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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

Subsection 1

Normal Form Theorem for FO(LFP)
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

Fixed-Point Hierarchy

The language FO(LFP) suggests a potential hierarchy of queries.

At the bottom, we have FO.

Then LFP[FO], denoting the single application of the least fixed point
operator to a first-order formula.

Next we may apply quantifiers and boolean operations.

Then another application of fixed point.

⋮
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

Fixed-Point Hierarchy Over Infinite Structures

Consider the infinite structure consisting of the natural numbers with
its ordering relation.

The first fixed-point level is equal to the set of second-order, universal
queries.

Fact

Over the infinite structure (N,≤),
LFP[FO] = SO∀.

It follows that over infinite structures, the fixed-point hierarchy is
infinite.

On this basis, Chandra and Harel conjectured that the fixed-point
hierarchy for finite structures would also be infinite.
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

Fixed-Point Hierarchy: Finite Structures

We have already seen that for finite ordered structures, the
fixed-point hierarchy collapses to its first fixed-point level, LFP[FO].

As we show in this section, this remains true for unordered structures
as well, assuming that there are at least two constants

Without this assumption, the normal form would not be as nice
because it would require a quantification outside LFP.

Finite structures are fundamentally different from infinite structures in
this case.

The crucial difference is that for finite structures, every least fixed
point is completed at a fixed stage.

We are able to detect this completion.

We then define the negation of a fixed point as the set of tuples that
enter only after this last stage, that is, that never enter the fixed
point.
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

The Easy Cases

Lemma

For any class of finite structures, LFP[FO] is closed under quantification,
conjunction, disjunction and applications of LFP.

We show, by induction, that any formula in FO(LFP) that has no
negations of fixed points can be written in the form

(LFPϕ)(0),
where ϕ is first-order.

There are four cases to be considered.
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

The Easy Cases (Case 1)

1. Suppose
Φ1 ≡ (LFPSkx1...xk

ϕ)(u1, . . . ,uk).
Define,

γ1(x ,b) ≡ (b = 0 ∧R(u,1)) ∨ (b = 1 ∧ ϕ(R(∗,1)/S)).
Here and below we write “ϕ(R(∗, v)/S)” to mean the formula ϕ
with all occurrences of S(u1, . . . ,uk) replaced by R(u1, . . . ,uk ,0, v).
The tuple 0 consists of dummy values in case the arity of R is greater
than k plus the arity of v .

Thus, we have
Φ1 ≡ (LPFRk+1x1...xkb

γ1)(0).
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

The Easy Cases (Case 2)

2. Suppose

Φ2 ≡ (LFPSkx1...,xk
ϕ)(0) op (LFPT rx1...xrψ)(0),

where op ∈ {∧,∨}.
Set a = max (k , r).
Define

γ2(x1, . . . , xa,b) ≡ b = 0 ∧ (R(0,1) op R(0,2))∨
b = 1 ∧ϕ(R(∗,1)/S)∨
b = 2 ∧ψ(R(∗,2)/S).

γ2 does the following:
It simultaneously computes the two fixed points (b = 1,2);
It applies “op” to them (b = 0).

Thus,
Φ2 ≡ (LFPRa+1x1...xabγ2)(0).
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

The Easy Cases (Case 3)

3. Suppose (Qz)Φ3,

where Φ3 ≡ (LFPSkx1...xk
ϕ)(z ,0) and Q ∈ {∃,∀}.

Let
γ3(x1, . . . , xk ,b) ≡ b = 0 ∧ (Qz)(R(z ,0,1))∨

b = 1 ∧ϕ(R(∗,1)/S).
Here, γ3 does the following:

It computes the fixed point in parallel for all values of z (b = 1);
Then quantifies the fixed point (b = 0).

Thus,
Φ3 ≡ (LFPRk+1x1...xkb

γ3)(0).
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

The Easy Cases (Case 4)

4. Suppose

Φ4 ≡ (LFPSkx1...xk
ϕ(S , x , (LFPT ry1...yrψ(S , y ,T )(0)))).

Let
γ4(x , y ,b) ≡ b = 0 ∧ ϕ(R(∗,0,0), x ,R(0,∗,1))∨

b = 1 ∧ ψ(R(∗,0,0), y ,R(0,∗,1)).
In the formal definition of Φ4, we would:

First, compute the fixed point T1 of ψ, with S = ∅;
Then, compute a step of ϕ with T = T1, getting S1;
Next, compute the fixed point T2 of ψ with S = S1;
⋮

In the fixed point of γ4, we concurrently build the least fixed points of
ϕ (b = 0) and ψ (b = 1).
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

The Easy Cases (Case 4 Cont’d)

Note that everything is monotone.

So, even though the fixed point of γ4 may be reached earlier, nothing
that should not will enter the fixed point.

More explicitly, it can be proved inductively that, if a tuple z is an
element of St , then it enters the relation R(∗,0,0) no later than
round tnr .

Conversely, if a tuple z enters R(∗,0,0) at round t ′, then it is also a
member of St′ .

Thus we have

Φ4 ≡ (LFPRk+r+1x1...xky1...yrb
γ4)(0).
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

Introducing the Stage Comparison Theorem

The main difference between taking fixed points over finite, rather
than infinite, structures is that, for finite structures, the fixed point
finishes after a finite number of stages.

Moschovakis showed that the stages of a fixed point can be identified
as the fixed point is being computed.

Using his Stage Comparison Theorem, we will be able to find a tuple
m that enters the fixed point at its last state.

We will then be able to express the fact that a tuple t never enters
the fixed point, by saying that the stage at which t enters is greater
than the stage at which m enters.
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

The Rank of a Tuple

Let ϕ(x1 . . . xr ,R) be an R-monotone formula.

Let A be a finite structure.

Each tuple (a1 . . . ar) ∈ Iϕ comes in at some stage of the induction.

Let ∣a∣ϕ, the rank of a with respect to ϕ, be the step at which a

enters Iϕ,

∣a∣ϕ = { r , if a ∈ I rϕ − I r−1ϕ

∞, if a ∉ Iϕ

Define the relation ≤ϕ by setting, for all tuples x , y ,

x ≤ϕ y iff x ∈ Iϕ and ∣x ∣ϕ ≤ ∣y ∣ϕ.
Similarly, x <ϕ y means x ∈ Iϕ and ∣x ∣ϕ < ∣y ∣ϕ.
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

The Stage Comparison Theorem

Theorem (Stage Comparison Theorem)

Given a monotone formula ϕ(x ,R), relations ≤ϕ and <ϕ can be written as
positive fixed points.

