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Low-Dimensional Dynamics Homeomorphisms of the Circle

Subsection 1

Homeomorphisms of the Circle
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Equivalence Classes of Reals Modulo 1

Consider the projection π : R → S1 defined by π(x) = [x ].

Consider the equivalence class [x ].

It is represented by its unique representative in the interval [0, 1).

That is [x ] is represented by the number

x − ⌊x⌋,

where ⌊x⌋ is the integer part of x .
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Lifting a Homeomorphism of the Circle

Definition

Let f : S1 → S1 be a homeomorphism of the circle.
A continuous function F : R → R is said to be a lift of f if

f ◦ π = π ◦ F
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Example

Given α ∈ R, consider the rotation Rα : S1 → S1 given by

Rα(x) = x + α mod 1.

Clearly, Rα is a homeomorphism.

Given k ∈ Z, consider the function F : R → R defined by

F (x) = x + α+ k .

The function F satisfies

π(F (x)) = π(x + α+ k)
= x + α+ k mod 1
= π(x) + α mod 1
= Rα(π(x)).

Hence, F is a lift of Rα.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Example

Given β ∈ R, consider the continuous function f : S1 → S1 defined by

f (x) = x + β sin(2πx) mod 1.

Claim: f is a homeomorphism for |β| < 1
2π .

Consider he function F : R → R defined by

F (x) = x + β sin(2πx).

We have

F ′(x) = 1 + 2πβ cos (2πx) ≥ 1− 2π|β| > 0.

So F (x) is increasing.

In particular, for x ∈ [0, 1), we have F (x) < F (1) = 1.

Thus, the function f is one-to-one and onto.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Example (Cont’d)

Since f is continuous, it maps compact sets to compact sets.

Thus, it also maps open sets to open sets.

So its inverse is continuous.

Hence, it is a homeomorphism.

Moreover,

π(F (x)) = x + β sin (2πx) mod 1

= x − ⌊x⌋+ β sin (2πx)

= x − ⌊x⌋+ β sin (2π(x − ⌊x⌋))
= f (π(x)).

So F is a lift of f .
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Properties of Lifts

Proposition

Let f : S1 → S1 be a homeomorphism. Then:

1. f has lifts;

2. If F and G are lifts of f , then there exists a k ∈ Z such that
G − F = k ;

3. Any lift of f is a homeomorphism of R.

We deal with the case of increasing f . Let x ∈ R.

Apply f on the element of S1 represented by x − ⌊x⌋.
Let f (x − ⌊x⌋) be the representative in the interval [f (0), f (0) + 1).

Define a function F : R → R by

F (x) = f (x − ⌊x⌋) + ⌊x⌋.

Now x − ⌊x⌋ and ⌊x⌋ are continuous on R\Z. Thus, so too is F .
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Properties of Lifts (Cont’d)

For each k ∈ Z, we have:

F (k) = f (k − ⌊k⌋) + ⌊k⌋ = f (k − k) + k = f (0) + k ;

F (k−) = f (k− − ⌊k−⌋) + ⌊k−⌋ = f (k− − k + 1) + k − 1

= f (1−) + k − 1 = f (0+) + 1 + k − 1 = f (0) + k ;

F (k+) = f (k+ − ⌊k+⌋) + ⌊k+⌋ = f (k+ − k) + k

= f (0+) + k = f (0) + k .

Thus, for k ∈ Z,
F (k) = F (k−) = F (k+).

This shows that the function F is continuous on R.

We also have

π(F (x)) = π(f (x − ⌊x⌋) + ⌊x⌋) = f (x − ⌊x⌋) = f (π(x)).

Hence, F is a lift of f .
George Voutsadakis (LSSU) Dynamical Systems May 2024 10 / 91



Low-Dimensional Dynamics Homeomorphisms of the Circle

Properties of Lifts (Cont’d)

Now let F and G be lifts of f . Then

π ◦ F = π ◦ G = f ◦ π.

By the first identity, for each x ∈ R, there exists p(x) ∈ Z, such that

G (x)− F (x) = p(x).

But F and G are continuous.

So the function x 7→ p(x) is also continuous.

Moreover, x 7→ p(x) takes only integer values.

So it must be constant.

Thus, there exists a k ∈ Z, such that

G (x)− F (x) = p(x) = k , for any x ∈ R.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Properties of Lifts (Cont’d)

By the second property, lifts are unique up to an additive constant.

So it is sufficient to show that the lift

F (x) = f (x − ⌊x⌋)
︸ ︷︷ ︸

[f (0),f (0)+1)

+⌊x⌋

is a homeomorphism.

Consider the continuous function H : R → R defined by

H(x) = f −1(x − ⌊x⌋)
︸ ︷︷ ︸

[f−1(0)−1,f −1(0))

+⌊x⌋,

where f −1(x − ⌊x⌋) is the representative in the interval [0, 1).

We can show by examining cases that

F (H(x)) = x and H(F (x)) = x .

Hence, F is a homeomorphism.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Orientation-Preserving Homeomorphisms

Definition

A homeomorphism f : S1 → S1 is said to be
orientation-preserving if it has a lift which
is an increasing function.

It follows from a previous proposition that f is orientation-preserving
if and only if all its lifts are increasing functions.

Examples: The homeomorphisms of the circle considered in the
preceding two examples are orientation-preserving since the lifts
presented for them are increasing functions.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

A Non-Orientation-Preserving Homeomorphism

Given α ∈ R, consider the homeomorphism f : S1 → S1 defined by

f (x) = −x + α mod 1.

One can easily verify that the function F : R → R defined by

F (x) = −x + α

is a lift of f .

Note that the lift F is decreasing.

So the homeomorphism f is not orientation-preserving.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

“Average Speed” of a Lift

Theorem

Let f : S1 → S1 be an orientation-preserving homeomorphism.
If F is a lift of f , then for each x ∈ R the limit

ρ(F ) = lim
n→∞

F n(x)− x

n
∈ R+

0

exists and is independent of x .
Moreover, if G is another lift of f , then

ρ(G )− ρ(F ) ∈ Z.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

“Average Speed” of a Lift (Existence)

We first assume that F (x) > x , for every x ∈ R.

Given x ∈ R, consider the sequence an = F n(x)− x .

For each m, n ∈ N, we have

am+n = Fm+n(x)− x = Fm(F n(x))− F n(x) + an.

Now, since an = F n(x)− x ,

⌊an⌋ ≤ F n(x) − x < ⌊an⌋+ 1.

That is,
x + ⌊an⌋ ≤ F n(x) < x + ⌊an⌋+ 1.

So, by the fact that F is a lifting, we obtain

Fm(F n(x)) < Fm(x + ⌊an⌋) + 1.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

“Average Speed” of a Lift (Existence Cont’d)

On the other hand, we have

Fm(x + ⌊an⌋)− (x + ⌊an⌋) = Fm(x) − x = am.

