Introduction to Dynamical Systems

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Topological Dynamics

- Topological Dynamical Systems
- Limit Sets and Basic Properties
- Topological Recurrence
- Topological Entropy

Subsection 1

Topological Dynamical Systems

Topological Dynamical Systems

Definition

A continuous map

$$f:X\to X$$

is said to be a **topological dynamical system with discrete time** or, simply, a **topological dynamical system**.

When f is a homeomorphism (that is, a bijective continuous map with continuous inverse), we also say that

$$f:X\to X$$

is an invertible topological dynamical system.

Example

• Consider the circle $S^1 = \mathbb{R}/\mathbb{Z}$. The topology is the one induced from that of \mathbb{R} . Each rotation

$${\it R}_lpha: {\it S}^1
ightarrow {\it S}^1$$

is a homeomorphism of the circle.

More precisely, the topology of S^1 is generated by the sets of the form (a, b) and $[0, a) \cup (b, 1]$, with 0 < a < b < 1. The distance d on S^1 is given by

$$d(x,y) = \min \{ |(x+k) - (y+\ell)| : k, \ell \in \mathbb{Z} \}$$

= min { |x - y - m| : m \in \mathbb{Z} }.

Topological Flows

Definition

Any flow (respectively, any semiflow)

$$\varphi_t: X \to X,$$

such that the map $(t, x) \mapsto \varphi_t(x)$ is continuous in $\mathbb{R} \times X$ (respectively, in $\mathbb{R}_0^+ \times X$) is said to be a **topological flow** (respectively, a **topological semiflow**).

Any topological flow or semiflow is also said to be a **topological dynamical system with continuous time** or, simply, a **topological dynamical system**.

- The continuity assumptions imply that each map $\varphi_t : X \to X$ is continuous.
- In the case of flows it is even a homeomorphism.

Lipschitz Functions and Gronwall's Lemma

Recall f : ℝⁿ → ℝⁿ is said to be a Lipschitz function if there exists an L > 0, such that

$$\|f(x)-f(y)\| \leq L\|x-y\|, \text{ for } x,y \in \mathbb{R}^n.$$

Theorem (Gronwall's Lemma)

Let $u, v: [a, b]
ightarrow \mathbb{R}$ are continuous functions, with $v \geq 0$, such that

$$u(t) \leq c + \int_a^t u(s)v(s)ds, \quad t \in [a, b].$$

Then

$$u(t) \leq c \exp \int_a^t v(s) ds, \quad t \in [a, b].$$

Example

Let f : ℝⁿ → ℝⁿ be a Lipschitz function with f(0) = 0.
 Consider the initial value problem

$$\begin{cases} x' = f(x), \\ x(0) = x_0. \end{cases}$$

It has a unique solution

 $x(t, x_0).$

for each $x_0 \in \mathbb{R}^n$.

Moreover, we have

$$x(t,x_0) = x_0 + \int_0^t f(x(s,x_0)) ds.$$

Example (Cont'd)

Therefore,

$$\begin{array}{rcl} |x(t,x_0)|| & \leq & ||x_0|| + |\int_0^t ||f(x(s,x_0))||ds| \\ & \leq & ||x_0|| + L|\int_0^t ||x(s,x_0)||ds|. \end{array}$$

By Gronwall's Lemma,

$$||x(t, x_0)|| \le ||x_0||e^{L|t|},$$

for t in the domain of the solution. This implies that the solution $\varphi_t(x_0) = x(t, x_0)$ is defined for $t \in \mathbb{R}$. It follows from the continuous dependence of the solutions of a differential equation on the initial conditions that

$$\varphi_t : \mathbb{R}^n \to \mathbb{R}^n$$

is a topological dynamical system.

Subsection 2

Limit Sets and Basic Properties

Limit Sets in Discrete Time

- We begin with the case of discrete time.
- Let $f : X \to X$ be a map (not necessarily continuous).

Definition

Given a point $x \in X$, the ω -limit set of x is defined by

$$\omega(x) = \omega_f(x) = \bigcap_{n \in \mathbb{N}} \overline{\{f^m(x) : m \ge n\}}.$$

Moreover, when f is invertible, the α -limit set of x is defined by

$$\alpha(x) = \alpha_f(x) = \bigcap_{n \in \mathbb{N}} \overline{\{f^{-m}(x) : m \ge n\}}.$$

Example

Let R_α: S¹ → S¹ be a rotation of the circle.
For α ∈ Q, we have ω(x) = α(x) = γ(x), for x ∈ S¹.
For α ∈ ℝ\Q, we have ω(x) = α(x) = S¹, for x ∈ S¹.
To establish this, we must show that the sets

 $\{R^m_{\alpha}(x):m\geq n\}$ and $\{R^{-m}_{\alpha}(x):m\geq n\}$

are dense in S^1 , for every $x \in S^1$ and $n \in \mathbb{N}$.

Assume, first, that there exist integers $m_1 > m_2 \ge n$, such that

$$R^{m_1}_{\alpha}(x)=R^{m_2}_{\alpha}(x).$$

This is the same as $x + m_1 \alpha = x + m_2 \alpha \mod 1$. Equivalently, $m_1 \alpha - m_2 \alpha = m$, for some $m \in \mathbb{Z}$. Thus, $\alpha = \frac{m}{m_1 - m_2}$, contradicting the irrationality of α . So, for each $n \in \mathbb{N}$, the points $R_{\alpha}^m(x)$ are pairwise distinct for $m \ge n$.

Example (Cont'd)

 Take ε > 0 and N ∈ N, such that ¹/_N < ε. The points Rⁿ_α(x), Rⁿ⁺¹_α(x),..., R^{n+N}_α(x) are distinct. So there exist integers i₁ and i₂, such that 0 ≤ i₁ < i₂ ≤ N and

$$d(R^{n+i_1}_{\alpha}(x),R^{n+i_2}_{\alpha}(x)) \leq \frac{1}{N} < \epsilon,$$

where d is the distance $d(x, y) = \min \{ |x - y - m| : m \in \mathbb{Z} \}$. Hence,

$$d(R_{\alpha}^{i_{2}-i_{1}}(x),x) = d(R_{\alpha}^{i_{2}-i_{1}}(R_{\alpha}^{n+i_{1}}(x)),R_{\alpha}^{n+i_{1}}(x))$$

= $d(R_{\alpha}^{n+i_{2}}(x),R_{\alpha}^{n+i_{1}}(x))$
< ϵ .

Example (Cont'd)

So the sequence x_m = R_α^{m(i₂-i₁)}(x), with m ∈ ℝ, is ε-dense in S¹.
I.e., for each y ∈ S¹, there exists m ∈ ℝ, such that d(y, x_m) < ε.
Since ε is arbitrary, {R_α^m(x) : m ≥ n} is dense in S¹.
It remains to prove that

$$\{R_{\alpha}^{-m}(x):m\geq n\}$$

is also dense in S^1 .

For this it is sufficient to repeat the above argument to show that there exist no integers $m_1 > m_2 \ge n$ with $R_{\alpha}^{-m_1}(x) = R_{\alpha}^{-m_2}(x)$. Alternatively, we may observe that this identity is equivalent to $R_{\alpha}^{m_1}(x) = R_{\alpha}^{m_2}(x)$.

