Introduction to Descriptive Complexity

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) [Descriptive Complexity](#page-41-0) December 2024 1/42

[First-Order Reductions](#page-2-0)

- [FO](#page-2-0) ⊆ L
- [Dual of a First-Order Query](#page-8-0)
- [Complete Problems for L and NL](#page-23-0)
- [Complete Problems for P](#page-36-0)

Subsection 1

$FO \subseteq L$ $FO \subseteq L$

$FO \subseteq L$

Recall that FO is the set of first-order definable boolean queries.

Theorem

The set of first-order boolean queries is contained in the set of boolean queries computable in deterministic logspace: $FO \subseteq L$.

Let $\sigma = \langle R_1^{a_1}, \ldots, R_r^{a_r}, c_1, \ldots, c_s \rangle$ be a vocabulary. Consider a first-order boolean query I_{φ} : STRUC $[\sigma] \rightarrow \{0,1\}$, determined by

$$
\varphi \equiv (\exists x_1)(\forall x_2) \cdots (\mathcal{Q}_k x_k) \alpha(\overline{x}) \in \mathcal{L}(\sigma),
$$

where α is quantifier-free.

We must construct a logspace Turing machine M, such that, for all $A \in \text{STRUC}[\sigma]$, A satisfies φ iff M accepts the binary encoding of A. In symbols,

$$
\mathcal{A} \models \varphi \iff M(\text{bin}(\mathcal{A})) \downarrow.
$$

 \bullet We construct the logspace Turing machine M inductively on k, the number of quantifiers occurring in φ .

If $k = 0$, then $\varphi = \alpha$ is a quantifier-free sentence.

Thus, α is a fixed, finite boolean combination of atomic formulas.

The atomic formulas have one of the following types:

- Input relations $R_i(p_1,\ldots,p_{a_i});$
- Numeric relations $p_1 = p_2$, $p_1 \leq p_2$ or BIT (p_1, p_2) .

The p_i 's are members of $\{c_1,\ldots,c_s,0,1,\max\}$.

Suppose we know that M can determine, on input A, whether A satisfies each of these atomic formulas.

M can then determine whether $A \models \alpha$, by performing the fixed, finite boolean combination using its finite control.

So we must convince ourselves that a logspace machine that knows its input is of the form bin(\mathcal{A}), for some $\mathcal{A} \in STRUC[\sigma]$, can calculate the values n and $\lceil \log n \rceil$.

Then, by counting, the machine can go to the appropriate constants and copy the p_i 's that it needs onto its worktape.

To calculate one of the input predicates, M can just look up the appropriate bit of its input.

• Suppose, e.g., M wants to calculate $R_3(c_2, \text{max}, c_1)$.

M first copies the values c_2 , n – 1, c_1 to its worktape.

Next it moves its read head to location $n^{a_1} + n^{a_2} + 1$, which is the beginning of the array encoding R_3 .

Finally, it moves its read head $n^2 \cdot c_2 + n(n-1) + c_1$ spaces to the right.

The bit now being read is "1" iff $A \models R_3(c_2, \text{max}, c_1)$.

It is easy to see that a logspace Turing machine may test the numeric predicates.

This completes the construction of M in the base case.

• Inductively, assume that all first-order queries with $k - 1$ quantifiers are logspace computable.

Suppose

$$
\psi(x_1)=(\forall x_2)\cdots(Q_kx_k)\alpha(\overline{x}).
$$

Let M_0 be the logspace Turing machine that computes $\psi(c)$.

c is a new constant symbol substituted for the free variable x_1 .

To compute the query $\varphi \equiv (\exists x_1)(\psi(x_1))$ we build the logspace machine that:

- Cycles through all possible values of x_1 ;
- Substitutes each of these for c :
- \bullet Runs M_0 .
- If any of these lead M_0 to accept, then we accept, else we reject.

Note that the extra space needed is just $log n$ bits to store the possible values of x_1 .

Simulating a universal quantifier is similar.

