
Introduction to Descriptive Complexity

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 600

George Voutsadakis (LSSU) Descriptive Complexity December 2024 1 / 45



Outline

1 Second-Order Logic and Fagin’s Theorem
Second-Order Logic
Proof of Fagin’s Theorem
NP-Complete Problems
The Polynomial Time Hierarchy

George Voutsadakis (LSSU) Descriptive Complexity December 2024 2 / 45



Second-Order Logic and Fagin’s Theorem Second-Order Logic

Subsection 1

Second-Order Logic

George Voutsadakis (LSSU) Descriptive Complexity December 2024 3 / 45



Second-Order Logic and Fagin’s Theorem Second-Order Logic

Second-Order Logic

Second-order logic consists of first-order logic plus new relation
variables over which we may quantify.

Example: The formula (∀Ar)ϕ
means that, for all choices of r -ary relation A, ϕ holds.

Let SO be the set of second-order expressible boolean queries.

Any second-order formula may be transformed into an equivalent
formula with all second-order quantifiers in front.

If all these second-order quantifiers are existential, then we have a
second-order existential formula.

Let SO∃ be the set of second-order existential boolean queries.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 4 / 45



Second-Order Logic and Fagin’s Theorem Second-Order Logic

Example

Let R , Y and B be unary relation variables.

To indicate their arity, we place exponents on relation variables where
they are quantified.

Φ3-color ≡ (∃R1)(∃Y 1)(∃B1)(∀x)[(R(x) ∨Y (x) ∨B(x))∧ (∀y)(E(x , y) → ¬(R(x) ∧R(y))∧ ¬(Y (x) ∧ Y (y)) ∧ ¬(B(x) ∧B(y)))].
Observe that a graph G satisfies Φ3-color iff G is 3-colorable.

Three colorability of graphs is an NP complete problem (3-COLOR).

We will see that three colorability remains complete via first-order
reductions.

It follows that every query computable in NP is describable in SO∃.
George Voutsadakis (LSSU) Descriptive Complexity December 2024 5 / 45



Second-Order Logic and Fagin’s Theorem Second-Order Logic

Expressivity

Second-order logic is extremely expressive.

Because of its expressivity:

It is very easy to write second-order specifications of queries.
Such specifications are not feasible to execute without further
refinement.

Recall that the first-order queries are those that can be computed on
a CRAM in constant time, using polynomially many processors.

We will see that the second-order queries are those that can be
computed in constant parallel time, but using exponentially many
processors.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 6 / 45



Second-Order Logic and Fagin’s Theorem Second-Order Logic

Example of a SO∃ Query: SAT

SAT is the set of boolean formulas in conjunctive normal form (CNF)
that admit a satisfying assignment.

Recall that ϕ is encoded as

Aϕ = ⟨A,P ,N⟩,
where

The universe A is a set of clauses and variables;
The relation P(c , v) means that variable v occurs positively in clause c ;
The relation N(c , v) means that v occurs negatively in c .

The boolean query SAT is expressible in SO∃ as follows:

ΦSAT ≡ (∃S)(∀x)(∃y)((P(x , y) ∧ S(y)) ∨ (N(x , y) ∧ ¬S(y))).
ΦSAT asserts that there exists a set S of variables, those to be
assigned true, forming a satisfying assignment of the input formula.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 7 / 45



Second-Order Logic and Fagin’s Theorem Second-Order Logic

Example of a SO∃ Query: CLIQUE

Boolean query CLIQUE is the set of pairs ⟨G ,k⟩ such that graph G

has a complete subgraph of size k .

The vocabulary for CLIQUE is τgk = ⟨E 2,k⟩.
The SO∃ sentence ΦCLIQUE says that there is a numbering of the
vertices such that those vertices numbered less than k form a clique.

In order to describe this numbering it is convenient to existentially
quantify a function f .

This can be replaced by a binary relation in the usual way.

Let Inj(f ) mean that f is an injective function,

Inj(f ) ≡ (∀xy)(f (x) = f (y)→ x = y).
Then, we have

ΦCLIQUE ≡ (∃f 1.Inj(f ))(∀xy)((x ≠ y ∧ f (x) < k ∧ f (y) < k)→ E(x , y)).
George Voutsadakis (LSSU) Descriptive Complexity December 2024 8 / 45



Second-Order Logic and Fagin’s Theorem Second-Order Logic

Easy Half of Fagin’s Theorem

Proposition

All second-order existentially definable boolean queries are computable in
NP. In symbols, SO∃ ⊆ NP.

