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Inductive Definitions Least Fixed Point

Example

A useful way to increase the power of first-order logic is to add the
power to define new relations by induction.

Example: A relation that is not first-order expressible, but can be
defined inductively, is transitive closure.

Recall the vocabulary τg = ⟨E
2, s, t⟩ of graphs.

We define the reflexive, transitive closure E∗ of E as follows.

Let R be a binary relation variable.

Consider the formula

ϕ4,1(R , x , y) ≡ x = y ∨ ∃z(E(x , z) ∧ R(z , y)).

The formula ϕ4,1 formalizes an inductive definition of E∗.

This may be more suggestively written as

E∗(x , y) ≡ x = y ∨ ∃z(E(x , z) ∧ E∗(z , y)).
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Inductive Definitions Least Fixed Point

Example (Monotonicity)

For any structure A with vocabulary τg , ϕ4,1 induces a map from
binary relations on the universe of A to binary relations on the
universe of A,

ϕA4,1(R) = {⟨a,b⟩ ∶ A ⊧ ϕ4,1(R ,a,b)}.

Such a map is called monotone if for all R ,S ,

R ⊆ S ⇒ ϕA(R) ⊆ ϕA(S).

Note that the relation symbol R appears only positively in ϕ4,1, i.e.,
within an even number of negation symbols.

It follows that ϕA4,1 is monotone.
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Inductive Definitions Least Fixed Point

Example (Least Fixed Point)

Let (ϕA4,1)
r denote ϕA4,1 iterated r times.

If A any graph, and r ≥ 0, observe that:

(ϕA4,1)(∅) = {⟨a,b⟩ ∈ ∣A∣2 ∶ distance(a,b) ≤ 0};

(ϕA4,1)
2(∅) = {⟨a,b⟩ ∈ ∣A∣2 ∶ distance(a,b) ≤ 1};

⋮

(ϕA4,1)
r(∅) = {⟨a,b⟩ ∈ ∣A∣2 ∶ distance(a,b) ≤ r − 1};

⋮

Thus, for n = ∥A∥,

(ϕA4,1)
n(∅) = E∗ = the least fixed point of ϕA4,1.

That is, (ϕA4,1)
n(∅) is the minimal relation T , with ϕA4,1(T ) = T .
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Inductive Definitions Least Fixed Point

Knaster-Tarski Theorem (Finite Version)

Knaster-Tarski Theorem (Finite Version)

Let R be a new relation symbol of arity k . Let ϕ(R , x1, . . . , xk) be a
monotone first-order formula. Then for any finite structure A, the least
fixed point of ϕA exists. It is equal to (ϕA)r(∅), where r is minimal, such
that

(ϕA)r(∅) = (ϕA)r+1(∅).

Furthermore, letting n = ∥A∥, we have r ≤ nk .

Consider the sequence

∅ ⊆ (ϕA)(∅) ⊆ (ϕA)2(∅) ⊆ (ϕA)3(∅) ⊆ ⋯.

The containment follows because ϕA is monotone.
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Inductive Definitions Least Fixed Point

Knaster-Tarski Theorem (Cont’d)

Suppose (ϕA)i+1(∅) strictly contains (ϕA)i(∅).

Then it must contain at least one new k-tuple from ∣A∣.

But there are at most nk such k-tuples.

So, for some r ≤ nk , (ϕA)r(∅) = (ϕA)r+1(∅).

This shows that (ϕA)r(∅) is a fixed point of ϕA.

Let S be any other fixed point of ϕA.

We show by induction that (ϕA)i(∅) ⊆ S , for all i .

The base case is that, (ϕA)0(∅) = ∅ ⊆ S .

Inductively, suppose that (ϕA)i(∅) ⊆ S .

Since ϕA is monotone,

(ϕA)i+1(∅) = ϕA((ϕA)i(∅)) ⊆ ϕA(S) = S .

Thus, (ϕA)r(∅) ⊆ S .

So (ϕA)r(∅) is the least fixed point of ϕA.
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Inductive Definitions Least Fixed Point

Least Fixed Point Operator

If R occurs only positively in ϕ, i.e., within an even number of
negation symbols, then ϕ is monotone.

The theorem tells us that any R-positive formula ϕ(Rk , x1, . . . , xk)
determines a least fixed point relation.

We denote this least fixed point by

(LFPRkx1...xk
ϕ).

The least fixed point operator (LFP), thus, formalizes the definition
of new relations by induction.

