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Low-Dimensional Dynamics

Consider the projection 7 : R — St defined by 7(x) = [x].

©

Consider the equivalence class [x].

©

It is represented by its unique representative in the interval [0,1).

©

©

That is [x] is represented by the number
X = LXJv

where | x| is the integer part of x.
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Low-Dimensional Dynamics

Let f : S — S! be a homeomorphism of the circle.
A continuous function F : R — R is said to be a lift of f if

for=moF

Ve
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Low-Dimensional Dynamics

o Given a € R, consider the rotation R, : S* — S! given by
Ro(x) =x+a mod 1.

Clearly, R, is a homeomorphism.
Given k € Z, consider the function F : R — R defined by

F(x) =x+ o+ k.

The function F satisfies

f(F(x) = m(x+atk)
x+a+k modl
m(x) +a mod1

= Ry(7(x)).

Hence, F is a lift of R,.

George Voutsadakis (LSSU)



Low-Dimensional Dynamics

o Given 8 € R, consider the continuous function f : S1 — S defined by
f(x) = x+ Bsin(2rx) mod 1.

Claim: f is a homeomorphism for |3| < 5.
Consider he function F : R — R defined by

F(x) = x + Bsin(2mwx).
We have
F'(x) =1+ 2nBcos (2mx) > 1 — 2r|B| > 0.

So F(x) is increasing.
In particular, for x € [0,1), we have F(x) < F(1) = 1.
Thus, the function f is one-to-one and onto.
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Low-Dimensional Dynamics

o Since f is continuous, it maps compact sets to compact sets.
Thus, it also maps open sets to open sets.
So its inverse is continuous.
Hence, it is a homeomorphism.

Moreover,
m(F(x)) = x+fsin(2rx) mod 1
X — LXJ + ﬁsm (27TX)
x — |x]| + Bsin (27(x — |x]))
= f(m(x)).

So F is a lift of f.
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Low-Dimensional Dynamics

Let f: S' — S* be a homeomorphism. Then:
f has lifts;
If F and G are lifts of f, then there exists a k € Z such that
G- F=k;
Any lift of f is a homeomorphism of R.
o We deal with the case of increasing f. Let x € R.
Apply f on the element of S! represented by x — |x].
Let f(x — | x]) be the representative in the interval [f(0), f(0) + 1).
Define a function F : R — R by
F(x) = f(x = [x]) + [x].
Now x — |x] and |x| are continuous on R\Z. Thus, so too is F.
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Low-Dimensional Dynamics

o For each k € Z, we have:

F(k) =
F(k™)

F(kt) =

Thus, for k € Z,

f(k — |k]|) + | k] = f(k — k) + k = f(0) + k;
flkm— |k )+ |k |=Fflk-—k+1)+ k-1
f(17)+k—1=Ff0T)+1+k—1="7(0)+ k;
f(kt — |kT|)+ [kT] = f(kT — k) + k
f(0%) + k = f(0) + k.

F(k) = F(k™) = F(k™).

This shows that the function F is continuous on IR.

We also have

m(F(x)) = n(f(x — [x]) + [x]) = f(x = [x]) = f(7(x)).
Hence, F is a lift of f.

George Voutsadakis (LSSU)



Low-Dimensional Dynamics

o Now let F and G be lifts of f. Then

mToF=moG="fonm.
By the first identity, for each x € R, there exists p(x) € Z, such that
G(x) — F(x) = p(x).

But F and G are continuous.

So the function x — p(x) is also continuous.
Moreover, x — p(x) takes only integer values.
So it must be constant.

Thus, there exists a k € Z, such that

G(x) — F(x) = p(x) = k, for any x € R.
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Low-Dimensional Dynamics

o By the second property, lifts are unique up to an additive constant.
So it is sufficient to show that the lift

F(x) = f(x = Ix)) +[x]
[F(0),£(0)+1)

is a homeomorphism.
Consider the continuous function H : R — R defined by

H(x) = f(x = |x]) +Ix],
—_——
[F=1(0)=1,f~1(0))
where f~1(x — | x|) is the representative in the interval [0, 1).
We can show by examining cases that
F(H(x))=x and H(F(x)) = x.

Hence, F is a homeomorphism.
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Low-Dimensional Dynamics

A homeomorphism f : S! — St is said to be
orientation-preserving if it has a lift which
is an increasing function.

o It follows from a previous proposition that f is orientation-preserving
if and only if all its lifts are increasing functions.
Examples: The homeomorphisms of the circle considered in the
preceding two examples are orientation-preserving since the lifts
presented for them are increasing functions.
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Low-Dimensional Dynamics

o Given o € R, consider the homeomorphism f : S — S! defined by
f(x)=—x+a mod 1.
One can easily verify that the function F : R — R defined by
F(x)=—x+4+a

is a lift of f.
Note that the lift F is decreasing.

So the homeomorphism f is not orientation-preserving.
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Low-Dimensional Dynamics

Let f: S — S be an orientation-preserving homeomorphism.
If Fis a lift of f, then for each x € R the limit

p(F) = lim F(x) —x

n—o00 n

eRY

exists and is independent of x.
Moreover, if G is another lift of f, then

p(G) — p(F) € Z.
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Low-Dimensional Dynamics

o We first assume that F(x) > x, for every x € R.
Given x € R, consider the sequence a, = F"(x) — x.
For each m,n € IN, we have

min = F™(x) — x = F™(F"(x)) — F"(x) + an.

