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Second-Order Lower Bounds Second-Order Games

Subsection 1

Second-Order Games
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Second-Order Lower Bounds Second-Order Games

SO∃(monadic) Games

Definition (SO∃(monadic) Games)

Let A, B be structures of the same vocabulary.
For c ,m ∈N, define the second-order (monadic) c-color, m-move game

on A, B as follows:

The two players start with the coloring phase in which Spoiler chooses
c monadic relations CA1 , CA2 , . . ., CAc on ∣A∣.

Duplicator answers with c monadic relations CB1 ,C
B
2 , . . . ,C

B
c on ∣B∣.

Observe that the coloring phase is not symmetric, in that Spoiler must
play on A.
Next, the two players play the m-move Ehrenfeucht-Fräıssé game on the
two expanded structures, i.e., they play

Gm((A,C
A
1 ,C

A
2 , . . . ,C

A
c ), (B,C

B
1 ,C

B
2 , . . . ,C

B
c )).
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Second-Order Lower Bounds Second-Order Games

Characterization of Duplicator’s Win

Theorem

Let A and B be two not necessarily finite structures of the same finite,
relational vocabulary and let c ,m ∈N. Then the following two conditions
are equivalent:

1. For any formula Φ ≡ (∃C 1
1⋯C 1

c )(ϕ), with ϕ first-order of quantifier
rank m,

A ⊧ Φ implies B ⊧ Φ;

2. Duplicator has a winning strategy for the second-order (monadic)
c-color, m-move game on A,B.

The theorem follows from:

The theorem characterizing the Duplicator having a winning strategy in
Gk
m(A,B);

The fact that there are only finitely many inequivalent formulas in
Lm(τ ∪ {C

1
1 , . . . ,C

1
c }).
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Second-Order Lower Bounds Second-Order Games

Characterization of Duplicator’s Win (Cont’d)

Suppose Condition 1 holds.

Let CA1 ,C
A
2 , . . . ,C

A
c be Spoiler’s move in the coloring phase.

Let ϕ be the conjunction of all quantifier-rank m sentences that are
true of (A,CA1 ,C

A
2 , . . . ,C

A
c ).

By hypothesis, it follows that

B ⊧ (∃C 1
1⋯C 1

c )ϕ.

Duplicator, thus, can play CB1 ,C
B
2 , . . . ,C

B
c that are witnesses of ϕ.

It follows that

(A,CA1 ,C
A
2 , . . . ,C

A
c ) ≡m (B,CB1 ,C

B
2 , . . . ,C

B
c ).

So Duplicator wins the first-order part of the game.
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Second-Order Lower Bounds Second-Order Games

Characterization of Duplicator’s Win (Cont’d)

Conversely, suppose Condition 1 is false.

So we have A ⊧ Φ but B /⊧ Φ.

Spoiler plays the coloring phase by choosing CA1 ,C
A
2 , . . . ,C

A
c

witnessing the truth of Φ.

However Duplicator responds, the two structures

(A,CA1 ,C
A
2 , . . . ,C

A
c ),

(B,CB1 ,C
B
2 , . . . ,C

B
c )

disagree on the quantifier rank m formula ϕ.

So Spoiler wins the first-order part of the game.
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Second-Order Lower Bounds Second-Order Games

Complete Formulas

We look, next, at a complete methodology, using SO∃(monadic)
Ehrenfeucht-Fräıssé games, for determining whether a boolean query
is expressible in SO∃(monadic).

Recall that there are only finitely many inequivalent formulas in a
given finite relational language restricted to a given quantifier rank
and with a given number of free variables.

Definition

Let L be a language. We say that ϕ is a complete formula of L if it is
consistent and maximal, in the sense that if ψ ∈ L is another consistent
formula that implies ϕ, then ϕ and ψ are equivalent.
Consider the second-order (monadic) c-color, m-move game on structures
of the finite, relational vocabulary τ .
Let C = C(c ,m, τ) be the finite number of such inequivalent, complete
formulas in Lm(τ ∪ {C

1
1 , . . . ,C

1
c }) that have one free variable.
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Second-Order Lower Bounds Second-Order Games

Introducing the Ajtai-Fagin Game

Suppose we play the second-order (monadic) c-color, m-move game
on structures of the finite, relational vocabulary τ .