Example

Claim: Given $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and $\delta > 0$, there exist integers $p \in \mathbb{Z}$ and $q \in (0, \frac{1}{\delta}]$, such that $|\alpha - \frac{p}{q}| \le \frac{\delta}{q}$. Take an integer N > 1, such that $\frac{1}{N} \le \delta$. As in the preceding example, we find integers m and n, such that $0 \le n < m \le N$ and

$$d(R^m_{lpha}(0),R^n_{lpha}(0))<rac{1}{N}.$$

Taking q = m - n, we obtain

$$egin{aligned} d(R^q_lpha(0),0)&=&d(R^q_lpha(R^n_lpha(0)),R^n_lpha(0))\ &=&d(R^m_lpha(0),R^n_lpha(0))\ &<&rac{1}{N}\leq\delta. \end{aligned}$$

Example (Cont'd)

We obtained

$$d(R^q_lpha(0),0) < rac{1}{N} \leq \delta.$$

Finally, by the definition of d, there exists a $p \in \mathbb{Z}$, such that

$$|R^q_{lpha}(0)-p|<rac{1}{N}\leq\delta.$$

But
$$\frac{1}{N} < 1$$
 and $R^q_{lpha}(0) = q \alpha \mod 1$.
Therefore,

$$|q\alpha-p|<\frac{1}{N}\leq\delta.$$

This, finally, gives

$$\left|\alpha - \frac{p}{q}\right| \le \frac{\delta}{q}$$

Example

• Now we consider the expanding map $E_2:S^1 o S^1$ and the point

$$x = 0.0100011011000001010\cdots$$

whose base-2 expansion comprises:

- The sequence of all length 1 binary strings (0, 1);
- Followed by all length 2 binary strings (00,01,10,11);
- Then all length 3 binary strings (000,001,010,...);

We have

$$E_2^m(0.x_1x_2...) = 0.x_{m+1}x_{m+2}....$$

So each set $\{E_2^m(x) : m \ge n\}$ is dense in S^1 . Thus, $\omega(x) = S^1$. Note: The same happens when x is replaced by any point in S^1 whose base-2 representation contains all finite binary strings, in any order.

Example

• Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the map given by

$$f(r\cos\theta, r\sin\theta) = \left(\frac{r}{r + \frac{1-r}{2}}\cos\left(\theta + \frac{\pi}{4}\right), \frac{r}{r + \frac{1-r}{2}}\sin\left(\theta + \frac{\pi}{4}\right)\right)$$

One can easily verify that f is invertible. Moreover, for all $n \in \mathbb{Z}$,

$$f^{n}(r\cos\theta, r\sin\theta) = \left(\frac{r}{r + \frac{1-r}{2^{n}}}\cos\left(\theta + \frac{n\pi}{4}\right), \frac{r}{r + \frac{1-r}{2^{n}}}\sin\left(\theta + \frac{n\pi}{4}\right)\right)$$

Clearly, the origin (r = 0) and the circle r = 1 are *f*-invariant sets.

Example (Cont'd)

• For r > 0, we have

$$\lim_{n\to\infty}\frac{r}{r+\frac{1-r}{2^n}}=1.$$

Thus, the ω -limit set of a point $p = (r \cos \theta, r \sin \theta)$ outside the origin is

$$\omega(p) = \left\{ \left(\cos\left(\theta + \frac{n\pi}{4}\right), \sin\left(\theta + \frac{n\pi}{4}\right) \right) : n = 0, 1, 2, \dots, 7 \right\}.$$

Example (Cont'd)

• For $r \in (0, 1)$, we have

$$\lim_{n\to-\infty}\frac{r}{r+\frac{1-r}{2^n}}=0.$$

Thus, the α -limit set of any point in the region 0 < r < 1 is the origin.

Characterization of $\omega(x)$

• Recall that X is a metric space, say with distance d.

Proposition

Given a map $f : X \to X$, for each $x \in X$ the following properties hold:

- 1. $y \in \omega(x)$ if and only if there exists a sequence $n_k \nearrow \infty$ in \mathbb{N} such that $f^{n_k}(x) \to y$ when $k \to \infty$;
- 2. If f is continuous, then $\omega(x)$ is forward f-invariant.

L. Suppose $y \notin \bigcap_{m \ge 1} A_m$. Then there exists $p \ge 1$, such that $y \notin A_p$. Hence, $y \in \overline{A_p} \setminus A_p$. So there exists a sequence $n_k \nearrow \infty$ in \mathbb{N} such that $f^{n_k}(x) \to y$ when $k \to \infty$.

Characterization of $\omega(x)$ (Cont'd)

2. Suppose $y \in \bigcap_{m \ge 1} A_m$. Then, there exists $p \ge 1$, such that $y = f^p(x)$. Since $y \in A_m$, for m > p, there exists q > p, such that $y = f^q(x)$. Thus,

$$f^{(q-p)k}(f^p(x)) = y$$
, for $k \in \mathbb{N}$.

Now the increasing sequence $n_k = (q - p)k + p$ satisfies $f^{n_k}(x) = y$. Conversely, suppose there exists a sequence $n_k \nearrow \infty$ in \mathbb{N} , such that $f^{n_k}(x) \to y$ when $k \to \infty$. Then $y \in \overline{A_m}$, for every $m \in \mathbb{N}$. Hence, $y \in \omega(x)$. Now let us take $y \in \omega(x)$ and $n \in \mathbb{N}$. By Property 1, there exists a sequence $n_k \nearrow \infty$ in \mathbb{N} , such that $f^{n_k}(x) \to y$ when $k \to \infty$. By the continuity of f, $f^{n_k+n}(x) \to f^n(y)$, when $k \to \infty$. Hence $f^n(y) \in \omega(x)$. So $\omega(x)$ is forward f-invariant.

Properties of $\omega(x)$

Proposition

Let $f: X \to X$ be a continuous map. Suppose the positive semiorbit $\gamma^+(x)$ of a point $x \in X$ has compact closure. Then:

- 1. $\omega(x)$ is compact and nonempty;
- 2. inf $\{d(f^n(x), y) : y \in \omega(x)\} \to 0$ when $n \to \infty$.

Note that, by definition, the set ω(x) is closed. Now ω(x) ⊆ γ⁺(x) and, by hypothesis, γ⁺(x) is compact. Thus, the set ω(x) is also compact. Next, consider the sequence fⁿ(x). It is contained in the compact subset γ⁺(x) of the metric space X. So there exists a convergent subsequence f^{n_k}(x), with n_k ×∞. By Property 1 of the preceding proposition, the limit of f^{n_k}(x) is in ω(x). So ω(x) is nonempty.

Properties of $\omega(x)$ (Cont'd)

• Finally, suppose Property 2 does not hold.

Then there would exist $\delta > 0$ and a sequence $n_k \nearrow \infty$, such that

$$\inf \left\{ d(f^{n_k}(x), y) : y \in \omega(x) \right\} \ge \delta, \quad k \in \mathbb{N}.$$

But the set $\overline{\gamma^+(x)}$ is compact. So there would exist a convergent subsequence $f^{m_k}(x)$ of $f^{n_k}(x)$ whose limit, by Property 1 of the preceding proposition, is a point $p \in \omega(x)$. However, by the displayed inequality,

$$d(f^{m_k}(x), y) \ge \delta, \quad k \in \mathbb{N}, \ y \in \omega(x).$$

Thus, $d(p, y) \ge \delta$, for $y \in \omega(x)$. This is impossible, since $p \in \omega(x)$. This contradiction yields Property 2 of the proposition.

