Introduction to Dynamical Systems

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

_ow-Dimensional Dynamics

- Homeomorphisms of the Circle
- Diffeomorphisms of the Circle
- Maps of the Interval
- The Poincaré-Bendixson Theorem

Subsection 1

Homeomorphisms of the Circle

Equivalence Classes of Reals Modulo 1

- Consider the projection $\pi : \mathbb{R} \to S^1$ defined by $\pi(x) = [x]$.
- Consider the equivalence class [x].
- It is represented by its unique representative in the interval [0,1).
- That is [x] is represented by the number

$$x - \lfloor x \rfloor$$
,

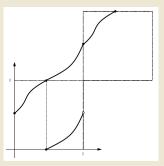
where $\lfloor x \rfloor$ is the integer part of x.

Lifting a Homeomorphism of the Circle

Definition

Let $f : S^1 \to S^1$ be a homeomorphism of the circle. A continuous function $F : \mathbb{R} \to \mathbb{R}$ is said to be a **lift** of f if

$$f \circ \pi = \pi \circ F$$



George Voutsadakis (LSSU)

5 / 91

Example

• Given $\alpha \in \mathbb{R}$, consider the rotation $R_{\alpha}: S^1 \to S^1$ given by

 $R_{\alpha}(x) = x + \alpha \mod 1.$

Clearly, R_{α} is a homeomorphism. Given $k \in \mathbb{Z}$, consider the function $F : \mathbb{R} \to \mathbb{R}$ defined by

$$F(x) = x + \alpha + k.$$

The function F satisfies

$$\pi(F(x)) = \pi(x + \alpha + k)$$

= $x + \alpha + k \mod 1$
= $\pi(x) + \alpha \mod 1$
= $R_{\alpha}(\pi(x)).$

Hence, F is a lift of R_{α} .

Example

• Given $eta \in \mathbb{R}$, consider the continuous function $f:S^1 o S^1$ defined by

$$f(x) = x + \beta \sin(2\pi x) \mod 1.$$

Claim: *f* is a homeomorphism for $|\beta| < \frac{1}{2\pi}$. Consider he function $F : \mathbb{R} \to \mathbb{R}$ defined by

$$F(x) = x + \beta \sin(2\pi x).$$

We have

$$F'(x) = 1 + 2\pi\beta \cos(2\pi x) \ge 1 - 2\pi|\beta| > 0.$$

So F(x) is increasing. In particular, for $x \in [0, 1)$, we have F(x) < F(1) = 1. Thus, the function f is one-to-one and onto.

Example (Cont'd)

 Since f is continuous, it maps compact sets to compact sets. Thus, it also maps open sets to open sets.
 So its inverse is continuous. Hence, it is a homeomorphism. Moreover,

$$\pi(F(x)) = x + \beta \sin(2\pi x) \mod 1$$

= $x - \lfloor x \rfloor + \beta \sin(2\pi x)$
= $x - \lfloor x \rfloor + \beta \sin(2\pi (x - \lfloor x \rfloor))$
= $f(\pi(x)).$

So F is a lift of f.

Properties of Lifts

Proposition

Let $f: S^1 \to S^1$ be a homeomorphism. Then:

- 1. f has lifts;
- 2. If F and G are lifts of f, then there exists a $k \in \mathbb{Z}$ such that G F = k;
- 3. Any lift of f is a homeomorphism of \mathbb{R} .
- We deal with the case of increasing f. Let x ∈ R.
 Apply f on the element of S¹ represented by x [x].
 Let f(x [x]) be the representative in the interval [f(0), f(0) + 1).
 Define a function F : R → R by

$$F(x) = f(x - \lfloor x \rfloor) + \lfloor x \rfloor.$$

Now $x - \lfloor x \rfloor$ and $\lfloor x \rfloor$ are continuous on $\mathbb{R} \setminus \mathbb{Z}$. Thus, so too is F.

Properties of Lifts (Cont'd)

• For each $k \in \mathbb{Z}$, we have:

$$F(k) = f(k - \lfloor k \rfloor) + \lfloor k \rfloor = f(k - k) + k = f(0) + k;$$

$$F(k^{-}) = f(k^{-} - \lfloor k^{-} \rfloor) + \lfloor k^{-} \rfloor = f(k^{-} - k + 1) + k - 1$$

$$= f(1^{-}) + k - 1 = f(0^{+}) + 1 + k - 1 = f(0) + k;$$

$$F(k^{+}) = f(k^{+} - \lfloor k^{+} \rfloor) + \lfloor k^{+} \rfloor = f(k^{+} - k) + k$$

$$= f(0^{+}) + k = f(0) + k.$$

Thus, for $k \in \mathbb{Z}$,

$$F(k)=F(k^-)=F(k^+).$$

This shows that the function F is continuous on \mathbb{R} . We also have

$$\pi(F(x)) = \pi(f(x - \lfloor x \rfloor) + \lfloor x \rfloor) = f(x - \lfloor x \rfloor) = f(\pi(x)).$$

Hence, F is a lift of f.

Properties of Lifts (Cont'd)

• Now let F and G be lifts of f. Then

$$\pi \circ F = \pi \circ G = f \circ \pi.$$

By the first identity, for each $x \in \mathbb{R}$, there exists $p(x) \in \mathbb{Z}$, such that

$$G(x)-F(x)=p(x).$$

But F and G are continuous.

So the function $x \mapsto p(x)$ is also continuous.

Moreover, $x \mapsto p(x)$ takes only integer values.

So it must be constant.

Thus, there exists a $k \in \mathbb{Z}$, such that

$$G(x) - F(x) = p(x) = k$$
, for any $x \in \mathbb{R}$.

Properties of Lifts (Cont'd)

• By the second property, lifts are unique up to an additive constant. So it is sufficient to show that the lift

$$F(x) = \underbrace{f(x - \lfloor x \rfloor)}_{[f(0), f(0)+1)} + \lfloor x \rfloor$$

is a homeomorphism.

Consider the continuous function $H: \mathbb{R} \to \mathbb{R}$ defined by

$$H(x) = \underbrace{f^{-1}(x - \lfloor x \rfloor)}_{[f^{-1}(0)-1, f^{-1}(0))} + \lfloor x \rfloor,$$

where $f^{-1}(x - \lfloor x \rfloor)$ is the representative in the interval [0, 1). We can show by examining cases that

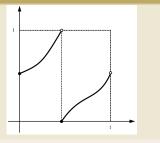
$$F(H(x)) = x$$
 and $H(F(x)) = x$.

Hence, F is a homeomorphism.

Orientation-Preserving Homeomorphisms

Definition

A homeomorphism $f: S^1 \rightarrow S^1$ is said to be **orientation-preserving** if it has a lift which is an increasing function.



• It follows from a previous proposition that *f* is orientation-preserving if and only if all its lifts are increasing functions.

Examples: The homeomorphisms of the circle considered in the preceding two examples are orientation-preserving since the lifts presented for them are increasing functions.

A Non-Orientation-Preserving Homeomorphism

• Given $\alpha \in \mathbb{R}$, consider the homeomorphism $f: S^1 \to S^1$ defined by

$$f(x) = -x + \alpha \mod 1.$$

One can easily verify that the function $F : \mathbb{R} \to \mathbb{R}$ defined by

$$F(x) = -x + \alpha$$

is a lift of f. Note that the lift F is decreasing. So the homeomorphism f is not orientation-preserving.