We view ϕ(x ,R) as ϕ′(x ,R ,¬R) which is positive in R and ¬R .

We define relations ≤ϕ and <ϕ by simultaneous positive inductions.

We use the abbreviations

Lz = {u ∶ u ≤ϕ z};
Gz = {w ∶ z <ϕ w}.

We will see that, for every z already in the fixed point, Lz and Gz are
complements.
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

The Stage Comparison Theorem (Cont’d)

The following are the positive inductive definitions of ≤ϕ and <ϕ:

x ≤ϕ y ≡ ϕ′(x , false, true) ∨(∃z)(z <ϕ y ∧ ϕ′(x ,Lz ,Gz));
x <ϕ y ≡ (ϕ′(x , false, true) ∧ ¬ϕ′(y , false, true)) ∨(∃z)(z <ϕ y ∧ ϕ′(x ,Lz ,Gz) ∧ ¬ϕ′(y ,¬Gz ,¬Lz)).

Let α and β be the positive first-order formulas in the above
definitions of ≤ϕ and <ϕ.

For ⟨z , z⟩ ∈ I rα, let
Lrz = {u ∶ ⟨u, z⟩ ∈ I rα};
G r
z = {w ∶ ⟨z ,w⟩ ∈ I rβ}.
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

The Stage Comparison Theorem (Cont’d)

We can show, by induction, that, for all r ,

I rα = {⟨x , y⟩ ∶ ∣x ∣ϕ ≤ r and ∣x ∣ϕ ≤ ∣y ∣ϕ};
I rβ = {⟨x , y⟩ ∶ ∣x ∣ϕ ≤ r and ∣x ∣ϕ < ∣y ∣ϕ};
Lrz = G r

z
, for ⟨z, z⟩ ∈ I rα.

By a previous lemma, we know how to use simultaneous induction
given a pair of positive formulas in two relational variables.

So can combine the definitions of ≤ϕ and <ϕ into a single definition.

This proves the theorem.
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

The Non-Positive Case

A corollary of the theorem is that a monotone, but not necessarily
positive, inductive definition may be rewritten as a positive one,

(LFPϕ)(a) ≡ (LFPα)(a,a).

Corollary

Let ϕ(R , x) be monotone, but not necessarily positive in R . Then the least
fixed point of ϕ is expressible as the least fixed point of a positive formula.
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

Negation of a Fixed Point

In order to negate fixed points we express the fact that some tuple m

has maximum possible rank.

The following formula says that m has maximum rank.

It captures this property by saying that:

It is in the fixed point;
No tuple enters the fixed point exactly one step after m.

So we have

MAX(m) ≡ m ≤ϕ m ∧ (∀x)(x ≤ϕ m ∨ ¬ϕ′(x ,¬Gm,¬Lm)).
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

Negation of a Fixed Point (Cont’d)

We defined

MAX(m) ≡ m ≤ϕ m ∧ (∀x)(x ≤ϕ m ∨ ¬ϕ′(x ,¬Gm,¬Lm)).
It now follows that, for any monotone ϕ, we can express the negation
of the fixed point of ϕ as a positive least fixed point,

¬(LFPR,x1...xkϕ)(a) ≡ (∃m)(MAX(m) ∧m <ϕ a).
Combining this with the preceding theorem and the preceding lemma,
we get

Theorem

For any class of finite structures, the fixed point hierarchy collapses at its
first fixed point level. In symbols,

FO(LFP) = LFP[FO].
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

Inflationary Fixed Point Operator

Let R be a new k-ary relation symbol that occurs not necessarily
monotonically in ϕ(R , x1, . . . , xk).
Define the inflationary fixed point operator IFP by

IFP(ϕ(R , x)) ≡ LFP(ϕ(R , x) ∨ R(x)).
IFP may be applied to any inductive definition - there is no syntactic
restriction.

If ϕ is monotone, then IFP(ϕ) = LFP(ϕ).
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

Expressibility of Stage Comparison Formulas

Let
ψ(R , x) = ϕ(R , x) ∨ R(x).

Whether or not ϕ is monotone, the following sequence is
monotonically increasing and its union is IFP(ϕ),

∅ ⊆ ψ(∅) ⊆ ψ2(∅) ⊆ ψ3(∅) ⊆ ⋯.
Even though ψ may not be monotone, the monotonicity of the
sequence suffices for the proof of the preceding theorem to go
through.

Thus, the stage comparison formulas ≤ψ and <ψ are expressible as
least fixed points of positive formulas.
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Complementation and Transitive Closure Normal Form Theorem for FO(LFP)

Expressive Power of Inflationary Fixed Point Operator

An immediate corollary of the preceding observations is that FO(LFP)
and FO(IFP) have the same expressive power.

Note that, when using IFP, we do not have to worry about keeping
our definitions positive.

So IFP is usually more convenient than LFP.

Corollary

We have
FO(IFP) = FO(LFP).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 23 / 87



Complementation and Transitive Closure Transitive Closure Operators

Subsection 2

Transitive Closure Operators
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Complementation and Transitive Closure Transitive Closure Operators

Transitive Closure Operators

Let
ϕ(x1, . . . , xk , x ′1, . . . , x ′k)

be a formula of some vocabulary τ with 2k free variables.

The formula ϕ describes a query Iϕ from STRUCT[τ] to graphs.

For a structure A ∈ STRUCT[τ],
Iϕ(A) = ⟨∣A∣k ,E ⟩,

where
E = {(a1, . . . ,ak ,a′1, . . . ,a′k) ∶ A ⊧ ϕ(a,a′)}.
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Complementation and Transitive Closure Transitive Closure Operators

Transitive Closure Operators (Cont’d)

We write (TCx1...xkx
′
1...x

′
k
ϕ)

to denote the reflexive, transitive closure of binary relation ϕ(x , x ′).
We denote by

FO(TC)
the closure of first-order logic with arbitrary occurrences of TC.

We know from a previous proposition and previous theorem that,

FO(TC) ⊆ FO[log n] ⊆ FO[nO(1)] = FO(LFP).
Let FO(pos TC) be the restriction of FO(TC) in which TC never
occurs within a negation.
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Complementation and Transitive Closure Transitive Closure Operators

FO(pos TC) = NL

Theorem

FO(pos TC) = NL.

