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Subsection 1

Definition of the Games
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The Game

The game Gk
m is played by two players, Spoiler and Duplicator, on a

pair of structures A and B of the same vocabulary τ .

Gk
m is played for m rounds, using k pairs of pebbles.

Spoiler tries to point out a difference between the two structures.

Duplicator tries to match his moves so that the differences between
them are hidden.

At each move, Spoiler places one of the pebbles on an element of the
universe of one of the two structures, i.e., he places pebble i on an
element of ∣A∣ or ∣B∣.

Duplicator then responds by placing the other pebble i on an element
of the other structure.
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Configurations

The position of the game right after move r is denoted by (αr , βr ).

Such a k-configuration of A, B is a pair of partial functions

α ∶ (const(τ) ∪ {x1, x2, . . . , xk}) → ∣A∣
β ∶ (const(τ) ∪ {x1, x2, . . . , xk}) → ∣B∣,

where we require that:

The domains of the functions α and β be equal, dom(α) = dom(β);
For all c ∈ const(τ), α(c) = cA and β(c) = cB.

The meaning of αr(xi) = a and βr(xi) = b is that just after move r ,
the i -th pebbles are sitting on a ∈ ∣A∣ and b ∈ ∣B∣.

Some variable xi is not in the domain of αr iff, just after move r , the
i -th pebbles are off the board.

The valid positions of game Gk
m on A, B consist of any possible

k-configuration on A and B.
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Example

Consider the following figure.

The current configuration has

dom(α) = dom(β) = {1,2,4} ∪ const(τ).

So pebbles 1, 2 and 4 are currently placed on elements of ∣A∣, ∣B∣.

Both pebbles numbered 3 are off the board.
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Treatment of Constants

We denote by
Gk
m(A, α0,B, β0)

the k-pebble, m-move game on A,B, with initial configuration
(α0, β0).

Gk
m(A,B) is the game in which all the pebbles start off the board.

That is, in Gk
m(A,B), dom(α0) = dom(β0) = const(τ).

The reason we include the constants in the domain of every
configuration is to make our treatment simpler.

As will be seen, in Ehrenfeucht-Fräıssé games, constants behave
exactly like pebbles that are fixed at the beginning of the game.
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The Next Configuration

At each move r , 1 ≤ r ≤ m, Spoiler picks up a pair of pebbles and
places one of them on an element of one of the two structures.

Duplicator must then answer by placing the other pebble of the pair
on an element of the other structure.

Thus, for some i ∈ {1,2, . . . ,k}, pair i of pebbles is placed on a ∈ ∣A∣
and b ∈ ∣B∣.

Define the next configuration (αr , βr ) = (αr−1[a/xi ], βr−1[b/xi]),
αr(xj) = { αr−1(xj), if j ≠ i

a, if j = i
, βr(xj) = { βr−1(xj), if j ≠ i

b, if j = i

Just after move r , the configuration αr , βr determines a relation

βr ○ α
−1
r ⊆ ∣A∣ × ∣B∣.
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Induced Substructures

The induced substructure ⟨rng(α)⟩A has universe the closure of
rng(α) under all the functions of A.

When τ has no function symbols, this simply means that we add all
the constants to rng(α).
For τ = ⟨Ra1

1 , . . . ,R
ar
r , c1, . . . , cs⟩,

∣⟨S⟩∣ = S ∪ {cA1 , . . . , cAs }.
The relations of ⟨rng(α)⟩A are restrictions of the relations of A to
the universe of ⟨rng(α)⟩A.
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Winning a Round of the Game

We say that Duplicator wins round r of the game iff the map

αr(xj)↦ βr(xj), xj ∈ dom(αr),
determines an isomorphism of the induced substructures,

βr ○ α
−1
r ∶ ⟨rng(α)⟩A ≅ ⟨rng(β)⟩B .

In particular, βr ○ α−1r must be a one-to-one function.

So we have
αr(xi) = αr(xj) iff βr(xi) = βr(xj).

Also, all constants and relations of the structures must be preserved.
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Example

Suppose vocabulary τ includes:

The binary relation symbol E ;
The constant symbol c .

Suppose Duplicator wins round r of the game.

Then ⟨cA, αr(xi)⟩ ∈ EA iff ⟨cB, βr(xi)⟩ ∈ EB.
This can also be written as

(A, αr) ⊧ E(c , xi ) iff (B, βr) ⊧ E(c , xi ).
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Winning the Game

Duplicator wins the game iff she wins every single round.

Duplicator must preserve an isomorphism at all times.

If a difference between the two structures is ever exposed, then
Spoiler wins.

Gk
m(A, α0,B, β0) is a finite game of perfect information (these are

terms formally defined in the field of Game Theory).

By game theoretic results, one of the two players must have a winning
strategy.

We use the notation (A, α0) ∼km (B, β0) to mean that Duplicator has
a winning strategy for Gk

m(A, α0,B, β0).
(A, α0) ∼k (B, β0) means, for all m, (A, α0) ∼km (B, β0).
Similarly (A, α0) ∼m (B, β0) means, for all k , (A, α0) ∼km (B, β0).
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Ordering and BIT

It is important to decide whether to include the numeric predicates ≤
and BIT in τ .

Suppose these relations are available in the language.

Then they form part of the definition of isomorphism.

In this case, the game becomes much easier for Spoiler and much
harder for Duplicator.

For this reason, in this part, we assume, unless otherwise noted, that
ordering and BIT are not present.
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Equivalence Relation

Proposition

The relation ∼km is an equivalence relation.

Consider a pair (A, α0).
We clearly have

I = α0 ○ α
−1
0 ∶ ⟨rng(α0)⟩A ≅ ⟨rng(α0)⟩A.

Inductively, suppose in move r the Spoiler chooses αr(xi).
Using the identity isomorphism, the Duplicator chooses the same
element in the other copy of A.