Using these inequalities, we get

am+n < Fm(x + ⌊an⌋) + 1− F n(x) + an

= am + an + x + ⌊an⌋ − F n(x) + 1.

Since x + ⌊an⌋ ≤ F n(x), am+n ≤ am + an + 1.

So the sequence cn = an + 1 satisfies the condition cm+n ≤ cm + cn.

By a previous lemma, the following limit exists

lim
n→∞

F n(x)− x

n
= lim

n→∞

an

n
= inf

{an

n
: n ∈ N

}

.

Since an = F n(x)− x > 0 (F is increasing), the limit is finite.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

“Average Speed” of a Lift (Independence from x)

Now we show that the limit is independent of x .

Given x , y ∈ R and k ∈ N with |x − y | ≤ k , we have

F (x) ≤ F (y + k) = F (y) + k ;

F (x) ≥ F (y − k) = F (y)− k .

Hence,
|F (x)− F (y)| ≤ k .

It follows by induction that, for all n ∈ N,

|F n(x)− F n(y)| ≤ k .
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Low-Dimensional Dynamics Homeomorphisms of the Circle

“Average Speed” of a Lift (Independence from x Cont’d)

We showed |x − y | ≤ k implies |F n(x)− F n(y)| ≤ k , n ∈ N.

This implies that

∣
∣
∣
F n(x)−x

n
− F n(y)−y

n

∣
∣
∣ =

∣
∣
∣
F n(x)−F n(y)

n
+ y−x

n

∣
∣
∣

≤ 2k
n

n → ∞→ 0.

Note that, given x , y ∈ R, one can always choose k ∈ N, such that

|x − y | ≤ k .

Therefore, for x , y ∈ R,

lim
n→∞

F n(x)− x

n
= lim

n→∞

F n(y)− y

n
.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

“Average Speed” of a Lift (Last Property)

It remains to establish the last property in the theorem.

By a previous proposition, if F and G are lifts of f , then there exists a
k ∈ Z, such that

G − F = k .

It follows by induction that

G n(x) = F n(x) + nk .

Therefore,

ρ(G ) = lim
n→∞

Gn(x)−x

n

= lim
n→∞

F n(x)−x

n
+ k

= ρ(F ) + k .
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Low-Dimensional Dynamics Homeomorphisms of the Circle

The Rotation Number

Definition

The rotation number of an orientation-preserving homeomorphism
f : S1 → S1 is defined by

ρ(f ) = π(ρ(F )),

where F is any lift of f and where π(x) = [x ].

It follows from the last property in the theorem that the rotation
number is well defined, i.e., ρ(f ) does not depend on the lift F .
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Example

Let α ∈ R and consider the rotation

Rα = x + α mod 1.

Recall the lift
F (x) = x + α+ k .

We obtain

F n(x)− x

n
=

x + n(α+ k)− x

n
= α+ k .

Thus, ρ(F ) = α+ k .

Hence,
ρ(Rα) = π(ρ(F )) = α mod 1.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Example

Now we consider the homeomorphism f : S1 → S1 defined by

f (x) = x + β sin (2πx) mod 1,

with |β| < 1
2π .

Recall the lift
F (x) = x + β sin (2πx).

By the theorem, ρ(F ) = limn→∞
F n(x)−x

n
does not depend on x .

So we have

ρ(F ) = lim
n→∞

F n(0)− 0

n
= 0.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Homeomorphisms with Rational Rotation Number

We consider the homeomorphisms with rational rotation number.

Recall that x ∈ S1 is said to be a periodic point of a map
f : S1 → S1 if

f q(x) = x , for some q ∈ N.

Theorem

Let f : S1 → S1 be an orientation-preserving homeomorphism. Then
ρ(f ) ∈ Q if and only if f has at least one periodic point.

We first assume that ρ(f ) = 0 and we show that f has a fixed point.

Assume, to the contrary, that f has no fixed points.

Suppose F is a lift of f .

Suppose that, for some x ∈ R, F (x)− x ∈ Z.

Then π(x) = π(F (x)) = f (π(x)).

Thus, π(x) would be a fixed point of f .
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Rational Rotation Number (ρ(f ) = 0)

It follows that
F (x)− x ∈ R\Z, for x ∈ R.

Since F is continuous, there exists a k ∈ Z, such that

k < F (x)− x < k + 1, for x ∈ R.

On the other hand, for x ∈ R,

F (x + 1)− (x + 1) = F (x)− x .

Thus, the continuous function x 7→ F (x)− x is completely
determined by its values on the compact interval [0, 1].

It follows from Weierstrass’ Theorem that there exists an ε > 0, such
that

k + ε ≤ F (x)− x ≤ k + 1− ε, for x ∈ R.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Rational Rotation Number (ρ(f ) = 0 Cont’d)

We saw that there exists an ε > 0, such that

k + ε ≤ F (x)− x ≤ k + 1− ε, for x ∈ R.

But

F n(x)− x =

n−1∑

i=0

[F (F i (x))− F i (x)].

So we get

k + ε ≤ F n(x) − x

n
≤ k + 1− ε.

Thus,

ρ(f ) = lim
n→∞

F n(x)− x

n
mod 1 ∈ [ε, 1 − ε].

This contradicts the hypothesis that ρ(f ) = 0.

Thus, f must have a fixed point.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Homeomorphisms with Rational Rotation Number (Cont’d)

Now we assume that ρ(f ) = p
q
∈ Q.

Since F q is a lift of f q , we obtain

ρ(f q) = lim
n→∞

(F q)n(x)− x

n
mod 1

= q lim
n→∞

F qn(x)− x

qn
mod 1

= qρ(f ) mod 1

= p mod 1

= 0.

It follows from the above argument for a zero rotation number that
the homeomorphism f q has a fixed point.

This fixed point is a periodic point of f .
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Rational Rotation Number (Converse)

For the converse, we assume that f has a periodic point.

Then there exist y ∈ R and q ∈ N, such that f q(π(y)) = π(y).

By induction, f q ◦ π = π ◦ F q.

Thus,
π(F q(y)) = f q(π(y)) = π(y).

Hence, F q(y) = y + p, for some p ∈ Z.

On the other hand, F (x + 1)− (x + 1) = F (x)− x .

So F (x + p) = F (x) + p, for x ∈ R.

Thus, for x ∈ R and q ∈ N,

F q(x + p) = F q(x) + p.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Rational Rotation Number (Converse)

We got F q(x + p) = F q(x) + p, for x ∈ R and q ∈ N.

In particular, taking x = y , we obtain

F 2q(y) = F q(F q(y))

= F q(y + p)

= F q(y) + p

= y + 2p.

