE.
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Background in Complexity Reductions and Complete Problems

Example (Cont’d)

In symbols, we show that MAX-CLIQUEb ≤
T
P CLIQUE, where

MAX-CLIQUEb = {(G , i ,a) ∶ bit i of bin(I(G)) is “a”}.
The reduction is as follows.

Consider a given input (G , i ,a) for MAX-CLIQUEb.

Perform a binary search using an oracle for CLIQUE to determine the
size s of the maximum clique for G .

That is, ask if (G , n2) ∈ CLIQUE.
If yes, ask if (G , 3n

4
) ∈ CLIQUE;

If no, ask if (G , n
4
) ∈ CLIQUE.

After log n queries to the oracle, s has been computed.

Now accept iff bit i of s is “a”.
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Background in Complexity Reductions and Complete Problems

Many-One Reductions

A simpler and more popular kind of reduction in complexity theory is
the many-one reduction.

In descriptive complexity, we use first-order reductions, first-order
queries that are at the same time many-one reductions.

Definition (Many-One Reduction)

Let C be a complexity class.
Let A ⊆ STRUC[σ] and B ⊆ STRUC[τ] be boolean queries.
A C-many-one reduction from A to B , in symbols A ≤C B , is a query

I ∶ STRUC[σ]→ STRUC[τ],
such that:

I is an element of Q(C);
For all A ∈ STRUC[σ], A ∈ A iff I(A) ∈ B.
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Background in Complexity Reductions and Complete Problems

Turing vs. Many-One Reductions

For example:

When I is a first-order query, it is a first-order reduction (≤fo);
When I ∈ Q(L), it is a logspace reduction (≤log);
When I ∈ Q(P), it is a polynomial-time reduction (≤P).

Many-one reduction is a particularly simple kind of Turing reduction.

To decide whether A is an element of A:

Compute I(A);
Ask the oracle whether I(A) is an element of B.

Many-one reductions are simpler than Turing reductions.

Moreover, they seem to be sufficient in most situations.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 24 / 78



Background in Complexity Reductions and Complete Problems

Example

We give a first-order reduction from PARITY to MULTb.

PARITY is the boolean query on binary strings that is true iff the
string has an odd number of ones.

We will see later that PARITY is not first-order.

MULT, the multiplication query, maps a pair of boolean strings of
length n to their product, a boolean string of length 2n.

Let τab = (A1,B1) be the vocabulary of structures consisting of a pair
A,B of boolean strings.

Then
MULT ∶ STRUC[τab]→ STRUC[τs].

Reductions map boolean queries to boolean queries.

So we actually deal with the boolean version of MULT.

MULTb is a boolean query on structures of vocabulary τabcd = ⟨A1,

B1, c ,d⟩ that is true iff bit c of the product of A and B is d .
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Background in Complexity Reductions and Complete Problems

Example (Cont’d)

Recall that τs = ⟨S1⟩ is the vocabulary of boolean strings.

The first-order reduction

IPM ∶ STRUC[τs]→ STRUC[τabcd]
is given by the following formulas:

ϕA(x , y) ≡ y = max∧S(x)
ϕB(x , y) ≡ y = max

IPM ≡ λxy ⟨true, ϕA, ϕB , ⟨0,max⟩, ⟨0,1⟩⟩.
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Background in Complexity Reductions and Complete Problems

Example (Cont’d)

Observe that the effect of this reduction is to line up all the bits of
string A into column n − 1 of the generated product.
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Background in Complexity Reductions and Complete Problems

Example (Cont’d)

We have that

A ∈ PARITY iff IPM(A) ∈MULTb.

Thus, PARITY ≤fo MULTb.

So, if MULT were first-order, then PARITY would be as well.

We will see later that PARITY is not first-order.

This allows us to conclude that MULT is not first order.
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Background in Complexity Reductions and Complete Problems

Completeness for a Complexity Class

Suppose C is a weak complexity class such as FO or L.

The intuitive meaning of A ≤C B is that the complexity of problem A

is less than or equal to the complexity of problem B .

A being complete for C means that A is a hardest query in C.

That is, every query in C can be rephrased as an instance of A.