'Average Speed" of a Lift

Theorem

Let $f : S^1 \to S^1$ be an orientation-preserving homeomorphism. If F is a lift of f, then for each $x \in \mathbb{R}$ the limit

$$\rho(F) = \lim_{n \to \infty} \frac{F^n(x) - x}{n} \in \mathbb{R}_0^+$$

exists and is independent of x. Moreover, if G is another lift of f, then

$$\rho(G) - \rho(F) \in \mathbb{Z}.$$

"Average Speed" of a Lift (Existence)

We first assume that F(x) > x, for every x ∈ ℝ.
 Given x ∈ ℝ, consider the sequence a_n = Fⁿ(x) - x.
 For each m, n ∈ ℝ, we have

$$a_{m+n} = F^{m+n}(x) - x = F^m(F^n(x)) - F^n(x) + a_n.$$

Now, since
$$a_n = F^n(x) - x$$
,
 $\lfloor a_n \rfloor \le F^n(x) - x < \lfloor a_n \rfloor + 1$.

That is,

$$x + \lfloor a_n \rfloor \leq F^n(x) < x + \lfloor a_n \rfloor + 1.$$

So, by the fact that F is a lifting, we obtain

$$F^m(F^n(x)) < F^m(x + \lfloor a_n \rfloor) + 1.$$

"Average Speed" of a Lift (Existence Cont'd)

• On the other hand, we have

$$F^m(x+\lfloor a_n \rfloor)-(x+\lfloor a_n \rfloor)=F^m(x)-x=a_m.$$

Using these inequalities, we get

$$a_{m+n} < F^m(x + \lfloor a_n \rfloor) + 1 - F^n(x) + a_n$$

= $a_m + a_n + x + \lfloor a_n \rfloor - F^n(x) + 1.$

Since $x + \lfloor a_n \rfloor \leq F^n(x)$, $a_{m+n} \leq a_m + a_n + 1$. So the sequence $c_n = a_n + 1$ satisfies the condition $c_{m+n} \leq c_m + c_n$. By a previous lemma, the following limit exists

$$\lim_{n\to\infty}\frac{F^n(x)-x}{n}=\lim_{n\to\infty}\frac{a_n}{n}=\inf\Big\{\frac{a_n}{n}:n\in\mathbb{N}\Big\}.$$

Since $a_n = F^n(x) - x > 0$ (F is increasing), the limit is finite.

"Average Speed" of a Lift (Independence from x)

• Now we show that the limit is independent of x. Given $x, y \in \mathbb{R}$ and $k \in \mathbb{N}$ with $|x - y| \le k$, we have

$$F(x) \le F(y+k) = F(y) + k;$$

$$F(x) \ge F(y-k) = F(y) - k.$$

Hence,

$$|F(x)-F(y)|\leq k.$$

It follows by induction that, for all $n \in \mathbb{N}$,

$$|F^n(x)-F^n(y)|\leq k.$$

"Average Speed" of a Lift (Independence from x Cont'd)

• We showed $|x - y| \le k$ implies $|F^n(x) - F^n(y)| \le k$, $n \in \mathbb{N}$. This implies that

$$\left|\frac{F^{n}(x)-x}{n} - \frac{F^{n}(y)-y}{n}\right| = \left|\frac{F^{n}(x)-F^{n}(y)}{n} + \frac{y-x}{n}\right|$$
$$\leq \frac{2k}{n} \xrightarrow{n \to \infty} 0.$$

Note that, given $x, y \in \mathbb{R}$, one can always choose $k \in \mathbb{N}$, such that

$$|x-y|\leq k.$$

Therefore, for $x, y \in \mathbb{R}$,

$$\lim_{n\to\infty}\frac{F^n(x)-x}{n}=\lim_{n\to\infty}\frac{F^n(y)-y}{n}$$

"Average Speed" of a Lift (Last Property)

• It remains to establish the last property in the theorem.

By a previous proposition, if F and G are lifts of f, then there exists a $k \in \mathbb{Z}$, such that

$$G-F=k.$$

It follows by induction that

$$G^n(x) = F^n(x) + nk.$$

Therefore,

$$\rho(G) = \lim_{n \to \infty} \frac{G^n(x) - x}{n} \\
= \lim_{n \to \infty} \frac{F^n(x) - x}{n} + k \\
= \rho(F) + k.$$

The Rotation Number

Definition

The **rotation number** of an orientation-preserving homeomorphism $f: S^1 \to S^1$ is defined by

$$\rho(f) = \pi(\rho(F)),$$

where F is any lift of f and where $\pi(x) = [x]$.

 It follows from the last property in the theorem that the rotation number is well defined, i.e., ρ(f) does not depend on the lift F.

Example

• Let $\alpha \in \mathbb{R}$ and consider the rotation

 $R_{\alpha} = x + \alpha \mod 1.$

Recall the lift

$$F(x) = x + \alpha + k.$$

We obtain

$$\frac{F^n(x)-x}{n} = \frac{x+n(\alpha+k)-x}{n} = \alpha+k.$$

Thus, $\rho(F) = \alpha + k$. Hence,

$$\rho(R_{\alpha}) = \pi(\rho(F)) = \alpha \mod 1.$$

Example

• Now we consider the homeomorphism $f: S^1 \to S^1$ defined by

$$f(x) = x + \beta \sin(2\pi x) \mod 1,$$

with $|\beta| < \frac{1}{2\pi}$. Recall the lift

$$F(x) = x + \beta \sin(2\pi x).$$

By the theorem, $\rho(F) = \lim_{n \to \infty} \frac{F^n(x) - x}{n}$ does not depend on x. So we have

$$\rho(F) = \lim_{n \to \infty} \frac{F''(0) - 0}{n} = 0.$$

Homeomorphisms with Rational Rotation Number

- We consider the homeomorphisms with rational rotation number.
- Recall that x ∈ S¹ is said to be a periodic point of a map f : S¹ → S¹ if

$$f^q(x) = x$$
, for some $q \in \mathbb{N}$.

Theorem

Let $f : S^1 \to S^1$ be an orientation-preserving homeomorphism. Then $\rho(f) \in \mathbb{Q}$ if and only if f has at least one periodic point.

We first assume that ρ(f) = 0 and we show that f has a fixed point. Assume, to the contrary, that f has no fixed points. Suppose F is a lift of f. Suppose that, for some x ∈ ℝ, F(x) - x ∈ ℤ. Then π(x) = π(F(x)) = f(π(x)). Thus, π(x) would be a fixed point of f.

Rational Rotation Number $(\rho(f) = 0)$

It follows that

$$F(x) - x \in \mathbb{R} \setminus \mathbb{Z}$$
, for $x \in \mathbb{R}$.

Since *F* is continuous, there exists a $k \in \mathbb{Z}$, such that

$$k < F(x) - x < k + 1$$
, for $x \in \mathbb{R}$.

On the other hand, for $x \in \mathbb{R}$,

$$F(x+1) - (x+1) = F(x) - x.$$

Thus, the continuous function $x \mapsto F(x) - x$ is completely determined by its values on the compact interval [0, 1]. It follows from Weierstrass' Theorem that there exists an $\varepsilon > 0$, such that

$$k + \varepsilon \leq F(x) - x \leq k + 1 - \varepsilon$$
, for $x \in \mathbb{R}$.

Rational Rotation Number (ho(f)= 0 Cont'd)

• We saw that there exists an $\varepsilon > 0$, such that

$$k + arepsilon \leq F(x) - x \leq k + 1 - arepsilon, \quad ext{for } x \in \mathbb{R}.$$

But

$$F^{n}(x) - x = \sum_{i=0}^{n-1} [F(F^{i}(x)) - F^{i}(x)].$$

So we get

$$k+\varepsilon \leq \frac{F^n(x)-x}{n} \leq k+1-\varepsilon.$$

Thus,

$$\rho(f) = \lim_{n \to \infty} \frac{F^n(x) - x}{n} \mod 1 \in [\varepsilon, 1 - \varepsilon].$$

This contradicts the hypothesis that $\rho(f) = 0$. Thus, f must have a fixed point.