The subscript “Rkx1 . . . xk” explicitly tells us which relation and
domain variables we are taking the fixed point with respect to.

When the choice of variables is clear, these subscripts may be omitted.
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Inductive Definitions Least Fixed Point

Example

Recall the formula

ϕ4,1(R , x , y) ≡ x = y ∨ ∃z(E(x , z) ∧ R(z , y)).

The expression
(LFPRxyϕ4,1)

denotes the reflexive, transitive closure of the edge relation E .

Thus, the boolean query REACH is expressible as

REACH ≡ (LFPRxyϕ4,1)(s, t).
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Inductive Definitions Least Fixed Point

Language of First Order Inductive Definitions

Definition

Define FO(LFP), the language of first-order inductive definitions, by
adding a least fixed point operator (LFP) to first-order logic.
For ϕ(Rk , x1, . . . , xk) an Rk-positive formula in FO(LFP),

(LFPRkx1...xk
ϕ)

may be used as a new k-ary relation symbol.
Then, in a given structure,

(LFPRkx1...xk
ϕ)

denotes the least fixed point of the relation expressed by ϕ.
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Inductive Definitions Least Fixed Point

Example

We defined boolean query REACHa to be the set of graphs having an
alternating path from s to t.

We now give a first-order inductive definition of the alternating path
property Pa.

Consider the P2-positive formula

ϕap ≡ x = y ∨ [(∃z)(E(x , z) ∧ P(z , y))∧
(A(x)→ (∀z)(E(x , z) → P(z , y)))].

Thus, we have Pa = (LFPPxyϕap).

Moreover,
REACHa = (LFPPxyϕap)(s, t).
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Inductive Definitions Least Fixed Point

FO(LFP) and Polynomial-Time Boolean Queries

Recall that REACHa is complete for P via first-order reductions.

It follows from the preceding example and the following proposition
that FO(LFP) contains all polynomial time boolean queries.

Proposition

FO(LFP) is closed under first-order reductions.

Let Q be a k-ary first-order query and Φ ∈ FO(LFP).

We must show that Q̂(Φ) ∈ FO(LFP).

This follows from the observation that

Q̂(LFPRax1...xaα) ≡ (LFPRkax11 ...x
k
1 ...x

1
a ...x

k
a
Q̂(α)).
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Inductive Definitions Least Fixed Point

Notational Convention

Suppose ϕ(S) is a formula in which occurs the n-ary relation symbol
S , perhaps among other relation symbols.

Suppose U is an (m + n)-ary relation symbol.

Suppose, also, that t is an m-tuple of constants (or, more generally,
of terms).

Then the notation
ϕ({u ∶ U(t,u)})

denotes the result of replacing each occurrence of S(v) in ϕ(S) by
U(t, v).
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Inductive Definitions Least Fixed Point

Simultaneous Induction

Sometimes it is convenient to use simultaneous induction to define
several relations.

Let S and T be new relation symbols, with arities r0 and r1.

Fix variables y and x , such that

∣y ∣ = r0 = arity(S) and ∣x ∣ = r1 = arity(T ).

Consider first order formulas

ψ(y ,S ,T ) and ϕ(x ,S ,T ),

which are positive in S and T .

For any structure A, we define the relations Iω0 and Iω1 , by
simultaneous induction.
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Inductive Definitions Least Fixed Point

Simultaneous Induction (Cont’d)

The definition proceeds as follows.

I 00 = I 01 = ∅;

a ∈ I n0 ⇔ A ⊧ ψ(a, I n−10 , I n−11 );

b ∈ I n1 ⇔ A ⊧ ϕ(b, I n−10 , I n−11 );

Iωb = ⋃∞n=1 I
n
b , b = 0,1.

We show that both Iω0 and Iω1 are expressible in FO(LFP).

For simplicity, suppose there exist distinct constants c0 ≠ c1.

Choose sequences c and d of elements of ∣A∣ of the same length as x
and y , respectively.

We define a single new relation U of arity 1 + r0 + r1, such that:

U(c0, y , c) refers to S(y);
U(c1,d , x) refers to T (x).
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Inductive Definitions Least Fixed Point

Simultaneous Induction (Cont’d)

Define a formula

χ(z , y , x ,U) ≡ (z = c0 ∧ψ(y ,{y
′ ∶ U(c0, y

′, c)},{x ′ ∶ U(c1,d , x
′)}))

∨(z = c1 ∧ ϕ(x ,{y
′ ∶ U(c0, y

′, c)},{x ′ ∶ U(c1,d , x
′)}))).