Thus, we have I = αr ○ α−1r ∶ ⟨rng(αr)⟩A ≅ ⟨rng(αr)⟩A.
We conclude that (A, α0) ∼km (A, α0).
This proves that ∼km is reflexive.
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Equivalence Relation

Suppose, next, that (A, α0) ∼km (B, β0).
First, β0 ○ α−10 ∶ ⟨rng(α0)⟩A ≅ ⟨rng(β0)⟩B.
Hence, α0 ○ β−10 = (β0 ○ α−10 )−1 ∶ ⟨rng(β0)⟩B ≅ ⟨rng(α0)⟩A.
Next, assume αr−1 ○ β−1r−1 ∶ ⟨rng(βr−1)⟩B ≅ ⟨rng(αr−1)⟩A.
Suppose the Spoiler chooses αr(xi) or βr(xi).
By hypothesis, the Duplicator can respond with either some βr(xi) or
some αr(xi), respectively, such that

βr ○ α
−1
r ∶ ⟨rng(αr)⟩A ≅ ⟨rng(βr)⟩B.

Thus, αr ○ β−1r = (βr ○ α−1r )−1 ∶ ⟨rng(βr)⟩B ≅ ⟨rng(αr)⟩A.
We conclude that (B, β0) ∼km (A, α0).
Transitivity can be proven similarly.
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Example

As an example, consider the two-pebble game on the colored graphs
G and H shown in the figure.

Here the vocabulary τ = ⟨E 2,R1,Y 1,B1⟩ consists of:
A binary edge relation;
Three unary relations, the “colorings” of the vertices.

Assume that, initially, all pebbles are off the board, α0 = β0 = ∅.
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Example (Cont’d)

Suppose that:

Spoiler’s first move is to place Pebble 1 on a red vertex in G .
Duplicator answers by putting Pebble 1 on a red vertex in H .
Spoiler puts Pebble 2 on an adjacent yellow vertex in H .
Duplicator has a response because in G , α1(x1) also has an adjacent
yellow vertex.
Spoiler puts Pebble 1 on the blue vertex in H , not adjacent to β2(x2).
Duplicator answers with the blue vertex in G , not adjacent to α2(x2).
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Example (Cont’d)

Proposition

Let G and H be the graphs shown in the preceding figure. Then, for all m,
G ∼2m H, i.e.,

G ∼2 H.

The previous slide provided the gist of the argument.

This needs to be generalized to cover all possible cases.

One starts with m = 0 and proceeds by induction on m.
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Example (Cont’d)

Spoiler has an easy win for the game G3
3(G ,H).

He can simply choose three points in the same triangle in G on three
consecutive moves.

Duplicator has no response because there is no triangle in H.

Thus Spoiler wins.

Observe that Spoiler’s winning strategy in this three-pebble game is
to “play the sentence” ∆ which says that a triangle exists,

∆ ≡ (∃x1)(∃x2)(∃x3)(E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x1))
Note that G ⊧∆ while H ⊧ ¬∆.
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Example (Cont’d)

Consider, again, the sentence

∆ ≡ (∃x1)(∃x2)(∃x3)(E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x1)).
It has three variables.

This corresponds the number of pebble pairs in the game.

Define the quantifier rank qr(ϕ) of a formula ϕ to be the depth of
nesting of quantifiers in ϕ.

Note that sentence ∆ has quantifier rank 3.

This corresponds to the number of moves in the game.
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Example

Consider the vocabulary τs , with ordering, but not successor.

We look at a game on the strings w1 = 1101 and w2 = 1011

Spoiler can win the two-move game on these two strings.

He can place the x1 pebble on the second 1 in w1.

Duplicator must answer by placing x1 on some 1 in w2.
Suppose she answers with the first 1.
Spoiler can reply by placing x2 on the first 1 in w1.
Duplicator has no reply.
Suppose Duplicator instead answers with the second or third 1 in w2.
Spoiler replies by placing x2 on the 0 in w1.
Duplicator loses because w2 has no 0 to the right of x1.

In this case, Spoiler’s winning strategy is to play formula

ϕ ≡ (∃x1)(S(x1) ∧ (∃x2)(S(x2) ∧ x2 < x1) ∧ (∃x2)(¬S(x2) ∧ x1 < x2)).
We have w1 ⊧ ϕ, but w2 ⊧ ¬ϕ.
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Languages Related to Games

Definition

Define language Lk to be the restriction of language L in which only
variables x1, . . . , xk occur.
Define language Lk

m to be the restriction of Lk to formulas of quantifier
rank at most m.
Define Lm to be the set of formulas of quantifier-rank at most m.

Definition

Let A and B be two structures of some vocabulary τ . We say that A and
B are L equivalent (A ≡L B) iff they agree on all formulas from L,

A ≡ B iff for all ϕ ∈ L(τ), A ⊧ ϕ ⇔ B ⊧ ϕ,

A ≡km B iff for all ϕ ∈ Lk
m(τ), A ⊧ ϕ ⇔ B ⊧ ϕ.
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Inequivalent Formulas of a Fixed Rank

Lemma

For all natural numbers k and m, there are only finitely many inequivalent
first-order formulas in Lk

m(τ).
It suffices to show that, for every k and m, there exist only finitely
many inequivalent formulas of rank ≤ m that have x1, . . . , xk free.

We use induction on m, keeping k variable.

Note that there are finitely many atoms in x1, . . . , xk .

Consider a formula of quantifier rank 0.

It has an equivalent in disjunctive normal form.

Clearly, there are finitely many such forms using finitely may atoms.
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Inequivalent Formulas of a Fixed Rank (Cont’d)

Consider, next, a formula with quantifier rank ≤ n + 1, with x1, . . . , xk
free.

It has an equivalent disjunctive normal form.

Its ingredients are:

Rank ≤ n formulas;
Formulas ∃xk+1ϕ, where ϕ has rank ≤ n and x1, . . . , xk free.

By the induction hypothesis, there are only finitely many inequivalent
formulas of each of those types.
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Fundamental Theorem of Ehrenfeucht-Fräıssé Games

Theorem

Let A and B be structures of the same finite, relational vocabulary and let
α0, β0 be a k-configuration of A, B. Then the following are equivalent:

1. (A, α0) ∼km (B, β0);
2. (A, α0) ≡km (B, β0).

