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Inductive Definitions Least Fixed Point

Example

@ A useful way to increase the power of first-order logic is to add the
power to define new relations by induction.
Example: A relation that is not first-order expressible, but can be
defined inductively, is transitive closure.
Recall the vocabulary 75 = (E?,s, t) of graphs.
We define the reflexive, transitive closure E* of E as follows.
Let R be a binary relation variable.
Consider the formula

va1(R,x,y)=x=yv3Iz(E(x,z) AR(z,y)).

The formula ¢4 1 formalizes an inductive definition of E™.
This may be more suggestively written as

E*(x,y)=x=yv3z(E(x,z) NE*(z,y)).
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Inductive Definitions Least Fixed Point

Example (Monotonicity)

o For any structure A with vocabulary 7z, ¢4 1 induces a map from
binary relations on the universe of A to binary relations on the
universe of A,

¢31(R) = {(a,b) : AF ¢a1(R,a,b)}.
@ Such a map is called monotone if for all R, S,
RcS = ¢*(R)cy¢™(S).

o Note that the relation symbol R appears only positively in (41, i.e.,
within an even number of negation symbols.

o |t follows that cpjf}l is monotone.
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Inductive Definitions Least Fixed Point

Example (Least Fixed Point)

o Let (go;f}l)’ denote cpjf}l iterated r times.

o If A any graph, and r > 0, observe that:
(cpfl)(g) {{a, b) € |.A]? : distance(a, b) < 0};
((pff}l)z(g) = {(a, b) €| AP : distance(a, b) < 1};

(@ﬁﬂ’(ﬁ) {{a, b) € | A? : distance(a, b) < r - 1};

o Thus, for n= | A],
(go:f}l)"(z) = E* = the least fixed point of wfl.
o That is, (<p:{}1)”(®) is the minimal relation T, with cpjf}l(T) =T.
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Inductive Definitions Least Fixed Point

Knaster-Tarski Theorem (Finite Version)

Knaster-Tarski Theorem (Finite Version)

Let R be a new relation symbol of arity k. Let o(R,x1,...,xx) be a
monotone first-order formula. Then for any finite structure A, the least
fixed point of ¢ exists. It is equal to ()" (&), where r is minimal, such
that

(@) (@) = (¢)* (2).

Furthermore, letting n = |.A|, we have r < nk.

o Consider the sequence
z < (v)(@) € (¢)2(2) < (¢*) (@) € -

The containment follows because ¢* is monotone.
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Inductive Definitions Least Fixed Point

Knaster-Tarski Theorem (Cont'd)

o Suppose (¢)*1(@) strictly contains (o) ().
Then it must contain at least one new k-tuple from |Al.
But there are at most n* such k-tuples.
So, for some r < n¥, (¢ (2) = (p*)* ().
This shows that ()" (@) is a fixed point of ™.
Let S be any other fixed point of o™
We show by induction that (o) (@) ¢ S, for all i.
The base case is that, (p1)°%(@) =@ cS.
Inductively, suppose that (o) (@) c S.
Since ¢ is monotone,

(@) *(2) = (M) (2)) c¢™(5) = S.

Thus, (¢*)"(2) < S.
So (™) (@) is the least fixed point of o™
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Inductive Definitions Least Fixed Point

Least Fixed Point Operator

o If R occurs only positively in ¢, i.e., within an even number of
negation symbols, then ¢ is monotone.

o The theorem tells us that any R-positive formula (R, xq, ..., xx)
determines a least fixed point relation.

o We denote this least fixed point by

(LFPkal...kuO)'

@ The least fixed point operator (LFP), thus, formalizes the definition
of new relations by induction.

o The subscript “R¥x; ...xs" explicitly tells us which relation and
domain variables we are taking the fixed point with respect to.

@ When the choice of variables is clear, these subscripts may be omitted.
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Inductive Definitions Least Fixed Point

Example

o Recall the formula
pa1(R.x,y) =x=yv3Iz(E(x,z) AR(z,y)).

The expression
(LFP Ry 4,1)

denotes the reflexive, transitive closure of the edge relation E.

Thus, the boolean query REACH is expressible as

REACH = (LFP Ry, p2,1)(s, t).
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Inductive Definitions Least Fixed Point

Language of First Order Inductive Definitions

Define FO(LFP), the language of first-order inductive definitions, by
adding a least fixed point operator (LFP) to first-order logic.

