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Topological Dynamics Topological Dynamical Systems

Topological Dynamical Systems

Definition

A continuous map
f : X → X

is said to be a topological dynamical system with discrete time or,
simply, a topological dynamical system.
When f is a homeomorphism (that is, a bijective continuous map with
continuous inverse), we also say that

f : X → X

is an invertible topological dynamical system.
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Topological Dynamics Topological Dynamical Systems

Example

Consider the circle S1 = R/Z.

The topology is the one induced from that of R.

Each rotation
Rα : S1 → S1

is a homeomorphism of the circle.

More precisely, the topology of S1 is generated by the sets of the
form (a, b) and [0, a) ∪ (b, 1], with 0 < a < b < 1.

The distance d on S1 is given by

d(x , y) = min {|(x + k)− (y + ℓ)| : k , ℓ ∈ Z}
= min {|x − y −m| : m ∈ Z}.
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Topological Dynamics Topological Dynamical Systems

Topological Flows

Definition

Any flow (respectively, any semiflow)

ϕt : X → X ,

such that the map (t, x) 7→ ϕt(x) is continuous in R× X (respectively, in
R+

0 × X ) is said to be a topological flow (respectively, a topological

semiflow).
Any topological flow or semiflow is also said to be a topological

dynamical system with continuous time or, simply, a topological

dynamical system.

The continuity assumptions imply that each map ϕt : X → X is
continuous.

In the case of flows it is even a homeomorphism.
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Topological Dynamics Topological Dynamical Systems

Lipschitz Functions and Gronwall’s Lemma

Recall f : Rn → Rn is said to be a Lipschitz function if there exists
an L > 0, such that

‖f (x)− f (y)‖ ≤ L‖x − y‖, for x , y ∈ Rn.

Theorem (Gronwall’s Lemma)

Let u, v : [a, b] → R are continuous functions, with v ≥ 0, such that

u(t) ≤ c +

∫ t

a

u(s)v(s)ds , t ∈ [a, b].

Then

u(t) ≤ c exp

∫ t

a

v(s)ds, t ∈ [a, b].
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Topological Dynamics Topological Dynamical Systems

Example

Let f : Rn → Rn be a Lipschitz function with f (0) = 0.

Consider the initial value problem

{

x ′ = f (x),
x(0) = x0.

It has a unique solution
x(t, x0).

for each x0 ∈ Rn.

Moreover, we have

x(t, x0) = x0 +

∫ t

0
f (x(s, x0))ds .
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Topological Dynamics Topological Dynamical Systems

Example (Cont’d)

Therefore,

‖x(t, x0)‖ ≤ ‖x0‖+ |
∫ t

0 ‖f (x(s, x0))‖ds |
≤ ‖x0‖+ L|

∫ t

0 ‖x(s, x0)‖ds |.

By Gronwall’s Lemma,

‖x(t, x0)‖ ≤ ‖x0‖eL|t|,

for t in the domain of the solution.

This implies that the solution ϕt(x0) = x(t, x0) is defined for t ∈ R.

It follows from the continuous dependence of the solutions of a
differential equation on the initial conditions that

ϕt : R
n → Rn

is a topological dynamical system.
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Topological Dynamics Limit Sets and Basic Properties

Subsection 2

Limit Sets and Basic Properties
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Topological Dynamics Limit Sets and Basic Properties

Limit Sets in Discrete Time

We begin with the case of discrete time.

Let f : X → X be a map (not necessarily continuous).

Definition

Given a point x ∈ X , the ω-limit set of x is defined by

ω(x) = ωf (x) =
⋂

n∈N

{f m(x) : m ≥ n}.

Moreover, when f is invertible, the α-limit set of x is defined by

α(x) = αf (x) =
⋂

n∈N

{f −m(x) : m ≥ n}.
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Topological Dynamics Limit Sets and Basic Properties

Example

Let Rα : S1 → S1 be a rotation of the circle.

For α ∈ Q, we have ω(x) = α(x) = γ(x), for x ∈ S1.

For α ∈ R\Q, we have ω(x) = α(x) = S1, for x ∈ S1.

To establish this, we must show that the sets

{Rm
α (x) : m ≥ n} and {R−m

α (x) : m ≥ n}

are dense in S1, for every x ∈ S1 and n ∈ N.

Assume, first, that there exist integers m1 > m2 ≥ n, such that

Rm1
α (x) = Rm2

α (x).

This is the same as x +m1α = x +m2α mod 1.

Equivalently, m1α−m2α = m, for some m ∈ Z.

Thus, α = m
m1−m2

, contradicting the irrationality of α.

So, for each n ∈ N, the points Rm
α (x) are pairwise distinct for m ≥ n.
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Topological Dynamics Limit Sets and Basic Properties

Example (Cont’d)

Take ǫ > 0 and N ∈ N, such that 1
N

< ǫ.

The points Rn
α(x),R

n+1
α (x), . . . ,Rn+N

α (x) are distinct.

So there exist integers i1 and i2, such that 0 ≤ i1 < i2 ≤ N and

d(Rn+i1
α (x),Rn+i2

α (x)) ≤ 1

N
< ǫ,

where d is the distance d(x , y) = min {|x − y −m| : m ∈ Z}.
Hence,

d(R i2−i1
α (x), x) = d(R i2−i1

α (Rn+i1
α (x)),Rn+i1

α (x))

= d(Rn+i2
α (x),Rn+i1

α (x))

< ǫ.
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Topological Dynamics Limit Sets and Basic Properties

Example (Cont’d)

So the sequence xm = R
m(i2−i1)
α (x), with m ∈ N, is ǫ-dense in S1.

I.e., for each y ∈ S1, there exists m ∈ N, such that d(y , xm) < ǫ.

Since ǫ is arbitrary, {Rm
α (x) : m ≥ n} is dense in S1.

It remains to prove that

{R−m
α (x) : m ≥ n}

is also dense in S1.

For this it is sufficient to repeat the above argument to show that
there exist no integers m1 > m2 ≥ n with R−m1

α (x) = R−m2
α (x).