It follows by induction that

F nq(y) = y + np, for n ∈ N.

Thus,

ρ(F ) = lim
n→∞

F nq(y)− y

nq
= lim

n→∞

np

nq
=

p

q
.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

q-Periodic Points

Consider a homeomorphism f : S1 → S1.

Recall that, given q ∈ N, a point x ∈ S1 is said to be a q-periodic
point of f if

f q(x) = x .

It follows from the proof of the preceding theorem that f q has a fixed
point, that is, f has a q-periodic point, if and only if

ρ(f ) =
p

q
, for some p ∈ N.

Thus, f has a periodic point with period q if and only if ρ(f ) = p
q
,

with p and q coprime.

By the previous observation, f has no ℓ-periodic points for any ℓ < q.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Period of Periodic Points

Theorem

Let f : S1 → S1 be an orientation-preserving homeomorphism. If ρ(f ) = p
q

with p and q coprime, then all periodic points of f have period q.

Let x ∈ S1 be a periodic point of f .

By the former discussion, x has period ℓ = dq, for some d ∈ N.

On the other hand, by the proof of the preceding theorem, if F is a
lift of f , then

F ℓ(x) = x + dp +mℓ, for some m ∈ Z.

In fact, one can always assume that m = 0.

Let G be another lift of f . Then F = G +m, for some m ∈ Z.

Thus, F ℓ = G ℓ +mℓ. So it is sufficient to replace F by G .
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Period of Periodic Points (Cont’d)

Claim: F q(x) = x + p.

Suppose, first, that F q(x) > x + p.

We know that F q(x + p) = F q(x) + p.

Since F is increasing,

F 2q(x) > F q(x + p) = F q(x) + p > x + 2p.

By induction,
F ℓ(x) = F dq(x) > x + dp.

This contradicts F ℓ(x) = x + dp.

Similarly, F q(x) < x + p yields a contradiction.

Thus, F q(x) = x + p and the point x has period q.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Irrational Rotation Number and Ordering

Theorem

Let F be a lift of an orientation-preserving homeomorphism of the circle
f : S1 → S1 with ρ(f ) ∈ R\Q. For each x ∈ R and n1, n2,m1,m2 ∈ Z,
we have

F n1(x) +m1 < F n2(x) +m2

if and only if
n1ρ(F ) +m1 < n2ρ(F ) +m2.

If n1 = n2, there is nothing to prove. So suppose n1 6= n2.

Assume, first, that the inequality holds.

For n1 > n2, we have F n1−n2(x) < x +m2 −m1, for x ∈ R.

Thus,

F 2(n1−n2)(x) < F n1−n2(x) +m2 −m1 < x + 2(m2 −m1).
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Irrational Rotation Number and Ordering (Cont’d)

We obtain F 2(n1−n2)(x) < x + 2(m2 −m1).

By induction,
F n(n1−n2)(x) < x + n(m1 −m2).

We obtain

ρ(F ) = lim
n→∞

F n(n1−n2)(x)− x

n(n1 − n2)
<

m2 −m1

n1 − n2
.

Strict inequality holds, since ρ(f ) is irrational.

This shows that the second inequality holds.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Irrational Rotation Number and Ordering (Cont’d)

Analogously, for n1 < n2, we have

F n2−n1(x) > x +m1 −m2, for x ∈ R.

Thus,
F n(n2−n1)(x) > x + n(m1 −m2).

Hence,

ρ(F ) = lim
n→∞

F n(n2−n1)(x)− x

n(n2 − n1)
>

m1 −m2

n2 − n1
.

So the second inequality also holds in this case.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Irrational Rotation Number and Ordering (Converse)

In the other direction, we must show that

F n1(x) +m1 ≥ F n2(x) +m2

implies n1ρ(F ) +m1 ≥ n2ρ(F ) +m2.

By hypothesis, ρ(f ) is irrational.

So none of these inequalities can be an equality.

Thus, the implication is equivalent to

F n1(x) +m1 > F n2(x) +m2

implies n1ρ(F ) +m1 > n2ρ(F ) +m2.

For this it suffices to reverse all inequalities in the previous argument.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Irrational Rotation Number and Rotation of Circle

Theorem

Let f : S1 → S1 be an orientation-preserving homeomorphism with
rotation number ρ(f ) ∈ R\Q. Then there exists a nondecreasing and onto
continuous function h : S1 → S1, such that

h ◦ f = Rρ(f ) ◦ h.

Let F be a lift of the homeomorphism f and ρ = ρ(F ).

For a point x ∈ R, consider the sets

A = {F n(x) +m : n,m ∈ Z}, B = {nρ+m : n,m ∈ Z}.
Define a function H : R → R by

H(y) = sup {nρ+m : F n(x) +m ≤ y}.
By the preceding theorem, H is nondecreasing.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Irrational Rotation and Rotation of Circle (Lemma)

Claim: H is constant on each interval in the complement of A.

Suppose [a, b] ⊆ S1\A.
Then, for every n,m ∈ Z,

F n(x) +m ≤ a iff F n(x) +m ≤ b.

Thus, H(a) = H(b).

Lemma: The set B is dense in R.

We have y ∈ B if and only if y +m ∈ B , for some m ∈ Z.

So it suffices to show that B ∩ [0, 1] is dense in [0, 1].

The set B ∩ [0, 1] is infinite.

If not, there would exist pairs (n1,m1) 6= (n2,m2) in Z2, such that

n1ρ+m1 = n2ρ+m2.

This is impossible, since ρ is irrational (if n1 = n2, then m1 6= m2).
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Irrational Rotation and Rotation of Circle (Lemma Cont’d)

Let then xn be a sequence in B ∩ [0, 1] with infinitely many values.

The interval [0, 1] is compact.

So we can assume that the sequence xn is convergent.

Hence, given ε > 0, there exist m, n ∈ N, such that

0 < |xn − xm| < ε.

Write xn = n1ρ+m1 and xm = n2ρ+m2.

We obtain

xn − xm = (n1 − n2)ρ+ (m1 −m2) ∈ B .

This shows that the set B ⊇ {k(xn − xm) : k ∈ Z} is ε-dense in R.

Since ε is arbitrary, we conclude that B is dense in R.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Irrational Rotation and Rotation of Circle (Cont’d)

Since ρ is irrational, it follows from the preceding theorem that

H(F n(x) +m) = nρ+m.

This implies that the function H has no jumps.

By the preceding equality, H(R) ⊇ H(A) = B .

By the lemma, the set B is dense in R.

Since H is monotonic, this implies that it is also continuous.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Irrational Rotation and Rotation of Circle (Cont’d)

Now we consider the lift S : R → R of Rρ given by

S(x) = x + ρ.