We claim that, for every n,

y ∈ I n0 ⇔ (c0, y , c) ∈ I
n
χ
,

x ∈ I n1 ⇔ (c1,d , x) ∈ I
n
χ
.

We use induction on n simultaneously for both equivalences, e.g.:

y ∈ I n0 ⇔ ψ(y , I n−10 , I n−11 ) (by definition)

⇔ χ(c0, y , c ,{(c0, y
′, c) ∶ y ′ ∈ I n−10 } ∪ {(c1,d , x

′) ∶ x ′ ∈ I n−11 })
(by the definition of χ)

⇔ χ(c0, y , c , I
n−1
χ
) (by the induction hypothesis)

⇔ (c0, y , c) ∈ I
n
χ
. (by definition of I n

χ
)

George Voutsadakis (LSSU) Descriptive Complexity December 2024 17 / 37



Inductive Definitions Least Fixed Point

FO(LFP)=P

Theorem

Over finite, ordered structures, FO(LFP) = P.

(⊆) Let A be an input structure, with n = ∥A∥.

Let (LFPRx1...xkϕ) be a fixed-point formula.

We know that this fixed point evaluated on A is (ϕA)n
k

(∅).

This amounts to evaluating the first-order query ϕ at most nk times.

We saw that first-order queries may be evaluated in L.

Thus, they are easily in P.

(⊇) FO(LFP) includes query REACHa.

We know REACHa is complete for P via first order reductions.

We also know FO(LFP) is closed under first-order reductions.

So FO(LFP) includes all polynomial-time queries.
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Inductive Definitions Least Fixed Point

Remark: The Role of Ordering

The use of ordering in the theorem is required in the proof that
REACHa is complete via ≤fo.

Stripped of its numeric relations, including ordering, FO(LFP) does
not describe all polynomial-time properties.

E.g., we will see that it cannot even express the parity of its universe.
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Inductive Definitions Least Fixed Point

Normal Form in FO(LFP)

Corollary

Let ϕ be any formula in the language FO(LFP). There exists a first-order
formula ψ and a tuple of constants c , such that over finite, ordered
structures,

ϕ ≡ (LFPψ)(c).

The completeness of REACHa for P means that every polynomial-time
query is expressible as Q̂(REACHa) for some first-order query Q.

In a previous example we saw that REACHa = (LFPϕap)(s, t).

Thus, an arbitrary polynomial-time query is expressible as

Q̂(REACHa) = (LFPQ̂(ϕap))Q̂(s, t).

Now recall the first-order reductions used in a previous theorem.

They replace the constants s and t by k-tuples in 0 and max.

So the form of the displayed equation is as claimed.
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Inductive Definitions The Depth of Inductive Definitions

Subsection 2

The Depth of Inductive Definitions
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Inductive Definitions The Depth of Inductive Definitions

The Depth of Inductive Definitions

The number of iterations until an inductive definition closes is called
its depth.

Definition

Let ϕ(R , x1, . . . , xk) be an R-positive formula, where R is a relation
symbol of arity k , and let A be a structure of size n. Define the depth of

ϕ in A, in symbols ∣ϕA∣, to be the minimum r such that

A ⊧ (ϕr(∅)↔ ϕr+1(∅)).

We saw that ∣ϕA∣ ≤ nk . Define the depth of ϕ as a function of n to be
the maximum depth of ϕ in A for any structure A of size n,

∣ϕ∣(n) = max
∥A∥=n

{∣ϕA∣}.
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Inductive Definitions The Depth of Inductive Definitions

Remarks

The inductive definition ϕ4,1 given by

ϕ4,1(R , x , y) ≡ x = y ∨ ∃z(E(x , z) ∧ R(z , y))

has depth ∣ϕ∣(n) = n.

However, the following alternate inductive definition of E∗ has depth
∣ϕtc ∣(n) = ⌈log n⌉ + 1:

ϕtc(R , x , y) ≡ x = y ∨ E(x , y) ∨ ∃z(R(x , z) ∧R(z , y)).

In computer science, the depth of an inductive definition corresponds
to the depth of the stack needed to evaluate a recursive definition.

This is the same as the depth of nesting of recursive calls.