We prove the equivalence of 1 and 2 by induction on m.

For m = 0, Duplicator wins the zero move game

iff β0 ○ α−10 is an isomorphism of the induced substructures

iff, for every quantifier free γ ∈ L(τ), (A, α0) ⊧ γ iff (B, β0) ⊧ γ.
Note that γ may have as free variables only those variables that occur
in dom(α0) = dom(β0).
Thus, 1 and 2 are equivalent for m = 0.
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Fundamental Theorem (Induction Step)

Assume the theorem is true for m.

Suppose that A and B disagree on the formula ϕ ∈ Lk
m+1.

Note that, if ϕ is α ∧ β, then A and B disagree on one of α and β.

Similarly, if ϕ is ¬α, then they disagree on α.

So we may assume that ϕ is (∃xi )ψ.
Suppose that (A, α0) ⊧ ϕ and (B, β0) ⊧ ¬ϕ.
Spoiler’s first move in Gk

m+1(A, α0,B, β0) is to place pebble i on a
witness for ψ in A.

Wherever Duplicator responds, it will not be a witness for ψ, because
there is none in B.
Thus, after the first move, (A, α1) and (B, β1) disagree on the
quantifier depth m formula ψ.

By the inductive hypothesis, Spoiler has a winning strategy for the
remaining m-move game.

Thus, we have shown that 1 implies 2.
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Fundamental Theorem (Induction Step Converse)

Conversely, suppose that (A, α0) ≡km+1 (B, β0).
Let Spoiler make his first move in the game Gk

m+1(A, α0,B, β0).
Suppose he places pebble i on an element of A, thus defining α1.

By the preceding lemma, there are only finitely many inequivalent
formulas in Lk

m.

Let Φ be the conjunction of all these formulas satisfied by (A, α1).
Thus, we know that (A, α0) ⊧ (∃xi)Φ.
By hypothesis, (B, β0) ⊧ (∃xi)Φ.
Duplicator places the other pebble i on a witness in B of Φ.

Thus, (A, α1) and (B, β1) both satisfy Φ, a complete description of
every formula from Lk

m that (A, α1) satisfies.

Therefore, (A, α1) ≡km (B, β1).
It follows, by induction, that Duplicator has a winning strategy for the
remaining m moves of the game.
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Observation on Spoiler’s Strategies

It turns out that in any game Gk
m(A, α0,B, β0), we never have to

consider a move in which Spoiler pebbles an element that is already
pebbled by another pebble or constant.

Lemma

Consider a game Gk
m(A, α0,B, β0). If Spoiler has a winning strategy, then

he still has a winning strategy if he is never allowed to place a pebble on a
constant or an element that already has another pebble sitting on it.

We refer to the version of Gk
m(A, α0,B, β0) in which Spoiler is never

allowed to place a pebble on a constant or an element that already
has another pebble sitting on it as the restricted version.

We use contraposition.

Assume Duplicator has a winning strategy in the restricted version.

We show that she also has a winning strategy in the ordinary version.
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Observation on Spoiler’s Strategies (Cont’d)

If Spoiler does not repeat, then Duplicator uses her winning strategy
in Gk

m, ignoring preceding repetitions.

Consider a move r ≤ m in the unrestricted game, in which Spoiler
places a pebble j on a constant or an element that already has
another pebble i sitting on it.

Duplicator’s strategy involves placing the second pebble j on the
element of the other structure in which the other pebble i is sitting.

By induction, Duplicator was winning the game up to this round.

By the preceding theorem, the two induced substructures were
isomorphic.

Duplicator’s last play ensures that the new induced substructures are
identical to the previous ones.

Therefore, the new induced substructures are still isomorphic.

Therefore, Duplicator also wins the current round of the game.
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Clique

Proposition

Let CLIQUE(k) be the set of undirected graphs that contain a clique, i.e.,
a complete subgraph, of size k . In the language without ordering,
CLIQUE(k) is expressible with k variables but not k − 1 variables,

CLIQUE(k) ∈ Lk(τg)(wo≤) −Lk−1(τg)(wo≤).

We may write CLIQUE(k) in Lk using the formula

(∃x1x2 . . . xk)(distinct(x1, . . . , xk)
∧ E(x1, x2) ∧⋯∧ E(x1, xk) ∧⋯ ∧ E(xk−1, xk)).

We must now show that k variables are necessary.

We show Kk ∼
k−1 Kk−1, where Kr is the complete graph on r vertices.
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Clique (Cont’d)

Duplicator has a simple winning strategy for Gk−1(Kk ,Kk−1).
Suppose Spoiler places the a pebble on an unpebbled vertex in one of
the two graphs.

Duplicator places the corresponding pebble on any unpebbled vertex
in the other graph.

By hypothesis, there are only k − 1 pebble pairs.

So such an unpebbled vertex is always available.

Now edges exist between all points in each graph.

So this is clearly a winning strategy

Thus, any one-to-one correspondence is an isomorphism.
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Necessity of Ordering to Express Parity

Proposition

In the absence of ordering, the boolean query on graphs that is true iff
there are an odd number of vertices requires n + 1 variables, for graphs
with n or more vertices. The same is true for the query that there are an
odd number of edges.

Let Gn be the graph on n vertices that has a loop at each vertex but
no other edges.

We claim that Gn ∼n Gn+1.

Suppose Spoiler places a pebble on a vertex not already pebbled.

Duplicator matches the move by pebbling a vertex not already
pebbled in the other graph.
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Necessity of Ordering to Express Parity (Cont’d)

Each graph has at least n vertices.

Moreover, there are no edges between different vertices.

So this is a winning strategy for Duplicator.

It follows that Gn ≡n Gn+1.

So the parity of the number of vertices or the number of edges in not
expressible in Ln.
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Paths

Proposition

Let the formula PATHk(x , y) ∈ L(τg) mean that there is a path of length
at most 2k from x to y . With or without ordering, quantifier rank k is
necessary and sufficient to express PATHk . Furthermore, only three
variables are necessary to express PATHk . In symbols,

PATHk ∈ L
3
k(τg)(wo≤) −Lk−1(τg).