George Voutsadakis (LSSU)

Homeomorphisms with Rational Rotation Number (Cont'd)

• Now we assume that $\rho(f) = \frac{p}{q} \in \mathbb{Q}$. Since F^q is a lift of f^q , we obtain

$$p(f^q) = \lim_{n \to \infty} \frac{(F^q)^n(x) - x}{n} \mod 1$$
$$= q \lim_{n \to \infty} \frac{F^{qn}(x) - x}{qn} \mod 1$$
$$= q\rho(f) \mod 1$$
$$= p \mod 1$$
$$= 0.$$

It follows from the above argument for a zero rotation number that the homeomorphism f^q has a fixed point.

This fixed point is a periodic point of f.

Rational Rotation Number (Converse)

 For the converse, we assume that f has a periodic point. Then there exist y ∈ ℝ and q ∈ ℕ, such that f^q(π(y)) = π(y). By induction, f^q ∘ π = π ∘ F^q.

Thus,

$$\pi(F^q(y)) = f^q(\pi(y)) = \pi(y).$$

Hence, $F^q(y) = y + p$, for some $p \in \mathbb{Z}$. On the other hand, F(x+1) - (x+1) = F(x) - x. So F(x+p) = F(x) + p, for $x \in \mathbb{R}$. Thus, for $x \in \mathbb{R}$ and $q \in \mathbb{N}$,

$$F^q(x+p)=F^q(x)+p.$$

Rational Rotation Number (Converse)

• We got $F^q(x + p) = F^q(x) + p$, for $x \in \mathbb{R}$ and $q \in \mathbb{N}$. In particular, taking x = y, we obtain

$$F^{2q}(y) = F^q(F^q(y))$$

= $F^q(y+p)$
= $F^q(y)+p$
= $y+2p$.

It follows by induction that

$$F^{nq}(y) = y + np$$
, for $n \in \mathbb{N}$.

Thus,

$$\rho(F) = \lim_{n \to \infty} \frac{F^{nq}(y) - y}{nq} = \lim_{n \to \infty} \frac{np}{nq} = \frac{p}{q}.$$

q-Periodic Points

- Consider a homeomorphism $f: S^1 \to S^1$.
- Recall that, given q ∈ N, a point x ∈ S¹ is said to be a q-periodic point of f if

$$f^q(x) = x$$

 It follows from the proof of the preceding theorem that f^q has a fixed point, that is, f has a q-periodic point, if and only if

$$\rho(f) = \frac{p}{q}, \quad \text{for some } p \in \mathbb{N}.$$

- Thus, f has a periodic point with period q if and only if $\rho(f) = \frac{p}{q}$, with p and q coprime.
- By the previous observation, f has no ℓ -periodic points for any $\ell < q$.

Period of Periodic Points

Theorem

Let $f: S^1 \to S^1$ be an orientation-preserving homeomorphism. If $\rho(f) = \frac{p}{q}$ with p and q coprime, then all periodic points of f have period q.

Let x ∈ S¹ be a periodic point of f.
By the former discussion, x has period ℓ = dq, for some d ∈ IN.
On the other hand, by the proof of the preceding theorem, if F is a lift of f, then

$$F^{\ell}(x) = x + dp + m\ell$$
, for some $m \in \mathbb{Z}$.

In fact, one can always assume that m = 0. Let G be another lift of f. Then F = G + m, for some $m \in \mathbb{Z}$. Thus, $F^{\ell} = G^{\ell} + m\ell$. So it is sufficient to replace F by G.

Period of Periodic Points (Cont'd)

Claim: $F^q(x) = x + p$. Suppose, first, that $F^q(x) > x + p$. We know that $F^q(x + p) = F^q(x) + p$. Since F is increasing,

$$F^{2q}(x) > F^{q}(x+p) = F^{q}(x) + p > x + 2p.$$

By induction,

$$F^{\ell}(x) = F^{dq}(x) > x + dp.$$

This contradicts $F^{\ell}(x) = x + dp$. Similarly, $F^{q}(x) < x + p$ yields a contradiction. Thus, $F^{q}(x) = x + p$ and the point x has period q.

Irrational Rotation Number and Ordering

Theorem

Let F be a lift of an orientation-preserving homeomorphism of the circle $f: S^1 \to S^1$ with $\rho(f) \in \mathbb{R} \setminus \mathbb{Q}$. For each $x \in \mathbb{R}$ and $n_1, n_2, m_1, m_2 \in \mathbb{Z}$, we have

$$F^{n_1}(x) + m_1 < F^{n_2}(x) + m_2$$

if and only if

$$n_1\rho(F) + m_1 < n_2\rho(F) + m_2.$$

• If $n_1 = n_2$, there is nothing to prove. So suppose $n_1 \neq n_2$. Assume, first, that the inequality holds. For $n_1 > n_2$, we have $F^{n_1-n_2}(x) < x + m_2 - m_1$, for $x \in \mathbb{R}$. Thus,

$$F^{2(n_1-n_2)}(x) < F^{n_1-n_2}(x) + m_2 - m_1 < x + 2(m_2 - m_1).$$

Irrational Rotation Number and Ordering (Cont'd)

• We obtain
$$F^{2(n_1-n_2)}(x) < x + 2(m_2 - m_1)$$
.
By induction, $F^{n(n_1-n_2)}(x) < x + n(m_1 - m_2)$

We obtain

$$\rho(F) = \lim_{n \to \infty} \frac{F^{n(n_1 - n_2)}(x) - x}{n(n_1 - n_2)} < \frac{m_2 - m_1}{n_1 - n_2}$$

Strict inequality holds, since $\rho(f)$ is irrational. This shows that the second inequality holds.

Irrational Rotation Number and Ordering (Cont'd)

• Analogously, for $n_1 < n_2$, we have

$$F^{n_2-n_1}(x) > x + m_1 - m_2$$
, for $x \in \mathbb{R}$.

Thus,

$$F^{n(n_2-n_1)}(x) > x + n(m_1 - m_2).$$

Hence,

$$\rho(F) = \lim_{n \to \infty} \frac{F^{n(n_2 - n_1)}(x) - x}{n(n_2 - n_1)} > \frac{m_1 - m_2}{n_2 - n_1}$$

So the second inequality also holds in this case.

Irrational Rotation Number and Ordering (Converse)

In the other direction, we must show that

$$F^{n_1}(x) + m_1 \ge F^{n_2}(x) + m_2$$

implies $n_1
ho(F) + m_1 \ge n_2
ho(F) + m_2.$

By hypothesis, $\rho(f)$ is irrational.

So none of these inequalities can be an equality.

Thus, the implication is equivalent to

$$F^{n_1}(x) + m_1 > F^{n_2}(x) + m_2$$

implies $n_1
ho(F) + m_1 > n_2
ho(F) + m_2.$

For this it suffices to reverse all inequalities in the previous argument.

Irrational Rotation Number and Rotation of Circle

Theorem

Let $f: S^1 \to S^1$ be an orientation-preserving homeomorphism with rotation number $\rho(f) \in \mathbb{R} \setminus \mathbb{Q}$. Then there exists a nondecreasing and onto continuous function $h: S^1 \to S^1$, such that

$$h \circ f = R_{\rho(f)} \circ h.$$

Let F be a lift of the homeomorphism f and ρ = ρ(F).
 For a point x ∈ ℝ, consider the sets

$$\mathsf{A} = \{ \mathsf{F}^n(x) + m : n, m \in \mathbb{Z} \}, \quad \mathsf{B} = \{ n\rho + m : n, m \in \mathbb{Z} \}.$$

Define a function $H: \mathbb{R} \to \mathbb{R}$ by

$$H(y) = \sup \{n\rho + m : F^n(x) + m \le y\}.$$

By the preceding theorem, H is nondecreasing.

Irrational Rotation and Rotation of Circle (Lemma)

Claim: *H* is constant on each interval in the complement of \overline{A} . Suppose $[a, b] \subseteq S^1 \setminus \overline{A}$. Then, for every $n, m \in \mathbb{Z}$,

$$F^n(x) + m \le a$$
 iff $F^n(x) + m \le b$.