(⊆) With space log n we can cycle through alI the values of x .

So the set of relations computable in NSPACE[log n] is closed under
first-order quantifiers, (∀x) and (∃x).

Thus, it suffices to show that if ϕ(x , x ′) is computable in
NSPACE[log n], then so is (TCxx ′ϕ).
We can test if structure A satisfies (TCxx ′ϕ)(a,a′) as follows.
If a = a′, then accept.

Else, guess b and check that A ⊧ ϕ(a,b).
Next, throw away a and guess c , such that A ⊧ ϕ(b, c).
Repeat until we guess z , such that A ⊧ ϕ(y , z) and z = a′.

In this case we accept.
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Complementation and Transitive Closure Transitive Closure Operators

FO(pos TC) = NL (Cont’d)

The space needed is 3k log n plus the space to check if ϕ(x , x ′) holds,
where k is the arity of x .

(⊇) Recall that REACH is complete for NL via first-order reductions.

REACH is expressible in FO(pos TC) as follows:

REACH ≡ (TCxy(E(x , y)))(s, t).
But FO(pos TC) is closed under first-order reductions.

It follows that NL ⊆ FO(pos TC).
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Complementation and Transitive Closure Transitive Closure Operators

Deterministic Transitive Closure

We next define a deterministic version of transitive closure DTC.

Given a first order relation ϕ(x , y), define its deterministic reduct

ϕd(x , y) ≡ ϕ(x , y) ∧ [(∀z)¬ϕ(x , z) ∨ (y = z)].
Thus, ϕd(x , y) is true iff y is the unique descendent of x .

Now define (DTCϕ) ≡ (TCϕd).
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Complementation and Transitive Closure Transitive Closure Operators

FO(DTC) = L

Theorem

FO(DTC) = L.

This proof is similar to the preceding theorem.

We first show that L contains FO(DTC).

Suppose ϕ(x1, . . . , xk , y1, . . . , yk) ∈ L.
Recall the algorithm “Recognizing REACHd in L”:

1. b ∶= s; i ∶= 0; n ∶= ∥G∥
2. while b ≠ t ∧ i < n ∧ (∃!a)(E(b, a)) do {
3. b ∶= the unique a for which E(b, a)
4. i ∶= i + 1}
5. if b = t then accept else reject

It determines in logspace whether or not (DTCϕ)(s , t) holds.
Instead of checking whether there is an edge from b to a, we check
that ϕ(b,a) holds.
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Complementation and Transitive Closure Transitive Closure Operators

FO(DTC) = L (Converse)

Conversely, FO(DTC) contains L.

We know that REACHd is complete for L via first-order reductions.

Moreover, FO(DTC) is closed under first-order reductions.

Thus, it suffices to show that REACHd is expressible in FO(DTC).

This is accomplished via

REACHd ≡ (DTCxy(E(x , y)))(s, t).
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Complementation and Transitive Closure Normal Form for FO(TC)

Subsection 3

Normal Form for FO(TC)
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Complementation and Transitive Closure Normal Form for FO(TC)

FO(pos TC) and Transitive Closure

Lemma

In the presence of the successor relation, every formula ϕ ∈ FO(pos TC) is
equivalent to a single application of transitive closure to a quantifier-free
formula,

ϕ ≡ (TCα)(0,max).
By induction on the complexity of ϕ.

There are five cases.

1. Suppose ϕ is either atomic or the negation of an atomic formula.
Let u, v be variables not occurring in ϕ.
Then

ϕ⇔ (TCuvϕ)(0,max).
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Complementation and Transitive Closure Normal Form for FO(TC)

FO(pos TC) and Transitive Closure (Case 2)

2. Suppose
ϕ ≡ (TCxyψ)(q, r).

We wish to replace q, r with 0,max.

Put

ρ(s1, t1, x , s2, t2, y) ≡[s1 = 0 ∧ t1 = 0 ∧ x = 0 ∧ s2 = 0 ∧ t2 = max ∧ y = q]
∨[s1 = 0 ∧ t1 = max∧s2 = 0 ∧ t2 = max∧ψ(x , y)]
∨[s1 = 0 ∧ t1 = max∧x = r ∧ s2 = t2 = max∧y = max].

Variables s, t split the ρ-path in three stages:
If st = 00, set x to q and go to next stage.
If st = 0max, take a ψ step and stay in this stage.
When r is reached, go to next stage.
If st = maxmax, set x =max and stop.

Thus,
ϕ⇔ (TCs1t1xs2t2yρ)(0,max).
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Complementation and Transitive Closure Normal Form for FO(TC)

FO(pos TC) and Transitive Closure (Case 3 Illustration)

3. Suppose
ϕ ≡ (∃x)(TCuvα(x))(0,max).
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Complementation and Transitive Closure Normal Form for FO(TC)

FO(pos TC) and Transitive Closure (Case 3)

3. Suppose
ϕ ≡ (∃x)(TCuvα(x))(0,max).

Here the notation means that the transitive closure is taken over the
relation α(u, v) and variable x occurs free in α.

Put

χ(u, x1, v , x2) ≡ [u = 0 ∧ SUC(x1, x2)]
∨[α(u, v ; x1) ∧ x1 = x2]
∨[u = max ∧ v = max ∧ SUC(x1, x2)].

Formula χ allows a guess of x on the first step.

So
ϕ⇔ (TCux1vx2χ)(0,max).
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Complementation and Transitive Closure Normal Form for FO(TC)

FO(pos TC) and Transitive Closure (Case 4 Illustration)

4. Suppose
ϕ ≡ (∀x)(TCu,vα(x))(0,max).
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Complementation and Transitive Closure Normal Form for FO(TC)

FO(pos TC) and Transitive Closure (Case 4)

4. Suppose
ϕ ≡ (∀x)(TCu,vα(x))(0,max).

In this case, we simulate (∀x) by searching through all x ’s in order,
using SUC.

Put

ν(u, x1, v , x2) ≡ [u ≠ max ∧ α(u, v , x1) ∧ x1 = x2]
∨[u = max ∧ v = 0 ∧ SUC(x1, x2)].

