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Topological Dynamics

A continuous map
f: X=X

is said to be a topological dynamical system with discrete time or,
simply, a topological dynamical system.

When f is a homeomorphism (that is, a bijective continuous map with
continuous inverse), we also say that

f: X=X

is an invertible topological dynamical system.
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Topological Dynamics

o Consider the circle S = R/Z.
The topology is the one induced from that of R.
Each rotation
R,:S! > St
is a homeomorphism of the circle.

More precisely, the topology of S! is generated by the sets of the
form (a, b) and [0,a) U (b,1], with0 < a< b< 1.
The distance d on S? is given by

d(x,y) = min{|(x+k)—(y+0)|:k,LeZ}
= min{|lx—y—m|: meZ}.
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Topological Dynamics

Any flow (respectively, any semiflow)
pr: X — X,

such that the map (t, x) — ©¢(x) is continuous in R x X (respectively, in
]R(J,r x X) is said to be a topological flow (respectively, a topological
semiflow).

Any topological flow or semiflow is also said to be a topological
dynamical system with continuous time or, simply, a topological
dynamical system.

o The continuity assumptions imply that each map ¢ : X — X is
continuous.

o In the case of flows it is even a homeomorphism.
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Topological Dynamics

o Recall f: R"” — R" is said to be a Lipschitz function if there exists
an L > 0, such that

1) = FWIF < Lllx = yll,  for x,y € R™.

Theorem (Gronwall's Lemma)

Let u,v : [a,b] — R are continuous functions, with v > 0, such that

u(t) <c+ /at u(s)v(s)ds, t € [a,b].

Then .
u(t) < cexp/ v(s)ds, te€ |a,b).
a
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Topological Dynamics

o Let f: R" — R" be a Lipschitz function with f(0) = 0.

Consider the initial value problem
X = f(x),
x(0) = xo.
It has a unique solution

for each xp € R".

Moreover, we have

x(t %) = %0 + /0 " F(x(5,%)) ds.
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Topological Dynamics

o Therefore,

Ix(t,x0)ll < ol + | fo I1f (x(s, x0))ds]
< lxoll + LI fy lIx(s, x0) 1 ds].

A

By Gronwall’s Lemma,
Ix(t, o)l < [[xol| €M,

for t in the domain of the solution.
This implies that the solution p¢(xg) = x(t, xo) is defined for t € R.

It follows from the continuous dependence of the solutions of a
differential equation on the initial conditions that

o :R" = R"

is a topological dynamical system.
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Topological Dynamics

Subsection 2
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Topological Dynamics

o We begin with the case of discrete time.

o Let f: X — X be a map (not necessarily continuous).

Given a point x € X, the w-limit set of x is defined by

w(x) = wr(x) = ﬂ {fm(x): m> n}.

nelN

Moreover, when f is invertible, the a-limit set of x is defined by

a(x) = af(x) = ﬂ {f=m(x): m> n}.

nelN
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Topological Dynamics

o Let R, : ST — S! be a rotation of the circle.
For a € Q, we have w(x) = a(x) = y(x), for x € S*.
For a € R\Q, we have w(x) = a(x) = S?, for x € St.
To establish this, we must show that the sets

{RJ(x): m>n} and {R;™(x):m > n}

are dense in S?, for every x € S* and n € IN.
Assume, first, that there exist integers m; > my > n, such that

R (x) = Ry (%)

This is the same as x + mja = x + mya mod 1.
Equivalently, mla — moya = m, for some m € Z.

Thus, a = P
So, for each n € IN, the points RJ'(x) are pairwise distinct for m > n.

contradicting the irrationality of a.
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Topological Dynamics

o Take ¢ > 0 and N € IN, such that % < e
The points R?(x), R"T1(x),..., RN (x) are distinct.
So there exist integers i1 and ip, such that 0 < /3 < i < N and

. . 1
d(Ry1(x), RiT2(x)) < N <6

where d is the distance d(x,y) = min{|x —y —m| : m € Z}.
Hence,
d(RE~"(x),x) = d(RETH(RIT(x)), RiT(x))
d(Ra*2(x), Ry (x))
< €
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Topological Dynamics

o So the sequence x, = R,T(iz_il)(x), with m € IN, is e-dense in S?.
l.e., for each y € S!, there exists m € IN, such that d(y, x,) < e.
Since e is arbitrary, {R™(x) : m > n} is dense in S'.

It remains to prove that
{Ry™(x) : m > n}

is also dense in S1.

For this it is sufficient to repeat the above argument to show that
there exist no integers m; > mp > n with R;™(x) = R, ™(x).

Alternatively, we may observe that this identity is equivalent to
R (x) = Ra™(x).
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Topological Dynamics

Claim: Given a € R\Q and § > 0, there exist integers p € Z and
g € (0, 3], such that o — Bl < g.
Take an integer N > 1, such that % <.