Alternatively, we may observe that this identity is equivalent to
Rm1
α (x) = Rm2

α (x).
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Topological Dynamics Limit Sets and Basic Properties

Example

Claim: Given α ∈ R\Q and δ > 0, there exist integers p ∈ Z and
q ∈ (0, 1

δ
], such that |α− p

q
| ≤ δ

q
.

Take an integer N > 1, such that 1
N

≤ δ.

As in the preceding example, we find integers m and n, such that
0 ≤ n < m ≤ N and

d(Rm
α (0),Rn

α(0)) <
1

N
.

Taking q = m − n, we obtain

d(Rq
α(0), 0) = d(Rq

α(Rn
α(0)),R

n
α(0))

= d(Rm
α (0),Rn

α(0))

< 1
N

≤ δ.
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Topological Dynamics Limit Sets and Basic Properties

Example (Cont’d)

We obtained

d(Rq
α(0), 0) <

1

N
≤ δ.

Finally, by the definition of d , there exists a p ∈ Z, such that

|Rq
α(0)− p| < 1

N
≤ δ.

But 1
N

< 1 and R
q
α(0) = qα mod 1.

Therefore,

|qα− p| < 1

N
≤ δ.

This, finally, gives
∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

≤ δ

q
.
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Topological Dynamics Limit Sets and Basic Properties

Example

Now we consider the expanding map E2 : S
1 → S1 and the point

whose base-2 expansion comprises:

The sequence of all length 1 binary strings (0, 1);
Followed by all length 2 binary strings (00, 01, 10, 11);
Then all length 3 binary strings (000, 001, 010, . . .);
...

We have
Em
2 (0.x1x2 . . .) = 0.xm+1xm+2 . . . .

So each set {Em
2 (x) : m ≥ n} is dense in S1. Thus, ω(x) = S1.

Note: The same happens when x is replaced by any point in S1 whose
base-2 representation contains all finite binary strings, in any order.
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Topological Dynamics Limit Sets and Basic Properties

Example

Let f : R2 → R2 be the map given by

f (r cos θ, r sin θ) =

(

r

r + 1−r
2

cos
(

θ +
π

4

)

,
r

r + 1−r
2

sin
(

θ +
π

4

)

)

.

One can easily verify that f is invertible.

Moreover, for all n ∈ Z,

f n(r cos θ, r sin θ) =

(

r

r + 1−r
2n

cos
(

θ +
nπ

4

)

,
r

r + 1−r
2n

sin
(

θ +
nπ

4

)

)

.

Clearly, the origin (r = 0) and the circle r = 1 are f -invariant sets.
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Topological Dynamics Limit Sets and Basic Properties

Example (Cont’d)

For r > 0, we have

lim
n→∞

r

r + 1−r
2n

= 1.

Thus, the ω-limit set of a point p = (r cos θ, r sin θ) outside the origin
is

ω(p) =
{(

cos
(

θ +
nπ

4

)

, sin
(

θ +
nπ

4

))

: n = 0, 1, 2, . . . , 7
}

.
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Topological Dynamics Limit Sets and Basic Properties

Example (Cont’d)

For r ∈ (0, 1), we have

lim
n→−∞

r

r + 1−r
2n

= 0.

Thus, the α-limit set of any point in the region 0 < r < 1 is the origin.
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Topological Dynamics Limit Sets and Basic Properties

Characterization of ω(x)

Recall that X is a metric space, say with distance d .

Proposition

Given a map f : X → X , for each x ∈ X the following properties hold:

1. y ∈ ω(x) if and only if there exists a sequence nk ր ∞ in N such that
f nk (x) → y when k → ∞;

2. If f is continuous, then ω(x) is forward f -invariant.

We have ω(x) =
⋂

m≥1 Am, where Am = {f n(x) : n ≥ m}.
Let y ∈ ω(x). We consider two cases:

1. Suppose y 6∈ ⋂m≥1 Am. Then there exists p ≥ 1, such that y 6∈ Ap .

Hence, y ∈ Ap\Ap. So there exists a sequence nk ր ∞ in N such that
f nk (x) → y when k → ∞.
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Topological Dynamics Limit Sets and Basic Properties

Characterization of ω(x) (Cont’d)

2. Suppose y ∈ ⋂m≥1 Am. Then, there exists p ≥ 1, such that y = f p(x).
Since y ∈ Am, for m > p, there exists q > p, such that y = f q(x).
Thus,

f (q−p)k(f p(x)) = y , for k ∈ N.

Now the increasing sequence nk = (q − p)k + p satisfies f nk (x) = y .

Conversely, suppose there exists a sequence nk ր ∞ in N, such that
f nk (x) → y when k → ∞. Then y ∈ Am, for every m ∈ N.

Hence, y ∈ ω(x).

Now let us take y ∈ ω(x) and n ∈ N. By Property 1, there exists a
sequence nk ր ∞ in N, such that f nk (x) → y when k → ∞.

By the continuity of f , f nk+n(x) → f n(y), when k → ∞.

Hence f n(y) ∈ ω(x). So ω(x) is forward f -invariant.
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Topological Dynamics Limit Sets and Basic Properties

Properties of ω(x)

Proposition

Let f : X → X be a continuous map. Suppose the positive semiorbit
γ+(x) of a point x ∈ X has compact closure. Then:

1. ω(x) is compact and nonempty;

2. inf {d(f n(x), y) : y ∈ ω(x)} → 0 when n → ∞.

Note that, by definition, the set ω(x) is closed.

Now ω(x) ⊆ γ+(x) and, by hypothesis, γ+(x) is compact.

Thus, the set ω(x) is also compact.

Next, consider the sequence f n(x).

It is contained in the compact subset γ+(x) of the metric space X .

So there exists a convergent subsequence f nk (x), with nk ր ∞.

By Property 1 of the preceding proposition, the limit of f nk (x) is in
ω(x). So ω(x) is nonempty.
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Topological Dynamics Limit Sets and Basic Properties

Properties of ω(x) (Cont’d)

Finally, suppose Property 2 does not hold.

Then there would exist δ > 0 and a sequence nk ր ∞, such that

inf {d(f nk (x), y) : y ∈ ω(x)} ≥ δ, k ∈ N.

