
Introduction to Descriptive Complexity

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) Descriptive Complexity December 2024 1 / 42



Outline

1 First-Order Reductions
FO ⊆ L
Dual of a First-Order Query
Complete Problems for L and NL
Complete Problems for P

George Voutsadakis (LSSU) Descriptive Complexity December 2024 2 / 42



First-Order Reductions FO ⊆ L

Subsection 1

FO ⊆ L

George Voutsadakis (LSSU) Descriptive Complexity December 2024 3 / 42



First-Order Reductions FO ⊆ L

FO ⊆ L

Recall that FO is the set of first-order definable boolean queries.

Theorem

The set of first-order boolean queries is contained in the set of boolean
queries computable in deterministic logspace: FO ⊆ L.

Let σ = ⟨Ra1
1 , . . . ,R

ar
r , c1, . . . , cs ⟩ be a vocabulary.

Consider a first-order boolean query Iϕ ∶ STRUC[σ]→ {0,1},
determined by

ϕ ≡ (∃x1)(∀x2)⋯(Qkxk)α(x) ∈ L(σ),

where α is quantifier-free.
We must construct a logspace Turing machine M, such that, for all
A ∈ STRUC[σ], A satisfies ϕ iff M accepts the binary encoding of A.
In symbols,

A ⊧ ϕ ⇔ M(bin(A)) ↓ .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 4 / 42



First-Order Reductions FO ⊆ L

FO ⊆ L (Cont’d)

We construct the logspace Turing machine M inductively on k , the
number of quantifiers occurring in ϕ.

If k = 0, then ϕ = α is a quantifier-free sentence.

Thus, α is a fixed, finite boolean combination of atomic formulas.

The atomic formulas have one of the following types:

Input relations Ri(p1, . . . ,pai );
Numeric relations p1 = p2, p1 ≤ p2 or BIT(p1,p2).

The pi ’s are members of {c1, . . . , cs ,0,1,max}.
Suppose we know that M can determine, on input A, whether A
satisfies each of these atomic formulas.

M can then determine whether A ⊧ α, by performing the fixed, finite
boolean combination using its finite control.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 5 / 42



First-Order Reductions FO ⊆ L

FO ⊆ L (Cont’d)

So we must convince ourselves that a logspace machine that knows
its input is of the form bin(A), for some A ∈ STRUC[σ], can
calculate the values n and ⌈log n⌉.
Then, by counting, the machine can go to the appropriate constants
and copy the pi ’s that it needs onto its worktape.

To calculate one of the input predicates, M can just look up the
appropriate bit of its input.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 6 / 42



First-Order Reductions FO ⊆ L

FO ⊆ L (Cont’d)

Suppose, e.g., M wants to calculate R3(c2,max, c1).
M first copies the values c2, n − 1, c1 to its worktape.

Next it moves its read head to location na1 + na2 + 1, which is the
beginning of the array encoding R3.

Finally, it moves its read head n2 ⋅ c2 +n(n−1)+ c1 spaces to the right.

The bit now being read is “1” iff A ⊧ R3(c2,max, c1).
It is easy to see that a logspace Turing machine may test the numeric
predicates.

This completes the construction of M in the base case.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 7 / 42



First-Order Reductions FO ⊆ L

FO ⊆ L (Cont’d)

Inductively, assume that all first-order queries with k − 1 quantifiers
are logspace computable.

Suppose
ψ(x1) = (∀x2)⋯(Qkxk)α(x).

Let M0 be the logspace Turing machine that computes ψ(c).
c is a new constant symbol substituted for the free variable x1.

To compute the query ϕ ≡ (∃x1)(ψ(x1)) we build the logspace
machine that:

Cycles through all possible values of x1;
Substitutes each of these for c ;
Runs M0.
If any of these lead M0 to accept, then we accept, else we reject.

Note that the extra space needed is just log n bits to store the
possible values of x1.

