Introduction to Descriptive Complexity

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) [Descriptive Complexity](#page-36-0) December 2024 1/37

[Inductive Definitions](#page-2-0)

- **[Least Fixed Point](#page-2-0)**
- **[The Depth of Inductive Definitions](#page-20-0)**
- o [Iterating First Order Formulas](#page-26-0)

Subsection 1

[Least Fixed Point](#page-2-0)

Example

A useful way to increase the power of first-order logic is to add the power to define new relations by induction.

Example: A relation that is not first-order expressible, but can be defined inductively, is transitive closure.

Recall the vocabulary τ_g = $\langle E^2,s,t\rangle$ of graphs.

We define the reflexive, transitive closure E^* of E as follows.

Let R be a binary relation variable.

Consider the formula

$$
\varphi_{4,1}(R,x,y) \equiv x = y \vee \exists z (E(x,z) \wedge R(z,y)).
$$

The formula $\varphi_{4,1}$ formalizes an inductive definition of $E^*.$ This may be more suggestively written as

$$
E^*(x,y) \equiv x = y \vee \exists z (E(x,z) \wedge E^*(z,y)).
$$

Example (Monotonicity)

• For any structure A with vocabulary τ_g , $\varphi_{4,1}$ induces a map from binary relations on the universe of A to binary relations on the universe of A .

$$
\varphi_{4,1}^{\mathcal{A}}(R)=\{\langle a,b\rangle:\mathcal{A}\vDash\varphi_{4,1}(R,a,b)\}.
$$

 \bullet Such a map is called **monotone** if for all R, S ,

$$
R \subseteq S \implies \varphi^{\mathcal{A}}(R) \subseteq \varphi^{\mathcal{A}}(S).
$$

- Note that the relation symbol R appears only positively in $\varphi_{4,1}$, i.e., within an even number of negation symbols.
- It follows that $\varphi_{4,1}^{\mathcal{A}}$ is monotone.

Example (Least Fixed Point)

- Let $(\varphi_{4,1}^{\mathcal{A}})^r$ denote $\varphi_{4,1}^{\mathcal{A}}$ iterated r times.
- If A any graph, and $r \geq 0$, observe that:

$$
(\varphi_{4,1}^{A})(\varnothing) = \{ \langle a,b \rangle \in |\mathcal{A}|^{2} : \text{distance}(a,b) \le 0 \};
$$

\n
$$
(\varphi_{4,1}^{A})^{2}(\varnothing) = \{ \langle a,b \rangle \in |\mathcal{A}|^{2} : \text{distance}(a,b) \le 1 \};
$$

\n
$$
\vdots
$$

\n
$$
(\varphi_{4,1}^{A})^{r}(\varnothing) = \{ \langle a,b \rangle \in |\mathcal{A}|^{2} : \text{distance}(a,b) \le r-1 \};
$$

\n
$$
\vdots
$$

• Thus, for $n = ||A||$,

 $(\varphi_{4,1}^{\mathcal{A}})^n(\varnothing) = E^*$ = the least fixed point of $\varphi_{4,1}^{\mathcal{A}}$.

That is, $(\varphi_{4,1}^{\mathcal{A}})^n(\varnothing)$ is the minimal relation \mathcal{T} , with $\varphi_{4,1}^{\mathcal{A}}(\mathcal{T})$ = $\mathcal{T}.$

Knaster-Tarski Theorem (Finite Version)

Knaster-Tarski Theorem (Finite Version)

Let R be a new relation symbol of arity k. Let $\varphi(R, x_1, \ldots, x_k)$ be a monotone first-order formula. Then for any finite structure A , the least fixed point of $\varphi^\mathcal{A}$ exists. It is equal to $(\varphi^\mathcal{A})^r(\varnothing)$, where r is minimal, such that

$$
(\varphi^{\mathcal{A}})^{r}(\varnothing)=(\varphi^{\mathcal{A}})^{r+1}(\varnothing).
$$

Furthermore, letting $n = ||A||$, we have $r \leq n^k$.