Properties of $\alpha(x)$

Proposition

Given an invertible map $f : X \to X$, for each $x \in X$ the following properties hold:

- 1. $y \in \alpha(x)$ if and only if there exists a sequence $n_k \nearrow \infty$ in \mathbb{N} such that $f^{-n_k}(x) \to y$ when $k \to \infty$;
- 2. If f has a continuous inverse, then $\alpha(x)$ is backward f-invariant.

Proposition

Given an invertible map $f : X \to X$ with continuous inverse, if the negative semiorbit $\gamma^{-}(x)$ of a point $x \in X$ has compact closure, then:

- $\alpha(x)$ is compact and nonempty;
- 2. inf $\{d(f^n(x), y) : y \in \alpha(x)\} \to 0$ when $n \to -\infty$.

• The proofs involve applying the preceding to the map $g = f^{-1}$.

Limits Sets for Continuous Time

Definition

Given a semiflow $\Phi = (\varphi_t)_{t \ge 0}$ of X, the ω -limit set of a point $x \in X$ is defined by

$$\omega(x) = \omega_{\Phi}(x) = \bigcap_{t>0} \overline{\{\varphi_s(x) : s > t\}}.$$

Moreover, given a flow $\Phi = (\varphi_t)_{t \in \mathbb{R}}$ of X, the α -limit set of a point $x \in X$ is defined by

$$\alpha(x) = \alpha_{\Phi}(x) = \bigcap_{t < 0} \overline{\{\varphi_s(x) : s < t\}}.$$

Example

• Consider the differential equation in polar coordinates

$$\begin{cases} r' = r(r-1)(r-2), \\ \theta' = 1. \end{cases}$$

Note the following:

• r' > 0, for $r \in (0,1) \cup (2,+\infty)$; • r' < 0 for $r \in (1,2)$.

Example (Cont'd)

Consider the sets

$$C_r = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = r^2\}, \quad r > 0.$$

Let $p \in C_r$. We have:

$$\begin{array}{ll} \alpha(p) = \{(0,0)\}, & \omega(p) = \{(0,0)\}, & \text{if } r = 0, \\ \alpha(p) = \{(0,0)\}, & \omega(p) = C_1, & \text{for } r \in (0,1), \\ \alpha(p) = C_1, & \omega(p) = C_1, & \text{for } r = 1, \\ \alpha(p) = C_2, & \omega(p) = C_1, & \text{for } r \in (1,2), \\ \alpha(p) = C_2, & \omega(p) = C_2, & \text{for } r = 2, \\ \alpha(p) = C_2, & \omega(p) = \emptyset, & \text{for } r > 2. \end{array}$$

Characterization of $\omega(x)$ in Continuous Time

Proposition

Given a semiflow $\Phi = (\varphi_t)_{t \ge 0}$ of X, for each $x \in X$ the following properties hold:

- $y \in \omega(x)$ if and only if there exists a sequence $t_k \nearrow +\infty$ in \mathbb{R}^+ such that $\varphi_{t_k}(x) \to y$ when $k \to \infty$;
- 2. If Φ is a topological semiflow, then $\omega(x)$ is forward Φ -invariant.
- Both properties can be obtained repeating arguments in the proof of the corresponding proposition for the discrete case.

Properties of $\omega(x)$ in Continuous Time

Proposition

Let $\Phi = (\varphi_t)_{t \ge 0}$ be a topological semiflow of X. Suppose the positive semiorbit $\gamma^+(x)$ of a point $x \in X$ has compact closure. Then:

- $\omega(x)$ is compact, connected and nonempty;
- 2. inf $\{d(\varphi_t(x), y) : y \in \omega(x)\} \to 0$ when $t \to +\infty$.
- With the exception of the connectedness of the ω-limit set, the remaining properties can be obtained repeating arguments in the proof of the discrete case.

Properties of $\omega(x)$ in Continuous Time (Cont'd)

We must show that ω(x) is connected.
 Suppose, to the contrary, that ω(x) is not connected.
 Then it can be written in the form

$$\omega(x)=A\cup B,$$

for nonempty A and B such that

$$\overline{A} \cap B = A \cap \overline{B} = \emptyset.$$

Since $\omega(x)$ is closed, we have

$$\overline{A} = \overline{A} \cap \omega(x)$$

= $\overline{A} \cap (A \cup B)$
= $(\overline{A} \cap A) \cup (\overline{A} \cap B)$
= A .

Properties of $\omega(x)$ in Continuous Time (Cont'd)

• We have $\overline{A} = A$. Analogously $\overline{B} = B$.

This shows that the sets A and B are also closed.

This implies that they are at a positive distance, that is,

$$\delta := \inf \left\{ d(a, b) : a \in A, b \in B \right\} > 0.$$

Now we consider the closed set

$$\mathcal{C} = \left\{ z \in X : d(z, y) \geq rac{\delta}{4} ext{ for } y \in \omega(x)
ight\}.$$

Claim: $C \cap \{\varphi_s(x) : s > t\} \neq \emptyset$, for t > 0.

Otherwise, the set $\{\varphi_s(x) : s > t\}$ would be completely contained in the $\frac{\delta}{4}$ -neighborhood of A or in the $\frac{\delta}{4}$ -neighborhood of B.

By the first property in the preceding proposition, we would have $\omega(x) \cap B = \emptyset$ or $\omega(x) \cap A = \emptyset$.

This is impossible, since $\omega(x) = A \cup B$, with A and B nonempty.

Properties of $\omega(x)$ in Continuous Time (Conclusion)

It follows from the claim that there exists a sequence t_k ≯ +∞ such that φ_{tk}(x) ∈ C for k ∈ N.

Hence, it follows from the compactness of $C \cap \overline{\gamma^+(x)}$ and again from the first property in the preceding proposition that $C \cap \omega(x) \neq \emptyset$.

On the other hand, it follows from the definition of C that

$$C \cap \omega(x) = \emptyset.$$

This contradiction shows that the set $\omega(x)$ is connected.

Properties of α -Limit Sets in Continuous Time

Proposition

Given a flow $\Phi = (\varphi_t)_{t \in \mathbb{R}}$ of X, for each $x \in X$ the following properties hold:

- 1. $y \in \alpha(x)$ if and only if there exists a sequence $t_k \searrow -\infty$ in \mathbb{R} such that $\varphi_{t_k}(x) \to y$ when $k \to \infty$;
- 2. If Φ is a topological flow, then $\alpha(x)$ is backward Φ -invariant.

Proposition

Let $\Phi = (\varphi_t)_{t \in \mathbb{R}}$ be a topological flow of X. Suppose the negative semiorbit $\gamma^-(x)$ of a point $x \in X$ has compact closure. Then:

- 1. $\alpha(x)$ is compact, connected and nonempty;
- 2. inf $\{d(\varphi_t(x), y) : y \in \alpha(x)\} \to 0$ when $t \to -\infty$.

Subsection 3

Topological Recurrence

Recurrence

• Let $f: X \to X$ be a continuous map.

Definition

A point $x \in X$ is said to be (**positively**) recurrent (with respect to f) if $x \in \omega(x)$.

- By a previous proposition, a point x is recurrent if and only if there exists a sequence $n_k \nearrow \infty$ in \mathbb{N} , such that $f^{n_k}(x) \to x$ when $k \to \infty$.
- Moreover, the set of recurrent points (with respect to *f*) is forward invariant.

Indeed, suppose $f^{n_k}(x) \to x$ with $n_k \to \infty$ when $k \to \infty$.