Thus,
ϕ⇔ (TCux1vx2ν)(0,max).
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Complementation and Transitive Closure Normal Form for FO(TC)

FO(pos TC) and Transitive Closure (Case 5 Illustration)

5. Suppose
ϕ ≡ (TCuv [TCxyψ](0,max))(0,max).
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Complementation and Transitive Closure Normal Form for FO(TC)

FO(pos TC) and Transitive Closure (Case 5)

5. Suppose
ϕ ≡ (TCuv [TCxyψ](0,max))(0,max).

In this case, formula ψ has free variables x , y ,u, v .

The inner transitive closure is on x , y , treating the other variables as
parameters.

The outer transitive closure is on u, v .

We combine these two TC’s into a single transitive closure on δ
defined as follows:

δ(u1, v 1, x ,u2, v2, y) ≡ [x = y = 0 ∧ u1 = v1 = u2 = 0]
∨[x ≠ max ∧ u1 ≠ v1 ∧ u1 = u2 ∧ v1 = v2 ∧ ψ(x , y ;u1, v 1)]
∨[x = max ∧ v1 ≠ max ∧ y = 0 ∧ u2 = v1]
∨[x = max ∧ v1 = max ∧ y = max ∧ u2 = v2 = max].
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Complementation and Transitive Closure Normal Form for FO(TC)

FO(pos TC) and Transitive Closure (Case 5 Cont’d)

We claim
ϕ⇔ (TCu1v1xu2v2yδ)(0,max).

This holds because a δ path consists exactly of a series of ψ(⋅, ⋅;u, v)
paths from 0 to max, with u, v fixed.

At the end of any such path we know that (TCxyψ(u, v))(0,max)
holds.

The δ path may now appropriately step from (max,u, v) to (0, v ,w).
That is, it may reach v and begin trying to move from v to w .

The cases of disjunction and conjunction follow easily from Cases 3
and 4, respectively.
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Complementation and Transitive Closure Normal Form for FO(TC)

FO(DTC) and Transitive Closure

Lemma

Every formula ϕ ∈ FO(DTC) is equivalent to a single application of
deterministic transitive closure to a quantifier-free formula,

ϕ ≡ (DTCα)(0,max).

We modify the construction in the proof of the lemma so that a
deterministic path is never turned into a nondeterministic path.

The most interesting case is the existential quantifier,

ϕ ≡ (∃x)(DTCu,u′α(x))(0,max).
Instead of the path finder guessing the correct x , the path:

Tries all x ’s;
Goes to max when a correct one is found.
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Complementation and Transitive Closure Normal Form for FO(TC)

FO(DTC) and Transitive Closure (Cont’d)

We use the fact that there is a path in an nk vertex graph iff there is
such a path of length at most nk − 1.

Let k = arity(z) = arity(w) = arity(u) = arity(s).
In the following, we use:

Counter z to cut off a cycling α-path;
w to find the α-successor of u, if one exists;
s to store this α-successor while we check that there are no others.

We abuse notation and write SUC(z, z ′) to mean that z ′ is the
successor of z in the lexicographical ordering induced by the successor
relation SUC.
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Complementation and Transitive Closure Normal Form for FO(TC)

FO(DTC) and Transitive Closure (Cont’d)

Let

χ′(u, z ,w , s , x ,u′, z ′,w ′, s ′, x ′) ≡ δ1 ∨ δ2 ∨ δ3 ∨ δ4 ∨ δ5 ∨ δ6 ∨ δ7,
where the meaning of the mutually exclusive δi ’s are as follows:

1. (u = max): Success. So set all primed variables to max and halt.
2. (z = max): Failure on x because the counter has overflowed. So set

x ′ = x + 1.
3. (w =max) ∧ ¬α(u,w ; x) ∧¬α(u, s ; x): Failure on x because there is no

α-edge leaving u. So set x ′ = x + 1.
4. α(u, s ; x) ∧ α(u,w ; x) ∧ s ≠ w : Failure on x because u has more than

one α-successor. So set x ′ = x + 1.
5. (w =max) ∧ ¬α(u,w ; x) ∧¬α(u, s ; x): Failure on x because there is no

α-path leaving u. So set x ′ = x + 1.
6. w =max ∧ (α(u, s ; x) ⊕ α(u,w ; x)): There is a unique α-successor of

u. Increment z and set u′ to its successor.
7. ¬α(u,w ; x): Increment w and keep looking for an α-edge leaving u.
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First-Order Definitions of the δi ’s

For completeness we include the first-order definitions of the δi ’s:

δ1 ≡ u = u′ = z ′ = w ′ = max ∧ x ′ = max;
δ2 ≡ u ≠max ∧ SUC(x , x ′) ∧ z =max ∧ u′ = z ′ = w ′ = 0;
δ3 ≡ u ≠max ∧ SUC(x , x ′) ∧ z ≠max ∧w =
max ∧ ¬α(u,w ; x) ∧ ¬α(u, s ; x) ∧ u′ = z ′ = w ′ = 0;
δ4 ≡ u ≠max ∧ SUC(x , x ′) ∧ z ≠max ∧ α(u, s; x) ∧ α(u,w ; x) ∧ s ≠
w ∧ u′ = z ′ = w ′ = 0;
δ5 ≡ u ≠max ∧ SUC(x , x ′) ∧ z ≠max ∧ (w =
max) ∧ ¬α(u,w ; x) ∧ ¬α(u, s ; x) ∧ u′ = z ′ = w ′ = 0;
δ6 ≡ u ≠max ∧ x ′ = x ∧ SUC(z , z ′) ∧w =
max ∧ α(u,u′; x) ∧ (α(u, s ; x) ⊕ α(u,w ; x)) ∧w ′ = 0;
δ7 ≡ u ≠max∧z ≠ max∧¬α(u,w ; x)∧SUC(w ,w ′)∧u′ = u∧z ′ = z∧x ′ = x .

It follows that
ϕ ≡ (DTCχ)(0,max).
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Complementation and Transitive Closure Normal Form for FO(TC)

FO(DTC) and Transitive Closure (Negation)

The remaining case is negation:

ϕ ≡ ¬(DTCx1...xky1...ykψ)(0,max).
We can handle this case in a similar way to the above case.

We add k-tuples of variables:

z , z ′ to serve as a counter;
w ,w ′ to run through possible ψ-successors;
s, s ′ to store the candidate ψ-successor while checking that it is unique.

We start at 0, find a unique ψ-successor of x = 0, and increment the
counter and repeat.

If we ever get to y = max, then, instead, we return to 0, i.e., reject.