By the preceding equality, we have

(H ◦ F )(F n(x) +m) = H(F n+1(x) +m) = (n + 1)ρ+m;

(S ◦ H)(F n(x) +m) = S(nρ+m) = (n + 1)ρ+m.

Thus, in A,
H ◦ F = S ◦ H.

But the maps H,F and S are continuous.

So this identity holds in A.

But H is constant on each interval in the complement of A.

So we have H ◦ F = S ◦ H in R.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Irrational Rotation and Rotation of Circle (Conclusion)

On the other hand,

H(y + 1) = sup {nρ+m : F n(x) +m ≤ y + 1}
= sup {nρ+m : F n(x) +m − 1 ≤ y}
= sup {nρ+m − 1 : F n(x) +m − 1 ≤ y}+ 1

= H(y) + 1.

The function H is also onto: By continuity, we have

H(R) = H([0, 1]) ⊇ B = R.

Hence, the function h : S1 → S1 defined by h(y) = H(y) mod 1 is
continuous, nondecreasing and onto.

Moreover, since H ◦ F = S ◦ H, we have h ◦ f = Rρ ◦ h.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Poincaré’s Theorem

If the homeomorphism has a dense positive semiorbit, which by a
previous theorem is equivalent to the existence of a dense orbit, then
the preceding theorem can be strengthened as follows:

Theorem (Poincaré)

Let f : S1 → S1 be an orientation-preserving homeomorphism with
ρ(f ) ∈ R\Q. If f has a dense positive semiorbit, then it is topologically
conjugate to the rotation Rρ(f ), i.e., there exists a homeomorphism
h : S1 → S1 such that

h ◦ f = Rρ(f ) ◦ h.

Let x ∈ S1 be a point whose positive semiorbit is dense in S1.

Consider h : S1 → S1, as constructed in the preceding theorem.

In this case, A = {F n(x) +m : n,m ∈ Z} is dense in S1.
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Low-Dimensional Dynamics Homeomorphisms of the Circle

Poincaré’s Theorem (Cont’d)

Thus, the function

H(y) = sup {nρ+m : F n(x) +m ≤ y}

is bijective (we recall that H is constant on each interval contained in
R\A, which now is the empty set).

It follows that the function h is also bijective.

It remains to show that h is open.

That is, that the image h(U) of an open set U is also open.

Since h is continuous, it maps compact sets to compact sets.

Hence, given an open set U, the image

h(S1\U) = S1\h(U)

is compact. Thus, h(U) is an open set.

This shows that h is a homeomorphism.
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Low-Dimensional Dynamics Diffeomorphisms of the Circle

Subsection 2

Diffeomorphisms of the Circle
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Low-Dimensional Dynamics Diffeomorphisms of the Circle

Diffeomorphisms; Functions of Bounded Variation

A diffeomorphism is a bijective differentiable map with differentiable
inverse.

We show that any sufficiently regular diffeomorphism f : S1 → S1

with irrational rotation number is topologically conjugate to a
rotation.

More precisely, there exists a homeomorphism h : S1 → S1, such that

h ◦ f = Rρ(f ) ◦ h.

Recall that a function ϕ : S1 → R is of bounded variation if

Var(ϕ) = sup
n∑

k=1

|ϕ(xk)− ϕ(yk)| < +∞,

where the supremum is taken over all disjoint open intervals
(x1, y1), . . . , (xn, yn), with n ∈ N.
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Low-Dimensional Dynamics Diffeomorphisms of the Circle

Example

Let ϕ : S1 → R be a differentiable function with bounded derivative.

Then there exists a K > 0, such that |ϕ′(x)| ≤ K for x ∈ S1.

If (xi , yi ), for i = 1, . . . , n, are disjoint open intervals with y1 ≤ x2,
y2 ≤ x3, . . ., yn−1 ≤ xn, then

n∑

i=1

|ϕ(yi )− ϕ(xi )| =

n∑

i=1

|ϕ′(zi )|(yi − xi )

(for some zi in (xi , yi ))

≤
n∑

i=1

K (yi − xi ) ≤ K .

Thus, Var(ϕ) ≤ K . So ϕ has bounded variation.
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Low-Dimensional Dynamics Diffeomorphisms of the Circle

Diffeomorphisms and Rotations

Theorem (Denjoy)

Let f : S1 → S1 be an orientation-preserving C 1 diffeomorphism whose
derivative has bounded variation. If ρ(f ) ∈ R\Q, then f is topologically
conjugate to the rotation Rρ(f ).

By Poincaré’ theorem, it suffices to show that there exists a point
z ∈ S1 whose positive semiorbit is dense.

Equivalently, we must show that ω(z) = S1.

Suppose, to the contrary, that ω(z) 6= S1.

Then the set S1\ω(z) is a disjoint union of maximal intervals (an
open interval I ⊆ S1\ω(z) is maximal if any nonempty open interval
J such that I ⊆ J ⊆ S1\ω(z) coincides with I ).

Moreover, since f is a homeomorphism, the set ω(z) is f -invariant.

Thus, the image and the preimage of any of these intervals are also
maximal intervals.
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Low-Dimensional Dynamics Diffeomorphisms of the Circle

Diffeomorphisms and Rotations (Cont’d)

Now let I ⊆ S1\ω(z) be a maximal interval.

We show that the sets f n(I ), for n ∈ Z, are pairwise disjoint.

Suppose there exist integers m > n, such that f m(I ) ∩ f n(I ) 6= ∅.
Then f m−n(I ) ∩ I 6= ∅.
Thus, f m−n(I ) = I .

But f is continuous.

Therefore, f m−n(I ) = I .
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Low-Dimensional Dynamics Diffeomorphisms of the Circle

Diffeomorphisms and Rotations (Lemma 1)

Lemma

Let g : J → J be a continuous function on some interval J ⊆ R. If K ⊆ J

is a compact interval such that g(K ) ⊇ K , then g has a fixed point in K .

Write K = [α, β]. By hypothesis, g(K ) ⊇ K .

So there exist a, b ∈ K , with g(a) = α ≤ a and g(b) = β ≥ b.

Now we have g(a)− a ≤ 0 and g(b)− b ≥ 0.

So the continuous function x 7→ g(x) − x has a zero in K .

By the lemma that f m−n has a fixed point in I .

This is impossible since the rotation number is irrational.

Thus, the intervals f n(I ) are pairwise disjoint.

Moreover, their lengths λn satisfy
∑

n∈Z λn ≤ 1.

George Voutsadakis (LSSU) Dynamical Systems May 2024 50 / 91



Low-Dimensional Dynamics Diffeomorphisms of the Circle

Diffeomorphisms and Rotations (Lemma 2)

Lemma

There exist infinitely many n ∈ N, such that, for each x ∈ S1, the intervals
J = (x , f −n(x)), f (J), . . . , f n(J) are pairwise disjoint.