But the set γ+(x) is compact. So there would exist a convergent
subsequence f mk (x) of f nk (x) whose limit, by Property 1 of the
preceding proposition, is a point p ∈ ω(x).

However, by the displayed inequality,

d(f mk (x), y) ≥ δ, k ∈ N, y ∈ ω(x).

Thus, d(p, y) ≥ δ, for y ∈ ω(x). This is impossible, since p ∈ ω(x).

This contradiction yields Property 2 of the proposition.
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Topological Dynamics Limit Sets and Basic Properties

Properties of α(x)

Proposition

Given an invertible map f : X → X , for each x ∈ X the following
properties hold:

1. y ∈ α(x) if and only if there exists a sequence nk ր ∞ in N such
that f −nk (x) → y when k → ∞;

2. If f has a continuous inverse, then α(x) is backward f -invariant.

Proposition

Given an invertible map f : X → X with continuous inverse, if the
negative semiorbit γ−(x) of a point x ∈ X has compact closure, then:

1. α(x) is compact and nonempty;

2. inf {d(f n(x), y) : y ∈ α(x)} → 0 when n → −∞.

The proofs involve applying the preceding to the map g = f −1.
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Topological Dynamics Limit Sets and Basic Properties

Limits Sets for Continuous Time

Definition

Given a semiflow Φ = (ϕt)t≥0 of X , the ω-limit set of a point x ∈ X is
defined by

ω(x) = ωΦ(x) =
⋂

t>0

{ϕs(x) : s > t}.

Moreover, given a flow Φ = (ϕt)t∈R of X , the α-limit set of a point
x ∈ X is defined by

α(x) = αΦ(x) =
⋂

t<0

{ϕs(x) : s < t}.
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Topological Dynamics Limit Sets and Basic Properties

Example

Consider the differential equation in polar coordinates

{

r ′ = r(r − 1)(r − 2),
θ′ = 1.

Note the following:

r ′ > 0, for r ∈ (0, 1) ∪ (2,+∞);
r ′ < 0 for r ∈ (1, 2).
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Topological Dynamics Limit Sets and Basic Properties

Example (Cont’d)

Consider the sets

Cr = {(x , y) ∈ R2 : x2 + y2 = r2}, r > 0.

Let p ∈ Cr .

We have:

α(p) = {(0, 0)}, ω(p) = {(0, 0)}, if r = 0,
α(p) = {(0, 0)}, ω(p) = C1, for r ∈ (0, 1),
α(p) = C1, ω(p) = C1, for r = 1,
α(p) = C2, ω(p) = C1, for r ∈ (1, 2),
α(p) = C2, ω(p) = C2, for r = 2,
α(p) = C2, ω(p) = ∅, for r > 2.
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Topological Dynamics Limit Sets and Basic Properties

Characterization of ω(x) in Continuous Time

Proposition

Given a semiflow Φ = (ϕt)t≥0 of X , for each x ∈ X the following
properties hold:

1. y ∈ ω(x) if and only if there exists a sequence tk ր +∞ in R+ such
that ϕtk (x) → y when k → ∞;

2. If Φ is a topological semiflow, then ω(x) is forward Φ-invariant.

Both properties can be obtained repeating arguments in the proof of
the corresponding proposition for the discrete case.
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Topological Dynamics Limit Sets and Basic Properties

Properties of ω(x) in Continuous Time

Proposition

Let Φ = (ϕt)t≥0 be a topological semiflow of X . Suppose the positive
semiorbit γ+(x) of a point x ∈ X has compact closure. Then:

1. ω(x) is compact, connected and nonempty;

2. inf {d(ϕt(x), y) : y ∈ ω(x)} → 0 when t → +∞.

With the exception of the connectedness of the ω-limit set, the
remaining properties can be obtained repeating arguments in the
proof of the discrete case.
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Topological Dynamics Limit Sets and Basic Properties

Properties of ω(x) in Continuous Time (Cont’d)

We must show that ω(x) is connected.

Suppose, to the contrary, that ω(x) is not connected.

Then it can be written in the form

ω(x) = A ∪ B ,

for nonempty A and B such that

A ∩ B = A ∩ B = ∅.

Since ω(x) is closed, we have

A = A ∩ ω(x)

= A ∩ (A ∪ B)

= (A ∩ A) ∪ (A ∩ B)

= A.
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Topological Dynamics Limit Sets and Basic Properties

Properties of ω(x) in Continuous Time (Cont’d)

We have A = A. Analogously B = B .

This shows that the sets A and B are also closed.

This implies that they are at a positive distance, that is,

δ := inf {d(a, b) : a ∈ A, b ∈ B} > 0.

Now we consider the closed set

C =

{

z ∈ X : d(z , y) ≥ δ

4
for y ∈ ω(x)

}

.

Claim: C ∩ {ϕs(x) : s > t} 6= ∅, for t > 0.

Otherwise, the set {ϕs (x) : s > t} would be completely contained in
the δ

4 -neighborhood of A or in the δ
4 -neighborhood of B .

By the first property in the preceding proposition, we would have
ω(x) ∩ B = ∅ or ω(x) ∩ A = ∅.
This is impossible, since ω(x) = A ∪ B , with A and B nonempty.
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Topological Dynamics Limit Sets and Basic Properties

Properties of ω(x) in Continuous Time (Conclusion)

It follows from the claim that there exists a
sequence tk ր +∞ such that ϕtk (x) ∈ C

for k ∈ N.
Hence, it follows from the compactness
of C ∩ γ+(x) and again from the first
property in the preceding proposition that
C ∩ ω(x) 6= ∅.
On the other hand, it follows from the definition of C that

C ∩ ω(x) = ∅.