Consider the sequence

$$
\varnothing\subseteq\big(\varphi^{\mathcal{A}}\big)\big(\varnothing\big)\subseteq\big(\varphi^{\mathcal{A}}\big)^2\big(\varnothing\big)\subseteq\big(\varphi^{\mathcal{A}}\big)^3\big(\varnothing\big)\subseteq\cdots.
$$

The containment follows because $\varphi^{\mathcal{A}}$ is monotone.

Knaster-Tarski Theorem (Cont'd)

Suppose $(\varphi^{\mathcal{A}})^{i+1}(\varnothing)$ strictly contains $(\varphi^{\mathcal{A}})^i(\varnothing)$. Then it must contain at least one new k-tuple from $|\mathcal{A}|$. But there are at most n^k such *k*-tuples. So, for some $r \leq n^k$, $(\varphi^{\mathcal{A}})^r(\varnothing) = (\varphi^{\mathcal{A}})^{r+1}(\varnothing)$. This shows that $(\varphi^\mathcal{A})^r(\varnothing)$ is a fixed point of $\varphi^\mathcal{A}.$ Let S be any other fixed point of $\varphi^\mathcal{A}.$ We show by induction that $(\varphi^{\mathcal{A}})^i(\varnothing) \subseteq S$, for all $i.$ The base case is that, $(\varphi^{\mathcal{A}})^0(\varnothing) = \varnothing \subseteq S$. Inductively, suppose that $(\varphi^{\mathcal{A}})^i(\varnothing) \subseteq S$. Since $\varphi^{\mathcal{A}}$ is monotone,

$$
(\varphi^{\mathcal{A}})^{i+1}(\varnothing) = \varphi^{\mathcal{A}}((\varphi^{\mathcal{A}})^{i}(\varnothing)) \subseteq \varphi^{\mathcal{A}}(S) = S.
$$

Thus, $(\varphi^{\mathcal{A}})'(\varnothing) \subseteq S$. So $(\varphi^{\mathcal A})^r(\varnothing)$ is the least fixed point of $\varphi^{\mathcal A}.$

Least Fixed Point Operator

- If R occurs only positively in φ , i.e., within an even number of negation symbols, then φ is monotone.
- The theorem tells us that any R -positive formula $\varphi(R^k, x_1, \ldots, x_k)$ determines a least fixed point relation.
- We denote this least fixed point by

$$
(\mathsf{LFP}_{R^k x_1 \ldots x_k} \varphi).
$$

- The least fixed point operator (LFP), thus, formalizes the definition of new relations by induction.
- The subscript $\mathsf{``R}^k x_1 \ldots x_k\mathsf{''}$ explicitly tells us which relation and domain variables we are taking the fixed point with respect to.
- When the choice of variables is clear, these subscripts may be omitted.

Example

• Recall the formula

$$
\varphi_{4,1}(R,x,y) \equiv x = y \vee \exists z (E(x,z) \wedge R(z,y)).
$$

The expression

 $(LFP_{Rxv}\varphi_{4.1})$

denotes the reflexive, transitive closure of the edge relation E. Thus, the boolean query REACH is expressible as

 $REACH \equiv (LFP_{Rxv}\varphi_{4,1})(s,t).$

Language of First Order Inductive Definitions

Definition

Define FO(LFP), the language of first-order inductive definitions, by adding a least fixed point operator (LFP) to first-order logic. For $\varphi(R^k,x_1,\ldots,x_k)$ an R^k -positive formula in FO(LFP),

 $(\mathsf{LFP}_{R^k x_1...x_k} \varphi)$

may be used as a new *k*-ary relation symbol. Then, in a given structure,

 $(\mathsf{LFP}_{R^k x_1 \dots x_k} \varphi)$

denotes the least fixed point of the relation expressed by φ .