Definition (Completeness for a Complexity Class)

Let A be a boolean query.
Let C be a complexity class.
Let ≤r be a reducibility relation.
We say that A is complete for C via ≤r if:

1. A ∈ C;

2. For all B ∈ C, B ≤r A.
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Background in Complexity Reductions and Complete Problems

Completeness and Reductions

When we say that a problem is complete for a complexity class

without mentioning under what reduction, then we implicitly mean
via first-order reductions ≤fo.

We will show that, if a problem is complete via first-order reductions,
then it is also complete via:

Logspace reductions;
Polynomial-time reductions.
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Background in Complexity Reductions and Complete Problems

Short List of Complete Problems

Complete for L:

CYCLE: Given an undirected graph, does it contain a cycle?
REACHd : Given a directed graph, is there a deterministic path from
vertex s to vertex t? (A deterministic path is such that, for every
edge (u, v) on the path, there is only one edge in the graph from u.)

Complete for NL:

REACH: Given a directed graph, is there a path from vertex s to vertex
t?
2-SAT: Given a boolean formula in conjunctive normal form, with only
two literals per clause, is it satisfiable?

Complete for P:

CIRCUIT-VALUE-PROBLEM (CVP): Given an acyclic boolean circuit,
with inputs specified, does its output gate have value one?
NETWORK-FLOW: Given a directed graph, with capacities on its
edges, and a value V , is it possible to achieve a steady-state flow of
value V through the graph?
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Background in Complexity Reductions and Complete Problems

Short List of Complete Problems (Cont’d)

Complete for NP:

SAT: Given a boolean formula, is it satisfiable?
3-SAT: Given a boolean formula in conjunctive normal form with only
three literals per clause, is it satisfiable?
CLIQUE: Given an undirected graph and a value k , does the graph
have a complete sub graph with k vertices?

Complete for PSPACE:

QSAT: Given a quantified boolean formula, is it satisfiable?
HEX, GEOGRAPHY, GO: Given a position in the generalized versions
of the games hex, geography or go, is there a forced win for the player
whose move it is?

George Voutsadakis (LSSU) Descriptive Complexity December 2024 32 / 78



Background in Complexity Reductions and Complete Problems

Example

SAT is the set of boolean formulas in conjunctive normal form (CNF)
that admit a satisfying assignment, i.e., a way to set each boolean
variable to true or false so that the whole formula evaluates to true.

Example: Consider the following boolean formulas (v means ¬v):

ϕ0 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5);
ϕ1 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)(x1 ∨ x4 ∨ x5) ∧ (x1 ∨ x4 ∨ x5) ∧ (x1 ∨ x4 ∨ x5) ∧ (x1 ∨ x4 ∨ x5).

It can be verified that ϕ0 ∈ SAT and ϕ1 ∉ SAT.

It is easy to see that SAT is in NP.

In linear time, a nondeterministic algorithm can write down a “0” or a
“1” for each boolean variable.

Then it can deterministically check that each clause has been
assigned at least one “1”, and if so, accept.
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Background in Complexity Reductions and Complete Problems

Example (Cont’d)

A boolean formula ϕ that is in CNF may be thought of as a set of
clauses, each of which is a disjunction of literals.

Recall that a literal is an atomic formula - in this case a boolean
variable - or its negation.

Thus, a natural way to encode ϕ is via the structure

Aϕ = ⟨A,P ,N⟩.
The universe A is a set of clauses and variables.
The relation P(c , v) means that variable v occurs positively in clause c ;
N(c , v) means that variable v occurs negatively in clause c .

We can think of every element of the universe as a variable and a
clause.

Accordingly, n = ∥Aϕ∥ is equal to the maximum of the number of
variables and the number of clauses occurring in ϕ.
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Background in Complexity Reductions and Complete Problems

Example (Cont’d)

If v is really a variable but not a clause, we can harmlessly make it
the clause (v ∨ v) by adding the pair (v , v) to the relations P and N.

Example: We revisit

ϕ0 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5).
A structure coding ϕ0 in this way is:

Aϕ0 = ⟨{1,2,3,4,5},P ,N⟩;
P = {(1,1), (1,3), (2, 4), (3, 2), (3,5), (4,4), (5, 5)};
N = {(1,2), (2,1), (2, 2), (3, 3), (4,4), (5,5)}.
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Background in Complexity Reductions and Complete Problems

Reduction from SAT to CLIQUE

We show that SAT is first-order reducible to CLIQUE.