For o(R¥,x1,...,xx) an RK-positive formula in FO(LFP),

(LFPkal...Xk¢)

may be used as a new k-ary relation symbol.
Then, in a given structure,

(LFPkal...kaO)

denotes the least fixed point of the relation expressed by ¢.
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Inductive Definitions Least Fixed Point

Example

o We defined boolean query REACH, to be the set of graphs having an
alternating path from s to t.

o We now give a first-order inductive definition of the alternating path
property P,.

o Consider the P?-positive formula

wap = x=yVv[(3z)(E(x,z) AP(z,y))A
(A(x) = (V2)(E(x,2) = P(z,y)))].

o Thus, we have P, = (LFPp,,¢ap).

@ Moreover,
REACH, = (LFPprtpap)(S, t)'
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Inductive Definitions Least Fixed Point

FO(LFP) and Polynomial-Time Boolean Queries

o Recall that REACH, is complete for P via first-order reductions.

o It follows from the preceding example and the following proposition
that FO(LFP) contains all polynomial time boolean queries.

Proposition
FO(LFP) is closed under first-order reductions.

o Let Q be a k-ary first-order query and ® € FO(LFP).
We must show that Q(®) € FO(LFP).

This follows from the observation that

a)\(LFI:)RE"Xl---XaO‘) (LFPRkaxll...X{‘...xal...xé‘ Q\(O‘))
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Inductive Definitions Least Fixed Point

Notational Convention

@ Suppose ¢(S) is a formula in which occurs the n-ary relation symbol
S, perhaps among other relation symbols.

@ Suppose U is an (m+ n)-ary relation symbol.

@ Suppose, also, that t is an m-tuple of constants (or, more generally,
of terms).

@ Then the notation

p({T: U(t,1)})

denotes the result of replacing each occurrence of S(V) in ¢(S) by
U(t,v).
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Inductive Definitions Least Fixed Point

Simultaneous Induction

@ Sometimes it is convenient to use simultaneous induction to define
several relations.

@ Let S and T be new relation symbols, with arities ry and ry.

o Fix variables y and X, such that
[Y| = ro =arity(S) and [x|=r =arity(T).
o Consider first order formulas
v(y,S, T) and ¢(x,S,T),

which are positive in S and T.

o For any structure A, we define the relations /§’ and I}, by
simultaneous induction.
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Simultaneous Induction (Cont'd)

o The definition proceeds as follows.

I(?zllozg;

aelf = A=y@E I,
bell < Ae=o(b gt 1),
I =Upy If, b=0,1.

o We show that both /5’ and /i’ are expressible in FO(LFP).

o For simplicity, suppose there exist distinct constants ¢y # 1.

o Choose sequences € and d of elements of | A| of the same length as X
and vy, respectively.

o We define a single new relation U of arity 1+ ryp + r1, such that:

o U(co,y,) refers to S(y);
o U(cy,d,x) refers to T(X).
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Inductive Definitions Least Fixed Point

Simultaneous Induction (Cont'd)

@ Define a formula

X(z,y,%U) = (z2=aryp@ {7 U(a,7 )} {X': Ula, d,X)}))
V(iz=c Ap(x,{y : U(cy,y',©)},{X": U(c1,d,X")}))).

o We claim that, for every n,
yelg < (c,y,c)ely,
xell! < (cl,g,i)elg.
@ We use induction on n simultaneously for both equivalences, e.g.:
yeld < o, 18 1Y) (by definition)

= x(@¥.E{(0,y.0):y effu{(a,dX): X ef1})
(by the definition of x)

§

x(c0,¥,S,177")  (by the induction hypothesis)
(co,¥,©) €12 (by definition of /7)

§
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Inductive Definitions Least Fixed Point

Theorem
Over finite, ordered structures, FO(LFP) = P.

() Let A be an input structure, with n = | A].
Let (LFPRy,.. x ) be a fixed-point formula.
We know that this fixed point evaluated on A is (cpA)”k(Q).
This amounts to evaluating the first-order query ¢ at most n times.
We saw that first-order queries may be evaluated in L.
Thus, they are easily in P.
(2) FO(LFP) includes query REACH,.
We know REACH,; is complete for P via first order reductions.
We also know FO(LFP) is closed under first-order reductions.
So FO(LFP) includes all polynomial-time queries.
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Inductive Definitions Least Fixed Point

Remark: The Role of Ordering

@ The use of ordering in the theorem is required in the proof that
REACH, is complete via <.

o Stripped of its numeric relations, including ordering, FO(LFP) does
not describe all polynomial-time properties.

o E.g., we will see that it cannot even express the parity of its universe.
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Inductive Definitions Least Fixed Point

Normal Form in FO(LFP)

Corollary

Let ¢ be any formula in the language FO(LFP). There exists a first-order

formula ¢ and a tuple of constants ¢, such that over finite, ordered
structures,

¢ = (LFPy)(c).