As in the preceding example, we find integers m and n, such that
0<n<m<N and

d(Ry(0), R3(0)) <

=2~

Taking ¢ = m — n, we obtain

d(Rd(0),0) d(Rd(R3(0)), Ra(0))
= d(Ry(0), R3(0))

<.

VAN
2|
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Topological Dynamics

o We obtained 1
d(R9(0),0) < N < 0.

Finally, by the definition of d, there exists a p € Z, such that
IRI(0) — p| < ~ < 6.
(6% N —

But 4 < 1 and RJ(0) = ga mod 1.
Therefore,
qa—pl <+ <5
qa—pl < 5 <.

This, finally, gives

a—B‘gé.
q q
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Topological Dynamics

o Now we consider the expanding map E, : S — S! and the point

+ = oo Tfou]for o] T ooo]faor foro) -

whose base-2 expansion comprises:

o The sequence of all length 1 binary strings (0, 1);
o Followed by all length 2 binary strings (00,01, 10, 11);
o Then all length 3 binary strings (000,001,010, .. .);

We have
E2m(0.X]_X2 0o ) = O.Xm+1Xm+2 0000

So each set {ES"(x) : m > n} is dense in S*. Thus, w(x) = St

Note: The same happens when x is replaced by any point in ST whose
base-2 representation contains all finite binary strings, in any order.
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Topological Dynamics

o Let f : R? = RR? be the map given by

0 r T r . T
f(rcos@,rsm@)—(r+%cos<9+z),r+ﬁsm<6+Z)>.

2

One can easily verify that f is invertible.

Moreover, for all n € Z,

r cos <9+ n7r> ! si <9+ n7r>
—_— — ), in — 1.
r+ 15 47 r+ 3L 4

f"(rcos@,rsinf) = (

Clearly, the origin (r = 0) and the circle r = 1 are f-invariant sets.
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Topological Dynamics

o For r > 0, we have

lim ——— =1
n—oo r 4+ 2n’
Thus, the w-limit set of a point p = (rcos 8, rsin 8) outside the origin
is
w(p) = {(COS <9+7T7T),Sin <9+7T7T>) : n=0,1,2,...,7}.
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Topological Dynamics

o For r € (0,1), we have

. r
lim ——— =0
n——oo r +4 _n’

Thus, the a-limit set of any point in the region 0 < r < 1 is the origin.
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Topological Dynamics

o Recall that X is a metric space, say with distance d.

Given a map f : X — X, for each x € X the following properties hold:

y € w(x) if and only if there exists a sequence nyx oo in IN such that
f(x) = y when k — oc;

If f is continuous, then w(x) is forward f-invariant.
o We have w(x) =(),,>1 Am, Where A, = {f"(x) : n > m}.
Let y € w(x). We consider two cases:

Suppose y ¢ mle Am. Then there exists p > 1, such that y & A,.

Hence, y € A_p\Ap. So there exists a sequence nx " oo in IN such that
f™(x) — y when k — co.
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Topological Dynamics

Suppose y € (),,;>1 Am. Then, there exists p > 1, such that y = fP(x).
Since y € A, for m > p, there exists g > p, such that y = f9(x).
Thus,

fla=Pk(fP(x)) = y,for k € IN.
Now the increasing sequence nx = (q — p)k + p satisfies f™(x) = y.

Conversely, suppose there exists a sequence nx " oo in IN, such that
f"(x) — y when k — co. Then y € Ap,, for every m € IN.

Hence, y € w(x).

Now let us take y € w(x) and n € IN. By Property 1, there exists a
sequence ni ' oo in IN, such that f™(x) — y when k — oc.

By the continuity of f, f™**"(x) — f"(y), when k — oo.

Hence f"(y) € w(x). So w(x) is forward f-invariant.
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Topological Dynamics

Let f : X — X be a continuous map. Suppose the positive semiorbit
vt (x) of a point x € X has compact closure. Then:

w(x) is compact and nonempty;
inf {d(f"(x),y) : ¥y € w(x)} — 0 when n — co.

o Note that, by definition, the set w(x) is closed.
Now w(x) € v+(x) and, by hypothesis, 7T (x) is compact.
Thus, the set w(x) is also compact.
Next, consider the sequence f"(x).
It is contained in the compact subset 'y+—(><) of the metric space X.
So there exists a convergent subsequence f"(x), with ny 7 co.
By Property 1 of the preceding proposition, the limit of f"(x) is in
w(x). So w(x) is nonempty.
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Topological Dynamics

o Finally, suppose Property 2 does not hold.

Then there would exist § > 0 and a sequence n, * oo, such that

inf {d(f™(x),y):y €w(x)} >4, kel

But the set v (x) is compact. So there would exist a convergent
subsequence f™k(x) of f™(x) whose limit, by Property 1 of the
preceding proposition, is a point p € w(x).

However, by the displayed inequality,

d(f™(x),y) >0, keNN, yecw(x).