The result of Spoiler’s coloring a structure with c new monadic
relations is that he partitions the universe into a larger, but still finite,
number C = C(c ,m, τ) of equivalence classes.

This equivalence relation can be described as follows.

Let a,a′ ∈ ∣A∣, where A ∈ STRUCT[τ ∪ {C 1
1 , . . . ,C

1
c }].

Then a,a′ are equivalent iff (A,a) ∼m (A,a′).
Since the SO∃(monadic) Ehrenfeucht-Fräıssé game is still difficult for
Duplicator to play, Ajtai and Fagin invented an equivalent game.

The two games are equivalent in that Duplicator has a winning
strategy in one iff she has a winning strategy in the other.
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Second-Order Lower Bounds Second-Order Games

Ajtai-Fagin Game

Definition (Ajtai-Fagin Game)

Let I ⊆ STRUCT[τ] be a boolean query.
Define the Ajtai-Fagin game on I as follows.

1. Spoiler chooses natural numbers c and m.

2. Duplicator chooses a structure A ∈ STRUCT[τ], such that A ∈ I .

3. Spoiler chooses c monadic relations CA1 ,C
A
2 , . . . ,C

A
c on ∣A∣.

4. Duplicator chooses a structure B ∈ STRUCT[τ], such that B ∉ I .

Duplicator also chooses c monadic relations CB1 ,C
B
2 , . . . ,C

B
c on ∣B∣.

5. Finally, the two players play

Gm((A,CA1 ,CA2 , . . . ,CAc ), (B,CB1 ,CB2 , . . . ,CBc )).
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Second-Order Lower Bounds Second-Order Games

The Ajtai-Fagin Methodology Theorem

Theorem (Ajtai-Fagin Methodology Theorem)

Let I ⊆ STRUCT[τ] be a boolean query. Then the following are
equivalent:

1. Duplicator has a winning strategy for the Ajtai-Fagin game on I ;

2. I ∉ SO∃(monadic).

Suppose I =MOD[Φ], where
Φ ≡ (∃C 1

1⋯C 1
c )(ϕ),

ϕ of quantifier rank m.

We show that Spoiler has a strategy for winning the Ajtai-Fagin game
on I .
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Second-Order Lower Bounds Second-Order Games

The Ajtai-Fagin Methodology Theorem (Converse)

Spoiler’s first move is to choose c , m.

Let A ∈ I be the structure chosen by Duplicator.

Spoiler chooses colorings CA1 ,C
A
2 , . . . ,C

A
c such that

(A,CA1 ,CA2 , . . . ,CAc ) ⊧ ϕ.
Duplicator then chooses a structure B ∉ I , so B ⊧ ¬Φ.

Thus, whatever coloring CB1 ,C
B
2 , . . . ,C

B
c is chosen by Duplicator, we

know that
(B,CB1 ,CB2 , . . . ,CBc ) ⊧ ¬ϕ.

So Spoiler wins Gm((A,CA1 ,CA2 , . . . ,CAc ), (B,CB1 ,CB2 , . . . ,CBc )).
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Second-Order Lower Bounds Second-Order Games

The Ajtai-Fagin Methodology Theorem (Converse Cont’d)

Conversely, suppose I ∉ SO∃(monadic).

We describe a winning strategy for Duplicator.

Let Spoiler choose the numbers c ,m.

Let Sm be a maximal set of inequivalent sentences of the form

Φ ≡ (∃C 1
1⋯C 1

c )(ϕ),
ϕ of quantifier rank m, where the first-order part ϕ is a complete
sentence of quantifier rank m.

Sm is finite, by a previous assertion.