@ The completeness of REACH, for P means that every polynomial-time
query is expressible as a(REACHa) for some first-order query Q.
In a previous example we saw that REACH, = (LFPy,,)(s, t).
Thus, an arbitrary polynomial-time query is expressible as

Q(REACH,) = (LFPQ(¢45))Q(s, t).

Now recall the first-order reductions used in a previous theorem.
They replace the constants s and t by k-tuples in 0 and max.
So the form of the displayed equation is as claimed.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 20 /37



Inductive Definitions The Depth of Inductive Definitions

Subsection 2

The Depth of Inductive Definitions
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Inductive Definitions The Depth of Inductive Definitions

The Depth of Inductive Definitions

@ The number of iterations until an inductive definition closes is called

its depth.
Let (R, x1,...,xk) be an R-positive formula, where R is a relation

symbol of arity k, and let A be a structure of size n. Define the depth of
@ in A, in symbols |¢*], to be the minimum r such that

Ar (¢'(2) < ¢ (2)).

We saw that |o*| < nk. Define the depth of ¢ as a function of n to be
the maximum depth of ¢ in A for any structure A of size n,

n) = max A
plCn) = max {le”1}-
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Inductive Definitions The Depth of Inductive Definitions

REMEIS

@ The inductive definition ¢4 1 given by
pa1(R.x,y) =x=yv3Iz(E(x,z) AR(z,y))

has depth |p|(n) = n.
@ However, the following alternate inductive definition of E* has depth
|otc|(n) = [log n] + 1:

oic(Ryx,y) =x=y Vv E(x,y)Vv3Iz(R(x,z) AR(z,y)).

@ In computer science, the depth of an inductive definition corresponds
to the depth of the stack needed to evaluate a recursive definition.

@ This is the same as the depth of nesting of recursive calls.

o We will see that this also corresponds to the parallel time needed to
evaluate such a recursive definition.
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Inductive Definitions The Depth of Inductive Definitions

The Language IND[f(n)]

Let IND[f(n)] be the sublanguage of FO(LFP) in which only fixed points
of first-order formulas ¢ for which |¢| is O[f(n)] are included.

o Recall that REACH is expressible as (LFP gy ¢1c).
o |t follows, by the definition, that

REACH ¢ IND[log n].
@ Note also that,

FO(LFP) = fj IND[n*].
k=1
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Inductive Definitions The Depth of Inductive Definitions

NL and IND[log(n)]

NL c IND[log n].

o The statement is a consequence of the following facts:

o REACH € IND[log n];
o REACH is complete for NL via first-order reductions;
o IND[log n] is closed under first-order reductions.
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Inductive Definitions The Depth of Inductive Definitions

Numerical Relations and Inductive Depth

@ It can be shown that the numeric relations BIT, PLUS and TIMES
are all definable in IND(woBIT)[log n], that is, via first-order
inductive definitions that use only the numeric relation <.

@ So the descriptive class IND[log n] is somewhat more robust than
IND[O] = FO and has a more general definition.

o It turns out that, generally, the more powerful the language, the less
important exactly which numeric relations are included.

Proposition
Relation BIT is definable by a depth log n induction just from <,

BIT € IND(woBIT)[log n].

o This is proved by showing that, first PLUS and then MULT are
definable in IND(woBIT)[log n].
Then use the fact that BIT is definable in terms of PLUS and TIMES.
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Subsection 3

Iterating First Order Formulas
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Inductive Definitions Iterating First Order Formulas

Normal Form for Inductive Definitions

o Recall the notation:
o (Vx.M)1 meaning (Vx)M — );
o (3x.M)2)p meaning (Ix)M A .

Lemma

Let ¢ be an R-positive first-order formula. Then ¢ can be written in the
following form,

gO(R,Xl, ce ,Xk) = (lel.Ml)-~~(Qszs.Ms)(E|X1 .. .Xk.M5+1)R(X1, coo ,Xk),
where the M;'s are quantifier-free formulas in which R does not occur.

o By induction on the complexity of .
Assume that all negations have been pushed all the way inside.
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Inductive Definitions Iterating First Order Formulas

Normal Form for Inductive Definitions (Cont'd)

@ There are two base cases.
o Suppose, first, ¢ = R(vi,..., k).

Then
v = (3z,...,z-M)(3x1, ., xk-M2)R(xa, - - -5 Xk )5
My = zi=viA-—AZe= v,
M2 = X1 =Z1 N AN Xk = Zg.

o Suppose, next, @ is quantifier free and R does not occur in .
Then

w=(Yz.~)(Ixt, ..., xk.x1 = x1)R(x1, - -+, Xk)-

@ In the inductive cases ¢ = (Jv)¥ and ¢ = (Vv)1, we simply put the
new quantifier (3v) in front of the quantifier block for .
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Inductive Definitions Iterating First Order Formulas

Normal Form for Inductive Definitions (Cont'd)

@ The remaining cases for A and v are similar to each other.