Thus, H(a) = H(b). Lemma: The set B is dense in \mathbb{R} . We have $y \in B$ if and only if $y + m \in B$, for some $m \in \mathbb{Z}$. So it suffices to show that $B \cap [0, 1]$ is dense in [0, 1]. The set $B \cap [0, 1]$ is infinite.

If not, there would exist pairs $(n_1,m_1)
eq (n_2,m_2)$ in \mathbb{Z}^2 , such that

$$n_1\rho+m_1=n_2\rho+m_2.$$

This is impossible, since ρ is irrational (if $n_1 = n_2$, then $m_1 \neq m_2$).

Irrational Rotation and Rotation of Circle (Lemma Cont'd)

 Let then x_n be a sequence in B ∩ [0, 1] with infinitely many values. The interval [0, 1] is compact.

So we can assume that the sequence x_n is convergent. Hence, given $\varepsilon > 0$, there exist $m, n \in \mathbb{N}$, such that

$$0<|x_n-x_m|<\varepsilon.$$

Write
$$x_n = n_1 \rho + m_1$$
 and $x_m = n_2 \rho + m_2$.
We obtain

$$x_n - x_m = (n_1 - n_2)\rho + (m_1 - m_2) \in B.$$

This shows that the set $B \supseteq \{k(x_n - x_m) : k \in \mathbb{Z}\}$ is ε -dense in \mathbb{R} . Since ε is arbitrary, we conclude that B is dense in \mathbb{R} .

Irrational Rotation and Rotation of Circle (Cont'd)

• Since ρ is irrational, it follows from the preceding theorem that

$$H(F^n(x)+m)=n\rho+m.$$

This implies that the function H has no jumps.

- By the preceding equality, $H(\mathbb{R}) \supseteq H(A) = B$.
- By the lemma, the set B is dense in \mathbb{R} .
- Since H is monotonic, this implies that it is also continuous.

Irrational Rotation and Rotation of Circle (Cont'd)

ullet Now we consider the lift $S:\mathbb{R} o\mathbb{R}$ of $R_
ho$ given by

$$S(x) = x + \rho.$$

By the preceding equality, we have

$$(H \circ F)(F^n(x) + m) = H(F^{n+1}(x) + m) = (n+1)\rho + m; (S \circ H)(F^n(x) + m) = S(n\rho + m) = (n+1)\rho + m.$$

Thus, in A,

$$H \circ F = S \circ H.$$

But the maps H, F and S are continuous.

So this identity holds in \overline{A} .

But *H* is constant on each interval in the complement of \overline{A} . So we have $H \circ F = S \circ H$ in \mathbb{R} .

Irrational Rotation and Rotation of Circle (Conclusion)

On the other hand,

$$\begin{aligned} H(y+1) &= & \sup \{ n\rho + m : F^n(x) + m \leq y + 1 \} \\ &= & \sup \{ n\rho + m : F^n(x) + m - 1 \leq y \} \\ &= & \sup \{ n\rho + m - 1 : F^n(x) + m - 1 \leq y \} + 1 \\ &= & H(y) + 1. \end{aligned}$$

The function H is also onto: By continuity, we have

$$H(\mathbb{R}) = H([0,1]) \supseteq \overline{B} = \mathbb{R}.$$

Hence, the function $h: S^1 \to S^1$ defined by $h(y) = H(y) \mod 1$ is continuous, nondecreasing and onto.

Moreover, since $H \circ F = S \circ H$, we have $h \circ f = R_{\rho} \circ h$.

Poincaré's Theorem

• If the homeomorphism has a dense positive semiorbit, which by a previous theorem is equivalent to the existence of a dense orbit, then the preceding theorem can be strengthened as follows:

Theorem (Poincaré)

Let $f: S^1 \to S^1$ be an orientation-preserving homeomorphism with $\rho(f) \in \mathbb{R} \setminus \mathbb{Q}$. If f has a dense positive semiorbit, then it is topologically conjugate to the rotation $R_{\rho}(f)$, i.e., there exists a homeomorphism $h: S^1 \to S^1$ such that

$$h \circ f = R_{\rho}(f) \circ h.$$

Let x ∈ S¹ be a point whose positive semiorbit is dense in S¹.
Consider h: S¹ → S¹, as constructed in the preceding theorem.
In this case, A = {Fⁿ(x) + m : n, m ∈ Z} is dense in S¹.

Poincaré's Theorem (Cont'd)

Thus, the function

$$H(y) = \sup \{n\rho + m : F^n(x) + m \le y\}$$

is bijective (we recall that H is constant on each interval contained in $\mathbb{R}\setminus\overline{A}$, which now is the empty set).

It follows that the function h is also bijective.

It remains to show that h is open.

That is, that the image h(U) of an open set U is also open.

Since h is continuous, it maps compact sets to compact sets.

Hence, given an open set U, the image

$$h(S^1 \setminus U) = S^1 \setminus h(U)$$

is compact. Thus, h(U) is an open set. This shows that h is a homeomorphism.

George Voutsadakis (LSSU)

Subsection 2

Diffeomorphisms of the Circle

Diffeomorphisms; Functions of Bounded Variation

- A **diffeomorphism** is a bijective differentiable map with differentiable inverse.
- We show that any sufficiently regular diffeomorphism $f: S^1 \rightarrow S^1$ with irrational rotation number is topologically conjugate to a rotation.
- More precisely, there exists a homeomorphism $h: S^1 \to S^1$, such that

$$h \circ f = R_{\rho(f)} \circ h.$$

• Recall that a function $\varphi:S^1 \to \mathbb{R}$ is of **bounded variation** if

$$\operatorname{Var}(\varphi) = \sup \sum_{k=1}^{n} |\varphi(x_k) - \varphi(y_k)| < +\infty,$$

where the supremum is taken over all disjoint open intervals $(x_1, y_1), \ldots, (x_n, y_n)$, with $n \in \mathbb{N}$.

Example

Let φ: S¹ → ℝ be a differentiable function with bounded derivative. Then there exists a K > 0, such that |φ'(x)| ≤ K for x ∈ S¹. If (x_i, y_i), for i = 1,..., n, are disjoint open intervals with y₁ ≤ x₂, y₂ ≤ x₃, ..., y_{n-1} ≤ x_n, then

$$\sum_{i=1}^{n} |\varphi(y_i) - \varphi(x_i)| = \sum_{i=1}^{n} |\varphi'(z_i)| (y_i - x_i)$$

(for some z_i in (x_i, y_i))
$$\leq \sum_{i=1}^{n} K(y_i - x_i) \leq K.$$

Thus, $Var(\varphi) \leq K$. So φ has bounded variation.

Diffeomorphisms and Rotations

Theorem (Denjoy)

Let $f: S^1 \to S^1$ be an orientation-preserving C^1 diffeomorphism whose derivative has bounded variation. If $\rho(f) \in \mathbb{R} \setminus \mathbb{Q}$, then f is topologically conjugate to the rotation $R_{\rho(f)}$.

By Poincaré' theorem, it suffices to show that there exists a point z ∈ S¹ whose positive semiorbit is dense. Equivalently, we must show that ω(z) = S¹. Suppose, to the contrary, that ω(z) ≠ S¹. Then the set S¹\ω(z) is a disjoint union of maximal intervals (an open interval I ⊆ S¹\ω(z) is maximal if any nonempty open interval J such that I ⊆ J ⊆ S¹\ω(z) coincides with I). Moreover, since f is a homeomorphism, the set ω(z) is f-invariant.

Thus, the image and the preimage of any of these intervals are also maximal intervals.

George Voutsadakis (LSSU)

Diffeomorphisms and Rotations (Cont'd)

Now let I ⊆ S¹\ω(z) be a maximal interval. We show that the sets fⁿ(I), for n ∈ Z, are pairwise disjoint. Suppose there exist integers m > n, such that f^m(I) ∩ fⁿ(I) ≠ Ø. Then f^{m-n}(I) ∩ I ≠ Ø. Thus, f^{m-n}(I) = I. But f is continuous. Therefore, f^{m-n}(I) = I.