The sentences that cause us trouble are those that are not satisfied by
any structure not in I ,

T ≡ {Φ ∈ Sm ∶ ∀B ∈ (STRUC[τ] − I),B ⊧ ¬Φ}.
Let Ψ be the disjunction of all sentences in T .

George Voutsadakis (LSSU) Descriptive Complexity December 2024 13 / 55



Second-Order Lower Bounds Second-Order Games

The Ajtai-Fagin Methodology Theorem (Converse Cont’d)

We let Ψ be the disjunction of all sentences in

T ≡ {Φ ∈ Sm ∶ ∀B ∈ (STRUC[τ] − I),B ⊧ ¬Φ}.
Note that Ψ is of the form described above, since the disjunction can
be pushed through the second-order existential quantifiers.

By assumption, there exists a structure A ∈ I , such that A ⊧ ¬Ψ.

Otherwise, Ψ would express I .

Duplicator should play this A.

Let Spoiler choose colors CA1 ,C
A
2 , . . . ,C

A
c .
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Second-Order Lower Bounds Second-Order Games

The Ajtai-Fagin Methodology Theorem (Converse Cont’d)

Let ϕ0 be the complete quantifier-rank m sentence satisfied by
(A,CA1 ,CA2 , . . . ,CAc ).
Let

Φ0 = (∃C)ϕ0.

Then A ⊧ Φ0. So Φ0 ∉ T .

Therefore, by the definition of T , there exists B ∈ (STRUC[τ] − I),
such that

B ⊧ Φ0.

Duplicator plays this B, together with a coloring that witnesses Φ0.

It follows that Duplicator wins the game

Gm((A,CA1 ,CA2 , . . . ,CAc ), (B,CB1 ,CB2 , . . . ,CBc )).
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Second-Order Lower Bounds Second-Order Games

Application: Connectivity

Theorem

The connectivity problem for undirected graphs is not expressible in
monadic second-order existential logic without numeric relations,

CONNECTED ∉ SO∃(monadic)(wo≤).

We show that Duplicator has a winning strategy for the Ajtai-Fagin
game on CONNECTED.

Suppose that Spoiler chooses constants c ,m.

Duplicator responds with a sufficiently large cycle A.

Sufficiently large means that

∥A∥ ≥ h(2ch + 1), h = 2m+1 + 1.
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Second-Order Lower Bounds Second-Order Games

Application: Connectivity (Cont’d)

Let CA1 ,C
A
2 , . . . ,C

A
c be the coloring on A played by Spoiler.

The neighborhood N(a,2m) of any vertex a contains h vertices.

The number of possible colorings of such a neighborhood is thus 2ch.

But ∥A∥ is chosen to be at least h(2ch + 1).
So it must contain at least two disjoint neighborhoods N(a,2m) and
N(c ,2m) containing identical colorings in clockwise order around the
cycle.
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Second-Order Lower Bounds Second-Order Games

Application: Connectivity (Cont’d)

Let b be the next vertex after a and d the next vertex after c in
clockwise order around A.

To construct B, Duplicator removes edges (a,b) and (c ,d) and
replaces them by edges (a,d) and (b, c).
Thus, B consists of two disjoint cycles.

Duplicator colors B exactly as Spoiler has colored A.
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Second-Order Lower Bounds Second-Order Games

Application: Connectivity (Cont’d)

It follows that the structures

(A,CA1 ,CA2 , . . . ,CAc ),(B,CB1 ,CB2 , . . . ,CBc )
have the same number of each 2m type.

Thus, by Hanf’s Theorem, Duplicator wins the game

Gm((A,CA1 ,CA2 , . . . ,CAc ), (B,CB1 ,CB2 , . . . ,CBc )).
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Second-Order Lower Bounds Second-Order Games

Negation of Connectivity

The negation of connectivity is expressible in SO∃(monadic)(wo≤).
The sentence asserts the existence of a set S , such that:

S is not empty;
S does not contain all vertices;
S contains all the neighbors of its elements.