Recall that f is orientation-preserving.

Thus, for each k = 0, . . . , n, f k(J) = (f k(x), f k−n(x)).

Hence, the intervals f k(J) are pairwise disjoint if and only if

f k(x), f k−n(x) 6∈ f ℓ(J), for k , ℓ = 0, . . . , n, with ℓ < k .

Equivalently,
f k(x) 6∈ J, for |k | ≤ n.

Note that this property only depends on the ordering of the orbit of x .
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Low-Dimensional Dynamics Diffeomorphisms of the Circle

Diffeomorphisms and Rotations (Lemma 2 Cont’d)

We noted that
f k(x) 6∈ J, for |k | ≤ n,

only depends on the ordering of the orbit of x .

By a previous theorem, this is the same as the ordering of the orbits
of the rotation Rρ, where ρ = ρ(f ).

Since ρ is irrational, all negative semiorbits are dense.

Thus, there exist infinitely many n ∈ N, such that

Rk
ρ (y) 6∈ (y ,R−n

ρ (y)), for |k | ≤ n and y ∈ S1.
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Low-Dimensional Dynamics Diffeomorphisms of the Circle

Diffeomorphisms and Rotations (Lemma 3)

Lemma

If J ⊆ S1 is an open interval such that the sets J, f (J), . . . , f n−1(J) are
pairwise disjoint, then, for c = expVar(log f ′) < +∞,

c−1 ≤ (f n)′(y)

(f n)′(z)
≤ c , for any y , z ∈ J.

Note that, since f is orientation preserving, f ′ > 0.

So we may define a function ϕ : S1 → R by

ϕ = log f ′.

Now the sets J, . . . , f n−1(J) are pairwise disjoint.

So given y , z ∈ J, the open intervals determined by the pairs of
points f k(y) and f k(z), for k = 0, . . . , n − 1, are also disjoint.
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Low-Dimensional Dynamics Diffeomorphisms of the Circle

Diffeomorphisms and Rotations (Lemma 3 Cont’d)

Thus,

Var(ϕ) ≥ ∑n−1
k=0 |ϕ(f k(y))− ϕ(f k(z))|

≥ |∑n−1
k=0 ϕ(f

k(y))− ϕ(f k(z))|
=

∣
∣
∣log

∏n−1
k=0 f

′(f k(y))− log
∏n−1

k=0 f
′(f k(z))

∣
∣
∣

=
∣
∣
∣log

(f n)′(y)
(f n)′(z)

∣
∣
∣ .

This implies that

−Var(ϕ) ≤ log
(f n)′(y)

(f n)′(z)
≤ Var(ϕ).

This finishes the proof provided that Var(ϕ) is finite.
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Low-Dimensional Dynamics Diffeomorphisms of the Circle

Diffeomorphisms and Rotations (Lemma 3 Cont’d)

Now S1 is compact and f ′ is continuous.

Therefore, inf f ′ > 0.

Hence, for x , y ∈ S1,

|ϕ(y)− ϕ(z)| = | log f ′(y)− log f ′(z)| ≤ |f ′(y)− f ′(z)|
inf f ′

.

Also, f ′ has bounded variation.

Hence, we obtain

Var(ϕ) ≤ Var(f ′)

inf f ′
< +∞.

This completes the proof of the lemma.
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Low-Dimensional Dynamics Diffeomorphisms of the Circle

Diffeomorphisms and Rotations (Cont’d)

Now apply Lemma 3 to the intervals J = (x , f −n(x)) in Lemma 2,
with y = x ∈ I and z = f −n(x) (with n independent of x).

We conclude that

1

c
≤ (f n)′(x)(f −n)′(x) ≤ c .

But a + b ≥
√
ab, for a, b ≥ 0.

So we obtain, for the integers n given by Lemma 2,

λn + λ−n =
∫

I
(f n)′(x)dx +

∫

I
(f −n)′(x)dx

=
∫

I
[(f n)′(x) + (f −n)′(x)]dx

≥
∫

I

√

(f n)′(x)(f −n)′(x)dx

≥ 1√
c
λ0.

This implies
∑

m∈Z λm = +∞, contradicting
∑

n∈Z λn ≤ 1.

Thus, there exists a point z ∈ S1 with ω(z) = S1.
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Low-Dimensional Dynamics Maps of the Interval

Subsection 3

Maps of the Interval
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Low-Dimensional Dynamics Maps of the Interval

Covering

Let f : I → I be a continuous map of an interval I ⊆ R.

Definition

Given intervals J,K ⊆ I , we say that J covers K if

f (J) ⊇ K .

In that case, we write J → K .
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Low-Dimensional Dynamics Maps of the Interval

Covering and Existence of Periodic Points

Proposition

Let f : I → I be a continuous map of a compact interval I ⊆ R . If there
exist closed intervals I0, I1, . . . , In−1 ⊆ I , such that

I0 → I1 → I2 → · · · → In−1 → I0,

then f has an n-periodic point x ∈ I , such that

f m(x) ∈ Im, for m = 0, 1, . . . , n − 1.

Claim: There exists a closed interval J0 ⊆ I0, such that f (J0) = I1.

By hypothesis, f (I0) ⊇ I1.

So there exist a0, b0 ∈ I0 whose images are the endpoints of I1.

Let J0 is the closed interval with endpoints a0 and b0.

Then f (J0) = I1.
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Low-Dimensional Dynamics Maps of the Interval

Proof of the Proposition (Cont’d)

Assume that we constructed closed intervals J0 ⊇ J1 ⊇ · · · ⊇ Jm−1

contained in I0, for some m < n, such that

f k+1(Jk) = Ik+1, for k = 0, . . . ,m − 1.

Then f m+1(Jm−1) = f (Im) ⊇ Im+1.

By a similar argument there exists a closed interval Jm ⊇ Jm−1, such
that

f m+1(Jm) = Im+1.

Thus, we obtain closed intervals J0 ⊇ J1 ⊇ · · · ⊇ Jn−1, such that

f k+1(Jk) = Ik+1, k = 0, . . . , n − 1, In = I0.
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Low-Dimensional Dynamics Maps of the Interval

Proof of the Proposition (Cont’d)

In particular, we have

f n(Jn−1) = I0 ⊇ Jn−1;
Each point x ∈ Jn−1 satisfies, for m = 0, . . . , n− 1,

f m(x) ∈ f m(Jn−1) ⊆ f m(Jm−1) = Im.

On the other hand, it follows from f n(Jn−1) = I0 ⊇ Jn−1 and Lemma
1 in Denjoy’s Theorem that f n has a fixed point in Jn−1.

