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Subsection 1

The Notion of a Dynamical System
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Dynamical Systems With Discrete Time

Definition

Any map f : X → X is called a dynamical system with discrete time or
simply a dynamical system.

We define recursively

f n+1 = f ◦ f n, for each n

We also write f 0 = Id, where Id is the identity map.

Clearly,
f m+n = f m ◦ f n, for every m, n ∈ N0,

where N0 = N ∪ {0}.
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Additional Notation for Invertible Maps

Let f : X → X be a dynamical system.

If f is invertible, we define

f −n = (f −1)n, for each n ∈ N.

In the case of invertible f ,

f m+n = f m ◦ f n, for every m, n ∈ Z.
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Pair of Dynamical Systems

Consider dynamical systems

f : X → X and g : Y → Y .

Define a new dynamical system

h : X × Y → X × Y

by
h(x , y) = (f (x), g(y)).

Note that if f and g are invertible, then the map h is also invertible.

Its inverse is given by

h−1(x , y) = (f −1(x), g−1(y)).
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Semiflows and Flows

Definition

A semiflow is a family of maps ϕt : X → X for t ≥ 0, such that:

ϕ0 = Id;

ϕt+s = ϕt ◦ ϕs , for every t, s ≥ 0.

A flow is a family of maps ϕt : X → X for t ∈ R, such that:

ϕ0 = Id;

ϕt+s = ϕt ◦ ϕs , for every t, s ∈ R.

George Voutsadakis (LSSU) Dynamical Systems May 2024 7 / 55



Basic Notions and Examples The Notion of a Dynamical System

Dynamical Systems With Continuous Time

Definition

A dynamical system with continuous time or simply a dynamical

system is a family of maps ϕt that is a flow or a semiflow.

We note that if ϕt is a flow, then

ϕt ◦ ϕ−t = ϕ−t ◦ ϕt = ϕ0 = Id.

Thus, in the case of a flow, each map ϕt is invertible and its inverse
is given by

ϕ−1
t = ϕ−t .
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Example

Given y ∈ Rn, consider the maps ϕt : R
n → Rn defined by

ϕt(x) = x + ty , t ∈ R, x ∈ Rn.

Clearly, ϕ0 = Id.

Moreover,
ϕt+s(x) = x + (t + s)y

= (x + sy) + ty

= (ϕt ◦ ϕs)(x).

In other words, the family of maps ϕt is a flow.
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Pair of Flows

Consider two flows

ϕt : X → X and ψt : Y → Y , t ∈ R.

The family of maps

αt : X × Y → X × Y

defined, for each t ∈ R, by

αt(x , y) = (ϕt(x), ψt(y))

is also a flow.

Moreover,
α−1
t (x , y) = (ϕ−t(x), ψ−t(y)).

The expression dynamical system is used to refer both to dynamical
systems with discrete time and to ones with continuous time.
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Subsection 2

Examples With Discrete Time
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The Circle

The circle S1 is defined to be R/Z.

This is the real line with two points x , y ∈ R identified if x − y ∈ Z.

In other words, S1 = R/Z = R/∼, where ∼ is the equivalence
relation on R defined by

x ∼ y iff x − y ∈ Z.
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The Circle (Cont’d)

The corresponding equivalence classes, which are the elements of S1,
can be written in the form

[x ] = {x +m : m ∈ Z}.

In particular, one can introduce the operations

[x ] + [y ] = [x + y ] and [x ]− [y ] = [x − y ].

One can also identify S1 with

[0, 1]/{0, 1},

where the endpoints of the interval [0, 1] are identified.
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Rotations of the Circle

Definition

Given α ∈ R, we define the rotation Rα : S1 → S1 by

Rα([x ]) = [x + α].

Sometimes, we also write

Rα(x) = x + α mod 1,

thus identifying [x ] with its representative in
the interval [0, 1).

The map Rα could also be called a
translation of the interval.