Example

- \bullet We defined boolean query REACH_a to be the set of graphs having an alternating path from s to t .
- We now give a first-order inductive definition of the alternating path property P_a .
- Consider the P^2 -positive formula

$$
\varphi_{ap} \equiv x = y \vee [(\exists z)(E(x, z) \wedge P(z, y)) \wedge
$$

\n $(A(x) \rightarrow (\forall z)(E(x, z) \rightarrow P(z, y)))].$

• Thus, we have $P_a = (LFP_{Pxv}\varphi_{ap})$.

• Moreover,

$$
REACH_a = (LFP_{Pxy} \varphi_{ap})(s, t).
$$

FO(LFP) and Polynomial-Time Boolean Queries

- Recall that REACH_a is complete for P via first-order reductions.
- It follows from the preceding example and the following proposition that FO(LFP) contains all polynomial time boolean queries.

Proposition

FO(LFP) is closed under first-order reductions.

• Let Q be a k-ary first-order query and $\Phi \in FO(LFP)$. We must show that $\widehat{Q}(\Phi) \in FO(LFP)$.

This follows from the observation that

$$
\widehat{Q}(\mathsf{LFP}_{R^a x_1\dots x_a} \alpha) \equiv (\mathsf{LFP}_{R^{ka} x_1^1\dots x_1^k\dots x_a^1\dots x_a^k} \widehat{Q}(\alpha)).
$$

Notational Convention

- \circ Suppose $\varphi(S)$ is a formula in which occurs the *n*-ary relation symbol S, perhaps among other relation symbols.
- Suppose U is an $(m + n)$ -ary relation symbol.
- Suppose, also, that \bar{t} is an *m*-tuple of constants (or, more generally, of terms).
- **Then the notation**

$$
\varphi(\{\overline{u}:U(\overline{t},\overline{u})\})
$$

denotes the result of replacing each occurrence of $S(\overline{v})$ in $\varphi(S)$ by $U(\overline{t}, \overline{v})$.

Simultaneous Induction

- **•** Sometimes it is convenient to use *simultaneous induction* to define several relations.
- Let S and T be new relation symbols, with arities r_0 and r_1 .
- Fix variables \overline{y} and \overline{x} , such that

$$
|\overline{y}| = r_0 = \text{arity}(S)
$$
 and $|\overline{x}| = r_1 = \text{arity}(T)$.

Consider first order formulas

$$
\psi(\overline{y}, S, T)
$$
 and $\varphi(\overline{x}, S, T)$,

which are positive in S and T .

For any structure \mathcal{A} , we define the relations l_0^ω and l_1^ω , by simultaneous induction.

Simultaneous Induction (Cont'd)

• The definition proceeds as follows.

$$
I_0^0 = I_1^0 = \varnothing;
$$

\n
$$
\overline{a} \in I_0^n \iff \mathcal{A} \models \psi(\overline{a}, I_0^{n-1}, I_1^{n-1});
$$

\n
$$
\overline{b} \in I_1^n \iff \mathcal{A} \models \varphi(\overline{b}, I_0^{n-1}, I_1^{n-1});
$$

\n
$$
I_b^{\omega} = \bigcup_{n=1}^{\infty} I_b^n, \ b = 0, 1.
$$

- We show that both I_0^{ω} and I_1^{ω} are expressible in FO(LFP).
- For simplicity, suppose there exist distinct constants $c_0 \neq c_1$.
- Choose sequences \overline{c} and \overline{d} of elements of $|\mathcal{A}|$ of the same length as \overline{x} and \overline{y} , respectively.
- We define a single new relation U of arity $1 + r_0 + r_1$, such that:
	- $U(c_0, \overline{y}, \overline{c})$ refers to $S(\overline{y})$;
	- \bullet $U(c_1, \overline{d}, \overline{x})$ refers to $\mathcal{T}(\overline{x})$.