Thus, d(p,y) > 6, for y € w(x). This is impossible, since p € w(x).
This contradiction yields Property 2 of the proposition.
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Topological Dynamics

Given an invertible map f : X — X, for each x € X the following
properties hold:

y € a(x) if and only if there exists a sequence nx ,* oo in IN such
that f="(x) — y when k — o0;

If f has a continuous inverse, then a(x) is backward f-invariant.

Given an invertible map f : X — X with continuous inverse, if the
negative semiorbit v~ (x) of a point x € X has compact closure, then:

a(x) is compact and nonempty;
inf {d(f"(x),y) : ¥ € a(x)} — 0 when n — —oc.

o The proofs involve applying the preceding to the map g = 1.



Topological Dynamics

Definition
Given a semiflow ® = (¢¢)¢>0 of X, the w-limit set of a point x € X is

defined by
w(x) = wo(x) = () Tpsl) 75 > 1.

t>0

Moreover, given a flow ® = (¢t)er of X, the a-limit set of a point
x € X is defined by

a(x) = as(x) = () Teslx) s < 1.

t<0
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Topological Dynamics

o Consider the differential equation in polar coordinates

(e

Z

ﬁ@b
&)

Note the following:
o r'>0,forre(0,1)U(2,+0);
o r' < 0forre(l,2).
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Topological Dynamics

o Consider the sets

C={(xy)eR?: x> +y>=r?}, r>0.

Let p € C,

We have
Oé(p) = {(070)}a UJ(p) = {(Oa 0)}7 if r=0,
a(p) ={(0,0)}, w(p) = G, for r € (0,1),
O[(p) = Cl’ UJ(p) = Clv for r = 17
a(p) = G, w(p) = G, for r € (1,2),
O[(p) = C2’ UJ(p) = C27 for r = Z
a(p) = G, w(p) =0, for r > 2.
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Topological Dynamics

Given a semiflow ® = (¢¢)¢>0 of X, for each x € X the following
properties hold:

y € w(x) if and only if there exists a sequence tx /" 400 in RT such
that ¢y, (x) — y when k — oo;

If ® is a topological semiflow, then w(x) is forward ®-invariant.

o Both properties can be obtained repeating arguments in the proof of
the corresponding proposition for the discrete case.
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Topological Dynamics

Let ® = (¢¢)r>0 be a topological semiflow of X. Suppose the positive
semiorbit 7T (x) of a point x € X has compact closure. Then:

w(x) is compact, connected and nonempty;
inf {d(¢t(x),y) 1y € w(x)} — 0 when t — +o0.

o With the exception of the connectedness of the w-limit set, the
remaining properties can be obtained repeating arguments in the
proof of the discrete case.
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Topological Dynamics

o We must show that w(x) is connected.
Suppose, to the contrary, that w(x) is not connected.
Then it can be written in the form

w(x)=AUB,
for nonempty A and B such that
ANB=ANB=0.
Since w(x) is closed, we have
A = Anw(x)

= ANn(AUB)

= (ANA)U(ANB)

= A
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Topological Dynamics

o We have A = A. Analogously B = B.
This shows that the sets A and B are also closed.
This implies that they are at a positive distance, that is,

§:=inf{d(a,b):ac A be B} >0.

Now we consider the closed set
1)
C = {zEX:d(z,y)Z 7 foryEw(x)}.

Claim: CN{ps(x):s>t}#0, for t > 0.

Otherwise, the set {s(x) : s > t} would be completely contained in
the g—neighborhood of A or in the %—neighborhood of B.

By the first property in the preceding proposition, we would have
w(x)NB =0 orw(x)NA=0.
This is impossible, since w(x) = AU B, with A and B nonempty.



Topological Dynamics

o It follows from the claim that there exists a
sequence ti 400 such that ¢, (x) € C ¢

for k € IN.

Hence, it follows from the compactness ‘/
of C N y*(x) and again from the first 0:/[
property in the preceding proposition that

CNw(x) # 0.

On the other hand, it follows from the definition of C that
CNuw(x)=10.

This contradiction shows that the set w(x) is connected.
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Topological Dynamics

Given a flow ® = (¢¢)ter of X, for each x € X the following properties
hold:

y € a(x) if and only if there exists a sequence tx N\, —o0 in R such
that ¢y, (x) — y when k — oo;

If ® is a topological flow, then «(x) is backward ®-invariant.

Let ® = (¢t)ter be a topological flow of X. Suppose the negative
semiorbit 7~ (x) of a point x € X has compact closure. Then:

a(x) is compact, connected and nonempty;
inf {d(p¢(x),y) : ¥y € a(x)} — 0 when t — —oc.
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Topological Dynamics

Subsection 3
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Topological Dynamics

o Let f: X — X be a continuous map.