Rα : S1 → S1 is invertible, with inverse R−1
α

= R−α.
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Periodic Points

Definition

Let f : X → X be a map and q ∈ N.

A point x ∈ X is said to be a q-periodic point of f if f q(x) = x ;

A point x ∈ X is a periodic point of f if it is q-periodic for some
q ∈ N.

Note that fixed points, i.e., points x ∈ X , such that f (x) = x , are
q-periodic, for any q ∈ N.

Moreover, a q-periodic point is kq-periodic for any k ∈ N.

Definition

A periodic point is said to have period q if:

It is q-periodic;

It is not ℓ-periodic for any ℓ < q.
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Periodic Points of the Rotations of the Circle

Proposition

Given α ∈ R:

1. if α ∈ R\Q, then Rα has no periodic points;

2. if α = p
q
∈ Q with p and q coprime, then all points of S1 are periodic

for Rα and have period q.

Note that [x ] ∈ S1 is q-periodic if and only if [x + qα] = [x ].

That is, if and only if qα ∈ Z.

Both properties follow easily from this observation.
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Expanding Maps of the Circle

Definition

Given an integer m > 1, the expanding map Em : S1 → S1 is defined by

Em(x) = mx mod 1.

Example:
For m = 2, we have

E2(x) =

{

2x , if x ∈ [0, 12),
2x − 1, if x ∈ [12 , 1).
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Periodic Points of the Expanding Maps

We determine the periodic points of the expanding map Em.

Note that, for x ∈ S1,

Eq
m(x) = mqx mod 1.

So a point x is q-periodic if and only if

mqx − x = (mq − 1)x ∈ Z.

Hence, the q-periodic points of the expanding map Em are

x =
p

mq − 1
, for p = 1, 2, . . . ,mq − 1.
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Periodic Points of the Expanding Maps (Cont’d)

Let nm(q) be the number of periodic points of Em with period q.

This number can be computed easily for each given q.

For example, if q is prime, then

nm(q) = mq −m.
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The n-Torus

Given n ∈ N, the n-torus or simply the torus is defined to be

Tn = Rn/Zn = Rn/∼,

where ∼ is the equivalence relation on Rn defined by

x ∼ y iff x − y ∈ Zn.

The elements of Tn are thus the equivalence classes

[x ] = {x + y : y ∈ Zn},

with x ∈ Rn.
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The Endomorphism of the Torus TA

Let A be an n× n matrix with entries in Z.

Definition

The endomorphism of the torus TA : Tn → Tn is defined by

TA([x ]) = [Ax ], for [x ] ∈ Tn.

We say that TA is the endomorphism of the torus induced by A.

Since A is a linear transformation,

x − y ∈ Zn implies Ax − Ay ∈ Zn.

So
y ∈ [x ] implies Ay ∈ [Ax ].

Hence, TA is well defined.
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Invertibility of the Endomorphism

In general, TA may not be invertible, even if A is invertible.

When TA is invertible, we also say that it is the automorphism of

the torus induced by A.

Example: We represent in the figure the automorphism of the torus

T2 induced by the matrix A =

(

2 1
1 1

)

.
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Periodic Points of the Automorphisms of the Torus

Proposition

Let TA : Tn → Tn be an automorphism of the torus induced by a matrix A

without eigenvalues with modulus 1. Then the periodic points of TA are
the points with rational coordinates, i.e., the elements of Qn/Zn.

Let [x ] = [(x1, . . . , xn)] ∈ Tn be a periodic point.

Then, there exist q ∈ N and y = (y1, . . . , yn) ∈ Zn, such that

Aqx = x + y .

Equivalently, (Aq − Id)x = y .

By hypothesis, A has no eigenvalues with modulus 1.

Hence, the matrix Aq − Id is invertible.

So we can write x = (Aq − Id)−1y .

Also, Aq − Id has only integer entries.

Hence, each entry of (Aq − Id)−1 is a rational number.