George Voutsadakis (LSSU) [Descriptive Complexity](#page-0-0) December 2024 8 / 42

Subsection 2

[Dual of a First-Order Query](#page-8-0)

Introduction

- A first-order query I from STRUC[σ] to STRUC[τ] maps any $A \in \text{STRUC}[\sigma]$ to $I(A) \in \text{STRUC}[\tau]$.
- It does this by defining the relations of $I(A)$ via first-order formulas.
- \bullet In a similar way, I has a natural dual \widehat{I} , which translates any formula in $\mathcal{L}(\tau)$ to a formula in $\mathcal{L}(\sigma)$.
- The dual is useful in showing that relevant languages and complexity classes are closed under first-order reductions.
- \bullet Let *I* be a *k*-ary first-order query.
- **Consider a formula** $\varphi \in \mathcal{L}(\tau)$.
- The formula $\widehat{I}(\varphi) \in \mathcal{L}(\sigma)$ is constructed as follows:
	- Replace each variable by a k -tuple of variables;
	- Replace each symbol of τ by its definition in I.
- It follows that the length of $\widehat{I}(\varphi)$ is linear in the length of φ .

Definition of the Dual of I

• Consider a *k*-ary first-order query from STRUC $[\sigma]$ to STRUC $[\tau]$

$$
I = \lambda_{x_1...x_d} \langle \varphi_0, \varphi_1, \dots, \varphi_r, \psi_1, \dots, \psi_s \rangle.
$$

• Then *I* defines a **dual**

$$
\widehat{I}: \mathcal{L}(\tau) \to \mathcal{L}(\sigma).
$$

• Suppose

$$
\tau = \langle R_1^{a_1}, \ldots, R_r^{a_r}, c_1, \ldots, c_s \rangle.
$$

- For $\varphi \in \mathcal{L}(\tau)$, $\widehat{I}(\varphi)$ is the result of replacing all relation and constant symbols in φ by the corresponding formulas in I.
- \bullet To accomplish the replacement, we use a map f_i defined as follows:
	- Each variable v is mapped to a k -tuple of variables,

$$
f_I(v) = v^1, \ldots, v^k;
$$

Definition of the Dual of *I* (Cont'd)

- We continue the definition of the map f_I :
	- Input relations are replaced by their corresponding formulas,

$$
f_I(R_i(v_1,\ldots,v_{a_i}))=\varphi_i(f_I(v_1),\ldots,f_I(v_{a_i}));
$$

Constant c_i is replaced by a special k -tuple of variables,

$$
f_i(c_i)=z_i^1,\ldots,z_i^k;
$$

Quantifiers are replaced by restricted quantifiers,

$$
f_I(\exists v)=(\exists f_I(v).\varphi_0(f_I(v)));
$$

- The equality relation and the other numeric relations are replaced by their appropriate formulas;
- Second-order quantifiers have the arities of the relations being quantified, multiplied by k ,

$$
f_I(\exists R^a)=(\exists R^{ka});
$$

On boolean connectives, f_I is the identity.

Definition of the Dual of *I* (Cont'd)

- The only thing to add is that the variables z_i^1, \ldots, z_i^k , corresponding to the constant symbol c_i , must be quantified before they are used.
- It does not matter where these quantifiers go because the values are uniquely defined.
- Typically, we can place these quantifiers at the beginning of a first-order formula.
- For a second-order formula, they would be placed just after the second-order quantifiers.
- **•** Thus, the mapping \widehat{I} is defined as follows, for $\theta \in \mathcal{L}(\tau)$,

 $\widehat{I}(\theta) = (\exists z_1^1 \dots z_1^k. \psi_1(z_1^1 \dots z_1^k)) \dots (\exists z_s^1 \dots z_s^k. \psi_s(z_s^1 \dots z_s^k)) (f_i(\theta)).$

Example

• Consider the query I_{PM} : STRUC[τ_s] → STRUC[τ_{abcd}], given by

$$
\varphi_A(x, y) \equiv y = \max \wedge S(x);
$$

\n
$$
\varphi_B(x, y) \equiv y = \max;
$$

\n
$$
\psi_c(x, y) \equiv \langle 0, \max \rangle;
$$

\n
$$
\psi_d(x, y) \equiv \langle 0, 1 \rangle;
$$

\n
$$
I_{PM} \equiv \lambda_{xy} \langle \text{true}, \varphi_A, \varphi_B, \psi_c, \psi_d \rangle.
$$

One sample value of the map \widehat{I}_{PM} is

$$
\widehat{I}_{PM}(A(c)) \equiv (\exists z_1 z_2 \cdot z_1 = 0 \land z_2 = \max)(z_2 = \max \land S(z_1))
$$

\n $\equiv S(0).$

We may similarly compute the value of \widehat{I}_{PM} on the following:

- 1. $(\forall v)(A(v) \leftrightarrow B(v))$;
- 2. A(max);
- 3. $A(0)$.