Thus, f has an n-periodic point in Jn−1, which also satisfies

f m(x) ∈ Im, m = 0, 1, . . . , n − 1.
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Low-Dimensional Dynamics Maps of the Interval

Example

Given a > 4, consider the map f : [0, 1] → R defined by

f (x) = ax(1− x).

We have

f
(
[1
a
, 12 ]

)
= [1− 1

a
, a4 ] ⊇ [1− 1

a
, 1];

f
(
[1− 1

a
, 1]

)
= [0, 1 − 1

a
] ⊇ [1

a
, 12 ].

Notice, also, that [
1

a
,
1

2

]

∩
[

1− 1

a
, 1

]

= ∅.

By the proposition, f has a periodic point in [1
a
, 12 ] with period 2.
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Low-Dimensional Dynamics Maps of the Interval

Special Case of Sharkovsky’s Theorem

Theorem

Let f : I → I be a continuous map of a compact interval I ⊆ R. If f has a
periodic point with period 3, then it has periodic points with all periods.

Let x1 < x2 < x3 be the elements of the orbit of a periodic point with
period 3.

Suppose f (x2) = x3. Then f 2(x2) = x1.
Thus,

[x1, x2] ↔ [x2, x3]

Suppose f (x2) = x1.
Then

[x2, x3] ↔ [x1, x2]

In the first case, I → I taking I = [x2, x3].

In the second case, I → I taking I = [x1, x2].

It follows from the proposition that f has a fixed point.
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Low-Dimensional Dynamics Maps of the Interval

Special Case of Sharkovsky’s Theorem (Cont’d)

Given an integer n ≥ 2, with n 6= 3, we have

I1 → I2 → I2 → · · · → I2 → I2 → I1
︸ ︷︷ ︸

n + 1 elements

taking, respectively, I1 = [x1, x2] and I2 = [x2, x3] or I1 = [x2, x3] and
I2 = [x1, x2].

By the preceding proposition, f has an n-periodic point x ∈ I1.

If it did not have period n, then x ∈ I1 ∩ I2 = {x2}.
So x = x2.

The orbit of x2 belongs successively to I1 I2 I2 I1 I2 I2 I1 . . ..

Thus, it cannot belong successively to the intervals in the displayed
chain unless n = 3.

Since we took n 6= 3, the periodic point x has period n.

George Voutsadakis (LSSU) Dynamical Systems May 2024 64 / 91



Low-Dimensional Dynamics Maps of the Interval

Examples on [0, 1] with Periods 3 and 5
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Low-Dimensional Dynamics Maps of the Interval

Ordering Used in Sharkovsky’s Theorem

We consider the ordering ≺ on N defined by

1 ≺ 2 ≺ 22 ≺ 23 ≺ · · · ≺ 2m ≺ · · ·
· · ·
≺ · · · ≺ 2m(2n + 1) ≺ · · · ≺ 2m7 ≺ 2m5 ≺ 2m3 ≺ · · ·
· · ·
≺ · · · ≺ 2(2n + 1) ≺ · · · ≺ 2 · 7 ≺ 2 · 5 ≺ 2 · 3 ≺ · · ·
≺ · · · ≺ 2n + 1 ≺ · · · ≺ 7 ≺ 5 ≺ 3.
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Low-Dimensional Dynamics Maps of the Interval

Lemma 1

Lemma

Let f : I → I be a continuous map of a compact interval I ⊆ R.
Let x ∈ I be a periodic point with odd period p > 1, such that there exist
no periodic points with odd period less than p.

Then the intervals determined in I by the orbit of
x can be numbered I1, . . . , Ip−1 so that the graph
obtained from the covering relations between them
contains the subgraph on the right i.e., I1 → I1 →
I2 → · · · → Ip−1 and Ip−1 → Ik for any odd k .

Consider I1 = [u, v ], where, for γ(x) the orbit of x ,

u = max {y ∈ γ(x) : f (y) > y};
v = min {y ∈ γ(x) : y > u}.
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Low-Dimensional Dynamics Maps of the Interval

Lemma 1 (Cont’d)

By the definition of u, we have f (v) ≤ v .

Since x is not a fixed point, f (v) 6= v .

Therefore, we get f (v) < v .

Since f (u) > u, by the definition of v , f (u) ≥ v .

Since f (v) < v , f (v) < u.

Therefore, I1 → I1.

The inclusion f (I1) ⊇ I1 is proper (otherwise x would have period 2).

Now f p(I1) ⊇ f p−1(I1) ⊇ · · · ⊇ f (I1) ⊇ I1 and x is p-periodic.

Thus, we have f p(I1) ⊇ γ(x).

So f p(I1) contains all intervals determined by adjacent points in the
orbit of x .
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Low-Dimensional Dynamics Maps of the Interval

Lemma 1 (Cont’d)

Let
I− = γ(x) ∩ (−∞, u] and I+ = γ(x) ∩ [v ,+∞).

Define
r = cardI− and s = cardI+.

We have r + s = p. Since p is odd, r 6= s.

So there exist adjacent points of γ(x) in I− or in I+, determining an
interval J, such that only one of them is mapped by f to the other
interval.

Otherwise, we would have f (I−) ⊆ I+ and f (I+) ⊆ I− (since
f (u) > u and f (v) < v). This is impossible, since r 6= s.

We also note that J → I1.
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Low-Dimensional Dynamics Maps of the Interval

Lemma 1 (Cont’d)

Now let I1 → I2 → · · · → Ik → I1 be the shortest cycle of the form
I1 → · · · → I1 that is different from I1 	 (it follows from the former
discussion that such a cycle always exists).

Clearly, k ≤ p − 1 since the orbit of x determines p − 1 intervals.

Let q be the odd element of {k , k + 1}.
Now we have:

I1 → · · · → Ik → I1;
I1 → · · · → Ik → I1 → I1.

So by a previous proposition, f q has a fixed point y .

Note that y is not a fixed point of f .

Otherwise, y ∈ I1 ∩ · · · ∩ Ik ⊆ I1 ∩ I2 (recall that k ≥ 2) would be in
the orbit of x . This yields a contradiction since x is not a fixed point.

By the minimality of the odd period p, q ≥ p. Thus, k = p − 1.

This shows that I1 → I2 → · · · → Ip−1 → I1 is the shortest cycle of
the form I1 → · · · → I1 that is different from I1 	.
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Low-Dimensional Dynamics Maps of the Interval

Lemma 1 (Cont’d)

Now we show that Ip−1 → Ik for k odd.

This includes Ip−1 → Ip−2 since p is odd.

We first verify that the intervals Ii are ordered in I in the form
Ip−1, Ip−3, . . . , I2, I1, I3, . . . , Ip−2 (up to orientation).

We know I1 → · · · → Ip−1 → I1 is the shortest cycle of the form
I1 → · · · → I1 that is different from I1 	.