For the upper bound, we express PATHk inductively as follows.

PATH0(x , y) ≡ x = y ∨ E(x , y);
PATHk+1(x , y) ≡ (∃z)(PATHk(x , z) ∧PATHk(z , y)).

So PATHk is expressible using three variables and quantifier rank k .
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Paths (Cont’d)

We claimed only three variables are needed.

This is because the right hand side of the inductive definition of
PATHk+1(x , y) may be written in a way that reuses variables.

PATHk(x , z) ≡ (∃y)(PATHk−1(x , y) ∧ PATHk−1(y , z));
PATHk(z , y) ≡ (∃x)(PATHk−1(z , x) ∧ PATHk−1(x , y)).
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Paths (Cont’d)

We turn to proving the lower bound.

Let Ln ∈ STRUC[τg ] be a directed line segment of length n − 1.

So ∥Ln∥ = n.

Let the ordering on Ln be from left to right.

Suppose n = 2k+1 + 1.

Then

Ln ⊧ PATHk+1(0,max);
Ln+1 ⊧ ¬PATHk+1(0,max).

We show next that Ln ∼k Ln+1 and the lower bound follows.
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Ehrenfeucht-Fräıssé Games Definition of the Games

Paths (Cont’d)

The idea behind Duplicator’s winning strategy is that in quantifier
rank s, or, equivalently, with s moves remaining in the game,
distances greater than 2s are indistinguishable from infinite distances.

With this idea in mind, let us define the notion i =d j to mean that i
and j are equal or are both greater than d .

Duplicator’s winning strategy in Gk(Ln,Ln+1) is to maintain the
following invariant.

After the move m of Gk(Ln,Ln+1), and for all p,q ∈ dom(αm),

DIST(αm(p), αm(q)) =2k−m DIST(βm(p), βm(q));

αm(p) ≤ αm(q) ⇔ βm(p) ≤ βm(q).

Note that this implies that Duplicator wins the game, because a map
that preserves distances of length at most one is an isomorphism.
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Paths (Cont’d)

The equation holds after move 0, since

DIST(0Ln ,maxLn) = 2k+1 =2k 2
k+1 + 1 = DIST(0Ln+1 ,maxLn+1).

Assume inductively that the invariant holds just after move m.

Let Spoiler begin move m + 1 by placing pebble p on some vertex.

Let ℓ and r be the closest pebbles to the left and right of p.

The inductive assumption tells us that

DIST(αm(ℓ), αm(r)) =2k−m DIST(βm(ℓ), βm(r)).
Assume without loss of generality that ℓ is the closer of the two
pebbles to p or that they are equidistant.
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Paths (Cont’d)

Duplicator’s response is to place the other pebble p on the point to
the right of the other ℓ so as to have

DIST(αm+1(ℓ), αm+1(p)) = DIST(βm+1(ℓ), βm+1(p)).
It follows, that

DIST(αm+1(p), αm+1(r)) =2k−(m+1) DIST(βm+1(p), βm+1(r)).
So the invariant holds after move m + 1.

Thus, Duplicator wins the game.

We have proved that PATHk is not expressible with quantifier rank
less than k , even for ordered structures.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 39 / 91
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Necessity of the Three Variables

Three variables used to express paths are necessary.

In a previous proposition, we saw a connected graph H of diameter
three and a disconnected graph G such that G ∼2 H.

Thus, by a previous theorem, CONNECTED is not expressible using 2
variables, no matter what the quantifier rank.
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Necessity of the Three Variables (Cont’d)

Suppose, towards a contradiction, that PATHk is expressible in L2,
for some k ≥ 2.

Then G and H differ on the L2 formula (∀x1x2)PATHk(x1, x2).
In fact, let (α0, β0) be the 2-configuration of graphs G ,H shown.

Observe that (G , α0) ∼2 (H, β0).
However, the two structures disagree on the formula PATH1(x1, x2).
Hence, for k ≥ 1, PATHk is not expressible in L2.
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Subsection 2

Methodology for First-Order Expressibility
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Methodology Theorem

Theorem (Methodology Theorem)

Let C be any class of finite or infinite structures of some finite, relational
vocabulary. Let S ⊆ C be a boolean query on C. To prove that S is not
first-order describable on C it is necessary and sufficient to show that, for
all r ∈N, there exist structures Ar , Br ∈ C such that:

1. Ar ∈ S and Br ∉ S ;

2. Ar ∼r Br .

Suppose the given condition holds.

Statements 1 and 2 imply that Ar and Br agree on all formulas in Lr ,
but disagree on S .

Thus, S is not expressible in Lr for any r .
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Ehrenfeucht-Fräıssé Games Methodology for First-Order Expressibility

Methodology Theorem (Cont’d)

We say that ϕ ∈ Lr is a complete quantifier rank r sentence if, for
every other quantifier rank r sentence ψ of the same vocabulary,

ϕ ⊢ ψ or ϕ ⊢ ¬ψ.

Let ϕ1, . . . , ϕB be a list of all inequivalent, complete quantifier rank r

sentences.

For every quantifier rank r sentence ψ, each ϕi must assert either ψ
or ¬ψ.

Observe that each structure from C satisfies a unique ϕi .
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Methodology Theorem (Cont’d)

Suppose there exist Ar ∈ S and Br ∈ C − S satisfying the same ϕi .

Then Ar and Br satisfy the above conditions.

Suppose there is no such pair.

Then the ϕi ’s are partitioned by S .

In this case, let
Y = {i ∶ (∃A ∈ S)(A ⊧ ϕi)}.

Define
ϕ ≡ ⋁

i∈Y

ϕi .

Then ϕ is a first-order formula of quantifier rank r that expresses S .
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Gaifman Graph

Let τ = ⟨Ra1
1 , . . . ,R

ar
r , c1, . . . , cs ⟩ be a vocabulary.

Let A be any τ -structure.