Diffeomorphisms and Rotations (Lemma 1)

Lemma

Let $g: J \to J$ be a continuous function on some interval $J \subseteq \mathbb{R}$. If $K \subseteq J$ is a compact interval such that $g(K) \supseteq K$, then g has a fixed point in K.

- Write K = [α, β]. By hypothesis, g(K) ⊇ K.
 So there exist a, b ∈ K, with g(a) = α ≤ a and g(b) = β ≥ b.
 Now we have g(a) a ≤ 0 and g(b) b ≥ 0.
 So the continuous function x ↦ g(x) x has a zero in K.
- By the lemma that f^{m-n} has a fixed point in I. This is impossible since the rotation number is irrational. Thus, the intervals fⁿ(I) are pairwise disjoint. Moreover, their lengths λ_n satisfy ∑_{n∈ℤ} λ_n ≤ 1.

Diffeomorphisms and Rotations (Lemma 2)

Lemma

There exist infinitely many $n \in \mathbb{N}$, such that, for each $x \in S^1$, the intervals $J = (x, f^{-n}(x)), f(J), \ldots, f^n(J)$ are pairwise disjoint.

Recall that f is orientation-preserving.
 Thus, for each k = 0, ..., n, f^k(J) = (f^k(x), f^{k-n}(x)).
 Hence, the intervals f^k(J) are pairwise disjoint if and only if

$$f^k(x), f^{k-n}(x)
ot\in f^\ell(J), ext{ for } k, \ell = 0, \dots, n, ext{ with } \ell < k.$$

Equivalently,

$$f^k(x) \notin J$$
, for $|k| \leq n$.

Note that this property only depends on the ordering of the orbit of x.

Diffeomorphisms and Rotations (Lemma 2 Cont'd)

We noted that

$$f^k(x) \not\in J$$
, for $|k| \leq n$,

only depends on the ordering of the orbit of x.

By a previous theorem, this is the same as the ordering of the orbits of the rotation R_{ρ} , where $\rho = \rho(f)$.

Since ρ is irrational, all negative semiorbits are dense.

Thus, there exist infinitely many $n \in \mathbb{N}$, such that

$$R^k_
ho(y)
ot\in (y,R^{-n}_
ho(y)), \quad ext{for } |k|\leq n ext{ and } y\in S^1.$$

Diffeomorphisms and Rotations (Lemma 3)

Lemma

If $J \subseteq S^1$ is an open interval such that the sets $J, f(J), \ldots, f^{n-1}(J)$ are pairwise disjoint, then, for $c = \exp \operatorname{Var}(\log f') < +\infty$,

$$c^{-1} \leq rac{(f^n)'(y)}{(f^n)'(z)} \leq c, \quad ext{for any } y, z \in \overline{J}.$$

• Note that, since f is orientation preserving, f' > 0. So we may define a function $\varphi : S^1 \to \mathbb{R}$ by

$$\varphi = \log f'.$$

Now the sets $J, \ldots, f^{n-1}(J)$ are pairwise disjoint. So given $y, z \in \overline{J}$, the open intervals determined by the pairs of points $f^k(y)$ and $f^k(z)$, for $k = 0, \ldots, n-1$, are also disjoint.

Diffeomorphisms and Rotations (Lemma 3 Cont'd)

Thus,

$$\begin{aligned} \forall \mathsf{ar}(\varphi) &\geq \sum_{k=0}^{n-1} |\varphi(f^{k}(y)) - \varphi(f^{k}(z))| \\ &\geq |\sum_{k=0}^{n-1} \varphi(f^{k}(y)) - \varphi(f^{k}(z))| \\ &= \left| \log \prod_{k=0}^{n-1} f'(f^{k}(y)) - \log \prod_{k=0}^{n-1} f'(f^{k}(z)) \right| \\ &= \left| \log \frac{(f^{n})'(y)}{(f^{n})'(z)} \right|. \end{aligned}$$

This implies that

$$-\operatorname{Var}(\varphi) \leq \log \frac{(f^n)'(y)}{(f^n)'(z)} \leq \operatorname{Var}(\varphi).$$

This finishes the proof provided that $Var(\varphi)$ is finite.

Diffeomorphisms and Rotations (Lemma 3 Cont'd)

• Now S^1 is compact and f' is continuous. Therefore, inf f' > 0. Hence, for $x, y \in S^1$,

$$|\varphi(y)-\varphi(z)|=|\log f'(y)-\log f'(z)|\leq \frac{|f'(y)-f'(z)|}{\inf f'}.$$

Also, f' has bounded variation. Hence, we obtain

$$\operatorname{Var}(\varphi) \leq rac{\operatorname{Var}(f')}{\inf f'} < +\infty.$$

This completes the proof of the lemma.

Diffeomorphisms and Rotations (Cont'd)

Now apply Lemma 3 to the intervals J = (x, f⁻ⁿ(x)) in Lemma 2, with y = x ∈ I and z = f⁻ⁿ(x) (with n independent of x). We conclude that

$$\frac{1}{c}\leq (f^n)'(x)(f^{-n})'(x)\leq c.$$

But $a + b \ge \sqrt{ab}$, for $a, b \ge 0$.

So we obtain, for the integers n given by Lemma 2,

$$\begin{aligned} \lambda_n + \lambda_{-n} &= \int_I (f^n)'(x) dx + \int_I (f^{-n})'(x) dx \\ &= \int_I [(f^n)'(x) + (f^{-n})'(x)] dx \\ &\geq \int_I \sqrt{(f^n)'(x)(f^{-n})'(x)} dx \\ &\geq \frac{1}{\sqrt{c}} \lambda_0. \end{aligned}$$

This implies $\sum_{m \in \mathbb{Z}} \lambda_m = +\infty$, contradicting $\sum_{n \in \mathbb{Z}} \lambda_n \leq 1$. Thus, there exists a point $z \in S^1$ with $\omega(z) = S^1$.

George Voutsadakis (LSSU)

Subsection 3

Maps of the Interval

Covering

• Let $f : I \to I$ be a continuous map of an interval $I \subseteq \mathbb{R}$.

Definition

Given intervals $J, K \subseteq I$, we say that J covers K if

 $f(J) \supseteq K$.

In that case, we write $J \rightarrow K$.

Covering and Existence of Periodic Points

Proposition

Let $f : I \to I$ be a continuous map of a compact interval $I \subseteq R$. If there exist closed intervals $I_0, I_1, \ldots, I_{n-1} \subseteq I$, such that

$$I_0 \rightarrow I_1 \rightarrow I_2 \rightarrow \cdots \rightarrow I_{n-1} \rightarrow I_0,$$

then f has an n-periodic point $x \in I$, such that

$$f^m(x) \in I^m$$
, for $m = 0, 1, ..., n-1$.

Claim: There exists a closed interval $J_0 \subseteq I_0$, such that $f(J_0) = I_1$. By hypothesis, $f(I_0) \supseteq I_1$. So there exist $a_0, b_0 \in I_0$ whose images are the endpoints of I_1 . Let J_0 is the closed interval with endpoints a_0 and b_0 . Then $f(J_0) = I_1$.

Proof of the Proposition (Cont'd)

• Assume that we constructed closed intervals $J_0 \supseteq J_1 \supseteq \cdots \supseteq J_{m-1}$ contained in I_0 , for some m < n, such that

$$f^{k+1}(J_k) = I_{k+1}, \quad ext{for } k = 0, \dots, m-1.$$

Then $f^{m+1}(J_{m-1}) = f(I_m) \supseteq I_{m+1}$.