So this set S contains a proper connected component of the graph.

It follows that the graph is not connected.

CONNECTED ≡ (∃S1)[(∃xy)(S(x) ∧ ¬S(y))∧
(∀xy)((S(x) ∧ E(x , y)) → S(y))].

Corollary

SO∃(monadic)(wo≤) is not closed under complementation.

The corollary holds with arbitrary numeric predicates.
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Second-Order Lower Bounds Second-Order Games

ALL-EVEN-DEGREE

Let ALL-EVEN-DEGREE be true of undirected graphs all of whose
vertices have an even number of edges.

Ajtai showed that ALL-EVEN-DEGREE is not in SO∃, in the presence
of arbitrary numeric relations.

However, in the presence of an ordering relation, ALL-EVEN-DEGREE
is expressible in second-order, monadic, universal logic.

The sentence asserts that, for all two-colorings of the graph, and for
all vertices v , if the coloring of the neighbors of v alternates between
the two colors, then v ’s first neighbor has a different color than its
last neighbor.

Note also, that it is an SO∃ property that a particular vertex has even
degree.
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Second-Order Lower Bounds Second-Order Games

ALL-EVEN-DEGREE (Cont’d)

Corollary

The language SO∃(monadic) is not closed under either of:

Complementation;

First-order quantification.

In particular, ALL-EVEN-DEGREE is expressible in SO∀(monadic) and in
the form (∀x)SO∃(monadic), using ordering as the only numeric predicate.
However, ALL-EVEN-DEGREE is not expressible in second-order
existential, monadic logic in the presence of arbitrary numeric predicates.
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Subsection 2

SO∃(monadic) Lower Bound on Reachability
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Undirected Graph Reachability in SO∃(monadic)

Proposition

The undirected reachability query is expressible in second order, existential,
monadic logic, without numeric relations. In symbols,

REACHu ∈ SO∃(monadic)(wo≤).

We express the existence of an undirected path from s to t.

The sentence asserts the existence of a set of vertices S , such that:
1. Vertices s and t are members of S ;
2. Vertices s and t each have unique neighbors in S ;
3. All other members of S have exactly two neighbors in S .

Clearly, these three conditions are first-order expressible using S .

Furthermore, any such set S must include a path from s to t.

Conversely, the vertices along a shortest path from s to t constitute
such a set S .
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Non-Robustness of Monadic SO Existential Logic

Connectivity is first-order reducible (in fact quantifier-free reducible)
to REACHu.

We will see that connectivity is not expressible in monadic,
second-order existential logic, even in the presence of ordering.

Whether this holds in the presence of BIT is an open question.

The following corollary says that monadic second-order existential
logic is not very robust.

Corollary

The language SO∃(monadic)(woBIT) is not closed under quantifier-free
reductions.
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Reachability and Monadic SO Existential wo ≤

Theorem

REACH ∉ SO∃(monadic)(wo≤).
The reader may have noticed that the proof of the preceding
proposition does not work for directed graphs.

The reason is that a graph G ∈ REACH may have the property that
every set of vertices forming a path from s to t admits a “back edge”.

I.e., an edge from a vertex close to t, to a vertex farther away from t.

We show instead that Duplicator wins the Ajtai-Fagin game on
REACH.
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Reachability (Cont’d)

Let Spoiler begin by playing c and m.

Recall that this indicates Spoiler’s intention to:

Define c new monadic relations C1, . . . ,Cc ;
Play the m-move first-order game.

Let C = C(c ,m, τ) be the number of inequivalent, quantifier-rank m

formulas in the language of graphs extended by relations C1, . . . ,Cc .

Consider the set of random graphs Gn, consisting of:

A directed path s = g1,g2, . . . ,gn−1,gn = t;
Some random back edges, (gi ,gj), for j < i .

These edges will be chosen independently at random with probability
p(n) = nσ−1.