Now, since a, = F"(x) — x,
lan] < F"(x) — x < |an| + 1.

That is,
x+ |an] < F"(x) < x+ |an] +1.

So, by the fact that F is a lifting, we obtain

F™(E™(x)) < F™(x + |an)) + 1.
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Low-Dimensional Dynamics

o On the other hand, we have

F(x + [a]) = (¢ + [an)) = F7(x) = x = am,

Using these inequalities, we get

amen < F™(x+ |an])+1—F"(x)+ an
= am+ap+x+|an] — F'(x)+1.

Since x + |an] < F"(x), amtn < am+an + 1.
So the sequence ¢, = a, + 1 satisfies the condition ¢,i1n < cm + Cn-
By a previous lemma, the following limit exists
F(x) — a a
lim M: lim —":inf{—":nE]N}.
n—00 n n—oo N n
Since a, = F"(x) —x > 0 (F is increasing), the limit is finite.
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Low-Dimensional Dynamics

o Now we show that the limit is independent of x.
Given x,y € R and k € IN with |[x — y| < k, we have

F(x) < Fly + k) = F(y) + k;
> Fly —k)=F(y) -

Hence,
[F(x) = F(y)| < k.

It follows by induction that, for all n € IN,

[F(x) = F"(y)l < k.
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Low-Dimensional Dynamics

o We showed |x — y| < k implies |F"(x) — F"(y)| < k, n € IN.
This implies that

Fr(x)—x _ F"(y)-y ‘

Fr)=F"(y) | y-
z z o

n

£ ETEEg

— n

Note that, given x,y € R, one can always choose k € IN, such that

|x —y| < k.
Therefore, for x,y € R,
. F'(x) — . F'(y)—
e F) —x _ T M
n—00 n n—o0 n
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Low-Dimensional Dynamics

o It remains to establish the last property in the theorem.

By a previous proposition, if F and G are lifts of f, then there exists a
k € Z, such that
G- F=k.

It follows by induction that
G"(x) = F"(x) + nk.

Therefore,
p(G) = lim CLd=x
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Low-Dimensional Dynamics

The rotation number of an orientation-preserving homeomorphism
f: St — St is defined by

p(f) = m(p(F)),
where F is any lift of f and where 7(x) = [x].

o It follows from the last property in the theorem that the rotation
number is well defined, i.e., p(f) does not depend on the lift F.
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Low-Dimensional Dynamics

o Let o« € R and consider the rotation
R,=x4+«a mod 1.

Recall the lift
F(x)=x+a+k.
We obtain
F'(x) —x x4+ n(a+k)—x

n n

Thus, p(F) = a+ k.

Hence,

p(Ry) =m(p(F)) =a mod 1.
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Low-Dimensional Dynamics

o Now we consider the homeomorphism f : S — S! defined by

f(x) = x4+ Bsin(2rx) mod 1,

with 8] < L.
Recall the lift
F(x) = x+ Bsin (27x).
By the theorem, p(F) = lim,_ 0 Fn();)_x does not depend on x.
So we have .
o(F) = im T =0 g,
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Low-Dimensional Dynamics

o We consider the homeomorphisms with rational rotation number.
o Recall that x € S is said to be a periodic point of a map
f:St— Stif
f9(x) = x, for some q € IN.

Let f: S' — S be an orientation-preserving homeomorphism. Then
p(f) € Q if and only if f has at least one periodic point.

o We first assume that p(f) = 0 and we show that f has a fixed point.
Assume, to the contrary, that f has no fixed points.
Suppose F is a lift of f.
Suppose that, for some x € R, F(x) — x € Z.
Then 7(x) = w(F(x)) = f(m(x)).
Thus, m(x) would be a fixed point of f.



Low-Dimensional Dynamics

o It follows that
F(x) —x € R\Z, forxeR.

Since F is continuous, there exists a k € Z, such that
k< F(x)—x<k+1, forxeR.
On the other hand, for x € R,
F(x+1)—(x+1)=F(x) —x.

Thus, the continuous function x — F(x) — x is completely
determined by its values on the compact interval [0, 1].
It follows from Weierstrass' Theorem that there exists an € > 0, such

that
k+e<F(x)—x<k+1—¢g, forxeR.
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Low-Dimensional Dynamics

o We saw that there exists an € > 0, such that

k+e<F(x)—x<k+1—¢e, forxeR.

But o
F(x) —x =Y _[F(F(x)) = FI(x)].
i=0
So we get
k+eg%§k+1—a.
Thus, Fr
p(f) = nlrﬂo% mod 1 € [¢,1 —é].

This contradicts the hypothesis that p(f) = 0.
Thus, f must have a fixed point.
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Low-Dimensional Dynamics

o Now we assume that p(f) = £ € Q.
Since F9 is a lift of f9 , we obtain

i (F0) = x

q
p(f9) lim . mod 1
Fan(x) —
= g lim L mod 1
n— oo qn
= gp(f) mod1l
= p modl

= 0

It follows from the above argument for a zero rotation number that
the homeomorphism 9 has a fixed point.