By a similar argument there exists a closed interval $J_m \supseteq J_{m-1}$, such that

$$f^{m+1}(J_m)=I_{m+1}.$$

Thus, we obtain closed intervals $J_0 \supseteq J_1 \supseteq \cdots \supseteq J_{n-1}$, such that

$$f^{k+1}(J_k) = I_{k+1}, \quad k = 0, \dots, n-1, \quad I_n = I_0.$$

Proof of the Proposition (Cont'd)

In particular, we have

- $f^n(J_{n-1}) = I_0 \supseteq J_{n-1};$
- Each point $x \in J_{n-1}$ satisfies, for $m = 0, \ldots, n-1$,

$$f^m(x) \in f^m(J_{n-1}) \subseteq f^m(J_{m-1}) = I_m.$$

On the other hand, it follows from $f^n(J_{n-1}) = I_0 \supseteq J_{n-1}$ and Lemma 1 in Denjoy's Theorem that f^n has a fixed point in J_{n-1} . Thus, f has an *n*-periodic point in J_{n-1} , which also satisfies

$$f^m(x) \in I_m, \quad m = 0, 1, \ldots, n-1.$$

Example

• Given a>4, consider the map $f:[0,1]
ightarrow \mathbb{R}$ defined by

$$f(x) = ax(1-x).$$

We have

$$f\left(\left[\frac{1}{a},\frac{1}{2}\right]\right) = \left[1-\frac{1}{a},\frac{a}{4}\right] \supseteq \left[1-\frac{1}{a},1\right];$$

$$f\left(\left[1-\frac{1}{a},1\right]\right) = \left[0,1-\frac{1}{a}\right] \supseteq \left[\frac{1}{a},\frac{1}{2}\right].$$

Notice, also, that

$$\left[rac{1}{a},rac{1}{2}
ight]\cap\left[1-rac{1}{a},1
ight]=\emptyset.$$

By the proposition, f has a periodic point in $\left[\frac{1}{a}, \frac{1}{2}\right]$ with period 2.

Special Case of Sharkovsky's Theorem

Theorem

Let $f : I \to I$ be a continuous map of a compact interval $I \subseteq \mathbb{R}$. If f has a periodic point with period 3, then it has periodic points with all periods.

- Let $x_1 < x_2 < x_3$ be the elements of the orbit of a periodic point with period 3.
 - Suppose $f(x_2) = x_3$. Then $f^2(x_2) = x_1$. Thus,

$$[x_1, x_2] \leftrightarrow [x_2, x_3] \circlearrowright$$

• Suppose
$$f(x_2) = x_1$$
.
Then

$$[x_2, x_3] \leftrightarrow [x_1, x_2] \circlearrowright$$

In the first case, $I \rightarrow I$ taking $I = [x_2, x_3]$. In the second case, $I \rightarrow I$ taking $I = [x_1, x_2]$. It follows from the proposition that f has a fixed point.

Special Case of Sharkovsky's Theorem (Cont'd)

• Given an integer $n \ge 2$, with $n \ne 3$, we have

$$\underbrace{I_1 \to I_2 \to I_2 \to \cdots \to I_2 \to I_2 \to I_1}_{\checkmark}$$

n + 1 elements

taking, respectively, $l_1 = [x_1, x_2]$ and $l_2 = [x_2, x_3]$ or $l_1 = [x_2, x_3]$ and $l_2 = [x_1, x_2]$.

By the preceding proposition, f has an *n*-periodic point $x \in I_1$.

If it did not have period *n*, then $x \in I_1 \cap I_2 = \{x_2\}$.

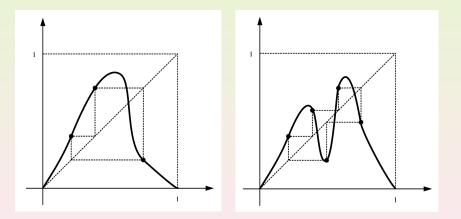
So $x = x_2$.

The orbit of x_2 belongs successively to $l_1 \ l_2 \ l_2 \ l_1 \ l_2 \ l_2 \ l_1 \dots$

Thus, it cannot belong successively to the intervals in the displayed chain unless n = 3.

Since we took $n \neq 3$, the periodic point x has period n.

Examples on [0, 1] with Periods 3 and 5



Ordering Used in Sharkovsky's Theorem

• We consider the ordering \prec on ${\rm I\!N}$ defined by

$$1 \quad \langle 2 \langle 2^2 \rangle \langle 2^3 \rangle \langle \cdots \rangle \langle 2^m \rangle \langle \cdots \rangle \rangle$$

$$\cdots \qquad \langle \cdots \rangle \langle 2^m (2n+1) \rangle \langle \cdots \rangle \langle 2^m 7 \rangle \langle 2^m 5 \rangle \langle 2^m 3 \rangle \langle \cdots \rangle \rangle$$

$$\cdots \qquad \langle \cdots \rangle \langle 2(2n+1) \rangle \langle \cdots \rangle \langle 2 \cdot 7 \rangle \langle 2 \cdot 5 \rangle \langle 2 \cdot 3 \rangle \langle \cdots \rangle \rangle$$

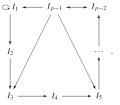
$$\neg \cdots \langle 2n+1 \rangle \langle \cdots \rangle \langle 7 \rangle \langle 5 \rangle \langle 3.$$

Lemma 1

Lemma

Let $f : I \to I$ be a continuous map of a compact interval $I \subseteq \mathbb{R}$. Let $x \in I$ be a periodic point with odd period p > 1, such that there exist no periodic points with odd period less than p.

Then the intervals determined in I by the orbit of x can be numbered I_1, \ldots, I_{p-1} so that the graph obtained from the covering relations between them contains the subgraph on the right i.e., $I_1 \rightarrow I_1 \rightarrow I_2 \rightarrow \cdots \rightarrow I_{p-1}$ and $I_{p-1} \rightarrow I_k$ for any odd k.



• Consider $I_1 = [u, v]$, where, for $\gamma(x)$ the orbit of x,

$$u = \max \{ y \in \gamma(x) : f(y) > y \};$$

$$v = \min \{ y \in \gamma(x) : y > u \}.$$

• By the definition of u, we have $f(v) \leq v$. Since x is not a fixed point, $f(v) \neq v$. Therefore, we get f(v) < v. Since f(u) > u, by the definition of v, $f(u) \ge v$. Since f(v) < v, f(v) < u. Therefore, $I_1 \rightarrow I_1$. The inclusion $f(I_1) \supseteq I_1$ is proper (otherwise x would have period 2). Now $f^p(I_1) \supset f^{p-1}(I_1) \supset \cdots \supset f(I_1) \supset I_1$ and x is p-periodic. Thus, we have $f^p(I_1) \supset \gamma(x)$. So $f^{p}(l_{1})$ contains all intervals determined by adjacent points in the orbit of x.

Let

$$I^-=\gamma(x)\cap(-\infty,u]$$
 and $I^+=\gamma(x)\cap[v,+\infty).$

Define

$$r = \operatorname{card} I^-$$
 and $s = \operatorname{card} I^+$.

We have r + s = p. Since p is odd, $r \neq s$.

So there exist adjacent points of $\gamma(x)$ in I^- or in I^+ , determining an interval J, such that only one of them is mapped by f to the other interval.

Otherwise, we would have $f(I^-) \subseteq I^+$ and $f(I^+) \subseteq I^-$ (since f(u) > u and f(v) < v). This is impossible, since $r \neq s$. We also note that $J \to I_1$.

Now let I₁ → I₂ → ··· → I_k → I₁ be the shortest cycle of the form I₁ → ··· → I₁ that is different from I₁ ○ (it follows from the former discussion that such a cycle always exists).
Clearly, k ≤ p - 1 since the orbit of x determines p - 1 intervals.
Let g be the odd element of {k, k + 1}.

Now we have:

•
$$I_1 \rightarrow \cdots \rightarrow I_k \rightarrow I_1;$$

•
$$I_1 \to \cdots \to I_k \to I_1 \to I_1$$

So by a previous proposition, f^q has a fixed point y.