Consider a second-order existential sentence

Φ ≡ (∃R r1
1 ) . . . (∃R rk

k
)ψ.

Let τ be the vocabulary of Φ.

We build an NP machine N, such that, for all A ∈ STRUC[τ],
(A ⊧ Φ) ⇔ (N(bin(A)) ↓).

Let A be an input structure to N, with ∥A∥ = n.
What N does is to nondeterministically write down a binary string of
length nr1 representing R1, and, similarly, for R2 through Rk .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 9 / 45



Second-Order Logic and Fagin’s Theorem Second-Order Logic

Easy Half of Fagin’s Theorem (Cont’d)

By nondeterministically writing down a binary string, we mean that at
each step, N nondeterministically chooses to write a 0 or a 1.

After this polynomial number of steps, we have an expanded structure

A′ = (A,R1,R2, . . . ,Rk).
N should accept iff A′ ⊧ ψ.
By a previous theorem, we can test whether A′ ⊧ ψ in logspace.

So we can certainly test whether A′ ⊧ ψ in NP.

Notice that N accepts A iff there is some choice of relations R1

through Rk such that

(A,R1,R2, . . . ,Rk) ⊧ ψ.
Thus, the required equivalence holds.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 10 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Subsection 2

Proof of Fagin’s Theorem

George Voutsadakis (LSSU) Descriptive Complexity December 2024 11 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Fagin’s Theorem

Theorem (Fagin’s Theorem)

NP equals the set of existential, second-order boolean queries, NP = SO∃.
Furthermore, this equality remains true when the first-order part of the
second-order formulas is restricted to be universal.

Let N be a nondetenninistic Turing machine.

Suppose N uses time nk − 1 for inputs bin(A) with ∥A∥ = n.
We write a second-order sentence

Φ = (∃C 2k
1 ⋯C 2k

g ∆k)ϕ
that says “there exists an accepting computation C ,∆ of N”.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 12 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Fagin’s Theorem (Encoding Configurations)

More precisely, first-order sentence ϕ will have the property that

(A,C ,∆) ⊧ ϕ iff C ,∆ is an accepting computation
of N on input A.

That is, (A ⊧ Φ) ⇔ (N(bin(A)) ↓).
We describe how to code N’s computation.

C consists of a matrix C(s , t) of n2k tape cells with space s and time
t varying between 0 and nk − 1.

We use k-tuples of variables t = t1, . . . , tk and s = s1, . . . , sk each
ranging over the universe of A, i.e., from 0 to n − 1, to code these
values.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 13 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Fagin’s Theorem (Encoding Configurations)

For each s, t pair, C(s , t) codes the tape symbol σ that appears in
cell s at time t, if N’s head is not on this cell.

If the head is present, then C(s, t) codes the pair ⟨q, σ⟩ consisting of
N’s state q at time t and tape symbol σ.

Let a listing of the possible contents of a computation cell be

Γ = {γ0, . . . , γg} = (Q ×Σ) ∪Σ.

We will let Ci be a 2k-ary relation variable for 0 ≤ i ≤ g .

Ci(s , t) means “computation cell s at time t contains symbol γi”.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 14 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Fagin’s Theorem (Encoding Computation)

At each step, the nondeterministic Turing machine will make one of
at most two possible choices.

We encode these choices in k-ary relation ∆.

∆(t) is true, if step t + 1 of the computation makes choice “1”;
∆(t) is false, if step t + 1 of the computation makes choice “0”.

Note that these choices can be determined from C .

However, the formula is simplified when we explicitly quantify ∆.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 15 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Fagin’s Theorem (The First-Order Sentence)

Now write the first-order sentence ϕ(C ,∆) saying that C ,∆ codes a
valid accepting computation of N.

The sentence ϕ consists of four parts,

ϕ ≡ α ∧ β ∧ η ∧ ζ,

where:

α asserts that row 0 of the computation correctly codes input bin(A);
β says that it is never the case that, for i ≠ j , Ci(s , t) and Cj(s , t) both
hold;
η says that, for all t, row t + 1 of C follows from row t via move ∆(t)
of N ;
ζ says that the last row of the computation includes the accept state.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 16 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Fagin’s Theorem (The First-Order Sentence ζ)

We can write sentence ζ explicitly.

We may assume that, when N accepts:

It clears its tape;
Moves all the way to the left;
Enters a unique accept state qf .