A point x € X is said to be (positively) recurrent (with respect to f) if
x € w(x).
o By a previous proposition, a point x is recurrent if and only if there
exists a sequence ng /oo in IN, such that f"(x) — x when k — oc.

o Moreover, the set of recurrent points (with respect to f) is forward
invariant.
Indeed, suppose " (x) — x with ny — oo when k — oo.
Then also f™*"(x) — f"(x) when k — oo, for n € IN.

Example: Any periodic point x is recurrent, since x € v (x) = w(x).
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Topological Dynamics

o Consider the rotation R, : ST — ST
When « is rational, all points are periodic.
Thus, when « is rational all points are recurrent.
When « is irrational, for each x € S, we have w(x) = S*.
Again all points are recurrent.

o More generally, each point x € X with w(x) = X is recurrent.
Moreover, its positive semiorbit 41 (x) is dense in X.
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Topological Dynamics

A map f : X = X is called topologically transitive if, given nonempty

open sets
U,V C X,

there exists an n € IN, such that

f~"UunV #£0.
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Topological Dynamics

Let f : X — X be a continuous map of a locally compact metric space
with a countable basis. Then the following properties hold:

If f is topologically transitive, then there exists an x € X whose
positive semiorbit 7 (x) is dense in X;

If X has no isolated points and there exists an x € X whose positive
semiorbit 41 (x) is dense in X, then f is topologically transitive.

o We first assume that f is topologically transitive.
Let U C X be a nonempty open set.
The union | J,cy f 77U intersects all open sets.
So Upen f~"U is dense in X.
Let {U;}icw be a countable basis of X.
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Topological Dynamics

o Any locally compact metric space is a Baire space (i.e., it satisfies
that any countable intersection of dense open sets is dense).

So the set Y = (Ve U f Ui is nonempty.

Given x € Y, we have x € |,y f~"U; for i € IN.

Thus, vT(x) N U; # 0, for i € IN.

This shows that the positive semiorbit of x is dense in X.

Now we assume that X has no isolated points and that there exists
an x € X with dense positive semiorbit.

Let U,V C X be nonempty open sets.

By hypothesis, X has no isolated points.

So the semiorbit 1 (x) visits infinitely often U and V.

Hence, there exist m,n € IN, m > n, with f™(x) € U and f"(x) € V.
Therefore, x € f~mUNF~"V = f="(f~(m=myn V).

So the set F~(M=" /N V is nonempty.



Topological Dynamics

o Clearly S has no isolated points.
Consider the rotation R, : St — S1.

By a previous example, if « € R\Q, then, for every x € S, v (x) is
dense in St.

Therefore, by the theorem, for each a € R\Q, the rotation
R, : S' — Sl is topologically transitive.
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Topological Dynamics

Let X be a locally compact metric space with a countable basis and
without isolated points. Let f : X — X be a homeomorphism. If there
exists an x € X whose orbit y(x) is dense in X, then there exists a y € X
whose positive semiorbit 7T (y) is dense in X.

o By hypothesis, x is not isolated. So a dense orbit v(x) visits infinitely
often each open neighborhood of x.
Thus, there exists a sequence ny, with |ng| 7 oo, such that

f™(x) — x when k — co.

By hypothesis, f is a homeomorphism.
So, we also have, for each m € Z,

fITM(x) — f™(x) when k — oo.
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Topological Dynamics

o The sequence ny takes infinitely many positive values or infinitely
many negative values (or both).

o In the first case, the positive semiorbit v (x) is dense in X.
o In the second case, the negative semiorbit v~ (x) is dense in X.

Let U,V C X be nonempty open sets.
Now 77~ (x) is dense and X has no isolated points.
So there exist negative m > n, with f™(x) € U, f"(x) € V.
Hence,
xefmUNF "V =f(F(mmynv).
So the set f~(M=" /N V is nonempty.
This shows that the map f is topologically transitive.

By a previous theorem, there exists a dense positive semiorbit.
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Topological Dynamics

A map f : X — X is called topologically mixing if, given nonempty open

sets
u,Vv CX,

there exists an n € IN, such that

f~munvVv #0, form>n.

o Clearly, any topologically mixing map is also topologically transitive.
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Topological Dynamics

o Let R, : ST — S! be a rotation of the circle with « € R\Q.
Let € < % and consider the open interval U = (x —&,x +¢) C SL.

We have that:
o Each preimage R "U is an open interval of length 2¢ < %;
o The orbit of x is dense.

Hence, there exists a sequence n, " oo in N, such that

1
R ™(x) = x + 5 when k — oo.

Thus, R;™U N U = 0, for any sufficiently large k.

This shows that the rotation R, is not topologically mixing.
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Topological Dynamics

o Consider the expanding map E, : S1 — St
By a previous example, there exists a point x € S whose positive
semiorbit 77 (x) is dense in S*.
By a previous theorem, the map Ej; is topologically transitive.
Claim: E; is also topologically mixing.
Let U,V C S be nonempty open sets.
Consider an open interval | C V of the form

I = (0.x1x2 -+ Xp, 0.x1x0 - - - X511 . .),

with the endpoints written in base 2.
Let y =0.y1y>... € U. Take x =0.x1%0 ... Xpy1y2 ... € I.
We have EJ'(x) = y. Hence, x isin E; "U.
Therefore,
E;"UNV D E"UNT#D0.
This shows that the map E; is topologically mixing.