Simulating a universal quantifier is similar.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 8 / 42



First-Order Reductions Dual of a First-Order Query

Subsection 2

Dual of a First-Order Query

George Voutsadakis (LSSU) Descriptive Complexity December 2024 9 / 42



First-Order Reductions Dual of a First-Order Query

Introduction

A first-order query I from STRUC[σ] to STRUC[τ] maps any
A ∈ STRUC[σ] to I(A) ∈ STRUC[τ].
It does this by defining the relations of I(A) via first-order formulas.

In a similar way, I has a natural dual Î , which translates any formula
in L(τ) to a formula in L(σ).
The dual is useful in showing that relevant languages and complexity
classes are closed under first-order reductions.

Let I be a k-ary first-order query.

Consider a formula ϕ ∈ L(τ).
The formula Î(ϕ) ∈ L(σ) is constructed as follows:

Replace each variable by a k-tuple of variables;
Replace each symbol of τ by its definition in I .

It follows that the length of Î (ϕ) is linear in the length of ϕ.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 10 / 42



First-Order Reductions Dual of a First-Order Query

Definition of the Dual of I

Consider a k-ary first-order query from STRUC[σ] to STRUC[τ]

I = λx1...xd ⟨ϕ0, ϕ1, . . . , ϕr , ψ1, . . . , ψs ⟩.

Then I defines a dual

Î ∶ L(τ)→ L(σ).

Suppose
τ = ⟨Ra1

1 , . . . ,R
ar
r , c1, . . . , cs⟩.

For ϕ ∈ L(τ), Î(ϕ) is the result of replacing all relation and constant
symbols in ϕ by the corresponding formulas in I .
To accomplish the replacement, we use a map fI defined as follows:

Each variable v is mapped to a k-tuple of variables,

fI (v) = v1, . . . , vk ;

George Voutsadakis (LSSU) Descriptive Complexity December 2024 11 / 42



First-Order Reductions Dual of a First-Order Query

Definition of the Dual of I (Cont’d)

We continue the definition of the map fI :
Input relations are replaced by their corresponding formulas,

fI (Ri(v1, . . . , vai )) = ϕi(fI (v1), . . . , fI (vai ));

Constant ci is replaced by a special k-tuple of variables,

fI (ci) = z1i , . . . , z
k
i ;

Quantifiers are replaced by restricted quantifiers,

fI (∃v) = (∃fI (v).ϕ0(fI (v)));

The equality relation and the other numeric relations are replaced by
their appropriate formulas;
Second-order quantifiers have the arities of the relations being
quantified, multiplied by k ,

fI (∃Ra) = (∃Rka);

On boolean connectives, fI is the identity.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 12 / 42



First-Order Reductions Dual of a First-Order Query

Definition of the Dual of I (Cont’d)

The only thing to add is that the variables z1i , . . . , z
k
i , corresponding

to the constant symbol ci , must be quantified before they are used.

It does not matter where these quantifiers go because the values are
uniquely defined.

Typically, we can place these quantifiers at the beginning of a
first-order formula.

For a second-order formula, they would be placed just after the
second-order quantifiers.

Thus, the mapping Î is defined as follows, for θ ∈ L(τ),

Î (θ) = (∃z11 . . . z
k
1 .ψ1(z11 . . . z

k
1 )) . . . (∃z

1
s . . . z

k
s .ψs(z1s . . . z

k
s ))(fI (θ)).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 13 / 42



First-Order Reductions Dual of a First-Order Query

Example

Consider the query IPM ∶ STRUC[τs]→ STRUC[τabcd], given by

ϕA(x , y) ≡ y = max∧S(x);
ϕB(x , y) ≡ y = max;
ψc(x , y) ≡ ⟨0,max⟩;
ψd(x , y) ≡ ⟨0,1⟩;

IPM ≡ λxy⟨true, ϕA, ϕB , ψc , ψd⟩.

One sample value of the map ÎPM is

ÎPM(A(c)) ≡ (∃z1z2.z1 = 0 ∧ z2 = max)(z2 = max∧S(z1))
≡ S(0).

We may similarly compute the value of ÎPM on the following:
1. (∀v)(A(v) ↔ B(v));
2. A(max);
3. A(0).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 14 / 42



First-Order Reductions Dual of a First-Order Query

The Satisfaction Relation Between I and Î

Proposition

Let σ, τ , and I be as in the previous definitions. Then, for all sentences
θ ∈ L(τ) and all structures A ∈ STRUC[σ],

A ⊧ Î(θ) iff I(A) ⊧ θ.