Let γ17 be the member of Γ corresponding to the pair ⟨qf ,1⟩ of state
qf , looking at the symbol 1.

Then we have
ζ = C17(0,max).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 17 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Fagin’s Theorem (The First-Order Sentence α)

Sentence α must assert that the input is of length Iτ(n) for some n

and that A has been correctly coded as bin(A).
Example: Suppose that τ includes relation symbol R1 of arity one.

Assume that cell symbols γ0, γ1 are ‘0’, ‘1’, respectively.

Then α includes the following clauses, meaning that:

Cell 0 . . . 0sk contains 1, if R1(sk) holds;
Cell 0 . . . 0sk contains 0, if R1(sk) does not hold.
⋯∧ (t = 0 = s1 = ⋯ = sk−1 ∧ sk ≠ 0 ∧ R1(sk)→ C1(s, t))
∧(t = 0 = s1 = ⋯ = sk−1 ∧ sk ≠ 0 ∧ ¬R1(sk)→ C0(s , t)) ∧⋯

George Voutsadakis (LSSU) Descriptive Complexity December 2024 18 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Fagin’s Theorem (The First-Order Sentence η)

The following sentence η asserts that the contents of tape cell(s, t + 1) follow from the contents of cells (s − 1, t), (s , t), and(s + 1, t) via the move ∆(t) of N.

Let ⟨a−1,a0,a1, δ⟩ N
→ b mean that the triple of cell contents a−1,a0,a1

lead to cell b via move δ of N.

η1 ≡ (∀t.t ≠ max)(∀s .0 < s < max)
⋀

⟨a−1,a0,a1,δ⟩
N
→b

(¬δ∆(t) ∨ ¬Ca−1(s − 1, t) ∨ ¬Ca0(s, t)
∨ ¬Ca1(s + 1, t) ∨Cb(s , t + 1)).

Here, ¬δ is ¬, if δ = 1, and is the empty symbol, if δ = 0.

Finally, let η ≡ η0 ∧ η1 ∧ η2, where η0 and η2 encode the same
information when s = 0 and max, respectively.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 19 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Polynomial Time and Existential Second Order

Observe that the first-order part of formula Φ in the proof of the
proposition is:

Universal;
In conjunctive normal form.

Furthermore, if N is a deterministic polynomial-time machine, then
we do not need choice relation ∆.

So the first-order part of Φ is a Horn formula (a formula in
conjunctive normal form with at most one positive literal per clause).

Accordingly, we obtain the following corollary.

Corollary

Every polynomial-time query is expressible as a second-order, existential
Horn formula, P ⊆ SO∃-Horn.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 20 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Introducing Lynch’s Theorem

The proof of the proposition shows that nondeterministic time nk is
contained in SO∃(arity 2k).
Lynch improved this to arity k using the numeric predicate PLUS.

Fagin’s Theorem holds even without numeric predicates, since we can
existentially quantify binary relations and assert they are ≤ and BIT.

However, without the numeric predicates, we need an existential
first-order quantifier to specify time t + 1, given time t.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 21 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Lynch’s Theorem

Theorem (Lynch’s Theorem)

For k ≥ 1,
NTIME[nk] ⊆ SO∃(arity k).

We need to modify the proof of Fagin’s Theorem.

We only sketch the main ideas involved.

In Fagin’s Theorem, we guessed the entire tape at every step.

Here, only a bounded number of bits per step is guessed.

The following relations need to be guessed.

1. Qi(t), meaning that the state at move t is qi ;
2. Si(t), meaning that the symbol written at move t is σi ;
3. D(t), meaning that the head moves one space to the right after move

t. Otherwise, it moves one space to the left.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 22 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Lynch’s Theorem (Cont’d)

We must write a first-order formula asserting that Q, S, D encode a
correct accepting computation of N.

The only difficulty in doing this is that, for each move t, we must
ascertain the symbol ρt that is read by N.

ρt is equal to σi , where Si(t ′) holds and t
′
is the last time before t

that the head was in its present location (or it is the corresponding
input symbol if this is the first time the head is at this cell).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 23 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Lynch’s Theorem (Cont’d)

To express ρt , we need to express the function

s = p(t),
meaning that at time t, the head is at position s.

However, we are restricted to relations of arity k .

So we cannot guess the k log n bits per time needed to specify p.

The solution rests on doing the next best thing.

We existentially quantify the current head position once every log n
steps.