Define the Gaifman graph GA = (∣A∣,EA) by

EA = {(a,b) ∶ (∃i)(∃⟨d1, . . . ,dai ⟩ ∈ RAi )(a,b ∈ {d1, . . . ,dai })}.
There is an edge between a and b in the Gaifman graph iff a and b

occur in the same tuple of some relation of A.

Example: Let A ∈ STRUC[τg ] be a graph.

Then GA = A.
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Ehrenfeucht-Fräıssé Games Methodology for First-Order Expressibility

Universe of a Neighborhood of an Element

Let (A, αr) be the configuration of structure A after move r of a
game.

Define the universe of the neighborhood of element a at distance

d to be the set of elements of distance at most d from a in the
Gaifman graph,

∣N(a,d)∣ = {b ∈ ∣A∣ ∶ DIST(a,b) ≤ d},
where DIST(a,b) stands for DISTG(A,αr )

(a,b).
N(a,d) is almost an induced substructure of (A, αr).

It does inherit the relations from A.
However, it contains only those constants and pebbled points that are
within distance d of a.
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d -Type

Define the d -type of a to be the isomorphism type of N(a,d).
Isomorphisms must send:

Each constant cAj to cBj ;
Each pebbled point αr(xi) to βr(xi).

Neighborhood N(a,d) and, thus, the d -type of a depend on the
current configuration (A, αr).
If the configuration is not clear from the context, then we say the
d -type of a with respect to configuration (A, αr ).
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Hanf’s Theorem

Theorem (Hanf’s Theorem)

Let A,B ∈ STRUC[τ] and let r ∈N. Suppose that, for each possible
2r -type t, A and B have exactly the same number of elements of type t.
Then

A ≡r B.

We must show that Duplicator wins the game Gr(A,B).
Duplicator’s winning strategy is to maintain the invariant that, after
move m, 0 ≤ m ≤ r ,

(A, αm), (B, βm) have same number of each 2r−m-type.

In Gr(A,B) there is no bound on the number of pebbles.

So we may assume that Spoiler uses a new pebble at each step.

Thus, Duplicator wins iff she wins at the last round.
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Hanf’s Theorem (Cont’d)

Suppose Duplicator preserves the invariant.

Then after the last move, the neighborhoods of distance one around
each constant or pebbled point are isomorphic to the corresponding
neighborhoods in the other structure.

It follows that Duplicator wins the game.

The invariant holds for m = 0 by assumption.

Inductively, assume that it holds after move m.

On move m + 1, let Spoiler choose some vertex v .

Duplicator responds with any vertex v ′ of the same 2r−m-type as v .

We have to show that the invariant still holds.

The inductive assumption immediately implies that, (A, αm), (B, βm)
have same number of each 2r−(m+1)-type.

Furthermore, the neighborhood N(a,2r−(m+1)) of (A, αm) is different
from the same neighborhood of (A, αm+1) iff DIST(a, v) ≤ 2r−(m+1).
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Ehrenfeucht-Fräıssé Games Methodology for First-Order Expressibility

Hanf’s Theorem (Cont’d)

Consider the isomorphism f ∶ N(v ,2r−m)→ N(v ′,2r−m).
It maps every vertex a in N(v ,2r−(m+1)) to a corresponding
a′ ∈ N(v ′,2r−(m+1)).
The key idea is that f maps N(a,2r−(m+1))
isomorphically onto N(a′,2r−(m+1)) because
these smaller neighborhoods lie inside

dom(f ) = N(v ,2r−m).
Thus, there is a one-to-one correspondence
between the isomorphism types of these
neighborhoods close to v and v ′.

So the one-to-one correspondence between the other neighborhoods is
undisturbed.

Thus, Duplicator’s strategy preserves the invariance.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 51 / 91
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Acyclicity

Proposition

Acyclicity is not first-order expressible.

Let Ar be a line segment on 2r+3 vertices.
Let Br be the union of:

A line segment on 2r+2 vertices;
A cycle on 2r+2 vertices.

Observe that Ar and Br both have the same number of each 2r -type.

By the theorem, Ar ≡r Br . So Acyclicity is not first-order expressible.
George Voutsadakis (LSSU) Descriptive Complexity December 2024 52 / 91
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Subsection 3

First-Order Properties Are Local
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The Degree of a Structure

The degree of a graph is the maximum number of edges adjacent to
any vertex.

The degree of a structure A is the degree of its Gaifman graph.

We prove a strengthening of Hanf’s Theorem for graphs of bounded
degree.

It relaxes the requirement that the number of instances of a given
r -type in the two structures be equal.

It requires instead that both numbers are sufficiently large.
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(n, σ)-Equivalence

Let A and B be structures and let n, s be integers.

We say that A and B are (n, s)-equivalent if, for each n-type σ, at
least one of the following holds:

A and B have the same number of neighborhoods of type σ;
Both A and B have more than s neighborhoods of type σ.
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Bounded-Degree Hanf Theorem

Theorem (Bounded-Degree Hanf Theorem)

Let r and d be fixed. There is an integer s, such that, for all structures A
and B of degree at most d ,

if A and B are (2r , s)-equivalent, then A ≡r B.

We must show that Duplicator wins the game Gr(A,B).
Set s = rd2r + 1.

Duplicator’s winning strategy is to maintain the invariant that, after
move m, 0 ≤ m ≤ r ,

(A, αm), (B, βm) have the same number of each 2r−m-type, or both
have over (r −m)d2r + 1 elements of this type.

The invariant holds for m = 0 by assumption.
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Bounded-Degree Hanf Theorem (Cont’d)

Inductively, assume that it holds after move m.

On move m + 1, let Spoiler choose some vertex v .

Duplicator responds with any vertex v ′ of the same 2r−m-type as v .

We have to show that the invariant still holds.

The inductive assumption immediately implies that

(A, αm), (B, βm) have the same number of each 2r−(m+1)-type, or both
have over (r −m)d2r + 1 elements of this type.
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Bounded-Degree Hanf Theorem (Cont’d)

Just as in the proof of a previous theorem, the only neighborhoods
that change are those within distance 2r−(m+1) of v .

Furthermore, the same number of neighborhoods change in the same
way in A as in B.