The result goes through for formulas with free variables as well.

Then I must behave appropriately on interpretations of variables.

That is, I(A, i) = (I(A), i ′), where:
i ′(x) is defined iff all of i(x1), . . . , i(xk) are defined;
In this case, i ′(x) = ⟨i(x1), . . . , i(xk)⟩.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 15 / 42



First-Order Reductions Dual of a First-Order Query

Everything is a Graph

Let σ be any vocabulary.

Let τe = ⟨E 2⟩ be the vocabulary with one binary relation symbol.

τe is the vocabulary of graphs with no specified points.

We can show that every structure may be thought of as a graph.

More precisely, we may construct first-order queries

Iσ ∶ STRUC[σ]→ STRUC[τe];
I−1
σ
∶ STRUC[τe]→ STRUC[σ],

such that, for all A ∈ STRUC[σ],

I−1
σ
(Iσ(A)) ≅ A.

To build the graph Iσ(A), one can construct “gadgets”, i.e., small
recognizable graphs, to label different sorts of vertices.
E.g., we may have gadgets corresponding to:

Elements of ∣A∣;
Tuples from each relation RAi , etc.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 16 / 42



First-Order Reductions Dual of a First-Order Query

Closure Under First-Order Reductions

Suppose A and B are boolean queries.

If A is first-order reducible to B (A ≤fo B), then intuitively the
complexity of A is not greater than the complexity of B .

Definition (Closure Under First-Order Reductions)

A set of boolean queries S is closed under first-order reductions if, for
all boolean queries A and B ,

B ∈ S and A ≤fo B imply A ∈ S.

We say that a language L is closed under first-order reductions if the
set of boolean queries definable in L is closed under first-order reductions.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 17 / 42



First-Order Reductions Dual of a First-Order Query

LogSpace and First-Order Reductions

We have seen that the set of first-order boolean queries is contained
in the set of boolean queries computable in deterministic logspace,

FO ⊆ L.

This immediately yields

Proposition

Let S be any set of boolean queries that is closed under logspace
reductions. Then S is also closed under first-order reductions.

Suppose A ∈ S and B ≤fo A.

By hypothesis, A ∈ S.

Since FO ⊆ L and, by hypothesis, B ≤fo A, we get B ≤L A.

Since S is closed under ≤L, B ∈ S.

Hence, S is also closed under ≤fo.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 18 / 42



First-Order Reductions Dual of a First-Order Query

Complexity Classes, Languages and Reductions

Meta-Proposition

All the complexity classes C that we discuss in these notes are closed
under first-order reductions.

All the languages L that we discuss in these notes are closed under
first-order reductions.

There is a general method for proving this proposition whenever a
new complexity class or logical language is encountered.

For complexity classes we can usually use the preceding proposition.

This is because most complexity classes are closed under logspace
reductions.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 19 / 42



First-Order Reductions Dual of a First-Order Query

Complexity Classes, Languages and Reductions (Cont’d)

Now we look at the case of languages.

Let A, B be two boolean queries.

Suppose B is expressible as the formula ϕB in language L.

Suppose, also, that A ≤fo B .

Let IAB be the first-order reduction from A to B .

We know that for all structures S,

S ∈ A iff IAB(S) ∈ B .

It follows from the preceding proposition that

S ∈ A iff S ⊧ ÎAB(ϕB).

So, if ÎAB(ϕB) is in L, then the proof is complete.

By definition, Î(ϕ) is a simple substitution that does not change the
structure of ϕ very much.

So, for the languages we consider, ÎAB(ϕB) will be in L.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 20 / 42



First-Order Reductions Dual of a First-Order Query

Completeness and Expressibility

Suppose that we know that a boolean query A is complete via
first-order reductions for a complexity class C.

Suppose, further, that A is expressible in a language L which is closed
under first-order reductions.

It follows that L expresses everything in C.