The Satisfaction Relation Between I and \widehat{I}

Proposition

Let σ , τ , and I be as in the previous definitions. Then, for all sentences $\theta \in \mathcal{L}(\tau)$ and all structures $\mathcal{A} \in \text{STRUC}[\sigma]$,

$$
\mathcal{A} \models \widehat{I}(\theta) \quad \text{iff} \quad I(\mathcal{A}) \models \theta.
$$

- The result goes through for formulas with free variables as well.
- Then I must behave appropriately on interpretations of variables.

• That is,
$$
I(\mathcal{A}, i) = (I(\mathcal{A}), i')
$$
, where:

- $i'(x)$ is defined iff all of $i(x^1), \ldots, i(x^k)$ are defined;
- In this case, $i'(x) = \langle i(x^1), \ldots, i(x^k) \rangle$.

Everything is a Graph

- Let σ be any vocabulary.
- Let τ_e = $\langle E^2 \rangle$ be the vocabulary with one binary relation symbol.
- \bullet τ_e is the vocabulary of graphs with no specified points.
- We can show that every structure may be thought of as a graph.
- More precisely, we may construct first-order queries

$$
\begin{array}{c} I_{\sigma} : \mathsf{STRUC}[\sigma] \rightarrow \mathsf{STRUC}[\tau_{e}]; \\ I_{\sigma}^{-1} : \mathsf{STRUC}[\tau_{e}] \rightarrow \mathsf{STRUC}[\sigma], \end{array}
$$

such that, for all $A \in \text{STRUC}[\sigma]$,

$$
I_\sigma^{-1}(I_\sigma({\mathcal A}))\cong {\mathcal A}.
$$

- To build the graph $I_{\sigma}(\mathcal{A})$, one can construct "gadgets", i.e., small recognizable graphs, to label different sorts of vertices.
- E.g., we may have gadgets corresponding to:
	- Elements of ∣A∣;
	- Tuples from each relation $R_i^{\mathcal{A}}$, etc.

Closure Under First-Order Reductions

- \bullet Suppose A and B are boolean queries.
- If A is first-order reducible to B $(A \leq_{f_0} B)$, then intuitively the complexity of A is not greater than the complexity of B.

Definition (Closure Under First-Order Reductions)

A set of boolean queries S is closed under first-order reductions if, for all boolean queries A and B ,

$$
B\in\mathcal{S}\quad\text{and}\quad A\leq_{\text{fo}} B\quad\text{imply}\quad A\in\mathcal{S}.
$$

We say that a language $\mathcal L$ is **closed under first-order reductions** if the set of boolean queries definable in $\mathcal L$ is closed under first-order reductions.

LogSpace and First-Order Reductions

We have seen that the set of first-order boolean queries is contained in the set of boolean queries computable in deterministic logspace,

 $FO \subseteq L$

This immediately yields

Proposition

Let S be any set of boolean queries that is closed under logspace reductions. Then $\mathcal S$ is also closed under first-order reductions.

O Suppose $A \in S$ and $B \leq_{f_0} A$.

By hypothesis, $A \in \mathcal{S}$.

Since FO \subseteq L and, by hypothesis, $B \leq_{\text{fo}} A$, we get $B \leq_{\text{L}} A$.

Since S is closed under $\leq L$, $B \in S$.

Hence, S is also closed under \leq_{fo} .

Complexity Classes, Languages and Reductions

Meta-Proposition

- All the complexity classes C that we discuss in these notes are closed under first-order reductions.
- All the languages $\mathcal L$ that we discuss in these notes are closed under first-order reductions.
- There is a general method for proving this proposition whenever a new complexity class or logical language is encountered. For complexity classes we can usually use the preceding proposition. This is because most complexity classes are closed under logspace **reductions**

Complexity Classes, Languages and Reductions (Cont'd)

• Now we look at the case of languages. Let A, B be two boolean queries. Suppose B is expressible as the formula φ_B in language \mathcal{L} . Suppose, also, that $A \leq_{\text{fo}} B$. Let I_{AB} be the first-order reduction from A to B. We know that for all structures S .

 $S \in A$ iff $I_{AB}(S) \in B$.

It follows from the preceding proposition that

$$
\mathcal{S} \in A \quad \text{iff} \quad \mathcal{S} \models \widehat{I}_{AB}(\varphi_B).
$$

So, if $\widehat{I}_{AB}(\varphi_B)$ is in \mathcal{L} , then the proof is complete.

By definition, $\widehat{I}(\varphi)$ is a simple substitution that does not change the structure of φ very much.

So, for the languages we consider, $\widehat{I}_{AB}(\varphi_B)$ will be in \mathcal{L} .