We do this by quantifying k bits per step in relations

Pi(t), i = 1,2, . . . ,k .

Suppose we string log n of these together, from time r log n through
time (r + 1) log n − 1.

Then we obtain a total of k log n bits which encode the head position
at time r log n.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 24 / 45



Second-Order Logic and Fagin’s Theorem Proof of Fagin’s Theorem

Lynch’s Theorem (Cont’d)

The idea is similar to the proof of Bit Sum Lemma.

Numeric predicate BIT allows us to use each first-order variable to
store log n bits.

Furthermore, predicate BSUM(x , y), meaning that the number of
one’s in the binary expansion of x is y , is first-order.

This enables us to assert that relations P are consistent with the head
movements given by D.

So we can correctly code the head position at log n step intervals.

Finally, using BSUM again, we can ascertain the head position at any
time t.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 25 / 45



Second-Order Logic and Fagin’s Theorem NP-Complete Problems

Subsection 3

NP-Complete Problems

George Voutsadakis (LSSU) Descriptive Complexity December 2024 26 / 45



Second-Order Logic and Fagin’s Theorem NP-Complete Problems

NP-Completeness of SAT

In 1971, Cook proved that SAT (satisfiable boolean formulas) is
NP-complete via polynomial time Turing reductions.

In fact, SAT is NP-complete via significantly weaker reductions.

Theorem

SAT is complete for NP via first-order reductions.

This follows from Fagin’s theorem.

Let B ∈ NP be a boolean query.

We know that B =MOD[Φ], where
Φ = (∃Sa1

1 ⋯S
ag
g ∆k)(∀x1⋯xt)ψ(x),

with ψ quantifier-free.

We may assume that ψ is in conjunctive normal form,

ψ(x) = r

⋀
j=1

Cj(x).
George Voutsadakis (LSSU) Descriptive Complexity December 2024 27 / 45



Second-Order Logic and Fagin’s Theorem NP-Complete Problems

NP-Completeness of SAT (Cont’d)

Let A be an input structure, with n = ∥A∥.
Define the boolean formula γ(A) as follows.

γ(A) has boolean variables

Si(e1, . . . , eai ) and D(e1, . . . , ek),
with i = 1, . . . ,g , e1, . . . , eai ∈ ∣A∣.
The clauses of γ(A) are

Cj(e), j = 1, . . . , r ,

as e ranges over all t-tuples from ∣A∣.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 28 / 45



Second-Order Logic and Fagin’s Theorem NP-Complete Problems

NP-Completeness of SAT (Cont’d)

In each Cj(e), there may be some occurrences of numeric or input
predicates, γ(e).
These should be replaced by true or false, according to whether they
are true or false in A.

It is clear from the construction that

A ∈ B iff A ⊧ Φ

iff γ(A) ∈ SAT.
The mapping from A to γ(A) is a (t + 1)-ary first-order query.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 29 / 45



Second-Order Logic and Fagin’s Theorem NP-Complete Problems

NP-Completeness of 3-SAT

We know that SAT is NP-complete via first-order reductions.

Suppose an SO∃ boolean query is given.

Then, we can reduce SAT to the given query iff the query is also
NP-complete via first-order reductions.

Proposition

Let 3-SAT be the subset of SAT in which each clause has at most three
literals. Then 3-SAT is NP-complete via first-order reductions.

We show that SAT ≤fo 3-SAT.

First, we give an example of the idea behind the reduction.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 30 / 45



Second-Order Logic and Fagin’s Theorem NP-Complete Problems

NP-Completeness of 3-SAT (Cont’d)

Let
C = (ℓ1 ∨ ℓ2 ∨⋯∨ ℓ7)

be a clause with more than three literals.

Introduce fresh variables d1, . . . ,d4.

Form the clause

C ′ ≡ (ℓ1 ∨ ℓ2 ∨ d1) ∧ (d1 ∨ ℓ3 ∨ d2) ∧ (d2 ∨ ℓ4 ∨ d3)∧(d3 ∨ ℓ5 ∨ d4) ∧ (d4 ∨ ℓ6 ∨ ℓ7).
Observe that C ∈ SAT iff C ′ ∈ 3-SAT.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 31 / 45



Second-Order Logic and Fagin’s Theorem NP-Complete Problems

NP-Completeness of 3-SAT (Cont’d)

The first-order reduction from SAT to 3-SAT proceeds as follows.