Thus, x ∈ Qn.
George Voutsadakis (LSSU) Dynamical Systems May 2024 23 / 55



Basic Notions and Examples Examples With Discrete Time

Periodic Points of the Automorphisms (Cont’d)

Now we assume that [x ] = [(x1, . . . , xn)] ∈ Qn/Zn.

Let (x1, . . . , xn) = (p1
r
, . . . , pn

r
), with p1, . . . , pn ∈ {0, 1, . . . , r − 1}.

Since A has only integer entries, for each q ∈ N, we have

Aq(x1, . . . , xn) =

(

p′1
r
, . . . ,

p′n
r

)

+ (y1, . . . , yn)

for some p′1, . . . , p
′
n ∈ {0, 1, . . . , r − 1} and (y1, . . . , yn) ∈ Zn.

Now the number of points of the form of x is rn.

So, there exist q1, q2 ∈ N, with q1 6= q2, such that

Aq1(x1, . . . , xn)− Aq2(x1, . . . , xn) ∈ Zn.

Assuming, without loss of generality, that q1 > q2, we obtain

Aq1−q2(x1, . . . , xn)− (x1, . . . , xn) ∈ Zn.

Thus, T q1−q2
A ([x ]) = [x ].
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Limit of the Proposition

The preceding proposition cannot be extended to arbitrary
endomorphisms of the torus.

Example: Consider the endomorphism of the torus TA : T2 → T2

induced by the matrix

A =

(

3 1
1 1

)

.

We have detA = 2.

So TA is not an automorphism.

Observe that

TA

(

0,
1

2

)

=

(

1

2
,
1

2

)

, TA

(

1

2
,
1

2

)

= (0, 0), TA(0, 0) = (0, 0).

The rational coordinate points (0, 12) and (12 ,
1
2) are not periodic.

On the other hand, A has eigenvalues 2 +
√
2 and 2−

√
2.

None of these eigenvalues has modulus 1.
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Subsection 3

Examples With Continuous Time
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Autonomous Differential Equations

An autonomous (ordinary) differential equation is a differential
equation not depending explicitly on time.

Such equations give rise naturally to the concept of a flow.

Proposition

Let f : Rn → Rn be a continuous function such that, given x0 ∈ Rn, the
initial value problem

{

x ′ = f (x),
x(0) = x0

has a unique solution x(t, x0) defined for t ∈ R. Then the family of maps
ϕt : R

n → Rn defined, for each t ∈ R, by

ϕt(x0) = x(t, x0)

is a flow.
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Autonomous Differential Equations (Cont’d)

Given s ∈ R, consider the function y : R → Rn defined by

y(t) = x(t + s, x0).

We have:

y(0) = x(s, x0);
For t ∈ R,

y ′(t) = x ′(t + s, x0) = f (x(t + s, x0)) = f (y(t)).

So, the function y is also a solution of the equation x ′ = f (x).

By hypothesis, the initial value problem has a unique solution.

It follows that

y(t) = x(t, y(0)) = x(t, x(s, x0)).
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Autonomous Differential Equations (Cont’d)

We obtained
y(t) = x(t, y(0)) = x(t, x(s, x0)).

Equivalently,
x(t + s, x0) = x(t, x(s, x0)),

for t, s ∈ R and x0 ∈ Rn.

It follows that
ϕt+s = ϕt ◦ ϕs .

Moreover,
ϕ0(x0) = x(0, x0) = x0.

That is, ϕ0 = Id.

This shows that the family of maps ϕt is a flow.
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Example

Consider the differential equation

{

x ′ = −y ,
y ′ = x .

Suppose (x , y) = (x(t), y(t)) is a solution.

Then
(x2 + y2)′ = 2xx ′ + 2yy ′ = − 2xy + 2yx = 0.