Completeness and Expressibility

- \bullet Suppose that we know that a boolean query A is complete via first-order reductions for a complexity class C .
- \circ Suppose, further, that A is expressible in a language $\mathcal L$ which is closed under first-order reductions.
- \bullet It follows that $\mathcal L$ expresses everything in $\mathcal C$.
	- \bullet Let $B \in \mathcal{C}$.
	- By hypothesis, $B \leq_{\text{fo}} A$.
	- Also by hypothesis, A is expressible by $\varphi_A \in \mathcal{L}$.
	- As L is closed under $\leq_{\text{fo}} B$ is also expressible in L.

Expressibility and Complexity

- Suppose that $\mathcal L$ is a set of boolean queries describable in some language.
- \bullet Suppose that C is a complexity class, that is, a set of boolean queries computable in some complexity bound.
- Showing that $\mathcal{L} = C$ usually involves four steps.
	- 1. Show that $\mathcal{L} \subseteq \mathcal{C}$ by producing, for each formula $\varphi \in \mathcal{L}$, an algorithm in C that computes the boolean query

$$
MOD[\varphi]=\{A:A\vDash\varphi\}.
$$

- 2. Produce a boolean query T that is complete for $\mathcal C$ via first-order reductions.
- 3. Show that $\mathcal L$ is closed under first-order reductions.
- 4. Show that $T \in \mathcal{L}$ by expressing T in the language.

Example

- We will show later that NP = SO∃.
- To accomplish this, we can show:
	- (1) Each SO∃ formula can be checked by an NP machine;
	- (2) The problem SAT is complete for NP via \leq_{fo} ;
	- (3) SO∃ is closed under first-order reductions;
	- (4) SAT is expressible in SO∃.

Subsection 3

[Complete Problems for L and NL](#page-23-0)

Reachability

Definition

Define REACH to be the set of directed graphs G, such that there is a path in G from s to t.

Define REACH_d to be the subset of REACH, such that the path from s to t is deterministic. This means that for each edge (u, x) on the path, this is the unique edge in G leaving u .

Define $REACH_{u}$, the undirected graph reachability problem, to be the restriction of REACH to undirected graphs,

REACH_u = {G ∈ REACH : G ⊨ (∀xy)($E(x, y) \rightarrow E(y, x)$)}.

Example

• Consider the directed graph in the figure.

- o It is in REACH.
- However, it is not in REACH $_d$.</sub>
- \bullet Note that there is a directed path from p to t .

Algorithm for REACH

• The following NSPACE $\lceil \log n \rceil$ algorithm recognizes REACH.

- Algorithm (Recognizing REACH in NL)
	- 1. $b := s$
	- 2. while $(b \neq t)$ do {
	- 3. $a := b$
	- 4. nondeterministically choose new b
	- 5. if $(\neg E(a, b))$ then reject}
	- 6. accept
	- Note that the space used is just the $O(\log n)$ bits needed to name the two vertices a and b.

Completeness of REACH for NL

Theorem

REACH is complete for NL via first-order reductions.

• Let $S \subseteq \text{STRUC}[\sigma]$ be a boolean query in NL.

Let N be the nondeterministic logspace Turing machine accepting S. We construct a first-order reduction $I:STRUC[\sigma] \rightarrow STRUC[\tau_{\sigma}]$, such that, for all $A \in \text{STRUC}[\sigma]$,

 $N(\text{bin}(\mathcal{A}))$ ↓ iff $I(\mathcal{A}) \in \text{REACH}.$

Let c be such that N uses, on inputs bin(\mathcal{A}), with $n = \|\mathcal{A}\|$, at most c log *n* bits of worktape.

Let
$$
\sigma = \langle R_1^{a_1}, \dots, R_r^{a_r}, c_1, \dots, c_s \rangle
$$
.
Let $a = \max \{a_i : 1 \le i \le r\}$.
Let $k = 1 + a + c$.
Consider a run of *N* on input bin(*A*).

Completeness of REACH for NL (IDs)

We code an instantaneous description (ID) of N's computation as a k-tuple of variables,

$$
ID=(p,r_1,\ldots,r_a,w_1,\ldots,w_c).
$$

Variables r_1, \ldots, r_n encode where in one of the input relations the read head of N is looking.

Suppose, for example it is looking at relation $R_i.$

Then N's read head is looking at a "1" iff $A \models R_i(r_1,\ldots,r_{a_i})$.

Variables w_1, \ldots, w_c encode the contents of N's work tape.