Let A be a boolean formula in CNF with:
Clauses C = {c1, . . . , cn};
Variables V = {v1, . . . , vn}.

Let L = {v1, . . . , vn, v 1, . . . , vn}.
Define the instance of the clique problem

g(A) = (V g(A),E g(A),kg(A))
as follows:

V g(A) = (C × L) ∪ {w0};
E g(A) = {(⟨c1, ℓ1⟩, ⟨c2, ℓ2⟩) ∶ c1 ≠ c2 and ℓ1 ≠ ℓ2} ∪{(w0, ⟨c , ℓ⟩), (⟨c , ℓ⟩,w0) ∶ ℓ occurs in c};
kg(A) = n + 1 = ∥A∥ + 1.
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Background in Complexity Reductions and Complete Problems

Reduction from SAT to CLIQUE (Construction)

The graph g(A) is an n × n array of vertices containing:

A row for every clause in A;
A column for every literal in L, plus a top vertex w0.

There are edges between vertices⟨c1, ℓ1⟩ and ⟨c2, ℓ2⟩ iff:
c1 ≠ c2, i.e., the points come
from different clauses;
ℓ1 ≠ ℓ2, i.e., literals ℓ1 and ℓ2 are
not the negations of each other.

The other edges in the graph are between w0 and those ⟨c , ℓ⟩ such
that literal ℓ occurs in clause c .
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Background in Complexity Reductions and Complete Problems

Reduction from SAT to CLIQUE (Proof)

Observe that a clique of size n + 1 must involve w0 and one vertex
from each clause.

This corresponds to a satisfying assignment, because no literal and its
negation can be in a clique.

Conversely, consider a satisfying assignment to A.

It determines an (n + 1)-clique consisting of w0 together with one
literal per clause that is assigned “true”.

It follows that mapping g is indeed a many-one reduction,

(A ∈ SAT) ⇔ (g(A) ∈ CLIQUE).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 38 / 78



Background in Complexity Reductions and Complete Problems

Reduction from SAT to CLIQUE (Query)

We now give the rather technical details of writing g as a first-order
query

g = λx1x2x3y1y2y3⟨ϕ0, ϕ1, ψ1⟩.
We encode the vertices as triples ⟨x1, x2, x3⟩, where:

x1 corresponds to the clause;
x2 corresponds to the variable;
x3 = 1 means the variable is positive and x3 = 2 means the variable is
negative.

Vertex w0 is ⟨1,1,3⟩, the only triple with x3 > 2.

The numeric formula ϕ0, which describes the universe of g(A), is
ϕ0 ≡ (x3 ≤ 2) ∨ (x1x2x3 = 113).
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Background in Complexity Reductions and Complete Problems

Reduction from SAT to CLIQUE (Query Cont’d)

Next, we define the edge relation.

First, let

ϕ′1(x , y) ≡ α1 ∨ (α2 ∧ P(y1, y2)) ∨ (α3 ∧N(y1, y2)),
α1 ≡ x1 ≠ y1 ∧ x3 < 3 ∧ y3 < 3 ∧ (x2 = y2 → x3 = y3);
α2 ≡ x3 = 3 ∧ y3 = 1;

α3 ≡ x3 = 3 ∧ y3 = 2.

Next, let ϕ1 be the symmetric closure of ϕ′1,

ϕ1(x1, x2, x3, y1, y2, y3)
≡ ϕ′1(x1, x2, x3, y1, y2, y3) ∨ϕ′1(y1, y2, y3, x1, x2, x3).

Notice that ϕ1 is a direct translation of the equation defining E g(A).
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Background in Complexity Reductions and Complete Problems

Reduction from SAT to CLIQUE (Query Cont’d)

We are thinking of the elements of the ordered universe as 1,2, . . . ,n
instead of the usual 0,1, . . . ,n − 1.

For this reason, the number n + 1 which would usually be represented
by 011 in lexicographic order, is instead 122.

Formula ψ1 identifies k as n + 1:

ψ1(x1, x2, x3) ≡ x1x2x3 = 122.