The small constant σ is chosen by Duplicator, depending on
constants m and c chosen by Spoiler.
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Reachability (Cont’d)

The figure shows a drawing of Gn, together with the graph Hn that
Duplicator chooses later.

Hn is the same as Gn and colored the same as Gn, except that one
forward edge from hi to hi+1 is missing.

Note that Gn ∈ REACH and Hn ∉ REACH.
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Reachability (Cont’d)

Duplicator now plays one of the random graphs Gn meeting the four
conditions of the following probabilistic lemma.

The proof of the lemma is given after the end of this proof.

We take for simplicity in the following

n > 100m2C 2 and ε = 0.01.

All discussions of distances, paths and cycles in the following concern
undirected paths, i.e., paths in the Gaifman graph.
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Reachability (Cont’d)

Lemma

Let C and m be natural numbers, and let ǫ > 0.
Let σ > 0 be sufficiently small and let n be sufficiently large.
Let Gn be chosen at random, each back edge chosen with probability nσ−1.
With high probability, the following conditions hold:

1. Gn has fewer than nǫ undirected cycles of length at most 2m.

2. For every vertex v ∈ Gn, the number of vertices of distance at most
2m from v is less than nǫ.

3. No matter how the vertices of Gn are colored, using C colors, a
fraction of (1 − ǫ) of the vertices gi of Gn have at least m back edges
to vertices colored the same color as gi+1.

4. No matter how the vertices of Gn are colored, using C colors, a
fraction of (1 − ǫ) of the vertices gi+1 of Gn have at least m back
edges from vertices colored the same color as gi .
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Reachability (Cont’d)

Spoiler colors Gn with c color relations, forming G c
n .

This induces a coloring of each vertex of G c
n by its quantifier-rank

m2m type.

Thus, each vertex has one of C colors.

Call this expansion GC
n .

By our choice of Gn and the values of n and ǫ, we know that some
vertex v satisfies the following conditions:

1. The distance of gi to any cycle of length ≤ 2m is greater than 2m + 1.
2. In GC

n , the following hold:

gi has ≥m back edges to vertices of the same color as gi+1;

gi+1 has ≥m back edges from vertices of the same color as gi .
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Reachability (Cont’d)

3. There are 2m vertices a1, . . . , am, and b1, . . . ,bm in GC
n , such that:

Each pair of these vertices are distance greater than 2m + 1 from each

other and from gi ;

The color of the ai ’s is the same as gi ;

The color of the bi ’s is the same as gi+1.

Let Hc
n be G c

n with the edge from gi to gi+1 removed.

Duplicator plays Hc
n .
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Reachability (Cont’d)

Claim: G c
n ∼m Hc

n .

Each vertex v in GC
n has been colored by the m-color of v .

That is, v is colored by a complete quantifier-rank m description of v .

We now show that the coloring of each vertex v of HC
n is still the

unchanged quantifier-rank m description of v .

This follows from the above three conditions.

Especially important is that gi is not within distance 2m + 1 of a cycle
of length at most 2m.

It follows that for the m-move game, the set of vertices near gi , gi+1
and hi , hi+1 form a forest.

Furthermore, the m-colors of gi and gi+1 guarantee this property of
not being near a small cycle.

Thus, the ai ’s and bi ’s from Condition 3 above also have this property.

That is, their 2m neighborhoods are disjoint trees.
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Reachability (Cont’d)

Duplicator’s winning strategy for the m-move game on G c
n and Hc

n is
now clear.

At the first move, she answers any play v by Spoiler with a vertex v ′

of the same color.

From then on, Duplicator answers almost any move by Spoiler
according to her winning strategy in the game on (Gn, v), (Gn, v

′).
The exception is if this strategy would call for a move near gi or gi+1
when a vertex near the other of these points has already been played.

If the move is near gi , Duplicator should answer by substituting for gi
a “new” vertex w , where:

w is one of the ai ’s, if Duplicator is answering a vertex not near gi+1;
w is one of the vertices of the same color as gi having a back edge to
gi+1, otherwise.