If ever the counter overflows (z = max) or there are zero or more than
one ψ-successors of x , then we go to max, i.e., accept.
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Complementation and Transitive Closure Normal Form for FO(TC)

Expressibility of BIT in FO(wo BIT)(DTC)

Proposition

Relation BIT is definable in FO(wo BIT)(DTC). Thus, it is also definable
in FO(wo BIT)(TC) and FO(wo BIT)(LFP).

We first show that PLUS is definable using DTC and SUC.

We say that there is an α-edge from ⟨x , y⟩ to ⟨u, v⟩ iff u = x − 1 and
v = y + 1,

α(x , y ,u, v) ≡ SUC(u, x) ∧ SUC(y , v).
Using transitive closure we get

PLUS(x , y , z) ≡ (DTCα)(x , y ,0, z).
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Complementation and Transitive Closure Normal Form for FO(TC)

Expressibility of BIT in FO(wo BIT)(DTC) (Con’d)

Now define β as follows:

β(w1, j1,w2, j2) ≡ (∃z(PLUS(w2,w2, z) ∧ (w1 = z ∨ SUC(z ,w1)))
∧SUC(j2, j1)).

Note that

β(w , j ,w ′, j + 1) holds iff w ′ = ⌊w
2
⌋ .

Let ODD(z) abbreviate
∃x∃y(PLUS(x , x , y) ∧ SUC(y , z)).

It follows that

BIT(w , j) ≡ (∃z)(ODD(z) ∧ (DTCβ)(w , j , z ,0)).
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Complementation and Transitive Closure Normal Form for FO(TC)

Completeness of REACHd , REACH for L, NL With SUCC

Corollary

In the presence of the successor relations, problems REACHd , REACH and
REACHa are complete for L, NL and P, respectively, via quantifier-free
reductions.

The preceding lemma shows how to write any formula in L as a
quantifier-free reduction to REACHd .

A previous lemma does the same thing for NL and REACH.

We can define an alternating transitive closure operator ATC that
similarly formalizes alternating reachability.

A similar proof gives the same quantifier-free normal form for
FO(ATC).
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Subsection 4

Logspace is Primitive Recursive
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Complementation and Transitive Closure Logspace is Primitive Recursive

Initial Functions

Fix a vocabulary τ , which may include some function symbols.

Define the initial functions to be the following.

1. Constant functions: 0 and max are 0-ary constant functions.
2. Successor function: For each r > 0,

SUC(x1, . . . , xr) = x + 1,

the successor of x in lexicographic order, and undefined if x =max.
3. Projection functions: For ℓ > 0 and 1 ≤ i1 < i2 < ⋯ < ir ≤ ℓ,

πℓ

i1...ir
(x1, . . . , xℓ) = (xi1 , xi2 , . . . , xir ).

4. Input symbols: For each function or constant symbol in τ we have the
corresponding function.
For each relation symbol, we have the corresponding characteristic
function.
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Complementation and Transitive Closure Logspace is Primitive Recursive

Primitive Recursive Functions on Finite Structures

The initial functions are then closed under the following operations.

1. Composition: If h1, . . . ,hr are functions from s-tuples to ai tuples and
g is a function on (a1 + a2 +⋯+ ar)-tuples, then the composition of g
and h1, . . . ,hr is defined by,

g ○ (h1, . . . ,hr)(x1, . . . , xs) = g(h1(x),h2(x), . . . ,hr(x)).

2. Primitive recursion: If g and h are functions of appropriate arity, then
the following scheme defines f by primitive recursion from g and h,

f (x,0) = g(x)
f (x ,SUC(t)) = h(x , t, f (x, t)).

Define the primitive recursive functions on finite structures to be
the closure of initial functions under composition and primitive
recursion.
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Gurevich’s Theorem

Theorem

The primitive recursive functions on finite structures are the partial
functions computable in logspace.

For the upperbound, one shows that:

REACH is primitive recursive using a previous algorithm;
The primitive recursive functions are closed under quantifier-free
reductions.

For the “if” direction, some lemmas are used, asserting the following
facts.
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Complementation and Transitive Closure Logspace is Primitive Recursive

Gurevich’s Theorem (Sketch of Proof)

Any boolean combination of primitive recursive predicates is primitive
recursive.

Given a predicate P(x) and functions g(x) and h(x), let f (x) be
defined by

f (x) = { g(x), if P(x),
h(x), otherwise.

If P and g ,h are primitive recursive, then f is primitive recursive.

A concatenation (f1(x), . . . , fm(x))
of primitive recursive functions f1, . . . , fm is primitive recursive.

Let f1, . . . , fm be defined by simultaneous primitive recursion

fi(x ,0) = gi(x ,0);
fi(x ,SUC(t)) = hi(x , t, f1(x , t), . . . , fm(x , t)).

If the functions gi ,hi are primitive recursive, then so are f1, . . . , fm.
George Voutsadakis (LSSU) Descriptive Complexity December 2024 54 / 87



Complementation and Transitive Closure Logspace is Primitive Recursive

Gurevich’s Theorem (Sketch of Proof Cont’d)

Let f be a logspace computable function.

We must show that f is primitive recursive.

Suppose M is a multihead Turing machine computing f .

Inputs (A,a), with ∥A∥ = n, are presented in some standard way.

Suppose for simplicity that each basic ℓ-ary predicate PA is presented
on a separate input tape of length nℓ, where for each x ∈ ∣A∣ℓ, the
truth value of PA(x), is coded in cell number ∑ xin

ℓ−i .

Suppose, also, that each basic function f A is presented on a separate
tape as the respective graph predicate.

Finally, the components of a are presented in unary notation on
separate tapes.

Then every input tape can be described by a function that is easily
definable by cases.
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Complementation and Transitive Closure Logspace is Primitive Recursive

Gurevich’s Theorem (Sketch of Proof Cont’d)

Let H1, . . . ,Hm be the heads on the input tapes of M.

For i = 1, . . . ,m, let Symi(x i) be the content of cell x i of the tape i .

There exists a positive integer k , such that, M finds itself in the
halting state, say q, at the moment nk − 1.

Suppose that t ranges over nk .

State(t) is the state of M at moment t.

Headi(t) is the position of head Hi at moment t.