This fixed point is a periodic point of f.
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Low-Dimensional Dynamics

o For the converse, we assume that f has a periodic point.
Then there exist y € R and g € N, such that f9(n(y)) = w(y).
By induction, f9om = mo F9.

Thus,
m(Fi(y)) = ¥ (n(y)) = 7(y).

Hence, F9(y) = y + p, for some p € Z.

On the other hand, F(x + 1) — (x + 1) = F(x) — x.
So F(x + p) = F(x) + p, for x € R.

Thus, for x € R and g € IN,

Fo(x+p) = FI(x) + p.
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Low-Dimensional Dynamics

o We got F9(x + p) = F9(x) + p, for x € R and g € IN.
In particular, taking x = y, we obtain

F2(y) =

It follows by induction that

FI(F(y))
Fi(y + p)
Fi(y)+p
v+ 2p.

F"(y) =y +np, forneIN.

Thus,

o(F) = fim )=y PP

n—00 nq
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Low-Dimensional Dynamics

o Consider a homeomorphism f : S — St

o Recall that, given g € IN, a point x € S! is said to be a g-periodic
point of f if
f(x) = x.

o It follows from the proof of the preceding theorem that f9 has a fixed
point, that is, f has a g-periodic point, if and only if

p(f) ==, for some p € IN.
o Thus, f has a periodic point with period g if and only if p(f) = g,

with p and g coprime.

o By the previous observation, f has no ¢-periodic points for any £ < q.
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Low-Dimensional Dynamics

Let f : S* — S! be an orientation-preserving homeomorphism. If p(f) = g
with p and g coprime, then all periodic points of f have period g.

o Let x € S! be a periodic point of f.
By the former discussion, x has period ¢ = dgq, for some d € IN.

On the other hand, by the proof of the preceding theorem, if F is a
lift of £, then

Fi(x) = x +dp + ml, for some m € Z.

In fact, one can always assume that m = 0.
Let G be another lift of f. Then F = G 4+ m, for some m € Z.
Thus, F' = G* + ml. So it is sufficient to replace F by G.
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Low-Dimensional Dynamics

Claim: F9(x) = x + p.
Suppose, first, that F9(x) > x + p.
We know that F9(x + p) = F9(x) + p.

Since F is increasing,

F2(x) > F9(x + p) = FI(x) + p > x + 2p.

By induction,
FY(x) = F99(x) > x + dp.

This contradicts F¥(x) = x + dp.
Similarly, F9(x) < x + p yields a contradiction.
Thus, F9(x) = x + p and the point x has period g.
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Low-Dimensional Dynamics

Let F be a lift of an orientation-preserving homeomorphism of the circle
f: St — St with p(f) € R\Q. For each x € R and ny, no, my, mp € Z,

we have
F™(x) +m < F™(x) + my

if and only if
mp(F) + my < nap(F) + mo.

o If ny = ny, there is nothing to prove. So suppose ny # ny.
Assume, first, that the inequality holds.
For ny > ny, we have F™~"(x) < x + mp — my, for x € R.
Thus,

FAm=m) (x) < FM=m2(x) 4 my — my < x + 2(my — my).
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Low-Dimensional Dynamics

o We obtain F2(m=m2)(x) < x +2(mp — my).

By induction,
Fn(nl_HZ)(X) <x+ n(m1 — mg).

We obtain

n(ny—n) . .
o(F) = lim © () =x  ma—m
n—oo  n(ny — ny) n — ny

Strict inequality holds, since p(f) is irrational.

This shows that the second inequality holds.
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Low-Dimensional Dynamics

o Analogously, for nj < np, we have

F™™™(x) > x4+ mp — mo, for x € R.

Thus,
F”("z_"l)(x) > x + n(my — my).
Hence, : :
Fn np—ny _ _
p(F)=lim () —x  m—m
n—oo  n(ny — ny) n—m

So the second inequality also holds in this case.
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Low-Dimensional Dynamics

o In the other direction, we must show that

Fi(x) + my > F™(x) + m
implies  nip(F) + my > nop(F) + mo.

By hypothesis, p(f) is irrational.
So none of these inequalities can be an equality.

Thus, the implication is equivalent to

FM(x)+ my > F™(x) + my
implies  nip(F) + m1 > nap(F) + mo.

For this it suffices to reverse all inequalities in the previous argument.
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Low-Dimensional Dynamics

Let f: S' — S be an orientation-preserving homeomorphism with
rotation number p(f) € R\Q. Then there exists a nondecreasing and onto
continuous function h: ST — S, such that

hof =R, o h.

o Let F be a lift of the homeomorphism f and p = p(F).
For a point x € R, consider the sets

A:{Fn(x)—i-m:n,mEZ}, B:{np+m:n’m€Z}_
Define a function H: R — R by
H(y) = sup {np+m: F"(x) + m < y}.

By the preceding theorem, H is nondecreasing.
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Low-Dimensional Dynamics

Claim: H is constant on each interval in the complement of A.
Suppose [a, b] C ST\ A.
Then, for every n,m € Z,

F'(x)+ m<a iff F"(x)4+m<b.

Thus, H(a) = H(b).

Lemma: The set B is dense in R.

