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Basic Notions and Examples

Any map f : X — X is called a dynamical system with discrete time or
simply a dynamical system.

o We define recursively
f1tl — fo f", for each n

o We also write fO = Id, where Id is the identity map.

o Clearly,
FEN — fMo £ for every m, n € Ny,

where INg = IN U {0}.
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Basic Notions and Examples

o Let f: X — X be a dynamical system.

o If f is invertible, we define
f=" = (f"1)", for each n € IN.
o In the case of invertible f,

fmEn — fMo f7 for every m,n € Z.
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Basic Notions and Examples

o Consider dynamical systems
f: X=X and g: Y==Y.
o Define a new dynamical system
h:XxY—=>XxY

by
h(x,y) = (f(x),g(y))-

o Note that if f and g are invertible, then the map h is also invertible.

o lts inverse is given by

h(x,y) = (F(x),g ().
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Basic Notions and Examples

A semiflow is a family of maps ¢; : X — X for t > 0, such that:

o o = Id;
O Yits = Pt O s, for every t,s > 0.
A flow is a family of maps ¢; : X — X for t € R, such that:
o o = Id;
0 Yirs = Pt O s, for every t; s € R.
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Basic Notions and Examples

A dynamical system with continuous time or simply a dynamical
system is a family of maps ¢, that is a flow or a semiflow.

o We note that if ¢; is a flow, then
Ptop_t = p_t 0wt = o = Id.
o Thus, in the case of a flow, each map ¢ is invertible and its inverse

is given by
90;1 = P—t-
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Basic Notions and Examples

o Given y € R", consider the maps ¢; : R” — R" defined by
pr(x) =x+ty, teR, xeR"

Clearly, ¢o = Id.

Moreover,

vrys(x) = x+(t+s)y
(x + sy) + ty
= (pr 0 ps)(x).

In other words, the family of maps ¢; is a flow.
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Basic Notions and Examples

o Consider two flows
pr: X=X and ¢Y:: Y=Y, tel.
o The family of maps
ar: X XY —=>XxY

defined, for each t € R, by
at(x,y) = (pe(x), ¥e(y))

is also a flow.
o Moreover,
a; M (x,y) = (poe(x), -t (y)).
o The expression dynamical system is used to refer both to dynamical
systems with discrete time and to ones with continuous time.
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Basic Notions and Examples

o The circle S! is defined to be R/Z.
o This is the real line with two points x, y € R identified if x — y € Z.

o In other words, S' = R/Z = R/~, where ~ is the equivalence
relation on R defined by

x~y iff x—yeZ.
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Basic Notions and Examples

o The corresponding equivalence classes, which are the elements of S,
can be written in the form

x| ={x+m:meZ}.
o In particular, one can introduce the operations
X+ D] =[x+yl and [x]=[y] =[x -yl
o One can also identify S with
[0,1]/{0, 1},

where the endpoints of the interval [0, 1] are identified.
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Basic Notions and Examples

Given o € R, we define the rotation R, : S — S! by

Ro([x]) = [x + of.

o Sometimes, we also write

Ra(x) =x+a mod 1,

P —

thus identifying [x] with its representative in
the interval [0, 1).

o The map R, could also be called a

translation of the interval.

o R, : S — S1isinvertible, with inverse Rojl =R_,.
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Basic Notions and Examples

Let f: X — X be a map and g € IN.
o A point x € X is said to be a g-periodic point of f if f9(x) = x;

o A point x € X is a periodic point of f if it is g-periodic for some
g€ IN.

o Note that fixed points, i.e., points x € X, such that f(x) = x, are
g-periodic, for any g € IN.

o Moreover, a g-periodic point is kg-periodic for any k € IN.

A periodic point is said to have period g if:

o It is g-periodic;
o It is not ¢-periodic for any ¢ < q.
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Basic Notions and Examples

Given a € R:
if « € R\Q, then R, has no periodic points;

if = g € Q with p and g coprime, then all points of S* are periodic
for R, and have period q.

o Note that [x] € St is g-periodic if and only if [x + ga] = [x].
That is, if and only if ga € Z.