Then also $f^{n_k+n}(x) \to f^n(x)$ when $k \to \infty$, for $n \in \mathbb{N}$.

Example: Any periodic point x is recurrent, since $x \in \gamma^+(x) = \omega(x)$.
• Consider the rotation $R_{\alpha}: S^1 \to S^1$.

When α is rational, all points are periodic.

Thus, when α is rational all points are recurrent.

When α is irrational, for each $x \in S^1$, we have $\omega(x) = S^1$.

Again all points are recurrent.

More generally, each point x ∈ X with ω(x) = X is recurrent.
 Moreover, its positive semiorbit γ⁺(x) is dense in X.

Topological Transitivity

Definition

A map $f : X \to X$ is called **topologically transitive** if, given nonempty open sets

 $U, V \subseteq X,$

there exists an $n \in \mathbb{N}$, such that

 $f^{-n}U\cap V\neq \emptyset.$

Properties of Topological Transitivity

Theorem

Let $f : X \to X$ be a continuous map of a locally compact metric space with a countable basis. Then the following properties hold:

- 1. If f is topologically transitive, then there exists an $x \in X$ whose positive semiorbit $\gamma^+(x)$ is dense in X;
- If X has no isolated points and there exists an x ∈ X whose positive semiorbit γ⁺(x) is dense in X, then f is topologically transitive.
 - We first assume that *f* is topologically transitive.

Let $U \subseteq X$ be a nonempty open set. The union $\bigcup_{n \in \mathbb{N}} f^{-n}U$ intersects all open sets. So $\bigcup_{n \in \mathbb{N}} f^{-n}U$ is dense in X.

Let $\{U_i\}_{i \in \mathbb{N}}$ be a countable basis of X.

Topological Transitivity (Cont'd)

- Any locally compact metric space is a Baire space (i.e., it satisfies that any countable intersection of dense open sets is dense).
 So the set Y = ∩_{i∈ℕ} ∪_{n∈ℕ} f⁻ⁿU_i is nonempty.
 Given x ∈ Y, we have x ∈ ∪_{n∈ℕ} f⁻ⁿU_i for i ∈ ℕ.
 Thus, γ⁺(x) ∩ U_i ≠ Ø, for i ∈ ℕ.
 - This shows that the positive semiorbit of x is dense in X.

Now we assume that X has no isolated points and that there exists an $x \in X$ with dense positive semiorbit.

Let $U, V \subseteq X$ be nonempty open sets.

By hypothesis, X has no isolated points.

So the semiorbit $\gamma^+(x)$ visits infinitely often U and V.

Hence, there exist $m, n \in \mathbb{N}$, m > n, with $f^m(x) \in U$ and $f^n(x) \in V$. Therefore, $x \in f^{-m}U \cap f^{-n}V = f^{-n}(f^{-(m-n)}U \cap V)$. So the set $f^{-(m-n)}U \cap V$ is nonempty.

• Clearly S^1 has no isolated points.

Consider the rotation $R_{\alpha}: S^1 \rightarrow S^1$.

By a previous example, if $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, then, for every $x \in S^1$, $\gamma^+(x)$ is dense in S^1 .

Therefore, by the theorem, for each $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, the rotation $R_{\alpha} : S^1 \to S^1$ is topologically transitive.

Dense Orbits and Dense Positive Semiorbits

Theorem

Let X be a locally compact metric space with a countable basis and without isolated points. Let $f : X \to X$ be a homeomorphism. If there exists an $x \in X$ whose orbit $\gamma(x)$ is dense in X, then there exists a $y \in X$ whose positive semiorbit $\gamma^+(y)$ is dense in X.

By hypothesis, x is not isolated. So a dense orbit γ(x) visits infinitely often each open neighborhood of x.
 Thus, there exists a sequence n_k, with |n_k| ×∞, such that

 $f^{n_k}(x) \to x$ when $k \to \infty$.

By hypothesis, f is a homeomorphism. So, we also have, for each $m \in \mathbb{Z}$,

$$f^{n_k+m}(x) \to f^m(x)$$
 when $k \to \infty$.

Dense Orbits and Dense Positive Semiorbits (Cont'd)

- The sequence *n_k* takes infinitely many positive values or infinitely many negative values (or both).
 - In the first case, the positive semiorbit $\gamma^+(x)$ is dense in X.
 - In the second case, the negative semiorbit $\gamma^{-}(x)$ is dense in X.
 - Let $U, V \subseteq X$ be nonempty open sets.
 - Now $\gamma^{-}(x)$ is dense and X has no isolated points.

So there exist negative m > n, with $f^m(x) \in U$, $f^n(x) \in V$. Hence,

$$x \in f^{-m}U \cap f^{-n}V = f^{-n}(f^{-(m-n)}U \cap V).$$

So the set $f^{-(m-n)}U \cap V$ is nonempty.

This shows that the map f is topologically transitive.

By a previous theorem, there exists a dense positive semiorbit.

Topological Mixing Maps

Definition

A map $f : X \to X$ is called **topologically mixing** if, given nonempty open sets

 $U, V \subseteq X,$

there exists an $n \in \mathbb{N}$, such that

$$f^{-m}U \cap V \neq \emptyset$$
, for $m \ge n$.

• Clearly, any topologically mixing map is also topologically transitive.

Topological Transitivity Versus Mixing

- Let R_α: S¹ → S¹ be a rotation of the circle with α ∈ ℝ\Q.
 Let ε < ¹/₄ and consider the open interval U = (x − ε, x + ε) ⊆ S¹.
 We have that:
 - Each preimage $R_{\alpha}^{-n}U$ is an open interval of length $2\varepsilon < \frac{1}{2}$;
 - The orbit of x is dense.

Hence, there exists a sequence $n_k \nearrow \infty$ in \mathbb{N} , such that

$$R_{\alpha}^{-n_k}(x) \to x + rac{1}{2}$$
 when $k \to \infty$.

Thus, $R_{\alpha}^{-n_k}U \cap U = \emptyset$, for any sufficiently large k.

This shows that the rotation R_{α} is not topologically mixing.

Consider the expanding map E₂ : S¹ → S¹. By a previous example, there exists a point x ∈ S¹ whose positive semiorbit γ⁺(x) is dense in S¹. By a previous theorem, the map E₂ is topologically transitive. Claim: E₂ is also topologically mixing. Let U, V ⊆ S¹ be nonempty open sets. Consider an open interval I ⊆ V of the form

$$I=(0.x_1x_2\cdots x_n, 0.x_1x_2\cdots x_n11\ldots),$$

with the endpoints written in base 2.

Let $y = 0.y_1y_2... \in U$. Take $x = 0.x_1x_2...x_ny_1y_2... \in I$. We have $E_2^n(x) = y$. Hence, x is in $E_2^{-n}U$. Therefore,

$$E_2^{-n}U\cap V\supseteq E_2^{-n}U\cap I\neq\emptyset.$$

This shows that the map E_2 is topologically mixing.

Let T_A: T² → T² be an automorphism of the torus T². Suppose that |trA| > 2. By invertibility, A must be an invertible matrix with entries in Z. So we have detA = ±1. Note that

$$\det(A - \lambda \mathsf{Id}) = \lambda^2 - \mathsf{tr} A \lambda + \det A.$$

Thus, the eigenvalues of A are given by

$$\lambda_{1,2} = \frac{\mathrm{tr}A \pm \sqrt{(\mathrm{tr}A)^2 - 4\mathrm{det}A}}{2}$$

Since |trA| > 2, the eigenvalues are real numbers.

