Introduction to Dynamical Systems

George Voutsadakis ${ }^{1}$
${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

- Homeomorphisms of the Circle
- Diffeomorphisms of the Circle
- Maps of the Interval
- The Poincaré-Bendixson Theorem

Subsection 1

Homeomorphisms of the Circle

- Consider the projection $\pi: \mathbb{R} \rightarrow S^{1}$ defined by $\pi(x)=[x]$.
- Consider the equivalence class $[x]$.
- It is represented by its unique representative in the interval $[0,1)$.
- That is $[x]$ is represented by the number

$$
x-\lfloor x\rfloor,
$$

where $\lfloor x\rfloor$ is the integer part of x.

Lifting a Homeomorphism of the Circle

Definition

Let $f: S^{1} \rightarrow S^{1}$ be a homeomorphism of the circle.
A continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ is said to be a lift of f if

$$
f \circ \pi=\pi \circ F
$$

- Given $\alpha \in \mathbb{R}$, consider the rotation $R_{\alpha}: S^{1} \rightarrow S^{1}$ given by

$$
R_{\alpha}(x)=x+\alpha \quad \bmod 1
$$

Clearly, R_{α} is a homeomorphism.
Given $k \in \mathbb{Z}$, consider the function $F: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
F(x)=x+\alpha+k
$$

The function F satisfies

$$
\begin{aligned}
\pi(F(x)) & =\pi(x+\alpha+k) \\
& =x+\alpha+k \bmod 1 \\
& =\pi(x)+\alpha \bmod 1 \\
& =R_{\alpha}(\pi(x))
\end{aligned}
$$

Hence, F is a lift of R_{α}.

- Given $\beta \in \mathbb{R}$, consider the continuous function $f: S^{1} \rightarrow S^{1}$ defined by

$$
f(x)=x+\beta \sin (2 \pi x) \quad \bmod 1
$$

Claim: f is a homeomorphism for $|\beta|<\frac{1}{2 \pi}$.
Consider he function $F: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
F(x)=x+\beta \sin (2 \pi x)
$$

We have

$$
F^{\prime}(x)=1+2 \pi \beta \cos (2 \pi x) \geq 1-2 \pi|\beta|>0
$$

So $F(x)$ is increasing.
In particular, for $x \in[0,1)$, we have $F(x)<F(1)=1$.
Thus, the function f is one-to-one and onto.

- Since f is continuous, it maps compact sets to compact sets. Thus, it also maps open sets to open sets.
So its inverse is continuous.
Hence, it is a homeomorphism.
Moreover,

$$
\begin{aligned}
\pi(F(x)) & =x+\beta \sin (2 \pi x) \bmod 1 \\
& =x-\lfloor x\rfloor+\beta \sin (2 \pi x) \\
& =x-\lfloor x\rfloor+\beta \sin (2 \pi(x-\lfloor x\rfloor)) \\
& =f(\pi(x))
\end{aligned}
$$

So F is a lift of f.

Proposition

Let $f: S^{1} \rightarrow S^{1}$ be a homeomorphism. Then:
f has lifts;
If F and G are lifts of f, then there exists a $k \in \mathbb{Z}$ such that $G-F=k$;
Any lift of f is a homeomorphism of \mathbb{R}.

- We deal with the case of increasing f. Let $x \in \mathbb{R}$.

Apply f on the element of S^{1} represented by $x-\lfloor x\rfloor$.
Let $f(x-\lfloor x\rfloor)$ be the representative in the interval $[f(0), f(0)+1)$.
Define a function $F: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
F(x)=f(x-\lfloor x\rfloor)+\lfloor x\rfloor .
$$

Now $x-\lfloor x\rfloor$ and $\lfloor x\rfloor$ are continuous on $\mathbb{R} \backslash \mathbb{Z}$. Thus, so too is F.

- For each $k \in \mathbb{Z}$, we have:

$$
\begin{aligned}
F(k) & =f(k-\lfloor k\rfloor)+\lfloor k\rfloor=f(k-k)+k=f(0)+k ; \\
F\left(k^{-}\right) & =f\left(k^{-}-\left\lfloor k^{-}\right\rfloor\right)+\left\lfloor k^{-}\right\rfloor=f\left(k^{-}-k+1\right)+k-1 \\
& =f\left(1^{-}\right)+k-1=f\left(0^{+}\right)+1+k-1=f(0)+k ; \\
F\left(k^{+}\right) & =f\left(k^{+}-\left\lfloor k^{+}\right\rfloor\right)+\left\lfloor k^{+}\right\rfloor=f\left(k^{+}-k\right)+k \\
& =f\left(0^{+}\right)+k=f(0)+k .
\end{aligned}
$$

Thus, for $k \in \mathbb{Z}$,

$$
F(k)=F\left(k^{-}\right)=F\left(k^{+}\right) .
$$

This shows that the function F is continuous on \mathbb{R}.
We also have

$$
\pi(F(x))=\pi(f(x-\lfloor x\rfloor)+\lfloor x\rfloor)=f(x-\lfloor x\rfloor)=f(\pi(x))
$$

Hence, F is a lift of f.

- Now let F and G be lifts of f. Then

$$
\pi \circ F=\pi \circ G=f \circ \pi
$$

By the first identity, for each $x \in \mathbb{R}$, there exists $p(x) \in \mathbb{Z}$, such that

$$
G(x)-F(x)=p(x)
$$

But F and G are continuous.
So the function $x \mapsto p(x)$ is also continuous.
Moreover, $x \mapsto p(x)$ takes only integer values.
So it must be constant.
Thus, there exists a $k \in \mathbb{Z}$, such that

$$
G(x)-F(x)=p(x)=k, \text { for any } x \in \mathbb{R} .
$$

- By the second property, lifts are unique up to an additive constant. So it is sufficient to show that the lift

$$
F(x)=\underbrace{f(x-\lfloor x\rfloor)}_{[f(0), f(0)+1)}+\lfloor x\rfloor
$$

is a homeomorphism.
Consider the continuous function $H: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
H(x)=\underbrace{f^{-1}(x-\lfloor x\rfloor)}_{\left[f^{-1}(0)-1, f^{-1}(0)\right)}+\lfloor x\rfloor,
$$

where $f^{-1}(x-\lfloor x\rfloor)$ is the representative in the interval $[0,1)$. We can show by examining cases that

$$
F(H(x))=x \quad \text { and } \quad H(F(x))=x
$$

Hence, F is a homeomorphism.

Orientation-Preserving Homeomorphisms

Definition

A homeomorphism $f: S^{1} \rightarrow S^{1}$ is said to be orientation-preserving if it has a lift which is an increasing function.

- It follows from a previous proposition that f is orientation-preserving if and only if all its lifts are increasing functions.
Examples: The homeomorphisms of the circle considered in the preceding two examples are orientation-preserving since the lifts presented for them are increasing functions.
- Given $\alpha \in \mathbb{R}$, consider the homeomorphism $f: S^{1} \rightarrow S^{1}$ defined by

$$
f(x)=-x+\alpha \quad \bmod 1
$$

One can easily verify that the function $F: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
F(x)=-x+\alpha
$$

is a lift of f.
Note that the lift F is decreasing.
So the homeomorphism f is not orientation-preserving.

Theorem

Let $f: S^{1} \rightarrow S^{1}$ be an orientation-preserving homeomorphism. If F is a lift of f, then for each $x \in \mathbb{R}$ the limit

$$
\rho(F)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n} \in \mathbb{R}_{0}^{+}
$$

exists and is independent of x.
Moreover, if G is another lift of f, then

$$
\rho(G)-\rho(F) \in \mathbb{Z}
$$

- We first assume that $F(x)>x$, for every $x \in \mathbb{R}$.