Both properties follow easily from this observation.
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Basic Notions and Examples

Given an integer m > 1, the expanding map E,, : S* — S is defined by

Em(x) = mx mod 1.

Example: 20
For m = 2, we have '

[ 2x, if x € [0, 3),
Ea(x) = { 2x—1, ifxeli )
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Basic Notions and Examples

o We determine the periodic points of the expanding map E,.
o Note that, for x € S,

El(x) = mIx mod 1.
o So a point x is g-periodic if and only if
mix —x=(m?—1)x € Z.

o Hence, the g-periodic points of the expanding map E,, are

XZLl’ forp=1,2,...,m9 - 1.
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Basic Notions and Examples

o Let nn(q) be the number of periodic points of E,, with period g.
o This number can be computed easily for each given gq.
o For example, if g is prime, then

nm(q) = m? — m.
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Basic Notions and Examples

o Given n € IN, the n-torus or simply the torus is defined to be
T =R"/Z" =R"/~,
where ~ is the equivalence relation on R” defined by
x~y iff x—yelZ".
o The elements of T" are thus the equivalence classes
X = {x+y:yez,

with x € R".
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Basic Notions and Examples

o Let A be an n x n matrix with entries in Z.

The endomorphism of the torus T, : T" — T" is defined by
Ta([x]) = [Ax], for [x] € T".
We say that T, is the endomorphism of the torus induced by A.
o Since A is a linear transformation,
x—y €Z" implies Ax— Ay € Z".

o So
y € [x] implies Ay € [Ax].
o Hence, T, is well defined.
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Basic Notions and Examples

o In general, T4 may not be invertible, even if A is invertible.

o When T, is invertible, we also say that it is the automorphism of
the torus induced by A.
Example: We represent in the figure the automorphism of the torus

T? induced by the matrix A = ( i i )

A([0,11%) A([0,1]%)

A

0,112 e

[o.1)?
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Basic Notions and Examples

Let T4 : T" — T” be an automorphism of the torus induced by a matrix A
without eigenvalues with modulus 1. Then the periodic points of T4 are
the points with rational coordinates, i.e., the elements of Q"/Z".

o Let [x] =[(x1,.-.,%n)] € T" be a periodic point.
Then, there exist g € N and y = (y1,...,¥n) € Z", such that

Al = x +y.

Equivalently, (A9 — Id)x = y.

By hypothesis, A has no eigenvalues with modulus 1.
Hence, the matrix A9 — Id is invertible.

So we can write x = (A9 — Id)~ly.

Also, A9 — Id has only integer entries.

Hence, each entry of (A9 — Id)~! is a rational number.
Thus, x € Q".



Basic Notions and Examples

o Now we assume that [x] = [(x1,...,x,)] € Q"/Z".
Let (x1,...,xn) = (B,...,B2), with py,...,p, €{0,1,...,r —1}.

Since A has only integer entries, for each g € IN, we have

/ /
Alx1, ..o xn) = (p—:,...,%)—i—(yl,...,yn)

for some pi,...,p, €{0,1,...,r—1} and (y1,...,yn) € Z".
Now the number of points of the form of x is r".
So, there exist g1, g2 € IN, with g1 # g», such that

AN (X1, .. Xn) — AP(x1,...,xp) €Z".
Assuming, without loss of generality, that q; > g», we obtain
ANTR(xq oo xp) — (X1, .., %) € Z".

Thus, T3 %([x]) = [«].
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Basic Notions and Examples

o The preceding proposition cannot be extended to arbitrary
endomorphisms of the torus.

Example: Consider the endomorphism of the torus T4 : T? — T?
induced by the matrix
31
A= ( 3 1 ) |
We have detA = 2.
So T, is not an automorphism.
Observe that

T, (o%) - <%%) T, (%%) —(0,0), Ta(0,0) = (0,0),

The rational coordinate points (0, %) and (%, %) are not periodic.