This contradiction shows that the set ω(x) is connected.
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Topological Dynamics Limit Sets and Basic Properties

Properties of α-Limit Sets in Continuous Time

Proposition

Given a flow Φ = (ϕt)t∈R of X , for each x ∈ X the following properties
hold:

1. y ∈ α(x) if and only if there exists a sequence tk ց −∞ in R such
that ϕtk (x) → y when k → ∞;

2. If Φ is a topological flow, then α(x) is backward Φ-invariant.

Proposition

Let Φ = (ϕt)t∈R be a topological flow of X . Suppose the negative
semiorbit γ−(x) of a point x ∈ X has compact closure. Then:

1. α(x) is compact, connected and nonempty;

2. inf {d(ϕt(x), y) : y ∈ α(x)} → 0 when t → −∞.
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Topological Dynamics Topological Recurrence

Subsection 3

Topological Recurrence

George Voutsadakis (LSSU) Dynamical Systems May 2024 35 / 85



Topological Dynamics Topological Recurrence

Recurrence

Let f : X → X be a continuous map.

Definition

A point x ∈ X is said to be (positively) recurrent (with respect to f ) if
x ∈ ω(x).

By a previous proposition, a point x is recurrent if and only if there
exists a sequence nk ր ∞ in N, such that f nk (x) → x when k → ∞.

Moreover, the set of recurrent points (with respect to f ) is forward
invariant.

Indeed, suppose f nk (x) → x with nk → ∞ when k → ∞.

Then also f nk+n(x) → f n(x) when k → ∞, for n ∈ N.

Example: Any periodic point x is recurrent, since x ∈ γ+(x) = ω(x).
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Topological Dynamics Topological Recurrence

Example

Consider the rotation Rα : S1 → S1.

When α is rational, all points are periodic.

Thus, when α is rational all points are recurrent.

When α is irrational, for each x ∈ S1, we have ω(x) = S1.

Again all points are recurrent.

More generally, each point x ∈ X with ω(x) = X is recurrent.

Moreover, its positive semiorbit γ+(x) is dense in X .
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Topological Dynamics Topological Recurrence

Topological Transitivity

Definition

A map f : X → X is called topologically transitive if, given nonempty
open sets

U,V ⊆ X ,

there exists an n ∈ N, such that

f −nU ∩ V 6= ∅.
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Topological Dynamics Topological Recurrence

Properties of Topological Transitivity

Theorem

Let f : X → X be a continuous map of a locally compact metric space
with a countable basis. Then the following properties hold:

1. If f is topologically transitive, then there exists an x ∈ X whose
positive semiorbit γ+(x) is dense in X ;

2. If X has no isolated points and there exists an x ∈ X whose positive
semiorbit γ+(x) is dense in X , then f is topologically transitive.

We first assume that f is topologically transitive.

Let U ⊆ X be a nonempty open set.

The union
⋃

n∈N f −nU intersects all open sets.

So
⋃

n∈N f −nU is dense in X .

Let {Ui}i∈N be a countable basis of X .
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Topological Dynamics Topological Recurrence

Topological Transitivity (Cont’d)

Any locally compact metric space is a Baire space (i.e., it satisfies
that any countable intersection of dense open sets is dense).

So the set Y =
⋂

i∈N

⋃

n∈N f −nUi is nonempty.

Given x ∈ Y , we have x ∈ ⋃n∈N f −nUi for i ∈ N.

Thus, γ+(x) ∩ Ui 6= ∅, for i ∈ N.

This shows that the positive semiorbit of x is dense in X .

Now we assume that X has no isolated points and that there exists
an x ∈ X with dense positive semiorbit.

Let U,V ⊆ X be nonempty open sets.

By hypothesis, X has no isolated points.

So the semiorbit γ+(x) visits infinitely often U and V .

Hence, there exist m, n ∈ N, m > n, with f m(x) ∈ U and f n(x) ∈ V .

Therefore, x ∈ f −mU ∩ f −nV = f −n(f −(m−n)U ∩ V ).

So the set f −(m−n)U ∩ V is nonempty.
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Topological Dynamics Topological Recurrence

Example

Clearly S1 has no isolated points.

Consider the rotation Rα : S1 → S1.

By a previous example, if α ∈ R\Q, then, for every x ∈ S1, γ+(x) is
dense in S1.

Therefore, by the theorem, for each α ∈ R\Q, the rotation
Rα : S1 → S1 is topologically transitive.
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Topological Dynamics Topological Recurrence

Dense Orbits and Dense Positive Semiorbits

Theorem

Let X be a locally compact metric space with a countable basis and
without isolated points. Let f : X → X be a homeomorphism. If there
exists an x ∈ X whose orbit γ(x) is dense in X , then there exists a y ∈ X

whose positive semiorbit γ+(y) is dense in X .

By hypothesis, x is not isolated. So a dense orbit γ(x) visits infinitely
often each open neighborhood of x .

Thus, there exists a sequence nk , with |nk | ր ∞, such that

f nk (x) → x when k → ∞.

By hypothesis, f is a homeomorphism.

So, we also have, for each m ∈ Z,

f nk+m(x) → f m(x) when k → ∞.

George Voutsadakis (LSSU) Dynamical Systems May 2024 42 / 85



Topological Dynamics Topological Recurrence

Dense Orbits and Dense Positive Semiorbits (Cont’d)

The sequence nk takes infinitely many positive values or infinitely
many negative values (or both).

In the first case, the positive semiorbit γ+(x) is dense in X .
In the second case, the negative semiorbit γ−(x) is dense in X .

Let U,V ⊆ X be nonempty open sets.

Now γ−(x) is dense and X has no isolated points.

So there exist negative m > n, with f m(x) ∈ U, f n(x) ∈ V .

Hence,
x ∈ f −mU ∩ f −nV = f −n(f −(m−n)U ∩ V ).

So the set f −(m−n)U ∩ V is nonempty.

This shows that the map f is topologically transitive.

By a previous theorem, there exists a dense positive semiorbit.
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Topological Mixing Maps

Definition

A map f : X → X is called topologically mixing if, given nonempty open
sets

U,V ⊆ X ,

there exists an n ∈ N, such that

f −mU ∩ V 6= ∅, for m ≥ n.

Clearly, any topologically mixing map is also topologically transitive.
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Topological Transitivity Versus Mixing

Let Rα : S1 → S1 be a rotation of the circle with α ∈ R\Q.