Given $x \in \mathbb{R}$, consider the sequence $a_{n}=F^{n}(x)-x$.
For each $m, n \in \mathbb{N}$, we have

$$
a_{m+n}=F^{m+n}(x)-x=F^{m}\left(F^{n}(x)\right)-F^{n}(x)+a_{n}
$$

Now, since $a_{n}=F^{n}(x)-x$,

$$
\left\lfloor a_{n}\right\rfloor \leq F^{n}(x)-x<\left\lfloor a_{n}\right\rfloor+1
$$

That is,

$$
x+\left\lfloor a_{n}\right\rfloor \leq F^{n}(x)<x+\left\lfloor a_{n}\right\rfloor+1 .
$$

So, by the fact that F is a lifting, we obtain

$$
F^{m}\left(F^{n}(x)\right)<F^{m}\left(x+\left\lfloor a_{n}\right\rfloor\right)+1
$$

- On the other hand, we have

$$
F^{m}\left(x+\left\lfloor a_{n}\right\rfloor\right)-\left(x+\left\lfloor a_{n}\right\rfloor\right)=F^{m}(x)-x=a_{m} .
$$

Using these inequalities, we get

$$
\begin{aligned}
a_{m+n} & <F^{m}\left(x+\left\lfloor a_{n}\right\rfloor\right)+1-F^{n}(x)+a_{n} \\
& =a_{m}+a_{n}+x+\left\lfloor a_{n}\right\rfloor-F^{n}(x)+1 .
\end{aligned}
$$

Since $x+\left\lfloor a_{n}\right\rfloor \leq F^{n}(x), a_{m+n} \leq a_{m}+a_{n}+1$.
So the sequence $c_{n}=a_{n}+1$ satisfies the condition $c_{m+n} \leq c_{m}+c_{n}$. By a previous lemma, the following limit exists

$$
\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n}=\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=\inf \left\{\frac{a_{n}}{n}: n \in \mathbb{N}\right\}
$$

Since $a_{n}=F^{n}(x)-x>0$ (F is increasing), the limit is finite.

- Now we show that the limit is independent of x.

Given $x, y \in \mathbb{R}$ and $k \in \mathbb{N}$ with $|x-y| \leq k$, we have

$$
\begin{aligned}
& F(x) \leq F(y+k)=F(y)+k \\
& F(x) \geq F(y-k)=F(y)-k
\end{aligned}
$$

Hence,

$$
|F(x)-F(y)| \leq k
$$

It follows by induction that, for all $n \in \mathbb{N}$,

$$
\left|F^{n}(x)-F^{n}(y)\right| \leq k
$$

- We showed $|x-y| \leq k$ implies $\left|F^{n}(x)-F^{n}(y)\right| \leq k, n \in \mathbb{N}$.

This implies that

$$
\begin{aligned}
\left|\frac{F^{n}(x)-x}{n}-\frac{F^{n}(y)-y}{n}\right| & =\left|\frac{F^{n}(x)-F^{n}(y)}{n}+\frac{y-x}{n}\right| \\
& \leq \frac{2 k}{n} \xrightarrow{n} 0 .
\end{aligned}
$$

Note that, given $x, y \in \mathbb{R}$, one can always choose $k \in \mathbb{N}$, such that

$$
|x-y| \leq k
$$

Therefore, for $x, y \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n}=\lim _{n \rightarrow \infty} \frac{F^{n}(y)-y}{n}
$$

- It remains to establish the last property in the theorem.

By a previous proposition, if F and G are lifts of f, then there exists a $k \in \mathbb{Z}$, such that

$$
G-F=k
$$

It follows by induction that

$$
G^{n}(x)=F^{n}(x)+n k .
$$

Therefore,

$$
\begin{aligned}
\rho(G) & =\lim _{n \rightarrow \infty} \frac{G^{n}(x)-x}{n} \\
& =\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n}+k \\
& =\rho(F)+k .
\end{aligned}
$$

The Rotation Number

Definition

The rotation number of an orientation-preserving homeomorphism $f: S^{1} \rightarrow S^{1}$ is defined by

$$
\rho(f)=\pi(\rho(F))
$$

where F is any lift of f and where $\pi(x)=[x]$.

- It follows from the last property in the theorem that the rotation number is well defined, i.e., $\rho(f)$ does not depend on the lift F.
- Let $\alpha \in \mathbb{R}$ and consider the rotation

$$
R_{\alpha}=x+\alpha \quad \bmod 1
$$

Recall the lift

$$
F(x)=x+\alpha+k
$$

We obtain

$$
\frac{F^{n}(x)-x}{n}=\frac{x+n(\alpha+k)-x}{n}=\alpha+k
$$

Thus, $\rho(F)=\alpha+k$.
Hence,

$$
\rho\left(R_{\alpha}\right)=\pi(\rho(F))=\alpha \quad \bmod 1
$$

- Now we consider the homeomorphism $f: S^{1} \rightarrow S^{1}$ defined by

$$
f(x)=x+\beta \sin (2 \pi x) \quad \bmod 1
$$

with $|\beta|<\frac{1}{2 \pi}$.
Recall the lift

$$
F(x)=x+\beta \sin (2 \pi x)
$$

By the theorem, $\rho(F)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n}$ does not depend on x.
So we have

$$
\rho(F)=\lim _{n \rightarrow \infty} \frac{F^{n}(0)-0}{n}=0 .
$$

- We consider the homeomorphisms with rational rotation number.
- Recall that $x \in S^{1}$ is said to be a periodic point of a map $f: S^{1} \rightarrow S^{1}$ if

$$
f^{q}(x)=x, \text { for some } q \in \mathbb{N} .
$$

Theorem

Let $f: S^{1} \rightarrow S^{1}$ be an orientation-preserving homeomorphism. Then $\rho(f) \in \mathbb{Q}$ if and only if f has at least one periodic point.

- We first assume that $\rho(f)=0$ and we show that f has a fixed point.

Assume, to the contrary, that f has no fixed points.
Suppose F is a lift of f.
Suppose that, for some $x \in \mathbb{R}, F(x)-x \in \mathbb{Z}$.
Then $\pi(x)=\pi(F(x))=f(\pi(x))$.
Thus, $\pi(x)$ would be a fixed point of f.

- It follows that

$$
F(x)-x \in \mathbb{R} \backslash \mathbb{Z}, \quad \text { for } x \in \mathbb{R}
$$

Since F is continuous, there exists a $k \in \mathbb{Z}$, such that

$$
k<F(x)-x<k+1, \quad \text { for } x \in \mathbb{R}
$$

On the other hand, for $x \in \mathbb{R}$,

$$
F(x+1)-(x+1)=F(x)-x
$$

Thus, the continuous function $x \mapsto F(x)-x$ is completely determined by its values on the compact interval $[0,1]$.
It follows from Weierstrass' Theorem that there exists an $\varepsilon>0$, such that

$$
k+\varepsilon \leq F(x)-x \leq k+1-\varepsilon, \quad \text { for } x \in \mathbb{R}
$$

- We saw that there exists an $\varepsilon>0$, such that

$$
k+\varepsilon \leq F(x)-x \leq k+1-\varepsilon, \quad \text { for } x \in \mathbb{R}
$$

But

$$
F^{n}(x)-x=\sum_{i=0}^{n-1}\left[F\left(F^{i}(x)\right)-F^{i}(x)\right]
$$

So we get

$$
k+\varepsilon \leq \frac{F^{n}(x)-x}{n} \leq k+1-\varepsilon
$$

Thus,

$$
\rho(f)=\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n} \quad \bmod 1 \in[\varepsilon, 1-\varepsilon] .
$$

This contradicts the hypothesis that $\rho(f)=0$.
Thus, f must have a fixed point.

- Now we assume that $\rho(f)=\frac{p}{q} \in \mathbb{Q}$.

Since F^{q} is a lift of f^{q}, we obtain

$$
\begin{aligned}
\rho\left(f^{q}\right) & =\lim _{n \rightarrow \infty} \frac{\left(F^{q}\right)^{n}(x)-x}{n} \bmod 1 \\
& =q \lim _{n \rightarrow \infty} \frac{F^{q n}(x)-x}{q n} \bmod 1 \\
& =q \rho(f) \bmod 1 \\
& =p \bmod 1 \\
& =0 .
\end{aligned}
$$

It follows from the above argument for a zero rotation number that the homeomorphism f^{q} has a fixed point.
This fixed point is a periodic point of f.