The only harm that can be done to the invariant is that the number
of some types can be reduced by the same amount in A and in B.

The number of vertices within distance ρ = 2r−(m+1) of v is

≤
dρ+1

d − 1
< d2r .

Thus, we have that the invariant holds for m + 1.
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Linear Recognition of Bounded-Degree Structures

The definition of linear time in the following is linear time on a
unit-cost RAM with O(log n) bit word size.

Theorem

Let ϕ ∈ FO. Then over bounded degree structures, ϕ is recognizable in
linear time.

For simplicity, assume that the structures in question are bounded
degree graphs.

Let them be represented via adjacency lists.

Let r be the quantifier rank of ϕ.

Let d be the degree of the graphs in question.

The number of possible 2r -types in degree d graphs is large but
bounded.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 59 / 91
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Linear Recognition of Bounded-Degree Structures (Cont’d)

The linear time algorithm is to:

Determine the 2r type of each vertex;
Count, up to s, how many of each type occurs.

This information is what we can call the (2r , s)-description of G .

By a previous theorem, the (2r , s)-description of G determines
whether G satisfies ϕ.

We could in principle build, beforehand, a table that lists, for each of
the finitely many possible (2r , s)-descriptions, whether or not a graph
with this description satisfies ϕ.

From G ’s description, we can use the table to check in constant
additional time whether G satisfies ϕ.
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Subsection 4

Bounded Variable Languages
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The k-Variable Property

A theory Σ satisfies the k-variable property if every first-order
formula is equivalent with respect to Σ to a first-order formula that
has only k bound variables.

Gabbay has shown that the set of models of Σ has the k-variable
property for some k iff there exists a finite basis for the set of all
temporal-logic connectives over these models.

We will show, using Ehrenfeucht-Fräıssé games, that the set of
linearly ordered structures has the 3-variable property.

The set of bounded degree trees also has the k-variable property, for
appropriate k .

In this section we consider all structures, not just finite structures.
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Models and Formulas

Lemma

Let Σ ⊆ L be a first-order theory. Let L′ and L′′ be subsets of L, such
that L′ is closed under the boolean connectives. Let k ∈N. The following
conditions are equivalent:

1. For all models A and B of Σ and all k-configurations α,β of A,B,

(A, α) ≡L′ (B, β) implies (A, α) ≡L′′ (B, β);
2. For all ϕ ∈ L′′, with free variables among x1, . . . , xk , there exists
ψ ∈ L′, such that

Σ ⊧ ϕ↔ ψ.

(2 → 1) Suppose every formula in L′′ is equivalent to a formula in L′.
Let (A, α) and (B, β) be L′-equivalent.
Then (A, α) and (B, β) are L′′-equivalent.
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Models and Formulas (Cont’d)

(1 → 2) Suppose Σ ∪ {ϕ} is inconsistent.

Then we may take ψ ≡ false.

Otherwise, let T be the set of all complete L′-types over the variables
x1, . . . , xk that is consistent with Σ ∪ {ϕ}.
Let Γ ∈ T be such a type.

Observe that Σ ∪ Γ ⊧ ϕ.

Otherwise, we could construct models (A, α) and (B, β) of Σ ∪ Γ
that disagree on ϕ. This is impossible by 1.

By the Compactness Theorem, there exists a formula ψΓ, such that

Σ ⊧ ψΓ → ϕ.
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Models and Formulas (Cont’d)

There exists a formula ψΓ, such that

Σ ⊧ ψΓ → ϕ.

Define the set of formulas

D = {¬ψΓi ∶ Γi ∈ T}.
Then Σ ∪D ∪ {ϕ} is inconsistent.

By Compactness, there must be some finite F ⊆ T , such that

Σ ⊧ ⋀
Γi ∈F

¬ψΓi → ¬ϕ.
We can take

ψ = ⋁
Γi ∈F

ψΓi .
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Proving the k-Variable Property

Let Σ ⊆ L be a theory.

Let L′ = Lk , and let L′′ = L.

In this case, the lemma implies that Condition 1, which may be
proved using Ehrenfeucht-Fräıssé games, is sufficient to show that
every formula in L that has at most k free variables is equivalent to a
formula in Lk .

To prove the k-variable property, we must also show that any formula
with more than k free variables is equivalent to a formula with at
most k bound variables.
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Strategy

Let L be a first-order relational language with no relation symbols of
arity greater than k .

Suppose that Σ ⊆ L is a theory.

Suppose, also, that R1,R2, . . . are an infinite set of monadic relation
symbols from L, that do not occur in Σ.

Even though we have infinitely many Ri ’s, we consider only structures
in which only finitely many relations are non-empty.

Suppose that, for every pair of such structures A,B satisfying Σ and
every pair of k-configurations α,β, we have

(A, α) ≡k (B, β) ⇒ (A, α) ≡ (B, β).
Then Σ has the k-variable property.

This follows essentially from the lemma.
Additional free variables can be replaced by new monadic relation
symbols.
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Linear Ordered Structures

Theorem

The set of linear ordered structures satisfies the 3-variable property.
The structures may also include any number of monadic relation symbols.

By the preceding remarks, it suffices to show that, for any pair of
linear orders A,B and any pair of 3-configurations α,β,

(A, α) ≡3 (B, β) implies (A, α) ≡ (B, β).
We prove the slightly stronger result that for all m,

(A, α) ∼3m (B, β) implies (A, α) ∼m (B, β).
We prove this by induction on m.

The base case, m = 0, is clear because extra pebbles cannot help
Spoiler in the zero move game.

Assume that the implication holds for m.
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Linear Ordered Structures (First Case)

Suppose that (A, α) ∼3m+1 (B, β).
We describe a winning strategy for Duplicator in Gm+1(A, α,B, β).
Suppose that in the initial configuration, ∣dom(α)∣ < 3.

That is, suppose that fewer than three pebbles are on the board.

In this case, wherever Spoiler plays, Duplicator can answer using her
winning strategy for the game G3

m+1(A, α,B, β).
Let α1, β1 be the resulting configuration.