We have correctly encoded the desired first-order reduction g .

Moreover, equivalence A ∈ SAT iff g(A) ∈ CLIQUE holds.
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Subsection 3

Alternation

George Voutsadakis (LSSU) Descriptive Complexity December 2024 42 / 78



Background in Complexity Alternation

Complements and Complementary Classes

Let A ⊆ STRUC[τ] be a boolean query.

Define its complement A = STRUC[τ] −A.

Let C be a complexity class.

Define the complementary class co−C by

co-C = {A ∶ A ∈ C}.
Example: We know that SAT is in NP.

Its complementary problem SAT = UNSAT is in co-NP.
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NP and co-NP

The question whether NP is closed under complementation, i.e.,
whether NP is equal to co-NP, is open.

Most people believe that these classes are different.

Notice that if one could really build an NP machine, then one could
also build a co-NP machine.

All that is needed is a single gate to invert the former machine’s
answer.

Thus from a very practical point of view, the complexity of a problem
A and its complement, A, are identical.
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Parallel Machine View of NP

One way to imagine a realization of an NP machine is via a parallel or
biological machine with many processors.

At each step, each processor pi :

Creates two copies of itself;
Sets them to work on two slightly different problems;
If either of these offspring ever accepts, i.e., says “yes” to pi , then pi in
turn says “yes” to its parent.

These “yes” answers travel up a binary tree to the root and the whole
nondeterministic process accepts.
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Parallel Machine View of NP and Alternation

In such a view of nondeterminism, in time t(n) we can build about
2t(n) processors.

However, these processors are not taken full advantage of.

Their pattern of communication is very weak;
Each processor can compute only the “or” of its children.

Thus, the whole computation is one big “or” of its leaves.

Alternation generalizes nondeterminism so that:

It is closed under complementation;
Makes better use of its processors.
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Background in Complexity Alternation

Alternating Turing Machines: States and Configurations

Definition

An alternating Turing machine is a Turing machine whose states are
divided into two groups:

The existential states;

The universal states.

Recall that a configuration, or an instantaneous description (ID), of
any Turing machine consists of:

The machine’s state;

The contents of the work-tape;

The head positions.
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Alternating Turing Machines: Acceptance

Definition (Cont’d)

The notion of when such a machine accepts an input is defined by
induction.
The alternating Turing machine accepts in a given configuration c if
one of the following hold:

1. c is in a final accepting state;

2. c is in an existential state and there exists a next configuration c ′

that accepts;

3. c is in a universal state, there is at least one next configuration, and
all next configurations accept.

Finally, the alternating Turing machine accepts if its accepts in its initial
configuration.
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Adding Random Access Read-Only Input

Turing machines access their tapes sequentially.

This makes it difficult for them to do anything in sublinear time.

Alternating Turing machines can sensibly use sublinear time.

So it is more reasonable to use machines that have a more random
access nature.

As a compromise, from now on we assume that our Turing machines
have a random access read-only input:

There is an index tape, which can be written and read like other tapes;
Whenever the value v , written in binary, appears on the index tape, the
read head automatically scans bit v of the input.
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Alternating Classes

Define the complexity class ASPACE[s(n)] to be the set of boolean
queries accepted by alternating Turing machines using a maximum of
O(s(n)) tape cells in any computation path on an input of length n.

Define the complexity class ATIME[t(n)] to be the set of boolean
queries accepted by alternating Turing machines using a maximum of
O(t(n)) time steps in any computation path on an input of length n.
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Alternating and Deterministic Classes

The main relationships between alternating and deterministic
complexity classes are given by the following theorem.

Theorem

For s(n) ≥ log n, and for t(n) ≥ n,

∞

⋃
k=1

ATIME[(t(n))k] =
∞

⋃
k=1

DSPACE[(t(n))k];
ASPACE[s(n)] =

∞

⋃
k=1

DTIME[ks(n)].
In particular, ASPACE[log n] = P and alternating polynomial time is equal
to PSPACE.
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Simplifying Conventions

The figure shows the computation graph of an alternating machine.

We assume for convenience that
such machines:

Have a unique accepting
configuration “s”;
Have a unique rejecing
configuration “t”;
Each configuration has at most
two possible next moves.