Let B ∈ C.
By hypothesis, B ≤fo A.
Also by hypothesis, A is expressible by ϕA ∈ L.
As L is closed under ≤fo, B is also expressible in L.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 21 / 42



First-Order Reductions Dual of a First-Order Query

Expressibility and Complexity

Suppose that L is a set of boolean queries describable in some
language.

Suppose that C is a complexity class, that is, a set of boolean queries
computable in some complexity bound.

Showing that L = C usually involves four steps.

1. Show that L ⊆ C by producing, for each formula ϕ ∈ L, an algorithm in
C that computes the boolean query

MOD[ϕ] = {A ∶ A ⊧ ϕ}.

2. Produce a boolean query T that is complete for C via first-order
reductions.

3. Show that L is closed under first-order reductions.
4. Show that T ∈ L by expressing T in the language.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 22 / 42



First-Order Reductions Dual of a First-Order Query

Example

We will show later that NP = SO∃.

To accomplish this, we can show:

(1) Each SO∃ formula can be checked by an NP machine;
(2) The problem SAT is complete for NP via ≤fo;
(3) SO∃ is closed under first-order reductions;
(4) SAT is expressible in SO∃.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 23 / 42



First-Order Reductions Complete Problems for L and NL

Subsection 3

Complete Problems for L and NL

George Voutsadakis (LSSU) Descriptive Complexity December 2024 24 / 42



First-Order Reductions Complete Problems for L and NL

Reachability

Definition

Define REACH to be the set of directed graphs G , such that there is a
path in G from s to t.
Define REACHd to be the subset of REACH, such that the path from s to
t is deterministic. This means that for each edge (u, x) on the path, this
is the unique edge in G leaving u.
Define REACHu , the undirected graph reachability problem, to be the
restriction of REACH to undirected graphs,

REACHu = {G ∈ REACH ∶ G ⊧ (∀xy)(E(x , y) → E(y , x))}.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 25 / 42



First-Order Reductions Complete Problems for L and NL

Example

Consider the directed graph in the figure.

It is in REACH.

However, it is not in REACHd .

Note that there is a directed path from p to t.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 26 / 42



First-Order Reductions Complete Problems for L and NL

Algorithm for REACH

The following NSPACE[log n] algorithm recognizes REACH.

Algorithm (Recognizing REACH in NL)

1. b ∶= s

2. while (b ≠ t) do {

3. a ∶= b

4. nondeterministically choose new b

5. if (¬E(a,b)) then reject}

6. accept

Note that the space used is just the O(log n) bits needed to name the
two vertices a and b.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 27 / 42



First-Order Reductions Complete Problems for L and NL

Completeness of REACH for NL

Theorem

REACH is complete for NL via first-order reductions.

Let S ⊆ STRUC[σ] be a boolean query in NL.

Let N be the nondeterministic logspace Turing machine accepting S .

We construct a first-order reduction I ∶ STRUC[σ] → STRUC[τg ],
such that, for all A ∈ STRUC[σ],

N(bin(A)) ↓ iff I(A) ∈ REACH.

Let c be such that N uses, on inputs bin(A), with n = ∥A∥, at most
c log n bits of worktape.

Let σ = ⟨Ra1
1 , . . . ,R

ar
r , c1, . . . , cs ⟩.

Let a =max {ai ∶ 1 ≤ i ≤ r}.
Let k = 1 + a + c .

Consider a run of N on input bin(A).
George Voutsadakis (LSSU) Descriptive Complexity December 2024 28 / 42



First-Order Reductions Complete Problems for L and NL

Completeness of REACH for NL (IDs)

We code an instantaneous description (ID) of N’s computation as a
k-tuple of variables,

ID = (p, r1, . . . , ra,w1, . . . ,wc).

Variables r1, . . . , ra encode where in one of the input relations the
read head of N is looking.

Suppose, for example it is looking at relation Ri .

Then N’s read head is looking at a “1” iff A ⊧ Ri(r1, . . . , rai ).
Variables w1, . . . ,wc encode the contents of N’s work tape.

Each variable represents an element of A’s n-element universe.

So it corresponds to a log n-bit number.

We are assuming the presence of the numerical relations ≤ and BIT.