Topological Dynamics

o Let T4 : T? — T? be an automorphism of the torus T?.

Suppose that |trA| > 2.
By invertibility, A must be an invertible matrix with entries in Z.

So we have detA = £1.

Note that
det(A — Ald) = A2 — trA) + detA.

Thus, the eigenvalues of A are given by

_ trA£ /(trA)? — 4detA
= 5 ,

Since |trA| > 2, the eigenvalues are real numbers.
o Since \1\» = £1, there exists A > 1, such that

{‘)‘1‘7 ’)‘2‘} = {)‘7 )‘_1}'

A12

)
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Topological Dynamics

Claim: A1 and X\, are irrational.

Clearly, A1 and X, are rational if and only if
m? +4 = (2,

for some integer £ € IN, where m = trA.
Hence, (m — ¢)(m + () = £4.
Thus, since m+£¢>m— ¢,

m+f=4andm—¥¢=1 or m+¥=—-1and m—¥¢=—4.

It is easy to verify that these systems have no integer solutions.
This implies that A; and X, are irrational.

In particular, the eigendirections of A have irrational slopes.
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Topological Dynamics

o Now let U,V C T? be nonempty open sets.
Let / C U be a line segment parallel to the eigendirection of A
corresponding to the eigenvalue with modulus A™! < 1.

Then A=/ C R? is a line segment of length A\™|/|, where |/| is the
length of /.

The eigendirection of A corresponding to A1 has irrational slope.
Based on this, one can show that for any straight line J C R? with
this direction, the set J/Z? is dense in T2.
This implies that, given € > 0, there exists an
L > 0, such that for any line segment J/ C R?
of length L with that direction, the set J'/Z?
is e-dense in T2. oo
In other words, the e-neighborhood of J'/Z?
coincides with T?.
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Topological Dynamics

o Now take € > 0 such that V contains an open ball B of radius ¢.
Recalling that A\ > 1, take n = n(e) € IN, such that

Al > L.

Since A™|I| > L, for m > n, by the e-density of T, ™/ in T?, we

obtain
T,"UnV2T,"INB#0, m>n.

This shows that the automorphism of the torus T, is topologically
mixing.
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Topological Dynamics

Subsection 4
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Topological Dynamics

o We introduce the notion of the topological entropy of a dynamical
system (with discrete time).

o Topological entropy measures how the orbits of a dynamical system
move apart as time increases.

o So it can be seen as a measure of the complexity of the dynamics.
o We establish some basic properties of topological entropy.
o We illustrate its computation with several examples.

o We describe several alternative characterizations of topological
entropy that are particularly useful for its explicit computation.

o We show that topological entropy is a topological invariant, i.e., it
takes the same value for topologically conjugate dynamical systems.
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Topological Dynamics

o Let X be a compact metric space X, say with distance d.
o Let f: X — X be a continuous map.

o For each n € IN, we introduce a new distance on X by

do(x,y) = max {d(f*(x), f*(y)) : 0 < k < n—1}.

The topological entropy of f is defined by

h(f) = lim lim sup1 log N(n,¢),
n

e=0 psoco

where N(n,e) is the largest number of points p1, ..., pm € X, such that
dn(pi, pj) > <, for i # ).
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Topological Dynamics

o We defined 1
h(f) = lim limsup — log N(n, ).

e—>0 pnsoo N
Note: N(n,e) is always finite.
Let
B, By, ...
be a cover of X by open balls of radius 5 in the distance d,.
Since X is compact, there exists a finite subcover, say B, ..., B},.
Thus, N(n,e) < m.

Note: The function € — Iim_)sup% log N(n, ) is nonincreasing.
n—oo

Thus, the limit limlimsupl log N(n, ) always exists.
=0 posoo
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Topological Dynamics

o Let R, : St — S! be a rotation of the circle.

Consider the distance
d=min{|lx—y—m|: meZ}.

We have
d(Ra(x), Ra(y)) = d(x,y), x,y € St
Thus, d, = di = d, for n € IN.

Now we get

h(Ry) = lim limsup E log N(1,¢) = 0.

e—=0 posoco N
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Topological Dynamics

o Consider the expanding map E, : S1 — St

The function € — limsup log N(n, ¢) is nonincreasing.
n—oo

So, for any sequence (ax)kew C R, such that ax — 0,

T 1
h(Ez) = lim lim sup— log N(n, ak).

k=00 p00

Let us take a, = %%
Claim: N(n, y{%) = 2"tk for n,k € IN.
Suppose, first, d(x,y) < %
Then
dn(x,y) = d(E5 7 (x), E5 1 (y)) = 2" 1d(x, y).