On the other hand, A has eigenvalues 2 + /2 and 2 — /2.
None of these eigenvalues has modulus 1.
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Basic Notions and Examples

o An autonomous (ordinary) differential equation is a differential
equation not depending explicitly on time.

o Such equations give rise naturally to the concept of a flow.

Let f : R" — RR" be a continuous function such that, given xp € R”, the
initial value problem
{ x' = f(x),

x(0) = xp

has a unique solution x(t, xp) defined for t € R. Then the family of maps
vt : R" — R" defined, for each t € R, by

©t(x0) = x(t, x0)

is a flow.
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Basic Notions and Examples

o Given s € R, consider the function y : R — RR" defined by

y(t) = x(t + s,x0).

We have:
o y(0) = x(s, x0);
o Fort e R,

y'(t) = X(t+5,0) = f(x(t +5,%0)) = f(y(t)).

So, the function y is also a solution of the equation x’ = f(x).
By hypothesis, the initial value problem has a unique solution.
It follows that

y(t) = x(t,y(0)) = x(t, x(s, x0))-
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Basic Notions and Examples

o We obtained
y(t) = x(t,¥(0)) = x(t, x(s, x0))-

Equivalently,

X(t + 57X0) = X(t,X(S,Xo)),
for t,s € R and xp € R".
It follows that

Pt+s = Pt © Ps.
Moreover,
vo(x0) = x(0,x0) = xo.

That is, ¢o = Id.
This shows that the family of maps ¢; is a flow.
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Basic Notions and Examples

o Consider the differential equation

X/ =Y,
y' = x.
Suppose (x,y) = (x(t), y(t)) is a solution.

Then
(x2 + y?) = 2xx' + 2yy’ = — 2xy + 2yx = 0.

Thus, there exists a constant r > 0, such that

x(t)? +y(t)? = r2.
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Basic Notions and Examples

o Write
x(t) = rcosf(t), y(t)=rsinf(t),
where 6 is some differentiable function.

Now x’ = —y yields

—rf'(t)sin0(t) = —rsin6(t).
Hence, ¢'(t) = 1.

So there exists a constant ¢ € R, such that
(t)y=t+c.

Now write (xo,y0) = (rcosc, rsinc) € R2.
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Basic Notions and Examples

o We obtain

x(t) B rcos (t + ¢)

(y(r)> N (rsin(t+c)>
cost-rcosc —sint-rsinc

sint-rcosc-l—cost-rsinc)

_ cost —sint X0
a sint  cost yo )
cost —sint
R(t) = .
(t) ( sint  cost )

is a rotation matrix for each t € R.
Moreover, R(0) = Id.

Notice that
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Basic Notions and Examples

o It follows from the proposition that the family of maps ¢; : R? — R?

defined by
X0 X0
= R(t
S0"‘(yo) ()<yo>

Incidentally, the identity ¢:+s = @+ © s is equivalent to the identity
between rotation matrices

is a flow.

R(t +s) = R(t)R(s).
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Basic Notions and Examples

o Consider the differential equation

X'=y,
y' = x.
Suppose (x,y) = (x(t), y(t)) is a solution.
Then

(X2 = y2)' = 2xx' — 2yy’ = 2xy — 2yx = 0.

Thus, there exists a constant r > 0, such that

x(t)?> —y(t)> =r* or x(t)* —y(t)> = —r?
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Basic Notions and Examples

o We consider the first case
x(t)? — y(t)* = r2.
o We can write
x(t) = rcoshf(t) and y(t)= rsinh6(t),

where 0 is some differentiable function.

The equation x’ = y yields
ré’(t)sinh §(t) = rsinh 0(t).