- For the converse, we assume that f has a periodic point. Then there exist $y \in \mathbb{R}$ and $q \in \mathbb{N}$, such that $f^{q}(\pi(y))=\pi(y)$. By induction, $f^{q} \circ \pi=\pi \circ F^{q}$.
Thus,

$$
\pi\left(F^{q}(y)\right)=f^{q}(\pi(y))=\pi(y)
$$

Hence, $F^{q}(y)=y+p$, for some $p \in \mathbb{Z}$.
On the other hand, $F(x+1)-(x+1)=F(x)-x$. So $F(x+p)=F(x)+p$, for $x \in \mathbb{R}$. Thus, for $x \in \mathbb{R}$ and $q \in \mathbb{N}$,

$$
F^{q}(x+p)=F^{q}(x)+p
$$

- We got $F^{q}(x+p)=F^{q}(x)+p$, for $x \in \mathbb{R}$ and $q \in \mathbb{N}$. In particular, taking $x=y$, we obtain

$$
\begin{aligned}
F^{2 q}(y) & =F^{q}\left(F^{q}(y)\right) \\
& =F^{q}(y+p) \\
& =F^{q}(y)+p \\
& =y+2 p .
\end{aligned}
$$

It follows by induction that

$$
F^{n q}(y)=y+n p, \quad \text { for } n \in \mathbb{N} .
$$

Thus,

$$
\rho(F)=\lim _{n \rightarrow \infty} \frac{F^{n q}(y)-y}{n q}=\lim _{n \rightarrow \infty} \frac{n p}{n q}=\frac{p}{q} .
$$

- Consider a homeomorphism $f: S^{1} \rightarrow S^{1}$.
- Recall that, given $q \in \mathbb{N}$, a point $x \in S^{1}$ is said to be a q-periodic point of f if

$$
f^{q}(x)=x
$$

- It follows from the proof of the preceding theorem that f^{q} has a fixed point, that is, f has a q-periodic point, if and only if

$$
\rho(f)=\frac{p}{q}, \quad \text { for some } p \in \mathbb{N} \text {. }
$$

- Thus, f has a periodic point with period q if and only if $\rho(f)=\frac{p}{q}$, with p and q coprime.
- By the previous observation, f has no ℓ-periodic points for any $\ell<q$.

Theorem

Let $f: S^{1} \rightarrow S^{1}$ be an orientation-preserving homeomorphism. If $\rho(f)=\frac{p}{q}$ with p and q coprime, then all periodic points of f have period q.

- Let $x \in S^{1}$ be a periodic point of f.

By the former discussion, x has period $\ell=d q$, for some $d \in \mathbb{N}$.
On the other hand, by the proof of the preceding theorem, if F is a lift of f, then

$$
F^{\ell}(x)=x+d p+m \ell, \quad \text { for some } m \in \mathbb{Z}
$$

In fact, one can always assume that $m=0$.
Let G be another lift of f. Then $F=G+m$, for some $m \in \mathbb{Z}$. Thus, $F^{\ell}=G^{\ell}+m \ell$. So it is sufficient to replace F by G.

Claim: $F^{q}(x)=x+p$.
Suppose, first, that $F^{q}(x)>x+p$.
We know that $F^{q}(x+p)=F^{q}(x)+p$.
Since F is increasing,

$$
F^{2 q}(x)>F^{q}(x+p)=F^{q}(x)+p>x+2 p .
$$

By induction,

$$
F^{\ell}(x)=F^{d q}(x)>x+d p
$$

This contradicts $F^{\ell}(x)=x+d p$.
Similarly, $F^{q}(x)<x+p$ yields a contradiction.
Thus, $F^{q}(x)=x+p$ and the point x has period q.

Theorem

Let F be a lift of an orientation-preserving homeomorphism of the circle $f: S^{1} \rightarrow S^{1}$ with $\rho(f) \in \mathbb{R} \backslash \mathbb{Q}$. For each $x \in \mathbb{R}$ and $n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{Z}$, we have

$$
F^{n_{1}}(x)+m_{1}<F^{n_{2}}(x)+m_{2}
$$

if and only if

$$
n_{1} \rho(F)+m_{1}<n_{2} \rho(F)+m_{2} .
$$

- If $n_{1}=n_{2}$, there is nothing to prove. So suppose $n_{1} \neq n_{2}$.

Assume, first, that the inequality holds.
For $n_{1}>n_{2}$, we have $F^{n_{1}-n_{2}}(x)<x+m_{2}-m_{1}$, for $x \in \mathbb{R}$.
Thus,

$$
F^{2\left(n_{1}-n_{2}\right)}(x)<F^{n_{1}-n_{2}}(x)+m_{2}-m_{1}<x+2\left(m_{2}-m_{1}\right) .
$$

- We obtain $F^{2\left(n_{1}-n_{2}\right)}(x)<x+2\left(m_{2}-m_{1}\right)$.

By induction,

$$
F^{n\left(n_{1}-n_{2}\right)}(x)<x+n\left(m_{1}-m_{2}\right)
$$

We obtain

$$
\rho(F)=\lim _{n \rightarrow \infty} \frac{F^{n\left(n_{1}-n_{2}\right)}(x)-x}{n\left(n_{1}-n_{2}\right)}<\frac{m_{2}-m_{1}}{n_{1}-n_{2}}
$$

Strict inequality holds, since $\rho(f)$ is irrational.
This shows that the second inequality holds.

- Analogously, for $n_{1}<n_{2}$, we have

$$
F^{n_{2}-n_{1}}(x)>x+m_{1}-m_{2}, \text { for } x \in \mathbb{R} .
$$

Thus,

$$
F^{n\left(n_{2}-n_{1}\right)}(x)>x+n\left(m_{1}-m_{2}\right) .
$$

Hence,

$$
\rho(F)=\lim _{n \rightarrow \infty} \frac{F^{n\left(n_{2}-n_{1}\right)}(x)-x}{n\left(n_{2}-n_{1}\right)}>\frac{m_{1}-m_{2}}{n_{2}-n_{1}}
$$

So the second inequality also holds in this case.

- In the other direction, we must show that

$$
\begin{aligned}
& F^{n_{1}}(x)+m_{1} \geq F^{n_{2}}(x)+m_{2} \\
& \quad \text { implies } \quad n_{1} \rho(F)+m_{1} \geq n_{2} \rho(F)+m_{2} .
\end{aligned}
$$

By hypothesis, $\rho(f)$ is irrational.
So none of these inequalities can be an equality.
Thus, the implication is equivalent to

$$
\begin{aligned}
& F^{n_{1}}(x)+m_{1}>F^{n_{2}}(x)+m_{2} \\
& \quad \text { implies } \quad n_{1} \rho(F)+m_{1}>n_{2} \rho(F)+m_{2}
\end{aligned}
$$

For this it suffices to reverse all inequalities in the previous argument.

Theorem

Let $f: S^{1} \rightarrow S^{1}$ be an orientation-preserving homeomorphism with rotation number $\rho(f) \in \mathbb{R} \backslash \mathbb{Q}$. Then there exists a nondecreasing and onto continuous function $h: S^{1} \rightarrow S^{1}$, such that

$$
h \circ f=R_{\rho(f)} \circ h
$$

- Let F be a lift of the homeomorphism f and $\rho=\rho(F)$.

For a point $x \in \mathbb{R}$, consider the sets

$$
A=\left\{F^{n}(x)+m: n, m \in \mathbb{Z}\right\}, \quad B=\{n \rho+m: n, m \in \mathbb{Z}\} .
$$

Define a function $H: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
H(y)=\sup \left\{n \rho+m: F^{n}(x)+m \leq y\right\} .
$$

By the preceding theorem, H is nondecreasing.

Claim: H is constant on each interval in the complement of \bar{A}.
Suppose $[a, b] \subseteq S^{1} \backslash \bar{A}$.
Then, for every $n, m \in \mathbb{Z}$,

$$
F^{n}(x)+m \leq a \quad \text { iff } \quad F^{n}(x)+m \leq b
$$

Thus, $H(a)=H(b)$.
Lemma: The set B is dense in \mathbb{R}.
We have $y \in B$ if and only if $y+m \in B$, for some $m \in \mathbb{Z}$.
So it suffices to show that $B \cap[0,1]$ is dense in $[0,1]$.
The set $B \cap[0,1]$ is infinite.
If not, there would exist pairs $\left(n_{1}, m_{1}\right) \neq\left(n_{2}, m_{2}\right)$ in \mathbb{Z}^{2}, such that

$$
n_{1} \rho+m_{1}=n_{2} \rho+m_{2}
$$

This is impossible, since ρ is irrational (if $n_{1}=n_{2}$, then $m_{1} \neq m_{2}$).