Of these, ≤ is necessary, but BIT is merely convenient.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 29 / 42



First-Order Reductions Complete Problems for L and NL

Completeness of REACH for NL (IDs Cont’d)

Finally, we need O(log log n) bits of further information to encode:

(1) The state of N ;
(2) Which input relation or constant symbol the read head is currently

scanning;
(3) The position of the work head.

We assume that n is sufficiently large that all of this information can
be encoded into a single variable, p.

Next, we build the desired k-ary first-order query I .

Moreover, we show that it satisfies

(bin(A)) ↓ iff I(A) ∈ REACH.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 30 / 42



First-Order Reductions Complete Problems for L and NL

Completeness of REACH for NL (Query)

I is constructed as

I = λID,ID′⟨true, ϕN , α,ω⟩,

where:

1. The universe relation being “true” indicates that for any
A ∈ STRUC[σ], the universe of I(A) consists of all k-tuples from the
universe of A, ∣I(A)∣ = ∣A∣k ;

2. A ⊧ ϕN(ID, ID′) iff (ID, ID′) is a valid move of N on input bin(A);
3. A ⊧ α(IDi) iff IDi is the unique initial ID of N , for inputs of size ∥A∥;
4. A ⊧ ω(IDf ) iff IDf is the unique accept ID of N for inputs of size ∥A∥.

Formulas α and ω are the following,

α(x1, . . . , xk) ≡ x1 = x2 = ⋯ = xk = 0;
ω(x1, . . . , xk) ≡ x1 = x2 = ⋯ = xk = max .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 31 / 42



First-Order Reductions Complete Problems for L and NL

Completeness of REACH for NL (Query Cont’d)

Formula ϕN is not hard, but it is more tedious.

It is essentially a disjunction over N’s finite transition table.

A typical entry in the transition table is

(⟨q,b,w⟩, ⟨q′, id ,w ′,wd ⟩).

This says that:

In state q,
Looking at bit b with the input head;
Looking at bit w with the work head;

N may:

Go to state q′;
Move its input head one step in direction id ;
Write bit w ′ on its work tape;
Move its work head one step in direction wd .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 32 / 42



First-Order Reductions Complete Problems for L and NL

Completeness of REACH for NL (Query Cont’d)

The corresponding disjunct in ϕN must decode from variable p:

The old state;
Which input relation is being read, say R .

Then the bit b is “1” iff Ri(r1, . . . , rai ) holds.
Similarly, we must extract from p:

The segment j of the work tape that is currently being scanned;
The position s on that worktape.

Thus, bit w is “1” iff BIT(wj , s) holds.

By construction, for any A ∈ STRUC[σ], I(A) is the computation
graph of N on input bin(A).
So N accepts bin(A) iff there is a path in I(A) from s to t.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 33 / 42



First-Order Reductions Complete Problems for L and NL

Gaps in the Proof Sketch

There are several gaps left in the preceding proof.

1. Using numeric relation BIT, we may write first-order formulas to
uniquely identify elements ℓ1 = ⌈log n⌉ and ℓ2 = ⌈log logn⌉ of the
universe.

2. Since the coding is somewhat arbitrary, it is possible to use the given
equations as our definitions of α and ω.

3. Assuming that the first ℓ2 bits of p encode the work head’s position s,
we may write a formula to uniquely identify element s.

4. Assuming that the bits of s are encoded in the last ℓ2 bits of p, we may
write a formula to uniquely identify element s.
To do this we need addition, which is available by a previous theorem.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 34 / 42



First-Order Reductions Complete Problems for L and NL

Completeness of REACHd for L

We show REACHd is complete for L via first-order reductions.

We first show that REACHd is in L.

We modify the algorithm for REACH.

A deterministic path has at most one edge leaving each vertex.

So nondeterminism is no longer needed.

We add a counter to detect cycles.