• Since $\lambda_1 \lambda_2 = \pm 1$, there exists $\lambda > 1$, such that

$$\{|\lambda_1|, |\lambda_2|\} = \{\lambda, \lambda^{-1}\}.$$

Example (Cont'd)

$$m^2 \pm 4 = \ell^2,$$

for some integer $\ell \in \mathbb{N}$, where m = trA. Hence, $(m - \ell)(m + \ell) = \pm 4$. Thus, since $m + \ell > m - \ell$,

 $m + \ell = 4$ and $m - \ell = 1$ or $m + \ell = -1$ and $m - \ell = -4$.

It is easy to verify that these systems have no integer solutions. This implies that λ_1 and λ_2 are irrational. In particular, the eigendirections of A have irrational slopes.

Example (Cont'd)

• Now let $U, V \subseteq \mathbb{T}^2$ be nonempty open sets.

Let $I \subseteq U$ be a line segment parallel to the eigendirection of A corresponding to the eigenvalue with modulus $\lambda^{-1} < 1$.

Then $A^{-m}I \subseteq \mathbb{R}^2$ is a line segment of length $\lambda^m |I|$, where |I| is the length of I.

The eigendirection of A corresponding to λ^{-1} has irrational slope.

Based on this, one can show that for any straight line $J \subseteq \mathbb{R}^2$ with this direction, the set J/\mathbb{Z}^2 is dense in \mathbb{T}^2 .

This implies that, given $\varepsilon > 0$, there exists an L > 0, such that for any line segment $J' \subseteq \mathbb{R}^2$ of length L with that direction, the set J'/\mathbb{Z}^2 is ε -dense in \mathbb{T}^2 .

In other words, the ε -neighborhood of J'/\mathbb{Z}^2 coincides with \mathbb{T}^2 .

Example (Conclusion)

Now take ε > 0 such that V contains an open ball B of radius ε.
 Recalling that λ > 1, take n = n(ε) ∈ N, such that

 $\lambda^n |I| > L.$

Since $\lambda^m |I| > L$, for $m \ge n$, by the ε -density of $T_A^{-m}I$ in \mathbb{T}^2 , we obtain

$$T_A^{-m}U\cap V\supseteq T_A^{-m}I\cap B\neq \emptyset, \quad m\geq n.$$

This shows that the automorphism of the torus T_A is topologically mixing.

Subsection 4

Topological Entropy

Introduction

- We introduce the notion of the *topological entropy* of a dynamical system (with discrete time).
- Topological entropy measures how the orbits of a dynamical system move apart as time increases.
- So it can be seen as a measure of the complexity of the dynamics.
- We establish some basic properties of topological entropy.
- We illustrate its *computation* with several examples.
- We describe several alternative *characterizations* of topological entropy that are particularly useful for its explicit computation.
- We show that *topological entropy is a topological invariant*, i.e., it takes the same value for topologically conjugate dynamical systems.

Topological Entropy

- Let X be a compact metric space X, say with distance d.
- Let $f: X \to X$ be a continuous map.
- For each $n \in \mathbb{N}$, we introduce a new distance on X by

$$d_n(x,y) = \max \{ d(f^k(x), f^k(y)) : 0 \le k \le n-1 \}.$$

Definition

The **topological entropy** of *f* is defined by

$$h(f) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log N(n, \varepsilon),$$

where $N(n,\varepsilon)$ is the largest number of points $p_1, \ldots, p_m \in X$, such that $d_n(p_i, p_j) \ge \varepsilon$, for $i \ne j$.

Remarks on the Definition of Topological Entropy

We defined

$$h(f) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log N(n, \varepsilon).$$

Note: $N(n, \varepsilon)$ is always finite. Let

$$B_1, B_2, \ldots$$

be a cover of X by open balls of radius $\frac{\varepsilon}{2}$ in the distance d_n . Since X is compact, there exists a finite subcover, say B'_1, \ldots, B'_m . Thus, $N(n, \varepsilon) \leq m$. Note: The function $\varepsilon \mapsto \limsup_{n \to \infty} \frac{1}{n} \log N(n, \varepsilon)$ is nonincreasing. Thus, the limit $\limsup_{\varepsilon \to 0} \frac{1}{n \to \infty} \log N(n, \varepsilon)$ always exists.

• Let $R_{lpha}:S^1 o S^1$ be a rotation of the circle. Consider the distance

$$d=\min\{|x-y-m|:m\in\mathbb{Z}\}.$$

We have

$$d(R_{\alpha}(x),R_{\alpha}(y))=d(x,y), \quad x,y\in S^{1}.$$

Thus, $d_n = d_1 = d$, for $n \in \mathbb{N}$.

Now we get

$$h(R_{\alpha}) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log N(1, \varepsilon) = 0.$$

Consider the expanding map E₂ : S¹ → S¹.
 The function ε → lim sup ¹/_n log N(n, ε) is nonincreasing.

So, for any sequence $(a_k)_{k\in\mathbb{N}}\subseteq\mathbb{R}^+$, such that $a_k o 0$,

$$h(E_2) = \lim_{k \to \infty} \limsup_{n \to \infty} \frac{1}{n} \log N(n, a_k).$$

Let us take
$$a_k = \frac{1}{2^{k+1}}$$
.
Claim: $N(n, \frac{1}{2^{k+1}}) = 2^{n+k}$, for $n, k \in \mathbb{N}$.
Suppose, first, $d(x, y) < \frac{1}{2^n}$.
Then

$$d_n(x,y) = d(E_2^{n-1}(x), E_2^{n-1}(y)) = 2^{n-1}d(x,y).$$

Example (Cont'd)

• Now consider the points $p_i = \frac{i}{2^{n+k}}$, for $i = 0, \dots, 2^{n+k} - 1$. We get

$$d_n(p_i, p_{i+1}) = \frac{1}{2^{k+1}}, \quad i = 0, \dots, 2^{n+k} - 1.$$

But there is no point p_j between p_i and p_{i+1} . So $d_n(p_i, p_j) \ge \frac{1}{2^{k+1}}$, for $i \ne j$. Thus, $N(n, \frac{1}{2^{k+1}}) \ge \frac{1}{2^{n+k}}$. Now consider a set $A \subseteq S^1$ with cardinality at least $2^{n+k} + 1$. Clearly, there exist points $x, y \in A$, with $x \ne y$, such that

$$d(x,y)<\frac{1}{2^{n+k}}.$$

This implies that $d_n(x,y) < \frac{1}{2^{k+1}}$. Hence, $N(n,\frac{1}{2^{k+1}}) \leq 2^{n+k}$.

Example (Cont'd)

• Finally, using the claim, we get

$$h(E_2) = \lim_{k \to \infty} \limsup_{n \to \infty} \frac{1}{n} \log N(n, \frac{1}{2^{k+1}})$$

=
$$\lim_{k \to \infty} \limsup_{n \to \infty} \frac{n+k}{n} \log 2$$

=
$$\log 2.$$

Topologically Conjugate Maps

Definition

Two maps $f: X \to X$ and $g: Y \to Y$, where X and Y are topological spaces, are said to be **topologically conjugate** if there exists a homeomorphism $H: X \to Y$ such that $H \circ f = g \circ H$.

Then *H* is called a **topological conjugacy**.