We have y € B if and only if y + m € B, for some m € Z.

So it suffices to show that BN [0, 1] is dense in [0, 1].

The set BN [0,1] is infinite.

If not, there would exist pairs (ny, my) # (n2, mo) in Z2, such that

np+ my = n2p+ my.

This is impossible, since p is irrational (if ny = np, then my # my).
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Low-Dimensional Dynamics

o Let then x, be a sequence in BN [0, 1] with infinitely many values.
The interval [0, 1] is compact.
So we can assume that the sequence x, is convergent.
Hence, given € > 0, there exist m, n € IN, such that

0 < |xp — xm| < e.

Write x, = nip + my and x,, = nop + mo.
We obtain

Xp — Xm = (M — m)p+ (my — my) € B.

This shows that the set B O {k(x, — xm) : k € Z} is e-dense in R.
Since ¢ is arbitrary, we conclude that B is dense in R.
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Low-Dimensional Dynamics

o Since p is irrational, it follows from the preceding theorem that
H(F"(x) +m) = np+ m.

This implies that the function H has no jumps.
By the preceding equality, H(R) D H(A) = B.
By the lemma, the set B is dense in R.

Since H is monotonic, this implies that it is also continuous.
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Low-Dimensional Dynamics

o Now we consider the lift S: R — R of R, given by
S(x)=x+p.

By the preceding equality, we have

(Ho F)(F"(x)+m) = H(F"™(x)+m)=(n+1)p+m
(SoH)(F'(x)+m) = S(np+m)=(n+1)p+m.
Thus, in A,
HoF =SoH.

But the maps H, F and S are continuous.

So this identity holds in A.

But H is constant on each interval in the complement of A.
So we have Ho F =SoH in R.
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Low-Dimensional Dynamics

o On the other hand,

Hly+1) = sup{np+m:F"(x)+m<y+1}
sup{np+m:F"(x)+ m—-1<y}
sup{np+m—-1:F"(x)+m—-1<y}+1

= H(y)+1.

The function H is also onto: By continuity, we have

H(R) = H([0,1]) 2 B =R.

Hence, the function h: S* — S defined by h(y) = H(y) mod 1 is
continuous, nondecreasing and onto.

Moreover, since Ho F = S o H, we have ho f = R, 0 h.
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Low-Dimensional Dynamics

o If the homeomorphism has a dense positive semiorbit, which by a
previous theorem is equivalent to the existence of a dense orbit, then
the preceding theorem can be strengthened as follows:

Let f: S! — S be an orientation-preserving homeomorphism with
p(f) € R\Q. If  has a dense positive semiorbit, then it is topologically
conjugate to the rotation R,(f), i.e., there exists a homeomorphism

h: St — S1 such that
hof = R,(f)oh.

o Let x € S be a point whose positive semiorbit is dense in S?.
Consider h: S' — S, as constructed in the preceding theorem.
In this case, A= {F"(x) +m:n,m € Z} is dense in S'.
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Low-Dimensional Dynamics

o Thus, the function
H(y) =sup{np+m: F"(x)+ m < y}
is bijective (we recall that H is constant on each interval contained in
R\A, which now is the empty set).
It follows that the function h is also bijective.
It remains to show that h is open.
That is, that the image h(U) of an open set U is also open.

Since h is continuous, it maps compact sets to compact sets.
Hence, given an open set U, the image

h(S1\U) = S1\h(V)

is compact. Thus, h(U) is an open set.
This shows that h is a homeomorphism.

George Voutsadakis (LSSU)



Low-Dimensional Dynamics

Subsection 2
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Low-Dimensional Dynamics

o A diffeomorphism is a bijective differentiable map with differentiable
inverse.

o We show that any sufficiently regular diffeomorphism f : S — St
with irrational rotation number is topologically conjugate to a
rotation.

o More precisely, there exists a homeomorphism h: S' — S1, such that
hof =Ry oh.

o Recall that a function ¢ : S* — R is of bounded variation if

Var(p) = supz lo(xk) — @(yk)| < +o0,

where the supremum is taken over all disjoint open intervals
(x1,¥1), -, (Xn, ¥n), with n € IN.



Low-Dimensional Dynamics

o Let ¢ : S* — R be a differentiable function with bounded derivative.

Then there exists a K > 0, such that |¢/(x)| < K for x € SL.
If (xi,y;), for i =1,...,n, are disjoint open intervals with y; < xp,
Y2 <X3, ..., Yn—1 < Xp, then

Dl =)l = D l¥(@) i — %)
i=1 i=1
(for some z; in (x;, yi))

< D Klyi—x) < K.
i=1

Thus, Var(¢) < K. So ¢ has bounded variation.
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Low-Dimensional Dynamics

Let f: S' — S be an orientation-preserving C' diffeomorphism whose
derivative has bounded variation. If p(f) € R\Q, then f is topologically
conjugate to the rotation R, ).