Let ε < 1
4 and consider the open interval U = (x − ε, x + ε) ⊆ S1.

We have that:

Each preimage R−n
α

U is an open interval of length 2ε < 1
2 ;

The orbit of x is dense.

Hence, there exists a sequence nk ր ∞ in N, such that

R−nk
α (x) → x +

1

2
when k → ∞.

Thus, R−nk
α U ∩ U = ∅, for any sufficiently large k .

This shows that the rotation Rα is not topologically mixing.
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Example

Consider the expanding map E2 : S
1 → S1.

By a previous example, there exists a point x ∈ S1 whose positive
semiorbit γ+(x) is dense in S1.

By a previous theorem, the map E2 is topologically transitive.

Claim: E2 is also topologically mixing.

Let U,V ⊆ S1 be nonempty open sets.

Consider an open interval I ⊆ V of the form

I = (0.x1x2 · · · xn, 0.x1x2 · · · xn11 . . .),
with the endpoints written in base 2.

Let y = 0.y1y2 . . . ∈ U. Take x = 0.x1x2 . . . xny1y2 . . . ∈ I .

We have En
2 (x) = y . Hence, x is in E−n

2 U.

Therefore,
E−n
2 U ∩ V ⊇ E−n

2 U ∩ I 6= ∅.
This shows that the map E2 is topologically mixing.
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Example

Let TA : T2 → T2 be an automorphism of the torus T2.

Suppose that |trA| > 2.

By invertibility, A must be an invertible matrix with entries in Z.

So we have detA = ±1.

Note that
det(A− λId) = λ2 − trAλ+ detA.

Thus, the eigenvalues of A are given by

λ1,2 =
trA±

√

(trA)2 − 4detA

2
.

Since |trA| > 2, the eigenvalues are real numbers.

Since λ1λ2 = ±1, there exists λ > 1, such that

{|λ1|, |λ2|} = {λ, λ−1}.
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Example (Cont’d)

Claim: λ1 and λ2 are irrational.

Clearly, λ1 and λ2 are rational if and only if

m2 ± 4 = ℓ2,

for some integer ℓ ∈ N, where m = trA.

Hence, (m − ℓ)(m + ℓ) = ±4.

Thus, since m + ℓ > m − ℓ,

m + ℓ = 4 and m − ℓ = 1 or m + ℓ = −1 and m − ℓ = −4.

It is easy to verify that these systems have no integer solutions.

This implies that λ1 and λ2 are irrational.

In particular, the eigendirections of A have irrational slopes.
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Example (Cont’d)

Now let U,V ⊆ T2 be nonempty open sets.

Let I ⊆ U be a line segment parallel to the eigendirection of A
corresponding to the eigenvalue with modulus λ−1 < 1.

Then A−mI ⊆ R2 is a line segment of length λm|I |, where |I | is the
length of I .

The eigendirection of A corresponding to λ−1 has irrational slope.

Based on this, one can show that for any straight line J ⊆ R2 with
this direction, the set J/Z2 is dense in T2.

This implies that, given ε > 0, there exists an
L > 0, such that for any line segment J ′ ⊆ R2

of length L with that direction, the set J ′/Z2

is ε-dense in T2.
In other words, the ε-neighborhood of J ′/Z2

coincides with T2.
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Example (Conclusion)

Now take ε > 0 such that V contains an open ball B of radius ε.

Recalling that λ > 1, take n = n(ε) ∈ N, such that

λn|I | > L.

Since λm|I | > L, for m ≥ n, by the ε-density of T−m
A I in T2, we

obtain
T−m
A U ∩ V ⊇ T−m

A I ∩ B 6= ∅, m ≥ n.

This shows that the automorphism of the torus TA is topologically
mixing.
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Subsection 4

Topological Entropy
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Topological Dynamics Topological Entropy

Introduction

We introduce the notion of the topological entropy of a dynamical
system (with discrete time).

Topological entropy measures how the orbits of a dynamical system
move apart as time increases.

So it can be seen as a measure of the complexity of the dynamics.

We establish some basic properties of topological entropy.

We illustrate its computation with several examples.

We describe several alternative characterizations of topological
entropy that are particularly useful for its explicit computation.

We show that topological entropy is a topological invariant, i.e., it
takes the same value for topologically conjugate dynamical systems.
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Topological Entropy

Let X be a compact metric space X , say with distance d .

Let f : X → X be a continuous map.

For each n ∈ N, we introduce a new distance on X by

dn(x , y) = max {d(f k(x), f k(y)) : 0 ≤ k ≤ n − 1}.

Definition

The topological entropy of f is defined by

h(f ) = lim
ε→0

lim sup
n→∞

1

n
logN(n, ε),

where N(n, ε) is the largest number of points p1, . . . , pm ∈ X , such that
dn(pi , pj ) ≥ ε, for i 6= j .
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Remarks on the Definition of Topological Entropy

We defined

h(f ) = lim
ε→0

lim sup
n→∞

1

n
logN(n, ε).

Note: N(n, ε) is always finite.

Let
B1,B2, . . .

be a cover of X by open balls of radius ε
2 in the distance dn.

Since X is compact, there exists a finite subcover, say B ′
1, . . . ,B

′
m.

Thus, N(n, ε) ≤ m.

Note: The function ε 7→ lim sup
n→∞

1
n
logN(n, ε) is nonincreasing.

Thus, the limit lim
ε→0

lim sup
n→∞

1
n
logN(n, ε) always exists.
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Example

Let Rα : S1 → S1 be a rotation of the circle.

Consider the distance

d = min {|x − y −m| : m ∈ Z}.

We have
d(Rα(x),Rα(y)) = d(x , y), x , y ∈ S1.

Thus, dn = d1 = d , for n ∈ N.

Now we get

h(Rα) = lim
ε→0

lim sup
n→∞

1

n
logN(1, ε) = 0.
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Example

Consider the expanding map E2 : S
1 → S1.

The function ε 7→ lim sup
n→∞

1
n
logN(n, ε) is nonincreasing.

So, for any sequence (ak)k∈N ⊆ R+, such that ak → 0,

h(E2) = lim
k→∞

lim sup
n→∞

1

n
logN(n, ak).