Thus, there exists a constant r ≥ 0, such that

x(t)2 + y(t)2 = r2.
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Example (Cont’d)

Write
x(t) = r cos θ(t), y(t) = r sin θ(t),

where θ is some differentiable function.

Now x ′ = −y yields

−rθ′(t) sin θ(t) = −r sin θ(t).

Hence, θ′(t) = 1.

So there exists a constant c ∈ R, such that

θ(t) = t + c .

Now write (x0, y0) = (r cos c , r sin c) ∈ R2.
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Example (Cont’d)

We obtain
(

x(t)
y(t)

)

=

(

r cos (t + c)
r sin (t + c)

)

=

(

cos t · r cos c − sin t · r sin c
sin t · r cos c + cos t · r sin c

)

=

(

cos t − sin t
sin t cos t

)(

x0
y0

)

.

Notice that

R(t) =

(

cos t − sin t
sin t cos t

)

is a rotation matrix for each t ∈ R.

Moreover, R(0) = Id.
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Example (Cont’d)

It follows from the proposition that the family of maps ϕt : R
2 → R2

defined by

ϕt

(

x0
y0

)

= R(t)

(

x0
y0

)

is a flow.

Incidentally, the identity ϕt+s = ϕt ◦ ϕs is equivalent to the identity
between rotation matrices

R(t + s) = R(t)R(s).
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Example

Consider the differential equation

{

x ′ = y ,
y ′ = x .

Suppose (x , y) = (x(t), y(t)) is a solution.

Then
(x2 − y2)′ = 2xx ′ − 2yy ′ = 2xy − 2yx = 0.

Thus, there exists a constant r ≥ 0, such that

x(t)2 − y(t)2 = r2 or x(t)2 − y(t)2 = −r2.
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Example: Case I

We consider the first case

x(t)2 − y(t)2 = r2.

We can write

x(t) = r cosh θ(t) and y(t) = r sinh θ(t),

where θ is some differentiable function.

The equation x ′ = y yields

rθ′(t) sinh θ(t) = r sinh θ(t).

Hence, θ(t) = t + c , for some constant c ∈ R.

Write, also (x0, y0) = (r cosh c , r sinh c) ∈ R2.
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Example: Case I (Cont’d)

Then
(

x(t)
y(t)

)

=

(

r cosh (t + c)
r sinh (t + c)

)

=

(

cosh t · r cosh c + sinh t · r sinh c
sinh t · r cosh c + cosh t · sinh c

)

=

(

cosh t sinh t
sinh t cosh t

)(

x0
y0

)

= S(t)

(

x0
y0

)

,

where S(t) =

(

cosh t sinh t
sinh t cosh t

)

.
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Example: Case II

We now consider the second case

x(t)2 − y(t)2 = −r2.

We can write

x(t) = r sinh θ(t) and y(t) = r cosh θ(t).

As in the first case, we find that

θ(t) = t + c ,

for some constant c ∈ R.

Write (x0, y0) = (r sinh c , r cosh c) ∈ R2.
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Example: Case II (Cont’d)

Then
(

x(t)
y(t)

)

=

(

r sinh (t + c)
r cosh (t + c)

)

=

(

sinh t · r cosh c + cosh t · r sinh c
cosh t · r cosh c + sinh t · r sinh c

)

= S(t)

(

x0
y0

)

.

Notice, also, that S(0) = Id.
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Example (Cont’d)

It follows that the family of maps ψt : R
2 → R2 defined by

ψt

(

x0
y0

)

= S(t)

(

x0
y0

)

is a flow.

In particular, it follows from the identity ψt+s = ψt ◦ ψs that

S(t + s) = S(t)S(s), for t, s ∈ R.
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From Continuous to Discrete Time

Let ϕt : X → X be a flow.

For each T ∈ R, consider the map

f = ϕT : X → X .

f is a dynamical system with discrete time.

We note that f is invertible.

Its inverse is given by f −1 = ϕ−T .

Similarly, let ϕt : X → X be a semiflow.