o By Poincaré’ theorem, it suffices to show that there exists a point
z € S* whose positive semiorbit is dense.
Equivalently, we must show that w(z) = S*.
Suppose, to the contrary, that w(z) # S*.
Then the set S'\w(z) is a disjoint union of maximal intervals (an
open interval I C S\w(z) is maximal if any nonempty open interval
J such that | C J C SY\w(z) coincides with /).
Moreover, since f is a homeomorphism, the set w(z) is f-invariant.
Thus, the image and the preimage of any of these intervals are also
maximal intervals.
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Low-Dimensional Dynamics

o Now let / € SM\w(z) be a maximal interval.
We show that the sets (1), for n € Z, are pairwise disjoint.
Suppose there exist integers m > n, such that f™(/) N f"(I) # 0.
Then f™="(1) N1 # 0.
Thus, f™="(1) = 1.
But f is continuous.
Therefore, f™="(1) = 1.
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Low-Dimensional Dynamics

Let g : J — J be a continuous function on some interval J CR. If K C J
is a compact interval such that g(K) O K, then g has a fixed point in K.

o Write K = [a, 5]. By hypothesis, g(K) D K.
So there exist a,b € K, with g(a) = a < aand g(b) =5 > b.
Now we have g(a) —a < 0 and g(b) — b > 0.
So the continuous function x — g(x) — x has a zero in K.

o By the lemma that f™~" has a fixed point in /.
This is impossible since the rotation number is irrational.
Thus, the intervals (/) are pairwise disjoint.

Moreover, their lengths A, satisfy > ., A, < 1.
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Low-Dimensional Dynamics

There exist infinitely many n € IN, such that, for each x € S!, the intervals
J = (x,f~"(x)), f(J),...,f"(J) are pairwise disjoint.

o Recall that f is orientation-preserving.
Thus, for each k =0,...,n, fK(J) = (F¥(x), F*~"(x)).

Hence, the intervals f%(J) are pairwise disjoint if and only if
FK(x), F*=1(x) & FY(J), for k,£=0,...,n, with £ < k.

Equivalently,
fk(x) & J, for |k| < n.

Note that this property only depends on the ordering of the orbit of x.
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Low-Dimensional Dynamics

o We noted that
fi(x) & J, for [k| <n,
only depends on the ordering of the orbit of x.

By a previous theorem, this is the same as the ordering of the orbits
of the rotation R, where p = p(f).

Since p is irrational, all negative semiorbits are dense.
Thus, there exist infinitely many n € IN, such that

k —n
Ry(y) & (v, R, "(y)), for k| <nandyeS"
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Low-Dimensional Dynamics

If J C St is an open interval such that the sets J, f(J), ..., f""1(J) are
pairwise disjoint, then, for ¢ = expVar(log ') < +o0,

ny/
_1<M<c for any y,z € J.

C S yE

o Note that, since f is orientation preserving, f’ > 0.

So we may define a function ¢ : S' — R by
o =logf'.

Now the sets J, ..., f"~1(J) are pairwise disjoint.
So given y,z € J, the open intervals determined by the pairs of
points fX(y) and f*(z), for k =0,...,n — 1, are also disjoint.
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o Thus,

Var(e) = Y05 e(FA) — p(F(@))]
| I e(F (1)) = elF4(2)
= |log [Ty F'(F“(v)) — log [Ty F'(F*(2))

"°g(f |-

This implies that

(FYy) o
(f1)(2) —

This finishes the proof provided that Var(y) is finite.

—Var(yp) < log

< Var(yp).
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o Now S! is compact and f is continuous.
Therefore, inf f' > 0.
Hence, for x,y € S1,

le(y) — ¢(2)] = |log f'(y) — log f'(2)| < W

Also, f’ has bounded variation.

Hence, we obtain
Var(f")

inf £/

Var(yp) < < +00.

This completes the proof of the lemma.
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o Now apply Lemma 3 to the intervals J = (x, f~"(x)) in Lemma 2,
with y = x € | and z = f~"(x) (with n independent of x).
We conclude that

LYY < e

But a+ b > Vab, for a,b > 0.
So we obtain, for the integers n given by Lemma 2,

A+ A, = fl(f")'(x)dx-l—f,(f‘")’(x)dx
= JiIl(F)( ( _")'( )]dx
> \/(f” Y (x)dx
> 2o

This implies >, Am = +00, contradicting >, Ay < 1.
Thus, there exists a point z € ST with w(z) =
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Subsection 3
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o Let f: ] — | be a continuous map of an interval | C RR.

Given intervals J, K C I, we say that J covers K if

f(J) 2 K.

In that case, we write J — K.
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Let f : | — | be a continuous map of a compact interval | C R. If there
exist closed intervals lp, I1,...,l,_1 C [, such that

h—h—>h—- - — 11—,
then f has an n-periodic point x € /, such that

fM(x)el™ form=0,1,...,n—1.

Claim: There exists a closed interval Jy C Iy, such that f(J) = h.
By hypothesis, f(lp) 2 h.

So there exist ag, by € lp whose images are the endpoints of /;.
Let Jy is the closed interval with endpoints ag and byg.

Then f(Jo) = Il.
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o Assume that we constructed closed intervals Jo 2 J1 D -+ D Jm_1
contained in Iy, for some m < n, such that

4 Y(J) = g1, fork=0,...,m—1.

Then ™1 (Um_1) = f(Im) 2 Imt1.