The functions State and Headi are defined by simultaneous induction,
which uses the compositions

Sym1(Head1(t)), . . . ,Symm(Headm(t)).
Under natural assumptions about the output mechanism of M, one
defines Output(t) by induction from State(t).
Finally, we set f = Output(max).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 56 / 87



Complementation and Transitive Closure NSPACE[s(n)] = co-NSPACE[s(n)]

Subsection 5

NSPACE[s(n)] = co-NSPACE[s(n)]
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Complementation and Transitive Closure NSPACE[s(n)] = co-NSPACE[s(n)]

FO(pos TC) = FO(TC)

Theorem

For any class of finite, ordered structures,

FO(pos TC) = FO(TC).

By a previous lemma, it suffices to show that the relation

¬(TCuu′E(u,u′))(0,max),
meaning there is no path from 0 to max, is expressible in FO(pos TC).

To do this, we count the number of reachable vertices.

Fix a graph G ∈ STRUC[τg ].
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Complementation and Transitive Closure NSPACE[s(n)] = co-NSPACE[s(n)]

FO(pos TC) = FO(TC) (Cont’d)

As usual, we consider the elements of G both as numbers and as
vertices.

In one setting, as distances, we think of these numbers as ranging
from 0 to n − 1.

In another setting, as counts of the number of reachable vertices, we
have numbers ranging from 1 to n.

Writing these two sets of numbers as numbers rather than as vertices
makes our notation simpler to understand.
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FO(pos TC) = FO(TC) (Cont’d)

Define nd to be the number of vertices in G that are reachable from 0
in a path of length at most d .

Given number nd , we show how to compute number nd+1.

As a first step, we show that nd allows us to say in FO(pos TC) that
there is no path of length at most d from 0 to a given vertex.

Claim: The following formulas are expressible in FO(pos TC).

1. DIST(x ,d), meaning that there is a path of length at most d from 0
to x ;

2. NDIST(x ,d ;m), which, when m = nd , means that there is no path of
length at most d from 0 to x .
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FO(pos TC) = FO(TC) (Proof of the Claim)

There is no trouble writing DIST(x ,d) positively,
DIST(x ,d) ≡ TC(α)(0,0, x ,d), where
α(a, i ,b, j) ≡ (E(a,b) ∨ a = b) ∧ SUC(i , j).

We write the formula, NDIST(x ,d ;m) ∈ FO(posTC) to mean

NDIST(x ,d ;m) ≡ (There are at least m vertices v)(v ≠ x ∧DIST(v ,d)).
It will then follow that, when m = nd , NDIST(x ,d ;m) is equivalent to
¬DIST(x ,d).
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FO(pos TC) = FO(TC) (Proof of the Claim Cont’d)

Define edge relation β on pairs of vertices by

β(v , c , v ′, c ′) ≡ 0 ≠ x ∧ SUC(v , v ′)
∧(c = c ′ ∨ (SUC(c , c ′) ∧DIST(v ′,d) ∧ v ′ ≠ x)).

Suppose that c is the number of vertices - not including x - that are
at most v and reachable from 0 in at most d steps.
Then we can take a β-step from ⟨v , c⟩ to:

⟨v + 1, c⟩ guessing that v + 1 is not reachable from 0 in d steps;
⟨v + 1, c + 1⟩ if we prove that v + 1 is not equal to x and is reachable
from 0 in d steps.

Thus, there is a path from ⟨0,1⟩ to ⟨v , c⟩ iff there are at least c
vertices not equal to x and at most v , such that DIST(v ,d):

TC(β)(0,1, v , c) ⇔ c ≤ ∣{w ∶ w ≤ v ∧DIST(w ,d)}∣.
NDIST can now be defined by

NDIST(x ,d ;m) ≡ TC(β)(0,1,max,m).
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FO(pos TC) = FO(TC) (Cont’d)

Using the Claim, we now define the relation δ(d ,m,d ′,m′) so that if
m = nd , then m′ = nd+1.

We simply cycle through all the vertices, counting how many of them
are reachable in d + 1 steps:

δ(d ,m,d ′,m′) ≡ SUC(d ,d ′) ∧TC(γ)(0,1,max,m′)
γ(v , c , v ′, c ′) ≡ SUC(v , v ′) ∧ ([SUC(c , c ′) ∧DIST(v ′,d + 1)]∨[c = c ′ ∧ (∀z)(NDIST(z ,d ;m) ∨ (z ≠ v ′ ∧ ¬E(z , v ′)))]).

It follows that formula TC(δ)(0,1,n − 1,m) holds iff m = nn−1 is the
number of vertices in G that are reachable from 0.

Using this m, we can express the nonexistence of a path positively as
claimed,

¬TC(E)(0, x) ≡ (∃m)(TC(δ)(0,1,n − 1,m) ∧NDIST(x ,n − 1;m)).
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A Nicer Characterization of NL

Corollary

We have
NL = FO(TC).

Furthermore every formula ϕ ∈ FO(TC) is equivalent to a single
application of transitive closure to a quantifier-free formula,

ϕ ≡ (TCα)(0,max).
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Complementation and Transitive Closure NSPACE[s(n)] = co-NSPACE[s(n)]

Nondeterministic Space and Complements

Corollary

For any s(n) ≥ log n,

NSPACE[s(n)] = co-NSPACE[s(n)].

We have shown that NL = FO(pos TC) = FO(TC).
Consider any NL property and negate it.

Then it is still in FO(TC) and, thus, NL.

It follows that NL = co-NL.
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Nondeterministic Space and Complements

Suppose now that s(n) ≥ log n.

Let N be an NSPACE[s(n)] machine.

Suppose its input w is of length n = ∣w ∣.
The computation graph of N on input w has m = 2O(s(n)) nodes.

The question whether N rejects w is the non-reachability problem on
this computation graph.

By the theorem, it is solvable in NSPACE[log(m)].
That is, it is solvable in NSPACE[s(n)].
Even if we do not know what s(n) is, we can apply the same
construction by:

Starting with s = 1;
Incrementing s each time a reachable configuration in the computation
graph of size s + 1 is found.
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Context Sensitive Languages

Let CSL be the class of context sensitive languages.

Kuroda showed in 1964 that

CSL = NSPACE[n].