By assumption, m such vertices are available.
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Proof of the Lemma

Fact (The Weak Law of Large Numbers)

Suppose there are n independent trials, and each has probability p of
success. Let Sn be the number of successful trials. Let M = pn be the
expected number of successful trials. Then, for any ρ > 0,

lim
n→∞

Prob[∣Sn −M ∣ ≥ ρM] = 0.

Conditions (1) and (2) of the lemma are easily met by letting σ ≤ ǫ

4m ,
and then letting n grow.

In particular, the expected number of cycles of length at most 2m is
less than n2

m(nσ+2
n
)2m . And this is less than nǫ/2, for large n.

Similarly, the expected number of neighbors of distance at most 2m of
any vertex v is less than (nσ + 2)2m < nǫ/2.
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Proof of the Lemma (Condition 3)

To prove Condition (3), let

α =
ǫ

2C
.

Let A be a set of αn vertices from Gn.

Let v be a vertex to the right of all the vertices in A.

The expected number of back edges from v to A is αnσ.

Let Sv be the number of such back edges in a randomly chosen Gn.

Let

δ = Prob [Sv < α
2
nσ] .

By the Law of Large Numbers, we can choose n so large that δ is as
small as we like.

We choose n so that

δα <
1

8
.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 36 / 55



Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Proof of the Lemma (Condition 3)

Let B be a set of αn vertices all to the right of all the vertices in A.

Let E(A,B) be the event that

Sv <
α

2
nσ, for all v in B .

Thus,
Prob[E(A,B)] ≤ δαn.

Clearly, there are fewer than 22n choices of such sets A and B .

Thus, the probability that any of them satisfy event E(A,B) is

≤ 22nδαn ≤ 22n (1
8
)
n

=
1

2n
.

Thus, with high probability, there are no such sets A and B .
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Proof of the Lemma (Condition 3 Cont’d)

Let Gn be a graph with random back edges having no sets A and B

satisfying E(A,B).
Suppose that each vertex in Gn is colored one of C colors.

Let S be a set of vertices gi of Gn such that:

gi+i has color Cℓ;
gi has fewer than m back edges to vertices of color Cℓ.

Suppose, for the sake of contradiction, that

∣S ∣ > nǫ

C
.

Let B be the rightmost half of the vertices of S .
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Second-Order Lower Bounds SO∃(monadic) Lower Bound on Reachability

Proof of the Lemma (Condition 3 Cont’d)

Let A consist of all vertices of color Cℓ lying to the left of all the
vertices of B .

Thus,
∣A∣, ∣B ∣ ≥ nǫ

2C
= αn.

It would now follow that E(A,B) holds.

This is impossible since Gn was chosen with no such sets A and B .

It follows that
∣S ∣ ≤ nǫ

C
.

Thus, the number of vertices gi that do not have at least m back
edges to vertices of the same color as gi+1 is at most nǫ.

This proves Condition (3).

Condition (4) can be proved similarly.

George Voutsadakis (LSSU) Descriptive Complexity December 2024 39 / 55



Second-Order Lower Bounds Lower Bounds Including Ordering

Subsection 3

Lower Bounds Including Ordering
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Second-Order Lower Bounds Lower Bounds Including Ordering

Introduction

We strengthen the Connectivity Theorem.

We show that, even in the presence of ordering, graph connectivity is
not expressible in monadic, second-order existential logic.

The argument is subtle in that every two vertices appear together in a
tuple in the ordering relation.

Thus, every Gaifman graph has diameter one.

It follows that a proof using Hanf’s Theorem is not possible.

The main interest in this result is that it introduces a new way for
Duplicator to win a game in the presence of ordering.

Tight complexity lower bounds on nondeterministic time can be
proved in the presence of ordering and addition.
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The Graph Pn
s

Consider the set of all permutations on n objects

Sn = {σ1, σ2, . . . , σn!}.
Let s = π1, . . . , πr be a sequence of elements of Sn.