George Voutsadakis (LSSU)



Topological Dynamics

o Now consider the points p; = ﬁ fori=0,...,2mk 1.
We get

1
dn(pi- Pi+1) = agzr 1=0, ,2mtk— 1.

But there is no point p; between p; and p; .

So dn(pi, pj) > y{% for i # j. Thus, N(n, 2k—1+1) > 2,71,(.
Now consider a set A C S! with cardinality at least 2"tk + 1.
Clearly, there exist points x,y € A, with x # y, such that

d(x,y) < Sk

This implies that dn(x,y) < 5&7. Hence, N(n, z47) < 27k

George Voutsadakis (LSSU)
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o Finally, using the claim, we get
h(E;) = lim lim sup log N(n, %ﬂ)
k=00 n—oo 2

= lim lim supﬂnk log 2
k—00 n—oo

= log2.

George Voutsadakis (LSSU) Dynamical Systems



Topological Dynamics

Two maps f : X — X and g : Y — Y, where X and Y are topological
spaces, are said to be topologically conjugate if there exists a
homeomorphism H : X — Y such that Hof = go H.

X

L

B

Y

g

Then H is called a topological conjugacy.
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Topological Dynamics

o Consider the map f : R — R defined by
f(z) = 2

ontheset R={ze C:|z|=1}.
Consider, also, the continuous map H : S — R defined by

H(x) = e*™.
H is a homeomorphism, with inverse given by
HY(z) = % mod 1.
We have . .
(f o H)(X) — f‘(e27TIX) — e47TIX;
(HoBE)(x) = H(2x) = e*x,

This shows that Ho E; = f o H.
Thus, the maps E; and f are topologically conjugate.
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Topological Dynamics

o We say that a certain quantity, such as, for example, topological
entropy, is a topological invariant if it takes the same value for
topologically conjugate dynamical systems.

Let f: X — X and g: Y — Y be continuous maps of compact metric
spaces. If f and g are topologically conjugate, then

h(f) = h(g).

George Voutsadakis (LSSU)



Topological Dynamics

o Let H: X — Y be a homeomorphism such that Hof = g o H.
The map H is uniformly continuous.

So, given € > 0, there exists a § > 0, such that
dx(x,y) < ¢ implies dy(H(x),H(y)) <e,

where dx and dy are, respectively, the distances on X and Y.

We note that when ¢ —+ 0, § — 0.

On the other hand, for m € IN and x € X, H(f™(x)) = g™(H(x)).
Hence, if p1,...,pm € Y, with g; = H(p;), are such that

max {dy(g"(qi),g™(qj)) :m=0,...,n—=1} > ¢, i#],

then max {dx(f"(pi), f™(pj)) : m=0,...,n—1} >4, for i # j.
This shows that N¢(n,d) > Ng(n,e).
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Topological Dynamics

o We showed that N¢(n,d) > Ng(n,e).
It follows that

limsup — Iog N¢(n,d) > limsup = IogN (n,e),

n—oo n—o00

for each ¢ > 0. Letting ¢ — 0, we have 6 — 0. Thus, h(f) > h(g).

Now we rewrite Ho f = g o H in the form
Hlog=foH

The previous argument, with H replaced by H=1, yields h(g) > h(f).
Therefore, h(f) = h(g).
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Topological Dynamics

o Recall the preceding example.
We considered the maps:

o f: R — R defined by
f(z) =2°

ontheset R={zeC:|z| =1}
o The expanding map E, : S' — S!.

We showed that f is topologically conjugate to Ej.

By the theorem and a previous example, we get

h(f) = h(Ez) = log2.

George Voutsadakis (LSSU)



Topological Dynamics

Given n € IN and € > 0, we denote by M(n, ) the least number of points
P1,---,Pm € X, such that each x € X satisfies d,(x, pi) < €, for some i.

Given n € IN and € > 0, we denote by C(n,¢) the least number of
elements of a cover of X by sets Uy, ..., Uy, with

sup{dn(x,y) :x,y € Ui} <e, fori=1,...,m.

o The supremum appearing in the definition of C(n,¢) is called the
d,-diameter of U;.
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Topological Dynamics

For each n € IN and € > 0, we have

C(n,2e) < M(n,e) < N(n,e) <M (n, %) <C (n, %) .

o We establish successively each of the inequalities:

For m = M(n, €), take points p1, ..., pm € X, such that each x € X
satisfies dp(x, pi) < €, for some i.

Then, the following d,-open balls cover X,
Bn(pise) = {x € X : dn(x, pi) < €}.

But B,(pi,e) has d,-diameter 2e.
Therefore, m > C(n, 2¢).
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Topological Dynamics

(M(n,e) < N(n,e)) For m = N(n,e), let p1,...,pm € X be such that
dn(piapj) e ’7é./

But each x € X\{p1,...,pm} satisfies d,(x, p;) < &, for some i.
Hence, M(n,e) < m.