Note that y is not a fixed point of f.

Otherwise, $y \in I_1 \cap \cdots \cap I_k \subseteq I_1 \cap I_2$ (recall that $k \ge 2$) would be in the orbit of x. This yields a contradiction since x is not a fixed point. By the minimality of the odd period p, $q \ge p$. Thus, k = p - 1. This shows that $I_1 \rightarrow I_2 \rightarrow \cdots \rightarrow I_{p-1} \rightarrow I_1$ is the shortest cycle of the form $I_1 \rightarrow \cdots \rightarrow I_1$ that is different from $I_1 \circlearrowleft$.

Now we show that $I_{p-1} \rightarrow I_k$ for k odd. 0 This includes $I_{p-1} \rightarrow I_{p-2}$ since p is odd. We first verify that the intervals I_i are ordered in I in the form $I_{p-1}, I_{p-3}, \dots, I_2, I_1, I_3, \dots, I_{p-2}$ (up to orientation). We know $I_1 \rightarrow \cdots \rightarrow I_{p-1} \rightarrow I_1$ is the shortest cycle of the form $I_1 \rightarrow \cdots \rightarrow I_1$ that is different from $I_1 \circlearrowleft$. Hence, if $I_k \to I_\ell$, then $\ell < k+1$. Otherwise, there would exist a shorter cycle of this form. This implies that I_1 only covers I_1 and I_2 . Hence, l_2 is adjacent to l_1 (since $f(l_1)$ is connected). Since $I_1 = [u, v]$, we have one of the following: • $I_2 = [w, u]$, with f(u) = v (recall that f(u) > u) and f(v) = w; • $I_2 = [v, w]$, with f(u) = w and f(v) = u.

Lemma 1 (Conclusion)

• We analyze only the first case.

The second one is entirely analogous.

We have f(u) = v and l_2 does not cover l_1 .

Hence, $f(I_2) \subseteq [v, +\infty)$.

But I_2 covers I_3 . We conclude that $I_3 = [v, t]$, with $t = f(w) = f^2(v)$ (I_2 covers no other interval).

Continuing this procedure yields the claimed ordering.

This implies that, for $u_i = f^i(u)$,

$$u_{p-1} < u_{p-3} < \cdots < u_2 < u < u_1 < u_3 < \cdots < u_{p-2}.$$

Now $f(u_{p-1}) = u$ and $f(u_{p-3}) = u_{p-2}$. Thus, we obtain $I_{p-1} = [u_{p-1}, u_{p-3}] \rightarrow I_k$, for k odd. This completes the proof of the lemma.

Lemma 2

Lemma

Let $f : I \to I$ be a continuous map of a compact interval $I \subseteq \mathbb{R}$. If f has a periodic point with even period, then it has a periodic point with period 2.

Let x be a periodic point with even period p > 2.
 We consider two cases.

Lemma 2 (Case 1)

• We first assume that there are no adjacent points in the orbit of x determining an interval $J \neq l_1$ that covers l_1 .

Let y and z be, respectively, the minimum and maximum of the orbit of x,

$$y = \min \gamma(x)$$
 and $z = \max \gamma(x)$.

By construction, $f(u) \ge v$. Thus, f([y, u]) intersects $[v, +\infty)$. By hypothesis, the interval [y, u] does not cover l_1 . Thus, $f([y, u]) \subseteq [v, +\infty)$. Similarly, $f([v, z]) \subseteq (-\infty, u]$. Since f permutes the points in the orbit of x, we obtain

$$[y, u] \to [v, z] \to [y, u].$$

By a previous proposition, f has a periodic point with period 2.

Lemma 2 (Case 2)

 Assume that there are adjacent points in the orbit of x determining an interval $I_k \neq I_1$ that covers I_1 . Let $I_1 \rightarrow \cdots \rightarrow I_k \rightarrow I_1$ be the shortest cycle of the form $I_1 \rightarrow \cdots \rightarrow I_1$ that is different from I_1 (5. Then $k \leq p - 1$. Take $q \in \{k, k+1\}$ even. Clearly $q \leq p$. We have $l_1 \rightarrow \cdots \rightarrow l_k \rightarrow l_1$ $l_1 \rightarrow \cdots \rightarrow l_{k} \rightarrow l_1 \rightarrow l_1$.

By a previous proposition, f^q has a fixed point y.

Lemma 2 (Case 2 Cont'd)

• We note that y is not a fixed point of f.

If p was the smallest even period, then q = p and thus k = p - 1. Proceeding as in the proof of the preceding lemma, one could then show that:

• The intervals I_i must be ordered in I in the form $I_{p-2}, \ldots, I_2, I_1, I_3, \ldots, I_{p-1}$ (up to orientation); • $I_{p-1} \rightarrow I_k$ for k even.

In particular, we would obtain the cycle $I_{p-1} \rightarrow I_{p-2} \rightarrow I_{p-1}$.

By a previous proposition, f would have a periodic point with period 2 (since $I_{p-2} \cap I_{p-1} = \emptyset$).

This contradiction shows that p cannot be the smallest even period.

So one can consider a periodic point with a smaller even period.

By repeating the process, we get down to period 2.

Sharkovsky's Theorem

Theorem (Sharkovsky)

Let $f : I \to I$ be a continuous map of a compact interval $I \subseteq \mathbb{R}$. If f has a periodic point with period p and $q \prec p$, then f has a periodic point with period q.

• We consider four cases.

1.
$$p = 2^k$$
 and $q = 2^\ell \prec p$, with $\ell < k$.

Suppose $\ell > 0$. Let x be a periodic point of f with period p. Then x is a periodic point of $f^{q/2}$ with period $2^{k-\ell+1}$. But $k - \ell + 1 \ge 2$. By Lemma 2, $f^{q/2}$ has a periodic point y with period 2. Then y is a periodic point of f with period q.

Suppose $\ell = 0$. By Lemma 2, f has a periodic point with period 2. It determines an interval I_1 in I whose endpoints are permuted by f. Since f is continuous, it must have a fixed point in I_1 .

Sharkovsky's Theorem (Case 2)

 p = 2^kr and q = 2^ks ≺ p with r > 1 odd minimal and s even. Note r is the smallest odd period of the periodic points of f^{2k}. By Lemma 1, there exists a cycle of length s. When s < r, we take

$$I_{r-1} \rightarrow I_{r-s} \rightarrow \cdots \rightarrow I_{r-2} \rightarrow I_{r-1}$$

When $s \ge r$, we take

$$I_1 \to I_2 \to \cdots \to I_{r-1} \to I_1 \to I_1 \to \cdots \to I_1.$$

By a previous proposition, f^{2^k} has a periodic point with period s. This is a periodic point of f with period $2^k s = q$.

Sharkovsky's Theorem (Case 3)

- 3. $p = 2^k r$ and $q = 2^\ell \prec p$ with r > 1 odd minimal and $\ell = k$. Take s = 2 in Case 2.
 - We obtain a periodic point of f with period $2^k s = 2^{k+1}$. Now we revert to Case 1.
 - f has a periodic point with period 2^{ℓ} for each $\ell \leq k$.

Sharkovsky's Theorem (Case 4)

4. p = 2^kr and q = 2^ks ≺ p with r > 1 odd minimal and s > r odd.
Again, r is the smallest odd period of the periodic points of f^{2^k}.
By Lemma 1, we obtain the cycle of length s given by

$$I_1 \rightarrow I_2 \rightarrow \cdots \rightarrow I_{r-1} \rightarrow I_1 \rightarrow I_1 \rightarrow \cdots \rightarrow I_1.$$

By a previous proposition, f^{2^k} has a periodic point x with period s. Suppose x is a periodic point of f with period $2^k s$. Then the proof is complete.

Suppose x is not a periodic point of f with period $2^k s$.

Then x has period $2^{\ell}s$ for some $\ell < k$.