Let A ∈ STRUC[⟨P2,N2⟩] be an instance of SAT with n = ∥A∥.
Each clause c of A is replaced by 2n clauses,

c ′ ≡ ([x1]c ∨ d1) ∧ (d1 ∨ [x2]c ∨ d2) ∧ (d2 ∨ [x3]c ∨ d3) ∧⋯∧(dn ∨ [x1]c ∨ dn+1) ∧ (dn+1 ∨ [x2]c ∨ dn+2) ∧⋯∧ (d2n−1 ∨ [xn]c).
Here

[ℓ]c = { ℓ, if ℓ occurs in c,

false, otherwise.

We can show that c ′ is satisfiable iff c is satisfiable.

Moreover, c ′ is definable in a first-order way from c .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 32 / 45



Second-Order Logic and Fagin’s Theorem NP-Complete Problems

NP-Completeness of 3-COLOR

Proposition

3-COLOR is NP-complete via first-order reductions.

We will show that 3-SAT ≤fo 3-COLOR.

We are given an instance A of 3-SAT.

We must produce a graph f (A) that is three colorable iff A ∈ 3-SAT.
Let n = ∥A∥, so A is a boolean
formula with at most n variables
and n clauses.
In the triangle, with vertices la-
beled T ,F ,R , any three-coloring
of the graph must color these
three vertices distinct colors.

We may assume without loss of generality that the colors used to
color T , F and R are true, false and red, respectively.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 33 / 45



Second-Order Logic and Fagin’s Theorem NP-Complete Problems

NP-Completeness of 3-COLOR (Cont’d)

Graph f (A) also contains a
ladder each rung of which is a
variable xi and its negation x i .

Each of these is connected to R ,
meaning that any valid
three-coloring colors one of xi ,
x i true and the other false.

Finally, for each clause Ci = ℓ1 ∨ ℓ2 ∨ ℓ3, f (A) contains the gadget Gi

consisting of six vertices.

Gi has:

Three inputs ai ,bi , ci , connected to literals ℓ1, ℓ2, ℓ3, respectively;
One output, fi .

In the figure the gadget G1 corresponds to clause C1 = x1 ∨ x2 ∨ x3.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 34 / 45



Second-Order Logic and Fagin’s Theorem NP-Complete Problems

NP-Completeness of 3-COLOR (Cont’d)

The triangle a1,b1,d1 serves as an
“or”-gate in that d1 may be colored
true iff at least one of its inputs
x1, x2 is colored true.

Similarly, output f1 may be colored
true iff at least one of d1 and the
third input, x3 is colored true.

Since fi is connected to both F and R , fi can only be colored true.

It follows that a three coloring of the literals can be extended to color
Gi iff the corresponding truth assignment makes Ci true.

Thus, f (A) ∈ 3-COLOR iff A ∈ 3-SAT.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 35 / 45



Second-Order Logic and Fagin’s Theorem NP-Complete Problems

NP-Completeness of 3-COLOR (Cont’d)

The details of first-order reduction f are easy to fill in.

f (A) consists of:

One triangle;
A ladder with n rungs;
n copies of the gadget.

The only dependency on the input A, as opposed to its size, is that
there is an edge from literal ℓ to input j of gadget Gi iff ℓ is the j-th
literal occurring in Ci .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 36 / 45



Second-Order Logic and Fagin’s Theorem The Polynomial Time Hierarchy

Subsection 4

The Polynomial Time Hierarchy

George Voutsadakis (LSSU) Descriptive Complexity December 2024 37 / 45



Second-Order Logic and Fagin’s Theorem The Polynomial Time Hierarchy

The Polynomial Time Hierarchy Revisited

We defined the polynomial-time hierarchy (PH) to be the set of
boolean queries accepted in polynomial time by alternating Turing
machines making a bounded number of alternations between
existential and universal states.

The original definition of the polynomial-time hierarchy was via
nondeterministic polynomial-time Turing reductions.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 38 / 45



Second-Order Logic and Fagin’s Theorem The Polynomial Time Hierarchy

The Polynomial Time Hierarchy via Oracles

Definition (Polynomial-Time Hierarchy via Oracles)

Let Σp
0 = P be level 0 of the polynomial-time hierarchy. Inductively, let

Σp
i+1 = {L(MA) ∶M is an NP oracle TM, A ∈ Σp

i
}.

Equivalently, Σp
i+1 is the set of boolean queries that are nondeterministic

polynomial-time Turing reducible to a set from Σp
i
,

Σp
i+1 = {B ∶ B ≤tnp A, for some A ∈ Σp

i
}.