Simultaneous Induction (Cont'd)

Define a formula

$$
\chi(z,\overline{y},\overline{x},U) = (z = c_0 \wedge \psi(\overline{y},\{\overline{y}':U(c_0,\overline{y}',\overline{c})\},\{\overline{x}':U(c_1,\overline{d},\overline{x}')\}))\n\\ \vee (z = c_1 \wedge \varphi(\overline{x},\{\overline{y}':U(c_0,\overline{y}',\overline{c})\},\{\overline{x}':U(c_1,\overline{d},\overline{x}')\}))).
$$

• We claim that, for every n,

$$
\overline{y} \in I_0^n \iff (c_0, \overline{y}, \overline{c}) \in I_{\chi}^n, \overline{x} \in I_1^n \iff (c_1, \overline{d}, \overline{x}) \in I_{\chi}^n.
$$

 \bullet We use induction on *n* simultaneously for both equivalences, e.g.:

$$
\overline{y} \in I_0^n \iff \psi(\overline{y}, I_0^{n-1}, I_1^{n-1}) \quad \text{(by definition)}
$$
\n
$$
\iff \chi(c_0, \overline{y}, \overline{c}, \{ (c_0, \overline{y}', \overline{c}) : \overline{y}' \in I_0^{n-1} \} \cup \{ (c_1, \overline{d}, \overline{x}') : \overline{x}' \in I_1^{n-1} \})
$$
\n(by the definition of χ)

\n
$$
\iff \chi(c_0, \overline{y}, \overline{c}, I_{\chi}^{n-1}) \quad \text{(by the induction hypothesis)}
$$
\n
$$
\iff (c_0, \overline{y}, \overline{c}) \in I_{\chi}^n. \quad \text{(by definition of } I_{\chi}^n)
$$

FO(LFP)=P

Theorem

Over finite, ordered structures, $FO(LFP) = P$.

 (\subseteq) Let A be an input structure, with $n = \|\mathcal{A}\|$. Let (LFP $_{Rx_1...x_k}\varphi$) be a fixed-point formula. We know that this fixed point evaluated on ${\mathcal A}$ is $(\varphi^\mathcal{A})^{n^k}(\varnothing).$ This amounts to evaluating the first-order query φ at most n^k times. We saw that first-order queries may be evaluated in L. Thus, they are easily in P. $(⊒)$ FO(LFP) includes query REACH_a.

We know REACH_a is complete for P via first order reductions. We also know FO(LFP) is closed under first-order reductions. So FO(LFP) includes all polynomial-time queries.

Remark: The Role of Ordering

- The use of ordering in the theorem is required in the proof that REACH_a is complete via \leq_{fo} .
- Stripped of its numeric relations, including ordering, FO(LFP) does not describe all polynomial-time properties.
- E.g., we will see that it cannot even express the parity of its universe.

Normal Form in FO(LFP)

Corollary

Let φ be any formula in the language FO(LFP). There exists a first-order formula ψ and a tuple of constants \overline{c} , such that over finite, ordered structures,

$$
\varphi \equiv (\mathsf{LFP}\psi)(\overline{\mathsf{c}}).
$$

 \bullet The completeness of REACH_a for P means that every polynomial-time query is expressible as $\widehat{Q}(\text{REACH}_a)$ for some first-order query Q. In a previous example we saw that REACH_a = $(LFP\varphi_{ap})(s,t)$. Thus, an arbitrary polynomial-time query is expressible as

$$
\widehat{Q}(\mathsf{REACH}_a) = (\mathsf{LFP}\widehat{Q}(\varphi_{ap}))\widehat{Q}(s,t).
$$

Now recall the first-order reductions used in a previous theorem. They replace the constants s and t by k -tuples in 0 and max. So the form of the displayed equation is as claimed.

George Voutsadakis (LSSU) [Descriptive Complexity](#page-0-0) December 2024 20 / 37

Subsection 2

[The Depth of Inductive Definitions](#page-20-0)

The Depth of Inductive Definitions

The number of iterations until an inductive definition closes is called its depth.