We also assume that these machines have clocks that uniformly cause
the machines to shut off at a fixed time that is a function of the
length of the input.

“Shutting off” means entering the reject configuration unless the
machine is already in the accept configuration.
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Comments on the Model

The letters “E” and “A” below the vertices indicate whether the
corresponding configurations are existential or universal.

If they were all existential, then this would be a nondeterministic
computation.

The time t(n) measures the depth of the computation graph.

We may think that, at each branching move, an extra processor is
created.

In time t(n) potentially 2O(t(n)) processors are created.
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Comments on the Model (Cont’d)

The two processors created take the two branches.

Eventually, they complete their tasks and report their answers to their
parent.

If the parent was existential, then it reports “accept” iff at least one of
its children accepts;
If the parent is universal, then it reports “accept” iff both of its
children accept.

The space used by an alternating machine is the maximum amount of
space used in any path through its computation graph.
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Boolean Circuits

Definition

A boolean circuit is a directed acyclic graph (DAG),

C = (V ,E ,G∧,G∨,G¬, I , r) ∈ STRUC[τc],
where

τc = ⟨E 2,G 1
∧ ,G

1
∨ ,G

1
¬ , I

1, r⟩.
Internal node w is:

An and-gate if G∧(w) holds;
An or-gate if G∨(w) holds;
A not-gate if G¬(w) holds.

The nodes v with no edges entering them are called leaves.
The input relation I(v) represents the fact that the leaf v is on.
Often we will be given a circuit C and, separately, its input relation I .
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The Circuit Value Problem

Definition

We define two problems.

The Circuit Value Problem (CVP) consists of those circuits whose
root gate r evaluates to one.

The Monotone Circuit Value Problem (MCVP) is the subset of
CVP in which no negation gates occur.
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Complexity of MCVP

Proposition

MCVP is recognizable in ASPACE[log n].
Let G be a monotone boolean circuit.
Define the procedure “EVAL(a)”, where a is a vertex of G .
1. if I(a) then accept
2. else if a has no outgoing edges then reject
3. if G∧(a) then in a universal state choose a child b of a
4. else in an existential state choose a child b of a
5. Return (EVAL(b))

The machine M simply calls EVAL(r).
Observe that EVAL(a) returns “accept” iff gate a evaluates to one.

The space used by EVAL is just the space to name two vertices a,b.

Thus, M is an ASPACE[log n] machine accepting MCVP.

An appropriate time limit for the machine would be n = ∥G∥, which is
an upper bound on the length of the longest path.
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The Quantified Satisfiability Problem

Definition

The Quantified Satisfiability Problem (QSAT) is the set of true
formulas of the following form:

Ψ = (Q1x1)(Q2x2)⋯(Qrxr)ϕ,
where ϕ is a boolean formula, each Qi is either ∀ or ∃ and x1, . . . , xr are
the boolean variables occurring in ϕ.

Observe that for any boolean formula ϕ on variables x ,

ϕ ∈ SAT ⇔ (∃x)ϕ ∈ QSAT;
ϕ ∉ SAT ⇔ (∀x)¬ϕ ∈ QSAT.

Thus QSAT logically contains both SAT and SAT.
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Complexity of QSAT

Proposition

QSAT is recognizable in ATIME[n].
Construct an alternating machine A that works as follows.

Suppose given input Φ ≡ (∃x1)(∀x2)⋯(Qrxr)α(x).
In an existential state, A writes down a boolean value for x1.

In a universal state it writes a bit for x2, and so on.

Next A must evaluate the quantifier-free formula α on these values.

This is easy for an alternating machine.

For each “∧” in α, A universally chooses which side to evaluate.

For each “∨”, A existentially chooses.

Thus, A only has to read one of the chosen bits xi and accept iff it is
true and occurs positively, or false and occurs negatively.

A runs in linear time and accepts the sentence Φ iff Φ is true.
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Alternating Time and (Non)deterministic Space

Theorem

Let s(n) ≥ log n be space constructible. Then,

NSPACE[s(n)] ⊆ ATIME[s(n)2] ⊆ DSPACE[s(n)2].

We start with the first inclusion.

Let N be an NSPACE[s(n)] Turing machine.

Let w be an input to N.

Let Gw denote the computation graph of N on input w .