Define Πp
i to be co-Σp

i ,

Πp
i = {A ∶ A ∈ Σp

i }.
Finally, define

PH =
∞

⋃
k=1

Σp
k
.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 39 / 45



Second-Order Logic and Fagin’s Theorem The Polynomial Time Hierarchy

Second Order Queries and the Polynomial Hierarchy

Theorem

Let S ⊆ STRUC[τ] be a boolean query, and let k ≥ 1.
The following are equivalent:

1. S =MOD[Φ], for some Φ ∈ ΣSO
k , where ΣSO

k is the set of all second
order sentences with second order quantifier prefix

(∃R1)(∀R2)⋯(QkRd);
2. S = {x ∶ (∃y1.∣y1∣ ≤ ∣x ∣c)(∀y2.∣y2∣ ≤ ∣x ∣c)⋯(Qkyk .∣yk ∣ ≤ ∣x ∣c)R(x , y)},

where R is a deterministic polynomial-time predicate on k + 1 tuples
of binary strings and c is a constant;

3. S ∈ ATIME-ALT[nO(1),k];
4. S ∈ Σp

k
.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 40 / 45



Second-Order Logic and Fagin’s Theorem The Polynomial Time Hierarchy

Proof of the Theorem

By induction on k .

The subtle part is relating Σp
k
to the other conditions.

For this, note that an NP machine with an oracle A ∈ Σp
k−1 can guess

all the answers to its oracle queries.

Then, at the end of its computation, it can check that these answers
were all correct.

This involves a polynomial number of Σp
k−1 and Πp

k−1 questions.

Corollary

A boolean query is in the polynomial-time hierarchy iff it is second-order
expressible, PH = SO.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 41 / 45



Second-Order Logic and Fagin’s Theorem The Polynomial Time Hierarchy

P, NP and Inductive Definitions

We have shown that P = FO(LFP).
Thus, by the preceding corollary, we obtain the following descriptive

characterization of the P
?
= NP question.

P is equal to NP iff every second-order query - over finite, ordered
structures - is expressible as a first-order inductive definition.

Corollary

The following conditions are equivalent:

1. P = NP;

2. Over finite, ordered structures, FO(LFP) = SO.

Suppose, first, that FO(LFP) = SO.

Then P ⊆ NP ⊆ PH = P.

Conversely, suppose P = NP. Then PH = NP.

So FO(LFP) = SO.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 42 / 45



Second-Order Logic and Fagin’s Theorem The Polynomial Time Hierarchy

PH and Parallelism

Up to this point, we had been assuming for notational simplicity that
a CRAM has at most polynomially many processors.

However, the class CRAM-PROC[t(n),p(n)] still makes sense for
numbers of processors p(n) that are not polynomially bounded.

Corollary

PH is equal to the set of boolean queries recognizable by a CRAM using
exponentially many processors and constant time,

PH =
∞

⋃
k=1

CRAM-PROC[1,2nk ].
The inclusion SO ⊆ CRAM-PROC[1,2nO(1) ] follows along the lines of
the proof of FO[t(n)] ⊆ CRAM[t(n)], presented previously.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 43 / 45



Second-Order Logic and Fagin’s Theorem The Polynomial Time Hierarchy

PH and Parallelism (Cont’d)

A processor number is now large enough to give values to all the
relational variables as well as to all the first-order variables.

Thus, as in that proof, the CRAM can evaluate each first or
second-order quantifier in three steps.

The inclusion CRAM-PROC[1,2nO(1) ] ⊆ SO follows along the lines of
the proof of CRAM[t(n)] ⊆ IND[t(n)], also presented previously.

The only difference is that we use second order variables to specify
the processor number.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 44 / 45



Second-Order Logic and Fagin’s Theorem The Polynomial Time Hierarchy

SO and Parallelism

The preceding corollary can be extended to

Corollary

For all constructible t(n),
SO[t(n)] = CRAM-PROC[t(n),2nO(1)].

Observe that the previous corollary suggests that PH is a rather
strange complexity class.

No one would ever buy exponentially many processors and then use
them only for constant time.

In contrast, as we will see, the much more robust complexity class
PSPACE is encapsulated by exponentially many processors running in
polynomial time.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 45 / 45


	Outline
	Second-Order Logic and Fagin's Theorem
	Second-Order Logic
	Proof of Fagin's Theorem
	NP-Complete Problems
	The Polynomial Time Hierarchy