Consider, for each T ≥ 0, the map

f = ϕT : X → X .

It is a dynamical system with discrete time.
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Suspension Semi-Flows: The Set Y

Let f : X → X be a dynamical system with discrete time.

Let τ : X → R+ be a function.

Define
Z = {(x , t) ∈ X ×R : 0 ≤ t ≤ τ(x)}.

Consider the set Y obtained from Z by identifying the points
(x , τ(x)) and (f (x), 0), for each x ∈ R.

More precisely, we define
Y = Z/∼,

where ∼ is the equivalence relation on Z defined by

(x , t) ∼ (y , s) iff y = f (x), t = τ(x) and s = 0.
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Suspension Semi-Flows

Definition

The suspension semiflow ϕt : Y → Y over

f with height τ is defined for each t ≥ 0 by

ϕt(x , s) = (x , s + t), s + t ∈ [0, τ(x)].

Each suspension semiflow is indeed a semiflow.

If f is invertible, the family of maps ϕt , for t ∈ R, is a flow.

It is then called the suspension flow over f with height τ .
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Poincaré Sections

Given a semiflow ϕt : Y → Y , sometimes one can construct a
dynamical system with discrete time f : X → X , such that the
semiflow can be seen as a suspension semiflow over f .

Definition

A set X ⊆ Y is said to be a Poincaré sec-

tion for a semiflow ϕt : Y → Y if

τ(x) := inf {t > 0 : ϕt(x) ∈ X} ∈ R+,

for each x ∈ X , with the convention that
inf ∅ = +∞. The number τ(x) is called the
first return time of x to the set X .

Thus, the first return time to X is a function τ : X → R+.

The definition assumes that each point of X returns to X .
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Poincaré Maps

Given a Poincaré section, one can introduce a corresponding Poincaré
map.

Definition

Given a Poincaré section X for a semiflow ϕt , we define its Poincaré map

f : X → X by
f (x) = ϕ

τ(x)(x).

George Voutsadakis (LSSU) Dynamical Systems May 2024 44 / 55



Basic Notions and Examples Examples With Continuous Time

Differential Equations on the Torus T2

We also consider a class of differential equations on T2.

Recall that two vectors x , y ∈ R2 represent the same point of the
torus T2 if and only if x − y ∈ Z2.

Example: Let f , g : R2 → R be C 1 functions such that, for all
x , y ∈ R, k , ℓ ∈ Z:

f (x + k , y + ℓ) = f (x , y);
g(x + k , y + ℓ) = g(x , y).

Then the differential equation in the plane R2 given by

{

x ′ = f (x , y),
y ′ = g(x , y)

can be seen as a differential equation on T2.

It has unique solutions (that are global, that is, they are defined for
t ∈ R since the torus is compact).
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Differential Equations on the Torus T2 (Cont’d)

Let ϕt : T
2 → T2 be the corresponding flow.

Assume that f takes only positive values.

Then each solution ϕt(0, z) = (x(t), y(t)) of the equation crosses
infinitely often the line segment x = 0.

Thus, x = 0 is a Poincaré section for ϕt .

The first intersection (for t > 0) occurs at the
time

Tz = inf {t > 0 : x(t) = 1}.

One can use the C 1 dependence of the solutions of a differential
equation on the initial conditions to show that h is a diffeomorphism.

This is, a bijective differentiable map with differentiable inverse.
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Subsection 4

Invariant Sets
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Invariant Sets

Definition

Given a map f : X → X , a set A ⊆ X is said to be:

1. f -Invariant if f −1A = A, where

f −1A = {x ∈ X : f (x) ∈ A};

2. Forward f -invariant if f (A) ⊆ A;

3. Backward f -invariant if f −1A ⊆ A.
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Example

Consider the rotation Rα : S1 → S1.

Consider the set
γ(x) = {Rn

α
(x) : n ∈ Z}.

For α ∈ Q, it is finite and Rα-invariant.