By a similar argument there exists a closed interval J,, 2 J;,—1, such

that
FPEY () = s
Thus, we obtain closed intervals Jy 2 J; D --- D J,_1, such that

fk+1(Jk) = Ik+1, k=0,....n—=1, I,=1.
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o In particular, we have
o f"(Jp—1) =lo 2 Jo-1;
o Each point x € J,_ satisfies, for m=0,...,n—1,

F™(x) € F™(Up-1) € F™(me1) = Im-

On the other hand, it follows from f"(J,—1) = lp 2 J,—1 and Lemma
1 in Denjoy's Theorem that " has a fixed point in J,_1.

Thus, f has an n-periodic point in J,_1, which also satisfies

fMx)€lp,, m=0,1,...,n—1.
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o Given a > 4, consider the map f : [0,1] — R defined by
f(x) = ax(1 — x).
We have

F(5,3) = R-3242@1-13,1]
f([l_E’l]) = [0,1- 13[372

Notice, also, that
11 1
1—— 1| =0.
22 nfi-31 -0

By the proposition, f has a periodic point in [, ] with period 2.
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Let f : | — | be a continuous map of a compact interval / C R. If f has a
periodic point with period 3, then it has periodic points with all periods.

o Let x; < x» < x3 be the elements of the orbit of a periodic point with
period 3.
o Suppose f(x2) = x3. Then f?(x2) = xq.
Thus,
[Xl,XQ] d [X2,X3]®

o Suppose f(x2) = xi.
Then
[X27X3] <~ [X17X2]C

In the first case, | — | taking | = [x2, x3].
In the second case, | — | taking | = [x1, x2].
It follows from the proposition that f has a fixed point.
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o Given an integer n > 2, with n # 3, we have

/1—)/2—)/2—)---—)/2—)/2—)/1

n+ 1 elements

taking, respectively, ; = [x1,x2] and hh = [x2,x3] or /1 = [x2, x3] and
/2 = [X1,X2].

By the preceding proposition, f has an n-periodic point x € .

If it did not have period n, then x € h N h = {x}.

So x = xp.

The orbit of x» belongs successively to h b b h b b I ....

Thus, it cannot belong successively to the intervals in the displayed
chain unless n = 3.

Since we took n = 3, the periodic point x has period n.
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o We consider the ordering < on IN defined by

1 <2<22<28<...<2m<...
<+ =<2M2n+1) <o <2M7 <2M5 K 2M3 < ...

<+ =<22n+1)<--<2-7<2-5<2-3<---
<o =2n4+1<---<7<5<3.
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Let f : | — | be a continuous map of a compact interval | C R.
Let x € | be a periodic point with odd period p > 1, such that there exist
no periodic points with odd period less than p.

Then the intervals determined in / by the orbit of

x can be numbered ..., /,_1 so that the graph

I FOT
obtained from the covering relations between them
contains the subgraph on the right i.e., 1 — L — l

lh = -+ = Ip—1 and l,_1 — I for any odd k. h——b——5

Gh ~— lp1 ~—— [p2

o Consider h, = [u, v], where, for 7(x) the orbit of x,

u = max{y €y(x):f(y) >y}
v = min{y € y(x):y > u}.
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o By the definition of u, we have f(v) < v
Since x is not a fixed point, f(v) # v.
Therefore, we get f(v) < v.
Since f(u) > u, by the definition of v, f(u) > v.
Since f(v) < v, f(v) < u.
Therefore, I; — 1.
The inclusion (/1) D I is proper (otherwise x would have period 2).
Now fP(ly) D fP~1(lh) D --- D f(h) 2 I and x is p-periodic.
Thus, we have fP(l1) D v(x).

So fP(l) contains all intervals determined by adjacent points in the
orbit of x.

George Voutsadakis (LSSU)



Low-Dimensional Dynamics

o Let
I =y(x)N(=oo,u] and I =~(x)N]v,+o0).

Define
r=card/~ and s=card/™.
We have r + s = p. Since p is odd, r # s.

So there exist adjacent points of y(x) in /= or in /T, determining an
interval J, such that only one of them is mapped by f to the other
interval.

Otherwise, we would have f(/=) C /T and (/™) C I~ (since
f(u) > v and f(v) < v). This is impossible, since r # s.
We also note that J — /7.
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o Now let | = b — -+ — I — |1 be the shortest cycle of the form
lh — -+ — | that is different from /; O (it follows from the former
discussion that such a cycle always exists).

Clearly, k < p — 1 since the orbit of x determines p — 1 intervals.
Let g be the odd element of {k, k + 1}.
Now we have:

o hh == Ik —h;

oh—--—>lhk—>h—h.
So by a previous proposition, 9 has a fixed point y.
Note that y is not a fixed point of f.
Otherwise, y € h N ---N Iy € I Nk (recall that k > 2) would be in
the orbit of x. This yields a contradiction since x is not a fixed point.
By the minimality of the odd period p, g > p. Thus, k =p — 1.
This shows that /; — h — --- — l[,_1 — | is the shortest cycle of
the form | — --- — [; that is different from 1 O.
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o Now we show that /,_1 — I for k odd.
This includes /,_1 — I,_> since p is odd.
We first verify that the intervals /; are ordered in | in the form
lo—1,1p-3,..., b, l,l3,..., 1,2 (up to orientation).
We know /| — -+ — I,_1 — I is the shortest cycle of the form
i — -+ — K that is different from /; .
Hence, if I, — Iy, then ¢ < k + 1.
Otherwise, there would exist a shorter cycle of this form.
This implies that /; only covers /1 and b.
Hence, h is adjacent to / (since (/1) is connected).
Since ; = [u, v], we have one of the following:

o k= [w,u], with f(u) = v (recall that f(u) > u) and f(v) = w;
o kb =|[v,w], with f(u) = w and f(v) = u.
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o We analyze only the first case.
The second one is entirely analogous.
We have f(u) = v and , does not cover /.
Hence, f(h) C [v,+0).