(N(n,e) < M(n,5)) Note that no dy-open ball of radius 5 contains
two points at a d,-distance €. Thus, N(n,e) < M(n, 5).

(M(n,5) < C(n,5)) For m= C(n,5), let Uy,...,Un be a cover of
X by sets of d,-diameter less than 5.

Take a point p; € U; for each i. Clearly, B,(p;, 5) 2 Ui.
Now these d,-balls form a cover of X.

Hence, M(n,5) < C(n, 5).
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Topological Dynamics

Let £ : X — X be a continuous map of a compact metric space. Given
m,n € IN and € > 0, we have

C(m+ n,e) < C(m,e)C(n,e).

o Let Uy,..., U be a cover of X by sets of d,-diameter less than ¢,
where k = C(n,¢e). Let Vq,..., V, be a cover of X by sets of
dm-diameter less than ¢, where £ = C(m,¢).

Note that, for all x,y € X,

dmn(X,y) = max{da(x,y), dm(f"(x), "(y))}-

Thus, thesets U;N "V, i=1,...,k, j=1,...,/ form a cover of
X and have dp,,-diameter less than e.
It follows that C(m + n,e) < tk = C(m,e)C(n,e).



Topological Dynamics

Lemma

If (¢n)nen is a sequence of real numbers such that
Cmtn < Cm+c mnel,
then the limit

Iim&:inf{&:ne]N}

n—oo N n

exists.
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Topological Dynamics

o Given integers n, k € IN, write
n=qk+r, gqeINU{0}, re{0,....,k—1}.

Now we have
&< Cqk + Cr < qgck + ¢

n~— qgk+r — qgk+r’

Since g — 0o when n — oo (for a fixed k),

I|msup g—k
n—oo N k

Since k is arbitrary, this implies that

I|msup7 < mf{ p  k E]N} < lim inf <.

n—o00 n—oo n

George Voutsadakis (LSSU)



Topological Dynamics

If f: X — X is a continuous map of a compact metric space, then

h(f) = limliminfllog N(n,e)

e—0 n—o0

= limlimsup log M(n, e
e—0 n_)oopn g ( ’ )

= limliminfilog M(n,e
e—0 n—oo N g (’ )

= lim lim Llog C(n,¢).
e—0n—oo & (’)

George Voutsadakis (LSSU) Dynamical Systems



Topological Dynamics

o By the two preceding lemmas, the following limit exists,

lim lIog C(n,e) = inf{% log C(n,e) :n € ]N}.

n—oon
Using the inequalities of the preceding proposition, we get

. l < . . l
nlggonlog C(n,2¢) < Izrli)réfnlog M(n,e)

< - - l

< Iznll)réfn log N(n, €)

< limsupilog N(n,e)
n—o0

< Iimsup% log M(n, 5)
n—o0

<

im 1 4
,,ILngon log C(n, 5).
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Topological Dynamics

o Letting € — 0 yields the inequalities

lim lim %IogC(n,Zs) < limliminfi - log M(n,e)

e—0n—o00 e—0 n—oo

< 1

< 8I|_r:1o||nrr_1>!)r!>f log N(n,¢)

< h(f)

< Iimlim sup% log M(n, 5)
n—

< lim lim 1 -log C(n, 5).

e—0n—o00

The equality of the first and the last terms establishes the desired
result.
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Topological Dynamics

o Let T, : T? — T2 be an automorphism of the torus.

We recall that along the eigendirections of A the distances are
multiplied by A or A™1, for some A > 1.

Now we consider a cover of T? by d,-open balls B,(p;,¢).

We have
n—1

Ba(pire) = () TA*B(TA(pi),e)-
k=0

Thus, there exists a C > 0 (independent of n, € and i), such that the
area of By(pi,¢) is at most CA~"¢2. Hence, M(n,e) > ﬁ
It follows from the theorem that

h(f) = lim lim inf1 log M(n,e) > log \.

e—0 n—oc0 n
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Topological Dynamics

o We also consider partitions of T2 by parallelo-
grams with sides parallel to the eigendirections
of A.

More precisely, we consider a partition of T2
by parallelograms P; with sides of length eA™"
and €, up to a multiplicative constant, along

)

the eigendirections of X\ and A™!, respectively. '
Then there exists a D > 1 (independent of n, € and i), such that
each P; has area at least D~'A\~"¢? and d,-diameter less than De.

Thus, C(n, De) < ﬁ

=z
By the theorem, we have

h(f) = lim lim lIog C(n,e) < log A.

e—=0n—o0 n

This shows that h(f) = log .



Topological Dynamics

A map f: X — X is called (positively) expansive if there exists a 6 > 0,
such that

d(f"(x),f"(y)) <6, for all n >0, implies x = y.

Example: The expanding map E,, : ST — Sl is expansive.
Suppose d(x,y) < # and x # y.
Then there exists an n € IN, such that

A(ER(), Ep(Y)) = m'd(x.y) > —.