Let us take ak = 1
2k+1 .

Claim: N(n, 1
2k+1 ) = 2n+k , for n, k ∈ N.

Suppose, first, d(x , y) < 1
2n .

Then
dn(x , y) = d(En−1

2 (x),En−1
2 (y)) = 2n−1d(x , y).
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Example (Cont’d)

Now consider the points pi =
i

2n+k , for i = 0, . . . , 2n+k − 1.

We get

dn(pi , pi+1) =
1

2k+1
, i = 0, . . . , 2n+k − 1.

But there is no point pj between pi and pi+1.

So dn(pi , pj) ≥ 1
2k+1 , for i 6= j . Thus, N(n, 1

2k+1 ) ≥ 1
2n+k .

Now consider a set A ⊆ S1 with cardinality at least 2n+k + 1.

Clearly, there exist points x , y ∈ A, with x 6= y , such that

d(x , y) <
1

2n+k
.

This implies that dn(x , y) <
1

2k+1 . Hence, N(n, 1
2k+1 ) ≤ 2n+k .

George Voutsadakis (LSSU) Dynamical Systems May 2024 57 / 85



Topological Dynamics Topological Entropy

Example (Cont’d)

Finally, using the claim, we get

h(E2) = lim
k→∞

lim sup
n→∞

1
n
logN(n, 1

2k+1 )

= lim
k→∞

lim sup
n→∞

n+k
n

log 2

= log 2.
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Topologically Conjugate Maps

Definition

Two maps f : X → X and g : Y → Y , where X and Y are topological
spaces, are said to be topologically conjugate if there exists a
homeomorphism H : X → Y such that H ◦ f = g ◦ H.

X
f

✲ X

Y

H
❄

g
✲ Y

H
❄

Then H is called a topological conjugacy.
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Example

Consider the map f : R → R defined by

f (z) = z2

on the set R = {z ∈ C : |z | = 1}.
Consider, also, the continuous map H : S1 → R defined by

H(x) = e2πix .

H is a homeomorphism, with inverse given by

H−1(z) =
argz

2π
mod 1.

We have
(f ◦ H)(x) = f (e2πix ) = e4πix ;

(H ◦ E2)(x) = H(2x) = e4πix .

This shows that H ◦ E2 = f ◦ H.

Thus, the maps E2 and f are topologically conjugate.
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Topological Invariance

We say that a certain quantity, such as, for example, topological
entropy, is a topological invariant if it takes the same value for
topologically conjugate dynamical systems.

Theorem

Let f : X → X and g : Y → Y be continuous maps of compact metric
spaces. If f and g are topologically conjugate, then

h(f ) = h(g).
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Topological Invariance of Entropy

Let H : X → Y be a homeomorphism such that H ◦ f = g ◦ H.

The map H is uniformly continuous.

So, given ε > 0, there exists a δ > 0, such that

dX (x , y) < δ implies dY (H(x),H(y)) < ε,

where dX and dY are, respectively, the distances on X and Y .

We note that when ε → 0, δ → 0.

On the other hand, for m ∈ N and x ∈ X , H(f m(x)) = gm(H(x)).

Hence, if p1, . . . , pm ∈ Y , with qi = H(pi ), are such that

max {dY (gm(qi ), g
m(qj )) : m = 0, . . . , n − 1} ≥ ε, i 6= j ,

then max {dX (f m(pi ), f m(pj )) : m = 0, . . . , n − 1} ≥ δ, for i 6= j .

This shows that Nf (n, δ) ≥ Ng (n, ε).
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Topological Invariance of Entropy

We showed that Nf (n, δ) ≥ Ng (n, ε).

It follows that

lim sup
n→∞

1

n
logNf (n, δ) ≥ lim sup

n→∞

1

n
logNg (n, ε),

for each ε > 0. Letting ε → 0, we have δ → 0. Thus, h(f ) ≥ h(g).

Now we rewrite H ◦ f = g ◦ H in the form

H−1 ◦ g = f ◦ H−1.

The previous argument, with H replaced by H−1, yields h(g) ≥ h(f ).

Therefore, h(f ) = h(g).
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Example

Recall the preceding example.

We considered the maps:

f : R → R defined by
f (z) = z2

on the set R = {z ∈ C : |z | = 1};
The expanding map E2 : S

1 → S1.

We showed that f is topologically conjugate to E2.

By the theorem and a previous example, we get

h(f ) = h(E2) = log 2.
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The Sets M(n, ε) and C (n, ε)

Definition

Given n ∈ N and ε > 0, we denote by M(n, ε) the least number of points
p1, . . . , pm ∈ X , such that each x ∈ X satisfies dn(x , pi ) < ε, for some i .

Definition

Given n ∈ N and ε > 0, we denote by C (n, ε) the least number of
elements of a cover of X by sets U1, . . . ,Um with

sup {dn(x , y) : x , y ∈ Ui} < ε, for i = 1, . . . ,m.

The supremum appearing in the definition of C (n, ε) is called the
dn-diameter of Ui .
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Relations Between M(n, ε), C (n, ε) and N(n, ε)

Proposition

For each n ∈ N and ε > 0, we have

C (n, 2ε) ≤ M(n, ε) ≤ N(n, ε) ≤ M
(

n,
ε

2

)

≤ C
(

n,
ε

2

)

.

We establish successively each of the inequalities:

1. For m = M(n, ε), take points p1, . . . , pm ∈ X , such that each x ∈ X

satisfies dn(x , pi ) < ε, for some i .

Then, the following dn-open balls cover X ,

Bn(pi , ε) = {x ∈ X : dn(x , pi ) < ε}.

But Bn(pi , ε) has dn-diameter 2ε.

Therefore, m ≥ C (n, 2ε).
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Relations Between M(n, ε), C (n, ε) and N(n, ε) (Cont’d)

2. (M(n, ε) ≤ N(n, ε)) For m = N(n, ε), let p1, . . . , pm ∈ X be such that

dn(pi , pj) ≥ ε, i 6= j .