Algorithm (Recognizing REACHd in L)

1. b ∶= s; i ∶= 0;n ∶= ∥G∥

2. while b ≠ t ∧ i < n ∧ (∃!a)(E(b, a)) do {

3. b ∶= the unique a for which E(b, a)

4. i ∶= i + 1}

5. if b = t then accept else reject

George Voutsadakis (LSSU) Descriptive Complexity December 2024 35 / 42



First-Order Reductions Complete Problems for L and NL

Completeness of REACHd for L (Cont’d)

The definition of REACHd was made just so that the following
theorem would be true.

Theorem

REACHd is complete for L via first-order reductions.

This proof is similar to the corresponding one for REACH.

We copy the whole construction with S ⊆ STRUC[σ] an arbitrary
boolean query from L.

The only difference is that now N is a deterministic logspace Turing
machine that computes S .

Since N is deterministic, for any A ∈ STRUC[σ], the graph I(A) has
at most one edge leaving any vertex.

It follows that I(A) is in REACH iff it is in REACHd .

Thus, N(bin(A)) ↓ iff I(A) ∈ REACHd .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 36 / 42



First-Order Reductions Complete Problems for P

Subsection 4

Complete Problems for P

George Voutsadakis (LSSU) Descriptive Complexity December 2024 37 / 42



First-Order Reductions Complete Problems for P

Alternating Graphs

Let an alternating graph G = (V ,E ,A, s, t) be a directed graph
whose vertices are labeled universal or existential.

A ⊆ V is the set of universal vertices.

Let τag = ⟨E 2,A1, s, t⟩ be the vocabulary of alternating graphs.

Alternating graphs have a different notion of accessibility.

Let PG
a (x , y) be the smallest relation on vertices of G such that:

1. PG
a (x , x);

2. If x is existential and PG
a (z , y) holds for some edge (x , z), then

PG
a (x , y).

3. If x is universal, there is at least one edge leaving x , and PG
a (z , y)

holds for all edges (x , z), then PG
a (x , y).

Let
REACHa = {G ∶ PG

a (s, t)} .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 38 / 42



First-Order Reductions Complete Problems for P

Example

The figure shows an alternating graph.

In the graph PG
a (a,b) holds.

On the other hand, PG
a (c ,b) does not hold.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 39 / 42



First-Order Reductions Complete Problems for P

Recognizing REACHa in Linear Time on a RAM

The following marking algorithm computes REACHa in linear time.

Algorithm (Recognizing REACHa in Linear Time on a RAM)

1. make QUEUE empty; mark(t); insert t into QUEUE

2. while QUEUE not empty do {

3. remove first element, x , from QUEUE

4. for each unmarked vertex y such that E(y , x) do {

5. delete edge (y , x)

6. if y is existential or y has no outgoing edges

7. then mark(y); insert y into QUEUE} }

8. if s is marked then accept else reject

George Voutsadakis (LSSU) Descriptive Complexity December 2024 40 / 42



First-Order Reductions Complete Problems for P

Completeness of REACHa for P

Theorem

REACHa is complete for P via first-order reductions.

Let S ⊆ STRUC[σ] be an arbitrary boolean query.

Assume that S ∈ P.

Let T be the alternating, logspace Turing machine that computes S .

We construct a first-order reduction

Ia ∶ STRUC[σ] → STRUC[τag ]

such that, for all A ∈ STRUC[σ],

T (bin(A)) ↓ iff Ia(A) ∈ REACHa.

The only difference between I , the query from the proof of REACH,
and Ia is that Ia must also describe the relation A that identifies the
universal states of T .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 41 / 42



First-Order Reductions Complete Problems for P

Completeness of REACHa for P (Cont’d)

Assume for simplicity that the universal states are exactly the
odd-numbered states.

Assume, further, that the variable p in an ID encodes its state in its
low-order bits.

Thus, the state of an ID is universal iff the corresponding p is odd.

This occurs iff BIT(p,0) holds.

Thus, we let
I = λID,ID′⟨true, ϕT , ψA, α,ω⟩,

where:

ψA = BIT(p,0);
ϕT , α, ω are defined exactly as in the previous proof.

We have T (bin(A)) ↓ iff Ia(A) ∈ REACHa.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 42 / 42


	Outline
	First-Order Reductions
	FOL
	Dual of a First-Order Query
	Complete Problems for L and NL
	Complete Problems for P