N accepts w iff there is a path from s to t in Gw .

We construct an ATIME[s(n)2] machine A that accepts the same
language as N.
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Alternating Time and (Non)deterministic Space (Cont’d)

A does this by calling the subroutine, P(d , x , y).
P accepts iff there is a path in Gw of length at most 2d from x to y .

For d > 0, P is defined by

P(d , x , y) ≡ (∃z)(P(d − 1, x , z) ∧ P(d − 1, z , y)).
P works by:

Existentially choosing a middle configuration z ;
Universally choosing the first half or the second half;
Checking that the appropriate path of length 2d−1 exists.

Thus, the time T (d) taken to compute P(d , x , y) is the sum of:

The time to write down a new, middle configuration;
The time to compute P(d − 1, x ′, y ′).
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Alternating Time and (Non)deterministic Space (Cont’d)

The number of bits in a configuration of Gw is O(s(n)), where
n = ∣w ∣.
Thus,

T (d) = O(s(n)) +T (d − 1) = O(d ⋅ s(n)).
The length of the maximum useful path in Gw is bounded by the
number of configurations of N on input w .

That is, it is bounded by 2cs(n), for an appropriate value of c .

Thus, on input w , A:

Calls P(cs(n), s, t);
Receives its answer in time

O(cs(n)s(n)) = O(s(n)2).
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Alternating Time and (Non)deterministic Space (Cont’d)

We turn now to the second inclusion.

Let A be an ATIME[t(n)] machine.

On input w , A’s computation graph has:

Depth O(t(n));
Size 2O(t(n)).

A deterministic Turing machine can systematically search this entire
and-or graph using space O(t(n)).
It keeps a string

c1c2 . . . cr ∗ . . .∗

of length O(t(n)), denoting that:

We are currently simulating step r of A’s computation;
We have made choices c1 . . . cr on all of the existential and universal
branches up until this point.
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Alternating Time and (Non)deterministic Space (Cont’d)

The rest of the simulation will report an answer as to whether
choices c1 . . . cr will lead to acceptance, as follows.

Suppose one of the following holds:

1. cr = 1;

2. answer = “yes” and step r was existential;

3. answer = “no” and step r was universal.

Then, let cr = ∗ and report answer back to step r − 1.
Otherwise, set cr = 1 and continue.

Note that c1c2 . . . cr ∗ . . .∗ uniquely determines which configuration
of A to go to next.

So we do not have to store intermediate configurations of the
simulation.
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Consequences

An immediate corollary is Savitch’s Theorem.

Corollary (Savitch’s Theorem)

Let s(n) ≥ log n be space constructible. Then,

NSPACE[s(n)] ⊆ DSPACE[s(n)2].
It is the best known simulation of nondeterministic space by
deterministic space.

It is unknown whether equality holds in either or both of the inclusions

NSPACE[s(n)] ⊆ ATIME[s(n)2] ⊆ DSPACE[s(n)2].
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Alternating Space and Deterministic Time

Another corollary of the theorem is the first part of the following.

Theorem

For s(n) ≥ log n, and for t(n) ≥ n,

∞

⋃
k=1

ATIME[(t(n))k] =
∞

⋃
k=1

DSPACE[(t(n))k];
ASPACE[s(n)] =

∞

⋃
k=1

DTIME[ks(n)].
In particular, ASPACE[log n] = P and alternating polynomial time is equal
to PSPACE.

We show the second part next.
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Proof of the Theorem

We show that ASPACE[s(n)] is DTIME[O(1)s(n)].
One direction is obvious.

An ASPACE[s(n)] machine has O(1)s(n) possible configurations.

Thus, its entire computation graph is of size O(1)s(n).
Thus, it may be traversed in DTIME[O(1)s(n)].
The same traversal algorithm as in the second half of the proof of the
preceding theorem works in this case.
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Proof of the Theorem (Cont’d)

We now work for the reverse inclusion.

We are given a DTIME[ks(n)] machine M.

Let w be an input to M, with n = ∣w ∣.
We can view M’s computation as a ks(n) × ks(n) table.

Cell (t,p) of this table contains the symbol that is in position p of
M’s tape at time t of the computation.