Take
$$\overline{p} = 2^{\ell}s$$
 and $\overline{q} = 2^{\ell}\overline{s} = q$, where $\overline{s} = 2^{k-\ell}s$.

Now s is even.

Thus, Case 2 yields a periodic point of f with period $\overline{q} = q$.

Subsection 4

The Poincaré-Bendixson Theorem

The Setup

• Given a C^1 function $f : \mathbb{R}^2 \to \mathbb{R}^2$, consider, for each $x_0 \in \mathbb{R}^2$, the initial value problem

$$x'=f(x), \quad x(0)=x_0.$$

- We assume that the unique solution x(t, x₀) of the system is defined for t ∈ ℝ.
- By a previous proposition the family of maps $\varphi_t : \mathbb{R}^2 \to \mathbb{R}^2$ defined, for each $t \in \mathbb{R}$, by

$$\varphi_t(x_0) = x(t, x_0)$$

is a flow.

• We call a point $x \in \mathbb{R}^2$ with f(x) = 0 a **critical point** of f.

Transversals and Crossings

A line segment L ⊆ ℝ² is called a transversal to f : ℝ² → ℝ² if, for each x ∈ L, the directions of L and f(x) generate ℝ².

Lemma

- Let φ_t be a flow determined by a differential equation x' = f(x) for some C^1 function $f : \mathbb{R}^2 \to \mathbb{R}^2$. Suppose $L \subseteq \mathbb{R}^2$ is a transversal to f.
 - If $x \in \mathbb{R}^2$ is not periodic and meets L at points x_k at times t_k , with $t_1 < t_2 < \cdots$, then the order of the x_k on L is the same as that of the t_k .
 - If x is periodic, then it can meet L in at most one point.
 - Assume, first, that x is not periodic.
 Consider the simple closed curve consisting of γ(x) between x₀ and x₁ and the segment of L joining x₀ and x₁.

The orbit cannot cross through the curve, since then it would either be periodic or cause a discontinuity in the vector field.

Hence, the next crossing occurs beyond x_1 .

Transversals and Crossings (Cont'd)

Next suppose that x is periodic, with least period T > 0.
 We express the solution as f(t, x₀) so that the transversal L is constructed at x₀ = f(0, x₀).

Any other point on the orbit is achieved at a unique $t \in [0, T)$. Thus, if the orbit crosses $x_1 \neq x_0$ on L, it does so at $t_1 < T$. The orbit cannot return to x_0 across L.

So it must cross $\gamma(x)$ at some $x_2 = f(t_2, x_0)$, $t_1 < t_2 < T$.

However x_2 also precedes x_1 .

So we must have $x_2 = f(\tau_2, x_0)$, where $\tau_2 < t_2$.

But then $\gamma(x)$ is periodic with period $t_2 - \tau_2$.

This is a positive number less than T.

This contradicts the assumption that T is the least period.

Transversals and Limit Sets

Lemma

Let φ_t be a flow determined by a differential equation x' = f(x) for some C^1 function $f : \mathbb{R}^2 \to \mathbb{R}^2$. Suppose $L \subseteq \mathbb{R}^2$ is a transversal to f. Then, for each $x \in \mathbb{R}^2$, the set $\omega(x) \cap L$ contains at most one point.

• Suppose
$$p,q \in \omega(x) \cap L$$
, with $p \neq q$.

Then $\gamma(x)$ meets L in more than one point.

Hence, by the lemma, f is not periodic.

Thus, $\gamma(x)$ meets *L* at infinite many points $\{x_k\}$ at times $t_1 < t_2 < \cdots$.

But there are two different limit points on $\gamma(x) \cap L$.

Thus, the $\{x_k\}$ cannot be in the order required by the lemma on *L*.

The Poincaré-Bendixson Theorem

Theorem (Poincaré-Bendixson)

Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a C^1 function. Consider the flow φ_t determined by the equation x' = f(x). Suppose that:

- The positive semiorbit $\gamma^+(x)$ of a point $x \in \mathbb{R}^2$ is bounded;
- $\omega(x)$ contains no critical points.

Then $\omega(x)$ is a periodic orbit.

By hypothesis, the positive semiorbit γ⁺(x) is bounded. By a previous proposition, ω(x) is nonempty. Take a point p ∈ ω(x). Now ω(x) is contained in the closure of γ⁺(x). By a previous proposition, ω(p) is nonempty. Moreover, by the same proposition, ω(p) ⊆ ω(x). Now take a point q ∈ ω(p).

The Poincaré-Bendixson Theorem (Cont'd)

• By hypothesis, q is not a critical point.

By the preceding lemma, there exists a line segment L containing q that is a transversal to f.

But $q \in \omega(p)$.

Thus, by a previous proposition, there exists a sequence $t_k \nearrow +\infty$ in \mathbb{R}^+ , such that $\varphi_{t_k}(p) \to q$ when $k \to \infty$.

One can also assume that $\varphi_{t_k}(p) \in L$, for $k \in \mathbb{N}$.

On the other hand, since $p \in \omega(x)$, by a previous proposition, $\varphi_{t_k}(p) \in \omega(x)$, for $k \in \mathbb{N}$.

Now $\varphi_{t_k}(p) \in \omega(x) \cap L$.

By the preceding lemma, for $k, \ell \in \mathbb{N}$,

$$\varphi_{t_k}(p) = \varphi_{t_\ell}(p) = q.$$

This implies that $\gamma(p) \subseteq \omega(x)$ is a periodic orbit.

The Poincaré-Bendixson Theorem (Cont'd)

By a previous proposition, $\omega(x)$ is connected.

So, in each open neighborhood of $\gamma(p)$, there exist points of $\omega(x)$ that are not in $\gamma(p)$.

Moreover, any sufficiently small open neighborhood of $\gamma(p)$ contains critical points.

Thus, there exists a transversal L' to f containing one of these points, which is in $\omega(x)$, and a point of $\gamma(p)$.

Since $\gamma(p) \subseteq \omega(x)$, $\omega(x) \cap L'$ contains at least two points.

This contradicts the preceding lemma.

Thus, $\omega(x) = \gamma(p)$ and the ω -limit set of x is a periodic orbit.

Example

• Consider the differential equation

$$\begin{cases} x' = x(3-2y-x^2-y^2) - y, \\ y' = y(3-2y-x^2-y^2) + x. \end{cases}$$

Writing in polar coordinates, we get

$$\begin{cases} r' = r(3-2r\sin\theta-r^2),\\ \theta' = 1. \end{cases}$$

For any sufficiently small r, we have

$$r' = r(3 - 2r\sin\theta - r^2) \ge r(3 - 2r - r^2) > 0.$$

For any sufficiently large r, we have

$$r' = r(3 - 2r\sin\theta - r^2) \le r(3 + 2r - r^2) < 0.$$

Example (Cont'd)

• Now the origin is the only critical point.

Therefore, for any $r_2 > r_1 > 0$, there are no critical points in the ring

$$D = \{ x \in \mathbb{R}^2 : r_1 < \|x\| < r_2 \}.$$

Moreover, provided that r_1 is sufficiently small and r_2 is sufficiently large, it follows from the preceding inequalities that any positive semiorbit $\gamma^+(x)$ of a point $x \in D$ is contained in D.

By the theorem, the set $\omega(x) \subseteq D$ is a periodic orbit for each $x \in D$. In particular, the flow determined by the differential equation has at least one periodic orbit in the set D.

Poincaré-Bendixson for Bounded Negative Semiorbits

• We have an analogous result to the Poincaré-Bendixson Theorem for bounded negative semiorbits.

Theorem

Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a C^1 function. Consider the flow φ_t determined by the equation x' = f(x). Suppose that:

- The negative semiorbit $\gamma^{-}(x)$ of a point $x \in \mathbb{R}^{2}$ is bounded;
- $\alpha(x)$ contains no critical points.

Then $\alpha(x)$ is a periodic orbit.