• Consider the map $f : R \to R$ defined by

$$f(z)=z^2$$

on the set $R = \{z \in \mathbb{C} : |z| = 1\}.$

Consider, also, the continuous map $H: S^1 \to R$ defined by

$$H(x)=e^{2\pi i x}$$

H is a homeomorphism, with inverse given by

$$H^{-1}(z) = \frac{\arg z}{2\pi} \mod 1.$$

We have

$$(f \circ H)(x) = f(e^{2\pi i x}) = e^{4\pi i x};$$

 $(H \circ E_2)(x) = H(2x) = e^{4\pi i x}.$

This shows that $H \circ E_2 = f \circ H$.

Thus, the maps E_2 and f are topologically conjugate.

Topological Invariance

• We say that a certain quantity, such as, for example, topological entropy, is a **topological invariant** if it takes the same value for topologically conjugate dynamical systems.

Theorem

Let $f : X \to X$ and $g : Y \to Y$ be continuous maps of compact metric spaces. If f and g are topologically conjugate, then

h(f)=h(g).

Topological Invariance of Entropy

 Let H : X → Y be a homeomorphism such that H ∘ f = g ∘ H. The map H is uniformly continuous.

So, given $\varepsilon > 0$, there exists a $\delta > 0$, such that

 $d_X(x,y) < \delta$ implies $d_Y(H(x), H(y)) < \varepsilon$,

where d_X and d_Y are, respectively, the distances on X and Y. We note that when $\varepsilon \to 0$, $\delta \to 0$.

On the other hand, for $m \in \mathbb{N}$ and $x \in X$, $H(f^m(x)) = g^m(H(x))$. Hence, if $p_1, \ldots, p_m \in Y$, with $q_i = H(p_i)$, are such that

$$\max \{ d_Y(g^m(q_i), g^m(q_j)) : m = 0, \dots, n-1 \} \ge \varepsilon, \quad i \neq j,$$

then max $\{d_X(f^m(p_i), f^m(p_j)) : m = 0, ..., n-1\} \ge \delta$, for $i \ne j$. This shows that $N_f(n, \delta) \ge N_g(n, \varepsilon)$.

Topological Invariance of Entropy

• We showed that $N_f(n,\delta) \geq N_g(n,arepsilon).$ It follows that

$$\limsup_{n\to\infty}\frac{1}{n}\log N_f(n,\delta)\geq\limsup_{n\to\infty}\frac{1}{n}\log N_g(n,\varepsilon),$$

for each $\varepsilon > 0$. Letting $\varepsilon \to 0$, we have $\delta \to 0$. Thus, $h(f) \ge h(g)$. Now we rewrite $H \circ f = g \circ H$ in the form

$$H^{-1} \circ g = f \circ H^{-1}.$$

The previous argument, with H replaced by H^{-1} , yields $h(g) \ge h(f)$. Therefore, h(f) = h(g).

- Recall the preceding example. We considered the maps:
 - $f: R \to R$ defined by

$$f(z)=z^2$$

on the set $R = \{z \in \mathbb{C} : |z| = 1\};$ • The expanding map $E_2 : S^1 \rightarrow S^1$.

We showed that f is topologically conjugate to E_2 . By the theorem and a previous example, we get

$$h(f)=h(E_2)=\log 2.$$

The Sets M(n,arepsilon) and C(n,arepsilon)

Definition

Given $n \in \mathbb{N}$ and $\varepsilon > 0$, we denote by $M(n, \varepsilon)$ the least number of points $p_1, \ldots, p_m \in X$, such that each $x \in X$ satisfies $d_n(x, p_i) < \varepsilon$, for some *i*.

Definition

Given $n \in \mathbb{N}$ and $\varepsilon > 0$, we denote by $C(n, \varepsilon)$ the least number of elements of a cover of X by sets U_1, \ldots, U_m with

$$\sup \{d_n(x,y): x, y \in U_i\} < \varepsilon, \text{ for } i = 1, \dots, m.$$

• The supremum appearing in the definition of $C(n, \varepsilon)$ is called the d_n -diameter of U_i .

Relations Between M(n,arepsilon), C(n,arepsilon) and N(n,arepsilon)

Proposition

For each $n \in \mathbb{N}$ and $\varepsilon > 0$, we have

$$C(n, 2\varepsilon) \leq M(n, \varepsilon) \leq N(n, \varepsilon) \leq M\left(n, \frac{\varepsilon}{2}\right) \leq C\left(n, \frac{\varepsilon}{2}\right).$$

- We establish successively each of the inequalities:
- 1. For $m = M(n, \varepsilon)$, take points $p_1, \ldots, p_m \in X$, such that each $x \in X$ satisfies $d_n(x, p_i) < \varepsilon$, for some *i*.

Then, the following d_n -open balls cover X,

$$B_n(p_i,\varepsilon) = \{x \in X : d_n(x,p_i) < \varepsilon\}.$$

But $B_n(p_i,\varepsilon)$ has d_n -diameter 2ε . Therefore, $m \ge C(n, 2\varepsilon)$. Relations Between $M(n, \varepsilon)$, $C(n, \varepsilon)$ and $N(n, \varepsilon)$ (Cont'd)

2. $(M(n,\varepsilon) \leq N(n,\varepsilon))$ For $m = N(n,\varepsilon)$, let $p_1,\ldots,p_m \in X$ be such that

$$d_n(p_i, p_j) \geq \varepsilon, \quad i \neq j.$$

But each $x \in X \setminus \{p_1, \dots, p_m\}$ satisfies $d_n(x, p_i) < \varepsilon$, for some *i*. Hence, $M(n, \varepsilon) \leq m$.

- 3. $(N(n,\varepsilon) \le M(n,\frac{\varepsilon}{2}))$ Note that no d_n -open ball of radius $\frac{\varepsilon}{2}$ contains two points at a d_n -distance ε . Thus, $N(n,\varepsilon) \le M(n,\frac{\varepsilon}{2})$.
- 4. $(M(n, \frac{\varepsilon}{2}) \leq C(n, \frac{\varepsilon}{2}))$ For $m = C(n, \frac{\varepsilon}{2})$, let U_1, \ldots, U_m be a cover of X by sets of d_n -diameter less than $\frac{\varepsilon}{2}$.

Take a point $p_i \in U_i$ for each *i*. Clearly, $B_n(p_i, \frac{\varepsilon}{2}) \supseteq U_i$.

Now these d_n -balls form a cover of X.

Hence, $M(n, \frac{\varepsilon}{2}) \leq C(n, \frac{\varepsilon}{2})$.

A Property of $C(n, \varepsilon)$

Lemma

Let $f: X \to X$ be a continuous map of a compact metric space. Given $m, n \in \mathbb{N}$ and $\varepsilon > 0$, we have

$$C(m+n,\varepsilon) \leq C(m,\varepsilon)C(n,\varepsilon).$$

Let U₁,..., U_k be a cover of X by sets of d_n-diameter less than ε, where k = C(n, ε). Let V₁,..., V_ℓ be a cover of X by sets of d_m-diameter less than ε, where ℓ = C(m, ε). Note that, for all x, y ∈ X,

$$d_{m+n}(x,y) = \max \{ d_n(x,y), d_m(f^n(x), f^n(y)) \}.$$

Thus, the sets $U_i \cap f^{-n}V_j$, i = 1, ..., k, $j = 1, ..., \ell$, form a cover of X and have d_{m+n} -diameter less than ε . It follows that $C(m + n, \varepsilon) \leq \ell k = C(m, \varepsilon)C(n, \varepsilon)$.