Define the ordered graph Pn
s = (V n

s ,E
n
s ) by setting:

V n
s = {1,2, . . . , r + 1} × {1,2, . . . ,n};

En
s = {(⟨i , j⟩, ⟨i + 1, πi(j)⟩) ∶ 1 ≤ i ≤ r ,1 ≤ j ≤ n}.

Thus, Pn
s consists of n disjoint paths of length r .

The ordering on Pn
s is the lexicographic ordering.
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Example: The Graph P4
s

Consider S4 and let

s = (1234), (12), (23), e, (1234),
where e is the identity permutation.

The figure shows a drawing of P4
s .
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Definitions

For any permutation σi ∈ Sn, let Qi be the sequence consisting of 2m

copies of the identity, σi and another 2m copies of the identity,

Qi = e, . . . , e´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
2m

, σi , e, . . . , e´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
2m

.

Let σi0 be the inverse of the product of all n! permutations in Sn,

σi0 = (
n!∏
i=1

σi)
−1

.

Define the following sequence of permutations,

T = Qi0,Q1,Q2, . . . ,Qn!.

The graph Pn
T consists of n disjoint paths of length

ℓ = (2m+1 + 1)(n! + 1).
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Definitions (Cont’d)

The product of sequence T is the identity permutation.

So, taking into account the lexicographic ordering of the vertices,
these paths connect vertices i and nℓ + i , for i = 1,2, . . . ,n.

Let sequence Z consist of N copies of T followed by a single copy of
Qi1, where σi1 is the n-cycle (12⋯n),

Z = T , . . . ,T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N

,Qi1 .

The length of this sequence is

L = Nℓ + (2m+1 + 1).
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Definitions (Cont’d)

The product of sequence Z is just the n-cycle (12⋯n).
Thus, Pn

Z consists of n paths of length L, connecting vertex i on the
left to vertex i + 1 mod n on the right, for i = 1,2, . . . ,n.

Let An be the graph Pn
Z together with the n edges

{(i ,nL + i) ∶ 1 ≤ i ≤ n},
connecting the first and last vertices in each row.

An consists of a single long cycle and is thus connected.
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The Ajtai-Fagin Game on Boolean Query CONNECTED

We play the Ajtai-Fagin game on boolean query CONNECTED.

At the first move, Spoiler chooses constants c and m.

Duplicator plays the graph An.

The numbers n and N will be specified later to be sufficiently large.

Let Spoiler now choose a coloring of An using c new color relations,
C1, . . . ,Cc .

Let Ac
n be the structure An together with these new color relations.

Each vertex v ∈ ∣Ac
n∣ has one of at most C = C(c ,m, ⟨E 2,≤2⟩)

complete descriptions in the language Lm(C1, . . . ,Cc).
Consider AC

n as colored with these complete descriptions.

Thus, each vertex has one of C possible colorings.
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The Ajtai-Fagin Game (Cont’d)

The number of possible colorings of a copy of Pn
T in AC

n is Cnℓ.

Suppose we choose N > n!Cnℓ.

Then, there are at least n! identically colored copies of Pn
T in AC

n .

Let T c be such a copy of Pn
T in Ac

n.

For each part PQi
of T c , there are Cn(2m+1+1) possible colorings of all

the vertices in PQi
.

Note that Cn(2m+1+1) ≤ Bn for some constant B .

For sufficiently large n, n! is much greater than Bn.

So there exists some set of permutations A ⊆ Sn of size at least n!
Bn ,

such that, for all σi , σj ∈ A, the colorings of PQi
and PQj

in T c are
identical.
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The Interchange Lemma

The following lemma asserts that Duplicator can interchange any
such PQi

’s and PQj
’s without detection.

Lemma

Let Bc
n result from Ac

n by replacing any number of parts PQi
in a copy of

T c by the part PQj
, for pairs σi , σj ∈ A. Then

Ac
n ∼m Bc

n .