But each x ∈ X\{p1, . . . , pm} satisfies dn(x , pi ) < ε, for some i .

Hence, M(n, ε) ≤ m.

3. (N(n, ε) ≤ M(n, ε2 )) Note that no dn-open ball of radius ε
2 contains

two points at a dn-distance ε. Thus, N(n, ε) ≤ M(n, ε2 ).

4. (M(n, ε2 ) ≤ C (n, ε2 )) For m = C (n, ε2), let U1, . . . ,Um be a cover of
X by sets of dn-diameter less than ε

2 .

Take a point pi ∈ Ui for each i . Clearly, Bn(pi ,
ε
2) ⊇ Ui .

Now these dn-balls form a cover of X .

Hence, M(n, ε2) ≤ C (n, ε2).
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A Property of C (n, ε)

Lemma

Let f : X → X be a continuous map of a compact metric space. Given
m, n ∈ N and ε > 0, we have

C (m + n, ε) ≤ C (m, ε)C (n, ε).

Let U1, . . . ,Uk be a cover of X by sets of dn-diameter less than ε,
where k = C (n, ε). Let V1, . . . ,Vℓ be a cover of X by sets of
dm-diameter less than ε, where ℓ = C (m, ε).

Note that, for all x , y ∈ X ,

dm+n(x , y) = max {dn(x , y), dm(f n(x), f n(y))}.
Thus, the sets Ui ∩ f −nVj , i = 1, . . . , k , j = 1, . . . , ℓ, form a cover of
X and have dm+n-diameter less than ε.

It follows that C (m + n, ε) ≤ ℓk = C (m, ε)C (n, ε).
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An Auxiliary Lemma

Lemma

If (cn)n∈N is a sequence of real numbers such that

cm+n ≤ cm + c, m, n ∈ N,

then the limit
lim
n→∞

cn

n
= inf

{cn

n
: n ∈ N

}

exists.
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An Auxiliary Lemma (Cont’d)

Given integers n, k ∈ N, write

n = qk + r , q ∈ N ∪ {0}, r ∈ {0, . . . , k − 1}.

Now we have
cn

n
≤ cqk + cr

qk + r
≤ qck + cr

qk + r
.

Since q → ∞ when n → ∞ (for a fixed k),

lim sup
n→∞

cn

n
≤ ck

k
.

Since k is arbitrary, this implies that

lim sup
n→∞

cn

n
≤ inf

{ck

k
: k ∈ N

}

≤ lim inf
n→∞

cn

n
.
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Alternative Formulas for the Topological Entropy

Theorem

If f : X → X is a continuous map of a compact metric space, then

h(f ) = lim
ε→0

lim inf
n→∞

1
n
logN(n, ε)

= lim
ε→0

lim sup
n→∞

1
n
logM(n, ε)

= lim
ε→0

lim inf
n→∞

1
n
logM(n, ε)

= lim
ε→0

lim
n→∞

1
n
logC (n, ε).
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Alternative Formulas for the Topological Entropy (Cont’d)

By the two preceding lemmas, the following limit exists,

lim
n→∞

1

n
logC (n, ε) = inf

{

1

n
logC (n, ε) : n ∈ N

}

.

Using the inequalities of the preceding proposition, we get

lim
n→∞

1
n
logC (n, 2ε) ≤ lim inf

n→∞

1
n
logM(n, ε)

≤ lim inf
n→∞

1
n
logN(n, ε)

≤ lim sup
n→∞

1
n
logN(n, ε)

≤ lim sup
n→∞

1
n
logM(n, ε2)

≤ lim
n→∞

1
n
logC (n, ε2).
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Alternative Formulas for the Topological Entropy (Cont’d)

Letting ε → 0 yields the inequalities

lim
ε→0

lim
n→∞

1
n
logC (n, 2ε) ≤ lim

ε→0
lim inf
n→∞

1
n
logM(n, ε)

≤ lim
ε→0

lim inf
n→∞

1
n
logN(n, ε)

≤ h(f )

≤ lim
ε→0

lim sup
n→∞

1
n
logM(n, ε2)

≤ lim
ε→0

lim
n→∞

1
n
logC (n, ε2 ).

The equality of the first and the last terms establishes the desired
result.
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Example: Automorphisms of the Torus

Let TA : T2 → T2 be an automorphism of the torus.

We recall that along the eigendirections of A the distances are
multiplied by λ or λ−1, for some λ > 1.

Now we consider a cover of T2 by dn-open balls Bn(pi , ε).

We have

Bn(pi , ε) =
n−1
⋂

k=0

T−k
A B(T k

A(pi ), ε).

Thus, there exists a C > 0 (independent of n, ε and i), such that the
area of Bn(pi , ε) is at most Cλ−nε2. Hence, M(n, ε) ≥ 1

Cλ−nε2
.

It follows from the theorem that

h(f ) = lim
ε→0

lim inf
n→∞

1

n
logM(n, ε) ≥ log λ.
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Example: Automorphisms of the Torus (Cont’d)

We also consider partitions of T2 by parallelo-
grams with sides parallel to the eigendirections
of A.
More precisely, we consider a partition of T2

by parallelograms Pi with sides of length ελ−n

and ε, up to a multiplicative constant, along
the eigendirections of λ and λ−1, respectively.

Then there exists a D > 1 (independent of n, ε and i), such that
each Pi has area at least D−1λ−nε2 and dn-diameter less than Dε.

Thus, C (n,Dε) ≤ 1
D−1λ−nε2

.

By the theorem, we have

h(f ) = lim
ε→0

lim
n→∞

1

n
logC (n, ε) ≤ log λ.

This shows that h(f ) = log λ.
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Expansive Maps

Definition

A map f : X → X is called (positively) expansive if there exists a δ > 0,
such that

d(f n(x), f n(y)) < δ, for all n ≥ 0, implies x = y .

Example: The expanding map Em : S1 → S1 is expansive.

Suppose d(x , y) < 1
m2 and x 6= y .

Then there exists an n ∈ N, such that

d(En
m(x),E

n
m(y)) = mnd(x , y) ≥ 1

m2
.