An Auxiliary Lemma

Lemma

If $(c_n)_{n\in\mathbb{N}}$ is a sequence of real numbers such that

$$c_{m+n} \leq c_m + c$$
, $m, n \in \mathbb{N}$,

then the limit

$$\lim_{n\to\infty}\frac{c_n}{n} = \inf\left\{\frac{c_n}{n} : n \in \mathbb{N}\right\}$$

exists.

An Auxiliary Lemma (Cont'd)

• Given integers $n, k \in \mathbb{N}$, write

$$n = qk + r, \quad q \in \mathbb{N} \cup \{0\}, \ r \in \{0, \dots, k - 1\}.$$

Now we have

$$\frac{c_n}{n} \leq \frac{c_{qk} + c_r}{qk + r} \leq \frac{qc_k + c_r}{qk + r}.$$

Since $q \to \infty$ when $n \to \infty$ (for a fixed k),

$$\limsup_{n\to\infty}\frac{c_n}{n}\leq\frac{c_k}{k}$$

Since k is arbitrary, this implies that

$$\limsup_{n\to\infty}\frac{c_n}{n}\leq \inf\left\{\frac{c_k}{k}:k\in\mathbb{N}\right\}\leq \liminf_{n\to\infty}\frac{c_n}{n}.$$

Alternative Formulas for the Topological Entropy

Theorem

If $f: X \to X$ is a continuous map of a compact metric space, then

$$h(f) = \lim_{\varepsilon \to 0} \liminf_{n \to \infty} \frac{1}{n} \log N(n, \varepsilon)$$

$$= \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log M(n, \varepsilon)$$

$$= \lim_{\varepsilon \to 0} \liminf_{n \to \infty} \frac{1}{n} \log M(n, \varepsilon)$$

$$= \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log C(n, \varepsilon).$$

Alternative Formulas for the Topological Entropy (Cont'd)

• By the two preceding lemmas, the following limit exists,

$$\lim_{n\to\infty}\frac{1}{n}\log C(n,\varepsilon)=\inf\bigg\{\frac{1}{n}\log C(n,\varepsilon):n\in\mathbb{N}\bigg\}.$$

Using the inequalities of the preceding proposition, we get

$$\lim_{n \to \infty} \frac{1}{n} \log C(n, 2\varepsilon) \leq \liminf_{n \to \infty} \frac{1}{n} \log M(n, \varepsilon) \\
\leq \liminf_{n \to \infty} \frac{1}{n} \log N(n, \varepsilon) \\
\leq \limsup_{n \to \infty} \frac{1}{n} \log N(n, \varepsilon) \\
\leq \limsup_{n \to \infty} \frac{1}{n} \log M(n, \frac{\varepsilon}{2}) \\
\leq \lim_{n \to \infty} \frac{1}{n} \log C(n, \frac{\varepsilon}{2}).$$
Alternative Formulas for the Topological Entropy (Cont'd)

• Letting $\varepsilon \rightarrow 0$ yields the inequalities

$$\begin{split} \lim_{n \to 0} \lim_{n \to \infty} \frac{1}{n} \log C(n, 2\varepsilon) &\leq \lim_{\varepsilon \to 0} \lim_{n \to \infty} \inf_{n} \log M(n, \varepsilon) \\ &\leq \lim_{\varepsilon \to 0} \lim_{n \to \infty} \inf_{n} \log N(n, \varepsilon) \\ &\leq h(f) \\ &\leq \lim_{\varepsilon \to 0} \lim_{n \to \infty} \lim_{n \to \infty} \log M(n, \frac{\varepsilon}{2}) \\ &\leq \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log C(n, \frac{\varepsilon}{2}). \end{split}$$

The equality of the first and the last terms establishes the desired result.

Example: Automorphisms of the Torus

• Let $T_A : \mathbb{T}^2 \to \mathbb{T}^2$ be an automorphism of the torus.

We recall that along the eigendirections of A the distances are multiplied by λ or λ^{-1} , for some $\lambda > 1$.

Now we consider a cover of \mathbb{T}^2 by d_n -open balls $B_n(p_i, \varepsilon)$.

We have

$$B_n(p_i,\varepsilon) = \bigcap_{k=0}^{n-1} T_A^{-k} B(T_A^k(p_i),\varepsilon).$$

Thus, there exists a C > 0 (independent of n, ε and i), such that the area of $B_n(p_i, \varepsilon)$ is at most $C\lambda^{-n}\varepsilon^2$. Hence, $M(n, \varepsilon) \ge \frac{1}{C\lambda^{-n}\varepsilon^2}$. It follows from the theorem that

$$h(f) = \lim_{\varepsilon \to 0} \liminf_{n \to \infty} \frac{1}{n} \log M(n, \varepsilon) \ge \log \lambda.$$

Example: Automorphisms of the Torus (Cont'd)

• We also consider partitions of \mathbb{T}^2 by parallelograms with sides parallel to the eigendirections of *A*.

More precisely, we consider a partition of \mathbb{T}^2 by parallelograms P_i with sides of length $\varepsilon \lambda^{-n}$ and ε , up to a multiplicative constant, along the eigendirections of λ and λ^{-1} , respectively.

Then there exists a D > 1 (independent of n, ε and i), such that each P_i has area at least $D^{-1}\lambda^{-n}\varepsilon^2$ and d_n -diameter less than $D\varepsilon$. Thus, $C(n, D\varepsilon) \leq \frac{1}{D^{-1}\lambda^{-n}\varepsilon^2}$.

By the theorem, we have

$$h(f) = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log C(n, \varepsilon) \le \log \lambda.$$

This shows that $h(f) = \log \lambda$.

Expansive Maps

Definition

A map $f: X \to X$ is called (**positively**) expansive if there exists a $\delta > 0$, such that

$$d(f^n(x), f^n(y)) < \delta$$
, for all $n \ge 0$, implies $x = y$.

Example: The expanding map $E_m : S^1 \to S^1$ is expansive. Suppose $d(x, y) < \frac{1}{m^2}$ and $x \neq y$. Then there exists an $n \in \mathbb{N}$, such that

$$d(E_m^n(x),E_m^n(y))=m^nd(x,y)\geq \frac{1}{m^2}.$$

Thus, if $d(E_m^n(x), E_m^n(y)) < \frac{1}{m^2}$, for all $n \ge 0$, then x = y. So the expanding map E_m is expansive.

Example

• Given a > 4, let $f : [0,1] \to \mathbb{R}$ be the quadratic map

$$f(x) = ax(1-x).$$

The set

$$X = \bigcap_{n=0}^{\infty} f^{-n}[0,1]$$

is compact and forward *f*-invariant. In particular, one can consider the restriction $f \mid X : X \to X$. We have f(x) = 1, for $x = \frac{1 \pm c}{2}$, where $c = \sqrt{1 - \frac{4}{a}}$. Therefore, for $x \in X$,

$$|f'(x)|=a|1-2x|\geq ac.$$

Example (Cont'd)

• Assume that a > 4 is so large that ac > 1. Equivalently, assume that

$$a > 2 + \sqrt{5}$$
.

Let $x, y \in X$ be such that

$$|f^k(x) - f^k(y)| < c, \quad ext{for } k \in \mathbb{N} \cup \{0\}.$$

Then, for

$$I_1 = \begin{bmatrix} 0, \frac{1-c}{2} \end{bmatrix}$$
 and $I_2 = \begin{bmatrix} \frac{1+c}{2}, 1 \end{bmatrix}$,

we have

$$f^k(x), f^k(y) \in I_1$$
 or $f^k(x), f^k(y) \in I_2$.