Hence, 6(t) = t + ¢, for some constant ¢ € R.
Write, also (xo, yo) = (rcosh ¢, rsinh ¢) € R?.
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Basic Notions and Examples

o Then

x(t) _ rcosh (t + ¢)
Go) = (i)
_ cosht - rcoshc +sinht-rsinhc
B sinh t - rcosh ¢ + cosh t - sinh ¢ )
_ cosht sinht X0
- (sinht cosht)(yo)
X0

— s 2,

cosht sinht
sinht cosht /'

where 5(t)
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Basic Notions and Examples

o We now consider the second case
x(t)? — y(t)*> = —r2.
We can write
x(t) = rsinh0(t) and y(t) = rcosh(t).
As in the first case, we find that
0(t)=t+c,
for some constant ¢ € R.

Write (xo, o) = (rsinhc, rcosh ¢) € R2.
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Basic Notions and Examples

o Then

x(t) _ rsinh (t + ¢)
(y<t)) B (rcosh<t+c))
sinh t - rcosh ¢ 4 cosh t - rsinh ¢
(coshtorcoshc—i—sinht'rsinhc)

- s0(3)

Notice, also, that S(0) = Id.
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Basic Notions and Examples

o It follows that the family of maps v; : R?> — R? defined by
X0 X0
=5(t
d)t(yo) ()<yo)

In particular, it follows from the identity 1;1s = ¥ 0 15 that

is a flow.

S(t+s) = S(t)S(s), fort,secR.
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Basic Notions and Examples

o Let ¢ : X — X be a flow.
o For each T € R, consider the map

f=pr: X—=>X.

o f is a dynamical system with discrete time.
o We note that f is invertible.

o lts inverse is given by f~1 = ¢_T.

o Similarly, let ¢; : X — X be a semiflow.

o Consider, for each T > 0, the map

f=pr: X=X
o It is a dynamical system with discrete time.
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Basic Notions and Examples

o Let f: X — X be a dynamical system with discrete time.
o Let 7: X — R™ be a function.

o Define
Z={(x,t) e X xR:0<t<7(x)}.

o Consider the set Y obtained from Z by identifying the points
(x,7(x)) and (f(x),0), for each x € R.

o More precisely, we define
Y =2/~

where ~ is the equivalence relation on Z defined by

(x,t) ~(y,s) iff y=f(x), t=7(x)ands=0.
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Basic Notions and Examples

The suspension semiflow ¢; : Y — Y over -
f with height 7 is defined for each t > 0 by

ot(x,s) = (x,s +t), s+t €[0,7(x)]

(5.0 = @(x,0)

(x,0) (f(0,0)

o Each suspension semiflow is indeed a semiflow.
o If f is invertible, the family of maps ;, for t € R, is a flow.

o It is then called the suspension flow over  with height .
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Basic Notions and Examples

o Given a semiflow ¢; : Y — Y, sometimes one can construct a
dynamical system with discrete time f : X — X, such that the
semiflow can be seen as a suspension semiflow over f.

A set X C Y is said to be a Poincaré sec-
tion for a semiflow ¢; : Y — Y if X

7(x) :==inf {t > 0: ps(x) € X} € RT,

for each x € X, with the convention that
inf() = 400. The number 7(x) is called the
first return time of x to the set X.

o Thus, the first return time to X is a function 7: X — R™T.

o The definition assumes that each point of X returns to X.
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Basic Notions and Examples

o Given a Poincaré section, one can introduce a corresponding Poincaré
map.

Given a Poincaré section X for a semiflow ¢;, we define its Poincaré map
f: X — X by

f(X) = QDT(X)(X)‘
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Basic Notions and Examples

o We also consider a class of differential equations on T2,

o Recall that two vectors x, y € R? represent the same point of the
torus T2 if and only if x — y € Z2.

Example: Let f,g : R? = R be C! functions such that, for all
x,y € R, k, L € Z:

o flx+ky+0)="1f(xy)
o gx+k,y+14)=g(xy).
Then the differential equation in the plane R? given by

{ X' =f(x,y),
y' =g(xy)
can be seen as a differential equation on T?2.

It has unique solutions (that are global, that is, they are defined for
t € R since the torus is compact).
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Basic Notions and Examples

o Let ¢; : T? — T? be the corresponding flow.
Assume that f takes only positive values.