- Let then x_{n} be a sequence in $B \cap[0,1]$ with infinitely many values. The interval $[0,1]$ is compact.
So we can assume that the sequence x_{n} is convergent.
Hence, given $\varepsilon>0$, there exist $m, n \in \mathbb{N}$, such that

$$
0<\left|x_{n}-x_{m}\right|<\varepsilon .
$$

Write $x_{n}=n_{1} \rho+m_{1}$ and $x_{m}=n_{2} \rho+m_{2}$.
We obtain

$$
x_{n}-x_{m}=\left(n_{1}-n_{2}\right) \rho+\left(m_{1}-m_{2}\right) \in B .
$$

This shows that the set $B \supseteq\left\{k\left(x_{n}-x_{m}\right): k \in \mathbb{Z}\right\}$ is ε-dense in \mathbb{R}. Since ε is arbitrary, we conclude that B is dense in \mathbb{R}.

- Since ρ is irrational, it follows from the preceding theorem that

$$
H\left(F^{n}(x)+m\right)=n \rho+m .
$$

This implies that the function H has no jumps.
By the preceding equality, $H(\mathbb{R}) \supseteq H(A)=B$.
By the lemma, the set B is dense in \mathbb{R}.
Since H is monotonic, this implies that it is also continuous.

- Now we consider the lift $S: \mathbb{R} \rightarrow \mathbb{R}$ of R_{ρ} given by

$$
S(x)=x+\rho
$$

By the preceding equality, we have

$$
\begin{aligned}
(H \circ F)\left(F^{n}(x)+m\right) & =H\left(F^{n+1}(x)+m\right)=(n+1) \rho+m ; \\
(S \circ H)\left(F^{n}(x)+m\right) & =S(n \rho+m)=(n+1) \rho+m .
\end{aligned}
$$

Thus, in A,

$$
H \circ F=S \circ H
$$

But the maps H, F and S are continuous.
So this identity holds in \bar{A}.
But H is constant on each interval in the complement of \bar{A}. So we have $H \circ F=S \circ H$ in \mathbb{R}.

- On the other hand,

$$
\begin{aligned}
H(y+1) & =\sup \left\{n \rho+m: F^{n}(x)+m \leq y+1\right\} \\
& =\sup \left\{n \rho+m: F^{n}(x)+m-1 \leq y\right\} \\
& =\sup \left\{n \rho+m-1: F^{n}(x)+m-1 \leq y\right\}+1 \\
& =H(y)+1 .
\end{aligned}
$$

The function H is also onto: By continuity, we have

$$
H(\mathbb{R})=H([0,1]) \supseteq \bar{B}=\mathbb{R} .
$$

Hence, the function $h: S^{1} \rightarrow S^{1}$ defined by $h(y)=H(y) \bmod 1$ is continuous, nondecreasing and onto.
Moreover, since $H \circ F=S \circ H$, we have $h \circ f=R_{\rho} \circ h$.

- If the homeomorphism has a dense positive semiorbit, which by a previous theorem is equivalent to the existence of a dense orbit, then the preceding theorem can be strengthened as follows:

Theorem (Poincaré)

Let $f: S^{1} \rightarrow S^{1}$ be an orientation-preserving homeomorphism with $\rho(f) \in \mathbb{R} \backslash \mathbb{Q}$. If f has a dense positive semiorbit, then it is topologically conjugate to the rotation $R_{\rho}(f)$, i.e., there exists a homeomorphism $h: S^{1} \rightarrow S^{1}$ such that

$$
h \circ f=R_{\rho}(f) \circ h .
$$

- Let $x \in S^{1}$ be a point whose positive semiorbit is dense in S^{1}. Consider $h: S^{1} \rightarrow S^{1}$, as constructed in the preceding theorem. In this case, $A=\left\{F^{n}(x)+m: n, m \in \mathbb{Z}\right\}$ is dense in S^{1}.
- Thus, the function

$$
H(y)=\sup \left\{n \rho+m: F^{n}(x)+m \leq y\right\}
$$

is bijective (we recall that H is constant on each interval contained in $\mathbb{R} \backslash \bar{A}$, which now is the empty set).
It follows that the function h is also bijective.
It remains to show that h is open.
That is, that the image $h(U)$ of an open set U is also open.
Since h is continuous, it maps compact sets to compact sets.
Hence, given an open set U, the image

$$
h\left(S^{1} \backslash U\right)=S^{1} \backslash h(U)
$$

is compact. Thus, $h(U)$ is an open set.
This shows that h is a homeomorphism.

Subsection 2

Diffeomorphisms of the Circle

- A diffeomorphism is a bijective differentiable map with differentiable inverse.
- We show that any sufficiently regular diffeomorphism $f: S^{1} \rightarrow S^{1}$ with irrational rotation number is topologically conjugate to a rotation.
- More precisely, there exists a homeomorphism $h: S^{1} \rightarrow S^{1}$, such that

$$
h \circ f=R_{\rho(f)} \circ h .
$$

- Recall that a function $\varphi: S^{1} \rightarrow \mathbb{R}$ is of bounded variation if

$$
\operatorname{Var}(\varphi)=\sup \sum_{k=1}^{n}\left|\varphi\left(x_{k}\right)-\varphi\left(y_{k}\right)\right|<+\infty
$$

where the supremum is taken over all disjoint open intervals $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, with $n \in \mathbb{N}$.

- Let $\varphi: S^{1} \rightarrow \mathbb{R}$ be a differentiable function with bounded derivative. Then there exists a $K>0$, such that $\left|\varphi^{\prime}(x)\right| \leq K$ for $x \in S^{1}$. If $\left(x_{i}, y_{i}\right)$, for $i=1, \ldots, n$, are disjoint open intervals with $y_{1} \leq x_{2}$, $y_{2} \leq x_{3}, \ldots, y_{n-1} \leq x_{n}$, then

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\varphi\left(y_{i}\right)-\varphi\left(x_{i}\right)\right|= & \sum_{\substack{i=1 \\
\left(\text { for some } z_{i} \text { in }\left(x_{i}, y_{i}\right)\right)}}^{n}\left|\varphi^{\prime}\left(z_{i}\right)\right|\left(y_{i}-x_{i}\right) \\
\leq & \sum_{i=1}^{n} K\left(y_{i}-x_{i}\right) \leq K
\end{aligned}
$$

Thus, $\operatorname{Var}(\varphi) \leq K$. So φ has bounded variation.

Theorem (Denjoy)

Let $f: S^{1} \rightarrow S^{1}$ be an orientation-preserving C^{1} diffeomorphism whose derivative has bounded variation. If $\rho(f) \in \mathbb{R} \backslash \mathbb{Q}$, then f is topologically conjugate to the rotation $R_{\rho(f)}$.

- By Poincaré' theorem, it suffices to show that there exists a point $z \in S^{1}$ whose positive semiorbit is dense.
Equivalently, we must show that $\omega(z)=S^{1}$.
Suppose, to the contrary, that $\omega(z) \neq S^{1}$.
Then the set $S^{1} \backslash \omega(z)$ is a disjoint union of maximal intervals (an open interval $I \subseteq S^{1} \backslash \omega(z)$ is maximal if any nonempty open interval J such that $I \subseteq J \subseteq S^{1} \backslash \omega(z)$ coincides with I).
Moreover, since f is a homeomorphism, the set $\omega(z)$ is f-invariant. Thus, the image and the preimage of any of these intervals are also maximal intervals.
- Now let $I \subseteq S^{1} \backslash \omega(z)$ be a maximal interval.

We show that the sets $f^{n}(I)$, for $n \in \mathbb{Z}$, are pairwise disjoint.
Suppose there exist integers $m>n$, such that $f^{m}(I) \cap f^{n}(I) \neq \emptyset$.
Then $f^{m-n}(I) \cap I \neq \emptyset$.
Thus, $f^{m-n}(I)=I$.
But f is continuous.
Therefore, $f^{m-n}(\bar{l})=\bar{I}$.