Definition

Let $\varphi(R, x_1, \ldots, x_k)$ be an R-positive formula, where R is a relation symbol of arity k, and let A be a structure of size n. Define the **depth of** φ in ${\cal A}$, in symbols $|\varphi^{\cal A}|$, to be the minimum r such that

$$
\mathcal{A} \models (\varphi^r(\varnothing) \leftrightarrow \varphi^{r+1}(\varnothing)).
$$

We saw that $|\varphi^{\mathcal{A}}| \leq n^k.$ Define the \mathbf{depth} of φ as a function of n to be the maximum depth of φ in A for any structure A of size n,

$$
|\varphi|(n) = \max_{\|\mathcal{A}\|=n} \{|\varphi^{\mathcal{A}}|\}.
$$

Remarks

• The inductive definition $\varphi_{4,1}$ given by

$$
\varphi_{4,1}(R,x,y) \equiv x = y \vee \exists z (E(x,z) \wedge R(z,y))
$$

has depth $|\varphi|(n) = n$.

However, the following alternate inductive definition of E^* has depth $|\varphi_{tc}|(n) = \lfloor \log n \rfloor + 1$:

$$
\varphi_{tc}(R,x,y) \equiv x = y \vee E(x,y) \vee \exists z (R(x,z) \wedge R(z,y)).
$$

- In computer science, the depth of an inductive definition corresponds to the depth of the stack needed to evaluate a recursive definition.
- This is the same as the depth of nesting of recursive calls.
- We will see that this also corresponds to the parallel time needed to evaluate such a recursive definition.

The Language $[ND[f(n)]]$

Definition

Let $IND[f(n)]$ be the sublanguage of $FO(LFP)$ in which only fixed points of first-order formulas φ for which $|\varphi|$ is $O[f(n)]$ are included.

• Recall that REACH is expressible as $(LFP_{Rxv}\varphi_{tc})$.

It follows, by the definition, that \bullet

REACH \in IND[log *n*].

• Note also that,

$$
FO(LFP) = \bigcup_{k=1}^{\infty} IND[n^k].
$$

NL and $IND[log(n)]$

Proposition

 $NL \subseteq IND[\log n]$.

- The statement is a consequence of the following facts:
	- REACH \in IND[log n];
	- REACH is complete for NL via first-order reductions;
	- IND[$log n$] is closed under first-order reductions.

Numerical Relations and Inductive Depth

- o It can be shown that the numeric relations BIT, PLUS and TIMES are all definable in $IND(woBIT)[log n]$, that is, via first-order inductive definitions that use only the numeric relation ≤.
- So the descriptive class $IND[log n]$ is somewhat more robust than $IND[0] = FO$ and has a more general definition.
- It turns out that, generally, the more powerful the language, the less important exactly which numeric relations are included.

Proposition

Relation BIT is definable by a depth log *n* induction just from \leq ,

BIT \in IND(woBIT)[log n].

This is proved by showing that, first PLUS and then MULT are definable in $IND(woBIT)[log n]$.

Then use the fact that BIT is definable in terms of PLUS and TIMES.

Subsection 3

[Iterating First Order Formulas](#page-26-0)

Normal Form for Inductive Definitions

• Recall the notation:

- \bullet $(\forall x.M)\psi$ meaning $(\forall x)M \rightarrow \psi$;
- \bullet ($\exists x.M$) ψ meaning ($\exists x$) $M \wedge \psi$.

Lemma

Let φ be an R-positive first-order formula. Then φ can be written in the following form,

$$
\varphi(R,x_1,\ldots,x_k)\equiv (Q_1z_1.M_1)\cdots (Q_sz_s.M_s)(\exists x_1\ldots x_k.M_{s+1})R(x_1,\ldots,x_k),
$$

where the M_i 's are quantifier-free formulas in which R does not occur.

• By induction on the complexity of φ . Assume that all negations have been pushed all the way inside.