Using the derivative inequality, for $k \in \mathbb{N}$,

$$c > |f^k(x) - f^k(y)| \ge (ac)^k |x - y|.$$

Since ac > 1, we get x = y. So $f \mid X$ is expansive.

Entropy Formula for Expansive Maps

Theorem

Let $f: X \to X$ be a continuous expansive map of a compact metric space. Then $h(f) = \lim_{n \to \infty} \frac{1}{n} \log N(n, \alpha)$

$$\begin{aligned} f(f) &= \lim_{n \to \infty} \frac{1}{n} \log N(n, \alpha) \\ &= \lim_{n \to \infty} \frac{1}{n} \log M(n, \alpha) \\ &= \lim_{n \to \infty} \frac{1}{n} \log C(n, \alpha), \end{aligned}$$

for any sufficiently small $\alpha > 0$.

Let δ be the constant in the expansive property.
 Take constants ε, α > 0, such that 0 < ε < α < δ.
 Let A ⊆ X be a set with cardA = N(n, ε), such that

$$d_n(x,y) \ge \varepsilon$$
, for all $x, y \in A$, with $x \ne y$.

Entropy Formula for Expansive Maps (Cont'd)

• Claim: There exists an $m = m(\varepsilon, \alpha) \in \mathbb{N}$, such that, if $d(x, y) \ge \varepsilon$, then

$$d(f^i(x), f^i(y)) > \alpha$$
, for some $i \in \{0, \dots, m\}$.

Let

$$q \in K := \{(x, y) \in X \times X : d(x, y) \ge \varepsilon\}.$$

Now f is continuous and expansive.

(

So there exist an open ball $B(q) \subseteq X \times X$ centered at q and an integer $i = i(q) \in \mathbb{N} \cup \{0\}$, such that

 $(x,y) \in B(q)$ implies $d(f^i(x), f^i(y)) > \delta > \alpha$.

The balls B(q) cover the compact set K. Hence, there exists a finite subcover $B(q_j)$, with j = 1, ..., p. Take $m = \max \{i(q_j) : j = 1, ..., p\}$. We obtain the claimed property for $(x, y) \in K$.

Entropy Formula for Expansive Maps (Cont'd)

• So, when $d_n(x,y) \ge \varepsilon$ and hence, for $x, y \in A$, with $x \ne y$,

$$d_n(f^j(x), f^j(y)) > lpha, \quad ext{for some } j \in \{0, \dots, m\}.$$

Thus, for $z, w \in f^{-m}A$, with $f^m(z) \neq f^m(w)$, we have

$$\begin{array}{ll} d_{n+2m}(z,w) & \geq & \max \left\{ d_n(f^i(z),f^i(w)) : i=m,\ldots,2m \right\} \\ & = & \max \left\{ d_n(f^{j+m}(z),f^{j+m}(w)) : j=0,\ldots,m \right\} \\ & > & \alpha, \end{array}$$

since $f^m(z), f^m(w) \in A$. This yields the inequality

$$N(n+2m,\alpha) \geq N(n,\epsilon).$$

Entropy Formula for Expansive Maps (Cont'd)

• It follows from a previous proposition that

$$egin{array}{rcl} \mathcal{N}(n,arepsilon) &\leq & \mathcal{N}(n+2m,lpha) \ &\leq & \mathcal{M}(n+2m,rac{lpha}{2}) \ &\leq & \mathcal{C}(n+2m,rac{lpha}{2}) \ &\leq & \mathcal{C}(n+2m,rac{arepsilon}{2}). \end{array}$$

Thus, applying the preceding theorem, we conclude that

$$\limsup_{n\to\infty} \frac{1}{n} \log N(n,\varepsilon) \leq \limsup_{n\to\infty} \frac{1}{n} \log N(n+2m,\alpha)$$

$$\leq \lim_{n \to \infty} \sup \frac{1}{n} \log M(n+2m, \frac{\alpha}{2})$$

$$\leq \lim_{n \to \infty} \sup_{n \to \infty} \frac{1}{n} \log C(n+2m, \frac{\alpha}{2})$$

$$\leq \lim_{n\to\infty} \sup_{n\to\infty} \frac{1}{n} \log C(n+2m,\frac{\varepsilon}{2}).$$

Entropy Formula for Expansive Maps (Conclusion)

• Letting $\varepsilon \to 0$ yields the inequalities

$$\begin{split} h(f) &\leq \limsup_{n \to \infty} \frac{1}{n} \log N(n, \alpha) \\ &\leq \limsup_{n \to \infty} \frac{1}{n} \log M(n, \frac{\alpha}{2}) \\ &\leq \limsup_{n \to \infty} \frac{1}{n} \log C(n, \frac{\alpha}{2}) \leq h(f). \end{split}$$

One can also replace each lim sup by lim inf.

Then, letting $\varepsilon \rightarrow 0$, we obtain

$$\begin{array}{ll} h(f) &\leq & \liminf_{n \to \infty} \frac{1}{n} \log N(n, \alpha) \\ &\leq & \liminf_{n \to \infty} \frac{1}{n} \log M(n, \frac{\alpha}{2}) \\ &\leq & \liminf_{n \to \infty} \frac{1}{n} \log C(n, \frac{\alpha}{2}) \leq h(f) \end{array}$$

The identities now follow from these two chains of inequalities.

Example

• Consider the restriction $E_4 \mid A : A \rightarrow A$, where A is the compact forward E_4 -invariant set

$$A = \bigcap_{n \ge 0} E_4^{-n} \left(\left[0, \frac{1}{4} \right] \cup \left[\frac{2}{4}, \frac{3}{4} \right] \right).$$

Note that if $d(x, y) < \frac{1}{4^n}$, then

$$d_n(x,y) = d(E_4^{n-1}(x), E_4^{n-1}(y)) = 4^{n-1}d(x,y).$$

Given $k \in \mathbb{N}$, consider the 2^{n+k+1} points x_i on the boundary of

$$\bigcap_{m=0}^{n+k-1} E_4^{-m}\left(\left[0,\frac{1}{4}\right] \cup \left[\frac{2}{4},\frac{3}{4}\right]\right).$$

From the relation between the distances, for $i \neq j$,

$$d_n(x_i, x_j) \ge 4^{n-1} \cdot \frac{1}{4^{n+k}} = \frac{1}{4^{k+1}}.$$

Example (Cont'd)

• We conclude that $N(n, \frac{1}{4^{k+1}}) \ge 2^{n+k+1}$. On the other hand, given a set $B \subseteq A$ with at least $2^{n+k+1} + 1$ points, there exist $x, y \in B$, with $x \ne y$, such that $d(x, y) < \frac{1}{4^{n+k}}$. Thus,

$$d_n(x,y) < \frac{1}{4^{k+1}}.$$

This implies that

$$N\left(n, \frac{1}{4^{k+1}}
ight) = 2^{n+k+1}, ext{ for } n, k \in \mathbb{N}.$$

Since E_4 is expansive, the same happens to the restriction $E_4 \mid A$. It then follows from the preceding theorem that

$$h(E_4 \mid A) = \lim_{n \to \infty} \frac{1}{n} \log N(n, \frac{1}{4^{k+1}})$$
$$= \lim_{n \to \infty} \frac{n+k+1}{n} \log 2 = \log 2.$$