We know that (A, α1) ∼3m (B, β1).
Thus, by the inductive assumption, (A, α1) ∼m (B, β1).
So Duplicator wins the remaining m moves of the game.
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Linear Ordered Structures (Second Case)

Suppose ∣α∣ = ∣β∣ = 3.

Renumber the variables, if necessary, so that (A, α) and (B, β) both
satisfy x1 < x2 < x3.

Let αℓ, βℓ and αr , βr be the restrictions of α,β to the domains{x1, x2} and {x2, x3}, respectively.
Since (A, α) ∼3m+1 (B, β), Duplicator wins the three-variable,(m + 1)-move games on these reduced configurations,

(A, αℓ) ∼3m+1 (B, βℓ) and (A, αr ) ∼3m+1 (B, βr ).
Since the domains of these configurations have size less than three,
we know by the previous case that,

(A, αℓ) ∼m+1 (B, βℓ) and (A,ar) ∼m+1 (B, βr).
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Linear Ordered Structures (Cont’d)

We now combine Duplicator’s winning strategies for the games

Gm+1(A, αℓ,B, βℓ) and Gm+1(A,ar ,B, βr )
to devise a winning strategy for the game Gm+1(A, α,B, β).
We are playing a game with an unlimited number of pebbles.

So Spoiler need never reuse a pebble.
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Linear Ordered Structures (Cont’d)

Duplicator’s strategy is as follows.

If Spoiler places a pebble to the left of pebble two, then Duplicator
answers according to her winning strategy in Gm+1(A, αℓ,B, βℓ).
If Spoiler places a pebble to the right of pebble two, then Duplicator
answers according to her winning strategy in Gm+1(A, αr ,B, βr).

After the m + 1 moves, Duplicator has won both of the subgames.
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Linear Ordered Structures (Cont’d)

Consider the maps:

From the chosen points of A to the chosen points of B in the left
subgame;
From the chosen points of A to the chosen points of B in the right
subgame.

These maps are both isomorphisms.

Furthermore:

All the chosen points in the left subgame are less than x2;
All the chosen points in the right subgame are greater than x2.

Thus, the map from all the pebbled points in A to the pebbled points
in B is an isomorphism.

So Duplicator wins Gm+1(A, α,B, β).
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Subsection 5

Zero-One Laws
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Extension Axioms

Extension axioms can be written for any finite relational vocabulary.

We first write them for undirected graphs.

Consider the following sentence γk , whose meaning is that “there are
at least k − 1 distinct vertices and any k − 1 tuple of distinct vertices
may be extended to a k tuple in any conceivable way”.

γk ≡ (∃x1 . . . xk−1.distinct(x1, . . . , xk−1)) ∧(∀x1 . . . xk−1.distinct(x1, . . . , xk−1))((∃xk .distinct(x1, . . . , xk))(E(x1, xk) ∧ E(x2, xk) ∧⋯∧ E(xk−1, xk))
∧ (∃xk .distinct(x1, . . . , xk))(E(x1, xk) ∧ E(x2, xk) ∧⋯∧ ¬E(xk−1, xk))
∧⋯
∧ (∃xk .distinct(x1 . . . xk))(E(x1, xk) ∧ E(x2, xk) ∧⋯

∧ E(xi−1, xk) ∧ ¬E(xi , xk) ∧⋯∧ ¬E(xk−1, xk))
∧⋯(∃xk .distinct(x1 . . . xk))(¬E(x1, xk) ∧ ¬E(x2, xk) ∧⋯∧ ¬E(xk−1, xk))).
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Truth in Almost All Structures

Define µn(ϕ) to be the percentage of (ordered) structures of size n

that satisfy ϕ,

µn(ϕ) = ∣{G ∶ ∥G∥ = n;G ⊧ ϕ}∣
∣{G ∶ ∥G∥ = n}∣ .

Lemma

For any fixed k > 0,
lim
n→∞

µn(γk) = 1.
Consider a random graph G of size n.

Let v1, . . . , vk−1 be a (k − 1)-tuple of distinct vertices from G .

Let x be any of the remaining n + 1 − k vertices.

Let c be any of the k conjuncts of the sentence γk .
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Truth in Almost All Structures (Cont’d)

Conjunct c asserts k − 1 independent conditions on the existence of
edges from x , each of which has probability 1

2 .

For this reason, the probability that x does not meet condition c for
v1, . . . , vk−1 is

α = 1 −
1

2k−1
.

Thus, the probability that none of the (n + 1 − k) x ’s satisfies

condition c is αn+1−k = (1 − 1
2k−1

)n+1−k .
It follows that the probability that G does not satisfy γk is

< k ⋅ nk−1αn+1−k = k ⋅ nk−1 (1 − 1

2k−1
)n+1−k .

This expression goes quickly to 0 as n goes to infinity.
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Structures Satisfying γk

The sentence γk says that any next move in the game Gk can be
matched by Duplicator.

Lemma

Let G and H be undirected graphs satisfying γk . Then

G ∼k H.

We show, by induction on m, that G ∼km H.

Consider the base case, when m = 0.

Then there are no chosen points. So G ∼k0 H holds vacuously.

Suppose that G ∼km H.

Let Duplicator play the m + 1 move game as follows.

For the first m moves she follows her winning strategy for Gk
m(G ,H).

Thus, she has not lost yet.
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Structures Satisfying γk (Cont’d)

Consider the last move.

Suppose that Spoiler picks up pair k of pebbles and places one of
them on some vertex v of G .

By a previous observation, we may assume that the previously
pebbled points are all distinct.

By hypothesis, H ⊧ γk .

So there exists a vertex v ′ of H, such that for all j < k ,

there is an edge from v ′ to βm(xj) in H

iff there is an edge from v to αm(xj) in G .

Thus, Duplicator answers by putting her pebble k on v ′.

In this way, she wins the game.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 79 / 91
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Generalizing γk

We can generalize γk as follows.

Let τ = ⟨Ra1
1 , . . . ,R

ar
r ⟩ be a vocabulary with no constant symbols.