We will see that this also corresponds to the parallel time needed to
evaluate such a recursive definition.
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Inductive Definitions The Depth of Inductive Definitions

The Language IND[f (n)]

Definition

Let IND[f (n)] be the sublanguage of FO(LFP) in which only fixed points
of first-order formulas ϕ for which ∣ϕ∣ is O[f (n)] are included.

Recall that REACH is expressible as (LFPRxyϕtc).

It follows, by the definition, that

REACH ∈ IND[log n].

Note also that,

FO(LFP) =
∞

⋃
k=1

IND[nk].
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Inductive Definitions The Depth of Inductive Definitions

NL and IND[log(n)]

Proposition

NL ⊆ IND[log n].

The statement is a consequence of the following facts:

REACH ∈ IND[log n];
REACH is complete for NL via first-order reductions;
IND[log n] is closed under first-order reductions.
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Inductive Definitions The Depth of Inductive Definitions

Numerical Relations and Inductive Depth

It can be shown that the numeric relations BIT, PLUS and TIMES
are all definable in IND(woBIT)[log n], that is, via first-order
inductive definitions that use only the numeric relation ≤.

So the descriptive class IND[log n] is somewhat more robust than
IND[0] = FO and has a more general definition.

It turns out that, generally, the more powerful the language, the less
important exactly which numeric relations are included.

Proposition

Relation BIT is definable by a depth log n induction just from ≤,

BIT ∈ IND(woBIT)[log n].

This is proved by showing that, first PLUS and then MULT are
definable in IND(woBIT)[log n].

Then use the fact that BIT is definable in terms of PLUS and TIMES.
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Subsection 3

Iterating First Order Formulas

George Voutsadakis (LSSU) Descriptive Complexity December 2024 27 / 37



Inductive Definitions Iterating First Order Formulas

Normal Form for Inductive Definitions

Recall the notation:

(∀x .M)ψ meaning (∀x)M → ψ;
(∃x .M)ψ meaning (∃x)M ∧ψ.

Lemma

Let ϕ be an R-positive first-order formula. Then ϕ can be written in the
following form,

ϕ(R , x1, . . . , xk) ≡ (Q1z1.M1)⋯(Qszs .Ms)(∃x1 . . . xk .Ms+1)R(x1, . . . , xk),

where the Mi ’s are quantifier-free formulas in which R does not occur.

By induction on the complexity of ϕ.

Assume that all negations have been pushed all the way inside.
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Inductive Definitions Iterating First Order Formulas

Normal Form for Inductive Definitions (Cont’d)

There are two base cases.

Suppose, first, ϕ ≡ R(v1, . . . , vk).
Then

ϕ ≡ (∃z1, . . . , zk .M1)(∃x1, . . . , xk .M2)R(x1, . . . , xk),
M1 ≡ z1 = v1 ∧⋯∧ zk = vk ;
M2 ≡ x1 = z1 ∧⋯∧ xk = zk .

Suppose, next, ϕ is quantifier free and R does not occur in ϕ.
Then

ϕ ≡ (∀z .¬ϕ)(∃x1, . . . , xk .x1 ≠ x1)R(x1, . . . , xk).

In the inductive cases ϕ = (∃v)ψ and ϕ = (∀v)ψ, we simply put the
new quantifier (∃v) in front of the quantifier block for ψ.
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Inductive Definitions Iterating First Order Formulas

Normal Form for Inductive Definitions (Cont’d)

The remaining cases for ∧ and ∨ are similar to each other.

Suppose that ϕ = α ∧ β and

α ≡ (Q1y1.N1)⋯(Qtyt .Nt)(∃x1 . . . xk .Nt+1)R(x1, . . . , xk);

β ≡ (Q1z1.M1)⋯(Qszs .Ms)(∃x1 . . . xk .Ms+1)R(x1, . . . , xk),

where we may assume that the y ’s and z ’s are disjoint.

Let
QB1 ≡ (Q1y1.N

′
1)⋯(Qtyt .N

′
t),

QB2 ≡ (Q1z1.M
′
1)⋯(Qszs .M

′
s),

where, N ′i ≡ Ni ∨ b = 1 and M ′i ≡Mi ∨ b = 0.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 30 / 37



Inductive Definitions Iterating First Order Formulas

Normal Form for Inductive Definitions (Cont’d)

Let ψ(u/x) denote the formula ψ with variables u1, . . . ,uk
substituted for x1, . . . , xk .