Then each solution ¢:(0, z) = (x(t), y(t)) of the equation crosses
infinitely often the line segment x = 0.

Thus, x = 0 is a Poincaré section for ;. ,

The first intersection (for t > 0) occurs at the

time /}f——
T, =inf{t >0:x(t) =1}

/ (1,h(z))

One can use the C! dependence of the solutions of a differential
equation on the initial conditions to show that h is a diffeomorphism.

This is, a bijective differentiable map with differentiable inverse.
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Basic Notions and Examples
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Basic Notions and Examples

Given amap f: X — X, aset AC X is said to be:
f-Invariant if f~1A = A, where

fIA={xe X:f(x) € A}

Forward f-invariant if f(A) C A;
Backward f-invariant if 1A C A.
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Basic Notions and Examples

o Consider the rotation R, : ST — ST
Consider the set
v(x) ={RJ(x): n € Z}.
For a € @, it is finite and R,-invariant.

More generally, if a € @, then a nonempty set A C X is Ry-invariant
if and only if it is a union of sets of the form ~(x).

For example, the set Q/Z is R,-invariant.
For a € R\Q, each set y(x) is also Ry-invariant, but now it is infinite.

Again, a nonempty set A C X is Ry-invariant if and only if it is a
union of sets of the form ~(x).

One can show that each set y(x) is dense in S*.

Thus, the closed R,-invariant sets are () and S1.
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Basic Notions and Examples

Ea(x)

o Now we consider the expanding map
E, : St — S%, given by

4x, if x €[0,1/4),
4x —1, ifxe€[1/4,2/4),
4x — 2, if x €[2/4,3/4),
4x —3, if x € [3/4,1).

E4(X) =

For example, the set

A= () E;"([0,1/4] U [2/4,3/4])
n>0
is forward Ez-invariant.

We note that A is a Cantor set, that is, A is a closed set without
isolated points and containing no intervals.
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Basic Notions and Examples

For a map f: X — X, given a point x € X, the set
(%) =77 (x) = {f"(x) : n € No}

is called the positive semiorbit of x.
Moreover, when f is invertible,

7 (x) =9 () = {f"(x) : n € No}

is called the negative semiorbit of x.
The set
Y(x) = ¢(x) = {f"(x) : n € Z}

is called the orbit of x.
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Basic Notions and Examples

Claim: When f is invertible, a nonempty set A C X is f-invariant if
and only if it is a union of orbits.

By definition, A C X is f-invariant if and only if
xeA iff xef YA iff f(x)e€A
By induction, and f's invertibility, this is equivalent to
xeA iff {f"(x):neZ} CA iff ~(x)eA.

Thus, a nonempty set A C X is f-invariant if and only if

A= U ¥(x).

XEA
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Basic Notions and Examples

Given a flow ® = (pt)ter of X, a set A C X is said to be ®-invariant if

©;PA=A, for t € R.
Given a semiflow ® = (¢t)¢>0 of X, a set A C X is said to be

®-invariant if
o A=A, fort > 0.

o In the case of flows, since got_l =p_tforteR,aset AC X is
®-invariant if and only if

ot(A) = A, for t € R.
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Basic Notions and Examples

o Consider the differential equation

X' =2y3,
y' = —3x.

Each solution (x,y) = (x(t), y(t)) satisfies

(Bx2+y* = 6xx +4y3y
= 12xy3 —12y3x =0.

Consider, for each set / C RT, the union

A= U{(x,y) € R?:3x%> + y* = a}.

ael

It is clearly invariant with respect to the flow determined by the
differential equations.
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Basic Notions and Examples

For a semiflow ® = (¢¢)¢>0 of X, given a point x € X, the set

() =94 (x) = {pe(x) : t > 0}

is called the positive semiorbit of x.
Moreover, for a flow ® = (¢)ter of X,

V(%) =79 (x) = {p-t(x) : t 2 0}
is called the negative semiorbit of x. Further, the set
Y(x) = v0(x) = {ee(x) : t € R}
is called the orbit of x.
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