Lemma

Let $g: J \rightarrow J$ be a continuous function on some interval $J \subseteq \mathbb{R}$. If $K \subseteq J$ is a compact interval such that $g(K) \supseteq K$, then g has a fixed point in K.

- Write $K=[\alpha, \beta]$. By hypothesis, $g(K) \supseteq K$.

So there exist $a, b \in K$, with $g(a)=\alpha \leq a$ and $g(b)=\beta \geq b$.
Now we have $g(a)-a \leq 0$ and $g(b)-b \geq 0$.
So the continuous function $x \mapsto g(x)-x$ has a zero in K.

- By the lemma that f^{m-n} has a fixed point in I.

This is impossible since the rotation number is irrational.
Thus, the intervals $f^{n}(I)$ are pairwise disjoint.
Moreover, their lengths λ_{n} satisfy $\sum_{n \in \mathbb{Z}} \lambda_{n} \leq 1$.

Diffeomorphisms and Rotations (Lemma 2)

Lemma

There exist infinitely many $n \in \mathbb{N}$, such that, for each $x \in S^{1}$, the intervals $J=\left(x, f^{-n}(x)\right), f(J), \ldots, f^{n}(J)$ are pairwise disjoint.

- Recall that f is orientation-preserving.

Thus, for each $k=0, \ldots, n, f^{k}(J)=\left(f^{k}(x), f^{k-n}(x)\right)$. Hence, the intervals $f^{k}(J)$ are pairwise disjoint if and only if

$$
f^{k}(x), f^{k-n}(x) \notin f^{\ell}(J), \text { for } k, \ell=0, \ldots, n, \text { with } \ell<k .
$$

Equivalently,

$$
f^{k}(x) \notin J, \quad \text { for }|k| \leq n .
$$

Note that this property only depends on the ordering of the orbit of x.

- We noted that

$$
f^{k}(x) \notin J, \quad \text { for }|k| \leq n,
$$

only depends on the ordering of the orbit of x.
By a previous theorem, this is the same as the ordering of the orbits of the rotation R_{ρ}, where $\rho=\rho(f)$.
Since ρ is irrational, all negative semiorbits are dense.
Thus, there exist infinitely many $n \in \mathbb{N}$, such that

$$
R_{\rho}^{k}(y) \notin\left(y, R_{\rho}^{-n}(y)\right), \quad \text { for }|k| \leq n \text { and } y \in S^{1} .
$$

Diffeomorphisms and Rotations (Lemma 3)

Lemma

If $J \subseteq S^{1}$ is an open interval such that the sets $J, f(J), \ldots, f^{n-1}(J)$ are pairwise disjoint, then, for $c=\exp \operatorname{Var}\left(\log f^{\prime}\right)<+\infty$,

$$
c^{-1} \leq \frac{\left(f^{n}\right)^{\prime}(y)}{\left(f^{n}\right)^{\prime}(z)} \leq c, \quad \text { for any } y, z \in \bar{J}
$$

- Note that, since f is orientation preserving, $f^{\prime}>0$. So we may define a function $\varphi: S^{1} \rightarrow \mathbb{R}$ by

$$
\varphi=\log f^{\prime}
$$

Now the sets $J, \ldots, f^{n-1}(J)$ are pairwise disjoint.
So given $y, z \in \bar{J}$, the open intervals determined by the pairs of points $f^{k}(y)$ and $f^{k}(z)$, for $k=0, \ldots, n-1$, are also disjoint.

- Thus,

$$
\begin{aligned}
\operatorname{Var}(\varphi) & \geq \sum_{k=0}^{n-1}\left|\varphi\left(f^{k}(y)\right)-\varphi\left(f^{k}(z)\right)\right| \\
& \geq\left|\sum_{k=0}^{n-1} \varphi\left(f^{k}(y)\right)-\varphi\left(f^{k}(z)\right)\right| \\
& =\left|\log \prod_{k=0}^{n-1} f^{\prime}\left(f^{k}(y)\right)-\log \prod_{k=0}^{n-1} f^{\prime}\left(f^{k}(z)\right)\right| \\
& =\left|\log \frac{\left(f^{n}\right)^{\prime}(y)}{\left(f^{n}\right)^{\prime}(z)}\right| .
\end{aligned}
$$

This implies that

$$
-\operatorname{Var}(\varphi) \leq \log \frac{\left(f^{n}\right)^{\prime}(y)}{\left(f^{n}\right)^{\prime}(z)} \leq \operatorname{Var}(\varphi)
$$

This finishes the proof provided that $\operatorname{Var}(\varphi)$ is finite.

- Now S^{1} is compact and f^{\prime} is continuous.

Therefore, inf $f^{\prime}>0$.
Hence, for $x, y \in S^{1}$,

$$
|\varphi(y)-\varphi(z)|=\left|\log f^{\prime}(y)-\log f^{\prime}(z)\right| \leq \frac{\left|f^{\prime}(y)-f^{\prime}(z)\right|}{\inf f^{\prime}}
$$

Also, f^{\prime} has bounded variation.
Hence, we obtain

$$
\operatorname{Var}(\varphi) \leq \frac{\operatorname{Var}\left(f^{\prime}\right)}{\inf f^{\prime}}<+\infty
$$

This completes the proof of the lemma.

- Now apply Lemma 3 to the intervals $J=\left(x, f^{-n}(x)\right)$ in Lemma 2, with $y=x \in I$ and $z=f^{-n}(x)$ (with n independent of x).
We conclude that

$$
\frac{1}{c} \leq\left(f^{n}\right)^{\prime}(x)\left(f^{-n}\right)^{\prime}(x) \leq c
$$

But $a+b \geq \sqrt{a b}$, for $a, b \geq 0$.
So we obtain, for the integers n given by Lemma 2,

$$
\begin{aligned}
\lambda_{n}+\lambda_{-n} & =\int_{I}\left(f^{n}\right)^{\prime}(x) d x+\int_{I}\left(f^{-n}\right)^{\prime}(x) d x \\
& =\int_{I}\left[\left(f^{n}\right)^{\prime}(x)+\left(f^{-n}\right)^{\prime}(x)\right] d x \\
& \geq \int_{1} \sqrt{\left(f^{n}\right)^{\prime}(x)\left(f^{-n}\right)^{\prime}(x)} d x \\
& \geq \frac{1}{\sqrt{c}} \lambda_{0} .
\end{aligned}
$$

This implies $\sum_{m \in \mathbb{Z}} \lambda_{m}=+\infty$, contradicting $\sum_{n \in \mathbb{Z}} \lambda_{n} \leq 1$. Thus, there exists a point $z \in S^{1}$ with $\omega(z)=S^{1}$.

Subsection 3

Maps of the Interval

- Let $f: I \rightarrow I$ be a continuous map of an interval $I \subseteq \mathbb{R}$.

Definition

Given intervals $J, K \subseteq I$, we say that J covers K if

$$
f(J) \supseteq K .
$$

In that case, we write $J \rightarrow K$.

Covering and Existence of Periodic Points

Proposition

Let $f: I \rightarrow I$ be a continuous map of a compact interval $I \subseteq R$. If there exist closed intervals $I_{0}, I_{1}, \ldots, I_{n-1} \subseteq I$, such that

$$
I_{0} \rightarrow I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{n-1} \rightarrow I_{0}
$$

then f has an n-periodic point $x \in I$, such that

$$
f^{m}(x) \in I^{m}, \quad \text { for } m=0,1, \ldots, n-1
$$

Claim: There exists a closed interval $J_{0} \subseteq I_{0}$, such that $f\left(J_{0}\right)=I_{1}$. By hypothesis, $f\left(I_{0}\right) \supseteq I_{1}$.
So there exist $a_{0}, b_{0} \in I_{0}$ whose images are the endpoints of I_{1}. Let J_{0} is the closed interval with endpoints a_{0} and b_{0}.
Then $f\left(J_{0}\right)=I_{1}$.