Thus, if d(En
m(x),E

n
m(y)) <

1
m2 , for all n ≥ 0, then x = y .

So the expanding map Em is expansive.
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Example

Given a > 4, let f : [0, 1] → R be the
quadratic map

f (x) = ax(1− x).

The set

X =
∞
⋂

n=0

f −n[0, 1]

is compact and forward f -invariant.
In particular, one can consider the restriction f | X : X → X .

We have f (x) = 1, for x = 1±c
2 , where c =

√

1− 4
a
.

Therefore, for x ∈ X ,

|f ′(x)| = a|1− 2x | ≥ ac .
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Example (Cont’d)

Assume that a > 4 is so large that ac > 1.

Equivalently, assume that

a > 2 +
√
5.

Let x , y ∈ X be such that

|f k(x) − f k(y)| < c , for k ∈ N ∪ {0}.
Then, for

I1 =

[

0,
1− c

2

]

and I2 =

[

1 + c

2
, 1

]

,

we have
f k(x), f k(y) ∈ I1 or f k(x), f k(y) ∈ I2.

Using the derivative inequality, for k ∈ N,

c > |f k(x)− f k(y)| ≥ (ac)k |x − y |.
Since ac > 1, we get x = y . So f | X is expansive.
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Entropy Formula for Expansive Maps

Theorem

Let f : X → X be a continuous expansive map of a compact metric space.
Then

h(f ) = limn→∞
1
n
logN(n, α)

= limn→∞
1
n
logM(n, α)

= limn→∞
1
n
logC (n, α),

for any sufficiently small α > 0.

Let δ be the constant in the expansive property.

Take constants ε, α > 0, such that 0 < ε < α < δ.

Let A ⊆ X be a set with cardA = N(n, ε), such that

dn(x , y) ≥ ε, for all x , y ∈ A, with x 6= y .
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Entropy Formula for Expansive Maps (Cont’d)

Claim: There exists an m = m(ε, α) ∈ N, such that, if d(x , y) ≥ ε,
then

d(f i (x), f i(y)) > α, for some i ∈ {0, . . . ,m}.
Let

q ∈ K := {(x , y) ∈ X × X : d(x , y) ≥ ε}.
Now f is continuous and expansive.

So there exist an open ball B(q) ⊆ X × X centered at q and an
integer i = i(q) ∈ N ∪ {0}, such that

(x , y) ∈ B(q) implies d(f i(x), f i (y)) > δ > α.

The balls B(q) cover the compact set K .

Hence, there exists a finite subcover B(qj), with j = 1, . . . , p.

Take m = max {i(qj ) : j = 1, . . . , p}.
We obtain the claimed property for (x , y) ∈ K .
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Entropy Formula for Expansive Maps (Cont’d)

So, when dn(x , y) ≥ ε and hence, for x , y ∈ A, with x 6= y ,

dn(f
j(x), f j(y)) > α, for some j ∈ {0, . . . ,m}.

Thus, for z ,w ∈ f −mA, with f m(z) 6= f m(w), we have

dn+2m(z ,w) ≥ max {dn(f i(z), f i(w)) : i = m, . . . , 2m}
= max {dn(f j+m(z), f j+m(w)) : j = 0, . . . ,m}
> α,

since f m(z), f m(w) ∈ A.

This yields the inequality

N(n + 2m, α) ≥ N(n, ǫ).
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Entropy Formula for Expansive Maps (Cont’d)

It follows from a previous proposition that

N(n, ε) ≤ N(n + 2m, α)

≤ M(n + 2m, α2 )

≤ C (n + 2m, α2 )

≤ C (n + 2m, ε2).

Thus, applying the preceding theorem, we conclude that

lim sup
n→∞

1
n
logN(n, ε) ≤ lim sup

n→∞

1
n
logN(n + 2m, α)

≤ lim sup
n→∞

1
n
logM(n + 2m, α2 )

≤ lim sup
n→∞

1
n
logC (n + 2m, α2 )

≤ lim sup
n→∞

1
n
logC (n + 2m, ε2).
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Entropy Formula for Expansive Maps (Conclusion)

Letting ε → 0 yields the inequalities

h(f ) ≤ lim sup
n→∞

1
n
logN(n, α)

≤ lim sup
n→∞

1
n
logM(n, α2 )

≤ lim sup
n→∞

1
n
log C (n, α2 ) ≤ h(f ).

One can also replace each lim sup by lim inf.

Then, letting ε → 0, we obtain

h(f ) ≤ lim inf
n→∞

1
n
logN(n, α)

≤ lim inf
n→∞

1
n
logM(n, α2 )

≤ lim inf
n→∞

1
n
log C (n, α2 ) ≤ h(f ).

The identities now follow from these two chains of inequalities.
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Example

Consider the restriction E4 | A : A → A, where A is the compact
forward E4-invariant set

A =
⋂

n≥0

E−n
4

([

0,
1

4

]

∪
[

2

4
,
3

4

])

.

Note that if d(x , y) < 1
4n , then

dn(x , y) = d(En−1
4 (x),En−1

4 (y)) = 4n−1d(x , y).

Given k ∈ N, consider the 2n+k+1 points xi on the boundary of

n+k−1
⋂

m=0

E−m
4

([

0,
1

4

]

∪
[

2

4
,
3

4

])

.

From the relation between the distances, for i 6= j ,

dn(xi , xj) ≥ 4n−1 · 1

4n+k
=

1

4k+1
.
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Example (Cont’d)

We conclude that N(n, 1
4k+1 ) ≥ 2n+k+1.

On the other hand, given a set B ⊆ A with at least 2n+k+1 + 1
points, there exist x , y ∈ B , with x 6= y , such that d(x , y) < 1

4n+k .

Thus,

dn(x , y) <
1

4k+1
.

This implies that

N

(

n,
1

4k+1

)

= 2n+k+1, for n, k ∈ N.

Since E4 is expansive, the same happens to the restriction E4 | A.
It then follows from the preceding theorem that

h(E4 | A) = lim
n→∞

1
n
logN(n, 1

4k+1 )

= lim
n→∞

n+k+1
n

log 2 = log 2.
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