Hence, if Ik → Iℓ, then ℓ ≤ k + 1.

Otherwise, there would exist a shorter cycle of this form.

This implies that I1 only covers I1 and I2.

Hence, I2 is adjacent to I1 (since f (I1) is connected).

Since I1 = [u, v ], we have one of the following:

I2 = [w , u], with f (u) = v (recall that f (u) > u) and f (v) = w ;
I2 = [v ,w ], with f (u) = w and f (v) = u.
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Low-Dimensional Dynamics Maps of the Interval

Lemma 1 (Conclusion)

We analyze only the first case.

The second one is entirely analogous.

We have f (u) = v and I2 does not cover I1.

Hence, f (I2) ⊆ [v ,+∞).

But I2 covers I3. We conclude that I3 = [v , t], with t = f (w) = f 2(v)
(I2 covers no other interval).

Continuing this procedure yields the claimed ordering.

This implies that, for ui = f i(u),

up−1 < up−3 < · · · < u2 < u < u1 < u3 < · · · < up−2.

Now f (up−1) = u and f (up−3) = up−2.

Thus, we obtain Ip−1 = [up−1, up−3] → Ik , for k odd.

This completes the proof of the lemma.
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Low-Dimensional Dynamics Maps of the Interval

Lemma 2

Lemma

Let f : I → I be a continuous map of a compact interval I ⊆ R. If f has a
periodic point with even period, then it has a periodic point with period 2.

Let x be a periodic point with even period p > 2.

We consider two cases.
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Low-Dimensional Dynamics Maps of the Interval

Lemma 2 (Case 1)

We first assume that there are no adjacent points in the orbit of x
determining an interval J 6= I1 that covers I1.

Let y and z be, respectively, the minimum and maximum of the orbit
of x ,

y = min γ(x) and z = max γ(x).

By construction, f (u) ≥ v .

Thus, f ([y , u]) intersects [v ,+∞).

By hypothesis, the interval [y , u] does not cover I1.

Thus, f ([y , u]) ⊆ [v ,+∞).

Similarly, f ([v , z ]) ⊆ (−∞, u].

Since f permutes the points in the orbit of x , we obtain

[y , u] → [v , z ] → [y , u].

By a previous proposition, f has a periodic point with period 2.
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Low-Dimensional Dynamics Maps of the Interval

Lemma 2 (Case 2)

Assume that there are adjacent points in the orbit of x determining
an interval Ik 6= I1 that covers I1.

Let I1 → · · · → Ik → I1 be the shortest cycle of the form
I1 → · · · → I1 that is different from I1 	.

Then k ≤ p − 1.

Take q ∈ {k , k + 1} even.

Clearly q ≤ p.

We have
I1 → · · · → Ik → I1,

I1 → · · · → Ik → I1 → I1.

By a previous proposition, f q has a fixed point y .
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Low-Dimensional Dynamics Maps of the Interval

Lemma 2 (Case 2 Cont’d)

We note that y is not a fixed point of f .

If p was the smallest even period, then q = p and thus k = p − 1.

Proceeding as in the proof of the preceding lemma, one could then
show that:

The intervals Ii must be ordered in I in the form
Ip−2, . . . , I2, I1, I3, . . . , Ip−1 (up to orientation);
Ip−1 → Ik for k even.

In particular, we would obtain the cycle Ip−1 → Ip−2 → Ip−1.

By a previous proposition, f would have a periodic point with period
2 (since Ip−2 ∩ Ip−1 = ∅).
This contradiction shows that p cannot be the smallest even period.

So one can consider a periodic point with a smaller even period.

By repeating the process, we get down to period 2.
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Low-Dimensional Dynamics Maps of the Interval

Sharkovsky’s Theorem

Theorem (Sharkovsky)

Let f : I → I be a continuous map of a compact interval I ⊆ R.
If f has a periodic point with period p and q ≺ p, then f has a periodic
point with period q.

We consider four cases.

1. p = 2k and q = 2ℓ ≺ p, with ℓ < k .

Suppose ℓ > 0. Let x be a periodic point of f with period p.

Then x is a periodic point of f q/2 with period 2k−ℓ+1.

But k − ℓ+ 1 ≥ 2.

By Lemma 2, f q/2 has a periodic point y with period 2.

Then y is a periodic point of f with period q.

Suppose ℓ = 0. By Lemma 2, f has a periodic point with period 2.

It determines an interval I1 in I whose endpoints are permuted by f .

Since f is continuous, it must have a fixed point in I1.
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Low-Dimensional Dynamics Maps of the Interval

Sharkovsky’s Theorem (Case 2)

2. p = 2k r and q = 2k s ≺ p with r > 1 odd minimal and s even.

Note r is the smallest odd period of the periodic points of f 2k .

By Lemma 1, there exists a cycle of length s.

When s < r , we take

Ir−1 → Ir−s → · · · → Ir−2 → Ir−1

When s ≥ r , we take

I1 → I2 → · · · → Ir−1 → I1 → I1 → · · · → I1.

By a previous proposition, f 2
k
has a periodic point with period s.

This is a periodic point of f with period 2k s = q.
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Low-Dimensional Dynamics Maps of the Interval

Sharkovsky’s Theorem (Case 3)

3. p = 2k r and q = 2ℓ ≺ p with r > 1 odd minimal and ℓ = k .

Take s = 2 in Case 2.

We obtain a periodic point of f with period 2ks = 2k+1.

Now we revert to Case 1.

f has a periodic point with period 2ℓ for each ℓ ≤ k .
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Low-Dimensional Dynamics Maps of the Interval

Sharkovsky’s Theorem (Case 4)

4. p = 2k r and q = 2k s ≺ p with r > 1 odd minimal and s > r odd.

Again, r is the smallest odd period of the periodic points of f 2
k

.

By Lemma 1, we obtain the cycle of length s given by

I1 → I2 → · · · → Ir−1 → I1 → I1 → · · · → I1.

By a previous proposition, f 2
k
has a periodic point x with period s.

Suppose x is a periodic point of f with period 2k s.

Then the proof is complete.

Suppose x is not a periodic point of f with period 2ks.

Then x has period 2ℓs for some ℓ < k .

Take p = 2ℓs and q = 2ℓs = q, where s = 2k−ℓs.

Now s is even.

Thus, Case 2 yields a periodic point of f with period q = q.
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Subsection 4

The Poincaré-Bendixson Theorem
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Low-Dimensional Dynamics The Poincaré-Bendixson Theorem

The Setup

Given a C 1 function f : R2 → R2, consider, for each x0 ∈ R2, the
initial value problem

x ′ = f (x), x(0) = x0.

We assume that the unique solution x(t, x0) of the system is defined
for t ∈ R.