- Assume that we constructed closed intervals $J_{0} \supseteq J_{1} \supseteq \cdots \supseteq J_{m-1}$ contained in I_{0}, for some $m<n$, such that

$$
f^{k+1}\left(J_{k}\right)=I_{k+1}, \quad \text { for } k=0, \ldots, m-1
$$

Then $f^{m+1}\left(J_{m-1}\right)=f\left(I_{m}\right) \supseteq I_{m+1}$.
By a similar argument there exists a closed interval $J_{m} \supseteq J_{m-1}$, such that

$$
f^{m+1}\left(J_{m}\right)=I_{m+1} .
$$

Thus, we obtain closed intervals $J_{0} \supseteq J_{1} \supseteq \cdots \supseteq J_{n-1}$, such that

$$
f^{k+1}\left(J_{k}\right)=I_{k+1}, \quad k=0, \ldots, n-1, \quad I_{n}=I_{0}
$$

- In particular, we have
- $f^{n}\left(J_{n-1}\right)=I_{0} \supseteq J_{n-1}$;
- Each point $x \in J_{n-1}$ satisfies, for $m=0, \ldots, n-1$,

$$
f^{m}(x) \in f^{m}\left(J_{n-1}\right) \subseteq f^{m}\left(J_{m-1}\right)=I_{m} .
$$

On the other hand, it follows from $f^{n}\left(J_{n-1}\right)=I_{0} \supseteq J_{n-1}$ and Lemma 1 in Denjoy's Theorem that f^{n} has a fixed point in J_{n-1}.
Thus, f has an n-periodic point in J_{n-1}, which also satisfies

$$
f^{m}(x) \in I_{m}, \quad m=0,1, \ldots, n-1
$$

- Given $a>4$, consider the map $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)=a x(1-x)
$$

We have

$$
\begin{aligned}
f\left(\left[\frac{1}{a}, \frac{1}{2}\right]\right) & =\left[1-\frac{1}{a}, \frac{a}{4}\right] \supseteq\left[1-\frac{1}{a}, 1\right] ; \\
f\left(\left[1-\frac{1}{a}, 1\right]\right) & =\left[0,1-\frac{1}{a}\right] \supseteq\left[\frac{1}{a}, \frac{1}{2}\right] .
\end{aligned}
$$

Notice, also, that

$$
\left[\frac{1}{a}, \frac{1}{2}\right] \cap\left[1-\frac{1}{a}, 1\right]=\emptyset .
$$

By the proposition, f has a periodic point in $\left[\frac{1}{a}, \frac{1}{2}\right]$ with period 2.

Theorem

Let $f: I \rightarrow I$ be a continuous map of a compact interval $I \subseteq \mathbb{R}$. If f has a periodic point with period 3 , then it has periodic points with all periods.

- Let $x_{1}<x_{2}<x_{3}$ be the elements of the orbit of a periodic point with period 3 .
- Suppose $f\left(x_{2}\right)=x_{3}$. Then $f^{2}\left(x_{2}\right)=x_{1}$.

Thus,

$$
\left[x_{1}, x_{2}\right] \leftrightarrow\left[x_{2}, x_{3}\right] \circlearrowleft
$$

- Suppose $f\left(x_{2}\right)=x_{1}$.

Then

$$
\left[x_{2}, x_{3}\right] \leftrightarrow\left[x_{1}, x_{2}\right] \circlearrowleft
$$

In the first case, $I \rightarrow I$ taking $I=\left[x_{2}, x_{3}\right]$.
In the second case, $I \rightarrow I$ taking $I=\left[x_{1}, x_{2}\right]$.
It follows from the proposition that f has a fixed point.

- Given an integer $n \geq 2$, with $n \neq 3$, we have

$$
\underbrace{I_{1} \rightarrow I_{2} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{2} \rightarrow I_{2} \rightarrow I_{1}}_{n+1 \text { elements }}
$$

taking, respectively, $I_{1}=\left[x_{1}, x_{2}\right]$ and $I_{2}=\left[x_{2}, x_{3}\right]$ or $I_{1}=\left[x_{2}, x_{3}\right]$ and $I_{2}=\left[x_{1}, x_{2}\right]$.
By the preceding proposition, f has an n-periodic point $x \in I_{1}$.
If it did not have period n, then $x \in I_{1} \cap I_{2}=\left\{x_{2}\right\}$.
So $x=x_{2}$.
The orbit of x_{2} belongs successively to $I_{1} I_{2} I_{2} I_{1} I_{2} I_{2} I_{1} \ldots$.
Thus, it cannot belong successively to the intervals in the displayed chain unless $n=3$.
Since we took $n \neq 3$, the periodic point x has period n.

Examples on $[0,1]$ with Periods 3 and 5

Ordering Used in Sharkovsky's Theorem

- We consider the ordering \prec on \mathbb{N} defined by

$$
\begin{aligned}
1 & \prec 2 \prec 2^{2} \prec 2^{3} \prec \cdots \prec 2^{m} \prec \cdots \\
& \ldots \\
& \prec \cdots \prec 2^{m}(2 n+1) \prec \cdots \prec 2^{m} 7 \prec 2^{m} 5 \prec 2^{m} 3 \prec \cdots \\
& \ldots \\
& \prec \cdots \prec 2(2 n+1) \prec \cdots \prec 2 \cdot 7 \prec 2 \cdot 5 \prec 2 \cdot 3 \prec \cdots \\
& \prec \cdots \prec 2 n+1 \prec \cdots \prec 7 \prec 5 \prec 3 .
\end{aligned}
$$

Lemma

Let $f: I \rightarrow I$ be a continuous map of a compact interval $I \subseteq \mathbb{R}$. Let $x \in I$ be a periodic point with odd period $p>1$, such that there exist no periodic points with odd period less than p.

Then the intervals determined in I by the orbit of x can be numbered I_{1}, \ldots, I_{p-1} so that the graph obtained from the covering relations between them contains the subgraph on the right i.e., $I_{1} \rightarrow I_{1} \rightarrow$ $I_{2} \rightarrow \cdots \rightarrow I_{p-1}$ and $I_{p-1} \rightarrow I_{k}$ for any odd k.

- Consider $I_{1}=[u, v]$, where, for $\gamma(x)$ the orbit of x,

$$
\begin{aligned}
u & =\max \{y \in \gamma(x): f(y)>y\} \\
v & =\min \{y \in \gamma(x): y>u\}
\end{aligned}
$$

- By the definition of u, we have $f(v) \leq v$.

Since x is not a fixed point, $f(v) \neq v$.
Therefore, we get $f(v)<v$.
Since $f(u)>u$, by the definition of $v, f(u) \geq v$.
Since $f(v)<v, f(v)<u$.
Therefore, $I_{1} \rightarrow I_{1}$.
The inclusion $f\left(I_{1}\right) \supseteq I_{1}$ is proper (otherwise x would have period 2). Now $f^{p}\left(I_{1}\right) \supseteq f^{p-1}\left(I_{1}\right) \supseteq \cdots \supseteq f\left(I_{1}\right) \supseteq I_{1}$ and x is p-periodic.
Thus, we have $f^{P}\left(I_{1}\right) \supseteq \gamma(x)$.
So $f^{p}\left(I_{1}\right)$ contains all intervals determined by adjacent points in the orbit of x.

- Let

$$
I^{-}=\gamma(x) \cap(-\infty, u] \quad \text { and } \quad I^{+}=\gamma(x) \cap[v,+\infty) .
$$

Define

$$
r=\operatorname{card} I^{-} \quad \text { and } \quad s=\operatorname{card} I^{+}
$$

We have $r+s=p$. Since p is odd, $r \neq s$.
So there exist adjacent points of $\gamma(x)$ in I^{-}or in I^{+}, determining an interval J, such that only one of them is mapped by f to the other interval.
Otherwise, we would have $f\left(I^{-}\right) \subseteq I^{+}$and $f\left(I^{+}\right) \subseteq I^{-}$(since $f(u)>u$ and $f(v)<v)$. This is impossible, since $r \neq s$.
We also note that $J \rightarrow I_{1}$.

- Now let $I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{k} \rightarrow I_{1}$ be the shortest cycle of the form $I_{1} \rightarrow \cdots \rightarrow I_{1}$ that is different from $I_{1} \circlearrowleft$ (it follows from the former discussion that such a cycle always exists).
Clearly, $k \leq p-1$ since the orbit of x determines $p-1$ intervals.
Let q be the odd element of $\{k, k+1\}$.
Now we have:
- $I_{1} \rightarrow \cdots \rightarrow I_{k} \rightarrow I_{1}$;
- $I_{1} \rightarrow \cdots \rightarrow I_{k} \rightarrow I_{1} \rightarrow I_{1}$.