Let A be the set of all atomic formulas of the form Ri(y1, . . . , yai ),
such that

xk ∈ {y1, . . . , yai} ⊆ {x1, . . . , xk}.
Define γk(τ) to be the following conjunction, which says that “every(k − 1)-tuple may be extended to a k-tuple in any conceivable way”,

γk(τ) ≡ (∀x1 . . . xk−1.distinct(x1, . . . , xk−1))
⋀S⊆A((∃xk .distinct(x1, . . . , xk))(⋀α∈S α ∧⋀α∈A−S ¬α)).

The preceding lemmas go through for any such γk(τ).
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Ehrenfeucht-Fräıssé Games Zero-One Laws

Zero-One Law

We see that any property expressible by a set of sentences from
Lk(τ) is true in almost all structures, or false in almost all structures.

This is sometimes known as the zero-one law for Lω
∞ω.

Theorem (Zero-One Law)

Let S ⊆ Lk be any set of k variable sentences over a finite vocabulary τ ,
with no constant or function symbols. Then the limit

lim
n→∞

µn(S)
exists and is equal to zero or one.
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Zero-One Law (Cont’d)

By the preceding lemma, for every sentence ϕ ∈ S ,

γk ⊢ ϕ or γk ⊢ ¬ϕ.

Thus, by a previous lemma,

lim
n→∞

µn(S)
exists and:

(a) If γk implies every sentence in S ,

lim
n→∞

µn(S) = 1;

(b) If γk implies the negation of some sentence in S ,

lim
n→∞

µn(S) = 0.
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Another Zero-One Law

Corollary

Assume that no constant symbols occur.
Then a zero-one law holds for the language FO(wo≤).
Furthermore, a zero-one law holds for the languages

FO(wo≤)(TC), FO(wo≤)(LFP), FO(wo≤)(PFP),
where the operators TC and PFP are formally defined in later chapters.

The key step involves showing that any sentence in one of these
languages is equivalent to an infinite disjunction of sentences from
Lk(τ), for some k and τ .

Now γk determines the truth of any sentence in Lk(τ).
So it also determines the truth of any infinite disjunction of such
sentences.
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Bounded Expressive Power on Average

Suppose first-order logic has a zero-one law for the class C of
structures.

It can be shown that this implies that, for each k , Lk has bounded
expressive power on average.

This means that, there exists a fixed bound b, such that almost all
elements of C fall in one of b Lk -equivalence classes.

That is, when talking about typical structures, Lk can express only a
bounded number of facts.
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Constants

The zero-one laws do not hold for ordered structures or for structures
with constants.

Example: Consider the language of graphs with a constant 0.

Then we have

µn(E(0,0)) = 1

2
.

Example: Consider ordered structures A and B.

If A ≡2 B, then ∥A∥ = ∥B∥.
Thus, for k ≥ 2, Lk is not bounded.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 85 / 91
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Subsection 6

Ehrenfeucht-Fräıssé Games with Ordering
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Upper Bounding the Complexity Lower Bounds

Proposition

Let G and H be ordered graphs and let n = max (∥G∥, ∥H∥). Then
G ∼3⌈log (n−1)⌉+1 H implies G = H.

Assume, to the contrary, that G ∼3⌈log (n−1)⌉+1 H but G ≠ H.

Let n = ∥G∥ and m = ∥H∥ and suppose it was the case that n < m.

Let PATH<d(x , y) mean that there is a path of length at most d
from x to y , where each step is given by the less than relation.

Thus,

G ⊧ PATH<n−1(0,max) but H ⊧ ¬PATH<n−1(0,max).
By a previous proposition, PATH<n−1 ∈ L3

⌈log (n−1)⌉.

We conclude that n = ∥G∥ = ∥H∥.
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Upper Bounding the Complexity Lower Bounds (Cont’d)

By our assumption, G ≠ H.

So there must be a pair of vertices i , j , such that there is an edge
from vertex i to vertex j in one of the graphs but not the other.

Consider the game G3
⌈log (n−1)⌉+1(G ,H).

Spoiler plays the vertices i and j in G in his first two moves.

Suppose Duplicator answers with vertices i and j from H .
In this case, she loses immediately.
Suppose Duplicator does not answer with these vertices.
Then (G , α2) and (H , β2) disagree on a formula of the form

PATH<d(xk , c),

for k ∈ {1,2}, c ∈ {max,0}, and d ≤ n−1
2
.

So Spoiler wins the remaining ⌈log (n − 1)⌉ − 1 move game.
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EVEN With Ordering Without BIT

We saw that, without ordering, we needed n + 1 variables to say that
a structure has size exactly n or that it has even cardinality.

Thus, without ordering, even languages as strong as FO(LFP) cannot
express very simple queries.

We now show that, with ordering but still without BIT, quantifier
rank log n is necessary to count even mod 2.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 89 / 91
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EVEN With Ordering Without BIT (Cont’d)

Proposition

The sentence EVEN, meaning that the cardinality of the universe is even,
is not expressible in quantifier rank ⌈log (n − 1)⌉ − 1 with ordering, but
without BIT.

Consider the graphs Ln and Ln+1 shown in the figure.

Ln and Ln+1 are (⌈log (n − 1)⌉ − 1)-equivalent.

However, they disagree on property EVEN.
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REACH With Ordering Without BIT

Corollary

Boolean query REACH is not expressible in quantifier rank ⌈log (n − 1)⌉− 1
with ordering, but without BIT.

Define Gn and Gn+1 to be graphs that have the same universe and
ordering relation as Ln and Ln+1, respectively.

Let s = 0 and t = max.

Replace the edge predicate by the following relation, meaning that the
points are two steps apart in the ordering,

E(x , y) ≡ (∃z)(SUC(x , z) ∧ SUC(z , y)).

Thus, REACH holds for one of Gn,Gn+1 and not the other.

However, Gn and Gn+1 are still ⌈log (n − 1)⌉ − 2 equivalent.

To see this, note that any win by Spoiler in Gr(Gn,Gn+1) can be
converted in one more move to a win by Spoiler in Gr+1(Ln,Ln+1).
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