By a previous proposition the family of maps ϕt : R
2 → R2 defined,

for each t ∈ R, by
ϕt(x0) = x(t, x0)

is a flow.

We call a point x ∈ R2 with f (x) = 0 a critical point of f .
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Low-Dimensional Dynamics The Poincaré-Bendixson Theorem

Transversals and Crossings

A line segment L ⊆ R2 is called a transversal to f : R2 → R2 if, for
each x ∈ L, the directions of L and f (x) generate R2.

Lemma

Let ϕt be a flow determined by a differential equation x ′ = f (x) for some
C 1 function f : R2 → R2. Suppose L ⊆ R2 is a transversal to f .

If x ∈ R2 is not periodic and meets L at points xk at times tk , with
t1 < t2 < · · · , then the order of the xk on L is the same as that of the tk .

If x is periodic, then it can meet L in at most one point.

Assume, first, that x is not periodic.

Consider the simple closed curve consisting of γ(x) between x0 and x1
and the segment of L joining x0 and x1.

The orbit cannot cross through the curve, since then it would either
be periodic or cause a discontinuity in the vector field.

Hence, the next crossing occurs beyond x1.
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Low-Dimensional Dynamics The Poincaré-Bendixson Theorem

Transversals and Crossings (Cont’d)

Next suppose that x is periodic, with least period T > 0.

We express the solution as f (t, x0) so that the transversal L is
constructed at x0 = f (0, x0).

Any other point on the orbit is achieved at a unique t ∈ [0,T ).

Thus, if the orbit crosses x1 6= x0 on L, it does so at t1 < T .

The orbit cannot return to x0 across L.

So it must cross γ(x) at some x2 = f (t2, x0), t1 < t2 < T .

However x2 also precedes x1.

So we must have x2 = f (τ2, x0), where τ2 < t2.

But then γ(x) is periodic with period t2 − τ2.

This is a positive number less than T .

This contradicts the assumption that T is the least period.
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Low-Dimensional Dynamics The Poincaré-Bendixson Theorem

Transversals and Limit Sets

Lemma

Let ϕt be a flow determined by a differential equation x ′ = f (x) for some
C 1 function f : R2 → R2. Suppose L ⊆ R2 is a transversal to f . Then, for
each x ∈ R2, the set ω(x) ∩ L contains at most one point.

Suppose p, q ∈ ω(x) ∩ L, with p 6= q.

Then γ(x) meets L in more than one point.

Hence, by the lemma, f is not periodic.

Thus, γ(x) meets L at infinite many points {xk} at times
t1 < t2 < · · · .
But there are two different limit points on γ(x) ∩ L.

Thus, the {xk} cannot be in the order required by the lemma on L.
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Low-Dimensional Dynamics The Poincaré-Bendixson Theorem

The Poincaré-Bendixson Theorem

Theorem (Poincaré-Bendixson)

Let f : R2 → R2 be a C 1 function. Consider the flow ϕt determined by
the equation x ′ = f (x). Suppose that:

The positive semiorbit γ+(x) of a point x ∈ R2 is bounded;

ω(x) contains no critical points.

Then ω(x) is a periodic orbit.

By hypothesis, the positive semiorbit γ+(x) is bounded.

By a previous proposition, ω(x) is nonempty.

Take a point p ∈ ω(x).

Now ω(x) is contained in the closure of γ+(x).

By a previous proposition, ω(p) is nonempty.

Moreover, by the same proposition, ω(p) ⊆ ω(x).

Now take a point q ∈ ω(p).
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Low-Dimensional Dynamics The Poincaré-Bendixson Theorem

The Poincaré-Bendixson Theorem (Cont’d)

By hypothesis, q is not a critical point.

By the preceding lemma, there exists a line segment L containing q

that is a transversal to f .

But q ∈ ω(p).

Thus, by a previous proposition, there exists a sequence tk ր +∞ in
R+, such that ϕtk (p) → q when k → ∞.

One can also assume that ϕtk (p) ∈ L, for k ∈ N.

On the other hand, since p ∈ ω(x), by a previous proposition,
ϕtk (p) ∈ ω(x), for k ∈ N.

Now ϕtk (p) ∈ ω(x) ∩ L.

By the preceding lemma, for k , ℓ ∈ N,

ϕtk (p) = ϕtℓ(p) = q.

This implies that γ(p) ⊆ ω(x) is a periodic orbit.
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Low-Dimensional Dynamics The Poincaré-Bendixson Theorem

The Poincaré-Bendixson Theorem (Cont’d)

Now we show that ω(x) = γ(p).

Assume that ω(x)\γ(p) 6= ∅.
By a previous proposition, ω(x) is connected.

So, in each open neighborhood of γ(p), there exist points of ω(x)
that are not in γ(p).

Moreover, any sufficiently small open neighborhood of γ(p) contains
critical points.

Thus, there exists a transversal L′ to f containing one of these points,
which is in ω(x), and a point of γ(p).

Since γ(p) ⊆ ω(x), ω(x) ∩ L′ contains at least two points.

This contradicts the preceding lemma.

Thus, ω(x) = γ(p) and the ω-limit set of x is a periodic orbit.
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Low-Dimensional Dynamics The Poincaré-Bendixson Theorem

Example

Consider the differential equation
{

x ′ = x(3− 2y − x2 − y2)− y ,

y ′ = y(3− 2y − x2 − y2) + x .

Writing in polar coordinates, we get
{

r ′ = r(3− 2r sin θ − r2),
θ′ = 1.

For any sufficiently small r , we have

r ′ = r(3− 2r sin θ − r2) ≥ r(3− 2r − r2) > 0.

For any sufficiently large r , we have

r ′ = r(3− 2r sin θ − r2) ≤ r(3 + 2r − r2) < 0.
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Example (Cont’d)

Now the origin is the only critical point.

Therefore, for any r2 > r1 > 0, there are no critical points in the ring

D = {x ∈ R2 : r1 < ‖x‖ < r2}.

Moreover, provided that r1 is sufficiently small and r2 is sufficiently
large, it follows from the preceding inequalities that any positive
semiorbit γ+(x) of a point x ∈ D is contained in D.

By the theorem, the set ω(x) ⊆ D is a periodic orbit for each x ∈ D.

In particular, the flow determined by the differential equation has at
least one periodic orbit in the set D.
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Poincaré-Bendixson for Bounded Negative Semiorbits

We have an analogous result to the Poincaré-Bendixson Theorem for
bounded negative semiorbits.

Theorem

Let f : R2 → R2 be a C 1 function. Consider the flow ϕt determined by
the equation x ′ = f (x). Suppose that:

The negative semiorbit γ−(x) of a point x ∈ R2 is bounded;

α(x) contains no critical points.

Then α(x) is a periodic orbit.
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