So by a previous proposition, f^{q} has a fixed point y.
Note that y is not a fixed point of f.
Otherwise, $y \in I_{1} \cap \cdots \cap I_{k} \subseteq I_{1} \cap I_{2}$ (recall that $k \geq 2$) would be in the orbit of x. This yields a contradiction since x is not a fixed point.
By the minimality of the odd period $p, q \geq p$. Thus, $k=p-1$.
This shows that $I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{p-1} \rightarrow I_{1}$ is the shortest cycle of the form $I_{1} \rightarrow \cdots \rightarrow I_{1}$ that is different from $I_{1} \circlearrowleft$.

- Now we show that $I_{p-1} \rightarrow I_{k}$ for k odd.

This includes $I_{p-1} \rightarrow I_{p-2}$ since p is odd.
We first verify that the intervals I_{i} are ordered in l in the form $I_{p-1}, I_{p-3}, \ldots, I_{2}, I_{1}, I_{3}, \ldots, I_{p-2}$ (up to orientation).
We know $I_{1} \rightarrow \cdots \rightarrow I_{p-1} \rightarrow I_{1}$ is the shortest cycle of the form $I_{1} \rightarrow \cdots \rightarrow I_{1}$ that is different from $I_{1} \circlearrowleft$.
Hence, if $I_{k} \rightarrow I_{\ell}$, then $\ell \leq k+1$.
Otherwise, there would exist a shorter cycle of this form.
This implies that I_{1} only covers I_{1} and I_{2}.
Hence, I_{2} is adjacent to I_{1} (since $f\left(I_{1}\right)$ is connected).
Since $I_{1}=[u, v]$, we have one of the following:

- $I_{2}=[w, u]$, with $f(u)=v$ (recall that $\left.f(u)>u\right)$ and $f(v)=w$;
- $I_{2}=[v, w]$, with $f(u)=w$ and $f(v)=u$.
- We analyze only the first case.

The second one is entirely analogous.
We have $f(u)=v$ and I_{2} does not cover I_{1}.
Hence, $f\left(I_{2}\right) \subseteq[v,+\infty)$.
But I_{2} covers I_{3}. We conclude that $I_{3}=[v, t]$, with $t=f(w)=f^{2}(v)$ (I_{2} covers no other interval).
Continuing this procedure yields the claimed ordering.
This implies that, for $u_{i}=f^{i}(u)$,

$$
u_{p-1}<u_{p-3}<\cdots<u_{2}<u<u_{1}<u_{3}<\cdots<u_{p-2}
$$

Now $f\left(u_{p-1}\right)=u$ and $f\left(u_{p-3}\right)=u_{p-2}$.
Thus, we obtain $I_{p-1}=\left[u_{p-1}, u_{p-3}\right] \rightarrow I_{k}$, for k odd.
This completes the proof of the lemma.

Lemma 2

Lemma

Let $f: I \rightarrow I$ be a continuous map of a compact interval $I \subseteq \mathbb{R}$. If f has a periodic point with even period, then it has a periodic point with period 2.

- Let x be a periodic point with even period $p>2$.

We consider two cases.

- We first assume that there are no adjacent points in the orbit of x determining an interval $J \neq I_{1}$ that covers I_{1}.
Let y and z be, respectively, the minimum and maximum of the orbit of x,

$$
y=\min \gamma(x) \quad \text { and } \quad z=\max \gamma(x)
$$

By construction, $f(u) \geq v$.
Thus, $f([y, u])$ intersects $[v,+\infty)$.
By hypothesis, the interval $[y, u]$ does not cover I_{1}.
Thus, $f([y, u]) \subseteq[v,+\infty)$.
Similarly, $f([v, z]) \subseteq(-\infty, u]$.
Since f permutes the points in the orbit of x, we obtain

$$
[y, u] \rightarrow[v, z] \rightarrow[y, u] .
$$

By a previous proposition, f has a periodic point with period 2.

- Assume that there are adjacent points in the orbit of x determining an interval $I_{k} \neq I_{1}$ that covers I_{1}.
Let $I_{1} \rightarrow \cdots \rightarrow I_{k} \rightarrow I_{1}$ be the shortest cycle of the form $I_{1} \rightarrow \cdots \rightarrow I_{1}$ that is different from $I_{1} \circlearrowleft$.
Then $k \leq p-1$.
Take $q \in\{k, k+1\}$ even.
Clearly $q \leq p$.
We have

$$
\begin{aligned}
& I_{1} \rightarrow \cdots \rightarrow I_{k} \rightarrow I_{1} \\
& I_{1} \rightarrow \cdots \rightarrow I_{k} \rightarrow I_{1} \rightarrow I_{1}
\end{aligned}
$$

By a previous proposition, f^{q} has a fixed point y.

- We note that y is not a fixed point of f.

If p was the smallest even period, then $q=p$ and thus $k=p-1$.
Proceeding as in the proof of the preceding lemma, one could then show that:

- The intervals I_{i} must be ordered in l in the form $I_{p-2}, \ldots, I_{2}, I_{1}, I_{3}, \ldots, I_{p-1}$ (up to orientation);
- $I_{p-1} \rightarrow I_{k}$ for k even.

In particular, we would obtain the cycle $I_{p-1} \rightarrow I_{p-2} \rightarrow I_{p-1}$.
By a previous proposition, f would have a periodic point with period 2 (since $I_{p-2} \cap I_{p-1}=\emptyset$).
This contradiction shows that p cannot be the smallest even period.
So one can consider a periodic point with a smaller even period.
By repeating the process, we get down to period 2.

Theorem (Sharkovsky)

Let $f: I \rightarrow I$ be a continuous map of a compact interval $I \subseteq \mathbb{R}$.
If f has a periodic point with period p and $q \prec p$, then f has a periodic point with period q.

- We consider four cases.
$p=2^{k}$ and $q=2^{\ell} \prec p$, with $\ell<k$.
Suppose $\ell>0$. Let x be a periodic point of f with period p.
Then x is a periodic point of $f^{q / 2}$ with period $2^{k-\ell+1}$.
But $k-\ell+1 \geq 2$.
By Lemma 2, $f^{q / 2}$ has a periodic point y with period 2 .
Then y is a periodic point of f with period q.
Suppose $\ell=0$. By Lemma 2, f has a periodic point with period 2 .
It determines an interval I_{1} in I whose endpoints are permuted by f.
Since f is continuous, it must have a fixed point in I_{1}.
$p=2^{k} r$ and $q=2^{k} s \prec p$ with $r>1$ odd minimal and s even. Note r is the smallest odd period of the periodic points of $f^{2 k}$. By Lemma 1, there exists a cycle of length s.
When $s<r$, we take

$$
I_{r-1} \rightarrow I_{r-s} \rightarrow \cdots \rightarrow I_{r-2} \rightarrow I_{r-1}
$$

When $s \geq r$, we take

$$
I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{r-1} \rightarrow I_{1} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{1} .
$$

By a previous proposition, $f^{2^{k}}$ has a periodic point with periods. This is a periodic point of f with period $2^{k} s=q$.
$p=2^{k} r$ and $q=2^{\ell} \prec p$ with $r>1$ odd minimal and $\ell=k$.
Take $s=2$ in Case 2.
We obtain a periodic point of f with period $2^{k} s=2^{k+1}$.
Now we revert to Case 1.
f has a periodic point with period 2^{ℓ} for each $\ell \leq k$.
$p=2^{k} r$ and $q=2^{k} s \prec p$ with $r>1$ odd minimal and $s>r$ odd.
Again, r is the smallest odd period of the periodic points of $f^{2^{k}}$.
By Lemma 1, we obtain the cycle of length s given by

$$
I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{r-1} \rightarrow I_{1} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{1}
$$

By a previous proposition, $f^{2^{k}}$ has a periodic point x with period s.
Suppose x is a periodic point of f with period $2^{k} s$.
Then the proof is complete.
Suppose x is not a periodic point of f with period $2^{k} s$.
Then x has period $2^{\ell} s$ for some $\ell<k$.
Take $\bar{p}=2^{\ell} s$ and $\bar{q}=2^{\ell} \bar{s}=q$, where $\bar{s}=2^{k-\ell} s$.
Now \bar{s} is even.
Thus, Case 2 yields a periodic point of f with period $\bar{q}=q$.