Normal Form for Inductive Definitions (Cont'd)

- There are two base cases.
	- Suppose, first, $\varphi = R(v_1, \ldots, v_k)$. Then

$$
\varphi \equiv (\exists z_1, \ldots, z_k.M_1)(\exists x_1, \ldots, x_k.M_2)R(x_1, \ldots, x_k),
$$

\n
$$
M_1 \equiv z_1 = v_1 \wedge \cdots \wedge z_k = v_k;
$$

\n
$$
M_2 \equiv x_1 = z_1 \wedge \cdots \wedge x_k = z_k.
$$

• Suppose, next, φ is quantifier free and R does not occur in φ . Then

$$
\varphi \equiv (\forall z. \neg \varphi)(\exists x_1, \ldots, x_k. x_1 \neq x_1) R(x_1, \ldots, x_k).
$$

In the inductive cases $\varphi = (\exists v)\psi$ and $\varphi = (\forall v)\psi$, we simply put the new quantifier ($\exists v$) in front of the quantifier block for ψ .

Normal Form for Inductive Definitions (Cont'd)

The remaining cases for ∧ and ∨ are similar to each other. Suppose that $\varphi = \alpha \wedge \beta$ and

$$
\alpha \equiv (Q_1y_1.N_1)\cdots (Q_ty_t.N_t)(\exists x_1 \ldots x_k.N_{t+1})R(x_1,\ldots,x_k); \n\beta \equiv (Q_1z_1.M_1)\cdots (Q_sz_s.M_s)(\exists x_1 \ldots x_k.M_{s+1})R(x_1,\ldots,x_k),
$$

where we may assume that the y' s and z' s are disjoint. Let

$$
QB_1 \equiv (Q_1y_1.N'_1)\cdots(Q_ty_t.N'_t),
$$

\n $QB_2 \equiv (Q_1z_1.M'_1)\cdots(Q_sz_s.M'_s),$

where, $N'_i \equiv N_i \vee b = 1$ and $M'_i \equiv M_i \vee b = 0$.

Normal Form for Inductive Definitions (Cont'd)

• Let $\psi(\overline{u}/\overline{x})$ denote the formula ψ with variables u_1, \ldots, u_k substituted for x_1, \ldots, x_k .

Define the quantifier-free formulas,

$$
S \equiv (b = 0 \land N_{t+1}(\overline{u}/\overline{x})) \lor (b = 1 \land M_{s+1}(\overline{u}/\overline{x})),
$$

\n
$$
T \equiv (u_1 = x_1 \land \cdots \land u_k = x_k).
$$

Recall that bool(b) means that $b = 0$ or $b = 1$. We can now write

 $\varphi \equiv (\forall b \text{.bool}(b)) (QB_1)(QB_2)(\exists \overline{x}.S)(\exists \overline{x}.T)R(x_1,\ldots,x_k).$

Remarks on Requantification

- In $(Q_1 z_1.M_1) \cdots (Q_s z_s.M_s) (\exists x_1 \ldots x_k.M_{s+1}) R(x_1,\ldots,x_k)$, the requantification of the x_i 's means that these variables may occur free in M_1, \ldots, M_s , but they are bound in M_{s+1} and $R(x_1, \ldots, x_k)$.
- The same variables may now be requantified.
- \bullet Let us write QB to denote the quantifier block

 $(Q_1 z_1.M_1)\cdots(Q_s z_s.M_s)(\exists x_1 \ldots x_k.M_{s+1}).$

• Thus, in particular, for any structure A, and any $r \in \mathbb{N}$,

$$
\mathcal{A} \vDash ((\varphi^{\mathcal{A}})^{r}(\varnothing)) \leftrightarrow ([\mathit{QB}]^{r} \mathsf{false}).
$$

Here $[QB]^{r}$ means QB literally repeated r times.