Corollary

The class of context sensitive languages is closed under complementation.
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Subsection 6

Restrictions of SO
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Complementation and Transitive Closure Restrictions of SO

Horn Formulas

Definition (Horn Formulas)

Let Φ be a second-order formula in prenex form,

Φ ≡ (Q1P
a1
1 )⋯(QkP

ak
k
)(∀x)α,

such that:

The first-order part of Φ is universal;

The quantifier-free part α is in conjunctive normal form, i.e., a
conjunction of clauses, each of which is a disjunction.

We say that Φ is a second-order Horn formula iff the quantifier-free part
has at most one positive occurrence of a quantified predicate Pi per clause.
Let SO-Horn be the set of boolean queries describable by second-order
Horn formulas.
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Complementation and Transitive Closure Restrictions of SO

Krom Formulas

Definition (Krom Formulas)

Let Φ be a second-order formula in prenex form,

Φ ≡ (Q1P
a1
1 )⋯(QkP

ak
k
)(∀x)α,

such that:

The first-order part of Φ is universal;

The quantifier-free part α is in conjunctive normal form, i.e., a
conjunction of clauses, each of which is a disjunction.

Φ is a second-order Krom formula iff the quantifier-free part has at
most two occurrences of a quantified predicate per clause.
Let SO-Krom be the set of boolean queries describable by second-order
Krom formulas.
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Complementation and Transitive Closure Restrictions of SO

HORN-SAT and 2-SAT

Proposition

Let HORN-SAT and 2-SAT be the restrictions of the boolean satisfiability
problem to Horn and Krom formulas respectively. Then:

1. HORN-SAT is complete for P via quantifier-free reductions.

2. 2-SAT is complete for NL via quantifier-free reductions.

1. One way to see that HORN-SAT is in P is to express it in FO(LFP).

Inductively, define a variable to be true if it occurs positively in a
clause all of whose other variables are true.

A Horn formula is satisfiable iff this inductively defined assignment
satisfies the formula.
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HORN-SAT and 2-SAT (Part 1 Cont’d)

For the inductive definition, let

ϕ(R , x) ≡ (∃c)(P(c , x) ∧ (∀y .N(c , y))R(y)).
Then let T ≡ (LFPϕ).
Then,

HORN-SAT ≡ (∀c)(∃x)((P(c , x) ∧T (x)) ∨ (N(c , x) ∧ ¬T (x))).
We know REACHa is complete for P via quantifier-free reductions.

So the complementary problem REACHa is complete for co-P = P.

To show that HORN-SAT is complete for P it therefore suffices to
show that

REACHa ≤qf HORN-SAT.
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HORN-SAT and 2-SAT (Part 1 Cont’d)

We must show that

REACHa ≤qf HORN-SAT.

The idea of the reduction is simple.

Let G be an alternating graph.

REACHa remains complete when graphs are restricted to outdegree
two.

So we assume that the outdegree of G is two.

Formula I(G) consists of the following clauses:
t;
(e ∨ ¬f1 ∨ ¬f2) where e is a universal node and has edges to f1 ≠ f2;
(e ∨ ¬f1) where there is an edge from e to f1 and e is existential;
¬s.

I is quantifier-free definable.

Moreover, I(G) ∈ HORN-SAT iff G ∈ REACHa.
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HORN-SAT and 2-SAT (Part 2)

2. 2-SAT is in NL because a clause with two literals, ℓ1 ∨ ℓ2, can be
understood as two edges in a graph, ℓ1 → ℓ2, ℓ2 → ℓ1.

Let 2-CNF be the set of CNF formulas that have at most two literals
per clause.

Thus, 2-SAT = SAT ∩ 2-CNF.

We can show that a 2-CNF formula ϕ is satisfiable iff there is no
variable x for which there is a path in the corresponding graph from x

to x and from x to x .

We now write this in FO(TC).

Suppose (x ,0) encodes literal x and (x ,1) encodes x .
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Complementation and Transitive Closure Restrictions of SO

HORN-SAT and 2-SAT (Part 2 Cont’d)

Formula δ encodes the edges from literal to literal,

Occur(c , x ,b) ≡ (b = 0 ∧ P(c , x)) ∨ (b = 1 ∧N(c , x));
δ(x ,b, x ′,b′) ≡ (∃c)(Occur(c , x ,1 − b)

∧Occur(c , x ′,b′) ∧ x ≠ x ′).
PATH is the transitive closure of this edge relation.

PATH(u,d ,u′,d ′) ≡ (TCxbx ′b′δ)(u,d ,u′,d ′);
2-SAT ≡ (∀x)¬(PATH(x ,0, x ,1)

∧ PATH(x ,1, x ,0)).
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Complementation and Transitive Closure Restrictions of SO

HORN-SAT and 2-SAT (Part 2 Cont’d)

We know that REACH is complete for NL via quantifier-free
reductions.

The completeness of 2-SAT will follow when we show that

REACH ≤qf 2-SAT.

Given a graph G , the boolean formula I(G) will have the following
clauses:

s;
¬a ∨ b, when (a,b) is an edge of G ;
¬t.

I is quantifier-free definable.

Moreover, I(G) ∈ 2-SAT iff G ∈ REACH.

It follows that HORN-SAT and 2-SAT are complete via quantifier-free
reductions.
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Using SO-Horn and SO-Krom Formulas

The proof of the proposition also shows how to express:

The negation of the boolean query REACHa as a SO-Horn formula.

REACHa ≡ (∃T 1)(∀ef1f2)(T (t) ∧ ¬T (s)∧
(T (e)∨ ¬T (f1) ∨ A(e) ∨ ¬E(e, f1))∧
(T (e)∨ ¬T (f1) ∨ ¬T (f2) ∨ ¬A(e) ∨ f1 = f2
∨¬E(e, f1) ∨ ¬E(e, f2) ∨ ¬f1 ∨ ¬f2)).

The negation of the boolean query REACH as a SO-Krom formula.

REACH ≡ (∃T 1)(∀ab)(T (s)∧ ¬T (t)
∧ (T (b) ∨ ¬T (a)∨ ¬E(a,b))).
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SO-Horn and SO-Krom Collapse to SO∃ Parts

Lemma

The following equations hold for all sets of structures - finite or infinite:

1. SO-Horn = SO∃-Horn;

2. SO-Krom = SO∃-Krom.

It suffices to show that Horn or Krom formulas of the form

Ψ ≡ (∀P)(∃Q1⋯Qr)(∀z)α
are equivalent to SO∃-Horn and SO∃-Krom formulas respectively.
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SO-Horn Collapses to SO∃ Part (Claim)

In the Horn case we first observe the following.