Subsection 4

The Poincaré-Bendixson Theorem

- Given a C^{1} function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, consider, for each $x_{0} \in \mathbb{R}^{2}$, the initial value problem

$$
x^{\prime}=f(x), \quad x(0)=x_{0}
$$

- We assume that the unique solution $x\left(t, x_{0}\right)$ of the system is defined for $t \in \mathbb{R}$.
- By a previous proposition the family of maps $\varphi_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined, for each $t \in \mathbb{R}$, by

$$
\varphi_{t}\left(x_{0}\right)=x\left(t, x_{0}\right)
$$

is a flow.

- We call a point $x \in \mathbb{R}^{2}$ with $f(x)=0$ a critical point of f.
- A line segment $L \subseteq \mathbb{R}^{2}$ is called a transversal to $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if, for each $x \in L$, the directions of L and $f(x)$ generate \mathbb{R}^{2}.

Lemma

Let φ_{t} be a flow determined by a differential equation $x^{\prime}=f(x)$ for some C^{1} function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Suppose $L \subseteq \mathbb{R}^{2}$ is a transversal to f.

- If $x \in \mathbb{R}^{2}$ is not periodic and meets L at points x_{k} at times t_{k}, with $t_{1}<t_{2}<\cdots$, then the order of the x_{k} on L is the same as that of the t_{k}.
- If x is periodic, then it can meet L in at most one point.
- Assume, first, that x is not periodic.

Consider the simple closed curve consisting of $\gamma(x)$ between x_{0} and x_{1} and the segment of L joining x_{0} and x_{1}.
The orbit cannot cross through the curve, since then it would either be periodic or cause a discontinuity in the vector field. Hence, the next crossing occurs beyond x_{1}.

- Next suppose that x is periodic, with least period $T>0$. We express the solution as $f\left(t, x_{0}\right)$ so that the transversal L is constructed at $x_{0}=f\left(0, x_{0}\right)$.
Any other point on the orbit is achieved at a unique $t \in[0, T)$.
Thus, if the orbit crosses $x_{1} \neq x_{0}$ on L, it does so at $t_{1}<T$.
The orbit cannot return to x_{0} across L.
So it must cross $\gamma(x)$ at some $x_{2}=f\left(t_{2}, x_{0}\right), t_{1}<t_{2}<T$.
However x_{2} also precedes x_{1}.
So we must have $x_{2}=f\left(\tau_{2}, x_{0}\right)$, where $\tau_{2}<t_{2}$.
But then $\gamma(x)$ is periodic with period $t_{2}-\tau_{2}$.
This is a positive number less than T.
This contradicts the assumption that T is the least period.

Lemma

Let φ_{t} be a flow determined by a differential equation $x^{\prime}=f(x)$ for some C^{1} function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Suppose $L \subseteq \mathbb{R}^{2}$ is a transversal to f. Then, for each $x \in \mathbb{R}^{2}$, the set $\omega(x) \cap L$ contains at most one point.

- Suppose $p, q \in \omega(x) \cap L$, with $p \neq q$.

Then $\gamma(x)$ meets L in more than one point.
Hence, by the lemma, f is not periodic.
Thus, $\gamma(x)$ meets L at infinite many points $\left\{x_{k}\right\}$ at times $t_{1}<t_{2}<\cdots$.
But there are two different limit points on $\gamma(x) \cap L$.
Thus, the $\left\{x_{k}\right\}$ cannot be in the order required by the lemma on L.

Theorem (Poincaré-Bendixson)

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a C^{1} function. Consider the flow φ_{t} determined by the equation $x^{\prime}=f(x)$. Suppose that:

- The positive semiorbit $\gamma^{+}(x)$ of a point $x \in \mathbb{R}^{2}$ is bounded;
- $\omega(x)$ contains no critical points.

Then $\omega(x)$ is a periodic orbit.

- By hypothesis, the positive semiorbit $\gamma^{+}(x)$ is bounded. By a previous proposition, $\omega(x)$ is nonempty. Take a point $p \in \omega(x)$.
Now $\omega(x)$ is contained in the closure of $\gamma^{+}(x)$.
By a previous proposition, $\omega(p)$ is nonempty. Moreover, by the same proposition, $\omega(p) \subseteq \omega(x)$.
Now take a point $q \in \omega(p)$.
- By hypothesis, q is not a critical point.

By the preceding lemma, there exists a line segment L containing q that is a transversal to f.
But $q \in \omega(p)$.
Thus, by a previous proposition, there exists a sequence $t_{k} \nearrow+\infty$ in \mathbb{R}^{+}, such that $\varphi_{t_{k}}(p) \rightarrow q$ when $k \rightarrow \infty$.
One can also assume that $\varphi_{t_{k}}(p) \in L$, for $k \in \mathbb{N}$.
On the other hand, since $p \in \omega(x)$, by a previous proposition, $\varphi_{t_{k}}(p) \in \omega(x)$, for $k \in \mathbb{N}$.
Now $\varphi_{t_{k}}(p) \in \omega(x) \cap L$.
By the preceding lemma, for $k, \ell \in \mathbb{N}$,

$$
\varphi_{t_{k}}(p)=\varphi_{t_{\ell}}(p)=q
$$

This implies that $\gamma(p) \subseteq \omega(x)$ is a periodic orbit.

- Now we show that $\omega(x)=\gamma(p)$.

Assume that $\omega(x) \backslash \gamma(p) \neq \emptyset$.
By a previous proposition, $\omega(x)$ is connected.
So, in each open neighborhood of $\gamma(p)$, there exist points of $\omega(x)$ that are not in $\gamma(p)$.
Moreover, any sufficiently small open neighborhood of $\gamma(p)$ contains critical points.
Thus, there exists a transversal L^{\prime} to f containing one of these points, which is in $\omega(x)$, and a point of $\gamma(p)$.
Since $\gamma(p) \subseteq \omega(x), \omega(x) \cap L^{\prime}$ contains at least two points.
This contradicts the preceding lemma.
Thus, $\omega(x)=\gamma(p)$ and the ω-limit set of x is a periodic orbit.

- Consider the differential equation

$$
\left\{\begin{aligned}
x^{\prime} & =x\left(3-2 y-x^{2}-y^{2}\right)-y \\
y^{\prime} & =y\left(3-2 y-x^{2}-y^{2}\right)+x
\end{aligned}\right.
$$

Writing in polar coordinates, we get

$$
\left\{\begin{aligned}
r^{\prime} & =r\left(3-2 r \sin \theta-r^{2}\right) \\
\theta^{\prime} & =1
\end{aligned}\right.
$$

For any sufficiently small r, we have

$$
r^{\prime}=r\left(3-2 r \sin \theta-r^{2}\right) \geq r\left(3-2 r-r^{2}\right)>0
$$

For any sufficiently large r, we have

$$
r^{\prime}=r\left(3-2 r \sin \theta-r^{2}\right) \leq r\left(3+2 r-r^{2}\right)<0
$$

- Now the origin is the only critical point.

Therefore, for any $r_{2}>r_{1}>0$, there are no critical points in the ring

$$
D=\left\{x \in \mathbb{R}^{2}: r_{1}<\|x\|<r_{2}\right\} .
$$

Moreover, provided that r_{1} is sufficiently small and r_{2} is sufficiently large, it follows from the preceding inequalities that any positive semiorbit $\gamma^{+}(x)$ of a point $x \in D$ is contained in D.
By the theorem, the set $\omega(x) \subseteq D$ is a periodic orbit for each $x \in D$. In particular, the flow determined by the differential equation has at least one periodic orbit in the set D.

- We have an analogous result to the Poincaré-Bendixson Theorem for bounded negative semiorbits.

Theorem

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a C^{1} function. Consider the flow φ_{t} determined by the equation $x^{\prime}=f(x)$. Suppose that:

- The negative semiorbit $\gamma^{-}(x)$ of a point $x \in \mathbb{R}^{2}$ is bounded;
- $\alpha(x)$ contains no critical points.

Then $\alpha(x)$ is a periodic orbit.