Suppose that ¢ = a A 5 and

a = (Quy1-Np)-(Qeye-Ne)(Ixq ... xk - Ner1)R(x1, -y Xk);
B = (Qz1-M1)+(Qszs.Ms)(Ix1 ... xk-Mss1)R(X1, - ., Xk ),
where we may assume that the y's and z's are disjoint.
Let
@B1 = (Quy1-Np)-(Qeye-Nyp),
QB = (Quzi.-Mj)--(Qszs.My),

where, N/ = Njvb=1and M/ =M;v b=0.
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Inductive Definitions Iterating First Order Formulas

Normal Form for Inductive Definitions (Cont'd)

o Let ¢(u/x) denote the formula ¢ with variables vy, ..., uyx
substituted for xi, ..., Xk.

Define the quantifier-free formulas,

S (b=0A Ngi1(a/x)) v (b=1nAMs1(u/x)),

T = (u1:x1/\---/\uk:xk).

Recall that bool(b) means that b=0 or b=1.

We can now write

0 = (Vb.bool (b)) (QB1)(Q@B2)(3T.8) (3. T)R(x1, - . ., x).
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Inductive Definitions Iterating First Order Formulas

Remarks on Requantification

o In (lel.Ml)---(QsZs.Ms)(Hxl R Xk.Ms+1)R(X1, R ,Xk), the
requantification of the x;'s means that these variables may occur free
in My,..., Ms, but they are bound in Msy1 and R(x1,...,xk).

@ The same variables may now be requantified.

o Let us write @B to denote the quantifier block

(Q121.M1)"-(Q525.M5)(E|X1 .. .Xk.Ms+1).
o Thus, in particular, for any structure A, and any r € IN,
AE (¢ (2)) < ([QB] false).

o Here [QB]" means QB literally repeated r times.
o It follows that, if t =|p|(n) and A is any structure of size n, then

AE (LFPy) < ([QB]false).
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Example: Normal Form of the Transitive Closure

@ Recall the definition of transitive closure:

prc(R.x,y) =x=yvE(x,y)v(3z)(R(x,2) AR(z,y)).
o First, code the base case using a dummy universal quantification,
gOtC(RaXay) (vz'Ml)(EIZ)(R(va)/\R(Zvy))v
My -(x=yVvE(xy)).

@ There are no free occurrences of z within the scope of (Vz.My).
o Next, use universal quantification to replace the two occurrences of R
with a single one:

(Vz.M1)(3z)(Yuv.Ma)R(u, v),
(u=xAv=z)v(u=zAv=y).

(ptc(vav.y)
M

o Finally, requantify x and y:

(Vz.My1)(3z)(Vuv.Mp)(Ixy.M3)R(x,y),
(x=uAy=v).

gOtC(RaXay)
Mz
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Syntactic Uniformity of the Definition of REACH

o Define the quantifier block,
@Bt = (Vz.M1)(3z)(Yuv.Mz)(Ixy.M3).

@ We showed that an application of the operator @ corresponds
exactly to the writing of @Bic, vic(R,x,y) = [QBiw|R(x,y).
o It follows that for any r,

01c(2) = [QByc]" (false).

@ We have thus demonstrated a syntactic uniformity for the inductive
definition of REACH.

o For any structure A € STRUC[7,],

AeREACH < Ar (LFPp.)(s,t)
< AFE ([QBi|*elAlfalse(s/x, t/y).
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Introducing the Class FO[t(n)]

o We now define FO[t(n)] to be the set of properties defined by
quantifier blocks iterated t(n) times.

@ This is the same as being iterated O(t(n)) times since a quantifier
block may be any constant size.

@ Such expressions grow as a function of the size of their inputs.
@ On the other hand, the number of variables is a fixed constant.
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The Class FO[t(n)]

A set S € STRUC[7] is a member of FO[t(n)] if there exist:

o Quantifier free formulas M;, 0 < < k, from L(7);

@ A tuple ¢ of constants;
o A quantifier block @B = [(Q1x1.M1)---(Qxxk-My)],
such that, for all A e STRUC[7],

AeS o A ([QB]UAD M) (E/x).

@ The reason for the substitution of constants is that the quantifier
block @B may contain some free variables that must be substituted
for to build a sentence.
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Inductive Definitions and Number of lterations

o Combining the normal form lemma with the preceding definition, we
obtain

Lemma

For all t(n) and all classes of finite structures,

IND[£(n)] € FO[¢(n)].

@ A converse of this lemma also holds.

o The proof is described in the next chapter.
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