• It follows that, if $t = |\varphi|(n)$ and A is any structure of size n, then

$$
\mathcal{A} \vDash (\mathsf{LFP}\varphi) \leftrightarrow ([\mathsf{QB}]^t \mathsf{false}).
$$

Example: Normal Form of the Transitive Closure

• Recall the definition of transitive closure:

$$
\varphi_{tc}(R,x,y) \equiv x = y \vee E(x,y) \vee (\exists z)(R(x,z) \wedge R(z,y)).
$$

First, code the base case using a dummy universal quantification,

$$
\varphi_{tc}(R,x,y) \equiv (\forall z.M_1)(\exists z)(R(x,y) \wedge R(z,y)),M_1 \equiv \neg(x=y \vee E(x,y)).
$$

- There are no free occurrences of z within the scope of $(\forall z.M_1)$.
- Next, use universal quantification to replace the two occurrences of R \bullet with a single one:

$$
\varphi_{tc}(R,x,y) = (\forall z.M_1)(\exists z)(\forall uv.M_2)R(u,v),M_2 = (u = x \land v = z) \lor (u = z \land v = y).
$$

 \circ Finally, requantify x and y:

$$
\varphi_{tc}(R,x,y) \equiv (\forall z.M_1)(\exists z)(\forall uv.M_2)(\exists xy.M_3)R(x,y),M_3 \equiv (x = u \land y = v).
$$

Syntactic Uniformity of the Definition of REACH

Define the quantifier block,

$$
QB_{tc} \equiv (\forall z.M_1)(\exists z)(\forall uv.M_2)(\exists xy.M_3).
$$

- We showed that an application of the operator φ_{tc} corresponds exactly to the writing of QB_{tc} , $\varphi_{tc}(R, x, y) \equiv [QB_{tc}]R(x, y)$.
- \circ It follows that for any r,

$$
\varphi_{tc}^r(\varnothing) \equiv [\,QB_{tc}\,]^r(\text{false}).
$$

- We have thus demonstrated a syntactic uniformity for the inductive definition of REACH.
- For any structure $\mathcal{A} \in \text{STRUC}[\tau_{\sigma}]$,

$$
\mathcal{A} \in \mathsf{REACH} \quad \Leftrightarrow \quad \mathcal{A} \vDash (\mathsf{LFP}\varphi_{tc})(s,t) \\
\Leftrightarrow \quad \mathcal{A} \vDash ([\mathcal{QB}_{tc}]^{[1+\log \|\mathcal{A}\|]}) \mathsf{false}(s/x,t/y).
$$

Introducing the Class $FO[t(n)]$

- We now define $FO[t(n)]$ to be the set of properties defined by quantifier blocks iterated $t(n)$ times.
- This is the same as being iterated $O(t(n))$ times since a quantifier block may be any constant size.
- Such expressions grow as a function of the size of their inputs.
- On the other hand, the number of variables is a fixed constant.

The $\overline{\text{Class FO}[t(n)]}$

Definition

A set $S \subseteq \text{STRUC}[\tau]$ is a member of $\text{FO}[t(n)]$ if there exist:

- Quantifier free formulas M_i , $0 \le i \le k$, from $\mathcal{L}(\tau)$;
- \bullet A tuple \overline{c} of constants;
- A quantifier block $QB = [(Q_1x_1.M_1)...(Q_kx_k.M_k)]$,

such that, for all $A \in \text{STRUC}[\tau]$,

$$
\mathcal{A} \in \mathcal{S} \iff \mathcal{A} \models ([\mathcal{QB}]^{t(\|\mathcal{A}\|)} M_0)(\overline{c}/\overline{x}).
$$

The reason for the substitution of constants is that the quantifier block QB may contain some free variables that must be substituted for to build a sentence.

Inductive Definitions and Number of Iterations

Combining the normal form lemma with the preceding definition, we obtain

Lemma

For all $t(n)$ and all classes of finite structures,

 $IND[t(n)] \subseteq FO[t(n)].$

- A converse of this lemma also holds.
- The proof is described in the next chapter.