More generally, if α ∈ Q, then a nonempty set A ⊆ X is Rα-invariant
if and only if it is a union of sets of the form γ(x).

For example, the set Q/Z is Rα-invariant.

For α ∈ R\Q, each set γ(x) is also Rα-invariant, but now it is infinite.

Again, a nonempty set A ⊆ X is Rα-invariant if and only if it is a
union of sets of the form γ(x).

One can show that each set γ(x) is dense in S1.

Thus, the closed Rα-invariant sets are ∅ and S1.

George Voutsadakis (LSSU) Dynamical Systems May 2024 49 / 55



Basic Notions and Examples Invariant Sets

Example

Now we consider the expanding map
E4 : S

1 → S1, given by

E4(x) =















4x , if x ∈ [0, 1/4),
4x − 1, if x ∈ [1/4, 2/4),
4x − 2, if x ∈ [2/4, 3/4),
4x − 3, if x ∈ [3/4, 1).

For example, the set

A =
⋂

n≥0

E−n
4 ([0, 1/4] ∪ [2/4, 3/4])

is forward E4-invariant.

We note that A is a Cantor set, that is, A is a closed set without
isolated points and containing no intervals.
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Orbits and Semiorbits

Definition

For a map f : X → X , given a point x ∈ X , the set

γ+(x) = γ+f (x) = {f n(x) : n ∈ N0}

is called the positive semiorbit of x .
Moreover, when f is invertible,

γ−(x) = γ−
f
(x) = {f −n(x) : n ∈ N0}

is called the negative semiorbit of x .
The set

γ(x) = γf (x) = {f n(x) : n ∈ Z}
is called the orbit of x .
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Orbits and Invariance

Claim: When f is invertible, a nonempty set A ⊆ X is f -invariant if
and only if it is a union of orbits.

By definition, A ⊆ X is f -invariant if and only if

x ∈ A iff x ∈ f −1(A) iff f (x) ∈ A.

By induction, and f ’s invertibility, this is equivalent to

x ∈ A iff {f n(x) : n ∈ Z} ⊆ A iff γ(x) ∈ A.

Thus, a nonempty set A ⊆ X is f -invariant if and only if

A =
⋃

x∈A

γ(x).
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Invariance for Flows and Semiflows

Definition

Given a flow Φ = (ϕt)t∈R of X , a set A ⊆ X is said to be Φ-invariant if

ϕ−1
t A = A, for t ∈ R.

Given a semiflow Φ = (ϕt)t≥0 of X , a set A ⊆ X is said to be
Φ-invariant if

ϕ−1
t A = A, for t ≥ 0.

In the case of flows, since ϕ−1
t = ϕ−t for t ∈ R, a set A ⊆ X is

Φ-invariant if and only if

ϕt(A) = A, for t ∈ R.
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Example

Consider the differential equation

{

x ′ = 2y3,
y ′ = −3x .

Each solution (x , y) = (x(t), y(t)) satisfies

(3x2 + y4)′ = 6xx ′ + 4y3y ′

= 12xy3 − 12y3x = 0.

Consider, for each set I ⊆ R+, the union

A =
⋃

a∈I

{(x , y) ∈ R2 : 3x2 + y4 = a}.

It is clearly invariant with respect to the flow determined by the
differential equations.
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Orbits and Semiorbits for a Semiflow

Definition

For a semiflow Φ = (ϕt)t≥0 of X , given a point x ∈ X , the set

γ+(x) = γ+Φ (x) = {ϕt(x) : t ≥ 0}

is called the positive semiorbit of x .
Moreover, for a flow Φ = (ϕt)t∈R of X ,

γ−(x) = γ−Φ (x) = {ϕ−t(x) : t ≥ 0}

is called the negative semiorbit of x . Further, the set

γ(x) = γΦ(x) = {ϕt(x) : t ∈ R}

is called the orbit of x .
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