Furthermore, if M’s head was at position p at time t, then this cell
should also include M’s state at time t.
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Proof of the Theorem (Cont’d)

We define an alternating procedure C(t,p,a).
C accepts iff the contents of cell p at time t in M’s computation on
input w consist of symbol a.

C(0,p,a) holds iff a is the correct symbol in position p of M’s initial
configuration on input w .

This means that position 1 contains ⟨q0,w1⟩, where:
q0 is M ’s start state;
w1 is the first symbol of w .

Similarly, for 2 ≤ p ≤ n, C(0,p,a) holds iff a = wp.

Inductively, C(t + 1,p,a) holds iff
the three symbols a−1a0a1 in tape positions p − 1,p,p + 1 lead to
an “a” in position p in one step of M’s computation.

We denote this symbolically as (a−1,a0,a1) M
→ a.
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Proof of the Theorem (Cont’d)

This condition can be read directly from M’s transition table,

C(t + 1,p,a) ≡ (∃a−1,a0,a1)((a−1,a0,a1) M
→ a ∧(∀i ∈ {−1,0,1})(C(t,p + i ,ai))).

The formula can be evaluated by an alternating machine using the
space to hold the values of t and p.

This space requirement is O(log ks(n)) = O(s(n)).
Note that M accepts w iff C(ks(n),1,af ) holds, where af is the
contents of the first cell of M’s accept configuration.

For example, we can use af = ⟨qf ,0⟩, where qf is M’s accept state.
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Subsection 4

Simultaneous Resource Classes
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The Polynomial Hierarchy

Let ASPACE-TIME[s(n), t(n)] be the set of boolean queries
accepted by alternating machines simultaneously using space s(n)
and time t(n).
Let ATIME-ALT[t(n),a(n)] be the set of boolean queries accepted
by alternating machines simultaneously using time t(n) and making
at most a(n) alternations between existential and universal states,
starting with existential.

By, definition, ATIME-ALT[nO(1),1] = NP.

Define the polynomial time hierarchy (PH) to be the set of
boolean queries accepted in polynomial time by alternating Turing
machines making a bounded number of alternations between
existential and universal states,

PH =
∞

⋃
k=1

ATIME-ALT[nk ,k].
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Nick’s Class NC

Define NC (Nick’s Class) to be the set of boolean queries accepted
by alternating Turing machines in log n space and poly log time:

NC =
∞

⋃
k=1

ASPACE-TIME[log n, logk n].
A more usual definition of NC (to be encountered later) is as the class
of boolean queries accepted by a parallel random access machine
using:

Polynomially much hardware;
Poly log parallel time.
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Subsection 5

Summary
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Complexity Classes

A list of the complexity classes defined so far:

L ⊆ NL ⊆ NC ⊆ P ⊆ NP ⊆ PH ⊆ PSPACE.

These containments are easy to prove.

On the other hand there is very little known about the strictness of
the above inclusions.

It has not yet been proved that L is not equal to PH, or that P is not
equal to PSPACE.

The fact that we cannot prove these inequalities reveals just the tip of
the iceberg of what we do not know concerning the computational
complexity of important computational problems.

E.g., for all known NP complete problems, the best known algorithms
to get an exact solution are all exponential time in the worst case.
However, no proof exists that they are not computable in linear time.
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Computability and Complexity World
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Feasibility

The set of boolean queries called “truly feasible” are the queries that
can be computed exactly with an “affordable” amount of time and
hardware, on all “reasonably sized” instances.

The truly feasible queries are a proper subset of P.

Many important problems that we need to solve are not truly feasible.

The theory of algorithms and complexity helps us determine whether
the problem we need to solve is feasible.

If it is not, it suggests ways to choose a limited set of instances of the
problem - or easier versions of them - that are feasible.
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Descriptive Complexity

Complexity via Turing machines is isomorphic to descriptive
complexity, i.e., the theory of complexity via logic formulas.

We will give descriptive characterizations of some of the classes in the
figure.

We mention here some examples.

The logarithmic time hierarchy is equal to the set of first order boolean
queries (LH = FO);
The polynomial time hierarchy is the set of second order boolean
queries (PH = SO);
The arithmetic hierarchy is defined to be the set of boolean queries
that are describable in the first order theory of the natural numbers.
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