Define the quantifier-free formulas,

S ≡ (b = 0 ∧Nt+1(u/x)) ∨ (b = 1 ∧Ms+1(u/x)),

T ≡ (u1 = x1 ∧⋯ ∧ uk = xk).

Recall that bool(b) means that b = 0 or b = 1.

We can now write

ϕ ≡ (∀b.bool(b))(QB1)(QB2)(∃u.S)(∃x .T )R(x1, . . . , xk).
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Inductive Definitions Iterating First Order Formulas

Remarks on Requantification

In (Q1z1.M1)⋯(Qszs .Ms)(∃x1 . . . xk .Ms+1)R(x1, . . . , xk), the
requantification of the xi ’s means that these variables may occur free
in M1, . . . ,Ms , but they are bound in Ms+1 and R(x1, . . . , xk).

The same variables may now be requantified.

Let us write QB to denote the quantifier block

(Q1z1.M1)⋯(Qszs .Ms)(∃x1 . . . xk .Ms+1).

Thus, in particular, for any structure A, and any r ∈N,

A ⊧ ((ϕA)r(∅))↔ ([QB]r false).

Here [QB]r means QB literally repeated r times.

It follows that, if t = ∣ϕ∣(n) and A is any structure of size n, then

A ⊧ (LFPϕ)↔ ([QB]t false).
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Inductive Definitions Iterating First Order Formulas

Example: Normal Form of the Transitive Closure

Recall the definition of transitive closure:

ϕtc(R , x , y) ≡ x = y ∨ E(x , y) ∨ (∃z)(R(x , z) ∧ R(z , y)).

First, code the base case using a dummy universal quantification,

ϕtc(R , x , y) ≡ (∀z .M1)(∃z)(R(x , y) ∧ R(z , y)),
M1 ≡ ¬(x = y ∨ E(x , y)).

There are no free occurrences of z within the scope of (∀z .M1).
Next, use universal quantification to replace the two occurrences of R
with a single one:

ϕtc(R , x , y) ≡ (∀z .M1)(∃z)(∀uv .M2)R(u, v),
M2 ≡ (u = x ∧ v = z) ∨ (u = z ∧ v = y).

Finally, requantify x and y :

ϕtc(R , x , y) ≡ (∀z .M1)(∃z)(∀uv .M2)(∃xy .M3)R(x , y),
M3 ≡ (x = u ∧ y = v).
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Inductive Definitions Iterating First Order Formulas

Syntactic Uniformity of the Definition of REACH

Define the quantifier block,

QBtc ≡ (∀z .M1)(∃z)(∀uv .M2)(∃xy .M3).

We showed that an application of the operator ϕtc corresponds
exactly to the writing of QBtc , ϕtc(R , x , y) ≡ [QBtc ]R(x , y).

It follows that for any r ,

ϕr
tc(∅) ≡ [QBtc]

r(false).

We have thus demonstrated a syntactic uniformity for the inductive
definition of REACH.

For any structure A ∈ STRUC[τg ],

A ∈ REACH ⇔ A ⊧ (LFPϕtc)(s, t)

⇔ A ⊧ ([QBtc ]
⌈1+log ∥A∥⌉)false(s/x , t/y).
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Inductive Definitions Iterating First Order Formulas

Introducing the Class FO[t(n)]

We now define FO[t(n)] to be the set of properties defined by
quantifier blocks iterated t(n) times.

This is the same as being iterated O(t(n)) times since a quantifier
block may be any constant size.

Such expressions grow as a function of the size of their inputs.

On the other hand, the number of variables is a fixed constant.
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Inductive Definitions Iterating First Order Formulas

The Class FO[t(n)]

Definition

A set S ⊆ STRUC[τ] is a member of FO[t(n)] if there exist:

Quantifier free formulas Mi , 0 ≤ i ≤ k , from L(τ);

A tuple c of constants;

A quantifier block QB = [(Q1x1.M1)⋯(Qkxk .Mk)],

such that, for all A ∈ STRUC[τ],

A ∈ S ⇔ A ⊧ ([QB]t(∥A∥)M0)(c/x).

The reason for the substitution of constants is that the quantifier
block QB may contain some free variables that must be substituted
for to build a sentence.
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Inductive Definitions Iterating First Order Formulas

Inductive Definitions and Number of Iterations

Combining the normal form lemma with the preceding definition, we
obtain

Lemma

For all t(n) and all classes of finite structures,

IND[t(n)] ⊆ FO[t(n)].

A converse of this lemma also holds.

The proof is described in the next chapter.
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