We show that Duplicator wins the m-move game on Ac
n and Bc

n.

The only difference between the two structures is in the middle two
columns of any PQi

that has been changed to PQj
.

With r moves to go, we say that a newly pebbled vertex is “near”
another chosen vertex if the distance between their respective
columns is at most 2r .
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The Interchange Lemma (Cont’d)

Let Spoiler put the first pebble on any vertex in either structure.

Duplicator should answer with the vertex of the same number in the
other structure.

Let the chosen vertices be a = α1(x1) and b = β1(x1).
Suppose that a and b are inside parts PQi

and PQj
, for i ≠ j .

Since σi , σj ∈ A, a and b have the same complete description in Lm−1.

Thus, Duplicator has a winning strategy in

Gm−1(Ac
n,a,A

c
n,b
′),

where b′ is the piece corresponding to b in part PQj
of Ac

n.
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The Interchange Lemma (Cont’d)

From now on, for moves near already chosen points in this part,
Duplicator should answer according to her winning strategy in

Gm−1(Ac
n,a,A

c
n,b
′).

Suppose, on the other hand, that the chosen vertices are inside
unchanged, and therefore identical, parts of Ac

n and Bc
n .

In this case, from now on, for moves near this part, Duplicator will
keep moving according to the isomorphism between these two parts.
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The Interchange Lemma (Cont’d)

In successive moves, if the newly pebbled point is near an already
chosen point, then Duplicator should answer according to her winning
strategy in the subgame of the already chosen point.

If the newly pebbled point is not near any such subgame, then
Duplicator answers with the vertex of the same number in the other
structure.

This pair establishes a new subgame.

Duplicator, thus, wins all the subgames.

Furthermore, if αm(xu) and αm(xv ) belong to different subgames,
then these subgames were each started with points of the same
number in the two structures. Thus,

αm(xu) < αm(xv ) ⇔ βm(xu) < βm(xv ).
It follows that Duplicator wins the whole game.
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The Ajtai-Fagin Game (Cont’d)

The lemma tells us that, when we transplant a part of the structure
PQj

in place of the different, but identically colored, PQi
, then the

colors, i.e., the complete descriptions in Lm−1 of the vertices, remain
the same!

This transplanting changes the product of the corresponding
permutations, but it is not detectable in language Lm.

The reason we defined the sequences Qi to have a length 2m buffer
on each side was so that Duplicator’s winning strategy for the game
Gm−1(Ac

n,a,A
c
n,b
′) can be used for the subgames.

If we can change the product enough so that it is no longer an
n-cycle, then Bc

n will not be connected and the theorem would follow.
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The Ajtai-Fagin Game (Cont’d)

Fact

For sufficiently large n, suppose that H is a subgroup of Sn, such that for
all h ∈ H, the product (12⋯n)h is an n-cycle. Then

∣H ∣ ≤ n!( 6

log n
)n .

Fix σi ∈ A. For each σj ∈ A, let

Tj = Qi0 ,Q1,Q2, . . . ,Qi−1,Qj ,Qi+1, . . . ,Qn!

be the sequence T with Qi replaced by Qj .

Let ρj be the product of the sequence Tj .

Define H to be the subgroup of Sn generated by all the ρj ’s.

Obviously H is at least as big as A and, thus, of size at least n!
Bn .

By Fact, there exists h ∈ H, such that (12⋯n)h is not a cycle.
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The Ajtai-Fagin Game (Cont’d)

There exists h ∈ H, such that (12⋯n)h is not a cycle.

By the definition of H, we can write h as the product

h = ρj1 ⋅ ρj2⋯ρjt .

We know that t ≤ n!.

Define Bc
n as the stucture resulting by replacing PQi

by PQjk
in t

successive copies of T c in Ac
n.

It follows from the lemma that

Ac
n ∼m Bc

n .

However, An is connected and Bn is not.

Theorem

Connectivity is not expressible in monadic, second-order existential logic
with ordering as the only numeric predicate.
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