But /» covers /3. We conclude that I3 = [v, t], with t = f(w) = f2(v)
(/2 covers no other interval).

Continuing this procedure yields the claimed ordering.
This implies that, for u; = f/(u),

Up—1 < Up3 < - < w<u<uy<u<---< U2

Now f(up—1) = u and f(up—3) = up—o.
Thus, we obtain I,_1 = [up—1, up—3] — Ik, for k odd.
This completes the proof of the lemma.
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Lemma

Let f : I — I be a continuous map of a compact interval / C R. If f has a
periodic point with even period, then it has a periodic point with period 2.

o Let x be a periodic point with even period p > 2.

We consider two cases.

George Voutsadakis (LSSU) Dynamical Systems
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o We first assume that there are no adjacent points in the orbit of x
determining an interval J = | that covers /.

Let y and z be, respectively, the minimum and maximum of the orbit
of x,
y =minvy(x) and z= maxy(x).
By construction, f(u) > v.
Thus, f([y, u]) intersects [v, +00).
By hypothesis, the interval [y, u] does not cover I .
Thus, f([y, u]) C [v,+0).
Similarly, f([v,z]) C (—o0, u.
Since f permutes the points in the orbit of x, we obtain

[y, u] = [v,z] = [y, u].

By a previous proposition, f has a periodic point with period 2.
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o Assume that there are adjacent points in the orbit of x determining
an interval I, # | that covers /.

Let h — --- — I, — |1 be the shortest cycle of the form
i — --- — K that is different from /; O.

Then k < p—1.

Take g € {k, k + 1} even.
Clearly g < p.

We have

h— =l —h,
h—-—=lk—h—h

By a previous proposition, f9 has a fixed point y.

George Voutsadakis (LSSU)



Low-Dimensional Dynamics

o We note that y is not a fixed point of f.

If p was the smallest even period, then g = p and thus kK = p — 1.
Proceeding as in the proof of the preceding lemma, one could then

show that:
o The intervals /; must be ordered in / in the form
Ib—2,. ..y b, i, 5, ..., l,_1 (up to orientation);

o l,_1 = I for k even.
In particular, we would obtain the cycle [,_1 — l,_» — l,_1.
By a previous proposition, f would have a periodic point with period
2 (since lp—o N l,—1 = 0).
This contradiction shows that p cannot be the smallest even period.
So one can consider a periodic point with a smaller even period.

By repeating the process, we get down to period 2.
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Let f : | — | be a continuous map of a compact interval / C R.
If f has a periodic point with period p and g < p, then f has a periodic
point with period q.

o We consider four cases.
p=2%and g =2¢ < p, with ¢ < k.
Suppose ¢ > 0. Let x be a periodic point of f with period p.
Then x is a periodic point of £9/2 with period 2k—¢+1,
But k —¢+12>2.
By Lemma 2, f9/2 has a periodic point y with period 2.
Then y is a periodic point of f with period q.
Suppose £ = 0. By Lemma 2, f has a periodic point with period 2.
It determines an interval /; in | whose endpoints are permuted by f.
Since f is continuous, it must have a fixed point in /.
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p=2kr and g = 2¥s < p with r > 1 odd minimal and s even.

Note r is the smallest odd period of the periodic points of 2.

By Lemma 1, there exists a cycle of length s.
When s < r, we take

1= b—s = = 2=l
When s > r, we take
h—b— =1 —h—>h— - —h
By a previous proposition, £2“ has a periodic point with period s.

This is a periodic point of f with period 2%s = gq.
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p=2%r and g = 2 < p with r > 1 odd minimal and ¢ = k.
Take s = 2 in Case 2.

We obtain a periodic point of f with period 2ks = 2k+1,
Now we revert to Case 1.

f has a periodic point with period 2¢ for each ¢ < k.
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p=2%r and g = 2¥s < p with r > 1 odd minimal and s > r odd.
Again, r is the smallest odd period of the periodic points of 2"

By Lemma 1, we obtain the cycle of length s given by
h—bhb—- - —h1g—>h—>hF— - —h

By a previous proposition, 2 has a periodic point x with period s.
Suppose x is a periodic point of f with period 2¥s.

Then the proof is complete.

Suppose x is not a periodic point of f with period 2¥s.

Then x has period 2¢s for some ¢ < k.

Take p = 2's and § = 25 = q, where 5 = 2k~ ¥s.

Now 5 is even.