Each variable represents an element of A 's *n*-element universe.

So it corresponds to a log *n*-bit number.

We are assuming the presence of the numerical relations \leq and BIT.

Of these, \leq is necessary, but BIT is merely convenient.

Completeness of REACH for NL (IDs Cont'd)

• Finally, we need $O(\log \log n)$ bits of further information to encode:

- (1) The state of N:
- (2) Which input relation or constant symbol the read head is currently scanning;
- (3) The position of the work head.

We assume that n is sufficiently large that all of this information can be encoded into a single variable, p.

Next, we build the desired k-ary first-order query I.

Moreover, we show that it satisfies

 $(bin(\mathcal{A})) \downarrow$ iff $I(\mathcal{A}) \in REACH$.

Completeness of REACH for NL (Query)

• *I* is constructed as

$$
I = \lambda_{\mathsf{ID},\mathsf{ID}'} \langle \mathbf{true}, \varphi_N, \alpha, \omega \rangle,
$$

where:

- 1. The universe relation being " $true$ " indicates that for any $A \in \text{STRUC}[\sigma]$, the universe of $I(A)$ consists of all k-tuples from the universe of $\mathcal{A}, |I(\mathcal{A})| = |\mathcal{A}|^k$;
- 2. $A ⊢ \varphi_N(ID, ID')$ iff (ID, ID') is a valid move of N on input bin(A);
- 3. $\mathcal{A} \vDash \alpha(\mathsf{ID}_i)$ iff ID $_i$ is the unique initial ID of $\mathcal{N},$ for inputs of size $\|\mathcal{A}\|$;
- 4. $\mathcal{A} \models \omega(\mathsf{ID}_{f})$ iff ID_{f} is the unique accept ID of N for inputs of size $\|\mathcal{A}\|$.

Formulas α and ω are the following,

$$
\begin{array}{rcl}\n\alpha(x_1,\ldots,x_k) & \equiv & x_1 = x_2 = \cdots = x_k = 0; \\
\omega(x_1,\ldots,x_k) & \equiv & x_1 = x_2 = \cdots = x_k = \text{max}\,. \n\end{array}
$$

Completeness of REACH for NL (Query Cont'd)

• Formula φ_N is not hard, but it is more tedious.

It is essentially a disjunction over N's finite transition table.

A typical entry in the transition table is

$$
(\langle q, b, w \rangle, \langle q', i_d, w', w_d \rangle).
$$

This says that:

- \bullet In state q,
- Looking at bit b with the input head;
- Looking at bit w with the work head;

N may:

- Go to state q' ;
- Move its input head one step in direction i_d ;
- Write bit w' on its work tape;
- Move its work head one step in direction w_d .

Completeness of REACH for NL (Query Cont'd)

• The corresponding disjunct in φ_N must decode from variable p:

- The old state:
- Which input relation is being read, say R.

Then the bit *b* is "1" iff $R_i(r_1,\ldots,r_{a_i})$ holds.

Similarly, we must extract from p:

- The segment *i* of the work tape that is currently being scanned;
- The position s on that worktape.

Thus, bit *w* is "1" iff BIT (w_j, s) holds.

By construction, for any $A \in \text{STRUC}[\sigma]$, $I(A)$ is the computation graph of N on input bin (A) .

So N accepts bin($\mathcal A$) iff there is a path in $I(\mathcal A)$ from s to t.

Gaps in the Proof Sketch

- There are several gaps left in the preceding proof.
	- 1. Using numeric relation BIT, we may write first-order formulas to uniquely identify elements $\ell_1 = \lceil \log n \rceil$ and $\ell_2 = \lceil \log \log n \rceil$ of the universe.
	- 2. Since the coding is somewhat arbitrary, it is possible to use the given equations as our definitions of α and ω .
	- 3. Assuming that the first ℓ_2 bits of p encode the work head's position s, we may write a formula to uniquely identify element s.
	- 4. Assuming that the bits of s are encoded in the last ℓ_2 bits of p, we may write a formula to uniquely identify element s. To do this we need addition, which is available by a previous theorem.

Completeness of REACH $_d$ for L

- \bullet We show REACH_d is complete for L via first-order reductions.
- We first show that $REACH_d$ is in L.
- We modify the algorithm for REACH.
- A deterministic path has at most one edge leaving each vertex.
- So nondeterminism is no longer needed.
- We add a counter to detect cycles.