Thus, if d(Ef(x), Ep(y)) < =z, for all n >0, then x = y.
So the expanding map E,, is expansive.
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Topological Dynamics

o Given a >4, let f:[0,1] — R be the

quadratic map '
f(x) = ax(1 — x).

The set

X=()f"[0,1]
n=0

is compact and forward f-invariant.
In particular, one can consider the restriction £ | X : X — X.

We have f(x) =1, for x = 1:£:_c where ¢ = /1 — 2.

a
Therefore, for x € X,
If'(x)| = a|1 — 2x| > ac.
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Topological Dynamics

o Assume that a > 4 is so large that ac > 1.
Equivalently, assume that

a>2+/05.
Let x,y € X be such that
|FE(x) — f5(y)| < ¢, for k € NU{0}.

1—c 1+¢
11:[0, > ] and 12:[ > ,1],

Then, for

we have
), fhy) € b or FK(x), f5(y) € k.
Using the derivative inequality, for k € IN,
¢ > [FH(x) = FA(y)| = (ac)¥|x — yI.

Since ac > 1, we get x = y. So f | X is expansive.
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Topological Dynamics

Let £ : X — X be a continuous expansive map of a compact metric space.
Then

h(f) = limp_oo Llog N(n,c)
= limpooo % log M(n, )
= limpseo % log C(n, a),

for any sufficiently small o« > 0.

o Let § be the constant in the expansive property.
Take constants e, > 0, such that 0 < e < a < 6.
Let A C X be a set with cardA = N(n,¢), such that

dn(x,y) > e, forall x,y € A, with x # y.
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Topological Dynamics

o Claim: There exists an m = m(e, ) € N, such that, if d(x,y) > ¢,
then ' '
d(f'(x),f'(y)) > «, forsomeie€{0,...,m}.
Let
ge K:={(x,y) e X x X:d(x,y) >e}.
Now f is continuous and expansive.

So there exist an open ball B(g) C X x X centered at g and an
integer i = i(q) € INU {0}, such that

(x,y) € B(q) implies d(f(x),f(y)) > > .

The balls B(q) cover the compact set K.

Hence, there exists a finite subcover B(g;), with j =1,...,p.
Take m = max{i(q;):j=1,...,p}.

We obtain the claimed property for (x,y) € K.
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Topological Dynamics

o So, when dp(x,y) > € and hence, for x,y € A, with x # y,
dn(F(x), Fi(y)) > o, for some j € {0,..., m}.
Thus, for z,w € f~"A, with f™(z) # f™(w), we have

dniom(z,w) > max{d,(f/(z),fi(w)):i=m,...,2m}
= max{d,(F/T"(2),FIT™(w)):j=0,...,m}
> a,

since f™(z),f™(w) € A.
This yields the inequality

N(n+2m,a) > N(n,e).
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Topological Dynamics

o It follows from a previous proposition that
N(n,e) N(n+2m,a)
M(n+2m, 5
C(n+2m, %)
C(n+2m, 5).

VAN VAN VAN VAN

Thus, applying the preceding theorem, we conclude that

limsupllog N(n,e) < limsupllog N(n+2m,a)
n—o00 n—00
< limsupllog M(n+2m, %)
n—oo
< Iimsup%log C(n+2m,35)
n—o0
< limsupllog C(n+2m,3).
n—o00
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Topological Dynamics

o Letting € — 0 yields the inequalities

h(f) < limsupllog N(n,a)

n—o00

< limsupilog M(n,2)
n—oo

< lim sup% log C(n, 5) < h(f).
n—oo

One can also replace each limsup by liminf.
Then, letting € — 0, we obtain
< B = l
h(f) < I',,nlglfn log N(n, @)
. . 1
< Izrll)réf; log M(n, 5)

< ILnlLrlf% log C(n, %) < h(f).

The identities now follow from these two chains of inequalities.
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Topological Dynamics

o Consider the restriction E4 | A: A — A, where A is the compact
forward Es-invariant set

A= (od)e [3])

Note that if d(x,y) < 4—1n, then
dn(x,y) = d(E{ 1 (x), Ef 1 (v)) = 4" Hd(x, ).

Given k € IN, consider the 2"Tk*1 points x; on the boundary of

NN

From the relation between the distances, for i # j,
1 1
gntk — gk+1-

dn(xia)(j) Z 4n_1 °
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o We conclude that N(n, 4k_1+1) > pntktl,

On the other hand, given a set B C A with at least 2"t4+1 41
points, there exist x,y € B, with x # y, such that d(x,y) < 7=

i
Thus, )
dn(x, y) < yrase

This implies that
1
N <n, W) = 2"k+1 for n, k € IN.

Since E4 is expansive, the same happens to the restriction E4 | A.
It then follows from the preceding theorem that

h(Ey [ A) = lim 5 log N(n, z)
= lim "+k+1 log2 = log 2.
n—o0
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