Thus, Case 2 yields a periodic point of f with period g = q.
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Subsection 4
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o Given a C! function f : R? — RR?, consider, for each xg € R?, the
initial value problem

x' = f(x), x(0)= xo.

o We assume that the unique solution x(t, xp) of the system is defined
for t € R.

o By a previous proposition the family of maps ¢; : R?> — R? defined,
for each t € R, by
¢t(x0) = x(t,x0)
is a flow.

o We call a point x € R? with f(x) = 0 a critical point of f.
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o A line segment L C R? is called a transversal to f : R> — R? if, for
each x € L, the directions of L and f(x) generate R?.

Let ¢, be a flow determined by a differential equation x’ = f(x) for some
C! function f : R?> — R?. Suppose L C R? is a transversal to f.

o If x € R? is not periodic and meets L at points xx at times tx, with
t; < to < ---, then the order of the xx on L is the same as that of the t.

o If x is periodic, then it can meet L in at most one point.

o Assume, first, that x is not periodic.
Consider the simple closed curve consisting of v(x) between xp and x;
and the segment of L joining xp and xi.
The orbit cannot cross through the curve, since then it would either
be periodic or cause a discontinuity in the vector field.
Hence, the next crossing occurs beyond xj.
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o Next suppose that x is periodic, with least period T > 0.

We express the solution as f(t, xp) so that the transversal L is
constructed at xo = (0, xp).

Any other point on the orbit is achieved at a unique t € [0, T).
Thus, if the orbit crosses x; # xp on L, it does so at t; < T.
The orbit cannot return to xp across L.

So it must cross v(x) at some xp = f(t2,x0), t1 < to < T.
However x> also precedes xj.

So we must have xp = (12, xp), where 7 < ty.

But then ~(x) is periodic with period t, — 7.

This is a positive number less than T.

This contradicts the assumption that T is the least period.
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Let o be a flow determined by a differential equation x’ = f(x) for some
C! function f : R? — R?. Suppose L C R? is a transversal to f. Then, for
each x € R?, the set w(x) N L contains at most one point.

o Suppose p, g € w(x) N L, with p # q.
Then (x) meets L in more than one point.
Hence, by the lemma, f is not periodic.

Thus, v(x) meets L at infinite many points {xx} at times
<t <---.

But there are two different limit points on v(x) N L.

Thus, the {xx} cannot be in the order required by the lemma on L.
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Let f: R?> = R? be a C! function. Consider the flow ¢, determined by
the equation x’ = f(x). Suppose that:

o The positive semiorbit v (x) of a point x € R? is bounded;

o w(x) contains no critical points.

Then w(x) is a periodic orbit.

o By hypothesis, the positive semiorbit v (x) is bounded.
By a previous proposition, w(x) is nonempty.
Take a point p € w(x).
Now w(x) is contained in the closure of 4 (x).
By a previous proposition, w(p) is nonempty.
Moreover, by the same proposition, w(p) C w(x).
Now take a point g € w(p).
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o By hypothesis, g is not a critical point.

By the preceding lemma, there exists a line segment L containing g
that is a transversal to f.

But g € w(p).

Thus, by a previous proposition, there exists a sequence t, ' +00 in
R™, such that ¢y, (p) — g when k — co.

One can also assume that ¢ (p) € L, for k € IN.

On the other hand, since p € w(x), by a previous proposition,
ot (p) € w(x), for k € IN.

Now ¢4, (p) € w(x) N L.
By the preceding lemma, for k, ¢ € IN,

Sptk(p) = SDQ(P) =4q.

This implies that v(p) C w(x) is a periodic orbit.
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o Now we show that w(x) = y(p).
Assume that w(x)\v(p) # 0.
By a previous proposition, w(x) is connected.
So, in each open neighborhood of v(p), there exist points of w(x)
that are not in y(p).

Moreover, any sufficiently small open neighborhood of ~v(p) contains
critical points.

Thus, there exists a transversal L’ to f containing one of these points,
which is in w(x), and a point of v(p).

Since y(p) C w(x), w(x) N L' contains at least two points.

This contradicts the preceding lemma.

Thus, w(x) = v(p) and the w-limit set of x is a periodic orbit.
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o Consider the differential equation

X = x(3-2y—x2—y?) -y,
y = yB-2y—x*—y?)+x

Writing in polar coordinates, we get

r' = r(3—2rsinf —r?),
o = 1.

For any sufficiently small r, we have

r'=r(3—2rsinf—r?)>r(3-2r—r%>0.

For any sufficiently large r, we have

r'=r(3—2rsinf—r?)<r(3+2r—r?) <0.
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o Now the origin is the only critical point.
Therefore, for any r» > r; > 0, there are no critical points in the ring

D={xeR?®: n<|x| <nr}

Moreover, provided that ry is sufficiently small and ry is sufficiently
large, it follows from the preceding inequalities that any positive
semiorbit v*(x) of a point x € D is contained in D.

By the theorem, the set w(x) C D is a periodic orbit for each x € D.

In particular, the flow determined by the differential equation has at
least one periodic orbit in the set D.
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o We have an analogous result to the Poincaré-Bendixson Theorem for
bounded negative semiorbits.

Let f : R? — R? be a C! function. Consider the flow ¢, determined by
the equation x’ = f(x). Suppose that:

o The negative semiorbit 7~ (x) of a point x € R? is bounded;

o a(x) contains no critical points.

Then a(x) is a periodic orbit.
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