Claim: Consider the Horn formula

Ψ ≡ (∀P)(∃Q1⋯Qr)(∀z)α.
If Ψ holds for every P that is false on at most one tuple, then Ψ holds
(for every P).

Suppose P has arity k .

For every k-tuple y , let Py be the predicate that is:
False at y ;
True at all other points of ∣A∣k .

By hypothesis, for all y , there exist predicates Q
y
, such that,

(A,Py ,Q
y) ⊧ (∀z)ϕ.
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SO-Horn Collapses to SO∃ Part (Claim Cont’d)

For every predicate P ≠ ∣A∣k , we construct the predicates

Qi = ⋂
y∉P

Q
y
i
.

We claim that (A,P ,Q) ⊧ (∀z)ϕ.
Suppose, to the contrary, (A,P ,Q) /⊧ (∀z)ϕ.
So there exist:

A relation P ≠ ∣A∣k ;
A clause c of ϕ;
An assignment a ∶ {z1, . . . , zs}→ ∣A∣,

such that A ⊧ ¬c(a,P ,Q).
We show that there exists y , such that c(a,Py ,Q

y) is also false.

Suppose the head of c(a) is P(u).
Then we take y = u ∉ P .
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SO-Horn Collapses to SO∃ Part (Claim Cont’d)

Suppose the head of c(a) is Qi(u).
Then choose a y ∉ P , such that u ∉ Qy

i
.

Such a y must exist because u ∉ Qi .

Otherwise (cases where head is empty or an atom R(u), where R

belongs to the vocabulary of A), take an arbitrary y ∉ P .

The head of c(a,Py ,Q
y) is clearly false.

Note that the atom P(y) does not occur in the body of c(a,P ,Q).
This is because y ∉ P and all atoms in the body of c(a,P ,Q) are true.
Indeed, all other atoms of the form P(v) that might occur in the
body of the clause remain true also for Py .

Moreover, every atom Qi(v) in the body remains also true if Qi is
replaced by Q

y
i
(because Qi ⊆ Q

y
i
).

This implies that the clause c(a,Py ,Q
y) is false.

Thus, (A,Py ,Q
y) ⊧ ¬(∀z)ϕ, contradicting the hypothesis.
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SO-Horn Collapses to SO∃ Part (Cont’d)

By the Claim, we can replace P by either the true relation, or the
relation that is true everywhere but on a fixed tuple u.

We start with

Ψ ≡ (∃Q1⋯Qr)(∀z)α((x = x)/P(x))
∧ (∀u)(∃Q1⋯Qr)(∀z)α((x ≠ u)/P(x)).

Then, we transform the conjunction into an equivalent formula in
SO∃-Horn,

Ψ ≡ (∃Q1⋯Qr)(∀u)(∀z)(α(true/P) ∧ α(¬u/P)).

George Voutsadakis (LSSU) Descriptive Complexity December 2024 82 / 87



Complementation and Transitive Closure Restrictions of SO

SO-Krom Collapse to SO∃ Part

We now turn to the Krom case.

We introduce the notation
A

Ψ
→ B

to mean that:

There is a path in the graph determined by Ψ from literal A to literal B;
All intermediate literals are existential, i.e., Q-literals.

We have the following generalization of the satisfaction condition
described in the proof of Part 2 of the preceding proposition.
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SO-Krom Collapse to SO∃ Part (Claim)

Claim: A ∀∃-Krom formula

Ψ ≡ ∀X1⋯∀Xm∃Y1⋯∃Ynϕ(X ,Y ),
where ϕ is a Krom formula, is false iff at least one of the following
holds:

1. There are distinct ∀ literals X ,X ′ such that X
Ψ
→ X ′;

2. There is an ∃ literal Y such that Y
Ψ
→ ¬Y and ¬Y

Ψ
→ Y .

It follows from this Claim that Ψ is equivalent to the SO∃-Krom
formula in which P is replaced by relations that are false at at most
two tuples.

This allows using a technique similar to the SO-Horn case.
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SO-Krom Collapse to SO∃ Part (Claim Cont’d)

Any of the two conditions implies that Ψ is false.

Assume, conversely, that Ψ is false.

Then, there exists ε ∶ {X1, . . . ,Xm}→ {0,1}, such that

ϕ′ ≡ ϕ(ε,Y )
is unsatisfiable.

Suppose ϕ(ε,Q) is false because it contains a clause already
interpreted false by ε.

This clause is equivalent to X → X ′, for distinct ∀ literals X and X ′.

So, in this case, Condition 1 holds.

Otherwise, by the propositional case, there exists an ∃ literal Y , with

¬Y
ϕ′

→ Y and Y
ϕ′

→ ¬Y .
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SO-Krom Collapse to SO∃ Part (Claim Cont’d)

That is, there exists a sequence Z0,Z1, . . . ,Zℓ of ∃ literals, such that:

Z0 = Zℓ = Y and Zk = ¬Y , for some k , 0 < k < ℓ.
All implications Zi → Zi+1 are equivalent to some clause of ϕ′.

If Y
ϕ
→ ¬Y and ¬Y

ϕ
→ Y , then Condition 2 s satisfied.

Otherwise, take the last implication Zi → Zi+1 not occurring in ϕ.

Then Zi = ¬Zi+1 and ϕ contains a clause X → Zi+1, where X is a ∀
literal, with ε(X ) = 1.

It follows that X
ϕ
→ Y .

Similarly, we infer that there exists a ∀ literal X ′, such that

¬X ′
ϕ
→ ¬Y and ε(¬X ′) = 1.

In this case X
ϕ
→ X ′ and X ≠ X ′, since ε(X ) = ε(¬X ′) = 1.

Hence, Condition 1 is satisfied.
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Characterizations of Polynomial Time and Logspace

Theorem

The following equations hold for finite structures that include a successor
relation:

1. SO-Horn = P;

2. SO-Krom = NL.

We have seen that:
HORN-SAT is complete for P via quantifier-free reductions;
2-SAT is complete for NL via quantifier-free reductions.

These, together with the lemma, show that SO-Horn ⊆ P and
SO-Krom ⊆ NL.

We have also seen that SO-Horn and SO-Krom express problems that
are complete for P and NL, respectively, via quantifier-free reductions.

One, therefore, must show that SO-Horn and SO-Krom are closed
under quantifier-free reductions.
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