Algorithm (Recognizing REACH $_d$ in L)

- 1. $b := s$; $i := 0$; $n := ||G||$
- 2. while $b \neq t \wedge i < n \wedge (\exists !a)(E(b, a))$ do {
- 3. b := the unique a for which $E(b, a)$
- 4. $i := i + 1$
- 5. if $b = t$ then accept else reject

Completeness of $REACH_d$ for L (Cont'd)

• The definition of REACH $_d$ was made just so that the following theorem would be true.

Theorem

 $REACH_d$ is complete for L via first-order reductions.

This proof is similar to the corresponding one for REACH.

We copy the whole construction with $S \subseteq \text{STRUC}[\sigma]$ an arbitrary boolean query from L.

The only difference is that now N is a deterministic logspace Turing machine that computes S.

Since N is deterministic, for any $A \in \text{STRUC}[\sigma]$, the graph $I(A)$ has at most one edge leaving any vertex.

- It follows that $I(A)$ is in REACH iff it is in REACH_d.
- Thus, $N(\text{bin}(\mathcal{A})) \downarrow$ iff $I(\mathcal{A}) \in \text{REACH}_d$.

Subsection 4

[Complete Problems for P](#page-36-0)

Alternating Graphs

- Let an alternating graph $G = (V, E, A, s, t)$ be a directed graph whose vertices are labeled universal or existential.
- \bullet $A \subseteq V$ is the set of universal vertices.
- Let τ_{ag} = $\langle E^2,A^1,s,t\rangle$ be the vocabulary of alternating graphs.
- Alternating graphs have a different notion of accessibility.
- Let $P_a^G(x, y)$ be the smallest relation on vertices of G such that: 1. $P_a^G(x,x);$
	- 2. If x is existential and $P_a^G(z, y)$ holds for some edge (x, z) , then $P_a^G(x,y)$.
	- 3. If x is universal, there is at least one edge leaving x, and $P_a^G(z, y)$ holds for all edges (x, z) , then $P_a^G(x, y)$.

o Let

$$
\mathsf{REACH}_a = \left\{ G : P_a^G(s, t) \right\}.
$$

Example

• The figure shows an alternating graph.

In the graph $P_a^G(a, b)$ holds.

On the other hand, $P_a^G(c, b)$ does not hold.

Recognizing REACH₂ in Linear Time on a RAM

 \bullet The following marking algorithm computes REACH_a in linear time.

Algorithm (Recognizing $REACH_a$ in Linear Time on a RAM)

- 1. make QUEUE empty; mark (t) ; insert t into QUEUE
- 2. while QUEUE not empty do {
- 3. remove first element, x, from QUEUE
- 4. for each unmarked vertex y such that $E(y, x)$ do {
- 5. delete edge (y, x)
- $6.$ if y is existential or y has no outgoing edges
- 7. then mark (y) ; insert y into QUEUE $\}$ }
- 8. if s is marked then accept else reject

Completeness of REACH₂ for P

Theorem

REACH_a is complete for P via first-order reductions.

• Let $S \subseteq \text{STRUC}[\sigma]$ be an arbitrary boolean query. Assume that $S \in P$.

Let T be the alternating, logspace Turing machine that computes S . We construct a first-order reduction

```
I_a: STRUC[\sigma] \rightarrow STRUC[\tau_{\alpha\sigma}]
```
such that, for all $A \in \text{STRUC}[\sigma]$,

 $T(\text{bin}(\mathcal{A}))$ ↓ iff $I_a(\mathcal{A}) \in \text{REACH}_a$.

The only difference between *I*, the query from the proof of REACH, and I_a is that I_a must also describe the relation A that identifies the universal states of T.

George Voutsadakis (LSSU) [Descriptive Complexity](#page-0-0) December 2024 41/42

Completeness of REACH₂ for P (Cont'd)

Assume for simplicity that the universal states are exactly the odd-numbered states.

Assume, further, that the variable p in an ID encodes its state in its low-order bits.

Thus, the state of an ID is universal iff the corresponding p is odd. This occurs iff $BIT(p, 0)$ holds.

Thus, we let

$$
I = \lambda_{\mathsf{ID},\mathsf{ID}'} \langle \mathbf{true}, \varphi_{\mathcal{T}}, \psi_{\mathcal{A}}, \alpha, \omega \rangle,
$$

where:

 ϕ $\psi_A = \text{BIT}(p, 0);$ $\circ \varphi_T$, α , ω are defined exactly as in the previous proof. We have $T(\text{bin}(\mathcal{A})) \downarrow$ iff $I_a(\mathcal{A}) \in \text{REACH}_a$.